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Abstract—The iterative solution of the hybrid finite element-
boundary integral equation (FE-BIE) system can be accelerated
by using a multilevel fast multipole algorithm (MLFMA) to
accelerate the BIE interactions. The far interactions in the
MLFMA are of low complexity, which can be traced back to
the original dense BIE matrix where off-diagonal submatrices
are of low-rank, provided the unknowns are properly ordered.
To accelerate the FE part, we investigate the existence of similar
low-rank properties in the FE matrix. Previously, they were
shown to exist in the FE discretization matrices of elliptic
partial differential equations, but not for the non-elliptic time
harmonic system of Maxwell’s equations. Comparing the Schur
complement form of the FE system with a discrete Poincaré-
Steklov operator, the existence of such low-rank properties is
suggested, and this theory is confirmed experimentally by means
of a numerical example.

1 INTRODUCTION

The hybrid FE-BIE method [1] is a widely used
approach to numerically solve electromagnetic radia-
tion or scattering problems. It combines the versatility
of the FE method to model complex heterogeneous
structures with the accuracy and efficiency of the
BIE method to solve large homogeneous and poten-
tially unbounded domains. However, the fundamentally
different structure of the dense BIE and sparse FE
system matrices makes the hybrid FE-BIE system
badly conditioned and difficult to solve, both with
direct and with iterative methods. When comparing
the two techniques, the iterative method seems to be
the most scalable approach to solve the hybrid FE-BIE
system, provided we find an efficient way to reduce the
numerical complexity of one matrix-vector product.

The BIE method can be accelerated considerably by
using a multilevel fast multipole algorithm (MLFMA)
[2]. For Nb boundary unknowns, the algorithm uses
a recursive partitioning of the structure to group the
unknowns into boxes, and, for the far-field interac-
tions, relies on the plane wave decomposition of the
Green’s function to replace the N2

b direct interactions
by a hierarchical set of interactions between boxes.
This reduces the computational complexity of one
matrix-vector product from O(N2

b ) to O(Nb logNb).
The far interactions in the matrix-free MLFMA are
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of low complexity, which can also be traced back
to the original dense BIE matrix, where off-diagonal
submatrices are of low-rank, provided the unknowns
are properly ordered. Similar to the MLFMA, this low-
rank property has a hierarchical structure, which can
be used to approximate the dense BIE matrix directly.
These low-rank compression techniques have also been
proven useful in the MLFMA itself, as demonstrated
in [3]. The hierarchical matrix representation can be
constructed without the knowledge of the Green’s
function and its decomposition, and its application to
a vector of size Nb can typically be performed in
O(Nb) or O(Nb logNb) operations. Examples of such
representations are the family of H-, H2- and HSS-
matrices [4], [5].

Recently, it has become clear that many matrices
from discretized systems exhibit some form of low-
rank property, and interestingly, this is also true for the
sparse system matrices obtained from the discretization
of partial differential equations (PDE’s), such as the
sparse FE matrix. Specifically, it is observed that
the off-diagonal blocks of the fill-in after Gaussian
elimination of the sparse FE matrix are of low rank.
For elliptic PDE’s, existence of this low-rank property
can be shown theoretically [6], [7]. However, for non-
elliptic PDE’s such as the time-harmonic system of
Maxwell’s equations, no such results are available.
In this contribution, we provide experimental results
regarding the low-rank property in the sparse FE matrix
obtained from the discretization of the time-harmonic
system of Maxwell’s equations. Since the fill-in after
Gaussian elimination usually only occurs in direct
numerical solvers, special treatment of the sparse FE
matrix is needed to make it suitable for approximation
by a hierarchical matrix representation. After outlining
the general theory in Section 2, we compare the low-
rank property of the BIE and FE system matrices by
means of a 2D transverse magnetic (TM) scattering
example.
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2 GENERAL FORMULATION

We consider a homogeneous and isotropic back-
ground medium Ω0, characterized by an electric per-
mittivity ε0 and a magnetic permeability µ0. Embedded
in this medium is a single cylindrical scatterer, aligned
along the z-axis and of arbitrary cross section S in
the xy-plane. The potentially inhomogeneous and/or
anisotropic scatterer is characterized by the relative
permittivity and permeability tensors ¯̄εr(ρ) and ¯̄µr(ρ)
in each point ρ ∈ S. Using the BIE formulation in
the background medium, the radiation condition in
the infinite background medium is enforced at the
external boundary C+ of S by providing a direct
relation between the unknown tangential electric and
magnetic fields on C+. Depending on the observed
field quantity at C+, we differentiate between the
electric and magnetic field integral equation (EFIE and
MFIE). Focussing on the pure TM case with electric
and magnetic fields (ez ẑ,ht), the EFIE and MFIE can
be compactly written in operator notation as(

−K0 + 1
2 G0

−J0 K′0 + 1
2

)(
e+z
h+
t

)
=

(
einz
hin
t

)
. (1)

Here, e+z ∈ H
1
2 (C+) and h+

t = ht · t̂+ ∈ H−
1
2 (C+)

are the tangential electric and magnetic field on C+,
while einz and hin

t are the tangential components of a
time harmonic plane wave of wavenumber k0 incident
on C+. The operator system on the left hand side of
(1) represents the exterior Calderón projector, and we
refer to [8] for more information about the definition
and properties of (1) and the operators K0, G0, J0 and
K′0.

The FE formulation for the electric or magnetic
field inside S consists of a weak boundary value
problem (BVP) subject to boundary conditions defined
on the internal boundary C− of S. By using Robin-to-
Robin transmission conditions between C+ and C−,
the Cauchy data of the external Calderón projector
can be applied as boundary conditions on C−, which
avoids the problem of spurious solutions at resonance
frequencies [8]. The discretization of the FE formu-
lation follows after choosing the appropriate set of
curl-conforming test and basis functions defined on a
geometrical partitioning (mesh) of S. For the ht field
component in S, the weak form of the BVP is given
by〈
∇t ×we , ε

−1
r,zz∇t × ht

〉
S
− k20

〈
we , µr · ht

〉
S

= jk0
〈
we , ez ẑ× n̂−

〉
C− ,

(2)

with we a curl-conforming test function and 〈u ,v〉S =∫
S
u · v dS and 〈u ,v〉C− =

∮
C− u · v dC the scalar

products over S and C−, respectively. We assumed that
no sources are present in S. After discretization of (2),

we write the final sparse FE system as

YH

[
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xH

]
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Yii
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(3)

with xi
H the internal degrees of freedom (DOF) for

the magnetic field in S, xH and xE the DOFs for the
tangential magnetic and electric field at C− and D
the matrix of inner products between testing and basis
functions at C−.

3 LOW-RANK PROPERTIES

Low-rank properties of dense matrices are revealed
by rank-revealing factorizations such as the singular
value decomposition (SVD) and the rank-revealing QR
factorization. Using the SVD, a given dense M ×M
matrix A can be represented by the weighted sum of
r ≤M rank-1 column matrices u, v

A =

r∑
n=1

σnunv
T
n , (4)

where both un and vn form an orthonormal set, n =
1, . . . r. The singular values σn are ordered to satisfy
σr ≥ σr−1 ≥ . . . ≥ σ1 ≥ 0. With the Frobenius matrix
norm

‖A‖F =

√∑
i,j

∣∣∣(A)ij

∣∣∣2, (5)

the rank-k approximation Ã of A that minimizes the
error ‖A− Ã‖F is given by

Ã =

k∑
n=1

σnunv
T
n , (6)

and the approximation error equals
√∑r

n=k+1 σ
2
n.

3.1 BIE method

The integration kernel in the BIE operators of (1)
is given by the 2D Green’s function G0

(
ρ,ρ′

)
=

j
4H

(2)
0

(
k0 |ρ− ρ′|

)
with H(2)

0 the zeroth-order Hankel
function of the second kind. From the Hankel addition
theorem, it follows that a seperable expansion of the
Green’s functions exists if the circumscribing circles of
the groups of unknowns do not overlap. If the groups
are well-separated, the number of required terms in
the expansion becomes small, and the corresponding
interaction blockmatrix in the discrete operator will be
of low rank.

Provided the unknowns are properly ordered, the low
complexity of the hierarchical set of far interactions
in the MLFMA is reflected in the hierarchical rank-
structured form of the BIE matrices K0, J0, G0 and
KT

0 corresponding to the operators K0, G0, J0 and
K′0 from (1), respectively. Similar to the MLFMA, a
submatrix admissibility criterion based on the distance



between the interacting unknowns allows the approx-
imation of the dense BIE matrices by a hierarchical
matrix structure consisting of inadmissible near inter-
action blocks and low-rank factorized far interaction
blocks, reducing the O(N2) complexity of the discrete
BIE operator to O(N logN) or O(N).

3.2 FE method

The sparse FE system matrix YH can be trans-
formed into a dense matrix by forming the Schur
complement to eliminate the interior unknowns xi

H.
As shown in [8], the resulting compressed system
matrix corresponds to a discretized Poincaré-Steklov
operator. For S formed by a homogeneous medium,
this Poincaré-Steklov operator can be expressed equiv-
alenty in terms of operators of the same form as the
BIE operators K1, G1, J1 and K′1 obtained from (1)
applied in S. The discrete forms of both representations
approximate each other when the mesh in S is suffi-
ciently fine [8], and the compressed FE system matrix
Yc

H will satisfy

Yc
H = Yee

H −Yei
H Yii

H

−1
Yie

H (7)

= G1 −
(
K1 + 1

2D
)
J1
−1(K1

T − 1
2D

T
)

(8)

Comparing (7) and (8), the origin of the low-rank
property observed in the fill-in after Gaussian elimi-
nation of the sparse FE matrix is immediately linked
to the rank-structured properties of the discrete BIE
operators in the same domain. While no analytical
expression for the Green’s function is available in a
general inhomogeneous medium, it is assumed that
the integration kernels in the BIE operators remain
separable for well separated interactions. It follows
that the existence of the low-rank property in the
compressed FE matrix will depend on the properties of
the discrete operator J1

−1, and as shown in the next
Section, simulations suggest that this rank-structured
form remains present in Yc

H.

4 NUMERICAL EXAMPLE

We consider a rectangular region S of dimensions
8λ × L formed by the homogeneous material charac-
terized by (εr, µr) = (2, 1), as shown in Figure 1.
By sweeping the length L over the range

[
1
4λ, 16λ

]
in increments of 1

4λ, we evaluate the numerical rank
of the M × M submatrix Z12 that describes the
interactions between the segment groups s1 → sM and
sN

2 +1 → sN
2 +M situated at the left and the right side of

the rectangle, respectively. The free-space wavelength
λ corresponds to an operating frequency of 2.4 GHz,
and the M = 200 segments on the left and right sides
of the rectangular region are of length l = λ

25 . The total
number of boundary segments N is changed to keep

Figure 1. Geometry of the example used to evaluate
the low-rank properties in the BIE and compressed FE
system matrices.

the segment length as close to λ
25 as possible while

sweeping L.
In Figure 2, we compare the numerical rank of

the 200 × 200 submatrix Z12 as a function of the
interaction distance L for the discrete BIE operator
K1 and the compressed FE matrix Yc

H. The desired
precision of the low-rank approximation is set to 10−6,
measured using the Frobenius norm (5). To keep the
figure apprehensible, the results for the other discrete
BIE operators are omitted, but they behave in an almost
identical manner to the results for K1. For small
interaction distances up to L = 2λ, the numerical
rank k of the submatrix Z12 decreases according to
k ∼ O( 1

L ), both for the BIE as for the compressed FE
system matrix. If objects are scaled in two dimensions,
we obtain k ∼ O(1), and the complexity of the matrix
vector product becomes O(kN) ∼ O(N). Once the
interaction distance increases beyond L = 6λ, the
results for the discrete FE and BIE operators start to
differ. For K1, we observe that the numerical rank
of the submatrix Z12 keeps decreasing as a function
of L. While the size of the dataset is too small to
do any reliable trend analysis, the results suggest that
k ∼ O( logL

L ), which makes the complexity of the
matrix vector product comparable to the O(N logN)
of the MLFMA. For the compressed FE system matrix
Yc

H, it is observed that the numerical rank k of the
submatrix Z12 remains almost constant once L > 8λ.
This leads to a complexity similar to the standard
O(N2) matrix vector product complexity, but with a
much smaller constant coefficient. We believe that this
effect is due to the dispersion error introduced by the
finite grid in S, which makes the FE approximation of
the Poincaré-Steklov operator (7) insufficient to resolve
the further decreasing rank beyond a certain interaction
distance L. At this point, refining the FE mesh is not
an option since the object is already large compared
to the wavelength, and eventually, the new mesh will
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Figure 2. Numerical rank k of the 200×200 submatrix
Z12 of the BIE and compressed FE system matrices
K1 and Yc

H as a function of interaction distance L.

also be insufficient or the number of unknowns will be
too large.

Besides the fact that the compressed FE matrix
does not appear to be as scalable as the discrete BIE
operators, the results show that the iterative solution
of the hybrid FE-BIE system can be accelerated up
to speeds comparable with the BIE-only MLFMA by
using the rank-structured property of the compressed
FE matrix. For electrically large objects, this optimal
complexity is somewhat reduced, but at this point,
grid dispersion and the high number of unknowns will
become the limiting factor on the applicability of the
FE method.

5 CONCLUSION

We investigated the low-rank property of the FE
system matrix obtained after discretization of the non-
elliptic time-harmonic system of Maxwell’s equations.
By comparing the Schur complement form of the
FE matrix with a discrete Poincaré-Steklov operator,
the connection to the low rank properties of the BIE
system matrices was revealed, and the simulations
confirmed that the compressed FE matrix has sim-
ilar rank-structured properties as the BIE matrices.
For electrically large objects, the optimal O(N) or
O(N logN) complexity is no longer retained, but it
remains considerably lower compared to the standard
O(N2) complexity of a single unaccelerated matrix
vector product. Combined with the MLFMA, the hier-
archical low-rank approximation of the compressed FE
matrix enables the fast iterative solution of the hybrid
FE-BIE system up to speeds comparable with the BIE-
only MLFMA.
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