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ABSTRACT   

We present an integrated silicon Michelson interferometer for OCT fabricated with wafer scale deep UV lithography. Silicon 
waveguides of the interferometer are designed with GVD less than 50 ps/nm.km. The footprint of the device is 0.5 mm x 3 
mm. The effect of sidewall roughness of silicon waveguides has been observed, possible solutions are discussed. 
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1. INTRODUCTION  
Current OCT systems are constructed from fiber/free space optics components. Although fiber and micro-optical components 
have made these systems portable, further significant miniaturization and cost reduction could be achieved through use of 
compact integrated photonic components for OCT. As the microfabrication technology improves, it becomes feasible to 
realize integrated, low-loss, broadband photonic components that can be useful in OCT systems. Integrated photonic 
components can be fabricated on different material systems, which have their pros and cons. Previously, Culernann et al. 
demonstrated a passive photonic circuit for OCT fabricated on silica. The device consisted of cascaded splitters and 
combiners [1]. The photonic structures in glass are very low loss, transparent in the visible, however, due large bend radii, 
the size of the components are almost two orders of larger than the ones on silicon. In another study, Margallo-Baas et al. 
demonstrated an integrated photonic structure on silicon on insulator (SOI) for time domain OCT, where the delay line was 
implemented with thermal tuning of a waveguide in the reference arm [2]. Recently, Nguyen et al. implemented an OCT 
with an integrated spectrometer fabricated on SiON [3]. Among those silicon on insulator (SOI) has advantages in terms of 
integration density and possibility to integrate with electronics. 
 
Nanophotonic silicon on insulator is a versatile platform for wafer scale fabrication of variety of integrated photonic 
components [3]. An SOI wafer consists of a thin top Si (refractive index, n = 3.45) layer sitting on silica (SiO2, n= 1.45) 
layer, which is carried on a thick Si substrate. Photonic components are realized by etching the top Si layer, resulting in high 
refractive index contrast in all directions. Using wafer scale CMOS processes, low loss (< 2 dB/cm) waveguides with core 
sizes of 0.1 µm2 and bend radii of 5 µm can be realized. Using such wafer scale processes for silicon, low-cost, high density, 
integrated photonic components can be mass-fabricated and integrated with CMOS electronics on the same substrate[4]. Due 
to absorption of the silicon in the visible range, the components are designed for wavelengths above 1200 nm. Although 
silicon is not an efficient light emitter and detector in the near infrared wavelengths, active elements can be heterogeneously 
integrated on top of the silicon wafer [5].  
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The waveguides are etched 220 nm deep and 585 nm wide after patterning by deep UV lithography. Light is split into 
reference and sample arms with a 50/50 broadband multimode interference splitter (> 100nm bandwidth at 3 dB). The 
insertion loss of the splitter is less than 1 dB.  The reference arm consists of a 9.6 mm long spiral waveguide, which ends 
with a silicon air interface. Ideally, the waveguide – air interface acts as a broadband reflector with 30 % reflection 
efficiency.  In the sample, the light is coupled out of the chip with an SU8 polymer spot size converter and is focused onto 
the sample with a micro lens. The reflections from the sample and reference arms are combined with the splitter and coupled 
to a fiber which guides the light to a photodiode. 

3. FABRICATION 
An image of the fabricated structure is given in Figure 3. For clarity, only the area around the splitter is shown. The footprint 
of the device is 0.5 mm x 3 mm. The device is fabricated on a 200 mm SOI wafer with 220 nm thick Si top layer on top of 2 
µm thick SiO2 using 193nm deep-UV lithography in combination with inductively coupled plasma reactive ion etching. The 
fabrication was done through the ePIXfab silicon photonics platform at IMEC, Belgium. 

 
Figure 3. A light microscope image of the center area of the fabricated structure. The scale bar is 20 microns 

 

Broadband out-coupling from an SOI chip can be achieved by cleaving the sample arm waveguide and polishing the 
waveguide facet. However, coupling out directly from a small silicon waveguide has disadvantages such as requirement for a 
high NA lens, reduced collection efficiency and sensitivity to lens alignment. An alternative approach for broadband out-
coupling is to use a spot size converter [7]. A spot size converter gradually transforms a highly confined waveguide mode 
into a larger mode supported by a low index contrast waveguide (such as polymers or oxides). Representation of a polymer 
spot size converter is given in Figure 4a. The silicon waveguide is tapered to a narrower tip, which adiabatically pushes the 
mode out of the silicon waveguide and couples to the fundamental mode of the polymer waveguide. As a polymer we used 
SU8 (MicroChem Corp., USA), a photodefinable polymer with refractive index of 1.575 at 1550 nm. We fabricated the 
polymer waveguide using spin coating and photolithography. After the definition of the polymer waveguide with 
photolithography, part of the polymer waveguide was cleaved to create a flat facet. A scanning electron microscope image of 
the SU8 waveguide facet is shown in figure 3b. In our design, the 585nm Si waveguide is tapered down to 100 nm width. 
The taper length of the Si waveguide was 350 µm. The fabricated SU8 spot size converter was 3 µm wide and 1.6 µm high.  
The insertion loss of the polymer waveguide was 1-1.5 dB. The grating couplers can also be replaced by spot size converters 
if a very broad band operation is desired. 
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reflections from the reference arm and the MMI splitter, while the peak at 7.4 mm is the interference of reflections from the 
reference arm end and the sample arm end.  

Figure 5. Reflection profile of the Michelson interferometer without sample. 
 

The noise level is unexpectedly high that imaging a scattering sample was not attempted. The high noise level is due to 
backscattering in the waveguides. Thus the waveguides acts as a distributed reflector. The sidewall roughness of the 
waveguides induces significant backscattering [9]. In this study, the waveguides were defined using dry etching which is 
known to create side wall roughness. The problem of side wall roughness can be eliminated by defining the silicon 
waveguides by thermal oxidation [10]. Also, rib waveguides with less sensitivity to side wall roughness can be used instead 
of the current ridge waveguides. Another solution can be using a Mach-Zehnder interferometer rather than Michelson 
interferometer. 

5. CONCLUSION  
We have designed and fabricated a Michelson interferometer using integrated silicon waveguides. Using a polymer cladding 
low dispersion waveguides have been realized. The side wall roughness induced backscattering in the waveguides poses a 
problem to use such an interferometer for OCT. However, the side wall roughness can be solved using thermal oxidation to 
define the waveguides.  

Silicon photonics is maturing as telecom applications demand more complex and high performance integrated photonics 
circuits. OCT can potentially benefit from those advances for more compact and low cost devices.  
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