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ABSTRACT

In two-view stereo matching, the disparity of occluded pixels

cannot accurately be estimated directly: it needs to be inferred

through, e.g., regularisation. When capturing scenes using

a plenoptic camera or a camera dolly on a track, more than

two input images are available, and – contrary to the two-

view case – pixels in the central view will only very rarely

be occluded in all of the other views. By explicitly handling

occlusions, we can limit the depth estimation of pixel ~p to

only use those cameras that actually observe ~p. We do this

by extending variational stereo matching to multiple views,

and by explicitly handling occlusion on a view-by-view basis.

Resulting depth maps are illustrated to be sharper and less

noisy than typical recent techniques working on light fields.

Index Terms— stereo, light field, depth estimation

1. INTRODUCTION

Depth maps for scenes can be acquired in several ways. An

active measurement of scene depth is possible using time-of-

flight cameras; yet these are still limited in spatial resolution.

In stereo matching techniques, the disparity u(x, y) links pix-

els on row y and column x in image IC to pixels in image IR
representing the same scene point. When the cameras share

their viewing plane and are connected by a line segment par-

allel to their scan-line direction, the images are said to be rec-

tified and the correspondences lie on the same scan line:

IC(x, y) = IR(x+ u(x, y), y) (1)

The actual depth of a given pixel is inversely proportional to

its disparity (from trigonometry, e.g. as in figure 1).

As technology advances, it becomes more and more feasi-

ble to capture scenes with more than two cameras, for exam-

ple with a plenoptic camera [1], which results in a light field

representation of the scene [2]. As more cameras observe the

scene, all this information can improve the disparity/depth es-

timation for the scene.

This work was performed within the iMinds ASPRO+ project and

”Multi-camera human behavior monitoring and unusual event detection”
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Fig. 1: The central camera and the reference camera observe

the same point P at x1 and x2. The orthogonal distance from

the baseline to point P can be calculated when the baseline

width, disparity and focal distance of the cameras are known.

In this paper we evaluate the extension of the variational

stereo matching [3] approach to a light field set-up as in fig-

ure 1. We start with an overview of existing work. In sec-

tion 3 we formulate the problem mathematically and describe

our proposed method. Finally, results are presented and the

conclusion is drawn.

2. EXISTING WORK

Traditional approaches to (two-image) stereo matching con-

sist of computing large cost fields which are aggregated over

neighbourhood windows [5, 6] to achieve spatial regularisa-

tion. For each pixel, a cost per candidate disparity value is

computed. These cost fields are then aggregated over spa-

tial neighbourhoods after which the best disparity for each

pixel is chosen. Extensions include the use of image trans-

forms, such as the census transform [7, 3] or a normalized

cross-correlation [8], to make the cost field more robust to il-

lumination changes and other influences, e.g. vignetting. Our

proposed method will allow for multiple image transforms to

be used simultaneously, in order to allow us to complement

the strengths of one transform with those of another as in [9].
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Fig. 2: Pixels are unlikely to be occluded in all views, because the occlusion occurs in opposite directions in case of a central

view. From left to right: the central view, the pixels not visible in the right view and the pixel invisible in the left one. The input

is a detail from the dolls sequence of Middlebury [4].

Fig. 3: An example slice through a light field showing the

same scan line in all of the views. From top to bottom in the

image the camera is moving from left to right. The closer to

vertical its trajectory is, the closer a pixel is to the baseline.

Borrowing from optical-flow techniques such as [8], a re-

formulation of stereo matching results in a more direct opti-

misation of the disparity map [3] in a coarse-to-fine approach.

The authors of [10] adopt a similar approach in order to accu-

rately estimate disparity maps from light fields. Our proposed

method will explicitly take occlusions into account.

An alternative approach to computing depth from light

fields is presented in [11]: in a light field representation,

the depth of a pixel is equivalent to the slope of the line it

traces in the light field, illustrated in figure 3. Through visual

evaluation we illustrate that our proposed method results in

smoother depth maps while respecting image boundaries.

This results in more visually pleasing interpolated views:

when generating new views, one of the most important fac-

tors is the adherence to depth discontinuities in the scene.

While plenoptic cameras generally have a two-dimensional

grid of cameras (due to the microlenses), the focus of our re-

search lies on sequences recorded with a camera mounted on

a track. In such cases, the camera trajectory is restricted to a

single dimension. The extension of the work presented here

to a two-dimensional grid is relatively straightforward.

3. MULTI-VIEW STEREO

We wish to estimate the disparity map of a central view

IC(x, y) based on a one-dimensional light field comprising

the central camera and K additional views Ik(x, y) (see fig-

ure 1). Trigonometry shows that the ratio of disparities for

two different cameras relative to the central camera is directly

proportional to the ratio of these cameras’ (signed) distances

to the central camera.

This means that, when denoting the location of the kth

camera by θk, the relation is:

IC(x, y) = Ik(x+ θku(x, y), y), ∀k ∈ [1,K] . (2)

This formulation assumes a one-dimensional light field. In

the case of a two-dimensional light field this model should

similarly include a vertical shift in correspondence matches.

In this paper we will restrict ourselves to a single dimension.

Ideally, the estimate of the disparity map fulfils equa-

tion (2) in all pixels of the image. However, this is not the

case in areas of occlusion (where two pixels in Ik(x, y) are

mapped onto the same pixel in IC(x, y)) or simply because

the pixel lies outside of the bounds of Ik(x, y). Two-view

methods generally use regularisation to estimate the disparity

of such pixels [3].

In the case of a one-dimensional light field, e.g. from a

camera dolly on a track, it is unlikely for a pixel to be oc-

cluded in all of the views (both to the left and to the right of

the central view) as illustrated in figure 2. Generally, each

pixel is visible in at least one of the other views. Pixels which

are occluded in all views are only rarely caused solely by oc-

clusions within the scene – they are most often caused by

pixel correspondences being occluded in part of the views and

lying outside of the image bounds in the others.

3.1. Cost Function

Ideally, equation (2) is fulfilled in all of the pixels in the im-

age. To express the quality of an estimate u, we first warp the

image with the estimated disparity map and call it Ĩk:

Ĩk(x, y, û) = Ik(x+ θkû(x, y), y). (3)

Per equation (2) this warped version should resemble the cen-

tral view as much as possible, which we evaluate with the

Euclidean norm:

d(IC , Ik, û) =
∑

(x,y)∈Ω

‖IC(x, y)− Ĩk(x, y, û)‖
2, (4)

where Ω is the set of all of pixels in the image plane.



Fig. 4: Examples of neighbourhood transforms for an input

neighbourhood (left). In the middle, the census transform re-

sults in either -1,0 or 1 depending on whether it has a lower

value, a similar value or a higher value than the central pixel.

To the right, the normalization transform subtracts the mean

from each pixel and divides by the neighbourhood variance.

In [10] the authors note that the ℓ2 norm can be sensitive

to outliers, for example from occlusions, and instead use the

ℓ1 norm. Because of our explicit occlusion handling, we can

use the ℓ2 norm which has the benefit of being differentiable.

As the authors of [10] state, the comparison between the

ground truth IC(x, y) and Ĩk (the current modelled view for

the central camera) is susceptible to illumination changes (e.g.

due to vignetting or dynamic scenes). They use a structure-

texture decomposition in order to circumvent this. We will

instead use various image transforms to achieve illumination-

invariance, as was discussed in [9] for optical flow. Examples

of such transforms include the census transform [7] and the

normalization transform [8] (illustrated in figure 4). The lat-

ter results in the normalized cross-correlation when using the

Euclidean norm in equation (4), as shown in [8].

Transforming the images in T ways, we denote the tth

transformed version of input image k by FtIk. Then the data

error term for camera k and transform Ft is d(FtIC ,FtIk, û).
The complete data fidelity term is:

Ed(û) =
1

K

T
∑

t=1

λt

|Nt|

K
∑

k=1

d(FtIC ,FtĨk, û). (5)

The divisions by K (the number of cameras) and |Nt| (the

neighbourhood size for the tth transform) imply that the

weighting between data fidelity and regularisation (see later)

does not change as the number of input images or image

transforms increases.

The λt are weighting factors for the various transforms,

which serves two purposes. First of all, the weighting fac-

tors equalize the range of the transforms so that one trans-

form does not have much more influence than another simply

because the transformed values are larger by an order of mag-

nitude. Secondly, the weighting factors also allows to trade

off the data fidelity against the regularisation introduced later.

As mentioned earlier, we explicitly take occlusions into

account. With the current formulation of the cost function,

this is done by limiting the summation in equation (4) to the

non-occluded pixels. Additionally, in line with the earlier

note on a constant weighting between data fidelity and reg-

ularisation, the division by K in equation (5) is revised on a

pixel-by-pixel basis, now replaced by the number of views in

which each pixel is visible. To decide whether a pixel (x, y)
from the central view is visible in a given view, we use a z-

buffer based warping: (x, y) is visible in the generated view if

and only if it is the pixel closest to the camera that is warped to

its corresponding pixel. This number will generally be larger

than zero, but on image boundaries it may well be some pix-

els are visible in no other view. In this case, we disregard data

fidelity information for this pixel and infer the disparity solely

from regularisation.

We adopt the same regularisation term as [8]. Based on

the bilateral filtering, it allows depth discontinuities only in

those locations where color discontinuities are present. This

assumes that the foreground and background have distinct

colours. Denoting the bilateral filter coefficient between pix-

els (x, y) and (p, q) as b(x,y),(p,q), the regularisation term is

defined over the neighbourhoods N (x, y):

Es(û) =
∑

(x,y)∈Ω

∑

(p,q)∈N (x,y)

b(x,y),(p,q)‖û(x, y)− û(p, q)‖1.

(6)

3.2. Optimisation

The optimisation of the cost function results in the following

minimization problem:

û = argmin
u

Ed(u) + Es(u) (7)

Our minimization approach for equation (7) is based

on [8], adjusted to our cost function. Non-differentiability

of the smoothness term is resolved by defining the linear

operator K: Ku((x, y), n) = u(N(x,y)(n)) − u(x, y),
where n is a linear index to the regularisation neighbour-

hood. Using F (~y) = ‖~b · ~y‖1, the smoothness term becomes

Es(u) = F (Ku). Finally, the problem is reformulated using

primal-dual techniques [13]:

û = argmin
u

max
q

Ed(u) + 〈Ku, q〉 − F ∗(q). (8)

In this expression, 〈·, ·〉 is the inner product in R
|Ω|×|N|, and

F ∗ is the convex conjugate of F :

F ∗(q) =

{

0 if q ∈ Q

∞ elsewhere

Q = {q ∈ R
|Ω|×|N| |

∀~i ∈ Ω, ~s ∈ N~i : ‖q(
~i, ~s)‖1 ≤ b~i,~s}

(9)

Now we optimise the problem by alternating gradient de-

scent (respectively gradient ascent) between the variables u

and q. In order to make the data term easily differentiable,

we use the the first-order Taylor approximation in terms of

changes to the disparity map in equation (3):

Ĩk(x, y, u+∆u) ≈ Ĩk(x, y) + θk∆u(x, y)
∂

∂x
Ĩk(x, y),

(10)



Fig. 5: Depth estimation for the couch dataset from [11] with 10 input frames. From left to right: the input image for the central

camera, our depth estimate, a detail of the depth estimate from [11] and our estimate for that same detail.

Fig. 6: Depth estimation for the mona dataset from [12]. From left to right: the input image for the central camera, our depth

estimate, the depth estimate from [10] for a detail and our estimate for that same detail. Note that we only used the central line

in the light field for each pixel, while [10] exploited the entire light field.

Fig. 7: Illustration for the use of multiple input images: the

left image shows estimation using only two images (4 and 5),

while the right shows the result using all five. Input images

courtesy of the Middlebury 2003 dataset[15].

optimising ∆u in each iteration. Because the solution method

is based on a first-order Taylor approximation the step ∆u

should not be too large. In order to enforce this, proximal

point terms are added to equation (8) as in [14] (τ and η are

tunable step sizes):

1

2τ
‖u− u(i)‖2 −

1

2η
‖q − q(i)‖2. (11)

4. RESULTS

In figure 7 we illustrate that our estimate from more than two

(five in this example) images is more accurate than the esti-

mation based on two images, as one would expect. Secondly,

we compare our depth estimate to the results given by [11]

and [10] as seen in figures 5 and 6 (best viewed in colour).

The proposed method results in less noisy estimations and

our estimate follows the edges better. Remaining problems

are structures smaller than their own disparity (the small bar

in figure 5) and parts of the image where foreground and back-

ground have very similar colours (the painting and the plant

in figure 6).

5. CONCLUSION

Here we have presented an approach to depth estimation in

multi-camera set-ups inspired by two-view stereo matching.

Through explicit occlusion handling we are able to exploit

the characteristic of light fields that a pixel is only rarely oc-

cluded in all of the other views (and then usually just because

in some views it lies outside of the image). We use multiple

image transforms, complementing the strong suits of one by

those of another. When comparing the output to that of ex-

isting techniques, we illustrate that our proposed method re-

sults in smoother disparity estimates adhering better to image

bounds: an important characteristic when using the estimated

disparities in view interpolation.

Applying the proposed method to two-dimensional light

fields rather than one-dimensional ones is straightforward and

will allow even better occlusion handling. Yet, for the pro-

posed method to be applicable in more practical applications,

requiring all camera locations to be known accurately should

be less stringent: jointly estimating their locations and the dis-

parity may provide the solution. This will be the topic of our

future work.



6. REFERENCES

[1] E.H. Adelson and J.Y.A. Wang, “Single lens stereo with

a plenoptic camera,” Pattern Analysis and Machine In-

telligence, IEEE Transactions on, vol. 14, no. 2, pp. 99–

106, Feb 1992.

[2] Marc Levoy and Pat Hanrahan, “Light field rendering,”

in Proceedings of the 23rd Annual Conference on Com-

puter Graphics and Interactive Techniques, New York,

NY, USA, 1996, SIGGRAPH ’96, pp. 31–42, ACM.

[3] R. Ranftl, S. Gehrig, T. Pock, and H. Bischof, “Pushing

the limits of stereo using variational stereo estimation,”

in Intelligent Vehicles Symposium (IV), 2012 IEEE, June

2012, pp. 401–407.

[4] D. Scharstein and Chris Pal, “Learning conditional ran-

dom fields for stereo,” in Computer Vision and Pat-

tern Recognition, 2007. CVPR ’07. IEEE Conference

on, June 2007, pp. 1–8.

[5] Daniel Scharstein and Richard Szeliski, “A taxonomy

and evaluation of dense two-frame stereo correspon-

dence algorithms,” International Journal of Computer

Vision, vol. 47, no. 1-3, pp. 7–42, 2002.

[6] J. Braux-Zin, R. Dupont, and A. Bartoli, “A general

dense image matching framework combining direct and

feature-based costs,” in Computer Vision (ICCV), 2013

IEEE International Conference on, Dec 2013, pp. 185–

192.

[7] Ramin Zabih and John Woodfill, “Non-parametric lo-

cal transforms for computing visual correspondence,”

in Computer Vision ECCV ’94, Jan-Olof Eklundh, Ed.,

vol. 801 of Lecture Notes in Computer Science, pp. 151–

158. Springer Berlin Heidelberg, 1994.

[8] Marius Drulea and Sergiu Nedevschi, “Motion estima-

tion using the correlation transform,” Image Processing,

IEEE Transactions on, vol. 22, no. 8, pp. 3260–3270,

2013.

[9] Li Xu, Jiaya Jia, and Y. Matsushita, “Motion detail pre-

serving optical flow estimation,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 2012.

[10] Stefan Heber, Rene Ranftl, and Thomas Pock, “Varia-

tional shape from light field,” in Energy Minimization

Methods in Computer Vision and Pattern Recognition,

Anders Heyden, Fredrik Kahl, Carl Olsson, Magnus Os-

karsson, and Xue-Cheng Tai, Eds., vol. 8081 of Lecture

Notes in Computer Science, pp. 66–79. Springer Berlin

Heidelberg, 2013.

[11] Changil Kim, Henning Zimmer, Yael Pritch, Alexan-

der Sorkine-Hornung, and Markus Gross, “Scene re-

construction from high spatio-angular resolution light

fields,” ACM Trans. Graph., vol. 32, no. 4, pp. 73:1–

73:12, July 2013.

[12] Sven Wanner, Stephan Meister, and Bastian Goldluecke,

“Datasets and benchmarks for densely sampled 4d light

fields,” in VMV’13, 2013, pp. 225–226.

[13] Antonin Chambolle and Thomas Pock, “A first-order

primal-dual algorithm for convex problems withappli-

cations to imaging,” Journal of Mathematical Imaging

and Vision, vol. 40, no. 1, pp. 120–145, 2011.

[14] R. Rockafellar, “Monotone operators and the proximal

point algorithm,” SIAM Journal on Control and Opti-

mization, vol. 14, no. 5, pp. 877–898, 1976.

[15] D. Scharstein and R. Szeliski, “High-accuracy stereo

depth maps using structured light,” in Computer Vision

and Pattern Recognition, 2003. Proceedings. 2003 IEEE

Computer Society Conference on, June 2003, vol. 1, pp.

I–195–I–202 vol.1.


