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1 Introduction

Adaptive control is often subject to serious bias in the learn-
ing phase, simply because insufficient information is avail-
able in order to motivate the choice of a unique prior, and
hence, a unique optimal feedback. Imprecise probability
theory may resolve this problem by means of using sets of
priors. In doing so, we end up with a set of possibly optimal
feedback controls—rather than a single one. This allows us
to quantify the lack of information for finding an optimal
feedback, and tells us exactly how many transitions must be
observed before we can have a unique, robust optimal feed-
back. Such a result would be especially useful in applica-
tions where sampling costs are relatively high compared to
the rewards incurred at each transition.

Adaptive control of Markov decision processes with uncer-
tain transition probabilities has already been studied in great
detail during the sixties [2]. In the classical approach to this
control problem, the uncertainty of the transition probabili-
ties is described by means of a product of Dirichlet priors,
which are updated in time as transitions are observed. It is
well-known that the optimal solution can be found through
a dynamic programming algorithm.

Renewed interest in this problem has been initiated by re-
cent developments in imprecise probability theory. It has
been demonstrated how we can learn about the probabilities
of a multinomial sampling model without having to give a
unique prior, by means of a set of Dirichlet priors [3]. In
optimal control, it turns out that the dynamic programming
formalism still applies to dynamical systems whose gain is
described by a set of probability distributions [1]. These re-
sults are our main inspiration for generalising adaptive con-
trol of Markov decision processes with uncertain transition
probabilities to the framework of imprecise probabilities.

2 Example

Consider the Markov decision process depicted in Figure 1.
At each timek we can choose between two actions,u andv.
Transition probabilities are denoted aspv

yx (the probability
from statey to statex when taking actionv), and the reward
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Figure 1: A simple Markov decision process

associated with this transition is denoted byrv
yx. Transition

probabilities are unknown, we only know the rewards,e.g.
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Intuitively, it is clear that insufficient information is avail-
able in order to construct a unique optimal feedback. Sup-
pose we are in statex at timek = 0, take actionv and end
up in statex at timek = 1. Then it seems reasonable to
assume that when we select actionv again, the probability
that we end up inx again is higher than the probability of
ending up iny. In fact, the reward associated with this tran-
sition,rv

xx, is the highest possible reward. Even if we do not
know precisely the value ofpv

xx, after observing the transi-
tion from statex at timek to statex at k + 1 under action
v, we obtain, through the imprecise Dirichlet model (hyper-
parameters = 1), a sufficiently narrow probability interval
for pv

xx in order to ensure that we will end up with the high-
est possible reward by taking actionv from statex at time
k = 1. Secondly, we have found that this model satisfies
the principle of optimality. So, globally optimal feedback
controls can be obtained through an efficient dynamic pro-
gramming algorithm.
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