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Abstract—The frequency dependency of signals plays a very
important role in Ultra Wideband (UWB) systems. Being able
to accurately model this frequency dependency can provide a
multitude of benefits, especially for UWB systems in medical
applications. The model, based on prolate spheroidal wave
functions (PSWFs), presented in this contribution improves
greatly upon the model relying on discrete prolate spheroidal
sequences that was previously presented by the authors: it offers
a much more compact representation, while retaining the same
robustness to noise. Furthermore, with the improved model, a
cascade of signals can be evaluated directly using the model
coefficients. All of these properties can be of use when analysing
UWB systems.

1 INTRODUCTION

Ultra Wideband (UWB) communication systems
play a very important role in the current movement
to ubiquitous computing. Its low power requirements
and high bandwidth makes it ideal for close range
communications where battery life is of the utmost
importance. Especially in medical applications it could
enable the permanent monitoring of patients without
the need for excessive wiring.

However, the advantages of UWB systems, being
high bandwidth and low power consumption, provide
various new challenges for the system design. An-
tenna design is tradiationally handled as a smallband
problem: apart from the return loss, all the frequency
dependency of all antenna parameters is ignored. In
the case of UWB systems, this assumption is no longer
valid, the frequency dependency of all parameters must
be taken into account, which greatly increases the
amount of data that needs to be handled during the
design phase. Furthermore, the low spectral density of
UWB systems means that great care needs to be taken
to prevent noise from disturbing the data. Any form of
representing UWB data should be able to handle, and
preferably reduce, the noise contribution.

In this paper we would like to propose a model for
the frequency depedency of UWB systems, based on
prolate spheroidal wave functions (PSWfs). It is an
improvement of the model presented by the authors
in [1], which modeled frequency dependency using
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discrete prolate spheroidal sequences (DPSSs), the
discrete counterpart of PSWFs. The model has a lot
of properties which help to overcome the difficulties
of UWB system design and analysis. In Section 2 we
will briefly present the theory behind the model. In
the following section, Section 3, the various properties
and advantages of the model are illustrated. Finally, in
Section 4, we present our conclusions.

2 PSWF-BASED MODEL

2.1 Prolate Spheroidal Wave Functions

The basic asumption of the model is that all UWB
data have a very short time response s(t), i.e they are
timelimited, but at the same time have a frequency
spectrum S(f) that is concentrated in a given region
[−B/2, B/2]. This means that the data can be effi-
ciently respresented as a series of prolate spheroidal
wave functions (PSWFs), as in [2],

S(f) =

∞∑

k=0

Akψk,c(f) (1)

where the coefficients Ak are obtained as follows:

Ak =

B/2∫

−B/2

S(f)ψk,c(f)df (2)

where ψk,c(f) is the PSWF of order k with a time-
bandwidth product c = 2t0B.

The PSWFs were found to be the solution to the
following maximisation problem over all timelimited
functions S(f) by Slepian et al. in [3]:

max

B/2∫
−B/2

|S(f)|2 df

∞∫
−∞
|S(f)|2 df

(3)

In other words, the zero-th order PSWF ψ0,c is the
timelimited funtion with the most energy in the fre-
quency interval [−B/2, B/2]. When (3) is evaluated
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over all timelimited functions S(f) orthogonal to ψ0,c,
we obtain the first order PSWF ψ1,c as a solution,
etc. This, combined with the fact that the ψk(f) are
complete and orthogonal over both frequency ranges
[−B/2, B/2] and [−∞,∞], makes them extremely
well suited to model UWB data.

2.2 Discrete Prolate Spheroidal Sequences

The DPSSs are the discrete version of the PSWFs:
instead of continuous functions, they are discrete se-
ries. Most of the properties of the PSWFs have a
discrete equivalent for the DPSSs. The most important
difference for our purpose is that DPSSs are defined on
a sample set of a certain length: the first order DPSS
of length 100 is not the same as the first order DPSS
of length 200. This means that a signal can only be
reconstructed on the same fixed sample points at which
it has been modeled, severy limiting the applications of
the model. The DPSSs, however, have the advantage
that their construction is much more straightforward
than that of the PSWFs.

3 MODEL PROPERTIES

In [1], DPSSs were used to model the frequency
dependency of a radiation pattern. While this model
performs well, the fact that DPSSs are discrete series
instead of continuous functions, such as the data we
are trying to model, make it a suboptimal solution.
By replacing the DPSSs by PSWFs, we will obtain a
model that offers a much more compact representation,
as demonstrated in Section 3.1, is just as good, if not
more, robust to noise, as shown in Section 3.2, and that
opens up new possibilities such as cascading different
system components, Section 3.3.

3.1 Compactness

To demonstrate the compactness of the model we
rely on measured data from the log-periodic antenna
presented in [4]. The radiation pattern was sampled
from 400 MHz to 20 GHz, resulting in a dataset of
801 samples. We will project this data onto DPSSs of
length 801 on the one hand and PSWFs on the other
hand. The coefficient series is truncated after 99.9% of
the signal energy is present in the coefficients.

Projecting the signal onto DPSSs results in 291
coefficients, as shown in Figure 1. We have included
some higher order coefficients, Figure 1 in black, to
demonstrate that the energy of these higher orders is
indeed very low. In Figure 2, the original signal and the
signal reconstructed from the DPSSs series is shown.
We can see that the reconstruction quite good, but not
perfect.
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Figure 1. DPSS coefficients of the radiation pattern
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Figure 2. Original signal and DPSS reconstruction

Projecting the signal onto PSWFs results in 171
coefficients, as shown in Figure 3. Just like before
we have included some higher order coefficients to
demonstrate that the energy contained in the higher
orders is indeed very low. In Figure 4, the original
signal and the PSWF-reconstruction is shown. It can
be easily verified that the reconstruction based on
the PSWF coefficients is much more accurate, despite
using only half the amount of modeling coefficients.

3.2 Robustness To Noise

In order to test the resistance of the model to noise,
we have added white noise to the radiation pattern from
Section 3.1. We obtained a filtered radiation pattern by
projecting the noisy radiation pattern onto the DPSSs
and PSWFs, respectively, and used the same amount of
coefficients as before. In Figure 5 the noisy and DPSS
filtered radiation pattern are shown. Figure 6 shows
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Figure 3. PSWF Coefficients of the radiation pattern
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Figure 4. Original signal and PSWF reconstruction

the noisy and PSWF filtered radiation pattern. It can
be seen that in both cases the filtered radiation pattern
is in good agreement with the original radiation pattern
and that the noise is considerably reduced. In the case
of the PSWF filtered radiation pattern, there is very
little noise left in the filtered data.

3.3 Cascade

As a final example, we will show that it is possible to
compute the output of a cascade of systems using only
their PSWF model coefficients. This is also possible
with DPSSs, but because of the fact that DPSSs are
dependent on their length, all parts of the cascade
would need to be sampled at exactly the same points
in the time and frequency domain, thereby greatly
reducing the amount of potential applications.

Let us consider the result Pout(f) of a cascade of a
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Figure 5. Noisy and DPSS filtered radiation pattern
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Figure 6. Noisy and PSWF filtered radiation pattern

pulse Pin(f) with a radiation pattern Htx(f):

Pout(f) = Htx(f)Pin(f) (4)

=

K∑

k=0

Akψk(f)

L∑

l=0

Bkψl(f) (5)

=

K,L∑

k,l=0

AkBlψk(f)ψl(f) (6)

=
∑

m

Cmψm(f) (7)

where Ak are the PSWF coefficients of Htx(f) and
Bk are the PSWF coefficients of Pin(f). Combining
(2) and (7) we get:

Cm =

B/2∫

−B/2

K,L∑

k,l=0

AkBlψk(f)ψl(f)ψm(f)df (8)
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Figure 7. Spectrum of a UWB compliant pulse

=

K,L∑

k,l=0

AkBl

B/2∫

−B/2

ψk(f)ψl(f)ψm(f)df (9)

=

K,L∑

k,l=0

AkBlQk,l,m (10)

where Qk,l,m =
B/2∫
−B/2

ψk(f)ψl(f)ψm(f) is a matrix

containing the cross products of the PSWFs. As this
matrix is independent from the input data and highly
symetrical, it can easily be precomputed. (10) allows
us to calculate the coefficients of the output pulse using
only the coefficients of the input pulse.

As an example we will evaluate the cascade of
the radiation pattern of the previous sections with the
spectrum of a UWB compliant pulse Pin(f), [5]:

Pin(f) = Acf
5 exp−f

2σ2

2
j (11)

where Ac is used to scale the pulse so that it fits the
UWB spectral mask and σ = 51 × 10−12. In Figure
7 the spectrum of the input pulse is shown. Figure
8 shows the output pulse Pout(f), both computed
conventionally and using the model. Both curves are in
very good agreement. In fact, the reconstruction error
is of the same magnitude as the largest reconstruction
error of the input data, meaning that the cascading
formula has a neglegible contribution to the overall
error.

4 CONCLUSION

In this paper an improved model for the frequency
dependency of UWB systems was presented. By pro-
jecting the data onto a weighted series of prolate
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Figure 8. Spectrum of the output pulse

spheroidal wave functions (PSWFs), we obtain a com-
pact representation that is very robust to noise. It
was shown that the model performs much better than
the projection on discrete prolate spheroidal sequences
(DPSSs), presented in [1]. We also showed that it is
possible to evaluate the cascade of multiple UWB sys-
tem components, using only their PSWF coefficients.
This greatly expands the amount of applications for
this model.
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