

Ab initio based micro-kinetic modeling of benzene hydrogenation on Pd(111), as a function of hydrogen coverage

G. Canduela^{1,2}, M.K. Sabbe¹, M.-F. Reyniers¹, J-F. Joly² and G.B. Marin¹

¹Laboratory of Chemical Technology, Ghent University, Ghent, 9000, Belgium ² IFP Energies nouvelles, Solaize, France

Laboratory for Chemical Technology, Ghent University

http://www.lct.UGent.be

Catalytic hydrogenation of benzene

Industrial applications:

- Hydrotreating of fuels
- Petrochemical industry (nylon)

Environmental applications:

Production of clean fuels

(benzene is carcinogen type A)

- Complex catalytic reaction network, with multiple possible adsorption sites
- **G** For one adsorption site \rightarrow full network with 13 intermediates
- Palladium is a widely used catalyst for hydrogenation reactions
- Pd(111) is the most abundant and stable surface

Integrating theoretical models into industry

Important goal in industry:

developing new catalysts with novel catalytic properties

Outline

- Introduction
- Methodology
- Results
- Conclusions

Density Functional Theory (DFT)

Idea of DFT: minimize energy with respect to the electron density

This work uses the Generalized gradient approximation (PW91)

Computational approach: catalyst model & DFT

Statistical thermodynamics

DFT calculations provide:

- **\clubsuit** Electronic energy at 0 K from geometry optimization (E_{el})
- Vibrational frequencies from harmonic oscillator frequency analysis (v)

Use of **statistical thermodynamics** to link between microscopic and macroscopic properties. Calculates the thermodynamic parameters as a function of T with the **partition function**, *q*(*V*,*T*)

Thermodynamic diagrams

Microkinetic modeling

Full reaction network:

$B_{g}^{+*} \leftrightarrow B^{*}$	K _B
$H_{2,g}^{"}+2^{*} \leftrightarrow 2H^{*}$	K _H
$B^{\overline{*}} + H^* \leftrightarrow BH^* + *$	K ₁
BH*+H [*] ↔ 13CHD [*] + [*]	K ₂
BH*+H [*] ↔ 13DHB [*] + *	K ₂
BH*+H [*] ↔ 14CHD [*] + [*]	K ₂
13 CHD*+H* \leftrightarrow 123 THB* + *	K ₂
13 CHD*+H* \leftrightarrow 124 THB* + *	K ₃
$13DHB*+H^* \leftrightarrow 123THB^* + *$	K₃
$13DHB*+H^* \leftrightarrow 124THB^* + *$	K3
13DHB*+H [*] ↔ 135THB [*] + [*]	K3
$14CHD*+H^* \leftrightarrow 124THB^* + *$	K3
123THB*+H* \leftrightarrow CHE* + *	K⊿
123THB*+H [*] ↔ 1235THB [*] + [*]	K⊿
$124THB*+H^* \leftrightarrow CHE^* + *$	K⊿
124THB*+H [*] ↔ 1235THB [*] + [*]	K⊿
124THB*+H [*] ↔ 1245THB [*] + [*]	K⊿
135THB*+H [*] ↔ 1235THB [*] + [*]	K⊿
CHE*+H [*] ↔ c-hexyl [*] + [*]	K₌
$1235THB*+H^* \leftrightarrow c-hexyl^* + *$	K₅
$1245THB^*+H^* \leftrightarrow c-hexyl^* + *$	K₅
$c-hexyl*+H^* \leftrightarrow CHA^* + *$	K
$CHA_{a} + * \leftrightarrow CHA^{*}$	K

$$r = c_t \cdot (k_{des,CHA} \cdot \theta_{CHA} - k_{ads,CHA} \cdot p_{CHA} \cdot \theta_{CHA})$$

Dominant path with rate determining step

HA

$$r = \frac{c_t \cdot k_{j(RDS)} \cdot (\prod_{i=1}^{i=j-1} K_i) \cdot K_B \cdot p_B \cdot K_{H2}^j \cdot p_{H2}^{\frac{j}{2}}}{(1 + K_B \cdot p_B + (K_{H2} \cdot p_{H2})^{\frac{1}{2}})^2}$$

- Introduction
- Methodology
- Results
- Conclusions

Results for the adsorption

Benzene adsorption

9.216×1013 molecules/cm2

1.638×10¹⁴ molecules/cm²

1 ML

2.457×10¹⁴ molecules/cm²

 $\theta \le 1$ ML: bridge30 and hollow-hcp0 $\theta > 1$ ML: tilted configuration

Hydrogen adsorption

Benzene and hydrogen co-adsorption

Hydrogenation conditions (450 K, >1 bar): 0.44ML < $\theta_{\rm H}$ < 0.89 ML surface hydrogen

Results for the surface reactions

Electronic barriers for surface reactions

Hollow species

Thermodynamics & kinetics

Coverage dependent kinetics

Dominant path evolution of kinetics with coverage, 0.11 ML $\leq \theta \leq 0.44$ ML

Coverage dependent kinetics

- Introduction
- Objective
- Methodology
- Results
- Conclusions

Conclusions

Benzene adsorption on Pd(111):

- Flat up to 1 ML
- Tilted above 1 ML
- 0.67 ML preferred at reaction conditions

Co-adsorption on Pd(111):

conditions, with 0.67 ML of benzene

Hydrogen adsorption on Pd(111):

- Surface hollow sites up to ML
- Combination with subsurface above 1 ML
- 1 ML preferred at reaction conditions

Ab initio based micro-kinetics:

- Potential dominant path and rate determining step (upper path and first reaction resp.)
- Inclusion of coverage effects:
 - Decrease activation energies
 - Increase pre-exponential factor
 - Affect the mobility of hydrogen, which also impact on the kinetics

 $0.44ML < \theta_{H} < 0.89$ ML surface hydrogen at reaction

- Simulation of micro-kinetics shows much higher activities at high coverage
- Inclusion of hydrogen coverage effects improve the description of the reaction network

Thank you for your attention

Glossary

- Catalyst descriptor: Characteristic for a given catalyst that can
- be correlated with kinetic and thermodynamic properties
- **DFT**: Density Functional Theory
- Dimer method: force-based transition state search algorithm
- **GGA**: generalized gradient approximation (within DFT theory)
- MEP: Minimum Energy Path
- **NEB**: Nudged Elastic Band method for the calculation of MEPs
- **PAW**: Plane Augmented Waves (periodic calculation technique)
- **PES:** Potential energy surface
- PW91: Perdew-Wang type of DFT functional
- **VASP:** Vienna Ab initio Simulation Package
- **ZPE**: Zero point energy