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1 Introduction

In psycholinguistic experiments multiple subjects are faced with multiple test items.

Despite the early 70’s paper of Clark (1973) arguing that averaging reaction times

from such experiments over items for each subject and averaging over subjects for

each item respectively, using these means in ANOVA-models (referred to as F1 and

F2 statistics), and drawing inference from both statistics separately may be incor-

rect, the vast majority of published psycholinguistic results employed such tech-

niques over the last decades. Baayen et al. (2008) explained in detail a mixed

effects modeling approach with crossed random effects for subjects and items.

In addition to the reaction times, psycholinguistic literature is often describing accu-

racy as well. Accuracy is then summarized by simple frequency tables exploiting the

binary outcomes (i.e. correct or incorrect response) measured for each subject-item

combination. To improve on this and allow for estimation of covariates effects on

the accuracy, Jaeger (2008) introduced in the psycholinguistic literature a model for

the probability of a correct answer. More specifically, he proposed a mixed logistic

regression model that allows for crossed random subject and item effects along the

lines of Baayen et al. (2008).

Unfortunately, reaction times and accuracy are most often described separately with-

out any concern being raised about their correlation. It is important to get a better

understanding of the correlation between reaction times and accuracy, if any. The

natural next step is therefore to consider a joint model for the reaction time and

the accuracy. Joint modeling of these 2 outcomes can most easily be performed in

a hierarchical framework. Van der Linden (2007) proposed an item-response theory

model, a model for response time distribution and a higher-level structure account-

ing for the dependencies between the item and subjects parameters in these models.

His hierachical framework is very flexible in that any item-response or response time

model can be substituted.

Building on Van der Linden’s work, we first provide a framework that combines

the models introduced in the psycholinguistic literature by Baayen et al. (2008)
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and Jaeger (2008), treats subjects and items as random, and allows for correlation

between reaction time and accuracy. The main advantage of this framework is its

ability to disentangle between correlation driven by subjects and correlation driven

by items. Estimation of the model parameters in the joint model and model checking

are performed in a Bayesian approach with Markov Chain Monte Carlo (MCMC).

The performance of the proposed methodology is illustrated with a real-data exam-

ple.

2 Methodology

We can typically consider two sources of information on a test in psycholinguis-

tic experiments: (1) the reaction time resulting from the required time eliciting a

response on a given trial, and (2) the response accuracy for each subject-item com-

bination. Let subjects be indexed by i = 1, . . . , N and items by j = 1, . . . ,K. For

subject i we measure a reaction time vector Ti = (Ti1, . . . , TiK) and a response vec-

tor Yi = (Yi1, . . . , YiK). Further, let X1i denote a subject specific characteristic and

X2j an item specific characteristic . For ease of notation, we will only consider a

single subject and item covariate in the following, but models can straightforwardly

be extended to have multiple covariates.

We start by introducing a model for the reaction time. Following Baayen et al.

(2008) we assume that the reaction time Tij for subject i on item j follows a mixed

model with fixed effects α0, α1 and α2 and random effects θ1i and τ1j for subject

and item:

Tij = α0 + α1X1i + α2X2j + θ1i + τ1j + εij (1)

with θ1i ∼ N(0, σ2θ1), τ1j ∼ N(0, σ2τ1) and εij ∼ N(0, σ2).

Next we model the error rate. The probability that subject i answers item j

incorrectly (Yij = 1) is assumed to follow a mixed effects logistic regression model

with fixed effects β0, β1 and β2 and random effects θ2i and τ2j for subject and item

logit(P (Yij = 1)) = β0 + β1X1i + β2X2j + θ2i + τ2j (2)

with θ2i ∼ N(0, σ2θ2) and τ2j ∼ N(0, σ2τ2) subject and item deviation at the log odds

ratio level respectively.

A joint modeling framework

Following the hierarchical framework introduced by Van der Linden (2007), we in-

voke in this presentation a joint modeling approach by a imposing a joint multi-

variate distribution on the vector of all random effects for subject and item. More
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specifically, we assume that the subjects parameters θ1i and θ2i follow a bivariate

normal distribution with mean 0 and a covariance structure specified by

ΣS =

(
σ2θ1 ρθσθ1σθ2

ρθσθ1σθ2 σ2θ2

)
(3)

Similarly the item parameters τ1i and τ2i are assumed to follow a bivariate normal

distribution with mean 0 and a covariance structure specified by

ΣI =

(
σ2τ1 ρτστ1στ2

ρτστ1στ2 σ2τ2

)
(4)

In (3) and (4), ρθ measures the correlation between speed and ability (or equivalently

between slowness and disability) at the subject level and ρτ measures the corrrelation

between time intensity and difficulty at the item level respectively.

Parameter Estimation

Following Van der Linden (2007) we will take a Bayesian approach with Markov

Chain Monte Carlo (MCMC) computation. To keep the impact of the choice of

the priors minimal, low informative priors are proposed here. Independent normal

distributions with zero mean and large variances are used as priors for the fixed

effect parameters α0 through α2 (or α̃0 through α̃2), and β0 through β2. The inverse

Wishart distribution is used as the conjugate prior for the covariance matrix of a

multivariate normal distributions, i.e.

ΣS ∼ Inverse−Wishart(Σ−1
S0 , κS0) and ΣI ∼ Inverse−Wishart(Σ−1

I0 , κI0) (5)

where κS0 and κI0 are scalar degrees-of-freedom parameters and ΣS0 and ΣI0 are 2×2

(positive definite symmetric) scale matrices. This prior provides information about

the scale of the random effects. We choose κ = 2 because it is least informative, and

Σ−1 = ω

(
1 0

0 1

)
.

The off-diagonals equal to zero reflect the lack of knowledge on the correlation,

while the equal diagonal elements reflect the lack of knowledge on the relative size

of reaction time and accuracy variability. The prior is informative however through

the value of ω, representing a scale factor on the variance. The larger ω, the more

mass is concentrated on large values of variances. To explore the sensitivity of the

results on the choice of ω, we analyzed our example with 3 different values of ω

(ω = 0.2, 1, 5).
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A Gamma(η1, η2) prior can be assumed for the measurement precision 1/σ of the

normal distributed reaction times, with η1 and η2 small for a low informative prior.

3 Empirical Example

The example from Baten et al. (2011) is embedded in a psycholinguistic research

tradition dealing with the process of visual word recognition in bilinguals. Word

targets (English-Dutch homographs and controls) were put in final position of low-

constraint English sentences presented through serial visual presentation. The focus

was to investigate whether or not the presence of a sentence context automatically

lead to the activation of the appropriate meaning of the homograph? For instance,

in ”he was looking for something special and saw a new BRAND” is the English

meaning of BRAND automatically activated or does it still compete with the less

plausible Dutch meaning?

In the 2 experiments described below, Dutch-English bilinguals at two different lev-

els respectively, i.e. one high proficiency group and one intermediate proficiency

group, participated. Participants were asked to perform an L2-lexical decision task.

32 highly proficient and 31 intermediate proficient test takers responded to 29 test

items. The proportions of incorrect responses were 12.9% and 25.5% for the high and

intermediate proficiency samples respectively. For both experiments a mixed linear

model for the reaction time (expressed in ms) was fitted as in (1) with fixed item

effects for homographs, frequency, overlap and time quartile ) and crossed random

effects for subject and item, while for the probability of an incorrect answer a logistic

regression model with the same factors as in (2) was used. The multivariate normal

distributions (3) and (4) on the subject and item random effects were superimposed

in the joint modeling framework.

The upper left panel of figure 1 shows a scatter plot of the estimated subject

random intercepts for reaction time versus subject random intercepts for error rate

(on the log odd ratio scale) in the high proficiency group, together with the estimated

correlation from the joint modeling framework. A similar plot is provided for item

random intercepts (right panel) in the high proficiency group in the upper right

panel, while results for the intermediate proficiency group are presented in the lower

panels. There is no evidence of a strong correlation between slowness and disability

at the subject level in either the high or intermediate proficiency group. In contrast,

a substantial positive correlation (ρτ = 0.88) is estimated between time intensity

and difficulty at the item side in the high proficiency group: items requiring larger
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reaction times tend to have larger error rates. As can be seen from the lower right

panel of figure 2 the item correlation in the intermediate proficiency group is poorly

estimated due to the apparent small item variability on the reaction time, and may

be rather unreliable

While a range of checks on the reaction time distribution did not reveal major

deviation from normality in our specific example, there is a growing literature on

modeling of reaction times arguing that alternative distributional assumptions may

often be required. As the focus of this presentation is on the correlation between

reaction time and accuracy at the subject and at the item level, we assess in the

following the robustness of our findings against such distributional misspecification

on these correlations. More specifically, we assume next that the reaction time

distribution follows a shifted Weibull distribution

f(tij | ψi, λij , γi) = λijγ(tij − ψi)γi−1 exp [−λij(tij − ψi)γi ] , tij ≥ ψ (6)

with participant specific shifts ψi ∈ <+ and shapes γi ∈ <+, and a participant and

item specfic rate parameter λij (Rouder and colleagues, 2008).The following model

can be assumed for the rate on the log scale:

log λij = −α̃0 − α̃1x1i − α̃2x2j − θ̃1i − τ̃1j (7)

with θ̃1i ∼ N(0, σ2
θ̃1

) and τ̃1j ∼ N(0, σ2τ̃1), and α̃0, α̃1, α̃2, θ̃1i, τ̃1j ∈ <. The results

presented in figure 2, mimicking figure 1 under the Weibull assumption, yield very

similar correlations between speed and ability, and between time intensity and dif-

ficulty, and illustrate the robustness of our findings.

4 Discussion

In this presentation we proposed a relatively straightforward but important ex-

tension to the current modeling approaches for reaction time and accuracy from

psycholinguistic experiments. Its major advantage is the ability to directly esti-

mate the correlation between reaction time and error rate at the subject and item

level. Several modeling assumptions are imposed though. The assumption of normal

distribution for the reaction times may be violated for example, but as shown the

Bayesian framework is very flexible in that (shifted) Weibull or other distributions

can easily be used instead. The methodology presented offers the psycholinguist an

additional tool to gain further insight into his/her data, albeit at an additional level

of model complexity...
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Figure 1: Correlation at Subject and Item Level under the assumption that reaction

times follow a normal distribution

Figure 2: Correlation at Subject and Item Level under the assumption that reaction

times follow a shifted Weibull distribution
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