
Abstract

In this research, the fluid-structure interaction in a recently developed membrane pump
is analysed. The governing equations for the laminar flow and for the deformation
of the membrane are solved with two separate codes, which are coupled with the
quasi-Newton technique with an approximation for the inverse of the Jacobian from a
least-squares model. After the description of the model and the solution techniques,
a detailed analysis of the flow field, the deformation of the structure and the stress in
the membrane is presented. An energetic analysis of the pump is performed, and the
pump’s efficiency is calculated.

Keywords: membrane pump, pumping of biological fluids, fluid-structure interaction,
partitioned solution, interface quasi-Newton, mesh motion technique.

1 Introduction

The pumping of biological fluids, such as blood, or particle-laden fluids is a chal-
lenging problem. A first disadvantage of positive displacement pumps such as piston
pumps or diaphragm pumps is that they provide a pulsating flow. Another drawback
of these pumps is the presence of valves, which are fragile, expensive and need reg-
ular maintenance. Turbopumps can strike the biological fluid with their impellers or
generate high shear stress which can damage the particles in the flow. Moreover, hard
particles in the fluid can damage these pumps. In peristaltic pumps a rotor with a num-
ber of rollers compresses a flexible tube, forcing the fluid to move through the tube.
However, the local high pressure areas in these pumps can be damaging for certain
biological fluids.

The two pump types described below are based on other principles, making them
better suited for the pumping of biological fluids. A first pump design ideally suited for
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Figure 1: Illustration of a radial membrane pump.

biomedical applications is the multilayer impedance pump, inspired by the embryonic
heart which achieves a unidirectional pumping prior to the valve formation [1]. The
second pump type, analysed in this paper, is a recently developed membrane pump.
The rigid casing of the pump consists of a hollow circular cylinder with a height that
is smaller than its radius. This casing encloses a flexible, circular membrane with a
hole at its centre. The membrane is held under tension by applying a force on the
outer edge of the membrane. An electromagnet applies an oscillating motion parallel
to the axis of the cylinder at the outer edge of the membrane. As a result, waves travel
from the outer edge of the membrane towards its centre (see Figure 1). Energy is
transferred from the membrane to the fluid during wave propagation. Hence, the fluid
on both sides of the membrane is pumped from the inlet on the side of the cylinder to
the outlet on the axis. If the excitation frequency is chosen high enough, the flow rate
is more or less constant. By keeping an adequate distance between the membrane and
the casing, damage to the particles in the flow is prevented. Modifying the amplitude
of the excitation voltage makes it possible to generate pressure cycles that reproduce
the heart beat cycles. This makes the pump suitable for biomedical applications in
which extracorporeal blood circulation is involved.

In order to further improve the design of these pumps, deeper understanding of the
fluid-structure interaction (FSI) in these pumps is required. In [2] the fluid-structure
interaction in a multilayer impedance pump is investigated. The fluid-structure in-
teraction in a radial membrane pump however had not yet been researched. The nu-
merical simulation of such a multi-physics problem is challenging, especially as the
interaction between the fluid and the structure is strong due to the flexibility of the
structure and the comparable density of the fluid and the structure. The FSI problem
is solved in a partitioned way, which means the flow and the structural equations are
solved separately. This approach preserves software modularity and allows the flow
equations and the structural equations to be solved with different techniques that are
particularly suited to solve the respective equations. Besides a flow solver and a struc-
tural solver, also a coupling algorithm is required to take into account the interaction
between flow and motion of the structure. In this research a quasi-Newton algorithm
with an approximation for the inverse of the Jacobian (IQN-ILS) is used, which re-
quires fewer coupling iterations per time step than dynamic relaxation techniques [3].

Apart from the interaction, another difficulty in the numerical simulation of these
membrane pumps is the strongly deforming fluid domain, due to the large deformation
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of the structure. An accurate calculation of the stress on the fluid-structure interface is
obtained using the flow equations solved in the Arbitrary Lagrangian-Eulerian (ALE)
formulation on a deforming mesh. However, with standard mesh motion techniques,
it is impossible to maintain a valid, high-quality mesh throughout the simulations.
This problem has been overcome by using an innovative combination of mesh motion
corresponding to the solution of Laplace equations, mesh smoothing and remeshing.

2 Method

2.1 Physical model

In this research a two dimensional axisymmetric model of the pump was used. The
dimensions of the pump are given in Table 1 and the geometry is shown in Figure 2.
The fluid on both sides of the membrane is pumped from the outside of the cylinder
towards its centre. The pumped fluid is water. The membrane is made of a silicone
rubber. This material is inert, non-toxic and keeps its elasticity over a wide range of
temperatures (173 K up to 573 K). The hyperelastic material behavior was described
with the Van der Waals model. An electromagnet applies an oscillating motion paral-
lel to the axis of the pump. We assumed that this electromagnet imposes a sinusoidal
movement at the outer edge of the membrane. The sinusoidal excitation has a fre-
quency of 50 Hz and an amplitude of 1 mm. A constant static pressure of 0 Pa is
imposed at the outlet of the pump. The total pressure at the inlet is 0 Pa.

Parameter Symbol Value
Fluid domain radius rpump 46 mm
Fluid domain width wpump 11 mm
Internal radius of the structure rs,int 8 mm
External radius of the structure rs,ext 38 mm
Thickness of the structure ts 1 mm
Fluid density ρf 998.2 kg/m3

Fluid viscosity µf 0.001003 kg/ms
Fluid specific heat cp 4182 J/kgK
Fluid thermal conductivity K 0.6 W/mK
Structural density ρs 1160 kg/m3

Structural stiffness E 1.4-2.3 N/mm2

Excitation amplitude A 1 mm
Excitation frequency f 50 Hz

Table 1: Dimensions of the pump and the material properties.
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Figure 2: Geometry of the pump used in this research.

2.2 Mathematical Model

2.2.1 Flow equations

The equations that describe the unsteady flow of the Newtonian, incompressible, vis-
cous fluid in the pump are the Navier-Stokes equations, given by

∇.vf = 0 (1a)

ρf
∂vf
∂t

+ ρf∇.(vfvf ) +∇p = ρff f +∇.τ (1b)

ρf
∂E

∂t
+ ρf∇.(Hvf ) = ρff f .vf +∇.(τ .vf )−∇.(−K∇T ) (1c)

with vf the flow velocity, ρf the fluid density, t the time, p the pressure. f f represents
the body forces per unit of mass on the fluid, τ the viscous stress tensor, E the total
energy of the flow (i.e. the sum of internal and kinetic energy), H = E+ p/ρ the total
enthalpy, K the thermal conductivity and T the fluid temperature. The stress tensor σf

is defined as
σf = −pI + τ , (2)

with I the unit tensor.
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2.2.2 Structural equations

The velocity of the structure vs is determined by the Cauchy momentum equation that
describes the non-relativistic momentum transport in any continuum.

ρs
Dvs
Dt
−∇.σs = ρsf s (3)

In this equation ρs represents the structural density, σs the Cauchy stress tensor and
f s the body forces per unit of mass on the structure. The notation D/Dt refers to the
material derivative.

2.2.3 FSI equilibrium conditions

The equilibrium conditions on the fluid-structure interface are the kinematic condition

vf = vs (4)

and the dynamic condition
σf .nf = −σs.ns. (5)

nf and ns represent the unit normal vector that points outwards from the fluid respec-
tively the structural domain.

2.3 Numerical Model

The fluid domain was meshed using an unstructured grid, as shown in Figure 3, with
an initial length of the cell edges of 0.36 mm. This corresponds to a cell density of
15.4 cells/mm2. The parts attached to the circular cylinder at the in- and outlet of the
pump were added to improve the convergence of the iterations in the flow solver. In
these parts, the size of the cells increases towards the in- and outlet. If a uniform,
fine mesh were used near the in- and outlet, then vortices in the flow near the in- and
outlet boundary conditions would cause convergence problems of the flow solver. The
Reynolds number of the flow is calculated by considering the membrane as a flat plate,
using rs,ext − rs,int and the maximal velocity between the membrane and the casing.
As this Reynolds number was approximately 43000 and thus well below the critical
Reynolds number for a flat plate, the flow was assumed to be laminar. The flow solver
used first-order discretization for the pressure and first-order upwind for the momen-
tum. The time integration scheme was implicit Euler backward. The PISO coupling
scheme was used to handle the coupling between pressure and velocity fields. The
structural solver used implicit time integration. 160 elements with 8 nodes were used,
which corresponds to a cell density of 5.3 cells/mm2. The geometric nonlinearities
due to the large deformation of the structure were taken into account. The fluid and
the structure are both considered incompressible. In all computations 200 time steps
per cycle were used. All simulations started from the rest state and were carried out
until periodicity was achieved. Periodicity is reached when the change of the energy
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stored in the fluid domain after 1 period of time is less than 1% of the power needed
to induce the membrane motion.

To obtain a high-quality mesh throughout the simulations an innovative combina-
tion of mesh motion corresponding to the solution of Laplace equations, mesh smooth-
ing and remeshing is used.

The Laplace equations solved to determine the mesh motion in the entire fluid
domain are given by

∆ux = 0 (6a)

∆uy = 0 (6b)

with ux and uy the displacement of the grid nodes in the x and the y direction respec-
tively. At the fixed boundaries of the domain and at the axis of symmetry ux and uy are
set to zero. At the fluid-structure interface ux and uy are adapted to the interface dis-
placement provided by the coupling code. Afterwards, remeshing and spring-based
smoothing, in which the spring stiffness is proportional to the distance between the
grid nodes, are applied to the moving grid to improve its quality. Remeshing is per-
formed if the skewness of the cells or the length of the cell edges becomes too large.
If the skewness after splitting the cells would be too large, the cells will not be split.
This explains the relatively large cells at some locations, as can be seen in Figure 3.
Remeshing also limits the minimum length of the cell edges.

2.4 Coupling technique

As mentioned before the fluid-structure interaction is analysed in a partitioned way.
The flow solver and structural solver are coupled with the interface quasi-Newton
technique with an approximation for the inverse of the Jacobian from a least-squares
model (IQN-ILS). In [3] the IQN-ILS technique is compared with other partitioned
schemes, such as Aitken relaxation [4] and Interface-GMRES(R) [5]. This compari-
son indicates that fewer coupling iterations per time step are required if the IQN-ILS
algorithm is used. This algorithm influences only the interface displacement, all re-
maining variables in the fluid and solid domain are considered as internal variables.

The flow solver can be described by following equation

y = F(x) (7)

with x the discretized displacement of the fluid-structure interface. This displacement
is given to the flow code, which adapts the grid accordingly and then calculates the
flow in the entire fluid domain, including the stress distribution y on the interface.

The structural solver is represented by the function

x = S(y) (8)
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Figure 3: (a) the undeformed grid at the beginning of the calculations and (b) the
deformed grid at the moment of maximum deflection obtained with the mesh motion
technique described in Section 2.3.

The structural code will calculate the displacement of the structure including the dis-
placement of the fluid-structure interface, based on the stress distribution on the inter-
face.

With these definitions the FSI problem can be formulated as

x = S ◦ F(x) (9)

or
R(x) = S ◦ F(x)− x = 0 (10)

withR the residual operator. In the remainder of this paper, a left superscript indicates
the time level; this superscript is omitted if the time level is n+1. A right superscript
denotes the coupling iteration.

The FSI problem described by equation (10) can be solved using Newton-Raphson
iterations. The equations that have to be solved are given by

dR
dx

∣∣∣∣
xk

∆xk = −rk (11a)

xk+1 = xk + ∆xk (11b)
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with the residual calculated as

rk = R(xk) = S ◦ F(xk)− xk = x̃k − xk (12)

The output of the structural solver is indicated with a tilde, as this value is not passed to
the next coupling iteration. Convergence of the Newton-Raphson iterations is reached
when ||r||2 ≤ ε (with ε the convergence criterion).

The exact Jacobian ofR is unknown, as we do not know the Jacobians of the black-
box solvers F and S. In [3] and [6] it is shown that only an approximate Jacobian
is needed, as long as it describes the reaction to the components of the error on the
interface’s position that are unstable or disappear slowly in Gauss-Seidel iterations
between the flow solver and the structural solver.

Equation (11) can be written as

xk+1 = xk +
̂(

dR
dx

∣∣∣∣
xk

)−1

(−rk), (13)

in which the hat indicates an approximation. The product of the approximation for
the inverse of the Jacobian with the vector −rk will be calculated with data obtained
during the previous coupling iterations and optionally with data from previous time
steps. The reuse of data from previous time steps can accelerate the convergence if
this data is relevant for the current time step.

Two matrices n+1V k and n+1W k are constructed

n+1V k = [∆rk−1 ∆rk−2 . . . ∆r1 ∆r0] (14a)

n+1W k = [∆x̃k−1 ∆x̃k−2 . . . ∆x̃1 ∆x̃0] (14b)

with

∆ri = ri+1 − ri (15a)

∆x̃i = x̃i+1 − x̃i (15b)

for i = 0, . . . , k-1. If data from q previous time steps is used, the matrices n+1V k and
n+1W k are combined with the matrices V andW from previous time steps resulting
in

V k = [n+1V k nV . . . n−q+2V n−q+1V ] (16a)

W k = [n+1W k nW . . . n−q+2W n−q+1W ] (16b)
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The vectors ∆r = 0 − rk and ∆x̃ = x̃k+1 − x̃k are approximated as a linear
combination of the known ∆ri and ∆x̃i

∆r ≈ V kck (17)

∆x̃ = W kck (18)

with ck the coefficients of the decomposition. Considering that the number of columns
in V k is generally much smaller than the number of rows, determined by the number
of degrees-of-freedom on the interface, Equation (17) is an overdetermined system
with respect to the elements of ck. The least-squares method is applied to solve this
linear system. A QR-decomposition of V k is calculated resulting in the orthogonal
matrix Qk and the upper triangular matrix Rk. The coefficients of the decomposition
ck are then calculated by solving the triangular system

Rkck = QkT ∆r. (19)

Considering Equation (12), ∆r can be written as

∆r = ∆x̃−∆x. (20)

The approximation for the product of the inverse of the Jacobian with the vector −rk
can thus be calculated as

∆x =

̂(
dR
dx

∣∣∣∣
xk

)−1

∆r = W kck + rk. (21)

It can be demonstrated that Newton iterations are performed for the part of ∆r in the
span of the columns of V k and that Gauss-Seidel iterations are performed for the part
of ∆r orthogonal to the span of the columns of V k.

Each time step begins with an extrapolation of the interface’s displacement based
on the previous time steps. Because data from the previous coupling iterations (and
optionally from q previous time steps) is needed to calculate the approximation for the
product of the inverse of the Jacobian with the vector−rk, a relaxation with a constant
factor ω = 10−4 is performed in the second coupling iteration of the first time step
(and in the second iteration of each time step if no data from previous time steps is
used).

3 Results

3.1 Mesh and time step refinement

To reduce the computation time, the influence of the mesh and time step refinement
on the flow and on the structure deformation are examined separately, without any
coupling between the two solvers.
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3.1.1 Flow

To determine the number of cells and the number of time steps per cycle required to
obtain a time step and grid independent flow field, only the fluid flow was calculated.
The displacement of the fluid-structure interface is imposed by a prescribed function,
given by

x = ±ts
2

+ 0.3wpumpsin(2π
rpump − y

rpump − rs,int
− 2πft) (22)

where a plus sign at the beginning of the equation is used for the nodes on the right
side of the membrane and a minus sign for the nodes on the left side. x and y represent
the x and y coordinate of the interface respectively, ts the thickness of the structure,
wpump the width of the fluid domain, rpump the fluid domain radius, rs,int the internal
radius of the structure, t the time and f the excitation frequency. This function implies
a sinusoidal traveling wave in the membrane with an amplitude of 0.3 times the width
of the fluid domain and a spatial period equal to the length of the radial section.

The same computation for different mesh refinements was performed, keeping the
time step size constant at 2x10−4 s. The mass flow rate and the stress distribution
at the end of the second period are compared with the mass flow rate and the stress
distribution obtained with the finest mesh. From Table 2 it can be seen that, if the time
step is constant and using a cell density of 15.4 cells/mm2, the difference in mass flow
rate and in maximum pressure is about 1.9% and 5.3%, respectively.

cell density difference in difference in
[cells/mm2] mass flow rate [%] maximum pressure [%]

60.3 0 0
26.4 0.67 3.00
15.4 1.90 5.30
11.2 2.97 5.92
6.6 7.27 8.90

Table 2: Influence of the mesh refinement on the difference in mass flow rate and in
maximum pressure at the end of the second period.

We repeated the same procedure with a fixed cell density of 17.2 cells/mm2 and a
variable number of time steps per cycle. The results are shown in Table 3. If the mesh
size is constant and using 200 time steps per cycle, the difference in mass flow rate
and the mean difference in pressure on the left side of the membrane at the end of the
second period is about 4.0% and 8.7%, respectively.

3.1.2 Structural deformation

In this section, only the mechanical deformation of the membrane is calculated in the
absence of any load on its boundaries. The influence of the mesh size and the number
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number of time steps difference in mean difference
per cycle mass flow rate [%] in pressure [%]

800 0 0
400 0.97 2.07
200 4.01 8.74
100 8.50 17.26
40 17.80 18.27

Table 3: Influence of the number of time steps per period on the difference in mass
flow rate and the mean difference in pressure on the left side of the membrane at the
end of the second period.

of time steps per period on the maximum deflection of the membrane during the fifth
period is examined. The difference between this deflection and the maximum deflec-
tion obtained with the finest mesh, respectively obtained with the highest number of
time steps per period is calculated. The difference between simulations, using 200 or
400 time steps per period and a cell density of 5.3 or 21.4 cells/mm2 in the structural
domain is negligible (see Table 4 and Table 5).

cell density difference in
[cells/mm2] maximum deflection [%]

21.4 0
5.3 0.26
1.4 2.31
0.7 4.01

Table 4: Influence of the mesh refinement on the difference in maximum deflection of
the membrane during the fifth period.

number of time steps difference in
per cycle maximum deflection [%]

400 0
200 0.08
100 2.30
50 9.78

Table 5: Influence of the number of time steps per period on the difference in maxi-
mum deflection of the membrane during the fifth period.
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3.2 Fluid-structure interaction

3.2.1 Analysis of the flow field

In Figure 4 a vector plot of the velocity at the moment of maximum deflection is
shown. As the simulation is axisymmetric, the flow section decreases from the inlet
on the side of the cylinder to the outlet on the axis. As a result, the velocity increases
from inlet to outlet.

Periodicity is achieved after approximately 30 periods. The mean mass flow rate is
calculated by averaging the instantaneous mass flow rate over one period of excitation
in the periodic regime. This instantaneous mass flow rate fluctuates between 89.4
and 100.2 g/s. The mean mass flow rate in the periodic regime is 95.6 g/s. The mean
pressure increase across the pump (in- and outlet channels not included) is 19.3 Pa.

3.2.2 Analysis of the deformation of the structure and the stress in the mem-
brane

In Figure 5 the deflection of three points located at three different positions on the
membrane is shown during one period of excitation. At an excitation frequency of
50 Hz the radial section of the membrane nearly equals the spatial period of the wave.
The deflection of a point near the outer edge of the membrane is approximately in
phase with the deflection of a point at the membrane’s centre. The deflection of a
point halfway the membrane is approximately in antiphase with the deflection of a
point at the outer edge.

The maximum deflection of the point halfway the membrane approaches the exci-
tation amplitude. Conversely, the maximum deflection of the point at the membrane’s
centre is approximately a factor of 3 higher than the excitation amplitude. This rel-
atively large displacement restricts the excitation amplitude, because the membrane
should stay within the limits of the fluid domain. Hence, the distance between the
membrane and the pump casing is quite large, except near the centre of the pump.
This entails a large backflow.

We remark that, although a sinusoidal motion is applied to the outer edge of the
membrane, the deflections of all other points are asymmetrical. This is due to the
geometry of the pump (the parts at the in- and outlet), which is not symmetrical with
respect to the membrane plane at rest.

In Figure 6 the components of the stress σxx, σyy, σxy and σzz are shown at the
moment of maximum deflection. The σzz stress component reaches the highest values.
This occurs at the centre of the membrane. It is clear that the central opening enlarges
with the slightest membrane motion.

3.2.3 Energetic analysis of the pump

First, a power study is performed considering the structural domain as the control
volume. The power entering the control volume is the excitation power, required to
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Figure 4: Vector plot of the velocity at the moment of maximum deflection.
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Figure 5: Evolution of the deflection in the axial direction of a point located at the
membrane’s centre, halfway the membrane and at the outer edge of the membrane.
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Figure 6: Contour plot of the components of the stress σxx, σyy, σxy and σzz at the
moment of maximum deflection.
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move the structure. This power is calculated as

Pexcitation = f r.vr (23)

with f r the driving force exercised on the membrane and vr the velocity of the outer
edge of the membrane. The power leaving the control volume is the power transferred
to the fluid through the membrane. This power is determined by

Pmembrane to fluid =

∫∫
(σn).vdS (24)

where the integral is taken over the entire surface of the membrane, σ represents the
stress tensor on the membrane surface, n the unit normal vector pointing out the struc-
tural domain and v the membrane velocity. Although the powers (23) and (24) differ
instantaneously, their time average over one period should be equal because no en-
ergy is dissipated in the structure. The difference between both powers is given by
the change in energy stored in the membrane per unit of time. This energy consists
of two parts: the kinetic energy and the strain energy. The maximum strain energy is
reached when the deflection of the membrane is maximal; at that time the kinetic en-
ergy reaches its minimum. In Figure 7 the evolution is shown of the excitation power,
the change in total energy stored in the membrane per unit of time (both calculated
by the structural solver) and the power transferred to the fluid through the membrane
during one period of excitation (calculated by the flow solver). It can be seen that al-
though a different grid size had been used to mesh the fluid and structural domain, the
power transferred to the fluid through the membrane computed by the structural solver,
i.e. the difference between the excitation power and the change in energy stored in the
membrane per unit of time, is a very good approximation of the power transferred to
the fluid calculated by the flow solver. The mean excitation power (0.1283 W) in one
period nearly equals the mean power transferred to the fluid (0.1282 W). The small
difference between both values is due to the fact that the motion of the structure is not
perfectly periodic after 32 periods such that the total energy stored in the structure still
changes slightly (0.0001 W).

Secondly, a power study is performed considering the fluid domain as the control
volume. The power transferred to the fluid through the surface of the membrane is now
the incoming power. The power leaving the control volume consists of two parts: a
useful part, i.e. pump power, and the dissipated power. The equations used to calculate
these powers are given by

Ppump = V̇ (ptot,out − ptot,in) (25)

Pdissipated = ṁcp(Tout − Tin) (26)

with V̇ the volume flow rate, ptot,in and ptot,out the mass weighted average total pres-
sure at in- and outlet, ṁ the mass flow rate and Tin and Tout the mass weighted average
temperature at in- en outlet. The difference between the incoming and the outgoing
power is given by the change in energy stored in the fluid domain per unit of time.
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Figure 7: Evolution of the excitation power, the change in energy stored in the mem-
brane per unit of time and the power transferred to the fluid through the membrane
during one period of excitation.

The energy stored in the fluid domain is the sum of the kinetic energy and the internal
energy of the fluid present in the pump. The change in total energy E per unit of time
is calculated as

dE

dt
= ρf

1

2

∫∫∫
dv2

dt
dV + ρfcv

∫∫∫
dT

dt
dV (27)

where the integrals are taken over the entire fluid domain. In Figure 8 the evolution of
the powers calculated with Equations (25), (26) and (27) is shown during one period
of excitation. The mean pump power is 0.0217 W. The mean dissipated power is
0.1060 W, which corresponds to a temperature rise of 0.000267 K. The mean change
in total energy per unit of time is 0.000013 W, a very small value, which indicates the
flow is nearly periodic.

The efficiency of the pump is defined as

η =
Ppump

Pexcitation

(28)

where the pump power and the excitation power are calculated using Equations (25)
and (23), respectively. Because the parts at the in- and outlet are not parts of the
pump itself, the mass weighted average total pressures in Equation (25) are taken at
the end of the inlet section and at the beginning of the outlet section. The mean pump
power calculated this way is 0.0388 W. With a mean excitation power of 0.1283 W an
efficiency of 30.3% is obtained. This relatively low value is due to the relatively large
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Figure 8: Evolution of the power transferred to the fluid through the membrane, the
dissipated power, the pump power, the change in energy stored in the fluid domain per
unit of time and the sum of these last three powers during one period of excitation.
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Figure 9: Distribution of the mean power transferred from the membrane to the fluid
through the fluid-structure interface, averaged over one period.

distance between the pump casing and the membrane that entails a large backflow.
However, for biomedical applications, efficiency is not the primary concern.

In Figure 9 the distribution of the mean power transferred to the fluid at each node
along the fluid-structure interface is shown averaged over one period. This shows that
most of the energy is transferred near the central opening of the membrane and near
the outer edge where the excitation is performed. Halfway the membrane work is done
by the fluid on the membrane.

4 Conclusions

The simulation of the fluid-structure interaction in the membrane pump is been made
possible by using the IQN-ILS coupling technique and by using a combination of
mesh motion corresponding to the solution of Laplace equations, mesh smoothing
and remeshing. The mean mass flow rate supplied by the pump is 95.6 g/s. The de-
flection of a point at the membrane’s centre is approximately a factor of 3 higher than
the excitation amplitude. This large displacement restricts the excitation amplitude.
The relatively large distance between the membrane and the casing of the pump en-
tails a large backflow which consequently leads to a relatively low pumping efficiency
of about 30%. Although a different grid size has been used to mesh the fluid and
structural domain, the power transferred to the fluid through the membrane calculated
with the structural solver, equals the power transferred to the fluid calculated with the
flow solver.
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