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Abstract—This paper explores different memory systems by
investigating the trade-offs involved with choosing one memory
system over another on an FPGA. As an example, we use a
Sobel edge detector to look at the trade-offs for different memory
components. We demonstrate how each type of memory affects
I/O performance and area. By exploiting these trade-offs in
performance and area a designer should be able to find an
optimum on-chip memory system for a given application.

I. INTRODUCTION

Hardware designers enjoy exponential gains in computation
speed, compared to software designers, by taking advantage
of the highly parallel nature of their architecture. They have
the freedom to utilize their hardware in any way they choose,
but this makes the size of their problem space much larger.
Software designers only need to optimize their design on one
particular fixed architecture, thus simplifying the number of
considerations they need to make. Therefore, hardware design-
ers have both great opportunities and great challenges when
it comes to designing an application to run on much more
flexible field programmable gate array (FPGA) architectures.

We claim that much of the design effort should be focused
on the memory system for FPGAs since they can be a major
bottleneck in system performance. Hardware compilers should
be able to take advantage of the flexibility of FPGAs to
configure their memory system efficiently, but to do this they
will have to balance the various performance metrics for the
different memory components available on the FPGA chip.
This paper explores several memory systems to show the
trade-offs of using one memory component over another. By
exploiting these trade-offs a designer can find the optimum
on-chip memory system for a given application.

II. MEMORY SYSTEM METRICS

There are three important metrics when it comes to memory:
bandwidth, latency, and size. In terms of I/O performance the
two critical components are bandwidth and latency [1]. Using
a traditional pipeline analogy, bandwidth would be the size
(flow rate) of the pipe or the number of pipes used. Latency
can be described as the length of the pipe(s). The longer the
pipe, the longer it takes for the data to reach its destination

and the slower the overall system. Obviously, the closer the
source is to its destination the shorter the pipeline length. If
items can be stored near their destination, then they will not
need to be retrieved further upstream which reduces the overall
execution time. This also adds size as an important metric
in terms of I/O performance. Since the size of the memory
located closest to the functional units is limited, new values
will have to be stored/retrieved from a larger external memory.
If there is insufficient space in the memory, then old values will
have to be replaced. A well designed memory system should
only replace those values that are no longer needed in order
to prevent having to retrieve the same value again. Therefore,
the goal should be to minimize (or eliminate) multiple calls
to external memory for the same value to reduce the overall
execution time.

Memory systems in FPGAs have many of the same com-
ponents as memory systems for traditional Von Neumann
processor architectures. The difference between the two is that
FPGAs can be reconfigured and optimized for an individual
application. Components can also be configured so that each
element stored can be accessed in parallel rather than se-
quentially. Besides bandwidth, latency, and size, consideration
should also be given to how the selected memory system will
affect the footprint of the design. There are typically three
different types of memory available: registers, block memory
(RAM), and external memory. Each type has its own benefits
and drawbacks, as seen in Table I.

TABLE I
PROPOSED TAXONOMY OF FPGA MEMORY TRADE-OFFS.

Type Latency Bandwidth Size Area

registers ++ ++ ± – –
block memory + + ± +
external memory – – – ++ ++

± Depends on FPGA architecture selected

III. EXPLORATION OF MEMORY SYSTEMS

With these metrics in mind, we have evaluated four different
memory designs shown in Table I. We did this exploration
using the Sobel edge detector because it offers a number of
opportunities for data reuse, prefetching, and parallel access.
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TABLE II
TABLE OF SYNTHESIS RESULTS FOR EACH DESIGN.

Design Frequency Cycles1 Time1,2 Area1,3 Registers1 RAM1,4 Accesses1,5 Bandwidth1,6

1 142.82 MHz 810,275 5.67 ms 187 91 0 bits 808,992 142.93 B/s
2 41.31 MHz 102,403 2.48 ms 19,079 8,386 0 bits 102,400 41.29 B/s
3 123.20 MHz 104,000 0.84 ms 459 252 7,584 bits 102,400 121.30 B/s
4 134.73 MHz 103,683 0.77 ms 492 260 5,056 bits 102,400 133.06 B/s

1. Values when used with a 320× 320 pixel, 8-bit encoded bitmap input image
2. Execution time = cycles/frequency
3. The total number of logic elements utilized by the design
4. Bits of on-chip RAM memory blocks utilized
5. Number of accesses to external memory made by the design
6. Required external memory bandwidth =

`
memory accesses · (bytes/access)

´
/time

The Sobel edge detector example is also similar to a number
of other applications that use windowing operations, such as
a FIR filter and wavelet transforms [2]. Sobel edge detectors
are used in image processing to identify and isolate areas on
an image with strong intensity changes from one pixel to the
next.

The four designs summarized in Table II each have a
different type of memory system. The first design uses only
external memory with no data reuse. It has a limited number of
registers that are used to cache values read from memory. This
design has the smallest footprint, fastest clock speed, largest
required bandwidth, and the greatest number of required clock
cycles. Its limited storage capacity means it must call external
memory multiple times for the same value, which is why
the design requires 8 times more clock cycles than the other
designs. The second design is composed of a large number
of registers so that values can be stored and reused. This
design has by far the largest footprint, slowest clock speed,
smallest required bandwidth, and also the fewest number of
clock cycles. The third design uses only block memory where
values are shifted into place. The design has a moderate
footprint, clock speed, and bandwidth with an average number
of required clock cycles. The fourth design is a combination of
9 shift registers and two memory blocks where values are also
shifted into place. This design is much like the third design,
but with a faster clock speed, fewer clock cycles, and smaller
block ram utilization.

After simulating each design, we verified that it produces
the same output images as the C code which we based our
designs on [3] and synthesized it using Altera’s Quartus II
Version 8.0 targeting a Stratix EP1S25F1020C5 board. The
results are shown in Table II.

IV. CONCLUSIONS AND FUTURE WORK

The fourth design which is a combination of registers and
block memory worked best because it had the shortest pipeline
and most efficient memory utilization. It contains a type of
‘smart’ buffer that shifts values into the sliding window, with-
out having to read values in from memory multiple times. We
believe this design could be used with a high-level compiler
and is an improvement over the memory systems developed
in [2], [4].

Our exploration of different memory systems for a Sobel
edge detector has helped us to develop a memory taxonomy
where trade-offs exist in the different types of memory avail-
able as shown in Table I and Table II. Many of these trade-
offs are due to the location and density of the components.
Registers are distributed evenly across the area of the FPGA
so building a large memory block from registers means longer
path lengths in order to connect them together. Memory blocks
have a tighter density but longer latency and less bandwidth
than registers. They also have fixed locations so functional
units must be built close by in order to reduce the path
length between them. If there is insufficient space around these
fixed memories, functional units must be placed farther away,
leading to longer path lengths and routing congestion. It is
only by exploiting these trade-offs that a designer can find the
optimum on-chip memory system for a given application.

For a Sobel edge detector, we found that combining registers
with block memory works best. For any other application, a
similar exploration may result in a different memory system
which is best suited for it. Further study into more applications
should give us enough information to construct a basic set of
memory templates that can be used with a high-level compiler,
which is the goal of our future work.
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