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Abstract: The application of a three-dimensional Vectorial Quantitative Microwave Tomography
(VQMT) algorithm to the challenging problem of 3D complex permittivity reconstruction in biolog-
ical tissues is investigated. In particular, a simulation study on breast cancer imaging is conducted,
using dipole excitations in various polarizations and positions in front of the breast at a single
frequency. The algorithm is an improved version of the regularized Gauss-Newton imaging method
recently presented by the authors. More specifically the application of a subspace preconditioned
LSQR algorithm to the Gauss-Newton update systems improves the computational efficiency of the
method and the incorporation of constraints and patient specific discretization of the permittivity
extend its flexibility and application range.
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1. Introduction

It has been pointed out that the electromagnetic properties (permittivity and conductivity) in
the microwave frequency range (300 MHz - 30 GHz) differentiate between tissue types and various
physiological and pathological parameters. This suggests quantitative 3D microwave imaging as a
moderately-cost, non-invasive and non-ionizing supplemental technology to existing modalities in
medical imaging. Such may be particularly the case with microwave breast cancer imaging, for
the breast is an accessible volume to microwaves and the contrast in dielectric properties between
malignant and normal tissues at these frequencies appears to be large.

Several types of 3D microwave imaging algorithms have been proposed for medical imaging in
general and for breast cancer detection in particular. Vectorial Quantitative Microwave Tomogra-
phy [1,2] (VQMT) attempts to determine the permittivity and conductivity values in each voxel of
the investigation domain, by solving the 3D non-linear vectorial inverse scattering equations. Con-
focal Microwave Imaging (CMI) [3] on the other hand uses an ultrawideband Synthetic Aperture
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Radar technique to reconstruct a qualitative image of the tumor and requires detailed informa-
tion on the frequency dependent mean dielectric properties of the breast tissues. Reconstructions
with the multi-view VQMT proposed in the present paper can be done at one single frequency
and thanks to its quantitative character the introduction of accurate a priori information on tissue
properties is not required.

A 3D regularized Gauss-Newton VQMT algorithm was presented by the authors in [2]. In
this paper we propose several improvements to this algorithm: (i) A further reduction of the
computational effort by a computationally more efficient and stable solution of the Gauss-Newton
permittivity updates by means of a preconditioned LSQR algorithm [4]. (ii) The possibility to
introduce a priori information in a flexible way, by allowing the inversion for pre-defined aggre-
gates of permittivity voxels, instead of for each voxel independently. (iii) The proposal of a new,
constrained line-search path in the Gauss-Newton optimization, which incorporates in an elegant
manner a priori knowledge concerning lower and upper bounds on the permittivity.

2. Problem Formulation

Consider a 3D complex permittivity profile ε(r, ω) in an investigation domain D (Fig. 1(a)).
Outside D, the permittivity is homogeneous and equal to εb. In the following, the dependency of
the permittivity on ω, the angular frequency, as well as the ejωt dependency of the electric fields
are implicitly assumed.

In order to reconstruct ε(r) (solving the inverse scattering problem), scattering data are collected
by successively illuminating the object with a number N I of different known time-harmonic incident
fields E

inc
i , with i = 1, . . . , N I, and by measuring for each illumination some components of the

resulting scattered electric field vector E
scat
i in a number of receiver points. The scattered field

for an illumination E
inc
i and a permittivity function ε can also be calculated by solving the vector

contrast-source integral equation [2]. Let L(ε) be the linear integral operator that links the scattered
field in the observation point r to the total electric field Ei in D,

E
scat
i (r) = [L(ε)Ei] (r), (1)

then the vector contrast-source integral equation or domain equation is given by

E
inc
i (r) = Ei(r) − [L(ε)Ei] (r), ∀r ∈ D. (2)

Simulation of the scattered field, or solving the forward scattering problem, thus involves the solution
of (2) for Ei(r) in D and the evaluation of the observation equation (1) in the observation points.

For the numerical inversion, the permittivity is parameterized on a uniform grid Dε with cell
size ∆ε and with N ε = F × G × H identical cubic cells in the x-, y- and z-directions, respectively
(Fig. 1(b)). The permittivity is approximated with a piecewise constant function

ε(r) ≈
N∑

n=1

εn εbΦn(r), (3)

where the expansion functions Φn have non-overlapping supports — consisting of one or more grid
cells, hence N ≤ N ε — that cover the complete grid Dε and they assume the value 1 inside their
support and are zero elsewhere. Some of the coefficients εn may be known a priori and the other,
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unknown, coefficients εν , with {ν} a subset of {n}, constitute the optimization variables. The
coefficients εν are collected in the Nopt- dimensional vector

ε
opt = [εν ], (4)

with Nopt ≤ N .
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Fig. 1. The 3D scattering configuration: (a) general notations and definitions and definitions for
the permittivity grid Dε and (b) the piecewise constant approximation for the permittivity

function.

3. VQMT Reconstruction Algorithm

The solution ε
opt
sol of the inverse scattering problem (1),(2) is redefined as the minimizer of the

following regularized least squares cost function

F
(
ε

opt
)

= FLS
(
ε

opt
) [

1 + αFR
(
ε

opt
)]

, (5)

where FLS is the least squares data error, FR is a smoothing function and α a regularization
parameter. The least squares data error is defined as

FLS(εopt) =
1

NLS
‖escat(εopt) − e

meas‖2, (6)

where e
meas and e

scat(εopt) are ND-dimensional vectors that contain, respectively, the measured
scattered field data for all used combinations of transmitters and receivers, and the corresponding
scattered field components computed for a given optimization vector ε

opt. NLS = ‖emeas‖2 is a
normalization constant.

The minimization is done by performing successive line searches along descent paths. In itera-
tion k, the line search path starts along the direction s

opt
k , which is solution to the Gauss-Newton

system (
J

H
k Jk + λ2

kΣ
)
s

opt
k = −

(
J

H
k

[
e

scat
k − e

meas
]
+ λ2

kΩ
∗

k

)
, (7)
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where .H stands for conjugate .∗ transpose .T , where

λ2
k =

αNLSFLS
k

1 + αFR
k

, (8)

and where the subscript k indicates quantities evaluated in ε
opt
k . Furthermore, J is the ND ×Nopt

Jacobian matrix, Jdν = ∂escat
d /∂εν ; Ω is an Nopt-dimensional vector that contains the derivatives

of the regularizing function, Ων = ∂FR/∂εν ; Σ is a real, constant matrix, Σνυ = ∂2FR/∂εν∂ (ευ)∗.
In order to improve the convergence of the optimization technique, it is recommended to include

a priori knowledge concerning the expected upper and lower bounds on the complex permittivity
in the breast, by means of constraints. Such constraints also avoid the complex permittivity values
from becoming non-physical or too high to handle with the chosen discretization ∆F

ε , in which case
the conditioning of the forward problem generally is very bad. We implemented the constraints by
using smooth line search paths that start along the update directions (7), but bend away from this
direction in the neighborhood of the constraints [5]. This allows for the introduction of constraints
with a minimum of changes in the unconstrained optimization code: only the line search has to be
modified.

Since their condition number can become unpleasantly high in the course of the iterations, the
solution of the systems (7) is done with the subspace preconditioned LSQR algorithm of Jacobsen,
et al. [4]. The key idea is a splitting of the solution space in two subspaces, one of which with a
small dimension and one with a larger dimension. The small subspace can be regarded as a coarse
grid approximation to the inverse scattering problem and the part of the solution vector in this
subspace contributes most to the left hand side of (7). The projection of the update system on the
larger subspace is better conditioned than the original problem and is solved iteratively, after which
the contribution in the smaller subspace is obtained through direct solution of a small system that
inherits the ill-conditioning of the original system.
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Fig. 2. The antenna configuration that is used in the numerical examples from two different view
angles. The arrows visualize the orientation of the elementary dipoles and the large black dots

indicate antennas that are both transmitter and receiver. The shaded cuboid is the investigation
domain D.
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4. Numerical Examples

We present reconstructions for two malignant breast numerical phantoms, one without and one
with a skin layer, surrounded with a matching medium with permittivity εb = 10ε0. The tumor
has a size of 2 cm and relative complex permittivity εtumor/ε0 = 49.93 − j14.43. It is embedded in
a homogeneous, averaged breast tissue with permittivity εbreast/ε0 = 9.99 − j2.82. The breast is
modelled as a hemisphere with radius 5 cm and for the phantom with skin is covered with a 2.5 mm
skin layer with permittivity εskin/ε0 = 40.94 − j16.17. The operating frequency is 1 GHz, yielding
a wavelength of λb = 9.5 cm in the matching medium. The antenna configuration is depicted in
Fig. 2. The investigation domain D, with dimensions 5 cm ×10 cm ×10 cm, is also indicated. The
data are simulated by solving the vector contrast-source integral equation and Gaussian noise is
added such that SNR = 30 dB.

The reconstruction of the breast without skin is performed on a grid with cell size 0.5 cm. The
result after 6 Gauss-Newton updates is shown in Fig. 3, where it can be seen that the permittivity
value of the tumor is not correct, but the tumor is clearly visible at the right location and with a
higher permittivity and conductivity than the surrounding breast tissue. Note that, considering the
limited aperture data and the small dimensions of the tumor with respect to the matching medium
wavelength, this result is quite satisfactory.

For the phantom with skin, the permittivity grid has a smaller cell size of 0.25 cm to allow
modelling of the skin layer. To retain an over-determined system, to use as much a priori information
as possible on this challenging reconstruction and to illustrate the possibilities of the improved
algorithm, we assume the skin layer known and only optimize for permittivity cells inside the
inner skin contour. Moreover, we optimize for aggregates of permittivity cells that are cubes (or
portions of cubes) with side 0.5 cm. Finally, we use the constraints 0.8 ≤ �(ε(r)/εb) ≤ 5 and
−0.1 ≤ �(ε(r)/εb) ≤ 0.1 on the permittivity. The result after 5 Gauss-Newton updates is shown in
Fig. 4. Again, the tumor is clearly visible, at the right location and with a higher permittivity and
conductivity than the surrounding breast tissue, but these values are not entirely reconstructed.

(a) Real Part (b) Imaginary Part

Fig. 3. The reconstructed complex permittivity in a vertical slice through the investigation
domain and the center of the tumor for the phantom without skin.
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(a) Real Part (b) Imaginary Part

Fig. 4. The reconstructed complex permittivity in a vertical slice through the investigation
domain and the center of the tumor for the phantom with skin. The permittivity cells that are

not optimized for are coloured white.

5. Conclusions

We have presented an efficient three-dimensional Vectorial Quantitative Microwave Tomography
reconstruction technique, which is based on a regularized Gauss-Newton optimization scheme and
which is able to reconstruct the spatial complex permittivity distribution in biological objects at
one single frequency, thereby avoiding difficulties with the dispersive nature of body tissues. In
particular, numerical experiments have shown that the method can be applied to the challenging
problem of breast tumor detection. This is largely made possible by the increased ability of the
method to incorporate a priori information in the inversion scheme.

References

[1] A. Abubakar, P.M. van den Berg, J.J. Mallorqui, “Imaging of Biomedical Data Using a
Multiplicative Regularized Contrast Source Inversion Method”, IEEE Trans. Microw. Theory

Tech., Vol. 50, No. 7, pp. 1761-1770, 2002.

[2] J. De Zaeytijd, A. Franchois, C. Eyraud, J.M. Geffrin, “Full-wave three-dimensional mi-
crowave imaging with a regularized Gauss-Newton method – theory and experiment”, IEEE

Trans. Antennas Propagat., Vol. 55, No. 11, pp. 3279 - 3292, 2007.

[3] E.C. Fear, X. Li, S.C. Hagness, M.A. Stuchly, “Confocal microwave imaging for breast tumor
detection: Localization in three dimensions”, IEEE Trans. Biomed. Eng., Vol. 49, pp.
812-822, August, 2002.

[4] M. Jacobsen, P.C. Hansen, M.A. Saunders, “Subspace preconditioned LSQR for discrete ill-
posed problems”, BIT Numerical Mathematics, Vol. 43, No. 5, pp. 975-989, 2003.

[5] J. De Zaeytijd, A. Franchois, “Three-dimensional Vectorial Quantitative Microwave Tomog-
raphy: Breast Imaging with a LSQR Preconditioned Regularized Gauss-Newton Method”,
submitted to IEEE Trans. Medical Imag..

24th Annual Review of Progress in Applied Computational Electromagnetics March 30 - April 4, 2008 - Niagara Falls, Canada  ©2008 ACES

472


	Main Menu
	Conference Agenda
	Welcome Message
	Conference Sponsors
	--------------------------
	Previous Document
	Help
	Search
	Print

