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Abstract—Recently, a novel discretization for the magnetic field
integral equation (MFIE) was presented [1]. This discretization
involves both Rao-Wilton-Glisson (RWG) basis functions and
Buffa-Christiansen (BC) basis functions and is dubbed ’mixed’.
The scheme conforms to the functional spaces most natural to
electromagnetics and thus can be expected to yield more accurate
results. In this contribution, this intuition is corrobora ted by
an analysis of the low frequency behavior of the classical and
mixed discretizations of the MFIE. It is proved that the mixed
discretization of the MFIE yields accurate results at very low
frequencies whereas the classical discretization breaks down, as
was already discussed extensively in literature [2].

I. I NTRODUCTION

Scattering of time-harmonic electromagnetic waves by per-
fect electrically conducting (PEC) surfaces can be modeledby
many boundary integral equations, the electric and magnetic
field integral equations (EFIE and MFIE) being the most
prominent ones [3]. These equations typically are discretized
by expanding the current density in terms of Rao-Wilton-
Glisson (RWG) functions defined on a triangular mesh that
approximates the scatterer’s surface and testing the equations
using those same RWG functions [4].

The EFIE often yields highly accurate results, is applica-
ble to both open and closed structures, and extendable to
impedance sheets. Regrettably, the linear systems that result
from its discretization have unbounded condition numbers in
the dense mesh regime, leading to prohibitive solution times.
This problem can be solved by Calderón preconditioning (see
[5] and references therein), i.e. by exploiting the EFIE op-
erator’s self-regularizing property. A Calderón preconditioned
EFIE system basically represents a discretized second kind
integral equation and thus is amenable to efficient iterative
solution. Alternatively, a multi-resolution basis can be used
for the finite element spaces of expansion and testing functions
(see [6] and references therein). The singular value spectrum of
the resulting linear system once again is bounded from above
and below, thus facilitating its efficient iterative solution.

The MFIE, in contrast, yields upon discretization well-
conditioned systems without further manipulations. Unfor-
tunately, the MFIE’s solution is less accurate than that of
the EFIE, with a numerical error that can be up to several
orders of magnitude larger than that of the EFIE. A lot of
attention has been given to this problem in the literature.
Roughly speaking, the origin of the classically discretized

MFIE’s inaccuracy has been traced back to two causes: (i) the
equation’s inability to deal with objects that comprise sharp
corners [7]–[11]. Solution strategies include alternative testing
procedures, accurate computation of interaction integrals, and
enrichment of the finite element space. Good results can be
obtained using these methods, although it is hard to predictin
which circumstances these methods excel. (ii) the equation’s
inability to predict the correct frequency dependence of the
current solution’s Helmholtz components [2]. The solution
strategy proposed in [2] amounts to computing the correct
current solution as a perturbation of the static solution.

Recently, a novel discretization strategy for the MFIE was
presented [1]. In this scheme, aptly called ’mixed MFIE’,
the current is approximated as a linear combination of Rao-
Wilton-Glisson functions, whereas the testing is done with
Buffa-Christiansen functions. The use of two sets of finite ele-
ment spaces results in a discretization that is conforming with
regard to the function spaces most natural to electromagnetics
and that yields well-conditioned system matrices allowing
for the efficient iterative solution of the system. Numerical
examples showed that the resulting algorithm gives solutions
that are significantly more accurate than that of the classically
discretized MFIE. This remains true when applied to sharp-
edged geometries.

In this contribution, the algorithm introduced in [1] is
further analyzed. In particular, it is proved that the classically
discretized MFIE’s low frequency breakdown reported in [2]
is not present in the novel discretization. This is done by
showing that the Helmholtz components of the current solution
of the mixed discretization of the MFIE scale, as a function of
the frequency, in the same manner as those of the continuous
equation.

II. T HE CLASSICALLY DISCRETIZEDMFIE AT LOW

FREQUENCIES

Consider a closed PEC scatterer with simply connected
surfaceΓ and exterior normal̂n, embedded in a background
medium with permittivityǫ and permeabilityµ. The scatterer
is illuminated by an incident electromagnetic field

(

ei, hi
)

.
Enforcing the boundary condition for the tangential trace of
the magnetic field onΓ leads to the MFIE for the induced



current densityj:

n̂ × hi (r) = M [j] (r) =

{
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}

[j] (r) (1)
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1

4π
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∫

Γ

∇
e−jkR

R
× j (r′) dS′.

To solve (1) via a boundary element method, the surfaceΓ is
approximated by a mesh comprisingV vertices,E edges, and
F faces. The currentj is approximated as

j (r) ≈
N

∑

i=n

Infn (r) , (2)

where the functionsfn are RWG basis functions defined on
the N interior edges of the mesh [4]. Approximation (2) is
substituted in (1) and the discretization procedure is completed
by testing the equation with suitable testing functions. In
the literature, RWG functions are usually chosen as testing
functions because this scheme gives rise to a well-conditioned
system matrix. However, this discretization of the MFIE leads
to a solution current that has an incorrect frequency scaling.
To show this, the finite element space spanned by the RWGs
will be split into two subspaces. The first subspace comprises
divergence free functions and is spanned by the so-called loops
f l

n, n = 1, ..., V − 1 around all vertices (except one). The
second subspace is the complement of the first subspace and
is spanned by the so-called starsfs

n, n = 1, ..., F − 1 [12]. In
this basis, the discretized MFIE is given by
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where

M
ab
mn =

(
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m, Mf b

n

)

, (4)

H
a
m =

(

fa
m, n̂ × hinc

)

, (5)

and Iam are the expansion coefficients of the current solution
with regard to the basis of loops and stars.

A simple numerical evaluation ofMab
mn and Ha

m in the
low-frequency regime shows that these quantities convergeto
nonzero constants in the low-frequency limit, i.e. they do not
depend on the frequency at very low frequencies:

M
ab
mn = O(1), (6)

H
a
m = O(1). (7)

As a consequence, the current solution of equation (3) does not
depend on the frequency either, i.e.Il = O(1) and Is = O(1).
However, such a scaling forIs is not physical, because the
charge densityρ(r) generated by this current is proportional
to the inverse of the frequency:

ρ(r) =
j

ω
∇ · j (r) . (8)

Therefore, the charge corresponding to the classically dis-
cretized MFIE current solution explodes when the frequency
is lowered. This in turn leads to large errors in the scattered
fields, as is discussed extensively in literature [2].

III. T HE MIXED MFIE AT LOW FREQUENCIES

Unlike the classically discretized MFIE, the mixed MFIE is
tested by means of the so-called ‘rotated‘ Buffa-Christiansen
functions n̂ × gn, n = 1, ..., E [1], [13]. The finite element
space of the BC functions also contains subspaces compris-
ing divergence free functions and a complementary space.
The divergence free subspace is spanned by loopsgl

n, n =
1, ..., F −1 around all faces (except one). The complementary
space is spanned by the so-called starsgs

n, n = 1, ..., V − 1
[12]. Using these testing functions, the mixed discretization of
the MFIE reads
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G
a
m =

(

n̂ × ga
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)
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The main difference between this testing scheme and the
classical one is the fact that the BC functions are rotated. As
a consequence, the rotation by means of the surface normal
can be eliminated from (10) and (11) (except for the first term
in the right hand side of equation (1)). For example equation
(11) can be simplified to

G
a
m =

(

ga
m, hinc

)

. (12)

The elimination of the surface normal from the formulas
allows the exploitation of some remarkable properties of loop
currents. For example, whena = l in (12), it is shown in [14]
that the right hand side becomes proportional to the frequency:

G
l
m = O(ω). (13)

Also, it can be shown that the blockPll in (9) is proportional
to the square of the frequency [14]

P
ll = O(ω2). (14)

When these two properties are used in (9), the following is
obtained

(
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·
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Dividing the first row byω and multiplying the second column
with ω yields a more easily interpretable form:

(
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O(1) O(ω)

)

·
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1

ω
Is

)

=
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)
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From this, it is easily shown that

I
s = O(ω), (17)

which is the correct frequency scaling for the star currents.
Apparently the mixed MFIE automatically leads to the correct
frequency scaling of the star currents. As a consequence the
mixed MFIE yields accurate results at very low frequencies,
in contrast to the classically discretized MFIE.



To further corroborate these theoretical results, a numerical
test was conducted. Consider the scattering by a PEC sphere
with a radius of1m, discretized using42 faces. This is a
very coarse mesh, but that is not a problem since the results
shown in the above are valid regardless of the mesh density.
A plane wave excitation at various frequencies is used. Figure
1 shows the norm ofIs as a function of the frequency. As can
be clearly seen, the norm of the star current converges to a
constant for the classically discretized MFIE. For the mixed
MFIE, however, the norm of the star current converges to zero
when the frequency is lowered. The proportionality of the star
current withω is also easily recognized.

IV. CONCLUSION

The low frequency behavior of the solution current to the
boundary integral equations of electromagnetics are known
(e.g. [2]). Any valid discretization of these boundary integral
equation should yield approximate solutions that mimic the
frequency scaling of the exact solution. In this contribution, it
was shown that the recently introduced mixed discretization
of the MFIE exhibits the correct frequency scaling, whereas
the classical discretization does not.
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