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Abstract—Network management has suffered from increases
in business, system, and operational complexity. This has been
exacerbated by the heterogeneity in management data as well
as the high quality requirements of multimedia services. Auto-
nomic networking manages this growing complexity by adding
intelligence inside network nodes and network management
applications. While most autonomic applications simply use a
control loop to monitor and configure entities, our work is aimed
at building a self-governing network that is able to fulfill the
requirements of current and future services. This means that
management applications need a detailed and dynamic view of
the contextual status of the network nodes as a whole in order
to adapt their behaviour to changing context. In this paper,
we propose an algorithm to semi-automatically generate filter
rules based on existing information in a network management
information model. These filter rules are used to determine the set
of contextual data that needs to be exchanged with other nodes.
The algorithm exploits the reasoning capabilities of ontologies
and relies on the introduction of additional semantic relationships
to achieve a fine-grained context exchange model. Large scale
evaluations were conducted to characterise the performance of
this ontological approach.

I. INTRODUCTION

In the last decade, networks have evolved from simple
data packet forwarding to platforms that support complex
multimedia services such as Network-Based Personal Video
Recording and Broadcast TV. Each of these services has
significant quality demands: they are very sensitive to packet
loss and jitter, and require a substantial amount of bandwidth.
As the quality perceived by the end user gives the most
accurate view on the streamed service quality, operators are
more and more focusing on this type of metric, commonly
described as Quality of Experience (QoE).

The introduction of multimedia services together with the
inherent heterogeneity in management data and programming
models of today’s network devices has led to increasing busi-
ness and system complexity. By introducing more intelligence
into the network and applications that manage network de-
vices, a self-governing network can be realised. Figure 1 shows
a simplified version of the FOCALE [1] autonomic architec-
ture, which is made up of a set of distributable components
connected by an enterprise service bus (ESB) that supports
simple as well as semantic queries. An ESB is an event-driven
message broker. The FOCALE implementation is a distributed
content-based message and retrieval broker, meaning that it
can take actions on the message and its content. The FOCALE
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Fig. 1: Simplified FOCALE Autonomic Architecture.

Autonomic Manager uses this bus to orchestrate behaviour.
It can support different types of knowledge acquisition and
distribution (e.g., push, pull, and scheduled) and performs
common processing before content is delivered to components.
This enables components to register interest in knowledge in
a more precise fashion, and thus reduce messaging overhead.

In FOCALE, the actual state of an entity is continuously
compared with the desired state of that entity. If the compar-
ison is equal, then monitoring continues; otherwise, one or
more new control loops are formed to reconfigure the affected
entity. The key to the FOCALE adaptive control loops is
the interaction between the context manager, policy manager,
and autonomic manager. Conceptually, the context manager
detects changes in the network, or in user needs, or even in
the business interactions; these context changes in turn activate
an associated set of policies that define the functionality the
autonomic manager should govern. This reconfigures one or
more devices, so that the services and resources provided by
the autonomic system can adapt to these new needs.

The unique context-aware control loops of FOCALE can use
knowledge to affect local behaviour of an individual managed
entity, or global behaviour of a set of managed entities. This
depends on the distributed nature of knowledge. Based on its
own behaviour, each entity has an associated set of contextual
data. To organise the exchange of contextual information be-
tween entities, event notification services are used that enable
each entity to expresses its interest in contextual information
through filter rules. While this provides a clear architecture
to organise the context exchange, the manual construction of
these filter rules remains a challenging task.

This paper focuses on automating the generation of filter
rules based on information models, in order to deliver the
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appropriate contextual data to each entity [2], [3], [4]. The
contributions of this paper are threefold. In order to automate
the generation of the filter rules, we introduce extensions to the
DEN-ng information model that model how distributed entities
consume remote contextual data to optimise the QoE of
services. Second, we define an algorithm to semi-automatically
generate the required filter rules from information contained
in the DEN-ng information model. The algorithm derives
a baseline ontology from the DEN-ng information model,
and defines semantic relationships that achieve a higher ex-
pressiveness. Third, we characterise the performance of the
proposed solution by evaluating it on a large testbed that
simulates an access network of more than 10,000 connected
home gateways.

II. RELATED WORK

In recent years, several management information and data
models have been proposed as a way to define a common
networking lingua franca. These UML based models provide
a way to share and reuse data as well as resolve interoperability
problems among different technologies and vendor-specific
implementations. Examples include the DMTF Common In-
formation Model (CIM) [2], the TMForum’s Information
Framework (SID) [3] and the Autonomic Communication
Forums (ACF) DEN-ng information model [4], which is a
part of the FOCALE architecture. The CIM is in reality a data
model, since it is not technology-neutral (e.g., it uses keys and
weak relationships, which are database concepts) and is hard to
extend (e.g., it does not use software patterns, which both the
SID and DEN-ng do). The SID was partly based on DEN-ng
v3.5; however, the directions of the TMForum changed, and
DEN-ng was moved to the ACF. DEN-ng has a number of
significant advantages over the CIM and SID; we refer to [5]
for an overview of these.

The problem of organising content in a distributed envi-
ronment has been the focus of research in Content Based
Networks (CBNs) [6]. Work in [7] applies these CBNs to an
autonomic communications environment to form a Knowledge
Based Network (KBN). We believe the work presented in
this paper complements this approach: while the KBN work
focuses on semantic clustering of information [8] and extend-
ing current CBN solutions with semantic constructs [9], we
focus on the automatic generation of filter rules through an
ontological approach to provide information for KBNs.

We exploit the formal reasoning capabilities of ontologies
to achieve a higher expressiveness and to automate the filter
generation process. The value of using ontologies in network
management has been argued in [10]; for example, ontologies
have been used to provide interoperability between manage-
ment domains [11]. In the field of autonomic communications,
ontologies have been successfully applied to policy conflict
analysis [12] and reasoning for autonomic networking [13].

III. OBJECTIVE

In this section, we elaborate on the goal of the generation
of filter rules through an exemplary scenario in QoE manage-
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Fig. 2: DEN-ng modelling of QoE optimisers. The QoE
Optimisers are modelled as a QoETrafficService, a new type
of NetworkForwardingService

ment. However, the same process can be used for organizing
the exchange of contextual data between other distributed
entities. To manage the QoE of multimedia services, networks
often include QoE optimisers. We define a QoE optimiser as
a component that alters the delivery of sessions to optimise a
specific part of the QoE of that service. Typical examples are
admission control mechanisms, SVC transcoders and retrans-
mission mechanisms. In general, a number of QoE optimisers
are deployed in the network and each QoE optimiser fulfills
a particular function, and can both consume and produce
contextual data. For example, an SVC transcoder requires
information about the end-devices and network status to know
which video quality level it needs to support. On the other
hand, the decision taken by the SVC transcoder can be seen
as a production of contextual data.

Contextual data generated by QoE optimisers can poten-
tially be used by other QoE optimisers. For example, an
admission control mechanism might be interested in the deci-
sions taken by a SVC transcoder but will not be interested in
which retransmissions a retransmission scheme performs. To
extract the relevant contextual data out of the set of potentially
interesting data, we use filter rules. In this scenario, these filter
rules can be seen as queries that retrieve the output from a
QoE optimiser. Hence, the filter rules express the contextual
data that is of interest to other users. As the operation of QoE
optimisers changes over time, so can the type of contextual
data QoE optimisers they are interested in. In this article, we
try to address this dynamicity in interests by automatically
generating the filter rules.

IV. THE DEN-NG QOE EXTENSION

This section describes the modeling of the QoE optimisation
of multimedia services in DEN-ng.

A. Modelling QoE optimisers

DEN-ng separates the concept of a Service into Customer-
FacingServices and ResourceFacingServices, which represent
services that are visible to customers versus services that are
internal to the network, respectively. For example, a VPN
is typically visible to a customer, whereas the routing and
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Fig. 3: DEN-ng modelling of context production and consump-
tion.

forwarding protocols that the VPN uses are typically not
visible to a customer.

Quality of Service (QoS) is modeled in DEN-ng as an
architectural entity. There are currently three types of Network-
ForwardingServices. A TrafficldentificationService classifies
and optionally marks a service; a TrafficConditioningService
performs one or more operations on traffic, such as dropping,
queuing, and scheduling; a QoETrafficService, which is a part
of our extensions to DEN-ng, models the typical behaviour of
QoE optimisers. The QoETrafficService distinguishes between
QoE optimisers that introduce additional traffic to an existing
session (i.e., QoETrafficAddingService), QoE optimisers that
modify the actual payload of packets (i.e., QoETrafficMod-
ifyingService) and QoE optimisers that do nothing with the
current session but can alter future sessions based on informa-
tion about the current session (i.e., QoETrafficStoreAndFor-
wardService). For example, a FEC encoder can be considered
a QoETrafficAddingService, a video transcoder is a type of
QoETrafficModifyingService, and a caching mechanism is an
example of a QoETrafficStoreAndForwardService.

B. Context producer and consumer

The QoE optimisers modelled in the previous section can
both generate and operate on contextual data. For example, a
caching mechanism will require information about the pop-
ularity of the content it caches. At the same time, it will
also generate contextual data about its decisions, such as
which content it caches. The DEN-ng model represents the
Context of an Entity by distinguishing between a collection of
data, information, and knowledge that result from collecting
measurements of and reasoning about that Entity. As illustrated
in Figure 3, the Context and ContextData classes represent
the concepts of whole (or assembled) context and partial (or
component pieces of) context, respectively. This approach is
unique in context modelling, and avoids the common weakness
of representing context using an unorganised set of objects.

DEN-ng defines a ContextProducer and ContextConsumer
to model the generation and consumption of contextual data.
To link our new classes with the existing context model,
two new associations have been added. The ContextCon-
sumedBy and ContextProducedBy associations define the set

of contextual data that is consumed and produced by a Con-
textProducerService, respectively. To govern the contextual
data that is produced or consumed, DEN-ng defines poli-
cies through four associations (PolicyGovernsContextProduc-
tion, PolicyGovernsContextConsumption, PolicyGovernsPro-
ducerConsumerDataSemantics and PolicyGovernsProducer-
ConsumerSemantics). These associations define the set of pol-
icy rules that are used to determine the contextual information
that is produced or consumed as well as what Context or
ContextData can influence products, services, resources and
other managed entities that require context.

V. ORCHESTRATING THE CONTEXT EXCHANGE

In this section, we propose a semi-automated process of
generating filter rules that exploits the information already
present in the DEN-ng information model and the formal
reasoning capabilities of ontologies.

A. Motivating example for the use of ontologies

An UML based information model, such as DEN-ng, can
represent most of the needed contextual data for making
network management decisions. However, in some cases,
additional semantic relationships are needed to characterise
and reason on the available context. Therefore, we derive a
baseline ontology from DEN-ng for reasoning. While there
are cases in which traditional UML based information models
are sufficient, we believe that the introduction of ontologies
offers additional logic and reasoning power to make more
efficient decisions. In particular, cases that require the ability
to make and prove inferences are difficult to realise by using
only UML, since it does not have any formal logic.

An example of this is tuning the amount of context that
is requested from other nodes. Several QoE optimisers rely
on a periodic update of information to make their decisions.
Controlling the frequency and amount of content of these
updates provide a trade-off: limit the communication overhead
at the cost of losing accuracy. As another example, different
services that co-exist may have different needs. An operator
may choose to distinguish between these different services
by increasing the update frequency of one service, and com-
pensate for this by decreasing the update frequency of the
other services. That way, the operator can fine tune the traffic
conditioning of each service. These relations are difficult to
model using UML, but can be easily represented by using a
rule based ontological approach.

B. Automatic generation of filter rules

The proposed algorithm consists of a three step approach. In
the first phase, potentially interesting context data is identified;
these data are used to select an appropriate subset of the
DEN-ng information model, which is then translated to an
ontology. In the second phase, the information model is
queried and relevant model elements are mapped to instances
of the ontology. In the third phase, the ontology is queried
and the filter rules are automatically generated based on the
reasoning results. These steps are delineated in the following
sections.
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1) Phase I: Constructing the ontology T-BOX: In the first
phase, the ontology T-BOX, which describes the properties and
concepts in the ontology, is constructed. For this construction,
a modified version of the algorithm described in [14] is used,
which discusses a way to translate a UML model to an
ontology. The modifications were made to accommodate the
use case specific translation. A few steps were added, namely
step 2 and 7-9:

Step 1 Manually tag the classes that have potentially
relevant information in the DEN-ng information model.
Typically, these classes will be subclasses of the Context
or the ContextData classes in DEN-ng.

Step 2 The initial ontology, as depicted in Figure 4, is
automatically constructed. This ontology defines a con-
cept Informationltem, which is the root concept for the
different pieces of context that can be queried. It is
conceptually equivalent to the Context class in the DEN-
ng information model. However, it can contain one or
more QueryComponents that enable the queried result to
be altered by typical query constructs.

Step 3 For every DEN-ng tagged class, an ontology con-
cept is generated with the same name.

Step 4 All properties of the tagged classes are mapped to
properties in the ontology.

Step 5 All associations of the tagged classes are mapped
to properties in the ontology with restrictions to model
the multiplicity of the association in UML.

Step 6 All subclasses in the information model are
mapped to disjoint classes in the ontology.

Step 7 Optionally, extend the resulting ontology with se-
mantic relationships that help determine which context
data are needed. This is a task that should be done by
a domain expert and makes up the manual phase in the
process, together with the tagging of classes in DEN-ng
(step 1).

Step 8 A concept called InformationToQuery, which has
the Informationitem as parent but is not disjoint with
the other subclasses is added to the ontology with the
following SWRL rule as an initial definition: Infor-
mationltem(?i) N hasLocation(?n) A isDifferent(?n,?l)
N hasIP(?n,<IPAddress>) N\ hasBeenQueried(?i,FALSE)
— InformationToBeQueried(?i). This basic rule defines
all non-local information that have not been queried
before as information that needs to be queried.

Step 9 If needed, more complex definitions of the Infor-
mationToQuery concept can be specified that build on the
added semantic relationships and provide a more limited
view of what needs to be queried. These definitions
can be stated through rules and/or constraints, and can
be realised using policies. An example of how these
refinements can be defined is discussed in Section VI.

2) Phase II: Mapping DEN-ng instances to the ontologies
A-BOX: Once the ontology T-BOX has been constructed, it
is possible to translate the instance information present in the
DEN-ng data model to the ontology A-BOX, describing the
actual knowledge contained in the ontology. This is done via
the following steps.

Note that the DEN-ng datamodel is a concrete implemen-
tation of the DEN-ng information model. Such a data model
will employ a specific repository, programming language and
protocol to provide access to the modelled entities. Only one
DEN-ng information model is used; it serves as a template
that models entities and their relationships. Different DEN-
ng data models that reflect different implementation choices
are derived from the DEN-ng information model. This ensures
that different data models have a coherent and consistent def-
inition of knowledge, even if they implement that knowledge
differently.

Step 1 Information about all the nodes in the network is
realised as instances of the ManagedEntity concept.

Step 2 The DEN-ng data model is queried for the in-
stances of all tagged classes: the result is added as
instances of the ontology.

Step 3 For each instance added in the previous step,
the hasLocation property is established by querying the
DEN-ng data model for the location of this item.

Step 4 Optionally, additional semantics to the existing
context information can be manually introduced through
query components.

Step 5 The DEN-ng data model is queried for applicable
policies. For example, an applicable policy is a policy
that has one or more of the added instances in the second
step. In this example, a PolicySubject is a set of managed
entities that represent the authority imposing policy. It can
make policy decision and information requests, and it can
direct policies to be enforced at a set of PolicyTargets.
A PolicyTarget is a set of managed entities that a set
of policies will be applied to. Since many different data
models can be derived from the same information model,
different data models can use the same queries, thereby
enforcing consistency among heterogeneous data.

Step 6 Based on the definition of InformationToQuery
an ontology reasoner is used to automatically classify
which of the added ontology instances belong to the
InformationToQuery concept.

3) Phase III: Automatic generation of filter rules: Once
the instances belonging to the InformationToQuery concept
have been automatically classified through reasoning, the filter
rules can be generated as described in Algorithm 1. In the



algorithm, the getFilterRules function queries the constructed
ontology and constructs a mapping between each node and
the corresponding set of filter rules. For each node, the
corresponding set of filter rules is constructed using the
getFilterRulesByNode function. In this function, only those
InformationToQuery individuals that have a hasNode property
with the corresponding node are used. The filter rules are
constructed by investigating the properties of the Information-
ToQuery item itself.

Algorithm 1 The algorithm for automatically generating the
filter rules based on the constructed ontology.

FilterRule : Name x Modifiers x WhereCondition
FilterRuleMap : Node — PFilter Rule
getFilterRules : Ontology — PFilter Rule M ap

getFilterRules(ont) =
let nodes = getNodes(ont)
let rulemap = ¢
Vn € nodes :
let rules = getFilter RulesByNode(ont,n)
rulemap = rulemap U (n — rules)
return rulemap

getFilerRulesByNode : Ontology x Node — PFilter Rule
getFilterRulesByNode (ont, node) =
let rules = ¢
let items = getInformationToQuery(ont)
Vi € items
if hasLocation(i,node)
then
rules = rules U (name(i), mod(i), where(i))
return rules

VI. ACCESS NETWORK SCENARIO

In this section, we discuss how the process described in the
previous section works for an access network scenario. We
define four different types of QoE optimisers that are deployed
on different nodes in the network: an admission control
mechanism, a FEC mechanism, a retransmission mechanism,
and an SVC transcoder. Our research is focused on current and
future networks; hence, our architecture enables a reasoning
component to be placed in either a network node or provided
as part of a policy-based interaction. This allows the architect
to choose how reasoning for supporting QoE management
is realised on an application-specific basis. This reasoning
component is responsible for detecting drops in the service
delivery quality and taking the necessary corrective actions by
deploying a set of QoE optimisers. QoE optimisers can take
different approaches in fulfilling the same goal. For example,
an admission control mechanism and an SVC transcoder can
both be used to avoid congestion; however, the first does this
by blocking sessions, while the latter decreases the bandwidth
requirements of existing sessions. The reasoning component is
responsible for selecting the appropriate QoE optimiser based
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Fig. 5: Through the transitive dependsOn property, we can
model dependencies between context items.

on context and policy. The set of QoE optimisers changes
according to the needs of changing context.

A. Identifying relevant DEN-ng classes

In a first step, the relevant DEN-ng classes, are tagged
and translated into an ontology’s T-BOX and A-BOX. For
this access network scenario, the classes to tag will contain
the different QoE optimisers and the context they produce
and consume (as a child class of DEN-ng’s Context class).
Once this translation is performed, we can then choose to
add additional semantic relationships to improve the context
communication and decision-making processes.

B. Introducing semantic relationships

Suppose we want to avoid requesting context data that is
only needed when there is a QoE drop, because we want to
minimise the communication overhead and a QoE drop occurs
infrequently. We could request the QoE score, which is a
summary of the performance of the service delivery. Based
on this score, we can then retrieve additional information if
required. This can be modelled by introducing a transitive
object property in the ontology that states that one information
item depends on another, as shown in Figure 5.

the
the

Ontology description 1 Restriction  on
InformationToQuery  concept to  incorporate
dependsOn property

Informationltem N\ dependsOn exactly 0 Informationltem.

Ontology description 2 SWRL rule to make the inclusion of
context information dependent on the value of another context
item.

Informationltem(‘child) N\ InformationltemToQuery(?root)

A DependsOnAssociation(?assoc) N dependsOn(?child,?root)
N dependsOn(‘child,?assoc) A hasThreshold(?assoc,?th)

A hasValue(root,?val) A\ hasOperator(?assoc,”LTE”)

A lowerThanOrEqual(?val,?th)

— InformationltemToQuery(?child)

Based on the dependsOn property, we can then alter
the definition of the InformationltemToQuery concept
to exclude the context items that depend on other context
items as described in Ontology Description 1. Additionally,
as described in Ontology Description 2, we can introduce a
SWRL rule that includes the originally excluded context items.
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C. Automatic classification of InformationToQuery

Once these additional semantic relationships have been
defined, an ontology reasoner can be used to automatically
classify which instances belong to the In formationToQuery
concept. In a first run, only one instance will be classified as an
InformationToQuery instance: the QoE score. Translating
this into queries is done using Algorithm 1. If the value of the
queried QoE score is below a threshold, additional context
items (e.g., packet loss ratio, delay and congestion level),
will be classified as InformationToQuery instances in the
second run as well.

VII. PERFORMANCE EVALUATION
A. Test-bed implementation

We implemented a DEN-ng data model that models context
in a network management environment. Our DEN-ng data
model used the Hyper Structured Query Language Database to
store data, and a Representational State Transfer based web-
service to provide access to the data model. To support the
automatic generation of filter rules, we used the Protege-OWL
API library [15] as an ontology framework, and coupled it with
the Pellet ontology reasoner [16] and the Jess rule engine [17].

We deployed the DEN-ng data model and context exchange
architecture on a testbed of 37 nodes representing an access
network with 10,000 connected home gateways. These home
gateways are modelled as network edge nodes, where each
node models the traffic of 625 home gateways. As shown in
Figure 7, the investigated topology models an access network,
where a server is streaming several video sessions to different
home networks. We investigated both the network and applica-
tion overhead. The first is expressed in terms of network delay
and bandwidth, while the latter focuses on the time needed
to reason over the ontology. All nodes in the topology were
dual core AMD 2Ghz machines with 3GB RAM. During our
experiments, we varied the number of services as well as the
context requirements (i.e., the amount of requested contextual
data) and the ontology structure.

B. Evaluation results

1) Influence on the network bandwidth and delay: We
implemented the access network scenario as discussed in
Section VI as an exemplary scenario with and without the
use of the described additional semantic relationships. The
configuration of these QoE optimisers can be determined for
each service type independently (e.g., a VoD service and a
Broadcast TV service). Alternatively, it is also possible to
manage one particular service. For this test, we varied the
number of managed service or service types and the number
of nodes that take part in the context exchange process.
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Figure 7 illustrates both the measured network delay and
bandwidth over time with and without additional semantic
relationships. We define the network delay as being the delay
needed to fetch one piece of contextual data from a remote
node. If several queries are needed to obtain this data (e.g.,
because semantic relationships are also defined), the different
queries are added together to define the delay value. In this
test, 10 nodes were involved in the context exchange process,
and 20 service types were managed. The context request
frequency was 1 second. Without any additional semantic
relationships, all the contextual data is requested each second
which leads to an average bandwidth of 1.62 Mbps. The intro-
duction of the dependsOn property as described in Section VI
dramatically reduces the bandwidth required. As only the QoE
score is requested from other nodes the measured bandwidth is
considerably lower (around 0.60 Mbps). Sometimes, additional
contextual data needs to be requested (e.g., because a drop in
the QoE score causes the SWRL rule to be triggered), resulting
in a temporary increase in required bandwidth. For example
in Figure 7, this happens around the 60 second time mark. As
the SWRL rule is triggered, a second query is executed which
introduces a short increase in network delay. Hence, the use
of additional semantic relationships results in a decrease in
the average bandwidth at the cost of occasional increases in
network delay. This is the source of the spikes in Figure 7.

2) Influence of the context requirements on the reasoning
delay: The delay introduced by the network is only a small
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fraction of the overall experienced delay; this is shown in
Figure 8, which illustrates the overall delay and delay imposed
by reasoning over the ontology for a varying number of nodes
and 1 managed service type. As can be seen, the overall delay
is primarily caused by the reasoning delay. An increase in
the number of nodes leads to both an increase in reasoning
delay and other types of delay (e.g. the network delay). This
is expected since a larger number of nodes results in a larger
ontology A-BOX, resulting in a more complex reasoning
process. Additionally, a larger number of nodes will also result
in a larger number of queries (as more nodes need to be
contacted) and hence a larger network delay. The introduction
of semantic relationships also has a positive effect on the
reasoning delay. In an effort to decrease the communication
overhead, the reasoning overhead is also decreased, because
the use of reasoning results in fewer Informationltem
instances that are classified as relevant. For one managed
service type and all 37 nodes participating in the exchange
process, introducing semantic relationships results in a 20%
decrease in overall delay (from 0.54 to 0.42 seconds).

The decrease in reasoning delay, experienced by introducing
semantic relationships, is even more noticeable for a larger
number of managed service types. This is depicted in Figure
9, which shows the overall delay and reasoning delay for a
varying number of nodes and 50 managed service types. This
figure shows two important trends. First, introducing semantic
relationships reduces the average reasoning delay when the
number of service types is increased. For 50 service types
and 37 participating nodes, introducing semantic relationships
results in a decrease of approximately 85% from 12 seconds to
1.81 seconds. This is because the effect of reducing the amount
of information to analyse is multiplied. Second, a larger
number of managed service types results in a larger overall
and reasoning delay. Where the overall delay for 1 managed
service type and 37 nodes was 0.54 seconds without any
semantic relationships, the experienced delay for 50 managed
service types and the same number of nodes is 14.86 seconds,
an increase of 49%.

The effect of an increasing delay on an increasing number of
managed service types is further illustrated in Figure 10, which
shows the influence of a varying number of service types
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Fig. 10: Experienced overall and reasoning delay for a varying
number of service types and 10 participating nodes.
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Fig. 11: Influence of the number of introduced semantic
relationships on the reasoning delay

for 10 participating nodes. Increasing the number of service
types complicates the reasoning process, as more context
types will be present in the ontology. This more elaborate
reasoning process is noticeable in an increase in reasoning
delay. Similarly to Figure 8 and 9, the reasoning delay can be
diminished by introducing additional semantic relationships to
the ontology. For this test, a drop in reasoning delay of up to
71% can be achieved.

3) Influence of the ontology T-Box on the reasoning delay:
All previous tests focused on the performance of the proposed
solution for the access network model scenario (as discussed
in Section VI). As such, only a limited amount of semantic
relationships and SWRL rules were defined. Furthermore,
the amount of contextual data being requested per managed
service type and node was fixed. In the following test, we
investigate the influence of the ontology T-Box on the perfor-
mance of the reasoning delay by introducing more semantic
relationships and sub-concepts of the Informationltem concept.

Figure 11 illustrates the influence of increasing the number
of semantic relationships and sub-concepts on the reasoning
delay. These semantic relationships can be introduced through
SWRL rules or regular object properties. For this test, the
number of participating nodes was fixed at 10, while the
number of managed service types was set to 50. Furthermore,
we assumed that every managed service type requests 10
context items per node. As can be seen, a larger number
of introduced object properties does not have a significant
influence on the reasoning delay.

Previous tests pointed out that introducing these object prop-



erties can greatly decrease the experienced reasoning delay.
Here, we see that even a large number of object properties
will not cause the reasoning delay to increase. Furthermore, the
obtained standard deviation values are very low. There are two
factors that contribute to this result. First, the use of caching
performed by the Pellet reasoner greatly improves the perfor-
mance. During deployment, modifications to the ontology are
situated in the A-Box, which does not significantly complicate
the reasoning process. Second, some of the introduced object
properties are similar to the dependsOn property discussed
in Section VI, meaning that their corresponding restriction on
the InformationToQuery concept states that an Informationltem
instance may not contain any of these properties. This means
that the reasoning algorithm will stop classifying an instance
as belonging to the InformationQuery concept when it finds
such object properties.

When considering the introduced reasoning delay for a
varying number of SWRL rules, we see that using these type
of relations introduces an additional delay even for 1 SWRL
rule. This delay is caused by calls made to a second type
of reasoner, the Jess rule engine, because the first reasoner
(Pellet) cannot apply SWRL rules onto the dataset. However,
the delay experienced by increasing the amount of SWRL
rules is considerably lower. The inclusion of 1 SWRL rule
results in a delay of 0.92 seconds, while introduction of 500
additional SWRL rules introduces an additional delay of only
0.43 seconds on top of the 0.92 seconds.

In general, the overhead of the ontological approach is
considerable: for example, for 25 participating nodes and
50 managed service types, the experienced reasoning delay
with semantic relationships is above 2 seconds. This makes
it hard to enable the use of ontologies in an on-line scenario
where the context requirements need to be evaluated every
second. However, while not immediately applicable to an on-
line scenario, the ontological approach provides significant
advantages to apply in an off-line scenario as it provides a way
to automate the generation of filter rules where more complex
semantic relationships can be achieved than with traditional
UML based information models.

VIII. CONCLUSIONS & FUTURE WORK

In this paper, we defined a process to semi-automatically
generate filter rules for the exchange of contextual data in
autonomic networks. We modelled the context requirements
of distributed entities in DEN-ng, which enables us to model
the set of potentially relevant contextual data in a technology-
neutral, object-oriented manner. To determine which contex-
tual data from this set needs to be queried, an ontology is used
that allows expressing semantic relationships that further refine
the filter rule generation process. The proposed solution was
deployed on a large scale testbed to evaluate the influence
of the use of ontologies on the performance of the context
exchange for a detailed multimedia access network scenario.
It is shown that the introduction of additional semantic rela-
tionships results in both a reduction of network resources (i.e.
bandwidth and delay) and application delay.

In future work, we are targeting to further apply additional
machine learning techniques to automatically identify potential
classes for consideration. Furthermore, we plan to introduce
additional contextual elements to the baseline ontology. This
will increase the expressiveness in the stated semantic rela-
tionships.
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