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Abstract—We present a novel parameterized model order
reduction technique applicable to the Partial Element Equivalent
Circuit analysis that provides parametric reduced order models,
stable and passive by construction, over a user defined design
space. We treat the construction of parametric reduced order
models on scattered design space grids. This new parameterized
model order reduction technique is based on the hybridiza-
tion of traditional passivity-preserving model order reduction
methods and interpolation schemes based on a class of positive
interpolation operators, in order to guarantee overall stability
and passivity of the parametric reduced order model. Pertinent
numerical examples validate the proposed approach.

I. I NTRODUCTION

The analysis and design of complex high-speed systems
require the use of 3-D electromagnetic (EM) methods [1]–
[3]. These EM methods usually results in very large systems
of equations which are often prohibitively expensive to solve
and model order reduction (MOR) techniques are therefore
needed to reduce the resulting high model complexity and
computational cost of the simulations [4], [5]. The Partial
Element Equivalent Circuit (PEEC) method has gained in-
creasing popularity among electromagnetic compatibility en-
gineers, since it is able to transform the EM system under
examination into a passive RLC equivalent circuit [2], [6], [7].
Nonlinear circuit devices, such as drivers and receivers, are
usually connected with PEEC equivalent circuits using a time
domain circuit simulator (e.g. SPICE). However, inclusion of
the PEEC model directly into a circuit simulator may be
computationally intractable for complex structures, because
the number of circuit elements can be in the tens of thousands.
MOR techniques become necessary to reduce the size of a
PEEC model [4], [5].

Optimization and design space exploration are usually per-
formed during a typical design process that consequently
requires multiple frequency-domain simulations for different
design parameter values (e.g. layout features). Performing
these design activities by means of EM simulations may often
be not feasible due to the high computational complexity.
Traditional MOR techniques perform model reduction only
with respect to frequency and a new reduced model has to be
generated each time a design parameter is modified, thereby

reducing the CPU efficiency. Parameterized model order re-
duction (PMOR) methods are therefore needed to efficiently
perform these design activities. PMOR techniques can reduce
large systems of equations with respect to frequency and other
design parameters and finally build a parameterized reduced
order model.

A number of PMOR methods have been developed. Some
PMOR techniques are based on statistical performance anal-
ysis [8], [9]. The multiparameter moment-matching methods
presented in [10], [11] use a subspace projection approach
and guarantee the passivity. However, the resulting reduced
models usually suffer from oversize when the number of
moments to match is high, either because high accuracy (order)
is required or because the number of parameters is large.
The Parameterized Interconnect Macromodeling via a two-
directional Arnoldi process (PIMTAP) algorithm presented in
[12] is numerically stable, preserves the passivity of parameter-
ized RLC networks, but, such as all multiparameter moment-
matching based PMOR techniques, it is suitable only to a low-
dimensional design space.

This paper proposes a PMOR method applicable to PEEC
analysis that provides parametric reduced order models, stable
and passive by construction, over the design space of interest.
We treat the construction of parametric reduced order models
on scattered design space grids that are more flexible than fully
filled grids and allow the use of adaptive sampling schemes
that can be useful to select a minimal and well-distributed
set of points in the design space. This new PMOR technique
combines traditional passivity-preserving MOR methods and
interpolation schemes based on a class of positive interpolation
operators [13], in order to guarantee overall stability and
passivity of the parametric reduced order model. The hy-
bridization of PEEC models, MOR methods and interpolation
schemes is used in the proposed PMOR methods. Recently,
a method has been proposed in [14], based on an efficient
and reliable combination of rational identification and positive
interpolation schemes to build parameterized macromodels,
stable and passive by construction, over the design space of
interest, starting from multivariate data samples of the input-
output system behavior and not from system equations as in
all PMOR techniques previously discussed.



This paper is organized as follows. Section II describes
the modified nodal analysis (MNA) equations of the PEEC
method. Section III describes the proposed PMOR method.
Finally, some pertinent numerical examples are presented in
Section IV, validating the proposed technique.

II. PEEC FORMULATION

The PEEC method [2] stems from the integral equation form
of Maxwell’s equations. With respect to other EM methods,
it is worth pointing out its capability to provide a circuit
interpretation of the EFIE equation, thus allowing to handle
complex problems involving both circuits and electromagnetic
fields [2], [7], [15]–[17]. In what follows, we describe a quasi-
static PEEC formulation [2] that approximates the full-wave
PEEC approach [15].

The original approach [2], requires the discretization of
volumes and surfaces into elementary regions, hexahedra and
patches respectively [17], over which the current and charge
densities are expanded into a series of pulse basis func-
tions. Both conductors and dielectrics can be easily modeled.
Conductive elementary volumes are modeled by their ohmic
resistance, while polarization effects are described by means of
the excess capacitance which is placed in series to the partial
inductance of each elementary volume cell. An example of
PEEC circuit electrical quantities is illustrated, in the Laplace
domain, in Fig. 1 where the current controlled voltage sources
sLp,ijIj and the current controlled current sourcesIcci model
the magnetic and electric field coupling, respectively.
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Fig. 1. Illustration of PEEC circuit electrical quantities for a conductor
elementary cell.

Let us assume that the meshing process of conductors and
dielectrics has generatedni volume cells where currents flow
and nn surface cells where charge is located; the resultant
number of elementary cells of conductors and dielectrics
is nc and nd, respectively and that of electrical nodes is
nn. Furthermore, let us assume to be interested in gener-
ating an admittance representationY(s) having np output
currents ip(t) under voltage excitationvp(t). If the MNA
approach [18] is used, the global number of unknowns is
nu = ni + nd + nn + np and an admittance representation
of the PEEC circuit is obtained

C
dx(t)

dt
= −Gx(t) + Bu(t) (1a)

ip(t) = LT x(t) (1b)

wherex(t) ∈ <nu×1, C ∈ <nu×nu , G ∈ <nu×nu and B =
L, B ∈ <nu×np . This is an admittancenp-port formulation
Y(s) = LT (sC + G)−1B, whereby the only sources are the
voltage sources at thenp-port nodes. If we consider N design
parametersg = (g(1), ..., g(N)) in addition to frequency, the
equations (1a)-(1b) become

C(g)
dx(t, g)

dt
= −G(g)x(t, g) + B(g)u(t) (2a)

ip(t, g) = L(g)T x(t, g) (2b)

A. Properties of PEEC formulation

Stability and passivity are fundamental properties for a
model that is used in a simulator that performs transient
analysis. While a passive system is also stable, the reverse
is not necessarily true [19]. Passivity refers to the property of
systems that cannot generate more energy than they absorb
through their electrical ports. When a passive system is ter-
minated on any set of arbitrary passive loads, none of them
will cause the system to become unstable. A linear network
described by admittance matrixY(s) is passive (or positive-
real) if [20]:

1) Y(s∗) = Y∗(s) for all s, where “∗” is the complex
conjugate operator.

2) Y(s) is analytic in<e(s) > 0.
3) Y(s) is a positive-real matrix, i.e. :

z∗T
(
Y(s) + YT (s∗)

)
z ≥ 0 ; ∀s : <e(s) > 0 and any

arbitrary vectorz.

Since the matricesP−1, Lp, Cd, R are symmetric nonnegative
definite matrices by construction, it is straightforward to prove
that the matricesC, G satisfy the following properties

C = CT ≥ 0 (3a)

G + GT ≥ 0 (3b)

The properties of the PEEC matricesB = L, C = CT ≥
0, G + GT ≥ 0 ensure the passivity of the PEEC admittance
model Y(s) = LT (sC + G)−1B [21] and allow to exploit
the passivity-preserving capability of the Laguerre-based MOR
algorithm.

III. PARAMETERIZED MODEL ORDER REDUCTION

In this section we describe a PMOR technique that is able to
generate reduced order models as a function of frequency and
N design parametersg = (g(1), ..., g(N)), such as the layout
features of a circuit (e.g. lengths, widths,...) or the substrate
parameters (e.g. thickness, dielectric constant, losses,...). The
PMOR method aims at accurately approximating the original
scalable system (having a high complexity) with a reduced
scalable system (having a low complexity) by capturing the



behavior of the original system with respect to frequency
and other design parameters. Stability and passivity of the
parametric reduced model are guaranteed over the entire
design space of interest by construction. The different steps
of the proposed PMOR method are shown by a flowchart in
Fig. 2.
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Fig. 2. Flowchart of the proposed PMOR method.

A. Root ROMs

As first step, the proposed PMOR technique computes
a set of stable and passive reduced order models of the
PEEC admittance matrixY(s, g) using the Laguerre-based
algorithm for different design parameters values in the design
space{gk}Ktot

k=1 . The S-representation is used to describe the
broadband frequency behavior of microwave systems, since
at microwave frequencies, theY-representation cannot be
accurately measured because the required short-circuit tests
are difficult to achieve over a broad range of frequencies.
Consequently, a transformation fromY-representation into
S-representation is performed, while preserving stability and
passivity by the procedure described in Section III-B. In this
paper we refer to these initialS-reduced order models asroot
ROMs. This initial step allows the separation of frequency
from the other parameters, in other words frequency is treated
as a special parameter. Everyroot ROM is related to a
specific point in the design space. The construction of the
root ROMsresults in a family of univariate reduced models
related to a specific set of points in the design space. The
design spaceD(g) is defined as the parameter spaceP(s, g)
without frequency. The parameter spaceP(s, g) contains all
parameters(s, g). If the parameter space is N-dimensional, the
design space is (N-1)-dimensional.

B. Y-S transformation

The definition of theS-representation and its relation to
the other system representations depend on the reference
impedance at each port Z0,i, that in practice is often chosen
equal to50 Ω. Let Z0 be a real diagonal matrix such that
Z0(i, i) = Z0,i, then theS-representation is related to theY-
representation by

S(s) =
(
I− Z1/2

0 Y(s)Z1/2
0

)(
I + Z1/2

0 Y(s)Z1/2
0

)−1
(4)

It is possible to obtain a descriptor form
Sr(s, g) = [C̃r(g), G̃r(g), B̃r, L̃r(g), D̃r(g)] from
a descriptor form of the reduced order model
Yr(s, g) = [Cr(g), Gr(g), Br(g), Lr(g)] obtained by
means of the Laguerre-based MOR algorithm, using the
following equations [22]

C̃r(g) = Cr(g)

G̃r(g) = Gr(g) + Br(g)Z0Lr(g)T

B̃r(g) =
√

2Br(g)Z1/2
0

L̃r(g) = −B̃r(g)

D̃r(g) = I (5)

We note that the transfer functionY(s) is positive-real if and
only if S(s) is bounded-real [20], i.e.:

1) S(s∗) = S∗(s) for all s, where “∗” is the complex
conjugate operator.

2) S(s) is analytic in<e(s) > 0.
3) I− ST (s∗)S(s) ≥ 0 ; ∀s : <e(s) > 0.

The bounded-realness property represents the passivity prop-
erty for systems described by scattering parameters. Once a
passive and stableY-reduced model is obtained by means of
the Laguerre-based MOR technique, aY-S transformation is
performed using the set of equations (5), which results in a
reducedS-representation that is still stable and passive.

C. (N+1)-D PMOR

Once a set ofroot ROMsis available, the next step of the
PMOR algorithm is focused on gluing together theroot ROMs
by a multivariate interpolation scheme to obtain a parametric
reduced modelSr(s, g) that preserves stability and passivity
over the entire design space. Multivariate interpolation can be
realized by means of tensor product [23] or tessellation [24]
methods. Tensor product multivariate interpolation methods
require that the data points are distributed on a fully filled, but
not necessarily equidistant, rectangular grid, while tessellation-
based multivariate interpolation methods can handle scattered
or irregularly distributed data points. In this paper, we treat the
scattered design space grids that are more flexible than fully
filled grids and allow the use of adaptive sampling schemes
that can be useful to select a minimal and well-distributed set
of points in the design space. We propose an interpolation
scheme able to cope with scattered design space grids.



Multivariate simplicial interpolation: Before performing
the multivariate interpolation process, the design space is
divided into cells using simplices [24]. In 2-D this process
is called triangulation, while in higher dimensions it is called
tessellation. A simplex, or N-simplex, is the N-D analogue of
a triangle in 2-D and a tetrahedron in 3-D. A simplex in N
dimensions has N+1 vertices. For each data distribution many
tessellations can be constructed. The minimal requirement
is that the simplices do not overlap, and that there are no
holes. Delaunay tessellation [24] is a well-known tessellation
technique stemming from computational geometry. It is used
in different fields such as mesh generation, surface recon-
struction, molecular modeling and tessellation of solid shapes.
Delaunay tessellation in an N-dimensional space is a space-
filling aggregate of simplices and can be performed using
standard algorithms [25]. We indicate a simplex region of
the design space asΩi, i = 1, ..., P and the corresponding
N+1 vertices asg Ωi

k , k = 1, ..., N+1. Once the tessellation of
the design space is accomplished, a tessellation-based linear
interpolation (TLI) is used to build a parametric reduced order
model. TLI performs a linear interpolation inside a simplex
using barycentric coordinates [26] as interpolation kernels and
it is therefore a local method. If the N-dimensional volume of
the simplex does not vanish, i.e., it is non-degenerate, any
point enclosed by a simplex can be expressed uniquely as a
linear combination of the N+1 simplex vertices. A parametric
reduced model can be written as:

Sr(s, g) =
N+1∑

k=1

Sr(s, g Ωi

k )`Ωi

k (g) (6)

where Ωi is the simplex that contains the pointg and the
barycentric coordinates̀Ωi

k (g) satisfy the following properties

0 ≤ `Ωi

k (g) ≤ 1 (7)

`Ωi

k (g Ωi
i ) = δk,i (8)

N+1∑

k=1

`Ωi

k (g) = 1 (9)

We remark that the interpolation process is local, because the
parametric reduced modelSr(s, g) at a specific point̂g in the
design spaceD(g) only depends on the N+1root ROMsat
the vertices of the simplex that contains the pointĝ. The TLI
method belongs to the general class of positive interpolation
schemes [13]. Stability is automatically preserved in (6), since
it is a weighted sum of stable rational models ofs. The proof
of the passivity-preserving property of the proposed PMOR
scheme over the entire design space is given in Section III-D.
We note that the interpolation kernels we propose only depend
on the design space grid points and their computation does
not require the solution of a linear system to impose an
interpolation constraint. In the bivariate(s, g) case, the inter-
polation scheme boils down to piecewise linear interpolation.
The bivariate reduced model we adopt can be written as

Sr(s, g) =
K1∑

k=1

Sr(s, gk)`k(g) (10)

where K1 is the number of theroot ROMs, and the interpola-
tion kernels`k(g) satisfy conditions (7)-(9).

The proposed PMOR technique is able to deal with scattered
design space grids, it is general and any interpolation scheme
that leads to a parametric reduced model composed of a
weighted sum ofroot ROMswith weights satisfying (7)-(9)
can be used.

D. Passivity-Preserving Interpolation

In this section we prove that the proposed PMOR method
preserves passivity over the entire design space. Concerning
theroot ROMs, we have already proven in Section III-B that all
three bounded-realness conditions are satisfied. Condition 1) is
preserved in (10) and the proposed multivariate extension (6),
since they are weighted sums with real nonnegative weights
of systems respecting this first condition. Condition 2) is
preserved in (10),(6), since they are weighted sums of stable
rational reduced models ofs. Condition 3) is equivalent to
‖S(s)‖∞ ≤ 1 (H∞ norm) [27], i.e., the largest singular value
of S(s) does not exceed one in the right-halfs-plane. Using
this equivalent condition, in the bivariate case we can write

‖Sr(s, g)‖∞ ≤
K1∑

k=1

‖Sr(s, gk)‖∞ `k(g) ≤
K1∑

k=1

`k(g) = 1

(11)

Similar results are obtained for the proposed multivariate
case (6), so condition 3) is satisfied by construction using
our PMOR method. We have demonstrated that all three
bounded-realness conditions are preserved in the novel PMOR
algorithm, using the sufficient conditions (7)-(9) related to the
interpolation kernels.

IV. N UMERICAL RESULTS

3-D example: Multiconductor system with variable separation

A multiconductor system composed of six conductors with
a length ` = 2 cm, a width W = 1 mm and a thickness
t = 0.2 mm has been modeled in this example. Fig. 3 shows
its cross section that depends on the horizontalSx and vertical
Sy spacing between the conductors. A trivariate reduced order
model is built as a function of frequency and the horizontal
and vertical spacing. Table I shows their corresponding ranges.
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Fig. 3. Cross section of the multiconductor system.



TABLE I
PARAMETERS OF THE MULTICONDUCTOR SYSTEM.

Parameter Min Max
Frequency (freq) 1 kHz 15 GHz
Horizontal spacing (Sx) 2 mm 3 mm
Vertical spacing (Sy) 1 mm 2 mm

The PEEC method is used to compute theC, G, B, L
matrices in (1a)-(1b) over an estimation grid composed of67
scattered values ofSx, Sy and a validation grid composed of
15 values ofSx and15 values ofSy. The order of all original
PEEC models is equal tonu = 702. Then, the Laguerre-based
MOR algorithm is used to build reduced models for the67
scattered values in the design space, each with a reduced order
q = 54. These scattered points in the 2-D design space com-
posed of the variables(Sx, Sy) are chosen by a maxmin Latin
hypercube design [28], enhanced by adding some data points
on the boundary of the design space. AY-S transformation
has been performed choosing Z0,i = 50 Ω, i = 1, ..., 6, which
results in a set of67 root ROMs. The six ports of the system
are defined between a conductor and the corresponding one
above. A trivariate reduced modelSr(s, Sx, Sy) is obtained
by multivariate simplicial interpolation of theroot ROMs. Fig.
4 shows all data points in the design space selected to build
(◦) and validate (•) the parametric reduced model.
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Fig. 4. Data points in the design space to build (◦) and validate (•) the
trivariate reduced model.

Figs. 5-6 show the magnitude of the parametric reduced
model of the forward crosstalk termS14(s, Sx, Sy) (input
port of the first couple of conductors on the left and output
port of the couple of conductors in the middle) obtained by
multivariate simplicial interpolation for the horizontal spacing
values Sx = {2, 3} mm. Fig. 7 shows the magnitude of
the parametric reduced model ofS21(s, Sx, Sy) obtained by
multivariate simplicial interpolation for the horizontal spac-
ing value Sx = 2.5 mm and the vertical spacing values
Sy = {1.07, 1.5, 1.93} mm. These specific spacing values
have not been used in theroot ROM generation process. Fig.
8 shows the absolute error distribution forS21(s, Sx, Sy) and

S14(s, Sx, Sy) over a validation grid composed of300×15×15
(freq, Sx, Sy) samples. The maximum absolute error of the
trivariate reduced model of theS matrix over the validation
grid is bounded by−60.12 dB. The parametric reduced order
model describes the behavior of the system under study very
accurately, while guaranteeing overall stability and passivity.
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Fig. 5. Magnitude of the trivariate reduced model ofS14(s, Sx, Sy) (Sx = 2
mm).
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V. CONCLUSIONS

We have presented a novel parameterized model order re-
duction technique applicable to the PEEC method. An efficient
and reliable hybridization of traditional passivity-preserving
MOR methods and interpolation schemes based on a class
of positive interpolation operators is able to provide stable
and passive parametric reduced order models over the design
space of interest. We have proposed an interpolation scheme
based on scattered design space grids that are more flexible
than fully filled grids and allow the use of adaptive sampling
schemes that can be useful to select a minimal and well-
distributed set of points in the design space. Pertinent numer-
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ical examples have validated the proposed PMOR approach
on practical application cases, showing that it is able to build
very accurate parametric reduced models, while guaranteeing
overall stability and passivity.
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