

MaB-flocs for a more

sustainable wastewater treatment

Sofie Van Den Hende^{a,b}, Han Vervaeren^a, Guy Maes^a, Nico Boon^b

^a EnBiChem Research Group, Howest University College West Flanders, Kortrijk, Belgium ^b Laboratory of Microbial Ecology and Technology, Ghent University, Gent, Belgium

Lowering the carbon footprint of wastewater treatment

Conventional activated sludge system High aeration rates and CO₂ emission by bacteria

Microalgal Bacterial (MaB) floc system O₂ produced *in situ* and CO₂ captured in biomass

Microalgae do not settle easily High cost of harvesting

MaB-flocs settle by gravity Bioflocculation of microalgae and activated sludge

Objective

To maximize the photosynthetic aeration and CO_2 mitigation of MaB-floc reactors for wastewater treatment, we investigated whether inorganic carbon could increase the algae:bacteria ratio in the flocs while keeping a good reactor performance and biomass separation.

Methods

Experiments were conducted in three illuminated sequencing batch reactors (SBR) with MaB-flocs fed with synthetic wastewater containing inorganic carbon compared to organic carbon (Table 1).

The reactors were operated in 2 cycles of 5 hours and one cycle of 14 hours per day (Fig. 1). No external oxygen was supplied. This experiment was performed in duplicate experiments.

Table 1. Influent carbon composition							
Reactor	C-bicarbonate (mg C L ⁻¹)	C-sucrose (mg C L ⁻¹)					
SBR-B	84	0					
SBR-BS	42	42					
SBR-S	0	84					

Results

Several differences were found in MaB-floc reactors fed with bicarbonate compared to sucrose.

Bicarbonate

- More chlorophyll *a* in flocs (Fig .2)
- Lower floc settleability
- Increasing pH: up to 9.5
- More filamentous cyanobacteria
- Higher effluent turbidity
- *MaB-floc SBR-B* Lower N removal (Table 2)

Figure 2. Chlorophyll a content of MaB-flocs fed with bicarbonate (B) and/or sucrose (S) in two experimental runs

Table 2. Process performance of SBRs with MaB-flocs fed with bicarbonate (B) and/or sucrose (S) in two experimental runs (mean +- standard deviation (measurements))

Run Reactor Daily

Daily removal

Removal efficiency

Sucrose

- Good floc settleability
- Neutral pH: around 7
- Lower dissolved oxygen but good soluble COD removal
- Lower effluent turbidity
- MaB-floc SBR-S Good N removal (Table 2)

		(mg L ⁻¹ reactor day ⁻¹)		(%)		(FTU)	
		SCOD*	N-NO3**	SCOD*	N-NO3**		
	SBR-B	-	3.3 ± 2.2 (4) ^g	-	11.1 ± 7.4 (4) ^g	8.6 ± 3.4 (9) ^g	
	SBR-BS	154 ± 5 (8) ^e	15.6 ± 4.3 (8) ^h	92 ± 3 (8) a	52.2 ± 14.4 (8) ^h	1.5 ± 1.2 (9) ^h	
	SBR-S	318 ± 6 (8) ^f	20.4 ± 5.0 (8) ⁱ	95 ± 2 (8) ^b	68.2 ± 16.7 (8) ⁱ	2.3 ± 1.6 (9) ⁱ	
I	SBR-B	-	5.8 ± 2.6 (5) ^g	-	19.7 ± 10.1 (5) ^g	10.9 ± 4.8 (7) ^g	
	SBR-BS	158 ± 7 (7) ^e	11.3 ± 1.6 (9) ^h	94 ± 4 (7) ^a	37.9 ± 5.2 (9) ^h	1.7 ± 1.2 (7) ^h	
	SBR-S	320 ± 7 (7) ^f	18.4 ± 6.8 (9) ⁱ	96 ± 2 (7) ^a	61.4 ± 22.6 (9) ⁱ	3.5 ± 2.2 (7) ⁱ	
* Soluble COD; shown where relevant, i.e. where organic carbon was fed to the reactor ** Only N-removal analyses before reactor washout were used							

Conclusions

- Inorganic carbon increases the photosynthetic micro-organisms content and potential of MaB-flocs.
- Organic carbon is of major importance for a good reactor performance, i.e. floc settleability and N-removal.

Ш

Photosynthetic oxygenation of COD (and thus CO₂ incorporation in algal biomass) is feasible.

More information:

<u>sofie.van.den.hende@howest.be</u>

www.howest.be

sofie.vandenhende@ugent.be

www.labmet.ugent.be