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Abstract — This paper presents a design optimiza-
tion approach for electromagnetic systems using
parametric macromodels. The parametric macro-
models are generated using an efficient sequential
sampling of the design space of interest which en-
sures optimal sample selection for a required level
of accuracy. The proposed method is validated on a
microwave notch filter example for which the para-
metric macromodel is used in a minimax optimiza-
tion algorithm so that the design parameters are
optimized for some specific electrical design perfor-
mances.

1 INTRODUCTION

Design optimization of high-speed microwave sys-
tems focuses on calculating the optimal values of
the design variables for which the system responses
satisfy the design specifications. Optimal values of
the design variables are often determined using op-
timization algorithms (optimizers) which drive the
electromagnetic (EM) simulator to obtain the re-
sponses and their sensitivities in consecutive op-
timization iteration. Unfortunately, multiple con-
secutive EM simulations are often computationally
expensive.

In recent years, design optimization of high-speed
microwave systems using parametric macromodels
attained considerable interest [1, 2]. These para-
metric macromodels accurately describe the param-
eterized frequency behavior of EM systems for the
entire design space of interest, thereby acting as a
replacement model for the original and expensive
EM simulators [3, 4, 5, 6, 7]. However, as pointed
out in [2], one of the key issues in these modeling
approaches, rarely addressed in the literature, is the
optimal selection of data samples in order to limit
the total number of expensive EM simulations.

In this work, we focus on using efficient sequential
sampling schemes to generate parametric macro-
models which are used in design optimization of

*Department of Information Technology, Ghent Uni-
versity - IBBT, Gaston Crommenlaan 8 Bus 201, B-9050,
Gent, Belgium., e-mail: krishnan.cmc@intec.ugent.be,
francesco.ferranti@intec.ugent.be, tom.dhaene@intec.
ugent.be, luc.knockaert@intec.ugent.be, tel.: +32 9 331
48 91, fax: +32 9 331 48 99.

Francesco Ferranti*

Tom Dhaene* Luc Knockaert*

microwave systems. Parametric macromodels are
used in conjunction with standard optimization al-
gorithms [8], resulting in an optimal design such
that all the design specifications are satisfied.

2 PROPOSED METHOD

The flowchart of Fig. 1 describes the main idea of
the proposed optimization method based on para-
metric macromodels generated by means of sequen-
tial sampling. The method begins by identifying
the design parameters § = (¢)N_,, which are
tuned to optimize certain cost functions or per-
formance indexes. Once the ranges of the design
parameters are defined, some initial design sam-
ple points gx, £ = 1,2,...K and the correspond-
ing frequency response H(s;, gx), i = 1,2,...N, are
generated. Here s; represents the complex Laplace
variable. The Vector Fitting (VF) method [9, 10]
is used to build frequency-dependent rational mod-
els called root macromodels R(s, i) at each initial
sample points.

Once the root macromodels are built at the initial
design sample points, the next step is to parameter-
ize them with respect to the design parameters g.
In [4], a parametric macromodel is built by interpo-
lating a set of root macromodels at an input-output
level, while in [5, 6], both poles and residues are
parameterized by interpolating the internal state-
space matrices, resulting in a higher modeling ca-
pability with respect to [4]. In [7], a novel en-
hanced interpolation of root macromodels at an in-
put/output level is described, which is based on the
use of some coefficients: one coefficient as a mul-
tiplicative factor at the input/output level of the
system and the other coefficient as a compression
or expansion term for the Laplace variable s. It
results in high modeling capability and robustness
and it is used in this paper.

After generating an initial parametric macro-
model, the accuracy of this parametric macromodel
is checked using some predefined error criteria at
carefully chosen locations of the design space. If
the accuracy is found to be inadequate, additional
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Figure 1: Flowchart of the proposed optimization.

samples are generated in the design space and the
parametric macromodel is updated with the gen-
eration of root macromodels on the new samples
followed by a parameterization using [7]. This pro-
cess continues until the required level of accuracy
is achieved.

The efficient and accurate parametric macro-
model generated is used in a minimax optimization
algorithm which finds the optimal values of the de-
sign parameters such that certain performance in-
dexes are minimized.

3 SEQUENTIAL SAMPLING ALGO-

RITHM

Once the ranges of the design parameters g are de-
fined, a sequential sampling algorithm is used to
build an accurate parametric macromodel choosing
the data samples at optimal locations in the design
space. Here, the sequential sampling method is ex-
plained for a two design parameter case, though it
is applicable to any number of design parameters.
The design space of the two parameters (g(1), g(2))
is defined by the four corners of a rectangular re-
gion as shown in Fig. 2.a. Using the corner points
of the design space, a parametric macromodel is
built. Please note that the sequential sampling al-
gorithm described here is general so that several
parametric macromodeling schemes based on the
local N-box regions of the design space can be ap-
plied [4, 5, 6, 7]. Here, the method of [7] is selected

because of its modeling capability and robustness.
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Figure 2: Design space during sequential sampling.

Next step is to check the accuracy of the gen-
erated parametric macromodel at the center of a
particular subspace shown by the gray circle in Fig.
2.b. If the accuracy of the parametric macromodel
is found to be not satisfactory, four new subspaces
are generated, new sample points are added and
the parametric macromodel is updated. This re-
finement step continues (Fig. 2.c) till the algorithm
terminates by satisfying the accuracy at each local
region of the design space as shown in Fig. 2.d.

4 DESIGN OPTIMIZATION

Once the parametric macromodel is built, it can be
used in the optimization process of EM systems.
Considering microwave filters, a typical optimiza-
tion process begins by defining passband and stop-
band specifications in terms of the frequency re-
sponses, which are reformulated in the form of a
cost function F;(g), to be minimized at optimiza-
tion frequency samples s;, i = 1,2, ..Ng:

Fi(g) = Ry, — R(si,§) or R(si,g) — Ry, (1)
In (1), R and RY represents lower and upper
frequency response thresholds, respectively, at fre-
quency samples s;, i = 1,2, ..., N, spread over the
frequency range of interest. A negative value for the
cost function indicates that the corresponding spec-
ification is satisfied, while a positive value denotes
that the specification is violated. The minimiza-
tion (1) can be performed by several state-of-the-
art optimization algorithms. In this paper, we use a
minimax optimization algorithm [8] which uses the
cost function (1) with respect to design parameter
7 giving the optimum design parameters g* as

g* = argmin{max[F;(7)]}.
7

2)

5 NUMERICAL RESULTS

A folded stub microwave notch filter on a substrate
with relative permitivity €, = 9.6 and a thickness of
0.635 mm is modeled in this example. The layout
of this filter is shown in Fig. 3. The spacing S
and the length L of the stub are chosen as design



variables in addition to frequency whose ranges are
S €[0.5,1.0] mm, L € [5.0,10.0] mm and frequency
€ [2,4] GHz. The design specifications of this notch
filter are given in terms of the scattering parameter

|S21| < —20dB for freq € [2.925,3.075] GHz  (3)

From the design specifications (3), considering a
resonance frequency of 3 GHz, a cost function (1)
is formulated in terms of Sy and § = (5, L).

Py

Figure 3: Layout of the folded stub notch filter.

The scattering matrix S(s, S, L) has been com-
puted using the ADS Momentum! software. The
sequential sampling algorithm has been imple-
mented in Matlab R2010a? and used to drive the
ADS Momentum simulations to generate S(s, S, L)
at selected samples. The number of frequency sam-
ples were chosen to be equal to 41. The Mean Ab-
solute Error (MAE) given by

Rij(sk,9) — Hi,j(sk, 9)|
PinPouth

(4)

with number of input ports P;,, output ports P,,;
and frequency samples N is used as an error mea-
sure to assess the accuracy at each region of the de-
sign space during the sequential sampling process.
The final design space generated with the sequen-
tial sampling is shown in Fig. 4.

As shown in Fig. 4, the algorithm selected 65
sample points in the design space of interest shown
by the black dots. The validation samples are gen-
erated at each and every step of the sequential
sampling and are used in further refinement, as
shown in Fig. 2.b. However, for the terminal sub-
spaces, since no further refinements are performed,
the validation samples are not used in the model-
ing but stored in the data base for later use. Fig. 4
shows 46 validation sample points for the terminal
subspaces, shown by gray asterisks. The average
ADS Momentum simulation time for each design
space point (S, L) has been found to be equal to
Tsimavg = 127.70 seconds on a Windows 7 platform
on Intel(R) Core(TM)2 Duo P8700 2.53 GHz ma-
chine with 2 GB RAM. The total simulation time

IMomentum EEsof EDA, Agilent Technologies, Santa
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2The Mathworks, Inc., Natick, MA, USA
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Figure 4: Design space generated using the sequen-
tial sampling algorithm.

to perform the ADS Momentum simulations and to
build the parametric macromodel using the sequen-
tial sampling is found to be equal to T;,; = 13966.21
seconds of which Thpg = 13920.68 seconds is spend
on generation of data samples using ADS Momen-
tum simulations. The target accuracy was set to
—55 dB and the worst case accuracy was found to
be —55.21 dB for the parametric macromodel.

Parameter Value
Number of function evaluations 320
Initial design point (0.750 mm,
(S°, L) 7.500 mm)
Optimal design point (0.995 mm,
(S*,L*) 6.089 mm)
Parametric
Optimization macromodel 23.5 s
time ADS
Momentum 35075.7 s

Table 1: Optimization results.

The cost function (1) calculated using the para-
metric macromodel generated, have been supplied
to the minimax optimization algorithm (2), result-
ing in the optimum design parameter values S* and
L*. Table 1 lists important parameters for the op-
timization. As seen in Table 1, there is a consid-
erable gain in terms of the computation time. We
note that the generation of the parametric macro-
model requires some initial ADS Momentum sim-
ulations and therefore an initial computational ef-
fort. However, once the parametric macromodel
is generated and validated, it acts as an accurate
and efficient surrogate of the EM solver and can
be used for multiple design optimization scenarios,
for instance, changing filter specifications as well as



other design activities such as design space explo-
ration and sensitivity analysis. Therefore, multiple
uses of the parametric macromodel makes the ini-
tial computation effort negligible.
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Figure 5: Magnitude of Sy; with optimization.

Fig. 5 shows the magnitude of Ss; as a function
of frequency before and after optimization along
with the design specifications for the filter. As seen
in Fig. 5, all the specifications are met for the op-
timal design parameter values (S*, L*). The actual
ADS Momentum simulation is also compared with
the parametric macromodel at the optimal solution
and a good agreement between the two responses
can be observed.

6 Conclusions

We have presented a new design optimization ap-
proach for EM systems using parametric macro-
models, generated based on efficient sequential
sampling of the design space. A minimax optimiza-
tion was performed using the parametric macro-
model on a microwave notch filter example for
which the design parameters are optimized for some
electrical performances. The presented numerical
results validate the proposed method.
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