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Abstract—Recently, a novel discretization for the magnetic field MFIE’s inaccuracy has been traced back to two causes: (i) the
integral equation (MFIE) was presented [1]. This discretiation  equation’s inability to deal with objects that comprise rgha
involves both Rao-Wilton-Glisson (RWG) basis functions ad  omers [7]-[11]. Solution strategies include alternatiesting
Buffa-Christiansen (BC) basis functions and is dubbed 'mied’. ; . .

The scheme conforms to the functional spaces most natural to propedures, accurat.e_computatlon of interaction integeaid
e|ectr0magnetics and thus can be expected to y|e|d more ageaiie eanChment Of the f|n|te element Space. GOOd reSU|tS can be
results. In this contribution, this intuition is corrobora ted by obtained using these methods, although it is hard to prédict
an analysis of the low frequency behavior of the classical ah which circumstances these methods excel. (i) the equation
mixed discretizations of the MFIE. It is proved that the mixed inability to predict the correct frequency dependence @ th

discretization of the MFIE yields accurate results at very bw t solution’s Helmholt ts 121. Th uti
frequencies whereas the classical discretization breaksodn, as current solution'’s Helmholtz components [2]. € solution

was already discussed extensively in literature [2]. strategy proposed in [2] amounts to computing the correct
current solution as a perturbation of the static solution.
Recently, a novel discretization strategy for the MFIE was
Scattering of time-harmonic electromagnetic waves by pejresented [1]. In this scheme, aptly called 'mixed MFIE’,
fect electrically conducting (PEC) surfaces can be modejed the current is approximated as a linear combination of Rao-
many boundary integral equations, the electric and magnefiilton-Glisson functions, whereas the testing is done with
field integral equations (EFIE and MFIE) being the mosuffa-Christiansen functions. The use of two sets of finiee e
prominent ones [3]. These equations typically are diszeelti ment spaces results in a discretization that is conformiitiy w
by expanding the current density in terms of Rao-Wiltorregard to the function spaces most natural to electromagnet
Glisson (RWG) functions defined on a triangular mesh thahd that yields well-conditioned system matrices allowing
approximates the scatterer's surface and testing the iegsatfor the efficient iterative solution of the system. Numetica
using those same RWG functions [4]. examples showed that the resulting algorithm gives satstio
The EFIE often yields highly accurate results, is applicahat are significantly more accurate than that of the clafigic

ble to both open and closed structures, and extendabledigcretized MFIE. This remains true when applied to sharp-
impedance sheets. Regrettably, the linear systems thalt regdged geometries.

from its discretization have unbounded condition numbers i | this contribution, the algorithm introduced in [1] is

the dense mesh regime, leading to prohibitive solution $im&rther analyzed. In particular, it is proved that the dieeiy
This problem can be solved by Calderon preconditioning (Sgjscretized MFIE's low frequency breakdown reported in [2]
[5] and references therein), i.e. by exploiting the EFIE 0Rs not present in the novel discretization. This is done by
erator's self-regularizing property. A Calderon precitioded  showing that the Helmholtz components of the current swiuti
EFIE system basically represents a discretized second kiydhe mixed discretization of the MFIE scale, as a functién o

integral equation and thus is amenable to efficient itegatiyne frequency, in the same manner as those of the continuous
solution. Alternatively, a multi-resolution basis can bsed gquation.

for the finite element spaces of expansion and testing fonsti
(see [6] and references therein). The singular value spaabf
the resulting linear system once again is bounded from above Il. THE CLASSICALLY DISCRETIZEDMFIE AT LOW
and below, thus facilitating its efficient iterative sobuti FREQUENCIES

The MFIE, in contrast, yields upon discretization well-
conditioned systems without further manipulations. Unfor Consider a closed PEC scatterer with simply connected
tunately, the MFIE's solution is less accurate than that sfirfacel’ and exterior normah, embedded in a background
the EFIE, with a numerical error that can be up to severaledium with permittivitye and permeability.. The scatterer
orders of magnitude larger than that of the EFIE. A lot a6 illuminated by an incident electromagnetic fieQdi,hi).
attention has been given to this problem in the literaturEnforcing the boundary condition for the tangential traée o
Roughly speaking, the origin of the classically discratizethe magnetic field ol" leads to the MFIE for the induced

I. INTRODUCTION



current density;: IIl. THE MIXED MFIE AT LOW FREQUENCIES

. i . 1 . Unlike the classically discretized MFIE, the mixed MFIE is

n x h'(r) =M |[j](r) = {5 - K} (] (r) (1) tested by means of the so-called ‘rotated* Buffa-Christem

1 1 e—JkR functionsn x g,,,n = 1,..., E [1], [13]. The finite element

=57 (r) —nx —Wp-v-/ x g (r')ds’. space of the BC functions also contains subspaces compris-
r

2 ) ~ing divergence free functions and a complementary space.
To solve (1) via a boundary element method, the surfa¢® The divergence free subspace is spanned by ladps =
approximated by a mesh comprisifigvertices,E' edges, and | 1 around all faces (except one). The complementary

I faces. The currenf is approximated as space is spanned by the so-called sigisn = 1,...,V — 1
N [12]. Using these testing functions, the mixed discretmaof
Fr) =Y Lf,(r), (2) the MFIE reads
i=n Pll Pls |l Gl
where the functionsf,, are RWG basis functions defined on ( psl pss ) : ( Is ) == ( Gs ) ; 9)

the N interior edges of the mesh [4]. Approximation (2) is
substituted in (1) and the discretization procedure is deta  Where

by testing the equation with suitable testing functions. In pab ( a b)

- . . =(nx , M , 10
the literature, RWG functions are usually chosen as testing mn Im f”‘ (10)
functions because this scheme gives rise to a well-comgitio Go = (R x gt,nxh™). (11)

system matrix. However, this discretization of the MFIEdea Th i diff bet this testi h d th
to a solution current that has an incorrect frequency sgalin € main dinerence between this 1esling scheme an €

To show this, the finite element space spanned by the Rwegsswal one is the fact that the BC functions are rotatedd. A

will be split into two subspaces. The first subspace coms)ris% consequence, the rotation by means of the surface normal

: : : ) can be eliminated from (10) and (11) (except for the first term
divergence free functions and is spanned by the so-caltgaslo in the right hand side of equation (1)). For example equation

fﬁl,n = 1,...,V — 1 around all vertices (except one). The o
second subspace is the complement of the first subspace gh]a can be simplified to
is_spann_ed by the so-_called stq“rﬁ_, n=1.., F—1[12]. In G = (g%, him) ) (12)
this basis, the discretized MFIE is given by

The elimination of the surface normal from the formulas

12 ls l l
( Msl MSS ) . < 'S ) - _ ( HS > , () allows the exploitation of some remarkable properties oplo
M™ M ' H currents. For example, when= [ in (12), it is shown in [14]
where that the right hand side becomes proportional to the frecyuen
Mab = ( oM fg) , @) G, = O(w). (13)
He, = (f&. 7 x h™), (5) Also, it can be shown that the blodX! in (9) is proportional

andl¢, are the expansion coefficients of the current solutidf the square of the frequency [14]

with regard to the basis of loops and stars. P! = O(w?). (14)
A simple numerical evaluation oM?’ and H% in the

low-frequency regime shows that these quantities convierge"Vhen these two properties are used in (9), the following is
nonzero constants in the low-frequency limit, i.e. they do nobtained

depend on the frequency at very low frequencies: ( Ow?) 0(1) ) ( |l ) - ( O(w) ) (15)
M, = O(1), ©) o) o oA/ R ew
HY = O(1). 7 Dividing the first row byw and multiplying the second column

) ) with w yields a more easily interpretable form:
As a consequence, the current solution of equation (3) dotes n

depend on the frequency either, ile= O(1) and!l* = O(1). ( Ow) 0(1) ) , ( 1|l ) _ ( o(1) ) _ (16)
However, such a scaling fdf is not physical, because the o) Ow) s’ 0(1)

charge density(r) generated by this current is proportionag,qm this, it is easily shown that
to the inverse of the frequency:

_ .
p(r)==V-j(r). (8) L .
w which is the correct frequency scaling for the star currents
Therefore, the charge corresponding to the classically dispparently the mixed MFIE automatically leads to the cotrec
cretized MFIE current solution explodes when the frequenésequency scaling of the star currents. As a consequence the
is lowered. This in turn leads to large errors in the scatterenixed MFIE yields accurate results at very low frequencies,
fields, as is discussed extensively in literature [2]. in contrast to the classically discretized MFIE.

I* = O(w), (17)



To further corroborate these theoretical results, a nurakri [5] F. Andriulli, K. Cools, H. Bagci, F. Olyslager, A. Buffs&. Christiansen,

test was conducted. Consider the scattering by a PEC spher

with a radius oflm, discretized usingt2 faces. This is a

very coarse mesh, but that is not a problem since the resultg
shown in the above are valid regardless of the mesh density.
A plane wave excitation at various frequencies is used.reigu

1 shows the norm of as a function of the frequency. As can [7] J. Rius, E. Ubeda, and J. Parron, “On the testing of thgmatic field
be clearly seen, the norm of the star current converges to a
constant for the classically discretized MFIE. For the rdixe

MFIE, however, the norm of the star current converges to zerng]

when the frequency is lowered. The proportionality of thee st
current withw is also easily recognized.

IV. CONCLUSION
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