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Abstract. In this article we describe how to expand a partially dynamic reconfig-
urable pattern matcher for regular expressions presented in previous work by Di-
vyasree and Rajashekar [2]. The resulting, extended, pattern matcher is fully dy-
namically reconfigurable. First, the design is adapted for use with parameterisable
configurations, a method for Dynamic Circuit Specialization. Using parameteris-
able configurations allows us to achieve the same area gains as the hand crafted
reconfigurable design, with the benefit that parameterisable configurations can be
applied automatically. This results in a design that is more easily adaptable to spe-
cific applications and allows for an easier design exploration. Additionally, the pa-
rameterisable configuration implementation is also generated automatically, which
greatly reduces the design overhead of using dynamic reconfiguration. Secondly,
we propose a number of expansions to the original design to overcome several
limitations in the original design that constrain the dynamic reconfigurability of
the pattern matcher. We propose two different solutions to dynamically change the
character that is matched in a certain block. The resulting pattern matcher, after
these changes, is fully dynamically reconfigurable, all aspects of the implemented
regular expression can be changed at run-time.

Keywords. Regular Expression Matching, FPGA, Run-Time reconfiguration,
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Introduction

Regular expressions are widely used in the domain of Computer Sciences. They describe
patterns in a confined and standardized way. Table 1 shows an example syntax. Applica-
tions that use regular expressions range from scripting languages (eg. PHP) to Network
Intrusion Detection Systems (NIDS) such as Snort [1]. Regular expression matching is
a computationally intensive problem. Furthermore, the patterns that have to be matched
can vary frequently. Because of this need for flexibility, pattern matching is usually done
in software, which, in general, is flexible enough to be able to quickly change the regular
expressions that are being matched. Snort [1] is such a pure software-based NIDS and
is widely used. The payload of network packets has to be matched with a database of
regular expressions. Based on this matching, malicious packets will be dropped. As net-
work rates are increasing to higher data-rates, so is the need for high performance sys-
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tems. However the inherent sequential nature of software limits the performance of such
a regular expression matcher, especially for large sets of expressions. Hardware solutions
are inherently parallel and should be able to provide better performance. But network
security applications also require frequent updates of the regular expression database.
To support this, reconfigurable hardware like FPGAs can be used for to implement the
NIDS. The normal update process for FPGAs includes adapting the HDL to the current
requirements, synthesis, place and route (PAR) and the complete reconfiguration of the
FPGA. This whole process is called the toolflow for configuring FPGAs. This generation
process might take up to a few hours, especially for large sets of patterns. Having to de-
lay SNORT updates for a few hours can leave the system vulnerable. The solution pro-
posed in this article uses parameterisable configurations[3,4]. With this new technique,
an FPGA design can be made reconfigurable automatically. All NP-hard problems in the
FPGA toolflow are solved off line. Specializing the design is done at run-time by eval-
uating closed-form boolean function. Once these boolean functions are evaluated, spe-
cific parts of the FPGA are reconfigured. This process, evaluating the boolean functions
and reconfiguring parts of the FPGA, takes in the order of milliseconds, a much more
acceptable down-time.

Table 1. Supported regular expression syntax

Syntax Description
a All ASCII alphanumerics
^$*+?|()[{.-\ Metacharacter, each of these has a special meaning
. Dot: matches any character other than newline
\? Backslash combined with a metacharacter reduces it to its literal meaning
[abc] Character class, matches each character within brackets
[^abc] Reversed character class, matches any character other than these between brackets
[a-zA-E] Character class with range
RegExp1RegExp2 Concatenation: Regular expression 1 followed by regular expression 2.
RegExp1|RegExp2 Union: Regular expression 1 OR regular expression 2.
RegExp∗ Kleene Star: Matches zero or more occurrences of the regular expression
RegExp+ Plus: Matches one or more occurrences of the regular expression
RegExp? Question Mark: Matches zero or one occurrences of the regular expression
RegExp{M,N} Constraint Repetition. Matches between M and N occurrences of the regular expression
^RegExp Caret. Only matches the regular expression at the beginning of the string.
RegExp$ Dollar. Only matches the regular expression at the end of the string.

Flags Description
i Case sensitivity
s Dot (.) matches any character, including new line
m ^ en $ match at each newline

1. Parameterisable Configurations

The technique of parameterisable configurations is a state-of-the-art method for design-
ing dynamic reconfigurable hardware for Dynamic Circuit Specialization on the Register
Transfer Level (RTL) [5]. In this technique, we take the slowly varying inputs, called
the parameters, and specialize the circuit for actual parameter values. Such a specialized
circuit is both smaller and faster than the original generic circuit [3,4,6]. If a parameter
value changes, a new specialized circuit is generated on line for that specific value.

For an in depth explanation of the parameterisable configuration technique, we refer
to [4]. We limit ourselves here to the fact that the FPGA toolflow is adapted to make use



of this technique. We start with a normal VHDL description, in which the parameters
are selected using annotations. These parameters are a set of slowly varying inputs to
the original VHDL design. Next, the adapted FPGA toolflow generates both a master
configuration (independent of the parameters) and a method for specializing the circuit
for actual parameter values. In the current proposal, we will only change the truth tables
of certain LUTs, the routing and placement stay fixed. Hence, the master configuration
contains the place and route information for all the LUTs in the circuit. To specialize a
circuit for a specific parameter value, we change the truth tables of some of the LUTs in
the master configuration. The new truth table values are calculated on line and are based
on evaluating closed-form boolean expressions, something that can be done very quickly.

It is important to realize that the only decision the designer has to make is the selec-
tion of the parameters, everything else is generated automatically by the toolflow. Since
in the case of a NIDS, such as SNORT, choosing the parameters is straightforward, the
design cost of using Dynamic Circuit Specialization is very low. And, as we will show
later, it succeeds in getting similar results as hand-optimized run-time-reconfigurable
designs.

2. Previous work

Most of the work done on implementing regular expressions in hardware requires the
complete regeneration of the hardware when the regular expression changes. These de-
signs aren’t suitable for applications where fast dynamic reconfiguration is required.
However there are a few exceptions that allow some form of run-time reconfiguration.

The first approach is the ASIC implementation of Brodie et al. [7]. The second is the
micro controller implementation of Baker et al. on FPGA [8]. Both of these implemen-
tations use memory to describe the regular expressions. Overwriting this memory can be
used to change these regular expressions at run-time. However, both of these solutions
feature a more sequential implementations. Our interest is in developing a massively
parallel regular expression matcher.

Figure 1. Structure of a basic block

Lastly Divyasree and Rajashekar propose a pattern matcher built by cascading
generic blocks [2]. This pattern matcher has a limited run-time reconfigurability, which
we will discuss in more detail later. The generic blocks are able to implement regular ex-
pressions and are dynamically reconfigurable to a certain, limited, degree. These generic
blocks will be used as the starting point for our contribution, so we will discuss them in
detail.



Figure 2. Structure of a full generic block

Figure 2 shows the structure of one such generic block. This block is capable of
matching one character and applying regular expression operators to it, such as ’*’, ’+’
and ’?’. The basic block featured here is shown in more detail in Figure 1. This basic
block gives a latched match signal when the matching character is detected by the global
decoder. Using the counter and decoder the constrained repetition functionality is im-
plemented. This allows the generic block to match, for example, ’a{5,10}’. This expres-
sion matches if ’a’ is repeated between 5 and 10 times. One of the most important fea-
tures of this generic block however is that all these regular expression operators can also
be applied to cascades of generic blocks. This means that, for example, ’(ab*c?){2,7}’
can also be matched. Figure 3 shows how these generic blocks need to be connected to
implement this functionality.

Table 3. Syntaxes supported by Generic Block
Simplified

ab a/b a* a+ a?
a{N},a{N,},

Generic Block a{,M},a{N,M}
Generic Block G1G2 G1/G2 G1* G1+ G1?

G1{N},G1{N,},
G1{,M},G1{N,M}

G1,G2 are ’single level groups’ formed by a cascade of single characters of the form a,a/,a*,a+ or a?
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Figure 9. (a) Generic block (b) Cascading Generic Blocks

spectively of the following block. The GrpL Out signals
are routed in the reverse direction, ie. the GrpL Out of a
generic block goes to the GrpL In of the generic block pre-
ceding it, as shown in figure 9b. This is because in the case
of syntaxes on a regular expression, a generic block requires
the MUX OPa output of the following blocks to re-activate
itself (implemented by its OR GRPL). The NFA architec-
ture demands that the prefix signals to all the generic blocks
except the first one in the cascade be initialized to ’0’ be-
fore matching starts. The correct configuration of SRL16s
in the generic blocks avoids instability arising due to the
combinational feedback loop formed by MUXes MUX IPb,
MUX OPa and MUX GRPL.
Optimization: The array structure of the architecture de-
mands optimized implementation of the generic block. The
4-1 MUX, MUX IPa, needs a 6-input LUT for implemen-
tation, which would be realized using four 4-input LUTs in
Virtex2Pro. Our implementation achieves this function us-
ing a single 4-input LUT as a reconfigurable SRL16. The
16-bit content of the SRL16 that is written during recon-
figuration corresponds to the MUX functionality for the re-
quired value of select lines. A further optimization to avoid
the OR gates preceding the MUX IPa from occupying ad-
ditional LUTs is done by absorbing the OR gates into the
SRL16, since the whole structure has only four independent
inputs, as illustrated by the dotted box in figure 7. This op-
timization merely changes the bit stream to be programmed
into the SRL16 for different values of select signals.

The count decoder structure to realize the supported CR
syntaxes on an 8-bit counter output is shown in figure 10.
Exact match {N} uses LUT#1 and LUT#2 while the rest
are configured to read zero. The {N,} and {,M} syntaxes

use LUT#3, LUT#4 and LUT#5 only. The {N,M} syntax
utilizes a maximum of five LUTs. The LUTs in the count
decoder act as 4-bit decoders and can be configured to per-
form exact matches or range matches. The exact match uses
a LUT configuration with a single ’1’ at the address loca-
tion equal to the 4-bit number to be matched. The range
match uses a configuration with ’1’s at the addresses in the
required range, and ’0’s at other address locations. The ta-
ble in figure 10 shows details of {57,171} match. This range
is divided into three sub-ranges to suit implementation us-
ing 4-input LUTs. The Range1 is implemented by an exact
match for the most-significant nibble in LUT#1 configured
with ”0011” and a range match for the least-significant nib-
ble in LUT#2 configured in the range ”1001-1111”. The
LUT#1 and LUT#2 outputs are ANDed using the MUXCYs
of the carry chain of Virtex2Pro slice. Similarly Range3 is
implemented in LUT#3, LUT#4 and 2 MUXCYs. Range2
uses only a range match for the most-significant nibble in
LUT#5 configured in the range ”0100-1001”. The sub-
range formation for lesser cases, {N,} and {,M} can be de-
duced similarly. The Cnt Dec Out signal is the OR of all the
three sub-range matches. The OR function is performed by
ORCYs of the carry chain of the Virtex2Pro slice to avoid
use of extra LUTs, fitting the count decoder in 21
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Figure 10. Count Decoder

The careful placement of various blocks using RLOC
(Relative Location) constraints during PAR and use of carry
chain structure, fitted the generic block in 12 slices. CR
block consisting of an 8-bit counter and count decoder con-
sumes 6 1

2 slices, which amounts to 54% of the generic
block. We thus propose two sets of generic blocks, one that
supports constrained repetitions and another that does not.
The two generic blocks can be used appropriately to im-
plement regular expressions with minimal resources while
continuing to support dynamic reconfiguration.
Dynamic Reconfiguration: The REE is interfaced to the
64-bit wide processor local bus (PLB). This enables 64 re-
configuration bits to be placed on the bus per cycle. Thus we
can reconfigure 64 SRL32s in parallel, since each SRL32
takes a single configuration bit per cycle. The total recon-
figuration time for 64 SRL32s is 32 clock cycles. A single

124

Figure 3. Cascade of generic blocks

The architecture of the full regular expression matcher from [2] also features a global
decoder that decodes an 8-bit character to one of the 256 bit lines. How these bit lines
are connected determines which characters are matched in the generic blocks.

2.1. Limitations

The proposed architecture for a dynamic pattern matcher by Divyasree and Rajashekar
has some serious limitations and shortcomings if we need a fully dynamic pattern



matcher. In the next section we will describe our proposed solutions to overcome these
limitations.

1. First of all the proposed implementation is optimized by designing on a low level.
When small changes have to be made, these changes also have to be made on this
low level, thus greatly increasing the design cost. For example, Divyasree and
Rajashekar describe in [2] how they optimized the counter and the decoder. They
first designed the counter and decoder on the LUT level, to make sure a mini-
mal amount of LUTs are used. Next, for the placement they add relative design
constraints on the location of these LUTs, to guarantee optimized placement. If,
for example, we have a regular expression application that needs a larger counter
range, all this work needs to be redone.

2. Secondly, dynamic character changes are not possible. For example the regular
expression a + b ∗ c? can be changed dynamically to a ∗ b{5}c+, but not to
d∗ b{5}c+. This problem is a result of the used architecture: a global decoder re-
ceives the incoming character and sends a one-bit matching signal to each generic
block that matches that character. The routing in the design is fixed and the de-
coder is static. A character change on a generic block thus requires the rerun of
the router.

3. The last limitation involves the use of character classes, special characters and
flags. These functionalities are possible with the proposed architecture but they
are not dynamically adaptable.

3. Our Proposed Solutions and Results

To overcome the limitations described in Section 2.1, we have re-implemented the design
of [2] using our parameterizable configuration tool flow. This increases the abstraction
level of the design and makes the design process faster and easier while allowing easy
design space exploration (Section 3.1). To remedy the limits in character sets supported,
we propose extensions to either the generic block or the global decoder (Section 3.2).

3.1. RTL implementation

With the use of parametrisable configurations the design can be done on the RT level,
without having to optimise anything by hand. For example, in the solution described by
[2], certain design constraint have to be added to the VHDL code to guarantee optimised
placement. This is not the case in our design. Additionally, in [2], they have to determine
by hand how the LUT truth tables will have to change. Changing some small design
detail, such as the counter width, can force the designers to redo all this work. This is
also done automatically by the parametrisable configurations toolflow.

Our approach thus, results in a more efficient development of generic blocks and
also allows for an easier design exploration. Now, the designer can more easily optimize
the blocks for specific regular expression applications. To show that our approach is not
only faster and easier but also finds similar results, we have made an implementation with
the same general assumptions as in [2]. This means we used the same counter length and
use SNORT [1] as the targeted application when faced with design choices. However, in



our design, it is very easy to change these assumptions and still obtain optimized results
without much effort.

To be clear, we implemented a fully reconfigurable pattern matcher on a Xilinx
Virtex II Pro XC2VP30 FF896. All the numbers below are results from our experiments
on this design.

Our experiments have shown that using parameterizable configurations to design
the generic block results in a circuit with the same area size as the manually optimized
design (see Table 2). These results are based on correctly working generic block imple-
mentations on a Virtex II Pro FPGA. Given the clear advantages of parameterisable con-
figurations, every approach suggested in this paper uses parameterisable configurations
wherever this is possible.

Table 2. The resource usage of the different generic block implementations

Unoptimized Hand optimized Parameterisable configurations

LUTs 48 24 24

The overhead introduced by parameterisable configuration, the specialisation over-
head, can be split up in two parts. The time needed to calculate the new values, called
the evaluation overhead, and the time needed to reconfigure the FPGA with these new
values, called the reconfiguration overhead.

The following measurements were taken from the Virtex II Pro implementation. The
specialisation overhead for one generic block is 26,75 µseconds. The evaluation over-
head is 24,26 µseconds and the reconfiguration overhead is 2,49 µseconds. The reconfig-
uration of several generic blocks can be done in parallel. This means that the reconfigura-
tion overhead will increase much slower than linear with additional generic blocks. The
evaluation time is linear with the amount of generic blocks that need to be reconfigured.

3.2. Dynamic character changes

To support dynamic character changes, two methods are proposed. The first one extends
the current generic block (Section 3.2.1) by adding extra logic. The second solution is
memory-based and modifies the global decoder (Section 3.2.2).

In most cases the second approach is preferable, since it has a fixed cost, regard-
less of the number of special characters or character classes the application requires. In
some cases, for example, when implementing only a single regular expression or when
there are not enough BRAM available on the FPGA, the first approach could be more
efficient. The first approach only adds to the LUT cost of the generic block, whereas the
second approach requires the usage of either BRAMs, or a large number of LUTs, used
as distributed RAM.

3.2.1. LUT-based implementation

In the first approach, we omit the global decoder and extend the generic block. Each
generic block now receives 8 character bits instead of one bit. This means each extended
generic block has its own character decoding block. There are several options for the
complexity and size of this block.



We start with a character decoding block that only matches single characters. Using
parameterisable configurations, with the character input as the parameter, the size of this
block is reduced from 6 to 3 LUTs. These are results from our actual implementation on
a Virtex II Pro FPGA. However, this block has some limitations: there is no support for
special characters and character classes.

To add special characters and character classes extra area is needed. Each extra spe-
cial character and character class requires a character decoder block with extra LUTs. In
this case however, case-sensitivity (/i) and negation (∼) can be added without an extra
LUT cost. In Table 3 we show an overview of the number of LUTs needed for special
characters and for character classes. This table shows the cost of implementing the stan-
dard 3-LUT character decoder, with the addition of the special characters and character
classes listed. The most flexible implementation would require 14 LUTs.

Table 3. The total resource usage (in LUTs) of the different character decoding blocks

Notation Description LUT cost, after applying parameterisable configurations

/d, [0-9] Numbers 5
/s Whitspace 6

[A− Z] Capital letters 6
[a− z] Lower-case letters 6

/w Combines the previous three 10
A combination of all 4 groupings 14

With this extension, each generic block can be configured to match any character, a
special character, a character class or a combination of one or more. The set of possible
character classes and special characters is limited but can be tuned for specific appli-
cations. As shown above, adding the basic character decoder functionality, will cost 3
additional LUTs. This 3-LUT solution includes normal characters, case sensitivity (/i),
matching any character /s and negation (∼). Including a small set of character classes
would require extra LUTs, as shown in Table 3, but this increases the flexibility of this
solution significantly.

3.2.2. RAM-based implementation

In the second approach we keep the generic block and extend the decoder to provide
dynamic character changes. This extended design is RAM-based. Basically, this decoder
is a very wide RAM memory that takes the character inputs as its address and outputs a
match signal to all the generic blocks that need to be activated.

When a new character is read, the global decoder will activate the match inputs of
all generic blocks that should match the character. It does this by reading the appropriate
outputs from the RAM memory. For each 8-bit character a string of bit values is stored,
one bit value for each generic block. These bit values are stored in a RAM memory,
so they can be changed when a generic block needs to match a different character or
character class. This change only involves writing the corrected bit values to the RAM
memory and can be done easily.

On an FPGA there are several ways to implement this RAM-memory. One option
is using LUTs as distributed RAM, another is using the available Block RAMs. For the
distributed RAM implementation we use the method Xilinx tools provides us, this results



in 21 LUTs, used as RAMs, per generic block. For the BRAM implementation, we need
256 bits per generic block. With a quick calculation we can see that the BRAM to LUT
ratio of most Xilinx Virtex and Spartan 6 FPGAs is high enough to allow us to implement
the BRAM based design. One normal generic block requires 24 LUTs, and for each
generic block 256 BRAM bits are needed, resulting in a need for 10.66 BRAM bits per
LUT for the FPGAs.

One of the main advantages of this solution over the previous one is that it allows the
implementation of dynamic character reconfiguration without adding to the LUT-area
cost of the design. This means a larger number of generic blocks can be implemented
on the FPGA. Another big advantage is the flexibility of this approach. There is no need
to analyse the exact application, as all special characters and character classes can be
implemented without adding any logic. Off course, as soon as there is a limit to the
number of BRAMs available or if there is no need to implement a large number of generic
blocks, it could be better to use the first solution.

4. Conclusion

We have shown that the parameterisable configurations technique can achieve the same
specialised circuits as hand crafted specialised circuits, but with a much lower design
overhead. Additionally we extended and optimized a previous, partially reconfigurable,
pattern matcher design. This results in a fully dynamic pattern matcher for regular ex-
pressions.

With these features this regular expression matcher should be seen as a run-time re-
configurable platform that can implement any regular expression and can switch between
implemented regular expressions in milliseconds. There are still limitations: the regular
expressions must have less characters than the total amount of available generic blocks
and the structure is such that only single level groupings are possible.
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