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Abstract

This paper introduces a model based
on contour lines to represent a vague
region modeled as a fuzzy set. The
model allows the user to adjust the
accuracy of the membership func-
tion to the needs of the application
and can enforce the continuity of this
function whenever desirable.

keywords: Vague Regions, Spatial
Data.

1 Introduction

Recently there has been a growing interest
in the modeling of vagueness in spatial re-
gions. Several authors have proposed a rep-
resentation of spatial regions with non-crisp
boundaries by introducing broad boundaries
([1],12],[4]). In those papers a vague region is
characterized by an inner and an outer bor-
der as shown in figure 1. The outer border
delimits the set of points that belong to the
region to a certain extent, the inner border
delimits the set of points that belong to the

broad boundary

inner border outer border

Figure 1: Sample of a vague region.

region for certain. The subregion of points ly-
ing between these borders is called the broad
boundary.

The papers cited above mainly discuss the
topological properties of regions that are rep-
resented by an inner and an outer border, ig-
noring the available information about points
in the broad boundary.

In [6] a method to assign a membership de-
gree to the points lying in the broad bound-
ary has been presented. In this method the
membership degree of a point is based on the
distances from the point to the inner and to
the outer border. This is a very straightfor-
ward method, but the membership function is
completely determined by both borders only,
so there is no possibility to refine the mem-
bership function in the broad boundary if de-
sired.

This paper presents an extension of this
method, that allows for a more accurate mod-
eling of the membership function in the broad
boundary by introducing contourlines. In
fact, these contourlines provide a very flexi-
ble means of defining a membership function
with arbitrary accuracy.

Section 2 explains how contourlines are de-
fined. Section 3 and section 4 explain how the
contourlines are used to calculate the mem-
bership degrees of individual points of a vague
region.
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2 Contourlines in the broad
boundary

A region is a subset of a two dimensional Eu-
clidian space U. Vague regions are a gener-
alization of regions. In the model explained
below, vague regions will be represented by
fuzzy sets. The outer border of a vague re-
gion X is the boundary! of the support of X
(supp(X) = X,) 2, the inner border is the
boundary of the kernel of X (ker(X) = Xi).

The concept of using a border to define a-level
cuts can be applied to membership degrees
other than 0 and 1, using information about
points in the broad boundary. It is possible to
define additional borders, each of these bor-
ders corresponding to a specific membership
degree m €]0, 1] such that it is the boundary
of X,,.

The set of membership degrees for which a
border is defined to model a vague region X,
will be denoted Mx C [0, 1].

To be useful in the context of the presented
model (as will be explained further), Mx
must be a finite set that contains at least two
elements, including 0. It is not required to in-
clude 1 in My, which makes it possible to use
non-normalized fuzzy sets to represent vague
regions. Since X is undefined, the member-
ship degree 0 has to be treated as a special
case.

The border corresponding to a given member-
ship degree m does not necessarily correspond
to one single line. In the case that X, has a
”hole” in it or is a disconnected set, the cor-
responding border will correspond to two or
more closed lines.

A closed line that is part of a border will be
called a contour line®. The set of all contour
lines that are defined to model a vague region

LA point p is called a boundary point of a (crisp)
set S iff every non-empty environment of p intersects
with both S and the complement of S. The set of
all boundary points of S is called the boundary of S,
denoted by Bd(S).

’X, n= {z|X (z) >= a} for a €]0,1],

X, = {z|X(z) > a} for a € [0, 1], see [3].

3In [5] (p.66) contour lines are defined as follows:
”Contour lines are a representation of isolines for a
sample set of elevation values”.

X will be denoted Cx. A contour line cor-
responding to the membership degree m will
be called an m-contour line. The subset of
Cx of all contour lines that correspond to the
membership degree m will be denoted C,, .

In order for the presented model to be appli-
cable on a vague region, the following restric-
tions must be satisfied:

e The vague region must be bound. (It
is not possible to define the membership
function of an unbound region in this
model, as at least the 0-contour lines can-
not be defined).

e The support of the vague region must be
a connected set. If necessary, a vague
region with a disconnected support can
be modeled as the union of two or more
vague regions with a connected support.

e The a-cuts for membership degrees other
than zero can be disconnected sets, but
they have to be the union of a limited
number of connected subsets (to exclude
regions with an infinite number of con-
tour lines).

Figure 2 is an example of a vague region.
This region has one contour line for the sup-
port (0-contourline) and one 0.5-contour line.
The kernel consists of two disconnected parts,
hence its boundary is made up of two contour
lines.

Given the definition of contour lines, it is pos-
sible that several contour lines, corresponding
to different membership degrees, (partially)
coincide. As a most striking example, the con-
tourlines of a crisp region defined with this
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Figure 2: Sample of a fuzzy region with a dis-
connected kernel (marked grey).



model will be the same for all membership
degrees, as the outer border (0-contour lines)
and the inner border (l-contour lines) will
completely coincide.

Given a fuzzy region defined by a set of con-
tour lines, the computation of the member-
ship degree of a point lying in the broad
boundary consists of two parts. Firstly, the
contour lines that will be used for the compu-
tation of the membership degree of the point,
called the relevant contour lines, have to be
determined. Secondly, the membership de-
gree of the point has to be computed from
the membership degrees associated with these
relevant contour lines.

3 Determining the relevant
contour lines

The contour lines of a region divide the broad
boundary in adjoining non-overlapping subre-
gions, so that each subregion is bound by a
subset of the contour lines and each contour
line is part of the boundary of at least one
subregion.

This notion of subregiouns is used to determine
the relevant contour lines of a point lying in
the broad boundary of a vague region. If a
point p is not located on a contour line, it
is possible to find the unique subregion that
contains p. The contour lines that border this
subregion will be used to calculate the mem-
bership degree of p (section 4).

3.1 A contour line tree

A tree of contour lines will be used to deter-
mine the relevant contour lines.

A contour line divides the plane into two
parts. One part is the inside* of the contour
line and the other part the outside of the con-
tour line. The points of the contour line itself
belong to the inside. When a point p belongs
to the inside of a contour line C, it is said that
C encloses p. If all points of a second contour
line C” are enclosed by C, then C encloses C'.

“the region defined by the inner normal of the con-
tourline.

Consider a vague region X. The following rule
defines a tree of all contour lines in Cy:

VA,B € Cx :A is an ancestor of B
< A encloses B.

If there are no contour lines that totally coin-
cide, this rule defines the tree unambiguously.

If two contour lines completely coincide, one
contour line encloses the other and vice versa,
which causes ambiguity. In this case, a nat-
ural order for these contour lines has to be
found. If the contour lines correspond to holes
in their corresponding «-level cuts, the con-
tour line with the higher membership degree is
designated as the ancestor. In all other cases,
the contour line with the lower membership
degree is designated as the ancestor.

As it is assumed that the support of a vague
region is connected, Cx contains exactly one
0-contour line that encloses all other contour
lines. As a result, this contour line will be the
root of the tree.

A contour line A € Cx will be a child of con-
tour line B € Cx if B encloses A and

—3C € Cx : (B encloses C) A (C encloses A)

Figure 3(a) shows a more elaborate example
of a vague region. Figure 3(b) shows the cor-
responding contour line tree.

If the contour line tree is known, the search for
the relevant contourlines for a point p is car-
ried out by applying the following algorithm:

e Step 1: Start with the root of the tree
as the current node. If the correspond-
ing contour line encloses p, carry out the
step 2 of the algorithm, otherwise the al-
gorithm ends as the region does not con-
tain p (whiwh will be assigned the mem-
bership degree 0).

e Step 2: Repeat this step until the current
node does longer change:
For each child-node of the current node:
if the corresponding contour line encloses
p, make this child the current node.
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Figure 3: (a) An example of a vague region
with labeled contourlines. (b) the correspond-
ing contourline-tree.

The relevant contour lines are the lines corre-
sponding to the current node, obtained at the
end of the algorithm, together with its child-
nodes if any. The process always ends because
the set of specified contour lines must be finite
in this model.

The next section shows how the contour lines
and their associated membership degrees are
used to calculate a membership degree for p.

4 Interpolation method

The distance d between a point p and a con-
tour line C' is defined as:

d(C,p) = d(p,C) = min d(p', p)
p'eC

It can be proved that this function is contin-
uous in every point p € U for a given C.

If a point lies on a contour line, this point is
assigned the membership degree correspond-
ing to this contour line. If the point lies on
more than one (coinciding) contour lines, it is
assigned the highest membership degree cor-
responding to these contour lines.

The calculation of the membership degree of a
point p not lying on a contour line in a vague
region X is based on the interpolation of the
membership degrees of the relevant contour
lines. Based on the number of relevant con-
tour lines for p, three general cases can be
distinguished.

4.1 One relevant contour line

In this case the only relevant contour line does
not enclose any other contour line (e.g. con-
tour line F in figure 3) p is assigned the mem-
bership degree associated with the relevant
contour line.

As a result the membership function of X will
be continuous for all points inside the relevant
contour line.

4.2 Two relevant contour lines

In this case (e.g. points lying between B
and C in figure 3) the membership degree of
p is defined as the weighted average of the
membership degrees associated with both rel-
evant contour lines. The weights are calcu-
lated from the distances from p to the contour
lines:

X (C1) + gy X (C2)

d(p,C d(p,C:
X(p) — (p,C1) - (Pl 2) (1)
awon T aw.oy)

_ d(p, C2) X(Ch) +d(p, C1) X(Cy) (2)
d(p,C1) +d(p, C2)

where C7 and (5 are the relevant contour
lines, X (C7) and X (C5) the associated mem-
bership degrees.

Taking into account that d(C1, p) and d(Cy, p)
are continuous functions in all points p € U, it



can be proved that (1) is a continuous func-
tion for all points p € U\(C;JC2). More-
over, the limit of the function in points of C is
X (Ch) and the limit of the function in points
of 02 is X(Cg)

4.3 More than two relevant contour
lines

This is the most complicated case. (e.g. the
case which holds for points lying between the
contour lines A, B and E in figure 3.) There
are several options for calculating X (p). De-
pending on the option that is used, the result-
ing membership function will have different
properties.

One option is to choose two elements of
{Cili = 1,...,n}, thus reducing this case to
the previous case. It is obvious that two con-
tour lines will be chosen based on the distance
of the contour lines to the p. However, simply
selecting the two contour lines that lie clos-
est to p will not result in a good membership
function. First of all the membership degree
of points that are equidistant to two or more
contour lines is not always well defined in this
case. Of course, this could be solved by choos-
ing one of both equidistant contour lines (for
instance the contourline that results in the
highest membership degree), but this way of
defining the membership function would con-
flict with the provided contour lines! For in-
stance, if there are three relevant contour lines
Cl, 02 and 03 with X(Cl) = X(Cg) = mi,
X(C3) = my and m; > mgy, the points for
which C; and C5 are used to calculate the
membership degree, will be assigned member-
ship degree m;. However, the lower member-
ship degree of C5 indicates that the subregion
between these three contour lines does not be-
long to X,,,. By definition, points that do
not belong to X,,,, have a membership degree
lower than m;. To get rid of this problem the
restriction is introduced that the two contour
lines that are used to calculate the member-
ship degree of p, have to correspond to two
different membership degrees whenever possi-
ble (e.g. if not all contour lines correspond to
the same membership degree). With this re-
striction, the resulting membership function

will not only be consistent with the definition
of the contour lines, but it will also be con-
tinuous and the limit of the function in points
lying on a (relevant) contour line will be the
membership degree that corresponds to this
contour line. These last two properties make
the choosen approach useful.

Another option is to generalize (1), so that
X(p) becomes the weighted average of all
membership degrees associated with all rel-
evant contour lines:

Y @y X (Ci)

X(p) = D
X ap.en

(3)

with {C;]i = 1,...,n} the set of relevant con-
tour lines for p.

It can be proved that the function (3) is con-
tinuous in all points p € U\ U;<;<, Ci- The
limit of function (3) taken in a point p € C;
is X(CZ)

4.4 Continuity of the membership
function

In the previous subsections, it has become
clear that with the presented method the
membership function of a vague region is
made up of many different functions. In fact,
every subregion as mentioned in section 3 has
its own membership function. It has been
mentioned that all of these functions are con-
tinuous in the part of the region where they
are used as the membership function.

As the points lying on a contour line are as-
signed the corresponding membership degree
and the limit of the membership functions,
used in the adjacent subregions, in a point
lying on the contour line equals to the same
membership degree, the membership function
will also be continuous on the contour lines
itself as long as the contour lines are not co-
incident. Where two or more contour lines
coincide, the membership function will be dis-
continuous.

As a result, the membership function being
continuous or not is not a side effect of the
calculations, but is determined by the relative



position of the contourlines only. This means
that the user of this model has full control
over the continuity of the membership func-
tion, which can be highly desirable.

5 Conclusion

A very general method for modeling vague re-
gions has been introduced. With this method
it is possible to model a very wide range of
vague regions and to modify the precision of
the membership function by increasing or de-
creasing the number of membership degrees
for which contour lines are defined. It is also
possible to control the continuity of the mem-
bershipfunction by defining the contour lines
to be coincident or not.
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