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Industrial applications: 

• Hydrotreating of fuels 

• Petrochemical industry (nylon) 
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Catalytic hydrogenation of benzene 

 Complex catalytic reaction network, with multiple possible adsorption sites 

 For one adsorption site  full network with13 intermediates 

 Palladium is a widely used catalyst for hydrogenation reactions 

 Pd(111) is the most abundant and stable surface 

14th NCCC, Noordwijkerhout, The Netherlands, 12/03/2013 

Cyclohexane gas 

Environmental applications: 

Production of clean fuels  

(benzene is carcinogen type A) 

3H2,gas + 



Important goal in industry: 

developing new catalysts with novel catalytic properties 
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Integrating theoretical models into industry 
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Optimal catalyst as a f(conditions) 

Quantum chemistry methods 
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Industrial models Ab initio based kinetics  



• Introduction 

• Methodology 

• Results 

• Conclusions 
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Outline 

14th NCCC, Noordwijkerhout, The Netherlands, 12/03/2013 



The energy is a functional of ρ:      

E[ρ]  ρ(r)  r(x,y,z) 
 

Exchange and correlation functional  

Biggest challenge source of inaccuracy 

Different approximations: 

This work uses the Generalized gradient approximation (PW91) 
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Density Functional Theory (DFT) 

Kinetic energy Nuclear-electron 
interactions 

Coulombic repulsions 

Idea of DFT: minimize energy with respect to the electron density 
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Top view Side view 

Vacuum layer 11 Å 

Relax 2 upper layers 

Fix 2 bottom layers  
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Periodic DFT calculations 

Artificial dipole layer 

Computational approach: catalyst model & DFT 

Unit cell: 

fcc Pd(111) 
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Computational details: 

PAW (Encut=400 eV) 

5 5 1 K-points 

Methfessel Paxton, σ=0.3 eV 

Non-spin polarized systems 
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Statistical thermodynamics 

Use of statistical thermodynamics to link between microscopic and macroscopic properties. 
Calculates the thermodynamic parameters as a function of T with the partition function, q(V,T) 

 DFT calculations provide: 

 Electronic energy at 0 K from geometry optimization (Eel) 

 Vibrational frequencies from harmonic oscillator frequency analysis (ν) 
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qrot(T) = qtrans(V,T) = 1 

• Free rotation 

• Free translation 
Immobile surface species Mobile surface species 

Are the species mobile on the catalytic surface? 
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Thermodynamic diagrams 
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Microkinetic modeling 

Bg+*  ↔ B*               KB 

H2,g+2* ↔ 2H*        KH2 

B*+H* ↔ BH* + *                K1 
BH*+H* ↔ 13CHD* + *                K2a 

BH*+H* ↔ 13DHB* + *                K2b 

BH*+H* ↔ 14CHD* + *                K2c 

13CHD*+H* ↔ 123THB* + *              K3a 

13CHD*+H* ↔ 124THB* + *                K3b 

13DHB*+H* ↔ 123THB* + *                K3c 

13DHB*+H* ↔ 124THB* + *                K3d 

13DHB*+H* ↔ 135THB* + *                K3e 

14CHD*+H* ↔ 124THB* + *                K3f 

123THB*+H* ↔ CHE* + *               K4a 

123THB*+H* ↔ 1235THB* + *              K4b 

124THB*+H* ↔ CHE* + *              K4c 

124THB*+H* ↔ 1235THB* + *               K4d 

124THB*+H* ↔ 1245THB* + *               K4e 

135THB*+H* ↔ 1235THB* + *               K4f 

CHE*+H* ↔ c-hexyl* + *                K5a 

1235THB*+H* ↔ c-hexyl* + *               K5b 

1245THB*+H* ↔ c-hexyl* + *                K5c 

c-hexyl*+H* ↔ CHA* + *                K6 
CHAg + * ↔ CHA*         KCHA 
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Full reaction network: 

)( ,, CHACHACHAadsCHACHAdest pkkcr

Dominant path with rate determining step 
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Outline 

• Introduction 

• Methodology 

• Results 

• Conclusions 
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Results for the adsorption 
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Adsorption 

Benzene 
Hydrogen 

Desorption 

Cyclohexane 

Surface reactions 
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Benzene adsorption 

Atop 

Bridge 

30° 0° 

Hollow-hcp 

Hollow-fcc 

0.37 ML 0.67 ML 1 ML 
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2.457×1014 molecules/cm2 1.638×1014 molecules/cm2 9.216×1013 molecules/cm2 

θ ≤1 ML: bridge30 and hollow-hcp0 
θ >1 ML: tilted configuration 

0 ML0.37 ML

0.67 ML

1.5 ML

Liquid state Vapour state

Reaction conditions:θ ~ 0.67 ML expected 

tilted geometry 
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Hydrogen adsorption 
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top 

hcp 

bridge 

fcc 

octasub 

hcp fcc 

top 

tetrasub13 
tetrasub31 octasub 

top view side view 

0 ML

1 ML
0.25 ML

0.5 ML

0.75 ML
1.25 ML

1.5 ML

1.75 ML

2 ML

θH≤1ML  Surface hollow sites 
1ML< θH≤2ML  Surf+Subsurface  

Hydrogenation conditions (450 K, >1 bar): 
θH~1ML of surface hollow hydrogen 



Benzene and hydrogen co-adsorption 
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Bare 

surface
Benzene 

adsorbed

0.44 ML

0.89 ML

1.67 ML

1.89 ML

Hydrogenation conditions (450 K, >1 bar): 
0.44ML < θH < 0.89 ML surface hydrogen 



Results for the surface reactions 
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Adsorption 

Benzene 

Hydrogen 

Desorption 

Cyclohexane 

Surface reactions 
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Electronic barriers for surface reactions 
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Potential rate determining step 
kRDS strongly influences r  

Hollow species 

Bridge species 
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Thermodynamics & kinetics 
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q 
U 
H 
S 
... 

A = f(S,T) 
Ea = f(H,T) 
k = A exp(-Ea/RT) 
K=kf/kr 

Eel, ν 
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Coverage dependent kinetics 
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Dominant path evolution of kinetics with coverage, 0.11 ML≤ θ≤0. 44 ML 

Activation energy 

Pre-exponential factor 

Equilibrium coefficient 

Large increase in Keq for 

1st, 2nd and 4th reactions 

1st step 

2nd step 

3rd step 

4th step 

5th step 

6th step 



Coverage dependent kinetics 
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Higher hydrogen coverage: 
• Decrease of Ea 

• Increase of A  
• Decrease of hydrogen mobility 

Simulation of the microkinetics: 
Large increase in TOF at high 
coverage  

Hydrogen, n = - 0.4 

Benzene, n = 1 

θH=0.44 ML 
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Outline 

• Introduction 

• Objective 

• Methodology 

• Results 

• Conclusions 
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Conclusions 

14th NCCC, Noordwijkerhout, The Netherlands, 12/03/2013 

Benzene adsorption on Pd(111): 
• Flat up to 1 ML 
• Tilted above 1 ML 
• 0.67 ML preferred at reaction conditions 

Hydrogen adsorption on Pd(111): 
• Surface hollow sites up to ML 
• Combination with subsurface above 1 ML 
• 1 ML preferred at reaction conditions 

Co-adsorption on Pd(111): 
0.44ML < θH < 0.89 ML surface hydrogen at reaction 
conditions, with 0.67 ML of benzene 

Ab initio based micro-kinetics: 
• Potential dominant path and rate determining step (upper path and first reaction resp.) 
• Inclusion of coverage effects: 

• Decrease activation energies 
• Increase pre-exponential factor 
• Affect the mobility of hydrogen, which also impact on the kinetics 

• Simulation of micro-kinetics shows much higher activities at high coverage 
• Inclusion of hydrogen coverage effects improve the description of the reaction network 



Thank you for your attention 

22 

14th NCCC, Noordwijkerhout, The Netherlands, 12/03/2013 



Catalyst descriptor: Characteristic for a given catalyst that can  

be correlated with kinetic and thermodynamic properties 

DFT: Density Functional Theory 

Dimer method: force-based transition state search algorithm 

GGA: generalized gradient approximation (within DFT theory) 

MEP: Minimum Energy Path 

NEB: Nudged Elastic Band method for the calculation of MEPs 

PAW: Plane Augmented Waves (periodic calculation technique) 

PES: Potential energy surface 

PW91: Perdew-Wang type of DFT functional 

VASP: Vienna Ab initio Simulation Package 

ZPE: Zero point energy 

 

Glossary 
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