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Abstract—In this paper, we propose a novel method that
improves the accuracy of the estimation of neural electrical
dipoles when solving the EEG inverse problem. A spherical head
model is used where we limit the influence of the unknown
conductivity brain-skull ratio on the inverse problem. We redefine
the cost function that is used in the EEG problem where only
useful information is used as input in the inverse problem. In
contrast to previous approaches, weighting factors are used where
the electrodes are strategically chosen so to reduce the error
made on EEG dipole source localization. The proposed method
enhances the source localization accuracy from approximately
9mm to 1mm for dipoles near the edge and from 2.1mm to
0.4mm for dipoles near the center of the brain.

I. I NTRODUCTION

ELECTROENCEPHALOGRAPHY (EEG) is a medical
imaging technique that neurologists use to investigate

neurological disorders. Using metal electrodes, brain activity
can be recorded non-invasively. EEG source analysis is par-
ticularly useful in the diagnosis of neurological disorders like
epilepsy. Indeed, the determination of the origin of specific
EEG waveforms helps neurologists to pinpoint the origin of
the epilepsy and to evaluate the patient for resective surgery.
However, when coupling the non-invasive EEG measurements
to a numerical method, inaccuracies in the neural source
localization are introduced. Indeed, the accuracy of EEG
source analysis is mainly determined by the noise in the
measurement and the accuracy of the numerical head model
parameters. Also, the source modelling of the brain activity
introduces an error. Since the brain electrical activity of
patients suffering from epilepsy are characterized by a limited
number of electrical dipoles [1], we do not investigate the
influence of the used source model. The head model on the
other hand has a large impact on the solution of the EEG
inverse problem where important errors are introduced by
the uncertainties of the values of the electrical conductivity
of the brain and the skull. The quantitative values of the
electrical conductivity of the brain and the skull remain a
very important parameter that attract a lot of debates in EEG
source analysis field, see e.g. [2], [3]. In numerical methods,
the brain to skull ratio of the conductivity is the important
parameter and may vary between1/9 to 1/60. This paper
presents a novel numerical scheme, the so-called Reduced
Conductivity Dependence (RCD) method, that minimizes the
influence of the conductivity on the localization errors. This
method introduces a selection procedure of the EEG electrodes
that are minimally influenced by the conductivity values. We

validate the method onto a widely-used approximation of the
head: the semi-analytical spherical head model. Comparisons
are made with traditional least-squares minimization methods.
For simplicity of analysis, we impose that the neural activity
is represented by a single electrical dipole.

II. EEG SOURCE ANALYSIS

A. Forward problem

The forward problem starts from a given electrical dipole
and calculates the potentials at the electrodes. For this, the
brain to skull ratio of the conductivityX needs to be provided.
The spherical head model is a widely-used approximation
of the head where the head is represented by three spheres:
the inner sphere represents the brain, the intermediate layer
represents the skull and the outer layer represents the scalp.
The forward problem needs to solve the Poisson’s equation:

∇ · (σ(r)∇V(r )) = d δ(r − rd) (1)

with σ(r) the place dependent conductivity determined byX,
V(r) the place dependent potential,d the dipole orientation
vector (with intensityI = ‖d‖) and rd the dipole location
vector.δ(.) is the three-dimensional delta Dirac function. An
analytical expression for the potential values can be calculated
using [4]. In this study, a standard configuration ofm = 27
electrodes is used to compute the potential distribution of
the forward model. For givenrd and dipole orientationd,
the electrical potential values at the given electrodes canbe
calculated:Vm(rd, d) ∈ R

m×1. The potential values are a
linear function of the dipole orientation:Vm = L(rd) ·d with
L ∈ R

m×3 the so-called lead field matrix.

B. Traditional solution of EEG inverse problem

The aim of the EEG inverse problem is to start from
measured EEG potentialsVmeas∈ R

m×1 and to recover the
neural dipole locationr∗d and orientationd∗. This is carried out
by minimizing a cost function, the so-called relative residual
energy (RRE):

{r∗d, d∗} = arg min
rd,d

RRE(rd, d) (2)

with

RRE(rd, d) =
‖Vmeas− Vm(rd, d)‖

‖Vmeas‖
(3)

where ||.|| is the L2 norm. The number of parameters in
this least-squares cost function can be reduced by considering
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the optimal dipole components:dopt = L † · Vmeaswith L †

the Moore-Penrose pseudo inverse of the lead field matrix.
Equation (3) becomes then, see e.g. [5]:

RRE(rd) =
‖Vmeas− L(rd)L(rd)

†Vmeas‖
‖Vmeas‖

. (4)

The widely Nelder-Mead simplex method is used here to find
the global minimum of the Relative Residual Energy (RRE).

III. R EDUCED CONDUCTIVITY DEPENDENCE(RCD)
METHOD

A. Description of the method

The RCD method proposes an alternative cost function that
needs to be minimized for EEG source analysis. The main
idea lies in the selection of electrodes that provide useful
information in the sense that the electrodes which are selected,
are minimally affected by the unknown conductivity in the
forward model. Indeed, depending on the location of the
electrical dipole and its orientation, some potentials arehighly
affected byX and others are not. The selection procedure
needs to be performed in each iterationk of the minimization
scheme, in this case the Nelder-Mead simplex method. In
the following, we explain the basic steps taken by the RCD
method.

Step 1: Start valuer (0)
d is evaluated in the forward model,

yielding the lead field matrixL(r (0)
d ), and simulated potential

valuesVm(r (0)
d ) = L(r (0)

d )L(r (0)
d )†Vmeas. We initialize k =

0.
Step 2: Calculate the sensitivityW and the normalized sensi-

tivity w of the simulated electrode positions to the conductivity
for a certain conductivityX0:

W =
∂Vm(r (k)

d )

∂X
|X=X0

, w =
|W|

‖W‖
(5)

In the case of the spherical head model,W andw can be cal-
culated analytically. When considering more complex realistic
head models, this can be calculated by finite differentiation.

Step 3: Selection of least sensitive electrodes, based on (5).
Largest values are not considered in the EEG inverse problem,
since their potential values are affected by the conductivity. A
new set of potential values are obtained:Sm ∈ R

N×1 and the
corresponding set of measured EEG potentials are considered
Smeas∈ R

N×1. N is the number of selected potentials.
Step 4: Calculation of RCD cost function:

RCD(r (k)
d ) =

‖Smeas− Sm(r (k)
d )‖

‖Smeas‖
(6)

Step 5: Based on (6), the next iterater (k+1)
d can be

calculated. If the termination criteria of the minimization
procedure are met, i.e. RCD(r (k)

d ) reaches tolerance, then stop
the algorithm. Otherwise, go to step 2.

B. Results and discussion

The efficiency of the RCD method is illustrated by per-
forming Monte Carlo simulations. Starting from known dipole
locations r̃ and a given conductivityX0, we compute EEG
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Fig. 1. Plot of Conductivities Vs Error (left) and for several noise levels
(right) at X=1/40, for dipoles located near the center of thehead.

potentials. Gaussian noise is added to these potentials in order
to simulate real measured EEG potentials. Dipole locationsr̂
are then estimated using the traditional method, i.e. solution
of (2), and estimated using the RCD method, explained in
III.A. The accuracy of both methods is determined by the
error E = ‖r̃ − r̂‖ for different valuesX and noise levels.
The white zero mean Gaussian noise with standard deviation
Σ has a noise level defined asn = Σ/VRMS with VRMS

the root mean square of the potentialsV. Fig. 1 illustrates
the decrease in localization error due to the use of the RCD
method (with varying number of selected potentialsN=4, 6,
8, 10 in step 3 of III.A.) compared to the traditional method
(N=27). A reduction of the error is introduced due to the use
of the RCD method.

For dipoles located near the center of the head, the localiza-
tion error can be reduced from 2 mm to 0.4mm. For dipoles
located near the edge of the head, dipole errors (withX0 = 25
and X = 40) are approximately 9mm using the traditional
method and are reduced to 1mm. The efficiency of the RCD
method is reduced when noise is included, see Fig. 1, but
remains accurate.

IV. CONCLUSION

This paper proposes a method that decreases the error
introduced by the uncertainties of the conductivity. The results
show that the EEG inverse problem can be solved with
considerably improved quality, as compared to the traditional
inverse solutions.
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