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Urban soundscape design aims to create outdoor spaces with a pleasant sonic environment, 
and is of special interest where noise level abatement is not feasible or only has a limited 
effect. A possible approach is to mask unpleasant sounds by adding other sounds that can 
be considered as desirable by the users of the space. In this context, not only energetic 
masking but also informational masking should be taken into account. The presented 
model of auditory attention provides a computational tool to assess the effectiveness of such 
interventions, thus reducing the need for a listening panel. After an initial training phase 
for a particular sonic environment, the model provides an acoustic summary containing the 
sounds that constitute the soundscape. Moreover, the model can be used to simulate how a 
listener switches attention between the sounds over time. The model, balancing 
computational efficiency and biological accuracy, provides the urban soundscape designer 
with a tool for analyzing both real and artificial mixtures. In this way, the perceptual effect 
of adding pleasant sounds can be assessed. 
 
1 INTRODUCTION 
 
 Nowadays the design of urban outdoor spaces cannot prescind from acoustical aspects1-3, 
especially if the purposes of such spaces are psychological restoration and general well-being. 
Composing pleasant acoustic environments is one the final goals of the soundscape designer: 
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“desired” sounds should be often heard whereas “undesired” sounds should not be noticed by the 
listener. Knowledge of human auditory perception and new techniques for soundscape analysis 
are thus needed. 

In this paper, a human-mimicking computational model for urban soundscape design is 
presented. It includes a model of auditory attention based on a self-organized mapping of 
acoustical features. The model, through extensive training, is tuned to a given sound environment 
and involves the construction of an acoustic summary, useful to provide an overview of the 
typical sounds composing the specific soundscape. By means of modeling auditory attention, the 
model can also simulate how listeners would switch their attention over time between different 
sounds. As such, this model can be a very useful tool for the soundscape designer in order to 
forecast the effects of soundscape interventions in a specific location.  

There is a substantial difference between the present model and most of the existing 
computational auditory scene analysis models (see Wang and Brown4 for an overview). Such 
models aim to extract sound samples as clean as possible for each auditory object of which the 
auditory scene is composed. Furthermore, the considered objects are defined a priori. A typical 
application is separating speech or other target sounds from the background, which is typically 
defined as all other sounds. Contrarily, the present model aims at analyzing the scene as 
accurately as a human listener would be capable of. A second important difference is the 
compromise between biological accuracy and computational efficiency due to the integration of 
the model in long-term sound measurement equipment. 

The next section presents the computational framework, followed by a case study showing 
the applicability of the model in the soundscape design process. The paper ends with a section 
presenting conclusions and perspectives. 
 
2 THEORETICAL FRAMEWORK 
 
 In this section, existing knowledge on human auditory perception of environmental sounds 
is worked out into a computational framework. The input of the model is the recorded sound 
signal at a particular location, the output is a measure of the potential attention given by a 
synthetic listener to different sound sources. As mentioned before, the model has been developed 
for long-term deployment: monaural signals are used and simplified models for loudness 
calculation, masking, auditory saliency and auditory attention are proposed. 

The model can be decomposed into three submodels, illustrated in Fig. 1. First, the 
peripheral auditory processing is modeled and the calculation of a measure of the auditory 
saliency is performed (a), then the acoustical features are mapped based on co-occurrence (b) 
and lastly the auditory attention is modeled (c). In the next paragraphs a short description of each 
submodel is provided. 
 
2.1 Peripheral Auditory Processing 
 
 The first stage aims to extract acoustical features in a way that mimicks human peripheral 
auditory processing. In particular, a feature vector is extracted, at regular time intervals, from the 
sound signal measured by the microphone. Instead of a detailed and computationally demanding 
time-frequency representation, the model starts from the 1/3-octave band spectrum of the sound 
pressure level with temporal resolution of 1 s. The advantage of such limited data rate (31 
numbers per second) is that it can be implemented in a large-scale measurement network and 
data can be stored for very long periods of time. 



Next, energetic masking is simulated by a cochleagram, calculated using the Zwicker 
loudness model5. The complete range of the audible frequencies (0-24 Bark) with a resolution of 
0.5 Bark is considered, thus resulting in 48 spectral values. 

To simulate the human auditory system, the absolute intensity and the spectro-temporal 
variations form the basis of the calculated acoustical features. Based on existing models for 
auditory saliency6,7, they are calculated by means of a center-surround mechanism mimicking the 
receptive fields in the auditory cortex. Multiscale features are calculated by convolving 2D 
Gaussian (for intensity) and difference-of-Gaussian filters (for spectral and time gradients) with 
the cochleagram. For intensity 4 different scales are used, while spectral and time contrast are 
both encoded by 6 different scales. Figure 2 shows a section of the filters along the time or 
frequency axis. Thus, a feature vector is constructed at each timestep, consisting of 768 values 
(4+6+6=16 different filters times 48 spectral values). 
 
2.2 Feature Co-occurrence Mapping 
 

The second stage of the presented model consists of mapping the acoustical features of the 
incoming sounds based on co-occurrence. In order to obtain this mapping, a self-organizing 
approach has been chosen. The human auditory cortex shows, in fact, a clear tonotopic 
organization8,9: neurons next to each other are typically excited by similar stimuli. A Self-
Organizing Map (SOM) or Kohonen Map10 is thus used. 

A SOM is formed by several units or nodes placed in a two dimensional array, forming a 
hexagonal lattice. Each node has a corresponding reference vector representing the unit position 
in the 768-dimensional sound feature space. After initialization, the coordinates of the reference 
vectors are modified during an unsupervised learning phase based on The Original Incremental 
SOM Algorithm10. In the latter algorithm, each iteration consists of two steps. First, for an input 
sound feature vector the closest reference vector is found, generally called the best-matching unit 
(BMU); second, the reference vector corresponding to the BMU and, to a lesser extent, those of 
the neighboring nodes, are moved closer to the input feature vector. After this unsupervised 
training phase, the distribution of the input data is nonlinearly mapped by the reference vectors 
of the SOM units. This implies that some regions of the high dimensional sound feature space 
will be densely and accurately mapped by the reference vectors of the SOM units whereas other 
regions will be sparsely and poorly represented.  

However, the algorithm as described above does not yet take into account auditory attention, 
which influences human learning. In fact, a human listener would never describe a soundscape 
exclusively based on the rate of occurrence of particular sounds. Therefore, a second specific 
training algorithm is needed which accounts especially for highly salient sounds, likely able to 
attract attention. This training algorithm, called continuous selective learning11, can be seen as a 
series of short learning periods: a new learning phase is triggered only if the distance between the 
input feature vector and the BMU is higher than a threshold T1 (activation threshold) and it ends 
if the distance is less than a second threshold T2 (deactivation threshold). This strategy allows the 
SOM to learn less frequently occurring sounds. Moreover, in order to promote the learning of 
salient sounds, a measure of the overall saliency, calculated from the sound feature vector (see 
De Coensel and Botteldooren14 for details), is used to modulate the learning strength. Continuous 
selective learning significantly improves the capability of the SOM to identify, in terms of 
distance to the BMU, most of the sounds from the selected location. Each SOM unit encodes, by 
means of its reference vector in the sound feature space, an abstract sound prototype from the 
given location. In order to decode such information into hearable sound excerpts, a sound 
recording session is performed. A series of 5-second sound samples are extracted based on the 



distance between their sound feature vectors and their BMUs of the SOM. The compilation of 
these representative sounds can be called the “acoustic summary” of the given soundscape11. The 
sounds are not automatically labeled. For this purpose, an expert listener can identify regions in 
the map for which the corresponding sound samples belong to specific sound sources. 
 
2.3 Computational Model of Auditory Attention 
 
 To take into account auditory attention, an artificial neural network is introduced, coupled 
to the trained SOM. To each unit of the SOM, an artificial neuron is linked, and its excitation 
reflects the similarity of the incoming sound to the sound represented by its corresponding unit. 
In order to achieve this, feature vectors of the incoming sound are calculated, with a temporal 
resolution of 1s as indicated in Section 2.1. Then, the Euclidian distance between the incoming 
sound feature vector and the SOM units’ reference vectors is calculated, and a Gaussian function 
is used convert this distance into a measure of similarity between the two vectors (approaching 
the value of one for very similar vectors and zero for very dissimilar vectors). Using this result as 
an excitation factor for the corresponding artificial neurons, zones on the map representing 
sounds similar to the incoming sound will be more strongly excited than others. 
 Next, bottom-up saliency-driven attention is introduced. This type of attention is a fast 
mechanism, promoting conspicuous, salient sounds, and operating in an unconscious way. It is 
implemented by calculating a saliency factor for each node, and weighing external excitations of 
the artificial neurons with this factor. 
 Concepts of a Locally Excitatory Globally Inhibitory Oscillator Network12 (LEGION) are 
used in order to achieve the attention mechanism of competitive selection13. As in a LEGION, 
local excitation and global inhibition of neurons are introduced, but in order to keep the 
computational cost within bounds, no oscillators are used. By means of an iterative mechanism, 
alternating between adding excitation terms to neighboring neurons in the network proportional 
to the excitation of the neuron itself and adding a global inhibition term to all neurons in the 
network, only one or a few clusters of neurons are finally excited more strongly than they are 
inhibited, and are thus activated. 
 As in De Coensel and Botteldooren14, inhibition-of-return (IOR) is introduced in order for 
the model to be able to scan the acoustic environment. By adding an inhibition term to neurons 
that were activated in the previous time step, continuous activation of the same nodes is made 
impossible, and attention is automatically shifted to another sound source after a certain time. 
Finally, conscious, top-down attention can be implemented in the model by modulating the time 
constants of the inhibition-of-return mechanism. A region of the SOM representing a sound of 
specific interest can be given higher IOR time constants causing attention to stay in this zone for 
a longer period of time before shifting to another sound source. 
 
3 CASE STUDY 
 
3.1 Description 
 
 In this section the model is tested and its application in the design of soundscaping measures 
is illustrated. In particular, the perceptual effects of attractive songbirds are assessed; the 
introduction of small green quiet areas, ideal for bird population, in the urban environments is in 
fact a feasible solution for increasing the pleasantness of the soundscape. 

The sound in an urban street of Ghent was monitored by a fixed microphone. The sonic 
environment at this location is composed of road traffic noise (mainly car and tram noise) and 



different kinds of noises produced by human activities due to the proximity of several shops and 
one school. The measurement station continuously recorded 1/3-octave band spectra at 1 s time 
intervals. Data measured during 3 weeks has been used for training the computational attention 
model as explained in the previous section. 

A one-hour sound recording (LAeq = 68.2 dB(A)) was performed at the above described 
location during a working day within the training period. In order to mimic the effect of the 
capacity of songbirds to attract attention, 30 artificial one-hour sonic environments were 
subsequently created by mixing the original recording with an increasing number of randomly 
occurring bird vocalizations. Background-free bird sounds were used, for which the peak level 
was adjusted in order to agree with the sound level of the few bird vocalizations present in the 
original sonic environment. The sound level of the artificial sonic environments encompasses all 
possible situations, from a few sporadic vocalizations (46.3 dB(A), SNR = -21.9) to continuous 
bird chorus (75.8 dB(A), SNR = +7.6). 
 
3.2 Results 
 

The sound feature vectors and saliency values related to the 3 week period are calculated as 
explained in Section 2.1. Afterwards, a SOM composed of 3750 nodes (75 x 50) placed in a 
hexagonal grid was trained in three stages using the training algorithms explained in Section 2.2. 
First, the standard incremental SOM training algorithm was applied to the sound features related 
to 14 consecutive hours of the first day of measurements. The second phase consists of the 
continuous selective learning based on the 3 weeks measurement period, while in the third phase 
the same learning strategy was applied to the 30 artificial sound mixtures randomly ordered. The 
effect of the three successive learning phases is shown in Figure 3 by means of the U-matrix15, 
which allows to visually distinguish regions of the map composed by units whose reference 
vectors are similar (small distance) from regions presenting high variability. After the continuous 
learning training phase, the map structure is richer and reveals cluster formation, thus showing a 
better adaption to the given sonic environment. From now on we refer exclusively to the last, 
fully trained SOM. 

Starting from the 30 artificial soundscapes and several hours of recordings at the considered 
location, an acoustic summary was created and an expert listener marked the SOM units related 
to bird sound samples as in Fig. 4. It is found that most of the units representing bird 
vocalizations can be grouped in two distinct regions, schematically related to single bird chirps, 
region 1, and a chorus of bird vocalizations, region 2. Although the sound source is the same, the 
sound features related to single chirps and bird chorus are different, and are thus being mapped 
to different regions of the SOM. 

The distribution of the occurrence of the BMU among the SOM units for the original sonic 
environment and the artificial sound mixtures is plotted in Fig. 5. It can be seen that the 
introduction of bird vocalizations progressively modifies the natural sonic environment. Such 
effect can be easily quantified by calculating the percentage of time the BMU belongs to region 1 
or region 2, as a function of the SNR, as shown in Fig. 6. In particular, the percentage of time the 
bird chirp sound features are dominant (BMU belongs to region 1) increases until a peak is 
reached at a SNR equal to -2 dB. For sound mixtures with higher SNR, isolated single bird 
chirps are less likely, i.e. the percentage of time the BMU belongs to region 1 decreases 
monotonically. At the contrary, episodes of quasi-continuous bird chorus occur more and more 
often and the percentage of time BMU belongs to region 2 increases. 

Subsequently, the attention mechanisms explained in Sect. 2.3 are taken into account (except 
for top-down attention as this would require a model of working memory) and the same 



procedure is repeated. The fraction of time that attention is focused on bird sound is shown in 
Fig. 7. For sound mixtures with lower SNR, the fraction of time that bird vocalizations attract 
attention is slightly higher than in Fig. 6, while the opposite is true for higher SNR. On the one 
hand, at lower SNR the bird chirps trigger attention due to their high saliency without sensibly 
activating inhibition-of-return because they do not occur very often. On the other hand, for 
higher SNR, bird sound is always detectable, thus triggering the inhibition-of-return, i.e. shifting 
attention away from it. The results obtained from this computational model are in accordance 
with the results obtained by De Coensel et al.17: adding bird vocalizations to an urban sonic 
environment characterized by road traffic noise would increase the pleasantness of the 
soundscape already at an SNR of -10 dB. 
  
4 DISCUSSION AND CONCLUSIONS 
 
 Human auditory perception forms the basis of the soundscape approach to the acoustic 
design of the living environment. However, the soundscape designer does not yet have a lot of 
methods and techniques at his/her disposal, that are based on mechanisms underlying human 
auditory perception and attention. In this paper, a computational auditory attention model for 
analyzing the urban soundscape was presented. It consists of simplified implementations of 
existing submodels for auditory saliency, topographic mapping, learning and auditory attention. 
In particular, it implements processes as bottom-up selective attention and learning and it is able 
to simulate how listeners would switch attention among the several sounds present in an urban 
sonic environment. The strong point of this model lies in its capability to analyze very long 
sound periods, an essential feature of potential computational models for soundscape analysis. 

The model can be applied to extract an acoustic summary of a specific soundscape, a 
compilation of the typical sounds audible at a given location. Bird sounds, the sound from 
fountains etc., are typically considered to have a restorative effect18, 19. For this reason, the model 
can be even more useful for the soundscape designer due to its capability to assess the potential 
positive effect of adding sounds aimed to distract attention away from undesired sounds. By 
means of a case study, the effect of adding bird vocalizations to an urban sonic environment was 
studied and the results are in accordance with empirical results.  

Modeling the mechanisms leading to top-down auditory selective attention is beyond the 
scope of this paper, as was modelling the process of meaning attachment to sounds. The latter 
would involve solving several linguistic issues20 and taking into account the effects of inter-
individual differences. These problems, together with automated labeling of the acoustic 
summary, are main issues for future work. 
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Fig. 2 –  Cross section of the modelled receptive filters used to calculate (a) intensity, (b) 

spectral contrast and (c) temporal contrast. In (c) the convolution is performed only 
with the past in order to preserve temporal causality. 

 

 
 

Fig. 3 – U-matrices showing the distance between the nearest units composing the SOM after 
each of the three stages of the training: the initial phase using the standard incremental 
SOM training algorithm applied to the sound features related to 14 consecutive hours of 
the first day of measurements, continuous selective learning based on (b) three weeks of 
data and (c) 30 one-hour artificial sound mixtures presenting a different number of 
randomly occurring bird vocalizations added to the original recording.     



 
Fig. 4 –  Regions of the SOM, related to individual bird chirps (region 1) and a chorus of bird 

song (region 2) as marked by an expert listener. 

 
 

 

Fig. 5 –  Distribution of the occurrence of the BMU among the SOM units for different sound 
scenarios:  background, i.e. natural soundscape (upper left), artificial soundscapes, in 
which bird vocalizations (foreground) are progressively added to the background. For 
each sound scenario, 3600 testing samples (one hour) were used. 



 
Fig. 6 –  Fraction of time the BMU is found  in region 1 (bird chirp, black line), region 2 (bird 

chorus, blue line) and their sum (red line) as a function of the SNR between the 
foreground (introducing bird vocalizations) and the background (without introducing 
bird vocalizations). 3600 sound samples (one hour) were used. 

 
Fig. 7 –  Fraction of time the simulated auditory attention is given to bird chirp sounds in region 

1 (black line), bird chorus in region 2 (blue line) and their sum (red line) as a function 
of the SNR between the foreground (introducing bird vocalizations) and the 
background (without introducing bird vocalizations). 3600 sound samples (one hour) 
were used. 
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