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Abstract: This paper presents the consensus problem in the framework of optimal control.
Our aim is to synchronize a set of identical linear systems. We propose a cost which penalizes
mutual differences between the states of these systems. The feedback matrix resulting from this
linear quadratic control problem represents the interconnection network which synchronizes the
systems. In general the interconnection structure is of the all-to-all type. We show that it is
possible to devise an LQR problem in which the cost results in an interconnection structure
representing ring coupling. Care has to be taken that the effect of the feedback control is
restricted to synchronizing the systems, i.e. when the systems are synchronized, the feedback
control signal is required to be equal to zero.
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1. INTRODUCTION

Over the last decade the research domain of cooperative
control for multi-agent networked systems has experienced
an on-going expansion of research activity. Multi-agent
systems arise in areas where several autonomous systems
are interacting with each other. Applications can be found
in diverse areas such as interactions of local controllers in
the power grid (Venkat et al. (2008)), formation control
of autonomous vehicles (Fax and Murray (2004), Olfati-
Saber and Murray (2004)), synchronization of oscillating
systems (Rosenblum et al. (1996)), etc. Control of the
multi-agent system arises through exchange of information
between subsystems. The network of information exchange
is represented by a graph whose vertices are the subsys-
tems and whose edges constitute the allowed interaction
channels between the subsystems.

An important subdomain of multi-agent systems research
treats consensus problems. In this class of problems the
subsystems share the goal of reaching a common objective.
In many applications this corresponds to systems trying to
reach the same state value. This value can be either time-
varying or constant. When the subsystems exhibit oscilla-
tory behavior, reaching consensus is called synchronization
of the subsystems. Incorporating some adjustments (for
instance, using different offsets), a consensus problem can
produce a desired formation structure. An overview of
consensus problems is given in Ren et al. (2005) and Ren
and Beard (2008).

One line of recent research aims to extend synchronization
results to systems with more general dynamics. In Scar-
dovi and Sepulchre (2009), for instance, synchronization of
identical linear systems under a dynamical coupling struc-

ture is discussed. A second line of recent research studies
consensus problems with limited interaction properties,
(see e.g. Savkin (2006), Delvenne et al. (2009)). One wishes
to limit interactions between systems in order to reduce a
corresponding cost. In Delvenne et al. (2009) an optimum
between interaction cost and control performance is ob-
tained for a class of linear discrete-time systems.

A different viewpoint on control of networked systems is
delivered by the linear quadratic (LQ) control framework.
In this framework the interacting subsystems are neces-
sarily linear. Traditionally this optimal control problem
treats a single given linear system. After devising a cost
which is quadratic in the state and the input of the system,
the method delivers a linear stabilizing state feedback.
In Levine and Athans (1970), Wenk and Knapp (1980),
Gupta et al. (2005) the feedback matrix is assumed to
be subject to structural constraints, such as for instance
certain elements being zero. This assumption is relevant in
a multi-agent networked system framework: given a linear
multi-agent system, the feedback matrix produced by the
linear quadratic control method represents the interaction
topology between the subsystems. A zero-element in this
matrix corresponds to the inability of one of the subsystem
to influence a specific other one. When considering such
constraints on the feedback matrix, the LQ method yields
a sub-optimal solution compared to a feedback without
restrictions. In Langbort and Gupta (2009) a method is
described which adjusts the above problem formulation in
order to obtain an optimal solution. The idea is to adjust
the given matrix Q representing the cost on the states in
such a way that it yields an optimal feedback that is in
correspondence with the given restrictions on it. This is
an inverse problem, where the cost is synthesized starting
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from a desired feedback matrix. The proposed adjustments
have a physical meaning: they represent extra costs on
certain interconnection links.

The present paper combines the topic of restricted-
interaction consensus problems with the synthesis of a
suitable cost function in the optimal control framework.
The idea to use optimal control to obtain consensus or
synchronization has been considered in Liu et al. (2009).
However, in that paper it is a tracking control that drives
the systems to consensus: the synchronized solution of each
uncoupled subsystem is determined beforehand and the
controller ensures that every system tracks this solution
in an optimal way. In our approach synchronization is
obtained through (optimal) interactions between the sub-
systems. We do not impose the synchronized solution a
priori; we only require that the state differences between
subsystems converge to zero. Up to our knowledge, this is a
novel approach to the synchronization/consensus problem.
Adopting the main idea of Langbort and Gupta (2009),
which has also been proposed by Jovanovic (2010), our goal
is to synthesize a quadratic cost for a linear multi-agent
system consisting of identical systems, satisfying some
given structural constraints. The idea of designing an LQR
control satisfying structural constraints, is also used in
Borrelli and Keviczky (2008), where the given constraints
are related to stabilizability of the interconnected system.
In the present paper the requirement of stabilizability is
replaced by demanding the interconnected system reaches
consensus. The constraints imposed are the following.

• The structure of the feedback matrix is chosen to
correspond to a ring interconnection between the
systems.

• The feedback matrix, resulting from the LQ problem
realizes consensus between the subsystems.

• The feedback control is not allowed to affect the
dynamics of the system when consensus is attained.

We decide to satisfy the first constraint by coupling
the subsystems into a ring. The system under study
then belongs to the class of spatially invariant systems.
General results on optimal control of such systems are
obtained in Bamieh et al. (2002) and Motee and Jadbabaie
(2008). However, the assumptions on the cost in Bamieh
et al. (2002) is more restrictive than the second and
third constraint above allow. More precisely, we will show
that the cost resulting in consensus is determined by a
positive semi-definite matrix. This matrix is assumed to
be positive definite in Bamieh et al. (2002). Furthermore,
the results in Motee and Jadbabaie (2008) treat the
spatial structure of optimal feedback controllers which are
spatially decaying. In the present paper, however, feedback
controllers coupling the systems in a ring are considered,
which do not belong to the class of spatially-decaying
controllers.

This paper is organized as follows. In Section 2 the prob-
lem of synthesizing an LQ cost that steers the system to
consensus is defined for systems of general dimension. In
Section 3 the desired cost is mathematically constructed in
the case of scalar systems. Section 4 proves that this cost
results in the desired feedback control. In Section 5 a simu-
lation is presented where harmonic oscillators synchronize
in an optimal fashion.

2. PROBLEM STATEMENT

In this section the synthesis problem is introduced. Con-
sider N uncoupled identical linear systems described by

ẋi = Ãxi + B̃ui, i ∈ {1, . . . , N}, (1)

with Ã ∈ R
n×n, B̃ ∈ R

n×p, xi : R → R
n; t 7→ xi(t), and

ui : R → R
p; t 7→ ui(t). This set of N system equations

can be written into one system equation:

ẋ = Ax+Bu, (2)

where A := IN ⊗ Ã ∈ R
Nn×Nn, B := IN ⊗ B̃ ∈ R

Nn×Np,
x := [xT

1 · · ·xT
N ]T : R → R

Nn, and u := [uT
1 · · ·uT

N ]T :
R → R

Np. The symbol ⊗ denotes the Kronecker product
or direct product, and IN is the N ×N identity matrix.

As stated in the introductory section, we propose a feed-
back control

u = Kx, (3)

representing ring coupling between the subsystems:

ui = Ki,i−1xi−1+Ki,ixi+Ki,i+1xi+1, i ∈ {1, . . . , N}, (4)

where Ki,j are submatrices of K, with K−1,1 ≡ K1,N ,
KN,N+1 ≡ KN,1 and x−1 ≡ xN , xN+1 ≡ x1.

This feedback control is demanded to be the solution of a
linear quadratic control problem: the feedback (3) equals
the input û : R → R

Np; t 7→ û(t) that satisfies

û = argmin
u

J(x0, u)

:= argmin
u

∫
∞

0

xT (t)Qx(t) + uT (t)Ru(t)dt, (5)

with Q = QT positive semi-definite, R = RT positive
definite, and where x : t 7→ x(t) is the solution of
(2) corresponding to the input u and the given initial
state x(0) = x0. It is a standard result (see for instance
Kwakernaak and Sivan (1972)) that this input û is indeed
a linear transformation of the state:

û = Kx := −R−1BTPx, (6)

with P a solution of the algebraic Riccati equation

ATP + PA− PBR−1BTP = −Q. (7)

For reasons of simplicity, we set R = INp in the remainder
of this paper. Since A and Q are symmetric, it follows from
(7) that P is symmetric as well. From (6) it follows that P
adopts the structure of K represented by (4). Combining
these two conditions on the structure of P shows that the
matrix P belongs to the class of block-circulant matrices,
with symmetric submatrices. For a general treatment of
block-circulant matrices the reader is referred to Davis
(1979).

Next, the cost (5) must result in a feedback control which
steers the system to a consensus solution defined by the
consensus property

xi(t) = xj(t), ∀i, j ∈ {1, . . . , N}, ∀t ≥ 0.

If the system state satisfies the consensus property, the
cost depending on the states is required to be zero:

xT (t)Qx(t) = 0 ⇐⇒ xi(t) = xj(t), ∀i, j ∈ {1, . . . , N}.
(8)

We call the LQ control problem with a Q-matrix satisfying
(8), a synchronizing LQ control problem (SLQR).

In a final constraint it is demanded that the effect of the
feedback control is restricted to steering to consensus. The



feedback control is not allowed to alter the subsystems’
uncoupled behavior when consensus is attained. Consider
(2) in closed loop:

ẋ = (A+BK)x,

We demand that when the system exhibits consensus
behavior, the feedback signal is equal to zero:

Kx(t) = 0 ⇐⇒ xi(t) = xj(t), ∀i, j ∈ {1, . . . , N}. (9)

The main result of the present paper consists of a proof
by construction of the following conjecture:

Conjecture 1. Consider N linear systems (1) with Ã, B̃ ∈
R. There exists a quadratic cost J defined in (5) satisfying
(8) that results in a feedback control u = Kx satisfying
both (4) and (9), and steering the systems to consensus.

3. SYNTHESIS OF THE OPTIMAL CONTROL
PROBLEM FOR SCALAR SYSTEMS

3.1 Preliminary result

The following lemma on circulant matrices, adopted from
Davis (1979), introduces notation and is applied in the
next section.

Lemma 2. Consider the block circulant matrix C ∈
R

Nn×Nn:

C =







C1 C2 · · · CN

CN C1 · · · CN−1

...
...

...
...

C2 C3 · · · C1






=: circ(C1, C2, . . . , CN ),

where Ci ∈ R
n×n, for all i ∈ {1, . . . N}. The matrix C can

be block diagonalized into a matrix Λ:

Λ = diag(Λ1, . . . ,ΛN ),

where the blocks Λi ∈ C
n×n are given by

Λi = C1 + ωi−1C2 + ω2(i−1)C3 + . . .+ ω(N−1)(i−1)CN ,

for all i ∈ {1, . . . N}, with ω := exp(2πj/N), where ‘j’
represents the imaginary unit.

3.2 Consensus of scalar systems

Consider (1) where the systems are scalar:

ẋi = axi + bui, i ∈ {1, . . . , N}, (10)

with a ∈ R, b ∈ R\{0}, xi : t 7→ xi(t) ∈ R, ui : t 7→ ui(t) ∈
R. The corresponding system (2) has A = aIN , B = bIN .
It follows immediately that (A,B) is controllable, and
hence stabilizable. With R = IN , the general Riccati
equation (7) changes into

2aP − b2P 2 = −Q. (11)

First, we postulate a feedback regulator K ∈ R
N×N

with the desired structure. Condition (9) implies that
K has a zero eigenvalue belonging to the eigenvector
1N := [1 · · · 1]T . From (6) it follows that P possesses the
same property, i.e. P1N = 0. The remaining eigenvalues
of P need to be located in the right half complex plane
to ensure that P is a positive semi-definite solution of
(11). Combining expression (4) with Ki,j ∈ R, (6) with
B = bIN , R = IN , and the condition of symmetry
P = PT , shows that P has the form

P = circ(γ,−γ/2, 0, . . . , 0,−γ/2), (12)

with γ ∈ R.

Theorem 3. The matrix P ∈ R
N×N as defined by (12) is

positive semi-definite if and only if γ ≥ 0.

Proof. Applying Lemma 2 reveals that the eigenvalues
λPi of P are given by

λPi = γ −
γ

2
(ωi−1 + ω(N−1)(i−1)),

= γ −
γ

2

[

exp

(
2πj(i− 1)

N

)

+ exp

(
−2πj(i− 1)

N

)]

,

= γ

[

1− cos

(
2π(i− 1)

N

)]

,

with i ∈ {1, . . . , N}. The above calculation shows that
all eigenvalues are larger or equal to zero, if and only if
γ ≥ 0. 2

We exclude the case γ = 0 from the analysis for the
obvious reason that this corresponds to uncoupled sub-
systems (10).

Second, we investigate if it is possible to determine a cost
J , with R = IN , which has P as a solution. Diagonalizing
P yields Q in diagonal form via (11): if P̃ := T−1PT is
diagonal, then

2aP̃ − b2P̃ 2 = 2aT−1PT − b2(T−1PT )2,

= T−1(2aP − b2P 2)T,

= −T−1QT,

is diagonal as well. This implies that the eigenvalues λQi

of Q can be easily expressed in terms of the eigenvalues
λPi of P :

λQi = b2λ2
Pi − 2aλPi, i ∈ {1, . . . , N}. (13)

Using the expression for λPi obtained in the proof of
Theorem 3, the eigenvalues of Q can be written as

λQi = −2aγ

[

1− cos

(
2π(i− 1)

N

)]

+

b2γ2

[

1− cos

(
2π(i− 1)

N

)]2

,

λQi = γ

[

1− cos

(
2π(i− 1)

N

)]

×

[

−2a+ b2γ

(

1− cos

(
2π(i− 1)

N

))]

. (14)

Since P1N = 0, it follows from (11) that Q has zero row
sum: Q1N = 0. This implies one of the eigenvalues λQi is
equal to zero. Indeed, expression (14) shows that λQ1 = 0.

In order to define a realistic cost function, Q needs to be
positive semi-definite. This is established in the following
theorem.

Theorem 4. Consider a set of N scalar systems defined by
(10), with N ≥ 3. If each scalar system is stable when
uncoupled, i.e. a ≤ 0, then Q, determined by (11) and
(12) with γ > 0, is always positive semi-definite.

If the scalar systems are unstable, i.e. a > 0, then Q is
positive semi-definite if and only if

γ ≥
2a

b2

(

1− cos(
2π

N
)

)
−1

. (15)



Proof. Consider expression (14) denoting the eigenvalues
of Q. As observed before, λQ1 = 0. It remains to be inves-
tigated under which conditions the remaining eigenvalues
are larger than or equal to zero.

The first factor of (14) is always positive for i 6= 1. If a < 0
the second factor is positive, proving the first part of the
theorem.

If a > 0, λi ≥ 0, i 6= 1 if and only if

γ ≥
2a

b2

(

1− cos(
2π(i− 1)

N
)

)
−1

, ∀i ∈ {1, . . . , N},

⇔

γ ≥
2a

b2

(

1− cos(
2π

N
)

)
−1

,

concluding the proof. 2

Summarizing, so far we have obtained a cost J , determined
by matrices Q and R, that has the matrix P of the form
(12) as a solution of the corresponding Riccati equation.
Moreover,Q is positive semi-definite with a zero eigenvalue
belonging to the eigenvector 1N .

However, we have not yet proved that P is the solution of
the Riccati equation which minimizes the cost J . There
might be other positive semi-definite solutions with a
smaller cost. This problem is tackled in the next section.

4. OPTIMAL SOLUTIONS FOR THE SLQR
PROBLEM

Recall the standard result of LQ control as it is found in
many textbooks (see e.g. Kwakernaak and Sivan (1972)).

Theorem 5. Consider an LQ control problem consisting of
a linear system

ẋ = Ax+Bu,
and a cost J as defined in (5), with Q ≥ 0 and R > 0.

If (A,B) is stabilizable and (Q,A) is observable then the
corresponding Riccati equation (7) has exactly one positive
semi-definite solution P , which is also positive definite.
This solution yields a stabilizing feedback, via (3), which
minimizes the cost J .

If (A,B) is stabilizable and (Q,A) is detectable then (7)
has exactly one positive semi-definite solution P , which
yields a stabilizing feedback, minimizing J .

This theorem is thoroughly reviewed in Wonham (1968)
and Lancaster and Rodman (1995). The latter reference
presents an in-depth description of the Riccati equation
and its properties.

Unfortunately, Theorem 5 is not always applicable to the
SLQR problem of the present paper. First, we do not
require a stabilizing feedback which drives all subsystems
to the origin. Our goal is a synchronizing feedback, driving
all systems to a consensus solution, which is not necessarily
the origin. Second, the matrix Q we propose is such
that together with A = aIN , (Q,A) is not necessarily
detectable. Indeed, the nonobservable mode of the system
corresponds to the space spanned by 1N and is given by
the eigenvalue a . It follows that if and only if the scalar
systems are asymptotically stable, i.e. a < 0, (Q,A) is
detectable.

The remainder of this section is divided into the case
where (Q,A) is detectable, i.e. the subsystems (10) are
asymptotically stable, and the case where (Q,A) is not
detectable, i.e. with unstable subsystems.

4.1 Synchronization of asymptotically stable systems

Before considering the case of asymptotically stable sys-
tems, it is useful to remark that even without coupling the
systems reach consensus: they all converge to the origin
independently. Therefore adding an interconnection struc-
ture to synchronize the systems seems somewhat pointless.
However, in some situations it can be desirable to have the
systems converge to a common state before they converge
to the origin.

We consider (10) with a < 0. As mentioned before, the
nonobservable mode of the system is given by this value a.
In Mårtensson (1971) the following lemma is presented.

Lemma 6. Let λi < 0 be a nonobservable mode of (Q,A).
Then there is no positive definite solution of (7).

Combining this result with Theorem 5, it is concluded that
when a < 0 the SLQR problem of the present paper has
exactly one solution P ≥ 0, which is not positive definite.

It follows that the P -matrix of the form (12) with γ > 0
minimizes the cost (5) with R = IN and Q defined by (11).

4.2 Synchronization of unstable systems

The situation where a > 0 is less straightforward. Con-
sider the following lemma (see for instance Lancaster and
Rodman (1995)).

Lemma 7. If (A,B) is stabilizable then the Riccati equa-
tion (11) has at least one positive semi-definite solution
P ≥ 0.

The Riccati equation corresponding to the SLQR problem
of the present paper possibly possesses multiple positive
semi-definite solutions, among which our postulated ma-
trix P satisfying (12) resides. Is this solution P also the
one minimizing the cost J? The answer to this question can
be found using the general analysis of the nondetectable
case as constructed by Kučera (1972b). This analysis de-
termines all positive semi-definite solutions of the Riccati
equation, provided there exists a solution Ps that yields an
asymptotically stable close-loop system. We briefly review
the method as presented in Kučera (1972b).

Introduce the matrix M ∈ R
2N×2N :

M :=

[
A −BR−1BT

−Q −AT

]

. (16)

In the present paper it is assumed that M is diagonaliz-
able. All solutions of the corresponding Riccati equation
are determined by the following lemma (Kučera (1972b)).

Lemma 8. Let each eigenvector vi ∈ R
2N of M be denoted

by

vi =

[
xi

yi

]

, (17)

with xi, yi ∈ R
N .

Every solution P of (7) has the form

P = Y X−1, (18)



where N × N matrices X = [x1 x2 . . . xN ] and Y =
[y1 y2 . . . yN ] (with xi and yi as introduced in (17)) are
chosen such that X−1 exists.

The next lemma presents a collection of properties of M
from Mårtensson (1971), Kučera (1972a,b), and Lancaster
and Rodman (1995).

Lemma 9. With notation introduced in (17), the matrix
M defined by (16) has the following properties.

(1) If λi is an eigenvalue of M , then so is −λi.
(2) The closed-loop system matrix A−BR−1BTP yielded

by a solution (18) has N eigenvalues λi of M as
its eigenvalues, with xi of (17) as their associated
eigenvectors.

(3) If (A,B) is stabilizable and (Q,A) has no nonob-
servable modes with zero real part, then M has no
eigenvalues with zero-real part.

(4) The Riccati equation (7) has a solution P ≥ 0 yielding
an asymptotically stable closed-loop system if and
only if (A,B) is stabilizable and Reλi 6= 0 for all
eigenvalues λi of M . This solution is denoted by Ps.

(5) Matrix M has an eigenvector
[
xi

0

]

, (19)

associated with the eigenvalue λi if and only if λi is
a nonobservable eigenvalue of (Q,A).

Let us now introduce the sets S and R. Let S denote the
set of eigenvectors of M of the form (19) which correspond
to the nondetectable eigenvalues λi, i.e. Reλi > 0.

Let R denote the set of eigenvectors of M of the form (17)
which correspond to the eigenvalues of M which are the
opposite of the nondetectable eigenvalues.

From Lemma 9 it follows that the eigenvectors belonging
toR are needed in the construction of Ps according to (18).

Let Sk ⊆ S andRk ⊆ R be two sets with the same number
of elements. Consider the solution Ps of (7) defined in
Lemma 9(4). Starting from Ps, one can compute other
solutions of (7). Write Ps as Y X−1 as described in (18)
and consider a set Rk. Replace the vectors xi ∈ X, yi ∈ Y
that correspond to the vectors vi in Rk, with vectors
corresponding to those in the set Sk. Call the matrices
obtained in this way Xk and Yk, and define Pk := YkX

−1
k .

It can be proved that Pk is a solution of (7). Such a solution
Pk is said to be supported by the set Sk.

The main theorem in Kučera (1972b) gives the following
result on the positive semi-definite solutions of the Riccati
equation.

Theorem 10. Suppose M has no eigenvalues with zero-real
part. Then the solutions Pk supported respectively by all
sets Sk ⊆ S form the class of all positive semi-definite
solutions of (11).

Combining this theorem with Lemma 9 (3) yields the
following corollary.

Corollary 11. Suppose that (A,B) is stabilizable and
(Q,A) has no nonobservable modes with zero real part.
Then the solutions Pk supported respectively by all sets
Sk ⊆ S form the class of all positive semi-definite solutions
of (7).

We are now in a position to determine all positive semi-
definite solutions of (7) corresponding to the SLQR prob-
lem with a > 0. The matrix M corresponding to (10) is
given by

M =

[

aIN −b2IN
−Q −aIN

]

.

Since Q is such that it has eigenvector 1N associated with
eigenvalue 0, M has an eigenvector

[
1N

0

]

, (20)

associated with the nondetectable mode a > 0. The
eigenvector of M associated to −a can be easily calculated
as [

1N

2a

b2
1N

]

, (21)

The sets S and R are singletons, which implies that
there are two positive semi-definite solutions to the SLQR
problem, one of which is the asymptotically stabilizing
solution Ps. Call the remaining solution P0.

Theorem 12. For the SLQR problem it holds that

Ps = P0 +
2a

b2N
1N1T

N . (22)

Proof. It follows from Lemma 9 (2) and the above com-
puted eigenvectors (20) and (21), that both closed-loop
system matrices A − BBTPs and A − BBTP0 have the
same eigenvectors. Moreover, they have N − 1 eigenvalues
in common. The eigenvalue that is different, has the value
−a for A − BBTPs and the value a for A − BBTP0, and
belongs to the eigenvector 1N . Hence,

∃α ∈ R : Ps = P0 + α1N1T
N .

The value for α is obtained by imposing that both solutions
Ps and P0 correspond to the same Q-matrix via the Riccati
equation (11):

−b2P 2
s + 2aPs = −b2P 2

0 + 2aP0.

Inserting (22) yields

− b2(P 2
0 + α1N1T

NP0 + αP01N1T
N + α21N1T

N1N1T
N )

+ 2aP0 + 2aα1N1T
N = −b2P 2

0 + 2aP0

Since P0 = PT
0 and the row sum of P0 is zero, this changes

into

−b2α2N1N1T
N + 2aα1N1T

N = 0,

⇐⇒

−b2α2N + 2aα = 0,

⇐⇒

α = 0 or α =
2a

b2N
,

concluding the proof. 2

Theorem 13. The matrix P0 corresponds to the feedback
control minimizing the cost of the SLQR problem.

Proof. Let Js and J0 be the values of the cost correspond-
ing to Ps and P0 respectively. It is well-known that the size
of the cost J corresponding with a solution P of the Riccati
equation is given by

J =
1

2
xT
0 Px0,



where x0 is the initial state of the system. Hence

Js =
1

2
xT
0 Psx0,

=
1

2
xT
0 P0x0 +

a

b2N
xT
0 1N1T

Nx0,

=
1

2
xT
0 P0x0 +

a

b2N

(
N∑

i=1

xi

)2

,

>
1

2
xT
0 P0x0 = J0. 2

5. SIMULATION RESULTS: OPTIMAL
SYNCHRONIZATION OF A SET OF HARMONIC

OSCILLATORS

In this section we consider a set of 10 harmonic oscillators
defined by

ẍi + xi = ui, i ∈ {1, . . . , 10}, (23)

which can be written equivalently as expression (1) with

Ai =

[
0 1
−1 0

]

, Bi =

[
0
1

]

, (24)

where i ∈ {1, . . . , 10}. For this system we synthesize a cost
∫

∞

0

xT (t)Qx(t) + uT (t)u(t)dt, (25)

with positive semi-definite Q-matrix:

Q = circ(

[
112 207
207 417

]

,

[
−72 −137.5

−137.5 −281

]

,

[
16 34
34 72

]

,

0N , . . . , 0N
︸ ︷︷ ︸

5 times

,

[
16 34
34 72

]

,

[
−72 −137.5

−137.5 −281

]

), (26)

where 0N denotes the N ×N zero matrix.

The feedback control which minimizes this cost is given by

u = Kx = −BTPx, (27)

with

P = circ(

[
14 8
8 17

]

,

[
−7 −4
−4 −8.5

]

, 0N , . . . , 0N
︸ ︷︷ ︸

7 times

,

[
−7 −4
−4 −8.5

]

),

(28)
and consequently

K = circ([−8 −17] , [4 8.5] , 0N , . . . , 0N
︸ ︷︷ ︸

7 times

, [4 8.5]), (29)

expressing the ring coupling between the oscillators. The
above values for P and Q are obtained by postulating
a desired positive semi-definite P -matrix, calculating the
corresponding Q-matrix according to (7), and checking if
Q satisfies all necessary conditions defined in Section 2.

Figure 1 depicts the state trajectories of all 10 oscillators,
starting from a random initial state. The horizontal axis
indicates the position of each oscillator, the vertical axis
indicates their velocity.

Figure 2 shows snapshots of the oscillators’ states at
different moments in time. The oscillators converge to
a synchronizing behavior as follows. Starting from their
initial conditions, the oscillator states first tend to align
along a line with orientation top-left to bottom-right (see
Figure 2 (b)). This alignment is not perfectly attained.
While maintaining the alignment, the oscillator states
circle around the origin with decreasing interdistances
(Figure 2 (c)-(f)).
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Fig. 1. The phase portrait of 10 synchronizing harmonic
oscillators coupled in a ring.
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