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Abstract—This paper presents an improvement of the state-
of-the-art polynomial chaos (PC) modeling of high-speed in-
terconnects with parameter uncertainties via SPICE-like tools.
While the previous model, due to its mathematical formulation,
was limited to lossless lines, the introduction of modified classes
of polynomials yields a formulation that allows to account
for lossess and dispersion as well. Thanks to this, the new
implementation can also take full advantage of the combination
of the PC technique with macromodels that accurately describe
the interconnect properties. An application example, i.e. the
stochastic analysis of an on-chip line, validates and demonstrates
the improved method.

Index Terms—Circuit modeling, circuit simulation, polynomial
chaos, stochastic analysis, tolerance analysis, transmission lines,
uncertainty.

I. INTRODUCTION

Due to the growing demand for high computing power
and large scale integration, on-chip interconnects are packed
at very high densities and the assessment of signal integrity
during the early design phase is becoming of major concern.
On top of that, the reduced device size is making manu-
facturing tolerances hard to control, thus also representing
a challenge for accurate estimations. A statistical analysis
is often preferred, rather than trying to predict deterministic
values.

However, an accurate prediction of on-chip interconnect
properties with respect to physical parameters is too time-
consuming for a brute-force Monte Carlo (MC) analysis. The
combination with a macromodeling approach made the MC
analysis feasible for a single line [1], but generalization to
multicondutctor lines is not straightforward.

To overcome the limitations of the MC method, a novel
methodology based on the so-called polynomial chaos (PC)
technique [2] was proposed in [3]. The PC approach applies
to multiconductor lines in frequency domain and is based
on the expansion of the random variables and governing
equations into series of polynomials. It allowed to efficiently
take inherent variations of the interconnect’s cross-section into
account.

In order to allow greater design flexibility and to provide
accurate time-domain results, an integration of PC into com-

mercial SPICE-like software was proposed in [4]. However,
owing to its mathematical formulation, the resulting system
was not symmetric and the implementation had to rely on
Branin’s equivalent for multiconductor lines [5], being there-
fore limited to lossless, dispersion-free lines.

In [6], combination of PC and macromodeling yielded a
powerful tool that provides an efficient stochastic analysis
together with a very accurate description of the interconnect
properties, also accounting for losses and dispersion. Never-
theless, due to Branin’s model limitations, it was not possible
to take full advantage of such macromodels in a SPICE-like
environment.

In this paper, we present a modified formulation of PC
yielding symmetric models that can be more efficiently im-
plemented in SPICE-like environments and also take lossess
and dispersion into account. The new implementation is based
on a proper re-definition of the polynomial bases used for the
PC expansion. The stochastic simulation of an on-chip line
with geometrical uncertainties concludes the paper, validating
the proposed methodology.

II. POLYNOMIAL CHAOS OVERVIEW

This section briefly recalls the application of the PC tech-
nique to distributed interconnects. For the sake of brevity, we
limit ourselves to the case of single lines with one Gaussian
random parameter. In [3], [6] and references therein, readers
can find further details about the advocated approach, as well
as for the extension to multiconductor lines and multiple
random variables.

The behavior of an interconnect depends on its geometrical
and material properties. When these are random, the response
becomes random itself. This inherent stochasticity can be
highlighted by making the above dependence explicit in the
governing Telegrapher’s equations:
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where £ is a generic random variable affecting the interconnect
properties, z is the direction of propagation, s is the Laplace
variable, Z and Y are the per-unit-length (p.u.l.) impedance
and admittance parameters, and V' and I are the voltage and
current along the line, respectively. It should be noted that the
introduction of ¢ does not affect the uniformity of the line.

To obtain statistical information, MC sampling of (1) is
possible, but it can become rather time-consuming even for
simple structures, due to the large number of samples that it
required to converge. According to the standard PC approach
[3], the stochastic p.u.l. parameters are expanded into series
of proper orthogonal polynomials {¢y}:
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where Z; and Y are coefficients that can be obtained with
a projection procedure. When dealing with Gaussian random
variables, {¢y} is represented by the probabilists’ Hermite
polynomials, the first four being ¢g = 1, ¢1 = &, o = £2—1,
¢3 = &3 — 3€. It can be proven that these polynomials are
orthogonal with respect to the following inner product:
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The introduction of similar expansions for the unknown
voltage and current variables, and subsequent Galerkin weight-
ing, allow to rewrite the stochastic problem (1) as an aug-
mented but deterministic one
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which is P+1 times larger and analogous to a multiconductor
problem where the new unknowns are the coefficients for the
voltage and current variables, collected into vectors V and L
The entries of the new p.u.l. matrices are given by
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Specifically, in the case of Hermite polynomials, analytical
expressions exist for both the numerator and the denominator

of (6), i.e.,
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where §;; denotes the Kronecker’s delta. It should be noted
that (7) holds when the arguments of the involved factorials
are integer and non-negative, being zero otherwise.

)

Hence, the construction of the augmented system (4) can
be automated and, given a model for random parameter
variations, the stochastic analysis can be performed through its
solution and the subsequent extraction of statistical informa-
tion from the PC expansions by means of analytical formulae
or numerical techniques. This solution generally turns out to
be much faster than computing a large number of MC samples.

III. SPICE IMPLEMENTATION

The numerical solution of lossy and dispersive multicon-
ductor transmission lines like (4) can be achieved in SPICE-
like solvers by means of the W-element, available in the
most advanced tools such as HSPICE or Agilent’s Advanced
Design System (ADS). However, the input p.u.l. matrices
are inherently assumed to be symmetric, which is obviously
always the case for physical lines (when reciprocal materials
are used).

Yet, according to the expression of coefficients (6), the
augmented p.u.l. matrices (5) turn out not to be symmetric.
Therefore, direct implementation of the augmented PC prob-
lem (4) cannot be achieved. In order to partially overcome
this limitation, in [4] a SPICE model for the augmented
problem was created by means of the Branin’s equivalent for
multiconductor transmission lines [5]. However, this approach
is based on the decomposition of the multiconductor structure
into lossless uncoupled single lines, and therefore it is not
suitable to manage lines with lossy and frequency-dependent
p-u.l. parameters. Furthermore, it requires the introduction of
a subcircuit with additional auxiliary nodes, thus also reducing
the efficiency.

Although in many practical situations losses can be ne-
glected, this is not the case for on-chip lines, where they play
a fundamental role due to presence of semiconductors and to
the very tiny conductor cross-section. To improve the design
accuracy, a better solution is then imperative.

I'V. INTRODUCTION OF A NEW POLYNOMIAL BASIS

A closer investigation of the classical mathematical frame-
work of PC theory [2] reveals that the choice of orthogonal
polynomials for the expansions breaks the symmetry. Indeed,
the asymmetry in (6) is due to the denominator (8), corre-
sponding to the non-unitary norm of the polynomials {¢y}.

However, it can be shown that the introduction of the
following normalized class of Hermite polynomials
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yields symmetric matrices. In fact, the corresponding coeffi-
cients vy ;; to be used in (5) now have a unitary denominator.
As a result, the first four orthonormal Hermite polynomials
are ¢ = 1. ¢} =& ¢ = 58— L. ¢ = 5 — 58
For example, the corresponding augmented impedance matrix
Z for a second-order expansion (P = 2) then becomes
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which is indeed symmetric, and a similar relation holds for
the admittance matrix Y.

Clearly, the normalization process does not affect the accu-
racy and the convergence properties of the PC expansions, as
the new polynomials are still orthogonal with respect to (3).

V. VALIDATION AND NUMERICAL RESULTS

The new augmented p.u.l. matrices being symmetric, they
can be supplied as tabulated frequency-dependent input data
for a W-element. The augmented problem (4) can be solved
with a circuit solution after a proper augmentation of the
line terminations. For example, for linear, deterministic RLGC
loads, this simply amounts to replicating the elements onto the
new line terminations. No replication is required for voltage
and current sources instead [3], [6].
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Fig. 1. Cross-section of the IEM on-chip line (not on scale).

To provide a validation example, the proposed methodology
is applied to the analysis of the inverted embedded microstrip
(IEM) line shown in Fig. 1. This kind of structure is becoming
increasingly used as on-chip interconnection. Nonetheless,
due to the presence of semiconductors, the behavior of its
p-u.l. parameters is hard to predict analytically. An accurate,
but slow, 2-D electromagnetic solver is then required. More-
over, owing to its tiny dimensions, the manufacturing process
(e.g., etching) introduces random and significant irregularities
in the conductor shape, that can be modeled as a trapezoid
with uncertain base width 3, as illustrated in Fig. 1.

To efficiently account for such variations, a parametric
frequency-dependent macromodel was built for the IEM
p-u.l. parameters [1], [6]. This minimized the calls to the
slow 2-D solver, providing however an accurate analytical
description of the behavior of the p.u.l. parameters as a
function of the frequency and of the uncertain parameter 5.

In the following, these macromodels are used to describe
random variations of the conductor shape and for the com-
putation of the pertinent PC expansions (2). The nominal
value of 3 is supposed to be 2 um, thus leading to a square
cross-section. Gaussian lo-variations of £10% with respect
to this nominal value are considered to model the uncertainty
introduced by the etching process. It should be noted that

positive and negative variations correspond to underetching
and overetching, respectively.

For the simulation, the line is supposed to be 1-mm long and
to be driven by a voltage source with a 1-{ internal resistance.
The far-end extremity is terminated by a capacitive 1-pF load.

A. Time-domain analysis
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Fig. 2. Time-domain far-end voltage. Solid black lines: mean value and +30
limits computed with MC; crosses and circles: mean value and 30 limits
obtained from the PC expansion; gray area: a sample of responses obtained
by means of the MC method.

A time-domain analysis is presented first. In this case, the
voltage source is a ramped step from 0 V to 1 V with a rise
time of 50 ps. Fig. 2 shows the voltage waveform produced
on the far-end termination. The solid black lines refer to the
average value and the £30 bounds estimated by means of
10000 MC simulations. Markers refer to the same statistical
information obtained by means of the PC approach, which are
in perfect agreement. Additionally, a subset of 100 samples of
the response (resulting in the gray area) are reported to provide
a qualitative idea of its spread. The impact of the variations
of the conductor cross-section is clearly established.
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Fig. 3. Probability density function of the far-end voltage at 145 ps.
As designers might be interested in more quantitative in-
formation, such as the maximum overshoot that is likely to
be expected, the computation of probability density functions
(PDFs) is required. This information can be extracted from the
PC expansions as well. Fig. 3 reports the comparison between



MC and PC in the computation of the PDF of the far-end
voltage at 145 ps, i.e., the point at which the largest overshoot
occurs (see Fig. 2). The comparison again reveals excellent
agreement between the two techniques.

For these simulations, MC samples of the p.u.l. parameters
as well as the corresponding PC augmented matrices have been
supplied to HSPICE as frequency-dependent tabulated data for
W-elements. The MC solution took 0.23 s for each sample,
thus leading to an overall simulation time of 38 min. The
solution of the augmented problem required 0.28 s instead.
Therefore, for this example, our new PC for general lossy,
dispersive lines yields a speed-up of 8200x.

B. Frequency-domain analysis
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Fig. 4. Magnitude of the far-end transfer function. Solid black lines: mean

value and +3¢ limits computed with MC; crosses and circles: mean value and
430 limits obtained from the PC expansion; gray area: a sample of responses
obtained by means of the MC method.

The voltage source is now replaced by a sine wave of
amplitude F(f). Fig. 4 shows the magnitude of the far-
end transfer function, defined as H(f) = V.(f)/E(f), with
VL(f) the voltage at the load. As for the previous analysis,
average value and 430 limits are provided together with a
reduced set of samples of the response.
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Fig. 5. Probability density function of the far-end transfer function at 7 GHz.

Fig. 5 additionally shows the PDF computed at 7 GHz, again
by means of 10000 MC simulations and PC. The accuracy of

the latter is confirmed also for this second analysis, for which
the simulation times are similar to those of the time-domain
example.

VI. CONCLUSIONS

This paper presents an improvement of the implementation
of an efficient stochastic modeling for high-speed lines in
commercial SPICE-like tools. The methodology is based on
the PC approach, i.e., on the expansion of random variables
into polynomial bases. It amounts to creating and solving an
augmented set of differential equations, similar to a multicon-
ductor transmission-line problem. However, the state-of-the-
art implementation was limited to lossless and non-dispersive
lines since, according to the general framework of PC theory,
the new augmented p.u.l. matrices were not symmetric.

In this paper it is shown that, thanks to a proper nor-
malization of the polynomial bases, the symmetry of the
p-u.l. matrices is preserved. This allows to solve the PC
problem by means of generic multiconductor transmission-
line models already available in many commercial SPICE-like
solvers, which are capable of handling losses and dispersion
as well. Moreover, a PC- and macromodeling-based variability
analysis can now be efficiently performed in a SPICE-like
environment.

The PC technique has been proven to provide accurate
results with respect to traditional approaches such as the MC
method, but with a remarkable reduction in computational
time. Integration of such a technique into standard commercial
software in industry provides designers a much larger flexibil-
ity as far as the complexity of the circuit configurations that
can be analyzed is concerned.

The strength of the methodology is validated through the
time- and frequency-domain analysis of an IEM on-chip
line with uncertain trace cross-section, for which losses and
dispersion cannot be neglected. For this example, a speed-up
of about 8000x is obtained.
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