

FACULTY OF PSYCHOLOGY AND EDUCATIONAL SCIENCES

(日) (同) (三) (三)

Stability Based Testing for the Analysis of fMRI Data

Joke Durnez & Beatrijs Moerkerke

Department of Data Analysis, Ghent University, Belgium

7th International Conference on Multiple Comparison Procedures September 1, 2011

Joke Durnez & Beatrijs Moerkerke

Table of Contents

2 Method: Stability based testing

- 3 Simulated data
- 4 Real data
- 5 Conclusion
- 6 References

Joke Durnez & Beatrijs Moerkerke Stability Based Testing for the Analysis of fMRI Data

(日) (同) (三) (三)

functional Magnetic Resonance Imaging

- MRI: detects neurological structures/fluids/...
- functional: detects brain functions, eg. auditive

Joke Durnez & Beatrijs Moerkerke

functional Magnetic Resonance Imaging

- Inference: testing 200 000 voxels simultaneously
- Huge multiple testing problem

Joke Durnez & Beatrijs Moerkerke

Stability Based Testing for the Analysis of fMRI Data

< ロ > < 同 > < 回 > < 回 >

functional Magnetic Resonance Imaging

	Active (H_1)	Non active (H_0)
Significant		False positive
		(type error)
Non significant	False negative	
	(type error)	

- Inference: testing 200 000 voxels simultaneously
- Huge multiple testing problem

Joke Durnez & Beatrijs Moerkerke

Multiple Testing Corrections for fMRI

Control of the family-wise error rate (FWER)

Bonferroni

- Loss of power
- Spatial correlation
- Random Field Theory
 - Estimates the number of independent tests = resels
 - FWER on the number of clusters: $P(c > C | H_0) < .05$
 - Less strict than Bonferroni
 - Still very conservative
- General literature: different procedures accounting for correlation structures
- BUT: FWER conservative as a measure

Multiple Testing Corrections

Control of the false discovery rate (FDR)

- allow more type I errors
- FDR: the proportion of type I errors among all significant voxels
- Benjamini-Hochberg
 - Less conservative \rightarrow more power
 - HOWEVER
 - Power is only gained by increasing p-value threshold
 - Ranking of voxels remains the same

(日) (同) (三) (三)

Joke Durnez & Beatrijs Moerkerke

- Statistical significance \neq biological importance
 - lacksquare ightarrow balance type I and type II errors
- What about reproducibility of results?

Joke Durnez & Beatrijs Moerkerke

The relationship between type I and type II errors

- P(type | error) $\downarrow \Rightarrow$ P(type || error) \uparrow
- Consequences type | error:
 - Further research to false activation
 - False theories
- Consequences of type II error:
 - True activation is not detected
- Need for a better balance between type I and type II errors (Moerkerke & Goetghebeur, 2006; Lieberman & Cunningham, 2009)

Joke Durnez & Beatrijs Moerkerke

Validation of procedures

- Average performance with respect to error measures
- But also important: stability of test results
 - Stability is related to reproducibility of results
 - Stability eg. can be measured as the variance on the number of selected voxels
 - Largely unexplored
 - Choice of multiple testing method influences the stability
 - statistical genetics: FDR controllingprocedures tend to be less stable than FWER controlling procedures. (Qiu, Xiao, Gordon, & Yakovlev, 2006)

(日) (同) (三) (三)

Goal of the current research

- Develop a new selection mechanism that allows to weigh P(type I error) and P(type II error) in the selection mechanism.
- Take into account the stability of the voxels.

Gorden, Chen, Glazko and Yakovlev (2009)

- Resample gene arrays
- Generate 'new' datasets and apply selection criterion (eg. BH)
- New criterion: select only the genes that are selected in h% of the resamples
- h: selection percentage
 - h = c1/(c1+c2)
 - c1 = weight to type I errors
 - c2 = weight to type II errors
- Our goal: adapt this method to fMRI data

Joke Durnez & Beatrijs Moerkerke

New method: stability based testing

Step 1: Whitening the data

- Resampling assumes temporal independence
- fMRI data is autoregressive
- Whitening the data = removing temporal correlation

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

• Asuming AR(1) structure:

$$W \equiv V^{-1/2}$$

 $\tilde{X} = WX$
 $(X = designmatrix)$
 $\tilde{Y} = WY$
 $(Y = signal (after preprocessing))$

Joke Durnez & Beatrijs Moerkerke

New method: stability based testing

Step 2: GLM

Step 3: Generate new datasets

- Take a bootstrap sample of the errors
- Add them to the estimated activation
- $\blacksquare \Rightarrow \mathsf{new} \mathsf{ dataset}$

Joke Durnez & Beatrijs Moerkerke Stability Based Testing for the Analysis of fMRI Data

New method: stability based testing

Step 4: Activation detection

- Create 100 new datasets
- Test for activation in each dataset: significant or not?
- For each voxel: frequency of occurence H
- Threshold = predefined percentage h

Joke Durnez & Beatrijs Moerkerke

Simulated data

< ロ > < 同 > < 回 > < 回 >

Joke Durnez & Beatrijs Moerkerke

Simulated data: error rates

based on 100 bootstraps

Joke Durnez & Beatrijs Moerkerke

Simulated data:stability

UNIVERSITEIT GENT

(ロ) (部) (E) (E)

Joke Durnez & Beatrijs Moerkerke

Simulated data:stability

<ロ> (四) (四) (日) (日) (日)

Simulated data

Results

- ROC: Balance between sensitivity and specificity remains the same
- BH becomes more stable when the selection percentage is taken into account
- Role of h-value

Joke Durnez & Beatrijs Moerkerke

Real data

Meaning of stability on real data

- Stability based procedure involves bootstrapping
- Evaluation on real data: simulation \rightarrow bootstrapping
- $lacksymbol{\bullet}$ \Rightarrow 2 levels of bootstrapping: computationally too heavy
- For now:

Bootstrap used to give results with stability based testing

(日) (同) (三) (三)

Auditory dataset

- (Friston, 2007)
- Single subject blocked design: rest-auditory stimulation
- 64 x 64 x 64 voxels

Real data

Joke Durnez & Beatrijs Moerkerke Stability Based Testing for the Analysis of fMRI Data

Concluding remarks

 FDR control was less stable than FWER control, but stability was improved using stability based testing

・ 同 ト ・ ヨ ト ・ ヨ ト

- No change in balance between error rates
- h-threshold: relative costs of type I and type II errors
- Cluster-based methods: stability of clusters
- Bootstrapping procedure
 - Alternative procedures
 - Role of smoothing

- Friston, K. J. (2007). Topological inference. In K. J. Friston, J. T. Ashburner, S. J. Kiebel, T. E. Nichols, & W. D. Penny (Eds.), Statistical parametric mapping: The analysis of functional brain images (pp. 237–245). Academic Press.
- Gordon, A., Chen, L., Glazko, G., & Yakovlev, A. (2009). Balancing type one and two errors in multiple testing for differential expression of genes. *Computational Statistics and Data Analysis*, 53, 1622–1629.
- Lieberman, M. D., & Cunningham, W. A. (2009). Type i and type ii error concerns in fmri research; re-balancing the scale. *Social cognitive and affective neuroscience*, *4*, 423–428.
- Moerkerke, B., & Goetghebeur, E. (2006). Selecting 'significant' differentially expressed genes from the combined perspective of the null and the alternative. *Journal of computational biology*, *13*, 1513–1531.
- Qiu, X., Xiao, Y., Gordon, A., & Yakovlev, A. (2006). Assessing stability of gene selection in microarray data analysis. *bioinformatics*, 7(50).

(ロ) (同) (目) (日)