

FACULTY OF ENGINEERING AND ARCHITECTURE

European Research Institute of Catalysis

MicroKinetic Engine (µKE): A tool for (micro)kinetic modelling Vinod Kumar, Joris W. Thybaut, Guy B. Marin

Laboratory for Chemical Technology, Krijgslaan 281 (S5), 9000 Ghent, Belgium

http://www.lct.UGent.be

E-mail: Vinod.Kumar@Ugent.be

Objective	Justification	µKE Features
	High throughput	Performs microkinetic modeling adopting complex networks of
	Experimentations	heterogeneous systems
Development of a generic tool		No programming required by the end user
"MicroKinetic Engine" ¹ for	Microkinetic Modeling	Incorporates differential and algebraic solvers + deterministic &
(micro)kinetic modelling of	(includes all elementary steps)	stochastic optimization routines

$$k_s = k_{avg} \cdot exp\left(-\frac{E_{act}}{R}\left(\frac{1}{T} - \frac{1}{T_{avg}}\right)\right)$$

products, i.e. net rate of formation equals zero

Case study			
Power law	Reaction mechanism elucidation		
$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$	$C_3H_8 + * \rightleftharpoons C_3H_8 *$ $C_3H_8 * +50_2 \rightarrow 3CO_2 + 4H_2O + *$	$C_3H_8 + * \rightleftharpoons C_3H_8 *$ $O_2 + * \rightleftharpoons 20 *$	
 Power law reaction kinetics Reaction orders estimated Data taken from the work performed at the lab by Heynderickx et al² 0.8 	 C₃H₈ adsorbs on the catalyst surface and then reacts with O₂(g) forming products in gas phase Underlying chemistry is reflected in the performance 	$C_{3}H_{8} * + 100 * \rightarrow 3CO_{2} * + 4H_{2}O * + 4 *$ $CO_{2} * \rightleftharpoons CO_{2} + *$ $H_{2}O * \rightleftharpoons H_{2}O + *$ $Reactants adsorption is followed by the surface reaction and the finally the products are desorbed$	

Conclusion

- Kinetic modelling based on user defined reaction network
- Top-down methodology proved to be helpful in using the Microkinetic engine (µKE)
- > A priori knowledge can be used to reduce number of parameters to be estimated.
- Significant estimation + physical meaning for the kinetic parameters of the microkinetic model

References

International Symposium on Chemical Reaction Engineering (ISCRE 22), Maastricht, September 2-5, 2012