
Two type-theoretical approaches to
privative modification

Giuseppe Primiero1? and Bjørn Jespersen2

1 Centre for Logic and Philosophy of Science, Ghent University (Belgium)
giuseppe.primiero@ugent.be

2 Section of Philosophy, TU Delft (The Netherlands)
b.t.f.jespersen@tudelft.nl

Abstract. In this paper we apply two kinds of procedural semantics to
the problem of privative modification. We do this for three reasons. The
first reason is to launch a tough test case to gauge the degree of substan-
tial agreement between a constructivist and a realist interpretation of a
procedural semantics; the second is to extend Martin-Löf’s Type Theory
to privative modification, which is characteristic of natural language; the
third reason is to sketch a positive characterization of privation.

1 Introduction

The verbal agreements between constructivist/idealist and platonist/realist se-
mantics are so numerous and so striking that it is worth exploring the extent
to which there is also substantial agreement. This paper explores some of the
common ground shared by the Constructive Type Theory of Per Martin-Löf3

and the realist Transparent Intensional Logic of Pavel Tichý.4 We focus here on
the following common features:

– a notion of construction;
– a functional language;
– type theory;
– interpreted syntax.

These four features are sufficient to underpin a neutral notion of procedural
semantics. Phrased in neutral terms, linguistic meaning is construed as an ab-
stract procedure, of one or more steps, delineating what operations to apply to
what operands in order to obtain a particular product as its outcome. Since
the interpreted syntax is susceptible to type-theoretic restrictions, the range of
admissible combinations of operations and operands is accordingly constrained.
These procedures are structured constructions, each of whose constituents is an
abstract object of a particular type.
? Postdoctoral Fellow of the Research Foundation - Flanders (FWO).
3 See [12], [14].
4 See [4], [20], [21].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55775854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In this paper we apply the procedural semantics sketched above to the pro-
blem of privative modification. We do this for three reasons. The first reason is
to launch a tough test case to gauge the degree of substantial agreement; the
second is to extend Martin-Löf’s Type Theory to privative modification, which
is characteristic of natural language; the third reason is to sketch a positive
characterization of privation.

Property modification in the Montagovian tradition is a function from pro-
perties to properties. If M is a modifier and F a property, then (MF) is the
property formed by applying the function M to the argument F . Thus, (MF)a
is the predication of the property (MF) of the individual a. The sentential
schema whose semantics we wish to study is

“(MF)a”.

The interpretation of this schema in a procedural semantics depends on the
appropriate explanation of what M , F and a are.

A full semantic theory of modification must be able to account for the fol-
lowing variants:

– Subsective: (M ′F)a ∴ Fa;
– Intersective: (M ′′F)a ∴ M∗a ∧ Fa;
– Modal/intensional : (M ′′′F)a ∴ Fa ∨ ¬Fa;
– Privative: (M ′′′′F)a ∴ ¬Fa.

The first variant is easily treated in a type-theoretical procedural semantics
by standard subset formation, extending the language with quantifiers and λ-
terms, and forming ordered pairs 〈M,F 〉 where F is the functional argument
of the function M whose functional value is the modified property (MF). The
path from function and argument to value consists in deploying the operation of
functional application. The second variant is less straightforward, as it requires
a rule for replacing the modifier M by the property M∗.5 Our conjecture is that
whenever “Fa” is an expression in a mathematical or a logical theory, (MF)a is
exhausted by subsective modification, whereas for F an empirical property and
a a person or an artifact, privative modification is unavoidable.

Two examples to fix ideas:

“a is a prime number”

where prime is a modifier of the property number ; and

“b is a large elephant”

where large is a modifier of the property elephant. In the first example, we con-
sider the least controversial kind of subsective modification, which goes along
procedurally with subset formation: given a set of (natural) numbers, the modi-
fication of the property of being a number generates the subset of those numbers
5 See [2], §4.4. The third variant will not be considered here. See [8] for discussion.

that have the additional property of being prime numbers. In the absence of ob-
vious counterexamples, subsective modification might be conjectured to be the
dominant, if not only, kind of modification needed by arithmetical discourse.
Still, any semantic theory of mathematical and logical language must come with
an account of modification, since the premise (M ′F)a contains the modifier M ′.

In empirical languages, we not only have examples like “b is a large elephant”,
but also cases of privative modification, of which the following would be typical
examples:

“b is a forged banknote”;
“b is sham jewellery”;
“b is a false friend”.

According to its definition, privation merely indicates what something is not,
namely not an F . We do not maintain that privation is the converse operation
of subsection, and it would be too strong for the constructivist to hold that
privation produces the complement of the property F (because there is no such
type as being ¬F). Instead our thesis is that for the constructivist privation is an
extreme case of subsection. Given a set of Fs, privation will generate the null set
of F ’s; yet, while forming the null set of a particular property exhausts the logic
of privation, its semantics is richer than that. Though both forged banknotes
and railroads, say, are not banknotes, there is an intuitive sense in which forged
banknotes are somehow ‘closer to’ banknotes than are railroads (or tea mugs or
tax forms, etc.) The challenge is to make explicit what this (incomplete) approxi-
mation comes down to, which is to say something positive about what properties
do define forged banknotes (etc.). Logically, the quest is for a definition of what
it is that banknotes and forged banknotes have in common. The philosophical
idea which in our view ought to inform any definition of (forged F), say, is that
being a forged F is as good a property as any. Hence, a procedural semantics
needs to show a way of generating such a property: a constructivist semantics
needs to have a way of verifying whether a particular individual has the property
of being a forged banknote, and a platonist theory must be able to define the
proper subset of the complement of any set of banknotes, such that the elements
of that subset are forged banknotes. To do so, we characterize a privatively mo-
dified property (MF) as having some, but not all, of the properties defining F .
So there is going to be a range of forged F ’s, such that those sharing more of
those properties are closer approximations to F . This idea induces a sequence
of properties G1, . . . , Gn jointly defining F ; the more Gi are satisfied, the closer
the approximation to F . Those forged banknotes that satisfy most Gi are virtu-
ally indistinguishable from banknotes, whereas those satisfying few are shoddy
imitations (paper instead of polymer, or vice versa, wrong format, wrong colors,
etc.). Still, a very poor forged banknote will nonetheless share more defining
properties with a banknote than will a railroad or a tea mug.6

6 We disregard the forger’s intention to produce forged banknotes. We realize that
by diregarding the intentions of someone designing and manufacturing technological

What is wanted, overall, is a philosophically motivated and technically work-
able account of privative modification interpreted within a basic neutral for-
mulation of a procedural semantics. In particular, it must be shown what the
type-theoretically constrained procedure for predicating a modified property of
an individual looks like. In order to obtain such a technical result in the pro-
cedural semantics germane both to the constructivist and the realist approach
to type theory, we have recourse to a procedure for subset formation. We then
generate an appropriate procedure for privative modification by, accordingly,
characterizing one form of subsective modification. However, Martin-Löf’s and
Tichý’s respective theories will, in the final analysis, provide partially diverging
accounts of such a procedure.

To sum up, this paper pursues two strands, one methodological, the other
problem-oriented. The semantic problem is to provide a procedural account of
privative modification in terms of subset formation. The methodological one
concerns two different forms that a procedural semantics may take, namely the
constructivism of Martin-Löf’s Type Theory and the platonism of Tichý’s Trans-
parent Intensional Logic. The paper seeks to advance the research both on an
ill-understood topic in semantics and the general debate of realism vs. anti-
realism.

2 Procedural Semantics for Privative Modification

Both theories start from a notion of construction, which extends to function
formation. While both operate within the confines of a typed interpreted syntax,
the respective type theories work in different ways. Martin-Löf’s type theory
assigns a new type to each new property, laying down how to verify whether an
individual has that property, whereas Tichý’s type theory assigns the same type
to all empirical properties of individuals. Consequently, the respective procedures
for constructing a modified property are also going to differ.

2.1 Construction

In the constructive interpretation, predication starts by laying down all the ne-
cessary and sufficient conditions for a judgement of the form F set (or equiva-

artifacts and confining ourselves to physical properties, we are guilty of a philosphi-
cal simplification. Logically, however, a property along the lines of being intended as
a forged 100-euro banknote can be smoothly added to the list of properties jointly
defining being a forged 100-euro banknote. Another simplification is the absence of
a priority relation over the properties jointly defining the modified one. Clearly, a
realistic account of modification will discriminate between the properties that are
more or less relevant to the modified property. For instance, that a forged 100-euro
banknote has got the watermark right may be more relevant than getting the code
number wrong. Note that in a procedural semantics like Constructive Type Theory
that comes with dependent types, assumptions for hypothetical judgements are pri-
oritized: the present formulation is therefore a simplification where presuppositions
and assumptions are all introduced at the same level of relevance.

lently F prop) to be formulated: such a type declaration is justified in terms
of a judgement f : F that shows a constructor for that set, and an equality
judgement f = f ′ : F , to ensure canonicity for that element. From categorical
judgements of the form f :F , one extends the language to hypothetical judge-
ments as expressions of the form F ′ type[x : F] which can be intended as a
relation between types, corresponding to functional abstraction. The justifica-
tion of such a form of judgement is given by saying that F ′ is a type whenever
an appropriate substitution is performed by a certain canonical constructor f
in the type F . The functional extension of the language is crucial to expressing
implicational and quantified formulae. The obtained type is that of functions
from type F to type F ′ taken as objects. If F is a type, the construction of a
new type is possible by considering F ′ a family of sets over some x :F , such that
F ′[x :F] is also a type. A function can, therefore, be construed as the judgement
regarding a certain object F ′ type based on the prior judgements that any F
is a type and that any f is an object or construction for that type (f : F).7

This standard formulation is easily generalized to more than one assumption.
For each type computational rules for formation, introduction, elimination and
equality are defined. The theoretical starting point of Martin-Löf’s type theory
is, therefore, the justification of a typed expression in terms of its proof-object
and the reduction of truth-conditions to assertion-conditions.

Similarly, the procedural aspect of Tichý’s theory is given by the fact that
the λ-terms of application and abstraction do not denote, respectively, the result
of applying a function to an argument or arranging two sets of entities as func-
tional arguments and their values. Rather, in TIL, they denote, respectively, the
very procedure of applying a function to an argument and of forming a function.
Application is called Composition in TIL and is encoded thus: [X0X1 . . . Xn],
where X0 is a construction of a function, X1, . . . , Xn constructions of its ar-
guments and [] the procedure of functional application. Abstraction is called
Closure in TIL and is encoded thus: [λx1 . . . xnY], where x1, . . . , xn construct
arguments, Y constructs values of a function and [λx1 . . . xnY] is the procedure
of functional abstraction.8

2.2 Functional Language

Constructively, a property F is introduced as a basic type in a valid predication
by presenting some individual that instantiates it (f : F). A function defined
over F is a type. Its construction corresponds to a propositional function, which
is here used to give a formal treatment of property modification. The neutral
formulation (MF)a of an individual a instantiating the modified property (MF)

7 See [16], §1.7.
8 Two other constructions are Trivialization and Variable. Trivializations can be dis-

pensed with here, since we do not need to mention constructions; we only use them
to obtain the entities they construct. For now, think of variables as one-step pro-
cedures for obtaining an entity relative to a sequence of assignments of entities to
variables. See [2], §§1.1-1.3.2, §2.6.1.

is constructively expressed as a function M such that for every element in the
set F taken as argument, it returns a function M(x), formally M(x)[x :F]. To
preserve the functional aspect of M in the constructive notation, we will refer
to M(F) type as the modified type satisfied by some f : F ; correspondingly,
(MF)a will be expressed by M(f). Standard modification of a property M(F)
is given, therefore, by functional abstraction and it produces subset formation
{x :F |M(x)}. The case of privative modification is no exception to this general
interpretation: a privative modifier will still take as arguments elements in a
basic type F , hence occurring at the level of extensions. It differs from a standard
functional type (and standard subset formation) in that it does not define a set
of individuals of the basic type, because its arguments no longer instantiate the
original property F . Rather, the range of this modifier will consist of functions
from the basic type F to the empty set. This shows that constructive privation
represents a special case of standard subsection, specified by requiring extra
conditions. That the range of the privative modifier is a set of functions of
the appropriate type – rather than individuals – can be seen as introducing
a type of higher order. The constructivist sense of the predicate “is a forged
banknote” is, therefore, the procedure of applying to the set of individuals that
are typed as banknotes the modifier forged as a propositional function, whose
range corresponds to functions pointing at another set of individuals (an empty
one). The bottom-up approach characteristic of the constructive philosophy is
preserved, so that the Introduction Rule uses a construction f :F as a premise
to define a privatively modified F in terms of the empty set of F ’s.

The functional language of TIL is cast within a ramified type hierarchy en-
compassing a simple type theory, relative to which each entity of the ontology
of TIL receives a type. The entities are organized into a bi-dimensional typed
universe. One dimension is made up of non-constructions, the other of construc-
tions. On the ground level of the type hierarchy there are non-constructional
entities unstructured from the procedural point of view belonging to a type of
order 1. Given a so-called epistemic (or, equivalently, objectual) base of atomic
types (o-truth values, ι-individuals, τ -reals doubling as times, ω-possible worlds),
the induction rule for forming functional types is applied: where α, β1, . . . , βn are
types of order 1, the set of partial mappings from β1 × . . . × βn to α, denoted
‘(αβ1 . . . βn)’, is a type of order 1 as well. Constructions that construct entities
of order 1 are constructions of order 1. They belong to a type of order 2, denoted
‘∗1’. The type ∗1 together with atomic types of order 1 serves as a base for the
induction rule: any collection of partial mappings, of type (αβ1 . . . βn), involving
∗1 in their domain or range, is a type of order 2. Constructions belonging to a
type ∗2 that construct entities of order 1 or 2, and partial mappings involving
such constructions, belong to a type of order 3 ; and so on ad infinitum.9

Tichý’s theory of modification proceeds, therefore, in a strictly top-down
manner. First, a modified property is constructed according to the procedure
of functionally applying a modifier M to a property F , and only then is the
modified property (MF) predicated of an individual a. What gets predicated

9 See [2], §1.3.2.

of an individual is, strictly speaking, an extensionalized property, which is a
function from individuals to truth-values.

An intensional entity is any function (mapping) whose domain is in the logical
space of possible worlds. For most purposes, TIL takes an intension to be a
function from logical space to a function from times to entities, in the manner
well-known from possible-world semantics enriched with temporal parameters.
Thus, an empirical property of individuals is a function from logical space to
a function from times to sets of individuals, where a set of individuals is a
characteristic function from individuals to truth-values. Hence, given a particular
world/time pair 〈w, t〉, it is either true or false that a given individual a is a
member of the set that is the extension of the property at 〈w, t〉. Formally, the
type of a property is (((oι)τ)ω), abbreviated ‘(oι)τω’. The TIL abbreviation of
a modified empirical property being predicated of an individual will be of the
form λwλt[[MF]τω a].

The two theories will formalize “No forged banknote is a banknote” thus:

CTT: λx.(forged(x)) : El(banknote(x)[banknote :El({}) set;x :El({})])
TIL: ∀w∀t [∀x [[[forged banknote]wtx]→ ¬[banknotewtx]]]

2.3 Interpreted Syntax

The procedural way of generating privatively modified properties is based on the
fact that the type-theoretical syntax is interpreted.

Constructive Type Theory can be seen as one of several foundational sys-
tem for predicative constructive mathematics,10 but its additional value is re-
presented by a meaning theory which extends and refines the Brouwer-Heyting-
Kolmogorov interpretation of intuitionistic logic.11 Besides providing a construc-
tive foundation for mathematics,12 CTT is also used as a proper theory of rea-
soning and knowledge, an interpreted system whose objects are equipped with
meanings.13 This is obtained by implementing the Curry-Howard isomorphism,
by which types are intended as polymorphic categories of predication, carrying
an internal meaning that can be explicitated in terms of propositions (for which
proofs are the appropriate constructors) or sets (correspondingly constructed by
their elements). This property can be adapted to the interpretation of natural
language semantics,14 where reference is generally construed as the relation-
ship between nouns or pronouns and the objects that are named by them. In
the constructive procedural semantics every object comes embedded within its
meaning category, in a relation (that does not generate a vicious circle) accord-
ing to which a type gains its meaning (is justified) from its constructor, and the
constructor is meaningfully expressed whenever accompanied by its type (“no
10 Constructive set theory, explicit mathematics and predicative topos are other exam-

ples of systems of constructive matematics.
11 Cf. [11], [12], [16], ch.1.
12 Cf. [12], p. 1, §1.
13 Cf. [16], ch.1.
14 See [18].

entity without a type”).15 The input of the characteristic function for any set is
positively given by appropriate constructors which can always be checked; any
propositional function operates on the corresponding predications that work as
its arguments. As a result, any expression occurring in one of the computa-
tional rules comes embedded with types that yield meanings, and each meaning
category is reduced to the corresponding syntactical construction procedure.

The syntax of TIL (its formal ‘language of constructions’ in which construc-
tions are encoded) is inherently interpreted because both constructions and the
entities they construct cannot be introduced without typing them first.16 A
semantic analysis of a piece of language executed in accordance with TIL pro-
ceeds along the following three steps.17 First, type-theoretic and logical analysis:
all and only logical entities (operations and their operands) being denoted by
sub-expressions occurring in the overall expression under analysis receive a type,
which may be drawn from the simple or ramified type hierarchy. Second, synthe-
sis: the constructions of the entities mentioned are executed in accordance with
the logical operations made explicit by the logical analysis in order to unveil the
entity denoted by the overall expression. Third, type checking : by means of an
annotated tree it is checked whether the type assignments check out.18

3 Constructive Privative Modification

Standard subsets are used in the type-theoretical setting in order to express a
type that is defined by comprehension in the range of another type. Construc-
tively, this corresponds to nothing other than a propositional function from one
type to another: its construction requires the definition of the argument type
in terms of necessary and sufficient conditions for a canonical element and an
equality function defined on it. An object of the function type is obtained by an
abstraction rule abstracting a variable from an expression, obtaining a function
(x) :F ′(x :F) which requires f ′ object of the type F ′, depending on a variable x
ranging over the type F , so that one abstracts f ′ with respect to x. This rule of
functional abstraction is equivalent to Church’s λ-abstraction. To know that the
preceding rule is correct, it must be shown that when this function is applied to
any object of the type F , one gets an object of the type F ′(f/x), a typed version
of β-conversion.19 The range of the function type will be obtained by functional
application to the elements of the argument type. In this way one obtains the
subset of elements in F satisfying M :

F set M(x)[x :F]
Standard Subset Formation Rule{x :F |M(x)}

15 See also [15].
16 See [2], §1.5.1, §2.1.2.
17 See [2], §2.1.1.
18 See [10] for details.
19 See [16], §1.8. For an analysis of functions and types and the reference of abstract

terms, see [17].

By the side condition on canonical elements, if f = f ′ and M(x) is true for
some x :F , one obtains equal canonical constructions of the set {x :F | M(x)}
when f or f ′ are used as input of M . That is, since every propositional function
is extensional in the sense that it yields equal types when applied to equal
elements, it follows from f = f ′ :F and M(x) type[x :F] that M(f) and M(f ′)
are equal types. Consequently, from the requirement that M(f) be true, we
immediately get that also M(f ′) is true. It is clear from the formulation of the
function formation rule and its conversion that the language in use is extended
to quantifiers, so that the function ranges over all elements of a given family of
sets.

The use of subset formation for an arbitrary property F (e.g. banknote) and
a privative modifier M (e.g. forged) is not entirely correct, however. To preserve
the constructive interpretation also for the case of privative modification, it is
required that the meaning of M(F) type be given by some (canonical) M(f),
constructed by using a canonical f :F . By using standard subset formation, the
modifier type M will yield a subset of the set of canonical F ’s. Since a privative
modifier M is intended as a modification procedure that changes entirely the
range of its input, an alteration is needed. Because a forged banknote is not a
banknote in the first place, the privative modifier forged cannot be interpreted
as a propositional function from the canonical set of banknotes to one of its
(canonical) subsets. For this reason, one needs to define privative modification
as an extreme version of subsection. The obvious intuition is that the basic
argument F set needs to be modified whenever used as an input of the privative
modifier M in a way that allows us to turn every x : F into an element of
the function from F to the empty set. The first step towards obtaining such
a procedure is to define appropriate constructions of the empty set and of the
function from a set to the empty one, returning the empty set of elements in
that set. The empty set is introduced by declaring the following constants:20

{} :Set;
case{} :El(Z(x)) [(Z : El({}))Set, x :El({})].

The first constant simply declares the collection with no elements to be a set;
the case step gives the empty set of Z’s elements, by applying a set Z to any
element x on condition that Z be an element of the collection of empty sets, and
x an element of any set in that collection. Both of these constructions are crucial
to the formulation of the privative modifier M : such a modifier uses a canonical
set construction for F set and it returns an element of the empty set of that
specific set F . The idea is therefore that, if F is a set, then the application of the
modifier M to any x :F yields the set of M(x) such that holds under conditions
that x :El({}) and F :El({}) set:

Privative Subset Formation Rule

F set M(x)[F :El({}) set;x :El({});El(F (x))]
{x :F |M(x)}

20 Cf. [14], p.151.

This construction defines a function M over the set F , which does not give a
subset of its canonical elements: given x :F as input of this function, M(x) re-
turns the empty set of f ’s as its output, instead of either an arbitrary empty
set or a (constructively inadmissible) canonical element for ¬F . There is con-
structively no way to give a definitional procedure for a negative type such as
the set of non-banknotes, because its conditions cannot be canonically specified,
in case the set of non-banknotes should include everything that does not satisfy
the conditions for being a banknote. But there is nothing wrong with giving the
assertion conditions for a function that takes any element in the set of banknotes
to the complement of such a set, because in this case it is completely specified
what the conditions for its input are, and the function only requires that those
conditions remain (entirely or partially) unsatisfied.

When the Privative Subset Formation Rule is applied to the example of
forged banknote, one starts from the set of banknotes and then, by applying the
appropriate conditions on banknote set, one wishes to obtain the empty set of
banknotes:

banknote set forged(x)[banknote :El({}) set;x :El({});El(banknote(x))]
{x :banknote | forged(x)}

It is essential, therefore, to operate with typed empty sets.
One basic problem for privative modification treated as output of the empty-

set function is laying down the distinction between the output of M(F) – for M
some privative modifier like forged and F an argument, e.g. banknote – and any
other empty set: what is the difference between constructing the empty set of
banknotes in terms of the set of forged banknotes and any other way of construct-
ing a set none of whose elements is a banknote? This problem is constructively
solved by putting forward an appropriate equality rule governing M(F) with
respect to the set F :

Equality Rule on Sets

F set F = F ′ set M(x)[F = F ′ :El({}) set;x :El({});El(F = F ′(x))]]
{x :F = F ′ |M(x)}

By this rule for any equivalent set taken as argument of the modifier, the same
empty set is obtained. This also allows establishing that for any set G with its
own constructor g 6= f :F the modifier M(x)[x :G] shall return a different empty
set (namely, the empty set of G’s, different from the empty set of F ’s). This
obviously allows defining the difference between M(F) (forged banknotes) and
G (railroads, say) as empty sets of banknotes in a different sense: the former will,
strictly speaking, be the set of function constructors from the set of banknotes to
the empty set; the second set will contain no constructor of the set of banknotes
at all, hence being empty with respect to any such individual.

The introduction rule is meant to instantiate the procedure which, starting
from a typed object, returns a privatively modified one:

Introduction Rule

f :F m :M(f)[F :El({}) set; f :El({});El(F (f))]
f :{x :F |M(x)}

where F can be taken to be the set of banknotes and f an instance of that set,
and M the modifier forged.

Equality on Introduction Rule:

f = f ′ :F m :M(f)[F :El({}) set; f :El({});El(F (f))]
f = f ′ :{x :F |M(x)}

In the introduction rule one starts from the premise that a canonical element
f in the set F is given; provided M(f) is true, i.e. there is a canonical element
m of the set of functions from F to the empty set, we know that f will yield
a canonical element in the set of modified F ’s when taken as the argument of
the empty-set function of M(F). By the associated equality rule, if f = f ′ are
elements in F , and if there is an m such that M(f) is true, f and f ′ will yield
canonical elements in the set of modified F ’s; and from f = f ′ :F and m :M(f)
it follows that m :M(f ′). Notice that according to the constructive requirement
on the introduction rule, in order to form the set of modified F ’s, one needs to
know at least one instance m :M(f), and because the latter relies on a function
applied to f , it is a further presupposition that f be known. For example, in the
case of forged banknote, in order to display or recognise a forged banknote one
needs to be able to lay down the conditions for knowing what a banknote is.

The set of rules is rounded off by an appropriate elimination rule, which
makes one able to specify how to extract a modified property from its correspon-
ding set. Notoriously, formulating an elimination rule for the subset theory is a
difficult matter. It is impossible to give in constructive type theory an elimina-
tion rule that captures the way one has introduced elements in a subset, because
there is no explicit construction of the element m :M(f) for a standard subset
{x : F | M(x)}.21 In the case of privative modification, the elimination rule is
supposed to formalise the procedure which, starting from an element of a pri-
vatively modified property (forged banknote, say), will return another modified
element defined over the former; this means that variables will occur bound in the
second construction. The informal meaning of the elimination rule is to enable
positive predication for privatively modified entities. Saying that a banknote can
be identified by ascertaining that it reacts to ultra-violet lamps emitting light
at around 365 nanometres22 can be rephrased by saying that a forged bank-
21 Cf. [19] for a full explanation, the solution proposed and the consequences for the

deductive power of the theory.
22 Pamphlet of the Bank of England, downloadble at http://www.bankofengland.co.

uk/banknotes/kyb_lo_res.pdf.

note will fail to react to uv-lamps emitting light at around 365 nanometres;
similarly, one may want to state of a false friend that he or she is a seasoned
liar, or that sham jewellery is an “abomination [. . .], a lie, a pretension”.23 In
the following, let ∆ abbreviate the condition on a privatively modified set as
given by the premise in its introduction rule. In the corresponding elimination
rule, one starts from an instance f of a privatively modified property M(F). Its
extension is constructed under the assumption that x : {f : F | M(f)[∆]}, so
that another function f ′ of type M ′ is constructed which takes x as argument
and forms the new type M ′(x): by substituting f in the free occurrences of x in
M ′(x), one concludes that f ′(f) is an element of the newly modified type M ′(f):

Elimination Rule

f :{x :F |M(x)[∆]} f ′(x) :M ′(x)[x :F,m :M(x)]
f ′(f) :M ′(f)

3.1 Degrees of Modification

Standard typing rules do not as yet say anything relevant about the sense in
which modification comes in degrees, given that there are different sorts of forged
banknotes. For example, in the light of a description of a banknote as a green
piece of polymer with an hologram printed on it, there are different ways in
which a forged banknote may be forged: it may be a piece of polymer which is
either not green or lacks the appropriate hologram, it can be a green piece of
something other than polymer with or without an hologram printed on it, and it
can lack two of the three defining properties. All in all, an individual that lacks
all three properties fails to qualify as a forged banknote. We shall explain these
differences by introducing a formal notion of degrees of modification.

The use of dependent types has been shown to be crucial to the definition of
the subset formation rule, both in its standard format and its privative variant.
We want now to make a dependency relation explicit also for the argument of the
modifier function, which will make it possible to differentiate among privatively
modified F ’s. Take

F set[x1 :F1, . . . , xn :Fn]

to be the formal way of saying that F is a canonical set whenever each xi :Fi is a
type-theoretical expression satisfied by an appropriate element xi/fi, where each
Fi is a definitional property of F .24 The rule for defining the privative modifier
23 From the Routledge Manual of Etiquette, 2007, p. 175.
24 In the present treatment of type-theoretical predications, we are referring to stan-

dard types requiring a finitistic formulation of a dependency relation from a context
of assumptions. In [13], a non-standard extension of intuitionistic type theory with
infinite objects was introduced, which represents a generalization of the finitistic
frame, relying on the latter for justification. In [1] this non-standard extension of
the theory is used to explore the formalization of contexts for universal, existential

can be analytically formulated with respect to its application to the definitional
properties Fi of F :

Dependent Privative Subset Formation

F set[x1 :F1, . . . , xn :Fn] M(x)[Fi :El({}) set;x :El({});El(Fi(x))]
{x :F |M(x)}

where 1 ≤ i ≤ n. This new rule says that M(x) is a modified F in view of the
empty set of Fi, for every

∨
Fi ∈ F up to

∧
Fi defining F , that is by privation

with respect to some – up to all bar one – of its definitional properties.
Depending on the selection and combination of Fi, one obtains different de-

grees of modification. A standard recursive definition of the factorial of the inte-
ger n

n! =
{1, if n = 0
n(n− 1), if n ≥ 1

is used in the following for the standard combinatorial result of d elements ex-
tracted from n:

Cdn =
n!

d!· (n− d)!

In the following we shall use n to indicate the number of Fi occurring in the
dependency context of definitional properties of F , so that we shall call the degree
d of modification M of a property F the number of n definitional properties of
F with respect to which a privative modifier is applied.

By the combinatorial result given above for Cdn, the following can be easiliy
stated:

– there will be n distinct modifications of degree d = 1, corresponding to the
privation of x :F with respect to Fi for some i ∈ n in the set of conditions
for F set;

– there will be a combinatorial number of distinct modifications of degree
d = i < n in view of the rule for Cin, corresponding to the privation of x :F
with respect to the union

⋃
{F1, . . . , Fi}, 2 ≤ i < n−1 in the set of conditions

for F set.

Following this rule, an individual determined by 10 properties will accomo-
date a total of 198,720 possible combinations of modification, counting all the

and intensional predication. Moreover, it is also used to model the negation of pred-
icates at one stage (or more) in the infinite dependent structure of contexts, which
recalls the notion of unsatisfied conditions introduced here to formalize the notion
of degree of modification. As mentioned in the Introduction, we are relying on the
semplification that elements in the dependency context come without any priority
relation.

modifications of one property, those of two properties and so on, up to counting
10 possible combinations of modification involving 9 properties (obtained by the
calculation 3, 628, 800/362, 880 = 10). For a simple example, consider the defi-
nitional presentation of the set of banknotes introduced above, for which three
different modifications of degree 1 are possible, making forged banknotes forged
due to their being deprived of just one defining property:

banknote set[polymer, green, hologram] forged(x)[Fi :El({}) set;x :El({});El(Fi(x))]
{x :banknote | forged(x)}

where Fi is a variable for any of the properties of being made of polymer, of
being green or of presenting an hologram. A modification of degree 2 would take
into account two defining properties; as a result, an instance of the following
constructor would be a forged banknote by failing to be made of green polymer
(or any other combination):

banknote set[polymer, green, hologram] forged(x)[Fi,j :El({}) set;x :El({});El(Fi,j(x))]
{x :banknote | forged(x)}

where again Fi,j instantiate two defining properties.

3.2 Iteration of Modifiers

The formulation of degrees of modification enables us to make comparisons
among different instances of the same modified type. In particular, it enables
us to express, in the metatheory, that a particular modified set is at a cer-
tain degree of approximation to its original counterpart. In the case of forged
banknote, privative modification of degree 1 will be a closer approximation to
banknote than a privative modification of degree 2. This squares with natural-
language predicates like ‘is a well-made forged banknote’, whose use presupposes
various degrees to which a forged banknote may succeed in passing for what it
is a forgery of.

This remark leads directly to the next case we want to analyse, namely the
iteration of modifiers. The modifier well-made needs to qualify forged banknote,
otherwise one ends up with ((well-made forged) banknote): as we already know,
a forged banknote is not a banknote, hence well-made is subsective with respect
to a set formed by applying a privative modifier to a non-modified set.25 For the
iteration to be such that, given a set of forged banknotes, one extracts only the
well-made ones, one has to be sure that the construction of (well-made (forged
banknote)) uses a correct application of different subset formation rules.

25 Brackets are used as scope indicators. Note that if well-made is to modify forged, then
because the latter is a first-order modifier (modifying, as it does, a non-modifier),
the former must be a higher-order modifier like, e.g., very. See [7] for discussion of
higher-order modification.

Consider the by now well-known construction of forged banknote and let us
abbreviate again the additional conditions on the privative subsection as ∆. Now
the construction of (well-made (forged banknote)) is of the following form:

banknote set forged(x)[∆]
{x :banknote | forged(x)} well −made(x)[x :banknote | forged(x)]

{x :banknote | well −made× forged(x)}

This construction first applies the privative subset formation rule and then ap-
plies the standard subset formation rule to the resulting set of functions, thus
obtaining the cartesian product of two families of functions over correctly defined
sets.

On the other hand, the construction of (well-made forged) banknote)) is an
illegitimate one. The predicate ‘is a (well-made forged) banknote’ does not split
the application of the modifiers into two steps, hence the formal construction
combines by cartesian product the standard subsective modifier and the privative
subsection. Because the subsective modifier well-made has as its argument the
categorical set banknote (it can be seen as the set of identity functions from each
element in that self to itself), whereas the argument of the privative modifier
forged is constructed on condition of being arguments for functions defined over
an empty set, the resulting construction is ill-defined:

banknote set well −made(x)[x :banknote]× forged(x)[∆]
{x :banknote | well −made(x) ∧ forged(x)[∆]}

A specific case of iteration of modifiers is represented by iteration of priva-
tive modifiers. This kind of iteration avoids the problem of the previous case,
because in both cases the modifiers are privative, hence their arguments are both
constructed under appropriate conditions. The iteration will give the cartesian
product of the sets of functions that are arguments of the modifier. The fol-
lowing construction is an example of a formation rule regulating burned forged
banknote:

banknote set forged(x)[∆]
{x :banknote | forged(x)} burned(x)[forged(x)[∆]]

{x :banknote | forged× burned(x)[∆]}

Burned is privative because a burned F is not an F , though it originally was
an F . Two privative modifiers do not cancel each other out, such that a burned
forged banknote would be a banknote.26 Furthermore, though both forged and
burned are privative, their logical behaviour does not overlap entirely. In parti-
cular, “a is a burned banknote” is an example of resultative predication27 while
“a is a forged banknote” is not. From a being a burned banknote it follows that
26 See [8] for further discussion.
27 See [3], p. 226ff.

a is not a banknote (because a pile of ashes does not make a banknote), but it is
presupposed that a started out as a banknote (otherwise there would have been
no banknote to burn). So burned comes with a dynamic dimension that forged
lacks: a forged banknote was never a banknote and only remains an approxima-
tion to one. (As for a being a well-made forged banknote, the degree to which a
qualifies as being well-made is a reflection of the quality of the craftsmanship of
the forgery.)

4 Realist Privative Modification

4.1 Predication of modified properties

A property is an intensional entity of type (((oι)τ)ω), abbreviated ‘(oι)τω’, which
is a function from worlds (ω) to functions from times (τ) to sets of individuals
((oι)). A property modifier, by contrast, is an extensional entity, because it is
not indexed to possible worlds. Instead it is a function-in-extension between two
intensions. Since a property modifier is a function that takes one property to
another, its type is ((oι)τω(oι)τω). So in order to construct a modified property,
the procedure of functional application (Composition) is called for:

[modifier property]

The predication of a property of an individual goes via two instances of func-
tional application. First, the relevant property is extensionalized so as to obtain
a set from a property. Second, the set is applied to the individual to obtain a
truth-value. The philosophical motivation is that individuals exemplify empirical
properties only relative to worlds and times.28 Schematically, predication is this
Closure:

λwλt [propertywt a]

This Closure, which constructs a possible-world proposition (a function from
worlds to functions from times to truth-values), would be the logical form of the
sense of a sentence like, “a is a banknote”.

The schema of the predication of a modified property of a is this Closure:

λwλt [[modifier property]wt a]

This Closure would be the logical form of the sense of a sentence like, “a is
a forged banknote” or “a is a burned banknote”.

If the property constructed by [modifier property] is itself modified, the
resulting predication looks like this:

λwλt [[modifier′ [modifier property]]wt a]

This would be the form of, say, “a is a burned forged banknote” or “a is a
well-made forged banknote”. In all three cases the semantic analysis culminates
in the assignment of a propositional construction to a sentence as its sense.
28 See [6] for details.

4.2 The requisites of privation

True to its top-down approach, TIL accounts for a property like being a forged
banknote in terms of other properties being ‘stacked upon it’, to wit, the set of
properties that are individually necessary and jointly sufficient for an individual
to have that property. Such a set is called the essence of the property in question,
and each element is called a requisite.29 The type of a requisite, when a relation-
in-extension between two properties, is (o(oι)τω(oι)τω), while the type of the
essence of a property is ((o(oι)τω)(oι)τω): the essence function takes a property
to the set of properties that are its requisites. Formally, F being of type (oι)τω
and p ranging over the same type, these two constructions converge in the same
set of properties:

[essence F] = λp [Req p F]

The requisite relation is defined in the following manner. Let X,Y be inten-
sional constructions such that X,Y are first-order constructions ranging over the
type (oι)τω (i.e. X,Y are property variables) and let x range over ι.30 Then:

[Req YX] = ∀w∀t [∀x [[Truewtλwλt [Xwtx]]→ [Truewtλwλt [Ywtx]]]]

Gloss definiendum as, “Y is a requisite of X”, and definiens as, “Necessarily,
at every 〈w, t〉, whatever x instantiates X at 〈w, t〉 also instantiates Y at 〈w, t〉.”

Logically, privation comes down to, say, being a banknote and being a forged
banknote having an empty intersection at every 〈w, t〉. This is obtained thus:

[Req λwλt ¬[banknotewt x][forged banknote]]

We say that the property constructed by [forged banknote] has, inter alia,
the requisite property constructed by λwλt ¬[banknotewt x]. This is to say that
if, at some 〈w, t〉 or other, an individual x is in the extension of [forged banknote]
then x is in the extension of λwλt ¬[banknotewt x].

Hence, the proposition that not being a banknote is a requisite of being a
forged banknote is equivalent to the proposition constructed thus:31

∀w∀t [∀x [[forged banknote]wt x]→ [¬[banknotewt x]]]

What is special about the sort of non-banknote that is not a tea mug, a rail-
road or a tax form, but a forged banknote? Given a 〈w, t〉, the set constructed by
[banknotewt] will have a complement in which we find tea mugs and all the rest,
including forged banknotes, but the set constructed by [[forged banknote]wt]
29 See [2], §4.4. Requisites play pretty much the same role as do presuppositions in

constructivism.
30 See [2] §4.1, def. 4.1. See also §4.1 for True, which is the propositional property of

being true at 〈w, t〉.
31 For the record, ‘∀y’ abbreviates ‘[0∀[λy]]’, y ranging over an arbitrary type α, ∀ a

function of type (o(oα)), and 0∀ being the Trivialization of this function.

will be a well-defined proper subset of that complement. To define the notion
of the subset of forged banknotes within the set of non-banknotes, we need to
express that no forged banknote is a banknote and that some non-banknotes are
forged banknotes:

∀w∀t [[[All [forged banknote]wt][λx ¬[banknotewt x]]] ∧
[[Some [λx ¬[banknotewt x]]] λx ¬[[forged banknote]wt x]]]

We invoke the quantifiers All, Some, here of type ((o(oι))(oι)).32 All is the
function from the set constructed by [Fwt] to the set of all those sets that contain
the set constructed by [Fwt] as a subset. Some is the function from the set con-
structed by [Fwt] to the set of all those sets that share a non-empty intersection
with the set constructed by [Fwt].

In the Introduction we argued that a forged banknote is an (intended) ap-
proximation to a banknote. We also made the (simplistic) assumption that being
green and being made of polymer exhaust being a banknote. Thus, one reason
why a may be a forged banknote is because a, though being made of polymer,
fails to be green. Therefore, at some 〈w, t〉, a may have some, though not all, of
the properties making up the essence of being a banknote, q ranging over (oι)τω:

λwλt [[[Some λq [qwt a]] [essence banknote]] ∧ ¬[[All λq [qwt a]] [essence banknote]]

A forged banknote is any individual that is not a banknote and which is
either made of polymer but fails to be green, or is green but fails to be made
of polymer. If we add a third property, e.g. having a hologram, it becomes an
option that a non-banknote may have either one or two of those three properties
and, therefore, qualify as a forged banknote to a lower or higher degree. Degrees
of modification would be captured in TIL by spelling out which of the requisite
properties of being a banknote a given forged banknote possessed.33

References

1. Boldini, P.: Nonstandard type theory and natural language semantics. Presented at
The Third International Tbilisi Symposium on Language, Logic and Computation,
Batumi, Georgia (1999)

2. Duž́ı, M., Jespersen, B., Materna, P.: Procedural Semantics for Hyperintensional
Logic - Foundations and Applications of Transparent Intensional Logic. Series
Logic, Epistemology and the Unity of Science. Springer, Berlin (forthcoming)

3. Jackendoff, R.: Semantic Structures. MIT Press, London, Cambridge (1990)
4. Jespersen, B.: Significant sentientialism in Transparent Intensional Logic and

Martin-Löf’s Type Theory. In: T. Childers, O. Majer (eds.), The Logica Yearbook
2002, 117-131 (2003)

5. Jespersen, B.: Explicit intensionalization, anti-actualism, and how Smith’s mur-
derer might not have murdered Smith. Dialectica 59, 285-314 (2005)

32 See [2] §1.4.3.
33 Bjørn Jespersen is indebted to Marie Duž́ı for very helpful suggestions regarding this

subsection.

6. Jespersen, B.: Predication and extensionalization. Journal of Philosophical Logic
37, 479-99 (2008)

7. Jespersen, B.: Property modification and the rule of pseudo-detachment.
(Manuscript)

8. Jespersen, B., Carrara, M.: Intensional logic for technical malfunction. (In submis-
sion)

9. Jespersen, B.: How hyper are hyperpropositions?. Language and Linguistics Com-
pass. (Forthcoming)

10. Jespersen, B., Duž́ı, M., Materna, P.: The logos of semantic structure. In: P. Stal-
maszczyk (ed.), Philosophy of Language and Linguistics. Volume I: The Formal
Turn. Ontos-Verlag, Farnkfurt. (Forthcoming)

11. Martin-Löf, P.: Constructive mathematics and computer programming. In: J.J.
Cohen and others (eds.) Sixth International Congress for Logic, methodology and
Philosophy of Science, 153-175. North-Holland, Amsterdam (1982)

12. Martin-Löf, P.: Intuitionistic Type Theory. Bibliopolis, Naples (1984).
13. Martin-Löf, P.: Mathematics of infinity. In: P. Martin-Löf and G. Mints (eds.)

Colog 88, International Conference on Computer Logic. Lecture Notes in Computer
Science 417, 146-197. Springer Verlag (1990)

14. Nordström, B., Petersson, K. and Smith, J.: Programming in Martin-Löf’s Type
Theory. Oxford University Press, Oxford (1990)

15. Primiero, G.: The determination of reference in a constructive setting. Giornale di
Metafisica, 26, 3, 483-502 (2004)

16. Primiero, G.: Information and Knowledge - A constructive type-theoretical ap-
proach. Series Logic Epistemology and the Unity of Science, 10. Springer, Berlin
(2008)

17. Primiero, G.: Proceeding in abstraction. From concepts to types and the recent
perspective on information. History and Philosophy of Logic, 30, 257-282 (2009)

18. Ranta, A.: Type Theoretical Grammar. Oxford University Press, Oxford (1990)
19. Salvesen, A., Smith, J.: The strength of the subset type in Martin-Löf’s Type

Theory. In: Proceedings of LICS’88. IEEE, Edinburgh (1988)
20. Tichý, P.: The Foundations of Frege’s Logic. De Gruyter, Berlin (1988)
21. Tichý, P.: Collected Papers in Logic and Philosophy. V. Svoboda, B. Jespersen

and C. Cheyne (eds.). Filosofia, Czech Academy of Sciences, Prague; University of
Otago Press, Dunedin (2004)

