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Abstract. Nowadays, customers request more variation in a company’s
product assortment leading to an increased amount of parts moving
around on the shop floor. To cope with this tendency, a kitting process
can be implemented. As it gathers the necessary parts into a container
prior to assembly, kitting enables a more cost-efficient and qualitative
production. However, the performance of this preparation technique in
an assembly process has merely been investigated. Therefore, we studied
a kitting process with two parts as a continuous-time Markovian queue-
ing model. Using sparse matrix techniques to solve our queueing model,
we assessed the impact of kitting interruptions, bursty part arrivals and
phase-type distributed kitting times on the behaviour of the part buffers.
Consequently, this paper studies part buffer behaviour under realistic as-
sumptions in order to evaluate the performance of kitting operations in
a production environment.

1 Introduction

Nowadays manufacturing systems are often composed of multiple in-house fabri-
cation units [10]. The semi-finished products stemming from these units are the
input materials for other fabrication units or for assembly lines. Hence, efficient
transport of materials between the different stages of the production process is
key for overall production cost minimization. Kitting is a particular strategy for
supplying materials to an assembly line. Instead of delivering parts in contain-
ers of equal parts, kitting collects the necessary parts for a given end product
into a specific container, referred to as kit, prior to arriving at an assembly
unit[1,14,2,10,11,12].

Kitting mitigates storage space requirements at the assembly station since
no part inventories need to be kept there. Moreover, parts are placed in proper
positions in the container such that assembly time reductions can be realized.
Additional benefits include reduced learning time of the workers at the assembly
stations and increased quality of the product. Although kitting is a non-value
added activity, its application can reduce the overall materials handling time
[12]. Indeed activities such as selecting and gripping parts are performed more
efficiently. Furthermore, the whole operator walking time is drastically reduced or
even eliminated since kits of components are brought as a whole to the assembly
station [7]. The advantages mentioned above do not come for free since the kitting
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operation itself incurs additional costs such as the time and effort for planning
the allocation of the parts into kits and the kit preparation itself. Moreover,
the introduction of a kitting operation in a production process involves a major
investment and the effect on efficiency are uncertain. Therefore, it is important
to analyse the performance of kitting in a production environment prior to its
actual introduction. This is the subject of the present paper.

In literature, most authors consider a kitting process as a queueing system
with stochastic part arrivals and kit assembly. Hopp and Simon [6] develop a
model for a kitting process with exponentially distributed processing times for
kits and Poisson arrivals. They find accurate bounds for the required capacity of
the buffer for kitting processes with two basic components. Explicitly accounting
for finite buffer capacities, Som et. al [14] further refine the results of Hopp and
Simon.

Of course real buffers always have a finite capacity, the capacity being con-
straint by the storage room. However, if the capacity is large enough, we can
have a good approximation of a process with a finite capacity on the basis of a
model with unlimited capacity. This means that there is always enough space
for upcoming parts which simplifies the analysis. Unfortunately, the assumption
of an infinite buffer is not valid for kitting processes. If the capacity is assumed
to be infinite, then the model will degrade to an unstable stochastic model. This
was demonstrated in [8] where waiting lines with paired customers were studied.
We can consider this analysis as an abstraction of a kitting process with two
types of parts. Furthermore, in the article "Assembly-like queues", Harrison [5]
confirms that it is necessary to impose a restriction on the size of the buffer to
ensure stability in the operations of a kitting process. Under this assumption, the
probability to have a certain long-term stock position is equal and independent
of the current stock position.

In this work, we focus on a kitting process modulated by a Markovian envi-
ronment. The introduction of this environment allows us to study kitting under
more realistic stochastic assumptions: kitting interruptions, bursty part arrivals
and phase-type distributed kitting times, etc. Section 2 describes the kitting pro-
cess at hand. In section 3, Chapman-Kolmogorov equations are derived and their
numerical solution is discussed. In particular, the use of iterative methods for
solving sparse matrix equations is examined. To illustrate our approach, section
4 considers a number of numerical examples. Finally, conclusions are presented
in section 5.

2 Model description

In this paper, we study a two-queue kitting process, as depicted in Figure 1. Each
queue has a finite capacity — let C` denote the capacity of queue `, ` = 1, 2 —
and models the inventory of parts of a single type. New parts arrive in the queues
and, if both queues are non-empty, a kit is assembled by collecting a part from
each queue. Hence, departures from the queues are synchronised, the queues
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Fig. 1. Kitting process: the queues or inventories are on the left, and the triangularly
shaped kitting process is on the right.

are paired. Operation of kitting buffers therefore differs considerably from other
queueing systems.

Arrivals in both queues are modelled by a Markovian stochastic process and
kit assembly is not instantaneous. For ease of modelling, it is assumed that there
is a modulating Markov chain, arrival and service rates depending on the state
of this chain. To be more precise, the kitting process is modelled as a continuous-
time Markov chain with state space C1 × C2 × K, whereby C` = {0, . . . , C`} for
` = 1, 2 and with K = {1, 2, . . . ,K} being the state space of the modulating
chain. At any time, the state of the kitting process is described by the triplet
(m,n, i), m and n being the number of parts in the first and second queue
respectively, and i being the state of the modulating chain. We now describe the
state transitions.

– The state of the modulating chain can change when there are neither arrivals
nor departures. Let αij denote the transition rate from state i to state j
(i, j ∈ K, i 6= j) and let A denote the corresponding generator matrix.

– The state of the modulating chain may remain the same or may change when

there is an arrival. Let λ
(`)
ij denote the (marked) transition rate from state

i to state j when there is an arrival in queue `, ` = 1, 2. Moreover, let L`

denote the corresponding generator matrix. Note that marked transitions
from state i to state i are allowed.

– Analogously, the state of the modulating chain may remain the same or may
change when there is a departure (in each queue). Let µij and M denote the
corresponding transition rate and generator matrix respectively.

Summarising, arrivals at and departures from the queues are described by the
matrices A, L1, L2 and M. So far, no diagonal elements of A have been defined.
To simplify notation, it will be further assumed that the diagonal elements are
chosen such that the row sums of A+ L1 + L2 +M are zero.

The computational method employed here does not require any homogeneity
of the generator matrices. When required by the applications at hand, intensities
may depend on the queue content. In this case, we introduce superscripts to make
this dependence explicit. For example, M(m,n) denotes the generator matrix of
state transitions with departure when there are m parts in queue 1 and n parts
in queue 2.
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Remark 1. By non-homogeneity it is possible that the Markov chain of the kit-
ting process is not irreducible. In this case, we limit the chain to the irreducible
class of the state that both queues are empty and the modulating chain is in
state 1.

Before proceeding, we introduce a number of specific application scenarios of
the kitting model at hand.

Example 1. In the most basic setting, parts arrive in the queues in accordance
with an independent Poisson processes with rate λ1 and λ2 and kitting times
are exponentially distributed with parameter µ. In this case, there is no need
to have a modulating Markov chain, the state is completely described by the
number of parts in each queue, (m,n). We have,

M =
[

µ
]

, L1 =
[

λ1

]

, L2 =
[

λ2

]

, A =
[

−λ1 − λ2 − µ
]

.

Example 2. To account for burstiness in the arrival process of the parts in the
different queues, the modulating chain allows to mitigate Poissonian arrival as-
sumptions: We can replace the Poisson processes by a two-class Markovian arrival
processes. Multi-class Markovian arrival processes allow for intricate correlation
and can be efficiently characterised from trace data [3,4]. As we have two types
of arrivals, the Markovian arrival process is described by the generator matrix
Λ1 of transitions with arrivals in queue 1, the generator matrix Λ2 with arrivals
in queue 2 and the generator matrix Λ0 without arrivals. As usual, the diagonal
elements of Λ0 are negative and ensure that the row sums of Λ0 +Λ1 +Λ2 are
zero. Retaining exponentially distributed kitting times, we have,

L1 = Λ1 , L2 = Λ2 , A = Λ0 − µI , M = µI .

Here I is the identity matrix.

Example 3. As for the arrival processes, the model at hand is sufficiently flexible
to include phase-type kitting times. The phase-type distribution is completely
characterised by an initial probability vector τ and the matrix T which cor-
responds to non-absorbing transitions [9]. Let t

′ = −Te
′ be the column vector

with the rates to the absorbing state and let f be a row vector with zero-elements
except the first one. Assuming Poisson arrivals in both queues (with rate λ1 and
λ2, respectively), we get the following matrices,

L
(m,n)
1 = λ1I

(

1− 1{m=0,n>0}

)

+ λ1e
′
τ1{m=0,n>0}

L
(m,n)
2 = λ2I

(

1− 1{m>0,n=0}

)

+ λ2e
′
τ1{m>0,n=0}

A
(m,n) = T1{m>0,n>0} − λ1I− λ2I

M
(m,n) = t

′
τ1{m>1,n>1} + t

′
f(1− 1{m>1,n>1})

Here, it is assumed that the background state equals 1 if one of the queues is
empty.
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3 Analysis

Having established the modelling assumptions and settled our notation, we now
focus on the analysis of the kitting process.

3.1 Balance equations

The aim is to define a set of equations for the steady state probability vector for
the Markov chain [Q1(t), Q2(t), S(t)], Q`(t) being the number of parts in queue
` at time t and S(t) being the state of the background chain at time t.

· · · · · · · · ·

· · · m−1, n−1, i m−1, n, i m−1, n+1, i · · ·

· · · m,n−1, i m, n, i m,n+1, i · · ·

· · · m+1, n−1, i m+1, n, i m+1, n+1, i · · ·

· · · · · · · · ·
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Fig. 2. Fragment of the transition rate diagram for state (m,n, i)

Let πi(m,n) = limt→∞ Pr[Q1(t) = m,Q2(t) = n, S(t) = i] be the steady
state probability to be in state [m,n, i] and let π(m,n) be the vector with el-
ements πi(m,n), for i ∈ K. Figure 2 shows a fragment of the transition rate
diagram of the kitting model in state (m,n, i). As mentioned above, two inde-

pendent input streams arrive at the buffers with intensity λ
(`)
ij and are processed
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into kits with intensity µij . Upon completion of a kit, the queue content of both
buffers is decreased by 1. Note that we only show the transitions whereby the
modulating Markov process remains in state i. Moreover, possible dependence
of the transition rates on the queue sizes is not indicated.

Based on the transition rate diagram and considering different queueing
states, we now derive the balance equations of the studied kitting process.

– First, consider the case where both buffers store one or more parts and the
values are below that of the capacity, 0 < n < C1 and 0 < m < C2. We
have,

πi(m,n)





K
∑

j=1

λ
(1)
ij (m,n) +

K
∑

j=1

λ
(2)
ij (m,n) + µij(m,n) +

K
∑

j=1,j 6=i

αij(m,n)





=
K
∑

j=1

πj(m− 1, n)λ
(1)
ji (m− 1, n) +

K
∑

j=1

πj(m,n− 1)λ
(2)
ji (m,n− 1)

+

K
∑

j=1

πj(m+ 1, n+ 1)µji(m+ 1, n+ 1)

+

K
∑

j 6=i=1

πj(m+ 1, n+ 1)αji(m,n) ,

or equivalently,

π(m− 1, n)L
(m−1,n)
1 + π(m,n− 1)L

(m,n−1)
2

+ π(m+ 1, n+ 1)M(m+1,n+1) + π(m,n)A(m,n) = 0 .

– If queue 1 is empty and queue 2 neither empty nor full (m = 0 and 0 < n <
C2), we have,

πi(0, n)





K
∑

j=1

λ
(1)
ij (0, n) +

K
∑

j=1

λ
(2)
ij (0, n) +

K
∑

j=1,j 6=i

αij(0, n)





=

K
∑

j=1

πj(0, n− 1)λ
(2)
ji (0, n− 1) +

K
∑

j=1

πj(1, n+ 1)µji(1, n+ 1)

+
K
∑

j=1,j 6=i

πj(0, n)αji(0, n) ,

or equivalently,

π(0, n− 1)L
(0,n−1)
2 +π(1, n+ 1)M(1,n+1)+π(0, n)(A+diag(M(0,n)

e
′) = 0 .
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– Similarly, if queue 2 is empty and queue 1 neither empty nor full (n = 0 and
0 < m < C1), we have,

π(m− 1, 0)L
(m−1,0)
1 + π(m+ 1, 1)M(m+1,1)

+ π(m, 0)(A+ diag(M(m,0)
e
′) = 0 .

– If both queues are empty (m = 0 and n = 0), we have,

π(1, 1)M(1,1) + π(0, 0)(A(0,0) + diag(M(0,0)
e
′)) = 0 .

– If queue 1 is empty and queue 2 is full (m = 0 and n = C2), we get,

π(0, C2 − 1)L
(0,C2−1)
2 +π(0, C2)(A

(0,C2)+diag(M(0,C2)e
′+L

(0,C2)
2 e

′)) = 0 .

– Similarly, if queue 1 is full and queue 2 is empty (m = C1 and n = 0), we
have,

π(C1 − 1, 0)L
(C1−1,0)
1 +π(C1, 0)(A

(C1,0)+diag(M(C1,0)e
′+L

(C1,0)
1 e

′)) = 0 .

– Finally, if both queues are full (m = C1 and n = C2), we find,

π(C1 − 1, C2)L
(C1−1,C2)
1 + π(C1 − 1, C2)L

(C1,C2−1)
2

+ π(C1, C2)(A
(C1,C2) + diag(L

(C1,C2)
1 e

′ + L
(C1,C2)
2 e

′)) = 0 .

Remark 2. Recall that the diagonal elements of the matrix A are chosen such
that the row sums of A + L1 + L2 + M are zero. For the boundary cases, the
diagonal values of the matrix A may therefore take into account impossible
transitions like an arrival when the queue is full or a departure when one of the
queues is empty. Obviously, since no homogeneity of the generator matrices is
required, we can adapt the input matrices for the boundary cases. Nevertheless,
it is more convenient to make this explicit in the balance equations. This explains
the presence of the diagonal matrices in the equations above.

3.2 Performance measures

Given the steady-state vectors π(m,n), we now can obtain a number of in-
teresting performance measures for the kitting system. For ease of notation,
let π(m,n) = π(m,n)e′ denote the probability to have m parts in queue 1
and n parts in queue 2. Moreover let π

(1)(m) =
∑

n π(m,n) and π
(2)(n) =

∑

m π(m,n) denote the marginal probability vectors. Finally, the probability
mass functions of the queue contents equal π(1)(m) = π(1)(m)e′ and π(2)(n) =
π(2)(n)e′.

The following performance measures are of interest

– The mean queue content EQ1 and EQ2 of queue 1 and queue 2 respectively,

EQ1 =

C1
∑

m

π(1)(m)m, EQ2 =

C2
∑

n

π(2)(n)n .
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– The variance of the queue content VarQ1 and VarQ2 of queue 1 and queue
2 respectively,

VarQ1 =

C1
∑

m

π(1)(m)m2 − (EQ1)
2 , VarQ2 =

C2
∑

n

π(2)(n)n2 − (EQ2)
2 .

– The effective load of the system ρeff is the amount of time that kitting is
ongoing. As kitting is only ongoing when none of the queues are empty, we
have,

ρeff = 1− π(1)(0)− π(2)(0) + π(0, 0) .

– Let the throughput η be defined as the number of kits departing from the
system per time unit. Taking into account all possible states from which we
can have a departure, we find,

η =

C1
∑

m=1

C2
∑

n=1

π(m,n)M(m,n)
e
′

– The blocking probability — b1 for queue 1 and b2 for queue 2 — is the
probability that production prior to the kitting buffers is blocked. This is the
case if the corresponding kitting buffer is full. Hence, we have the following
expressions for the blocking probabilities,

b1 = π(1)(C1) , b2 = π(2)(C2)

Note that for Poisson arrivals, the blocking probability corresponds to the
loss probability (the fraction of the customers that cannot enter the queue)
as defined for classical finite-capacity queues. Moreover, as the departure
rates from the queues are equal by definition, the loss probabilities — and
therefore also the blocking probabilities under Poisson assumptions — are
equal if the arrival rates in the queues are equal.

3.3 Methodology: the sparse matrix techniques

Queueing models for kitting processes are rather complicated. Indeed, the mod-
elled kitting process has a multidimensional state space. Even for relative mod-
erate buffer capacity, the multidimensionality leads to huge state spaces; this is
the so-called state-space-explosion problem.

For many queueing systems, infinite-buffer assumptions may mitigate this
problem. Given some buffer system with finite capacity, more efficient numer-
ical routines can be constructed for the corresponding queueing system with
infinite capacity. Unfortunately, as mentioned above, the infinite-buffer-capacity
assumption is not applicable for kitting processes and therefore cannot simplify
the analysis. Recall that the infinite-capacity model is always unstable. For all
input parameters except trivial ones (no arrivals), some or all of the queues grow
unbounded with positive probability.
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Consequently, the multidimensionality of the state space and the inapplica-
bility of the infinite-buffer assumption yield Markov chains with a finite but very
large state space. However, the number of possible state transitions from any spe-
cific state is limited. This means that most of the entries in the generator matrix
are zero; the matrix is sparse. In contrast to matrix-analytic methods, sparse
matrix techniques have hardly been used in queueing theory. As illustrated by
the numerical examples, using sparse matrices and their associated specialized
algorithms results in manageable memory consumption and processing times,
compared to standard algorithms.

The method used here to solve the sparse matrix equation is the iterative
method GMRES (Generalized Minimum Residual) [13]. Direct methods are not
applied because they are too slow or even unusable for large matrices. The GM-
RES method approximates the exact solution of a matrix equation, say Ax = b,
by a vector xn ∈ Kn in a Krylov subspace Kn that minimises the norm of the
residual Axn − b. Since every subspace is contained in the next subspace, the
residual decreases monotonically. The amount of work and storage required per
iteration increases linearly with the iteration count. Hence, the cost of n iter-
ations grows O(n2) which is a major drawback of GMRES. This limitation is
usually overcome by restarting the algorithm. After a chosen number of itera-
tions m, the accumulated data are cleared and the intermediate results are used
as the initial data for the next m iterations. This procedure is repeated until
convergence is achieved. Choosing the value for m is key for proper functioning
of the algorithm. If m is too small, GMRES may only converge slowly, or even
fail to converge. A value of m that is larger than necessary involves excessive
work and uses more storage. Saad and Schultz [13] show that if the matrix A

is “nearly” positive real (only a few of the eigenvalues are in the left half of the
complex plane), then convergence is assured for a reasonably small value of m.

To ensure fast convergence, it is also key to properly choose the initial vector
that is passed on to the algorithm. We rely on MATLAB’s build in GMRES
algorithm which assumes a zero initial vector by default. Not unsurprisingly,
calculation speed improves by assuming a uniform initial vector, even if this as-
sumption is incorrect. Calculation speed can be further improved as, in practice,
performance measures are not calculated for an isolated set of parameters. E.g.,
when a plot is created, a parameter is varied over a range of values. In this case,
a previously calculated steady state vector for some set of parameters can be
used as a first estimate of the steady state vector for a new “perturbed” set of
parameters. Using previously calculated steady-state vectors is trivial if the state
spaces of the parameter sets are equal. In this case, the previously calculated
steady-state vector can be passed on unmodified. If the state space changes, the
steady-state vector must be rescaled to the new state space. In general, adding
zero-probability states if the state-space increases or removing states if the state
space decreases, turns out to be ineffective. This is easily explained by a sim-
ple example. Assume that we increase the queue capacity of one of the kitting
buffers. Typically, even for moderate load, a considerably amount of probability
mass can be found for queue size equal to capacity. Increasing the queue size
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and assigning zero probability to the new states is not a good estimate for the
new steady-state vector. Also for the system with higher capacity, a consider-
ably amount of probability mass can be found when the queue size equals the
capacity (while zero probabilities were assigned) .

4 Numerical results

With the balance equations at hand, we now illustrate our numerical approach
by means of some examples.

4.1 Bursty part arrivals

As a first example, we quantify the impact of production inefficiency on the
performance of a kitting process. To this end, we compare kitting buffers with
Poisson arrivals to corresponding kitting systems with interrupted Poisson ar-
rivals, the arrival interruptions account for inefficiency in the production process.
Kit assembly times are assumed to be exponentially distribution with service rate
equal to one, this value being independent of the number of parts in the different
queues. This is a kitting process with Markovian arrivals as described in example
2 in section 2.

The interrupted Poisson process considered here is a 2-state Markovian pro-
cess. In the active state, new parts arrive in accordance with a Poisson process
with rate λ whereas no new parts arrive in the inactive state. Let α and β denote
the rate from the active to the inactive state and vice versa, respectively. We
then use the following parameters to specify the interrupted Poisson process,

σ =
β

α+ β
, κ =

1

α
+

1

β
, ρ = λσ .

Note that σ is the fraction of time that the interrupted Poisson process is active,
the absolute time parameter κ is the average duration of an active and an inactive
period, and ρ is the arrival load of the parts.

Figure 3 shows the mean number of parts in buffer 1 versus the arrival load,
for various values of the buffer capacities C1 and C2 and for Poisson arrivals
(for both buffers) as well as for interrupted Poisson arrivals (again for both
buffers). For both Poisson process and interrupted Poisson process, the arrival
load equals ρ. In addition, we set σ = 0.4 and κ = 10 for the interrupted Poisson
processes. Clearly, the mean buffer content increases as the arrival load increases
as expected. Moreover, if more buffer capacity is available, it will also be used:
the mean buffer content increases for increasing values of C1 = C2. Comparing
interrupted Poisson and Poisson processes, burstiness in the production process
has a negative impact on performance — more buffering is required — if the
queues are not fully loaded (ρ < 1). As for ordinary queues, the opposite can be
observed for overloaded buffers.

By numerical examples, we could quantify expected buffer behaviour - e.g.
more production yields higher queue content, higher buffer capacity mitigates
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Mean number of parts in buffer 1

Fig. 3. The mean converges faster to its capacity for the basic than for the IPP-model
for both parts.

blocking of the production, etc. However, less trivial behaviour can be observed
as well. Figure 4 depicts the blocking probability versus the buffer capacity C1 =
C2. The arrival load is set to ρ = 0.8 for all curves. We compare performance of
kitting with Poisson arrivals to kitting with interrupted Poisson arrivals in one
buffer and in both buffers. As in the preceding figure, the interrupted Poisson
process are characterised by σ = 0.4 and κ = 10. As expected, the blocking
probability decreases for increasing values of the buffer capacities. Moreover, to
reduce the blocking probability, more buffer capacity is required for the case of
two interrupted Poisson processes than for the case of two Poisson processes.
For the kitting process with one Poisson and one interrupted Poisson process,
non-trivial performance results can be observed. Namely, interruptions in the
production of a part more negatively affect buffer performance of the other
part. If the arrivals to buffer 1 are interrupted, then we observe higher blocking
probabilities in buffer 2 than in buffer 1.

4.2 Phase-type distributed kitting times

The second numerical example quantifies the impact of the distribution of the kit-
ting times on kitting performance. In particular, we here study Erlang-distributed
kitting times. Limiting ourselves to Poisson arrivals in both queues, this numer-
ical example fits example 3 of section 2.

Figures 5 and 6 depict the mean number of parts in buffer 1 and the blocking
probability in buffer 1 for the kitting process and, as a reference point, for the



12

10 50 100
0

0.05

0.1

0.15

0.2

0.25

C
1
=C

2

 

 

Poisson for both parts

IPP for part 1 (buffer 1)

IPP for part 1 (buffer 2)

IPP for both parts

Blocking probability

Fig. 4. Interruptions in the production of a part more negatively affect buffer perfor-
mance of the other part.

M/PH/1/N queue as well. In both figures, the arrival load is varied and different
values of the variance of the kitting time distribution are assumed as indicated.
The mean kitting time is equal to 1 for all curves and the capacity of both buffers
is equal to 20. In underload (ρ < 1), kitting performs worse than the M/PH/1/N
queue: the mean queue content and the blocking probability have a higher value.
This follows from the fact that kitting is blocked when only one of the queues is
empty. Even if there are parts in the system, kitting can be blocked. By increasing
the load, it is obvious that the queue content converges to the capacity and the
blocking probability to one. It is most interesting to observe that the variation in
the service time only has a small effect on these performance measures. Indeed,
there is no significant performance difference when σ2 equals 1/4 and when it
equals 1/8.

5 Conclusion

In this paper, we investigate kitting buffers of two parts in a Markovian setting.
As our numerical results show, the interplay between the different queues leads
to complex performance behaviour. Interruptions in the production of a part
more negatively affect buffer performance of the other part. Indeed, the buffer
of the other part will be full and empty more often. Furthermore, in a situation
of overload, the mean average of parts is higher when we consider variation in
service time than when not.
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As most of the entries in the generator matrix have a value equal to zero, we
apply sparse matrix techniques. To determine the unknowns of the system, we
used the method GMRES (Generalized Minimum Residual). The solution is not
exact but performs well in terms of solution speed and accuracy. Furthermore,
the current numerical methodology does not impose any restrictions on the var-
ious involved intensities and hence allow for many extensions. Therefore, we can
establish that the sparse matrix techniques are a valuable queueing theoretic
numerical approach to estimate the performance of the kitting process.

Some future work includes multiple queue kitting models, batch-service and
batch-arrival queues, arrival processes adapted to the queue size considering
delivery and ordering cost, etc.
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