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Abstract: Due to the abundant and often inappropriate use of antibiotics, todays’
medical treatments are faced with alarming resistance development of pathogenic
bacteria. The development of a novel class of antibiotics has therefore become
a major research theme. This paper presents a conceptual overview of how this
quest is tackled in a multidisciplinary fashion when the focus lies on detecting
and understanding regulatory pathways that lead to virulence. The importance
of well designed and controlled bioreactor experiments as well as the integration
(into mathematical models) of data, collected at different levels and from different
sources, will be stressed.
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1. INTRODUCTION

The acquirement of resistance of pathogenic bac-
teria to common antibiotics and the development
of multidrug resistant strains is raising alarms
in health care and fueling demand for new an-
tibiotics. Despite the apparent need for new and
effective antibiotics, few novel drug targets have
been identified and a very limited amount of new
(classes of) antibiotics has been introduced in the
last 20 years. Moreover, antibiotics have a broad
range effect, killing also the beneficial intestinal
microflora. Hence, more sustainable approaches to
cope with these infectious bacteria are needed. Ef-

forts are already made by several research groups
to come up with alternative ways to combat bacte-
rial infections. The prophylactic and therapeutic
use of probiotics can be situated in this context
with a boom in functional food R&D activity as
a result.

Within this context, the primary goal of this
research is to gain insight into the regulatory
networks of gene expression in Salmonella ty-
phimurium.
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The multidisciplinarity of the here presented re-
search lies in the combination of (i) well designed
and highly controlled bioreactor experiments and
(ii) integration of data collected at different lev-
els and from different sources into mathematical
models. The structure of the paper is, therefore,
as follows. First the general aim and main strat-
egy to reach that aim are sketched in Section 2.
The subsequent sections elaborate on the different
aspects of the strategy.

First, the different types of data and the infor-
mation that can be inferred from them are intro-
duced in Section 3. Afterwards, the growth of the
pathogen and its presumed pathogenesis trigger-
ing metabolite production are modelled in Section
4. Hereto, techniques of optimal experiment de-
sign will be employed and controlled bioreactor
experiments are performed. Finally, genetic net-
work inference is briefly explained as future task
in Section 5.

2. GENERAL AIM AND STRATEGY

One of the key factors to explain why the current
era is dominated by all sorts of omics is the
tremendous advancement in measurement tech-
niques of products at the intracellular level. As for
genomics, i.e., the branch of genetics that studies
organisms in terms of their genomes (their full
DNA sequences), the development of microarrays
has been a significant milestone.

At the next level (seen from the DNA-(m)RNA-
protein perspective), proteomics, i.e., the analysis
of biological processes by the systematic analysis
of a large number of expressed proteins, is becom-
ing an increasingly important research domain.
Since the regulatory activity of lots of proteins
is enabled or disabled by phosphorylation, the de-
tection of (the evolution of) this phosphorylation
is of prime importance.

This type of measurements is however not cheap.
Taking samples at the appropriate moment, i.e.,
when something is about to happen or has just
happened, saves a lot on the research budget.

Therefore, not only the experiments but also the
sampling instances have to be carefully designed.
Since the complexity and possible interactions of
the underlying biochemical pathways preclude the
inference of the cellular behavior merely based
on experimental observations, mathematical mod-
els are needed. If growth of the microorganism
and production of the triggering metabolite can
be captured by some mathematical relationships,
e.g., macroscopic balance type models, these mod-
els can serve as a basis for optimal experiment
design studies to ensure experimental data sets
with a rich information content.

Once informative microarray and (phospho)prot-
eomics data are gathered (i.e., before and after
a certain event in order to distinguish between
genes that are switched on or off and proteins that
become phosphorylated or not), the regulatory ge-
netic network has to be inferred. Hereto, recently
developed bioinformatics tools are employed.

The above research aspects will be discussed more
extensively in the following sections.

3. INFORMATION AT DIFFERENT LEVELS

3.1 Microarray data

Microarray experiments measure the expression
level of many genes simultaneously and can there-
fore be considered as upscaled Northern hy-
bridizations. Each spot on the array represents
a distinct coding sequence of the genome of in-
terest. The spots (probes) typically consist of
PCR-amplified cDNAs of approximately 300 bp.
During a microarray experiment, mRNA of a ref-
erence and induced sample are isolated, reverse
transcribed into cDNA, and labeled with distinct
fluorochromes. Subsequently, both cDNA samples
are hybridized simultaneously to the array. Flu-
orescent signals of both channels are measured
and used for further analysis (for more exten-
sive reviews on microarrays reference is made to
(Brown and Botstein, 1999; Blohm and Guiseppi-
Elie, 2001; Southern, 2001)).

3.2 (Phospho)proteomics data

Microarrays are useful to detect the changes of
up and down regulated genes, but disregard alter-
ations at protein level. In some cases, the correla-
tion between mRNA and protein level (activity)
can expected to be small due to the presence of
phenomena not visible at mRNA level. The nature
of these phenomena can be elucidated using a
proteomics approach.

Proteomics can be defined as the identification,
characterization and relative quantification of all
proteins involved in a particular pathway, or-
ganelle, cell, tissue, organ or organism that can be
studied in concert to provide accurate and com-
prehensive data about that system. Proteomics
originates from high-resolution two-dimensional
gel electrophoresis (2DE) for protein separation
and quantification. Today, mass spectrometry
(MALDI-TOF-MS) is by far the most common
used method for protein identification from 2D
gels. By peptide-mass fingerprinting (PMF) an
experimental profile of peptide masses (i.e., a pro-
tein separated by 2D, and digested with a pro-
tease) can be compared to a profile theoretically



calculated from the known sequences in a non-
redundant protein database (Blackstock, 2000).

Posttranslational modification of proteins is a
key regulatory event in many cellular processes
including recognition, signaling, targeting and
metabolism. In general, posttranslational modifi-
cations serve as on-off switches or modulators of
protein activity and targeting and also regulate
the assembly and disassembly of macromolecu-
lar complexes including protein-ligand, protein-
protein and protein-nucleic acid interactions. Re-
versible posttranslational modification of proteins
includes the covalent attachment or removal of a
functional group. Many key regulatory proteins in
the cell are always present and they are not up or
down regulated by gene-expression control. Their
activity often depends on posttranslational mod-
ification, and therefore their activity is not truly
reflected by protein or RNA-expression analysis
(Jensen, 2000). Phosphoproteomics is an obvious
choice for detecting reversible protein phosphory-
lation events in the function of time, as protein
phosphorylation is the major regulator of impor-
tant cell-signaling processes. There are several
methods to investigate quantitative changes in
protein phosphorylation in complex protein mix-
tures. A remarkable breakthrough was proposed
by (Zhou et al., 2001). The approach consists of
three steps: (i) selective phosphopeptide isolation
from a peptide mixture via a cascade of chemi-
cal reactions, (ii) phosphopeptide analysis by a
combination of automated liquid chromatography
and mass spectrometry (LC-MS-MS), and (iii)
identification of the phosphoprotein and the phos-
phorylated residue(s) by correlation of tandem
mass spectrometric data with sequence databases.
Another method uses 2DE separation of pro-
tein samples, followed by Western blotting with
antibodies against phosphorylated amino acids
(antiphosphotyrosine, antiphosphoserine and an-
tiphosphothreonine). Phosphorylated proteins are
subsequently identified by mass spectrometry.

4. MACROSCOPIC MODELLING AND
OPTIMAL EXPERIMENT DESIGN

If the bacterial pathogenic response is triggered
by a certain metabolite, then it is evident that (i)
the reaction network or mechanism that produces
the metabolite as well as (ii) the downstream re-
actions that this metabolite initiates are both pos-
sible drug targets, once clearly understood. While
most of the reported studies in this context rely on
(batch-wise) test tube or erlenmeyer experiments,
a controlled environment and possibly fed-batch
or continuous type experiments are a prerequisite
to clearly distinguish the phenomena that poten-
tially influence the studied process. If for example

the influence of a certain carbon source is to be
tested, then the pH has to be controlled since the
catabolic reactions following the consumption of
the carbon source could influence the pH, hence,
hampering the distinction between both phenom-
ena.

To enhance this understanding, first of all, ex-
periments have to be designed from which the
production mechanism of the metabolite can be
inferred. In a second step this production must
be stimulated such that information rich data
can be collected to unravel the pathways that
are triggered by the (abundant) presence of the
metabolite.

To get acquainted with the microbial growth and
production process, some preliminary batch ex-
periments have been performed.

Experimental conditions. The studied bac-
terial species is the pathogen Salmonella ty-
phimurium. Batch cultures were conducted in a
computer controlled BioFlo 3000 benchtop fer-
mentor (New Brunswick Scientific, USA) with
an autoclavable vessel of 5 L working volume.
An overnight preculture was transferred to the
fermentor vessel containing 4.0 L Luria-Bertani
medium. PID cascade controllers ensured that the
fermentation temperature as well as the pH and
the dissolved oxygen (DO) were kept constant
as to mimic the human intestinal environment.
Glucose is provided as the sole external carbon
source.

Measurements. Culture media samples are re-
moved at regular intervals. CFU 1 /mL values are
obtained by plate counting. Glucose concentra-
tions are determined using an enzymatic test kit
while the metabolite concentration is established
by a specific bioassay.

Mathematical tools. The implemented identifi-
cation routine for model parameter estimation is
the e04UCF routine from the NAG library (Numer-
ical Algorithms Group) in Fortran. Apart from
Fortran, Matlab 6.1 (The Mathworks Inc., Natick)
is used as simulation software.

Optimal experiment design. When modelling
growth or production kinetics, the first issue is the
selection of an appropriate model structure. Once
the structure has been determined, a unique solu-
tion for the set of corresponding model parameters
(which have to be estimated from experimental
data) has to be found. A unique identification of
the parameter set is only possible if the available
data are sufficiently rich. In system identification
theory this is known as persistent excitation of
the system. Hence, it is clear that an efficient

1 colony forming units
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Fig. 1. Evolution of the glucose (*) and biomass
(o) concentration in function of time.

experimental planning plays a crucial role in the
practical identifiability of the kinetic parameters.

Figure 1 depicts the evolution of the glucose
substrate (stars) and biomass concentration (in
CFU/mL, bullets) in function of time during a
first preliminary batch experiment.

When focusing on the growth phase, a simple
Monod model (Equation 2) seems appropriate.
The link between the specific growth rate and the
substrate consumption is the so-called linear law
in which, for the time being, the maintenance term
is neglected. All substrate consumed is therefore
assumed to be built in as new biomass with a
certain efficiency or yield factor YX/S [103g/CFU].
The evolution in time of the substrate concen-
tration CS [g/L] (i.e., glucose) and the biomass
concentration CX [CFU/mL] is then described by
following system of mass balance equations:

dCS

dt
= −

µ

YX/S
· CX

dCX

dt
= µ · CX

(1)

in which

µ = µmax
CS

CS + KM
. (2)

In this specific growth rate expression, µmax [1/h]
is the maximum specific growth rate and KM

[g/L] the half saturation constant.

However, correct identification of the parameters
is not a trivial task since (i) the experimental data
points are scarce and (ii) batch experiments are
known as not the most optimal setup for estima-
tion of both Monod constants at once (Holmberg
and Ranta, 1982). It has been proved that the
extension of the batch experiment by a feeding
phase with time-varying feed rate leads to a higher
accuracy of the parameter estimates. In this con-
text, the following conjecture was formulated by
(Van Impe and Bastin, 1995):

A feed rate strategy which is optimal
in the sense of process performance
is an excellent starting point with re-
spect to estimation of those parame-
ters with large influence upon process
performance.

With biomass growth optimization in mind, opti-
mal limiting substrate feed rate profiles are often
of the bang-singular-bang type (Van Impe and
Bastin, 1995) with a first maximum feeding or
batch phase, followed by a singular phase (during
which the substrate concentration is kept con-
stant) and ending with a batch phase until all
available substrate is consumed. Therefore, such
a profile is proposed as starting point for unique
parameter estimation by means of optimal experi-
ment design techniques (see also, e.g., (Versyck et
al., 1997)).

Parameter estimation can be formulated as mini-
mization of the following identification functional
J by optimal choice of the parameter vector p:

J
4
=

tf
∫

0

(y(p) − ym)T Q(y(p) − ym) dt (3)

in which ym is the vector of measured outputs,
y(p) is the vector of model predictions by using
the parameter vector p, and Q is a user-supplied
square weighting matrix. To analyze and quantify
the information content of the state trajectories
obtained in a certain experiment, the Fisher in-
formation matrix can be called upon:

F
4
=

tf
∫

0

(

∂y

∂p

)T

Q

(

∂y

∂p

)

dt (4)

Q is normally selected as the inverse of the mea-
surement error covariance matrix. This choice of
the weighting matrix Q implies that the more a
measurement is corrupted by noise, the less it will
count in the information criterion. Depending on
the requirements imposed by the application, a
specific scalar function of this Fisher information
matrix is used as the performance index for opti-
mal experiment design to enhance the parameter
identifiability. In this study, the following so-called
modified E-criterion is adopted:

Λ(F) =
λmax(F)

λmin(F)
(5)

which represents the ratio of the largest to the
smallest eigenvalue of F . To enhance parameter
identifiability this condition number should ap-
proximate one as to induce circular lines of con-
stant functional values and a conelike functional
shape of J .
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Fig. 3. Evolution of the triggering metabolite
concentration in function of time.

Following the above procedure, the optimal feed
rate profile U [L/h] for glucose is as depicted in
Figure 2 (dotted line): a first batch phase followed
by a singular feeding phase ending in a short
batch phase. The condition number Λ is 36.027
and the optimal singular substrate concentration
C∗

S equals 0.361 g/L. A lower condition number
can be obtained when the substrate concentration
during the singular phase is allowed to be lower,
which is however hard to realize in practice. To
further simplify the practical aspects of the pro-
posed experiments, one could try to approximate
the singular time-varying feeding phase by step-
wise increasing the feed rate during that period
(while the total added volume during that phase
remains the same). Figure 2 (solid line) illustrates
the obtained suboptimal profile for which the con-
dition number Λ is now 46.995.

Production modelling. The evolution of the
metabolite production can be seen in Figure 3.

Unfortunately, it is impossible to derive the
metabolite production mechanism from this pro-
file Future experiments (and/or other measure-

ment protocols for the metabolite) will have to
elucidate the metabolite production mechanism.

Once a simple, though reliable macroscopic bal-
ance type mode for growth and metabolite pro-
duction has been derived, this model will be ex-
ploited in optimal experiment design studies to
establish the most informative experiments with
respect to specific gene up- or down regulation.

5. REGULATORY NETWORK INFERENCE

With the information obtained from the previ-
ous step, genetic networks can be inferred. The
most promising implementations of network in-
ference are based on Bayesian networks. Bayesian
networks are probabilistic models consisting of a
graphical structure and conditional probabilities.
A Bayesian network allows both a compact rep-
resentation of the joint probability distribution
over a large number of variables, and an efficient
way of using this representation for statistical
inference. It consists of a directed acyclic graph
that models the interdependencies between the
variables, and a conditional probability distribu-
tion for each node with incoming edges. Given
a graph, it is possible to learn the probability
distributions from the available data and Bayesian
priors. One then searches in the space of candidate
graphs for a graph that models the dependencies
in the data best. In the context of genetic network
inference, the nodes in the network represent the
expression levels of the genes (variables) and the
edges correspond to the interactions. Bayesian
(belief network) are an almost natural choice to
model regulatory pathways. Since biological net-
works are structured hierarchically, connections
between genes are sparse. In a Bayesian net-
work such sparse connections can easily be rep-
resented by the conditional independencies. Since
Bayesian networks are probabilistic in nature they
can capture the stochasticity (either biological or
experimental) of the system. Moreover, Bayesian
networks can cope with the presence of unob-
served values (hidden variables, e.g., not measured
protein-protein interactions). The graphical repre-
sentation reflects the real biological structure and
this structure can be inferred independently from
the parameter estimation (maximum a posteriori,
Monte-Carlo sampling). Most important is prob-
ably the natural way by which prior information
can be introduced into the model.

This prior knowledge is gathered via the construc-
tion of a knowledge base system or ontology. An
ontology is a specification of a conceptualization,
designed to describe and store domain knowledge,
external to the system (Gruber, 1993).

A conceptualization is an abstract, simplified view
of the objects or concepts, that are assumed to



exist in a given research domain and the relations
that hold among them (Karp et al., 2000). This
set of concepts and their relations is reflected in
the representational vocabulary that a knowledge
base uses to represent knowledge. An ontology in
the molecular-biology field will typically contain
concepts such as gene, gene name, protein, molec-
ular function, biological process etc. Relations be-
tween these concepts can be defined. For instance,
the concept protein participates in (relation) a
certain biological process (related concept).

6. CONCLUSIONS

Within the context of the development of a new
class of antibiotics, this paper introduces a mul-
tidisciplinary approach to unravel the regulatory
networks of gene expression in Salmonella ty-
phimurium. The key factors in this search are,
according to the authors, well designed and con-
trolled bioreactor experiments as well as the in-
tegration (into mathematical models) of data,
collected at different levels and from different
sources. Although of preliminary nature, the re-
sults obtained thus far are promising.
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