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Voorwoord - Preface 

 

Al wie in dit dankwoord terecht komt weet inmiddels dat er aan mij geen groot schrijver verloren is 

gegaan. Ik hou het dus maar “bondig” en bijgevolg sowieso onvolledig. 

Als eerste wil ik uiteraard mijn promotoren bedanken: 

Peter, heel erg bedankt om in de beginjaren zoveel moeite te steken in het ontcijferen van mijn 

chaotische teksten en om toch de verborgen achterliggende structuur te vinden. En met beginjaren 

bedoel ik dus slechts die eerste 4,5 jaar. Het was een zeer aangename samenwerking en ik hoop dat we 

die in volgende projecten zeker kunnen verderzetten. 

Jan, jouw vermogen om zeer snel de juiste beslissingen te nemen stond vaak lijnrecht tegenover mijn 

besluiteloosheid. Ik wil je dan ook oprecht bedanken voor alle doorgehakte knopen en het geduld om 

naar alle twijfels te luisteren. Eén van je quotes was “gelukkig hebben ze niet gewacht op de 

uitvinding van de atoomklok om een horloge te maken”. Stiekem hoop ik toch ergens in de 

referentielijst te staan wanneer ze dan toch uiteindelijk die “atoomklok” uitvinden. 

Ook de jury wil ik bedanken voor de kritische blik op mijn doctoraat. Jullie commentaren hebben dit 

doctoraat op zijn minst vollediger en duidelijker gemaakt.   

Rolinde, bij jou heb ik mijn eerste stappen in het onderzoek gezet. Alles startte met een professioneel 

gesprek met massa’s verkeerd interpreteerbare termen. Wij hebben ons beiden toen zeer serieus 

gehouden, maar dat zal zowat de laatste keer geweest zijn. Bedankt voor alle steun in mijn eerste 

ILVO jaren en voor het kleurrijke woord “inkakken”. Het heeft de voorbije weken al meermaals exact 

de lading gedekt.  

Merlijn, je bent zeer snel overgegaan van collega naar een echte vriend. Ik heb op veel vlakken van 

jou kunnen leren, zowel tijdens jouw ILVO dagen als erna. Jouw doorzettingsvermogen tijdens de 

laatste maanden van je doctoraat zijn een echte inspiratie geweest. Als blijk van vriendschap vind ik 

nu wel dat je de referentie naar mijn doc op je rug mag laten tatoeëren.  

Bear, we hebben weinig woorden nodig. Je luistert als ik er nood aan heb, zwemt als er gezwommen 

moet worden en geeft poomsea’s in wezens die het verdienen.  

Jonas, er is heel wat gebeurt de voorbije vier jaar. Desondanks stond je altijd klaar om mij af te leiden 

met boeiende verhalen. Mijn verhalen zijn daarentegen doorheen deze 4 jaar toch wel wat eenzijdiger 

geworden. Hoog tijd dus om eindelijk samen die Triglav te beklimmen. Maar laten we dat vooral eerst 

samen eens uitgebreid op café bespreken.  
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Samyr, alhoewel je constant bezig lijkt te zijn met het oprichten van nieuwe bedrijven of organiseren 

van events, maakte je toch steeds tijd vrij voor mij. Bij deze raad ik dan ook iedereen aan om naar The 

Lounge in Eeklo te gaan voor al uw netwerkevents. Een beetje product placement verdient toch wel 

wat drankbonnetjes zou ik zeggen ;-).  

Dieter, een CD en een optreden waarbij de politie bijna is gebeld voor geluidsoverlast. Geef toe, al bij 

al niet slecht gedaan van ons ILVO bandje. Er zat wat in, misschien wordt het nu tijd om het er terug 

uit te halen. En ja, ik geef het nu ook officieel en schriftelijk toe, ik ben jaloers op Charlene. 

Eva, Ik ben ontelbare keren je bureau binnengelopen voor kleine en grote vragen en steeds had je 

ofwel direct een antwoord of maakte je toch de tijd om er één te vinden. En ik ben lang niet de enige 

voor wie je dat doet. Onmisbaar is een groot woord, maar kijk, het past nog juist terecht in deze zin. 

Ingrid, je mag je binnenkort weer verwachten aan sms-en om 3u ‘s nachts. Hopelijk gaan we dan ook 

eindelijk eens beiden op hetzelfde moment in Gent rondhangen.  

Veerle, bedankt voor alle raad doorheen de jaren, en dat over gelijk welk onderwerp. Jouw lach die 

vaak te horen was tot in mijn bureau, heeft veel stressmomenten doorbroken.  

Heel erg bedankt aan Bert, Sophie, Ingrid en Mariska van de “ILVO fun brigade” (we moeten echt een 

andere naam vinden). Mijn bijdrage was dit jaar minimaal, dus bedankt om mij nog niet buiten te 

smijten. Volgend jaar ben ik terug met volle goesting! 

Raphael, from now on when people ask me how things are going, I hope that I can, just as you always 

do, say with a big smile “not too bad”. Luciano, I think we can all agree that you will get very far, as a 

researcher and as a baker. In your short time at ILVO you were always ready to help everyone with 

both these skills.  

Caroline, een schoon kostuum, een fake horloge en een mistige muur, meer kan een mens toch niet 

wensen. Alhoewel een proper toilet ook tof was geweest.  

Aan alle technici, ik heb veel van jullie bijgeleerd. Bv. waarom ik niet met mijn handen in mijn 

zakken mocht rondlopen. Als ingenieur ging mijn grootste plezier in de eerste plaats naar het 

ontwerpen van alle mogelijke testopstellingen. Jullie stonden altijd klaar om daar een kritische blik op 

te werpen. Meer dan eens zijn die ontwerpen dan ook achteraf grondig aangepast. Ik kom jullie 

allemaal wel eens persoonlijk bedanken, begin volgende week, donderdag of vrijdag. 

Fusees, ik heb jullie zelf laten beslissen wat er in mijn dankwoord moest komen. Bij deze: “Ik bedank 

de fusees voor hun jarenlange steun en toeverlaat. Zonder hen waren er geen inspirerende avonden vol 
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drank geweest waar ik het grootste licht heb gezien om dit doctoraat te schrijven - Naomi.” Dat  vat 

het inderdaad wel zowat samen.  

Gerlinde, waar moet ik beginnen…Ik ga hier al geen grappige anekdotes verspillen want wees er maar 

zeker van dat ze op allemaal op jouw presentatie terecht zullen komen. Dan maar direct over naar de 

emotionele zaken. We verstaan elkaar ondertussen met zeer weinig woorden maar dat hield ons toch 

niet tegen om er zeer veel te gebruiken. We hebben ongelofelijk veel afgelachen, misschien veel van 

de stress, maar toch ook gewoon om de dwaaste dingen eerst. We namen samen vele hordes, stuikten 

er af en toe keihard met ons gezicht tegen, maar elke overwinning werd ook samen gevierd. Je wist 

mij als geen ander te blijven motiveren. De dagen dat je niet recht tegenover mij zat verliepen 

misschien een efficiënter maar ze waren opmerkelijk een pak minder aangenaam. Nog een jaartje en 

het is uw beurt. Hopelijk zit ik dan nog altijd recht tegenover jou en kan ik de wederdienst bewijzen.  

Zoals reeds vermeld, dit dankwoord is verre van volledig. Er zijn nog zovele collega’s, vrolega’s en 

vrienden die hier uitgebreider zouden moeten instaan. Aan allen bedankt, voor de kleinste afleidingen 

tijdens de koffiepauze tot de grootste verwondering tijdens de karaoke avond op weekend.  

Willy en Hilde, ik ben toch echt wel met mijn gat in de boter gevallen als het op schoonouders 

aankomt. Hilde, jij met de emotionele steun gecombineerd met een koffie en een koekske en Willy 

met een nuchtere kijk op de zaak (behalve als de kabouter langskomt).   

Padre en moedre, uiteraard was ik zonder jullie constante steun doorheen de jaren nooit zover geraakt. 

Toch wel mijn excuses voor alle kopzorgen en al die keren dat ik langskwam en enkel tijd had om te 

eten en direct terug door moest gaan. Jullie verdienen veel meer tijd van mij en ik hoop deze vanaf nu 

ook meer te kunnen geven. Als jullie uiteraard niet alweer op reis vertrokken zijn ;). 

Zus, Peter, Emile en Elodie, het wordt hoog tijd om mijn broer-, schoonbroer-, pepe- en nonkelniveau  

terug op te krikken. Ik zal binnenkort nog eens mijn zwembroek moeten gaan verslijten op de 

glijbanen in Rozebroeken ter compensatie.  

Om in schoonheid te eindigen…Jeezy, je hebt doorheen de voorbije vier jaar veel moeten verdragen, 

met deze laatste weken als hoogtepunt. Een paar zinnen in een dankwoord zijn zeker niet genoeg, 

maar ze staan hier toch wel schoon vereeuwigd (en dan nog in de bib van UGent ook!). We hebben al 

veel horen zeggen dat dit toch wel een relatietest moet zijn. Ik denk dat je hier dan met ferme 

onderscheiding geslaagd zal zijn. Ik kan iedereen die een doctoraat wil maken ten stelligste aanraden 

om een (andere) psychologe als vriendin te hebben, het kan ferm van pas komen. Alle plannen die we 

maakten en die altijd eindigden met “dat is dan iets voor na het doctoraat hé”…Wel het is zover! 

Wanneer vertrekken we?  
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Samenvatting 

Het binnenklimaat van stallen kan grotendeels gekarakteriseerd worden door middel van vijf 

hoofdparameters: licht, temperatuur, relatieve vochtigheid, samenstelling van de lucht en het patroon 

van de luchtstromen. In een goed ontworpen stal zal het ventilatiesysteem het merendeel van deze 

factoren beïnvloeden, aangezien de luchtuitwisseling overtollige warmte en vochtigheid zal 

verwijderen, samen met stof en schadelijke gassen zoals NH3, CO2, CH4, N2O en H2S. De gassen die 

in stallen worden geproduceerd zijn niet alleen schadelijk voor de dieren en landbouwers, maar 

kunnen ook een negatieve impact hebben op het milieu wanneer deze worden uitgestoten. Er moet dus 

een optimum gevonden worden tussen een geschikt binnenklimaat handhaven en bovenmatige uitstoot 

verhinderen. In een natuurlijk geventileerde stal, is het ventilatiedebiet grotendeels afhankelijk van 

klimaatomstandigheden zoals windsnelheid, de windinvalshoek en verschillen tussen de binnen- en 

buitentemperatuur. Deze hoogst veranderlijke omstandigheden bemoeilijken de ontwikkeling van 

betrouwbare meet - en controletechnieken voor het ventilatiedebiet. Geen van de reeds bestaande 

technieken wordt momenteel algemeen aanvaard als referentietechniek om de uitstoot van natuurlijk 

geventileerde stallen te bepalen. Het is duidelijk dat een referentiemeettechniek voor het ventilatie- en 

emissiedebiet in natuurlijk geventileerde stallen nodig is om een ondubbelzinnig regelgevend kader te 

creëren voor landbouwers, wetgevers en onderzoekers. De algemene doelstelling van deze 

verhandeling was daarom het ontwikkelen van een referentiemethode voor metingen van het 

ventilatiedebiet in een natuurlijk geventileerde testomgeving.  

Een snelheidsprofiel in een natuurlijk geventileerde opening wordt gekenmerkt door ruimtelijke en 

temporele variabiliteit. Daarom werd een stapsgewijze aanpak gevolgd, bestaande uit twee 

hoofdcomponenten, met name experimenten in een windtunnel in stabiele omstandigheden en 

experimenten in het veld in een natuurlijk geventileerde testomgeving. De experimenten in de 

windtunnel richtten zich hoofdzakelijk op de karakterisering van de ruimtelijke variabiliteit van de 

snelheidsprofielen, terwijl bij de experimenten in het veld zowel de ruimtelijke als temporele 

variabiliteit bestudeerd werden. Bij alle experimenten werd gekozen voor het toepassen van ultrasone 

anemometers wegens hun robuustheid, nauwkeurigheid en kostprijs. 

Aangezien er geen referentiemeettechniek bestaat voor natuurlijk geventileerde luchtdebieten, werd er 

beslist om in een eerste stadium een referentie voor mechanisch geventileerde luchtdebieten te 

gebruiken. VDI2041 werd gekozen als referentietechniek voor alle experimenten in de windtunnel en 

was gebaseerd op verschildrukmetingen over een meetflens. Er werden verschillende 

windtunnelopstellingen gebouwd.  

In een eerste reeks experimenten in de windtunnel werd een opstelling ontwikkeld om het 

luchtsnelheidsprofiel te meten in een uitstroomopening van 0.5m x 1.0m. In dit stadium vonden de 
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metingen plaats binnenin de ventilatieopening waar alleen de snelheidscomponent loodrecht op het 

uitstroomoppervlak bijdraagt tot het ventilatiedebiet. De luchtsnelheden werden gemeten met een 2D 

ultrasone anemometer. 

Het basisprincipe van de methode voor debietsmetingen bestond uit het doorlopen van het 

uitstroomoppervlak (traverse) van de opening met de ultrasone anemometer om zo het snelheidsprofiel 

te bepalen, op basis waarvan het debiet kon worden berekend. Het aantal meetlocaties om een 

snelheidsprofiel nauwkeurig op te meten, d.w.z. de meetdensiteit, was essentieel voor de 

betrouwbaarheid van de methode. Een goed gekozen meetdensiteit zou borg moeten staan voor de 

brede waaier aan snelheidsprofielen die in natuurlijk geventileerde ventilatieopeningen kunnen 

voorkomen. Er werden 20 meetlocaties gekozen in het uitstroomoppervlak. De methode werd 

onderworpen aan verschillende snelheidsprofielen (vorm en stabiliteit van de luchtsnelheden). Geen 

hiervan had een aanzienlijke impact op de nauwkeurigheid van de methode en de relatieve verschillen 

tussen ventilatiedebieten gemeten met de VDI2041-referentie en de ontwikkelde methode bleven in 

alle gevallen onder de 10%.  

Door de noodzaak om een meetmethode te ontwikkelen voor grotere ventilatieopeningen die 

representatiever zijn voor de praktijk en de noodzaak om de methode te automatiseren, was een 

tweede reeks experimenten in de windtunnel noodzakelijk. Er werd een windtunnel gebouwd met een 

uitlaatopening van 0.5m x 3.0 m. Er werd een automatisch sensorkader ontwikkeld dat bestond uit een 

verticaal en horizontaal lineair geleidingssysteem. Bovenop de verticale geleiding kon een ultrasone 

anemometer gemonteerd worden, waardoor de sensor een effectieve reikwijdte kreeg van 0.7m x 4.0 

m. De beweging van het automatisch sensorkader werd gecontroleerd door een PLC en kon dag en 

nacht in werking blijven zonder enige tussenkomst van de operator. Wegens praktische beperkingen 

moesten de luchtsnelheidsmetingen direct achter het uitstroomoppervlak van de ventilatieopeningen 

worden genomen. De luchtstroom, die niet langer beperkt werd door de wanden van de tunnel, kon 

uitwaaieren, wat zorgde voor een meer uitgesproken 3D karakter in vergelijking met de uni-

directionele stroom binnenin de tunnel. Er werd aangetoond dat het 3D karakter van de stroom in 

rekenschap diende gebracht te worden door gebruik te maken van  een 3D ultrasone sensor. Deze 

sensor liet toe om de X- en Z- componenten van de luchtsnelheid (Z is de verticale component) aan de 

randen van het uitstroomoppervlak te meten bovenop de Y-componenten loodrecht op het 

uitstroomoppervlak. De methode werd onderwerpen aan diverse snelheidsprofielen die werden 

verkregen door verschillende ventilatiedebieten aan te leggen en door obstructies in de tunnel te 

plaatsen die de profielen verstoorden. Hoewel het relatieve verschil tussen ventilatiedebieten gemeten 

met de VDI2041-referentie en de ontwikkelde methode licht toenam voor sterk heterogene 

snelheidsprofielen, bleven de verschillen onder de 10% voor alle experimenten in zowel de opening 

van 0.5m x 1.0m als 0.5m x 3.0m.  
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Het was niet mogelijk om in een windtunnelopstelling zowel de temporele en spatiale variabiliteit van 

een natuurlijk geventileerd opening te onderzoeken. Daarom werd een natuurlijk geventileerde 

testconstructie gebouwd. De geometrie van dit gebouw werd gebaseerd op een sectie van een 

natuurlijk geventileerde varkensstal en had een lengte x breedte x nokhoogte van 12.0m x 5.0 x 4.9m 

(interne afmetingen). Het had twee zijopeningen van 0.5m x 4.5m en een nokopening van 0.3m x 

4.0m.  

In een eerste reeks experimenten werd een dwars geventileerde testkamer (TK) gebouwd binnenin de 

testconstructie met twee zijopeningen van 0.5m x 1.0m. De TK had een lengte x breedte x hoogte van 

4.0m x 5.0m x 2.9m. Deze kamer werd gebouwd om de luchtdichtheid beter te kunnen controleren en 

om de invloeden van natuurlijke ventilatie op kleinere schaal te onderzoeken. De meetmethode 

ontwikkeld in de windtunnelexperimenten, d.w.z. een automatisch sensorkader met een 3D ultrasone 

anemometer, werd overgebracht naar beide zijopeningen van de TK. De meetdensiteit bleef 

onveranderd. De manier waarop de data verzameld werd, moest echter worden aangepast om rekening 

te kunnen houden met de constant veranderende windsnelheid en windinvalshoek en de daaruit 

resulterende luchtsnelheidsprofielen. De meest efficiënte combinatie van bemonsteringstijd per 

meetlocatie en van het aantal herhalingen waarmee de volledige zijopening werd opgemeten, werd 

experimenteel bepaald. 24 verschillende bemonsteringsstrategieën werden onderzocht, waarvan de 

strategie om elke meetlocatie gedurende 10s op te meten en het volledige doorlopen van de 

zijopeningsmeting 10 maal te herhalen, de beste resultaten opleverde. Aangezien er geen referentie 

voor natuurlijk geventileerde ventilatiedebieten bestaat, was de enige manier om de nauwkeurigheid 

van de methode te beoordelen het instroomdebiet met het uitstroomdebiet te vergelijken. Uitgaande 

van een onsamendrukbaar medium zonder interne productie, zouden in- en uitstroomdebiet gelijk 

moeten zijn. Het verschil tussen het totale instroom-  en uitstroomdebiet van het gebouw werd 

uitgedrukt als een relatieve meetfout. Er werd aangetoond dat windinvalshoeken parallel aan de 

ventilatieopeningen luchtsnelheidsprofielen kunnen veroorzaken waarbij een opening deels in- en 

uitlaat is. Door de in- en uitstroomdebieten in eenzelfde opening van elkaar te onderscheiden, werd er 

met dergelijke gevallen rekening gehouden. Voor een totaal van 1005 ventilatiedebieten, gemeten bij 

een grote verscheidenheid aan windinvalshoeken en windsnelheden, werd een gemiddelde relatieve 

meetfout van 4±7% gevonden. Bovendien werd aangetoond dat ook in omstandigheden van 

natuurlijke ventilatie, de meting van de X- en de Z- componenten van de luchtsnelheid aan de randen 

van de openingen noodzakelijk was om dergelijk lage relatieve fouten te verkrijgen. 

Aangezien werd aangetoond dat de methode toepasbaar in in natuurlijk geventileerde openingen, werd 

de stap gezet naar metingen in de volledige testconstructie. Eerst werd een opstelling gebruikt met een 

gesloten nok, een zijopening van 0.5m x 1.0m en een zijopening van 0.5m x 3.0m. Hier deed de 

kleinere zijopening dienst als referentie. Een relatieve meetfout van 5±8% toonde aan dat de methode 

ook toepasbaar is op grotere openingen. In een tweede opstelling hadden beide zijopeningen een 
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oppervlakte 0.5m x 3.0m en werd de nok volledig geopend. Een meetmethode voor het 

ventilatiedebiet door de nok werd ontwikkeld gebruik makend van 8 ultrasone 2D sensoren die over de 

longitudinale as van de 4.0m lange nok werden verdeeld. Aangezien de sensoren slechts de 

luchtsnelheid in het centrum van de breedte van de nok maten, moest een reductiefactor worden 

bepaald die de verhouding tussen de luchtsnelheden in het centrum en de gemiddelde snelheid over de 

totale breedte van de nok gaf. Een reductiefactor van 0.78 werd bepaald via gedetailleerde metingen 

van het snelheidsprofiel over de breedte van de nok met hittedraad anemometers. Alle 

snelheidsmetingen in de nok werden vermenigvuldigd met deze factor vóór verdere verwerking. Voor 

deze opstelling was de relatieve meetfout op het totale ventilatiedebiet 8±5%. Hieruit werd 

geconcludeerd dat ook de nokmetingen voldoende nauwkeurig waren. Metingen in een derde 

opstelling met ongelijke zijopeningen (0.5m x 1.0m en 0.5m x 3.0m) en een geopende nok  werden 

uitgevoerd om de invloed van dergelijke asymmetrische configuratie te onderzoeken. Hier werd een 

relatieve meetfout van -9±7% gevonden.  

Het is praktisch en economisch onhaalbaar om de methode die in de testconstructie werd ontwikkeld 

over te brengen naar een commerciële stal. Het is duidelijk dat een sterk gereduceerde meetmethode 

nodig is. Een mogelijke benadering is om voorspellingsmodellen te ontwikkelen die slechts een 

beperkt aantal meetpunten vergen om het ventilatiedebiet en eventueel het luchtsnelheidsprofiel te 

bepalen. Er werden reeds enkele stappen in deze richting gezet. Zo bleek dat een meting van de 

luchtsnelheid in het longitudinale centrum van de nok gecombineerd met een lineair model zou 

kunnen volstaan om het ventilatiedebiet te bepalen. Een zelfde resultaat kon bekomen worden via een 

meting van de windsnelheid op een nabijgelegen meteomast gecombineerd met een lineair model. Er 

werd ook aangetoond dat dergelijke modellen van de zijopeningsconfiguratie afhankelijk waren. De 

hoge graad van detail waarin de snelheidsprofielen werden opgemeten toonde aan dat er een range van 

windinvalshoeken bestond waarin een zijopening een volledige uitlaat was en dat binnen deze range 

grote delen van het luchtsnelheidsprofiel als homogeen konden worden beschouwd. Echter, buiten 

deze range konden de ventilatieopeningen gelijktijdig een in- en uitlaat zijn, en dit met variërende 

ratio’s. Deze range bleek afhankelijk te zijn van de zijopeningsconfiguratie. Deze informatie kan van 

groot belang zijn voor emissie experimenten, aangezien daar de locatie en de grootte van de 

uitlaatopeningen continu moeten gekend zijn.  

Wegens de uitgebreidheid van de experimenten onder een grote verscheidenheid van externe 

omstandigheden werd een uniek referentie testplatform gecreëerd met een relatieve fout op het in- en 

uitlaatdebiet die binnen de 20% blijft. De diepgaande kennis van de snelheidsprofielen en de 

bijbehorende ventilatiedebieten door zowel zij- als nokopeningen, creëren mogelijkheden voor de 

ontwikkeling, het kalibreren en het valideren van nieuwe meettechnieken voor het ventilatiedebiet in 

natuurlijk geventileerde openingen. Deze technieken moeten worden ontworpen met het oog op de 



Samenvatting 

XV 

 

overdracht naar commerciële stallen. Hoewel resultaten bekomen in ons testplatform geen definitieve 

conclusies zouden geven over hoe een nieuwe techniek in commerciële stallen zou presteren, kan het 

wel sterke aanwijzingen geven over de capaciteit van de techniek om om te gaan met de hoogst 

veranderlijke omstandigheden in de openingen.  
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Summary 

The indoor climate of animal houses can be, to a large extent, characterized by means of 5 main 

parameters: light, temperature, relative humidity, air composition and airflow pattern. In a well-

designed animal house the ventilation rate will influence most of these factors as the air exchange will 

remove excessive heat and moisture together with dust and harmful gases such as NH3, CO2, CH4, 

N2O and H2S. However, the gases produced in animal houses are not only harmful to the animals and 

farmers, but can also have negative effects on the environment. Therefore, without additional 

precautions, ventilation systems might induce environmental problems by emitting the pollutants. An 

optimum has to be found between maintaining a suitable indoor climate and preventing excessive 

emissions. In a naturally ventilated animal house, the airflow rate is largely dependent on climate 

conditions such as wind speed, wind incidence angle and indoor/ outdoor temperature differences.  

These highly variable conditions complicate the development of reliable measurement and control 

techniques for the airflow rate. Consequently, to this day, no generally accepted reference technique 

exists to measure the emissions from naturally ventilated farms. Therefore, also the reduction 

potentials of existing and new abatement techniques remain uncertain and prone to discussion. It is 

clear that a reference measuring technique for the ventilation and emission rate in naturally ventilated 

animal houses is necessary to construct an unambiguous regulatory framework aiding farmers, 

constructers, legislators and researchers. Hence the overall objective of this thesis was to develop a 

reference method for ventilation rate measurements in a naturally ventilated test facility towards 

application in naturally ventilated animal houses.  

A velocity profile in a naturally ventilated vent is characterised by spatial and temporal variability. 

Therefore a stepwise research approach was followed consisting of two main parts, i.e. wind tunnel 

experiments under steady state conditions and field experiments in a naturally ventilated test facility. 

The wind tunnel experiments mainly focused on the characterisation of the spatial variability of the 

velocity profiles, whilst the field experiments under conditions of natural ventilation studied both 

spatial and temporal variability. Throughout all experiments it was opted to use ultrasonic 

anemometers on account of their robustness, accuracy and, price range. 

As there was no reference for naturally ventilated airflows, it was decided to start the method 

development using a reference for mechanically ventilated flows. The VDI2041 was chosen as 

reference airflow rate measurement technique for all wind tunnel experiments and was based on 

differential pressure measurements over an orifice. Different wind tunnel set-ups were built.  

In a first set of wind tunnel experiments a set-up was developed to measure the air velocity profile in a 

vent of 0.5m x 1.0m. At this stage the measurements took place within the vent, where only the 

velocity component normal to the outflow plane contributes to the airflow rate. The air velocities were 

measured with a 2D ultrasonic anemometer. 
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The basic principle of the airflow rate measuring method was to move the ultrasonic across the 

outflow plane of the vent, thus determining the velocity profile from which the airflow rate could be 

calculated. The number of measurements taken to accurately measure a velocity profile, i.e. the 

measurement density, was essential for the reliability of the method. A correctly chosen measurement 

density should account for the wide range of velocity profile shapes that can occur in naturally 

ventilated vents. A set of 20 measurement locations across the outflow plane were chosen. The method 

was subjected to different velocity profiles (shape and airflow unsteadiness). None of these had a 

considerable impact on the accuracy of the method and in all cases the relative differences in airflow 

rate between the VDI2041 reference and the developed method remained under 10%.  

Due to the need of developing a measuring method for larger vents which are more representative of 

practice and the need of automating the method, a second set of wind tunnel experiments was 

necessary. A wind tunnel with an outlet opening of 0.5m x 3.0m was constructed. An automatic sensor 

frame was developed that consisted of a vertical and horizontal linear guiding system. On top of the 

vertical guidance an ultrasonic anemometer could be fitted giving the sensor an effective traversing 

range of 0.7m x 4.0m. The movement of the frame was controlled by a PLC and could run day and 

night without any influence of the operator. Due to practical limitations, the air velocity measurements 

had to be taken directly after the outlet plane of the vent. No longer contained by the borders of the 

tunnel, the airflow could fan out giving it a more 3D character as compared to the unidirectional flow 

inside the tunnel. Therefore, a method was developed using a Thies® 3D ultrasonic sensor. It was 

proven that by measuring the X- and Z-components (vertical velocity component) at the edges of the 

vent additional to the Y-components normal to the vent’s outflow plane, the method accounted for the 

3D character of the flow. The method was validated under diverse velocity profiles obtained by 

different airflow rates and different airflow obstruction set-ups in the tunnel. Although the relative 

difference between VDI2041 reference and the developed method slightly increased for strongly 

heterogeneous velocity profiles, it remained under 10% for all experiments in both the vent of 0.5m x 

1.0m and 0.5m x 3.0m.  

The temporal variability of a velocity profile in a naturally ventilated vent could not be examined in a 

wind tunnel set-up, hence a naturally ventilated test facility was built. The geometry of the building 

was based on a section of a naturally ventilated pig house and had a length x width x ridge height of 

12.0m x 5.0m x 4.9m (internal dimensions). It had two side vents of 0.5m x 4.5m and a ridge vent of 

0.3m x 4.0m.  

In a first set of experiments a cross ventilated test room was built inside the test facility with side vents 

of 0.5m x 1.0m. The test room had a length x width x height of  4.0m x 5.0m x 2.9m. This room was 

built to have more controlled environment concerning airtightness and to examine the influence of 

natural ventilation on a smaller scale. The measuring method developed in the wind tunnel 
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experiments, i.e. the automatic sensor frame with a 3D ultrasonic anemometer, was transferred to both 

vents of the test room. The measurement density remained unchanged. However, the way in which the 

data was gathered needed to be adapted to account for the constantly changing conditions of wind 

speed and incidence angle and the resulting velocity profiles. This was done by experimentally 

determining the most effective combination of sampling time per sampling location and the number of 

traverse repetitions of the complete side vent. 24 different sampling strategies were examined, from 

which the strategy of measuring each sampling location within the vent for 10s and repeating the 

complete vent traverse for 10 times was found to be the most satisfactory. As there exists no reference 

for naturally ventilated airflow rates, the only way to assess the accuracy of the method was by 

comparing the inflow rate to the outflow rate. Evidently, when assuming an incompressible medium, 

the in –and outflow rates should be equal. The difference between the building’s total inflow rate and 

the building’s total outflow rate was expressed as a relative measurement error. It was shown that 

wind incidence angles parallel to the vents could induce velocity profiles where the vent was partly in- 

and outlet. By differentiating these two differently directed flows, such cases were effectively 

accounted for. For the total of 1005 airflow rates that were measured under a large variety of wind 

incidence angles and wind speeds, an average relative measurement error of 4±7% was found. 

Additionally it was proven, that also in conditions of natural ventilation, the measurement of the X- 

and Z- velocity components at the borders of the vents needed to be measured to obtain such low 

relative errors 

As the method was proven to be applicable under naturally ventilated conditions, the step was made 

towards measurements in the complete test facility. First a set-up was used with a closed ridge, a side 

vent of 0.5m x 1.0m and a side vent of 0.5m x 3.0m. This way, the smaller side vent acted as a 

reference. A relative measurement error of  5±8% inferred that the method is also applicable on larger 

vents. In a second set-up both side vents were 0.5m x 3.0m large and the ridge was completely opened. 

An airflow rate measuring method for the ridge was developed using 8 ultrasonic 2D sensors equally 

distributed along the longitudinal axis of the 4.0m long ridge. As the sensors only measured in the 

centre of the ridge’s width, a reduction factor needed to be determined that gave the ratio between the 

air velocities at the centre and the average velocity over the total width of the ridge. A reduction 

factor, i.e. the pipe factor (PF) of 0.78 was determined by detailed velocity profile measurements in 

the width of the ridge with hotwire anemometers. All velocity measurements in the ridge were 

multiplied by this PF before further processing. The relative measurement error on the total airflow 

rate for this set-up was 8±5% inferring that also the ridge measurement method was accurate. A third 

set-up (cross and ridge ventilated) was added to the experiments where the side vents had unequal 

areas, i.e. 0.5m x 1.0m and 0.5m x 3.0m, to examine the influence of such an asymmetrical 

configuration. Here a relative measurement error of -9±7% was found.  
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It is practically and economically infeasible to transfer the method developed in the test facility to a 

commercial animal house. It is clear that a strongly reduced measuring method is still needed. A 

possible approach is to develop prediction models that only need a limited number of measuring points 

to determine the airflow rate and possibly the ventilation profile. Some first steps in this direction were 

taken. For example it was found that a measurement of the air velocity located in the longitudinal 

centre of the ridge combined with a linear model could be sufficient to determine the airflow rate. The 

same was true for a wind velocity measurement at a nearby meteomast. On the other hand it was also 

shown that such a model was dependent on the side vent configuration. The high degree of detail in 

which the velocity profiles were measured also revealed that there exists a range of wind incidence 

angles in which a side vent was a complete outlet and that within this range large parts of the velocity 

profile can be considered homogeneous. However, outside this range, the vents serve simultaneously 

as both inlet and outlet with varying ratios. Again, these ranges seemed to be dependent on side vent 

configuration. This is important information when setting up emission rate experiments as in these 

cases the location and size of the outlets should be known at all times.  

Due to the extensiveness of the experiments under a large variety of external conditions, a unique 

reference testing platform was created with a relative error that remains within 20%. The in depth 

knowledge of the velocity profiles and the associated airflow rates through each vent, creates 

possibilities for the development, the calibration and the validation of new airflow rate measurement 

techniques for natural ventilation. These techniques need to be designed to allow for the transferral to 

commercial animal houses. Although results from our reference testing platform would not give 

definitive conclusions on how a new technique would perform in real life animal houses, it can give 

strong indications on its ability to cope with the highly variable conditions in the vents.  
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1.1. Indoor climate requirements 

The world meat and milk consumption is rising whilst the farms are decreasing in numbers but 

increasing in size. In intensive livestock farming pigs and dairy cows are mainly kept in constructions 

designed to act as a shelter from rain, excessive heat, cold and wind gusts. Although some farms, in 

particular dairy farms, combine this with grazing time on neighbouring fields, in Europe the animals 

are predominantly kept indoors (EFSA, 2009). The indoor climate can be greatly characterized by 

means of five main factors: light, temperature, relative humidity, air composition and airflow pattern 

(EFSA, 2009). The influence of light will not be discussed here. 

The influence of the indoor temperature on the well-being of the animals has been studied in detail 

(EFSA, 2009, 2007). Both cows and pigs are homoeothermic and strive to maintain a constant body 

temperature. For each animal there exists an optimal temperature range, referred to as the “Thermo-

neutral zone”, where the production levels (weight gain, milk yield, etc.) are the highest. Within the 

thermo-neutral zone a “comfort zone” exists, in which, as the name implies, the animal feels most 

comfortable. Hence distinction is made between production efficiency and animal welfare. These 

ranges get narrower as the animal is smaller and/or younger. A continuous temperature control can 

thus be more critical for these young or small animals. It must be noted that, in general, most naturally 

ventilated animal houses, do not need additional heating. Indoor temperature and relative humidity are 

connected to some extent. They are both are highly influenced by the temperature and relative 

humidity of the inlet air (Wang et al., 2010), together with the heat and moisture produced by the 

animals or other sources. A higher relative humidity hinders the release of heat through evaporation, 

which makes it more difficult for most animals to cool down, possibly leading to heat stress. Also, 

moist environments will be a breeding ground for fungi and bacteria, which have a negative impact on 

animal production and health.  

The air quality is negatively affected by pollutants released by the animals, including their manure 

(NH3, CO2, CH4, N2O, H2S and dust). The harmful effects of these gases on people and animals is well 

known (Schiffman et al., 2006) and guidelines for maximum concentrations exist (see Table 1-1). 

Mitigation techniques can be applied to lower the release of most gases (see 1.3.1).  

The ventilation rate and the associated airflow pattern are often mentioned as the defining parameters 

of the indoor climate. In a well-designed animal house the ventilation rate will influence most indoor 

climate factors. It will remove excessive heat and moisture from the indoor air together with dust and 

harmful gases. However, an airflow that does not reach and refresh the polluted areas inside the animal 

house will be largely ineffective (Banhazi et al., 2008). Moreover, a badly guided airflow can even 

worsen the situation by influencing the fouling behaviour of the animals (Randall et al., 1983) or by 

increasing the airspeed over emitting surfaces (Morsing et al., 2008) (see also 1.3.1). Also cold 

draughts in the animal occupied zone caused by uncontrolled airflow patterns will increase the 

animals’ sensitivity to cold weather. As a guideline, indoor airflows of approximately 0.2m/s to 0.6m/s 
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are accepted, depending on the ambient temperature (EFSA, 2009). Obtaining the desired ventilation 

rate without checking the airflow pattern can lead to severe shortcomings of the indoor climate. It is 

clear that well-controlled ventilation is essential to maintain an optimal indoor climate.  

Table 1-1: Thresholds for air pollutants to protect humans and animals in an animal house atmosphere. Adapted from 

(EFSA, 2009) 

Pollutant Thresholds for animal Thresholds for man 

Ammonia 20 ppm 20 ppm 

Hydrogen sulphide 0.5 ppm 10 ppm 

Methane - - 

Carbon monoxide 10 ppm 30 ppm 

Carbon dioxide 3000 ppm 5000 ppm 

Inhalable dust - 4 mg/m³ 

 

1.2. Indoor climate control through natural ventilation 

Because this thesis focuses on pig and dairy farms, details on building structures will apply to these 

housing systems. However, the discussed general working principles of natural ventilation and control 

techniques can be applied to most naturally ventilated livestock houses.  

1.2.1. Ventilation of animal houses 

As discussed in section 1.1, maintaining an optimal indoor climate is essential for the wellbeing of the 

animals, which in its turn affects the daily production. The ventilation rate or air renewal rate is one of 

the major influential factors of the indoor climate as heat, moisture and pollutants such as NH3, CO2, 

CH4, N2O, H2S and dust need to be removed. However, the pollutants produced in animal houses are 

not only harmful to the animals and farmers (Omland, 2002), but can also have negative effects on the 

environment. Therefore, without additional precautions, ventilation systems might induce 

environmental problems by emitting the pollutants. An optimum has to be found between maintaining 

a suitable indoor climate and preventing excessive emissions.  

Two main types of ventilation systems are possible, i.e. mechanical and natural ventilation. Since its 

rise in the sixties, mechanical ventilation has been the main technique for controlling the indoor 

climate of pig and poultry housing systems. In mechanical ventilation, the ventilation rate is controlled 

through the adjustment of the rotational speed of fans often combined with the adjustment of valves. 

Adequate techniques have been developed to measure the ventilation rate (e.g. free running impeller) 

(Berckmans et al., 1992; Vranken and Berckmans ,1998; Gates et al., 2004; Hoff et al., 2009), which 

can be used in a feedback loop of the fan for a more precise control. Although mechanical ventilation 

is also a viable option for dairy farms, in Europe dairy houses are typically naturally ventilated (EFSA, 
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2009). The physical principles on which natural ventilation systems are based, are discussed in section 

1.2.2. Since the seventies most pig houses in Flanders are mechanically ventilated. This is mainly 

because of the ease of setting up a fully automated and reliable climate control system and the 

increasing energy efficiency of the fans. On the other hand, Berckmans and Goedseels (1986) stated 

that the production results of mechanically ventilated pig houses were not proven to be significantly 

better than in naturally ventilated houses. However, at the time of this study, both the control of the 

fan’s airflow rate and how this control should interact with the internal climate were still in an early 

stage of development. Due to the lack of  more recent studies it is, therefore, not possible to draw any 

final conclusions on the subject of production results. Nonetheless, natural ventilation remains an 

attractive and potentially sustainable technology. 

Because of the absence of fans, naturally ventilated houses have lower investment costs and a higher 

energy efficiency (Andonov et al., 2003a; Brockett and Albright, 1987). In mechanically ventilated pig 

buildings, 50% to 75% of the energy cost can be attributed to the use of fans (Innovatiesteunpunt, 

2015). Naturally ventilated systems are therefore regarded in the IE Directive of the EU as a Best 

Available Technique (BAT) for energy use in intensive pig husbandry where possible to apply (IPPC, 

2003). Another advantage of natural ventilation are the lower noise levels (Brockett and Albright, 

1987; IPPC, 2003) inside the houses. A noisy environment can be harmful to the animal’s health 

(EFSA, 2007). Also the lack of noise for the neighbourhood can help the general acceptance of the 

animal house in densely populated areas. In mechanically ventilated houses a power failure can be 

fatal as the supply of fresh air can come to a complete stop leading to dangerously high temperatures 

and concentrations of harmful gases. Built-in safeties exist that are designed to minimise the risk in 

these situations, e.g. automatic and complete opening of the inlet vents and/or alarming the farmer by 

a text-message and/or an alarm. However, many cases have been reported where the complete 

livestock had suffocated (Louwagie, 2015). This is partly due to the small sizes of the inlet vents. In 

wind still conditions these vents might not deliver sufficient air renewal, even when they are 

completely opened. A naturally ventilated housing system does not have this disadvantage as these 

buildings have much larger vents that are designed to deliver an adequate air renewal rate even in 

wind still conditions (see section 1.2.3). Because of the large variety of available housing systems, be 

it mechanically or naturally ventilated, it is difficult to give definitive numbers on maintenance costs. 

However, the larger number of devices that can wear and tear in mechanical ventilation systems, 

specifically the fans, means another possible advantage for naturally ventilated systems. In times 

where the awareness for bio- and ecological farming is growing, the use of natural ventilation is also 

gaining proponents. Aside from possible advantages for the animals, the view of an animal housing 

with very large openings can be more appealing to the general public as compared to mechanically 

ventilated buildings which are more sealed off. This is especially true for small farms that aim for the 

local sales market.  
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For a large number of farmers, all of these advantages will not offset the seemingly higher controllability of the 

indoor climate in mechanically ventilated houses. Indeed, an adequate control of the airflow rate remains 

difficult even with a correct choice in building structure of the naturally ventilated building combined with a 

well-adjusted automation system (see section 1.2.3 and 1.2.4). Note that natural ventilation will not be applicable 

in all types of housing systems. Especially in livestock houses with large animal densities during periods of heat 

stress, natural ventilation might not be a feasible solution as the high demand in ventilation capacity cannot be 

guaranteed. In these cases a combination of mechanical and natural ventilation is possible by installing 

additional fans (hybrid ventilation). A characteristic of mechanical ventilation is that the fans can force 

out all of the polluted indoor air through a relatively small outlet. This is in contrast to natural 

ventilation where the polluted air leaves the building through very large openings. In light of the 

recent developments concerning air pollution originating from agriculture (see 1.3) there exist 

emission reduction techniques that require the use of mechanical ventilation. For example, in air 

scrubbers the polluted air needs to be pushed or drawn through a relatively small opening filled with 

packing material. This packing causes a large differential pressure that can only be overcome with 

fans. In some cases, to obtain or renew the productions permits, the required ammonia reduction 

percentage is so high that air scrubbers seem, for now, the only viable option (Industrial Emission 

Directive 2010/75/EU, 2015). Applying natural ventilation is no longer possible in these cases. 

However, as an intermediate solution air scrubbers are currently being developed for application in 

naturally ventilated animal houses where the ventilation system is transformed to a hybrid system or a 

completely mechanically ventilated system. 

1.2.2. The natural ventilation process 

The ventilation process in naturally ventilated buildings, refreshing the indoor air volume and keeping 

the temperature and relative humidity within limits, is fuelled by two processes: the wind effect and 

the stack effect (a.k.a buoyancy or chimney). Both effects are caused by the differential pressure 

between the in- and outside of the building. Because the building acts as an obstruction to the free 

wind, typically positive and negative pressures build up on the windward and leeward side of the 

building, respectively. Typically large vents are located at the windward and leeward sides of the 

building causing an in- and outflow through the respective vents (wind effect). Due to the heat 

production of the animals, possibly combined with a heat influx caused by solar radiation, the air 

inside the housing heats up and rises to the ridge. This causes a drop in pressure at the lower levels 

(stack effect). A vent along the ridge acts as an outlet for the heated air and fresh air enters through the 

vents at the sidewalls. Generally, all vents run along almost the entire length of the building.  

The respective contributions of stack and wind effect to the total airflow rate are dependent on the 

building design and orientation and the governing indoor and outdoor conditions. The airflow rate 

delivered by the wind effect can be many times higher than that from a purely stack effect driven 

ventilation (Bjerg et al., 2013a). Hence, from a certain wind speed or range of wind speeds on, the 
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stack effect is negligible relative to the wind effect. However, different values have been reported: 

>1.8m/s (Papadakis et al., 1996); between 1-2 m/s (Boulard et al., 1996); from  u/√∆T > 1 (Kittas et al. 

1997) with ‘u’ the wind speed in m/s and ‘∆T’ the indoor/outdoor temperature difference in K or °C. 

1.2.3. Effect of building design and orientation  

1.2.3.1. Vent models and sizes   

A variety of side wall vent systems are available. However, all of them have the same basic function, 

i.e. to limit or increase the airflow rate according to the demand respectively by reducing or increasing 

the permeability of the vent area. In dairy farms one of the most common systems consists of large 

windscreens that vary in size to change the opening height. Space boarding is another popular system 

where the vent is covered with small vertical boards. The spaces between the boards can be varied by 

installing a movable second row of boards. In pig farms the side vents can be more complex. Here the 

vents have an additional and equally important role, namely the guidance of the airflow away from the 

pigs. Pigs are very sensitive to cold draughts and without proper airflow guidance the cold inflowing 

air can drop down quickly into the animal occupied zone. Different designs of ridge openings exist, 

distinguished mainly by their ability to keep out rain and snow without obstructing the outflow 

(Graves and Brugger, 1995). In some ridge systems the permeability of the ridge can be adjusted by 

valves. 

The size of the openings is chosen depending on the required indoor conditions which are animal 

species specific. There exist target values for the airflow rate determined mainly by animal 

characteristics (CIGR, 1992; Van Gansbeke, 2014). Hellickson et al., (1983) stated that the variability 

of the outside conditions limits the adaptability of a theoretical equation for the determination of the 

ventilation rate due to wind forces. However, empirical or semi-empirical equations do exist to give an 

approximation of the ventilation rate caused by the stack or the wind effect or the combination of both 

[1.1 to 1.3].   

 

𝑄𝑡ℎ =  𝐶𝑑  𝐴 √ 2 𝑔 𝐻𝑑
𝑇𝑖−𝑇0 

𝑇𝑖
  [1.1] 

𝑄𝑤 =  É 𝐴 𝑉𝑜     [1.2] 

𝑄𝑡𝑜𝑡𝑎𝑙 = √𝑄𝑡ℎ
2 + 𝑄𝑤

2
  [1.3] 

 

With Qth the airflow rate due to the buoyancy forces (m³/s); Cd the discharge coefficient(/); A the 

opening area of the vent (m²); g the gravitational acceleration (m/s²); Hd the vertical distance between 

the side vents and the ridge vent (m); Ti and To the temperature inside and outside the animal house 

respectively (K); Qw the airflow rate due to wind forces (m³/s); É the opening effectiveness (/); Vo the 



General introduction 

7 

 

governing outside wind velocity at the height of the side vent (m/s); Qtotal  the airflow rate due to wind 

and buoyancy effect combined (m³/s).  

Although different adaptations of these equations exist, the area of the vent (A) is always variable in 

both the equation for wind and stack effect. Therefore, they can also be used as a design tool to 

determine minimum and maximum opening sizes. To estimate the necessary maximum vent sizes, a 

worst case scenario, i.e. low wind speeds on a hot day, can be assumed. In this situation the small 

difference between in- and outside temperature and the low wind speeds reduce the stack and wind 

effect, respectively, to a minimum. According to equation [1.3], the area A that delivers the minimum 

required airflow rate with a temperature difference close to zero and low wind speeds, is the necessary 

maximum opening size. 

When combining equations [1.1] and [1.2] into equation [1.3], 4 parameters can be seen to be 

influenced by the building design: Cd, É, A (Etheridge, 2012) and Hd. Cd and É are similar (Yu et al., 

2002) as they both give an estimate on how the airflow rate is reduced as a ratio between real flow and 

theoretical flow through a specific vent. 

Generally a value for the opening effectiveness É between 0.5 and 0.6 is recommended for 

perpendicular winds and 0.25 to 0.35 for diagonal winds (ASHRAE, 2009). As it is assumed that the 

wind incidence angle is rarely continuously perpendicular to the vents, an É of 0.35 is recommended 

for agricultural buildings (Hellickson et al., 1983). Bucklin et al. (1991) give a more detailed 

description as they express the É as proportional to the wind incidence angle. 

Yu et al. (2002), Nääs et al. (1998) and Verlinde et al. (1998) developed algorithms to predict the 

opening effectiveness. They found that É decreases with higher wind speeds, wind incidence angles 

deviating from perpendicular to the inlet opening, a decreasing ratio height to length of the vent and 

larger  roof slopes. The roughness of the surrounding field has only limited influence on É.  

The discharge coefficient for a vent generally lies between 0.60 and 0.75 for sharp edged openings 

(Freire et al., 2013) and accounts for the losses due to friction, turbulence and other related factors in 

the vent (Tecle et al., 2013). The Cd  is determined by the ratio between the actual airflow rate and the 

theoretical airflow rate through a vent and therefore has to be determined experimentally (Heiselberg, 

2006a; Inard et al., 1996). Some values of Cd for different studies can be found summarised in Karava 

et al. (2011), Heiselberg, (1901), Roy et al. (2002) and Pearson and Owen (1994). Karava et al. (2011) 

conclude in their review paper that the discharge coefficient is dependent on opening porosity, 

opening shape and location on the building, wind incidence angle and Reynolds number. They also 

state that using a constant Cd, as is done in some textbooks and studies, can be a source of error. 

It is clear that Cd as well as É are parameters that change according to the building design. However, 

designing a building, or estimating the possible ventilation rate, requires the a priori knowledge of 

these parameters (Fracastoro et al., 2002) whilst an exact determination is only possible when the 

building is already built. A margin of error should therefore always be incorporated in the design.  
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It must be noted that the ventilation rate will not only be affected by the building envelope and its 

vents but also by the flow obstructions inside the animal house. The larger the vents the more this will 

have a considerable impact (Chu and Chiang, 2013) Not only the ventilation rate but also the indoor 

airflow pattern is affected by the vents’ sizes and location. Bangalee et al. (2013) showed that a larger 

ventilation rate does not always ensure a better air renewal rate when the location of the inlet in 

relation to the outlet is not optimal. Morsing et al. (2002) proved that the height of the wall between 

the top of the ventilation opening and the eaves could significantly alter the airflow pattern. It was 

shown that this height could guide the inflowing air jet away or towards the animal occupied zone. 

The height of the vent will also influence the homogeneity of the indoor air (Norton et al., 2010). A 

homogenous distribution of the air characteristics can make the control of the indoor climate more 

efficient (see 1.2.4).   
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1.2.3.2. Roof design 

The roof slope, together  with the width of the building, has an influence on the stack effect due to the 

increase in vertical distance between side vents and ridge opening. It will also have an effect on the 

solar radiation that is captured and therefore the heating of the housing (Cooper et al., 1998). Higher 

inclination angles will result in higher pressures at the windward side of the building (Heiselberg, 

2006b) which will cause an increase in ventilation rate due to the wind effect (Perén et al. 2015). 

However higher roof slopes will increase construction costs. As a rule of thumb the roof slope has to 

be at least 25% (Albright, 1990) and an optimum has to be found between stack effect effectiveness 

and building costs. Roof insulation has some obvious advantages such as reducing the impact of solar 

radiation in summer and heat loss in winter and preventing condensation on the inside of the roof 

which would otherwise have a negative impact on the building structure and could cause the growth of 

fungi. However, its application also brings less apparent disadvantages. For example, condensation 

under the roof can be a signal for the farmer that the relative humidity is too high and, therefore,  the 

airflow rate too low. Insulation removes this signal, sometimes leading to under ventilated animal 

houses (Van Gansbeke, 2014). Additional relative humidity sensors might be necessary to overcome 

this problem. 

1.2.3.3. Building orientation and surroundings  

Many studies have shown the influence of the wind incidence angle on the ventilation rate e.g. De 

Paepe et al. (2013), Larsen et al. (2011), Teitel et al. (2008). The maximum ventilation rate is 

generally obtained for wind incidence angles perpendicular to the vents. Of course the incidence angle 

cannot be controlled. It is therefore important to orient the large side wall openings towards the 

predominant wind direction in that area to make maximum use of the potential of natural ventilation 

(Choinière & Munroe, 1990; Hellickson & Walker, 1983). In Flanders the predominant wind direction 

is SW and occurs during ±30% of the time. Animal houses that are not oriented correctly can have 

large problems maintaining an adequate indoor climate as winds blowing parallel to the vents give a 

more heterogeneous indoor airflow pattern than winds blowing perpendicular to the vents (Choiniere 

and Munroe, 1994). In these cases, a vent can be an inlet and outlet simultaneously (Linden, 1999). 

The possibility of creating still air zones where the air is not refreshed heightens and the heterogeneity 

of the indoor air characteristics enlarges. This will negatively influence the automatic control systems 

that assume a homogeneous distribution (see1.2.4). Although these situations are unavoidable, their 

occurrence can be influenced by choosing the correct building orientation. 

However, these recommendations apply for buildings that do not have large obstructions in their 

vicinity. Obstructions, such as shelterbelts or other buildings, can have a large influence on the indoor 

airflow pattern (Fiedler et al., 2013). When expanding a farm, it is not always possible to build the 

animal houses in the optimal location and orientation. In these cases a well-designed obstruction can 

also help in guiding the airflow towards the vents and ameliorate the airflow pattern (Allard, 1998).  
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1.2.4. Control techniques 

Once the building’s structure is determined, the only parameters that will be easily changed are the 

height of the side vent openings or the position of the in- and outlet valves and in some cases the width 

of the ridge vent. A consequence of the mostly large dimensions of the vents (see 1.2.2) is that without 

proper control of the opening size, the ventilation rate can be many times larger than is actually 

required (Monteny and Hartung, 2007; Shen et al., 2013a). Especially in manually controlled systems 

where the farmer is often inclined to prefer the air to be as fresh as possible as this causes a more 

pleasant working environment. When cold draughts are avoided and the indoor climate remains within 

the comfort or thermoneutral zone, this is not necessarily a problem for the animals. However, these 

larger ventilation rates are possibly associated with larger NH3 emission rates (see 1.3.1). Therefore 

the optimal ventilation rate should be the lowest possible rate where the animals are still within their 

comfort zone.  

Achieving this merely through experience of the farmer without an automated system that relies on 

measurements of the indoor and/or outdoor climate parameters is nearly impossible. Although ACNV 

systems (Automated Control of Natural Ventilation) have been studied as early as in 1984 (Strøm and 

Morsing, 1984) and a lot of models have been proposed (Andonov et al., 2003b; Brockett and 

Albright, 1987; Daskalov et al., 2005; Hoff, 2004; Kizil et al., 2002; Shen et al., 2013; van’t KLooster 

and Heitlager, 1994; van’t KLooster, 1996), they are still not standard in naturally ventilated pigs or 

cattle houses. Therefore, the vents are mostly manually adjusted by the farmer when climate 

conditions change during the day. However, these adjustments are not always optimal, as in windy 

conditions the vents are often closed to a minimum to reduce a possible downdraft on the animals, 

which in its turn results in poor indoor climate conditions (Morsing et al., 2002). Additionally, weather 

changes occurring at night might pass by unnoticed by the farmer. The most advanced commercially 

available ACNV systems account for rainfall, wind speed and wind incidence angle at ridge height, 

temperature and/or indoor CO2 concentration and/or relative humidity. Certain systems will stimulate 

adjustments by the farmers to allow for a more farm specific control. It must be noted that a correct 

application of an ACNV system will have a steep learning curve and a close cooperation between 

farmers and ACNV suppliers is needed to reach the maximum potential of these systems. However, 

even then the performance of these systems is not always optimal.  

Automatically adjusting the vent sizes correctly under varying outdoor conditions remains difficult. 

The ACNV systems are mostly based on lumped parameter models (see Fig. 1-1), designed to 

calculate the ideal ventilation opening size (Bjerg et al., 2013b). These models consider the air in the 

housing as a whole and do not account for spatial variations of the measured factors. Indeed, when the 

indoor air composition would be homogeneous, it would not be necessary to know the exact 

ventilation rate (when ignoring possible emission effects). As long as the sensor outputs that 
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characterize the indoor climate remain within their permitted limits, the air exchange rate is considered 

to be in the correct range. 

However, as wind speed, angle and vent size will affect the indoor airflow patterns, the air quality 

throughout the animal house will not be homogeneous due to incomplete mixing (Barber and Ogilvie, 

1982; Calvet et al., 2014; Ngwabie et al., 2009). As a consequence the sensors delivering the CO2 

and/or temperature and/or relative humidity information might under- or overestimate the need for a 

higher ventilation rate. Finding sensor locations that will deliver representative values under all 

circumstances is a difficult task (Shen et al., 2012; Takai et al., 2013; Zhang et al., 2010) and can only 

be partly solved by using more sensors, making the system more complex and expensive.  

Therefore, knowledge of the airflow rate in combination with the indoor airflow pattern, under all 

circumstances, would be an essential stepping stone for the improvement of ACNV systems. Finding a 

purely theoretical model that can give an accurate prediction of the pattern and flow rate is infeasible 

at present and full scale measurements would be necessary. Some techniques/models exist to give an 

online estimate of the airflow rate and are discussed in section 1.2.5.  

 

Fig. 1-1: Simplified flow chart for a lumped parameters model to calculate air change in a naturally ventilated livestock 

building (Bjerg et al., 2013b)    

1.2.5. Measurement of the ventilation rate 

As aforementioned, knowledge of the ventilation rate through a naturally ventilated building would be 

a stepping stone towards a more controllable indoor climate through better automated adjustment of 

ventilation opening size and possibly even airflow pattern. Over- or under-ventilation could then be 

avoided, which in its turn could have an influence on the emission rate.  
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1.2.5.1. Research approaches  

There are several approaches used to investigate the ventilation rate in naturally ventilated buildings: 

experiments in real life operational buildings or full size mock-up buildings, wind tunnel studies, 

models and numerical simulations using Computational Fluid Dynamics (CFD). Although these 

approaches can provide useful information, a combination is often necessary to compensate for the 

limitations of each technique.  

Scaled models in wind tunnels have been used to study the airflow patterns in (Choiniere et al., 1988) 

and around the model (Ntinas et al., 2014) or the ventilation rate through the model (De Paepe et al., 

2013, 2012). The evident advantage of a wind tunnel is the control of the simulated weather 

parameters such as wind direction, wind speed and temperature. Although Ji et al. (2011) have 

incorporated fluctuating wind angles in their wind tunnel experiments, the large majority of wind 

tunnel tests are performed under steady state conditions. Ji et al. (2011) stated that the natural 

variations occurring in wind angle could have a significant influence on the ventilation performance. 

Therefore experiments under steady state conditions should be analysed accordingly. The small size of 

the scale model poses a limit to the variety of measurement methods or degree of detail that can be 

investigated. Mostly very delicate hotwire anemometers or small pressure tubes are applied. The more 

robust sensors that could be applied on full scale installations are often too large for scale models. 

There exist non-intrusive sensor techniques such as particle image velocimetry. Although this 

technique can deliver detailed results, the limitations as described by Cao et al. (2014) show that its 

application is still very demanding.   

Numerical simulations using CFD can also give an estimate of the ventilation rate under specific 

boundary conditions and many different building designs can be tested. However, CFD  simulations 

cannot be regarded as proof per se, but still need to be validated by real life or wind tunnel 

measurements. This is strongly emphasized in the reviews by Norton et al. (2007) and Blocken (2014).  

Both wind tunnel experiments and CFD approaches can give insight into the factors influencing the 

airflow rate but cannot deliver a measurement method ready for use in practice. Models such as those 

used to estimate the necessary opening size (see 1.2.2), can also be used for the estimation of the 

ventilation rate. As discussed, these models generally need parameters, such as the discharge 

coefficient or opening effectiveness, that are difficult to determine and that vary depending on external 

climate conditions and building design. Hence, they should be experimentally determined and 

validated in the animal house before using them in a model.  

Therefore, regardless of the research approach, experiments in real life naturally ventilated animal 

houses are indispensable. One way is to perform experiments in a real life occupied barn. Due to the 

large amount of known and unknown influential parameters in such buildings it can be difficult to 

draw correct conclusions without expensive and time-consuming measurement campaigns (Heber et 

al., 2001). Also, the presence of the animals can impede some measurement locations, especially in the 

animal occupied zone, or substantially increase the effort of taking such measurements (Fiedler et al., 
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2013). Furthermore, gases like NH3  or dust can be harmful for the correct functioning of sensors in 

the long term (Hinz and Linke, 1998), increasing the experimental cost or lowering the reliability of 

the sensors.  

As an intermediate step also full size mock up buildings can be used. Experiments in mock up 

buildings can become gradually more complex by adjusting the indoor structure to emulate conditions 

of a real animal house. There is the possibility to add pen equipment, heat sources to simulate the 

presence of animals (Bjerg et al., 2000), controlled release of gases such as ammonia or CO2 to 

simulate emissions from manure or the exhalation of the animals. Also the larger size of the building 

allows the use of a large variety of sensor equipment, from the relatively small cup anemometers to the 

larger 3D ultrasonic sensors. This will increase the transferability of the developed measuring methods 

to commercial animal houses as these types of robust sensors will also be applicable there. Extensive 

studies were already performed in such buildings at the Silsoe Research institute in the “Silsoe 

structures building” and the “Cube” (Demmers et al., 2001; Hoxey and Richards, 1995; Richards and 

Hoxey, 2012; Straw, 2000). There the focus mainly lied on pressure distributions on buildings. 

1.2.5.2. Prerequisites of the measuring technique 

As will be discussed in 1.3.3 the ventilation rate is also an important aspect of the most common 

emission rate measurement techniques. However, distinction has to be made between measuring 

techniques for the application in control systems and techniques as a part of an emission quantification 

method. A control technique will need updated results at least every few minutes whilst a daily 

average could be sufficient for the determination of the emission rate (Estelles et al., 2010a). Evidently 

a control technique needs to be applied permanently whilst emission rate determination, depending on 

legislation, will only need to be performed periodically. Also the accuracy is a determining factor. As 

mentioned in section 1.2.1, there is a certain range in which the indoor climate can fluctuate without 

harming the animals. Therefore, the accuracy of the control technique needs to be adapted to the 

specific needs of the animals, thus possibly reducing the complexity or cost of the method. For 

example, the broader comfort zone of cows could result in less demanding control techniques than for 

pigs that have a narrower comfort zone. On the other hand, the accuracy of the emission rate 

measuring technique is of great importance as it can have serious consequences for the draft of new or 

the enforcement of existing legislation (see section 1.3.2).  

1.2.5.3. Direct and indirect measuring techniques 

Irrespective of their use for control or emission quantification purposes, ventilation rate measurement 

techniques on full scale buildings can be divided into direct and indirect techniques. The direct 

techniques measure a parameter directly linked to the airflow rate such as air velocity in the vent. 

Although dynamic pressure can also be translated into an airflow rate, the small pressure differences 

occurring in naturally ventilated openings make this method less reliable. The air velocity can be 
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measured in a variety of ways, e.g. propeller gauges, sonic and hotwire anemometers (see Fout! 

Verwijzingsbron niet gevonden.). Most of the off-the-shelf anemometers give point measurements. 

To determine the ventilation rate these measurements are multiplied by the vent area of which they are 

assumed to be representative (Joo et al., 2014; Molina-Aiz et al., 2009). This can result in large errors 

when the velocity profile in that area is not homogeneous. Especially in naturally ventilated vents this 

homogeneity cannot be expected due to the constantly changing wind incidence angles. Each chosen 

measuring point will have a stochastically changing significance in its contribution to the total 

calculated airflow rate (Shen et al., 2012b). The more heterogeneous the velocity profile is, the more 

sensors will be needed to give a correct airflow rate. However, this implies that the profile should 

already be known to some extent before the tests start. An assessment has to be made on  how many 

sensors will give the necessary amount of detail without causing a considerable obstruction of the 

vent. The use of CFD modelling could help in these cases, but often the choice seems to be made on 

sensor availability. The vent area assumed to be representative of a point velocity measurement differs 

greatly among different studies from 2.1m² (Molina-Aiz et al., 2009); 2.6m² (Boulard et al., 1998); 

1.1m² (Teitel et al., 2008a), 8.5m² (Teitel et al., 2005) in greenhouses. In livestock buildings 

sometimes areas of 100m² were taken by Joo et al. (2014). Kiwan et al. (2012) studied the effect of 

sensor placement in the vent opening. They stated that “it is more important to measure the air 

velocity at different points within an opening to obtain representative data for the whole opening than 

to measure at a high number of openings which are located in very similar positions”. Still, important 

knowledge gaps exist on the subject of animal houses and particularly with regard to the effect of 

measurement positions within the respective openings. It must be noted that there have been research 

efforts to develop air velocity or airflow rate sensors that do not rely on point measurements but rather 

on line or even surface area measurements. Doing so, part of the heterogeneity of the velocity profile 

could be captured by the sensor. Two distinct methods were found. One concerns a heat dissipation 

method developed by Özcan et al. (2009) and further adapted by Lule et al., (2014). Heat is generated 

from a line source located in the vent. The relation between temperature distribution and airflow rate 

could be found by capturing the two-dimensional temperature distribution around the ventilation 

opening by infrared thermal imaging. Their results show that the ventilation rate can be predicted with 

an error of 8% under controlled conditions by using a data-based mechanistic approach. However, it is 

not clear how such a technique could be used on large vents such as those in cattle farms. The other 

technique is based on ultrasonic transit times or, in more complex applications, ultrasonic tomography. 

These techniques are mainly used to measure gas flow rates through pipes (Drenthen and de Boer, 

2001; Kurniadi and Trisnobudi, 2006) but might also be applicable for natural ventilation purposes. 

Ozcan (2011) has applied such a technique to a round duct with the intention of using this set-up in 

naturally ventilated buildings. An airflow rate measurement error of 9% was found under controlled 

conditions for heterogeneous velocity profiles through a round duct. However, no further 
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developments have been published. None of these innovative techniques have been tested in naturally 

ventilated animal houses and are, therefore, not directly transferable without further in depth research. 

Indirect measuring methods such as  mass balance methods (Demmers et al., 2000 ; Kiwan et al., 

2013; Samer et al., 2011) are commonly used to give an estimate of the ventilation rate. They include 

heat and moisture balance methods and tracer gas tests with naturally occurring tracers such as CO2 

and artificially inserted tracers such as SF6. There exist three types of tracers gas tests, e.g. tracer gas 

decay, constant concentration and constant injection method. For the tracer gas decay test the animal 

house is sealed off and filled with tracer gas which is mixed with the indoor air until a homogenous 

gas concentration is found throughout the animal house. When the vents are opened again, the rate of 

tracer concentration decay is a measure for the ventilation rate. This method does not allow a 

continuous measurement. For the constant concentration method, the concentration of the tracer gas is 

measured at various locations. The amount of tracer that is necessary to maintain that concentration is 

a measure of the ventilation rate. Therefore, the valve controlling the tracer injection rate has to be 

adjusted automatically and continuously whilst measuring the gas concentrations. Due to changing 

ventilation rates it is challenging to maintain a constant concentration throughout the whole animal 

house. Therefore, this method is not recommended for use in naturally ventilated buildings. The 

constant injection method is the most commonly used one and allows a semi-continuous measurement 

of the ventilation rate, i.e. until the tracer gas runs out (Ogink et al., 2013). The CO2 mass balance 

method uses CO2 emitted by the animals and the manure as a natural tracer gas. Therefore, the 

advantage of the method is that the “tracer” is often released more homogeneously throughout the 

stable without the need of a complex release system. However, the accuracy of the models needed to 

predict the amount of CO2 that is released from the different sources remains a problem (Kiwan et al., 

2013).  

The tracer concentrations should be measured at the outlet openings and corrected for background 

concentrations measured at the inlets. As mentioned above, these in- and outlet locations vary 

according to the wind incidence angle. In principle a vent can be determined to be an in- or outlet by 

comparing the concentration in the vent to the outside concentration of fresh air. Outlets should have 

higher concentration of the tracer gas. However recirculation, influences of surrounding emission 

sources and in the case of CO2 small differences between indoor and outdoor concentrations make this 

approach less reliable. 

The results of tracer gas techniques are very variable and mainly depend on the sampling positions and 

the mixing of the indoor air with the tracer (Van Buggenhout et al., 2009). An extended review on 

uncertainty analysis and error sources of these indirect ventilation rate measuring techniques is given 

by Calvet et al. (2013). Good results are found when tracer gas tests are compared with reference 

techniques for mechanical ventilation (summarised by Ogink et al., 2013). However, as there is no 

reference technique for natural ventilation (Ogink et al., 2013), they cannot be validated in these 

conditions. Ozcan (2011) mentions inaccuracies from 10% to 230% for tracer gas tests.  
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Overall, it can be stated that a reliable and continuous quantification of the ventilation rate is difficult 

to achieve with these techniques because they do not sufficiently take into account the continuous 

fluctuations in the airflow rate and the characteristics of non-perfectly mixed fluids. Indirect methods 

are not suited for long term measurements and are therefore mostly used for research purposes. 

1.2.5.4. Ultrasonic anemometers: applications in agriculture  

As mentioned in 1.2.5.3 the air velocity can be measured in a variety of ways. The most common 

anemometers are cup, vane, hotwire and ultrasonic anemometers. The prerequisites of an anemometer 

fit for the use in naturally ventilated animal houses are a.o. robustness, accuracy and the ability to 

measure the direction of the flow.  

Although there exist very accurate hotwires that are also able to indicate flow directions, they are in 

general too fragile and expensive to be used in outdoor conditions. Cup and vane anemometers are 

robust but are not able to measure the direction of the flow. Furthermore, these sensors rely on the 

correct functioning of their mechanical (rotating) parts. In the sometimes dusty conditions of an 

animal house, the sensors’ bearings might become clogged. Although they can certainly be used for 

short term measurements in combination with a wind vane, longer measurement periods will therefore 

require regular cleaning and even recalibration. This is in stark contrast to the robust ultrasonic 

anemometers which have no moving parts and are made to last without the need for calibration 

(Ozcan, 2011). An ultrasonic sensor measures the air velocity by sending an acoustic pulse from one 

piezoelectric transducer to another. The time it takes for the acoustic pulse to travel between those 

transducers, i.e. the transit time, is a measure for the air velocity. Flows travelling in the opposite sense 

of the pulse increase the transit time and vice versa. Flows traveling perpendicular to the path between 

two transducers do not influence the travelling time. With one transducer pair, a 1D sensor is created. 

Therefore, for a 3D sensor, 3 pairs are necessary. These 3D sensors will deliver the total wind velocity 

decomposed into its X-, Y- and Z-velocity components. Furthermore, the measuring frequency of the 

ultrasonic sensor can be very high, as this frequency only depends on the speed at which the acoustic 

pulses can be sent and received. This allows turbulence measurements for studies concerning e.g. heat 

transfer and the mixing and transport of pollutants within the animal house.  

Ultrasonic sensors have been widely used in ventilation studies in agriculture, especially in greenhouse 

production. In many of these studies the sensors are placed in or at the ventilation openings in order to 

measure the ventilation rate or to study the flow patterns through these openings (López et al., 2011a, 

2011b; Molina-Aiz et al., 2009; Teitel et al., 2005). In other studies the ultrasonic sensors are 

distributed throughout the building to measure the internal flow patterns (Boulard et al., 2000; López 

et al., 2012a, 2012b; Wang and Deltour, 1999; Wang et al., 1999). The data gathered in these studies 

allowed to examine the relation between buoyancy and wind effect and the influence of e.g. building 

geometry, obstructions in the surroundings, wind incidence angle and speeds, vent characteristics, etc. 

on the ventilation rates and patterns. Also the turbulence of the airflow at the vents was characterized 
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to study the contribution of turbulence to the overall sensible heat transfer and to provide a database 

for future validations of CFD based simulations. 

All above mentioned studies are performed on greenhouses. The interest in this sector is related to the 

need for a very precise control of the indoor climate to ensure crop growth. Furthermore, a 

homogeneous distribution of temperature, relative humidity and gases are needed to obtain uniform 

growth throughout the greenhouse. Also in animal production, more and more attention is being paid 

to an optimal indoor (micro)environment (see 1.1). According to Bjerg and Sørensen (2008) the 

modern demands of airflow in livestock buildings are related to air distribution, control, energy 

efficiency, and air velocity in the animal occupied zone. Samer et al. (2011b) state that there are 

several procedures that should be implemented to meet these demands: determining and limiting air 

velocity at animal level, homogenizing air velocity distribution and direction in the entire barn, 

determining whether air velocity distribution inside and close to the inlet are similar, investigating air 

velocity profiles and turbulences,  and reducing air velocity at floor level at high ventilation rates 

without increasing the pressure drop over the inlet.  

Although the ultrasonic sensor would be an ideal tool to study abovementioned topics, few studies in 

naturally ventilated animal houses can be found where these sensors are applied for more than 

determining the surrounding wind conditions. However, some studies have clearly proven the sensors’ 

applicability by delivering important insights into the relation between external wind conditions and 

airflow rates and patterns. For example, Fiedler et al. (2013) measured air velocities throughout the 

animal occupied zone of a naturally ventilated dairy barn. They found a relation between 

heterogeneous airflow patterns and climatic conditions within the animal house and the outside wind 

direction (25° from normal to the vent). However, they state that more data is necessary to identify the 

factors causing changes in the airflow patterns and rates. Norton et al. (2009) took detailed ultrasonic 

anemometer measurements of the internal airflow patterns in a naturally ventilated ½ scale duopitch 

building to validate CFD predictions. This study confirms the relation between internal climate 

heterogeneities and wind incidence angles other than normal to the vents. In this study it was also 

shown that the airflow rate through the vents does not necessarily represents the actual air renewal rate 

as short circuiting between the vents can occur. Joo et al. (2014) measured the airflow rates through 

the vents of a naturally ventilated dairy barn by multiplying velocities measured in the vents by an 

area for which these velocities were assumed to be representative. Although these areas where 

sometimes as large as 100m², this representativeness was not thoroughly checked. They found that the 

air inflow rates were, in general, higher than the outflow rates. It was also shown that using an on-site 

weather station and an ultrasonic sensor in the centre of each vent could be a possible simplified 

approach for determining the ventilation rates. Ndegwa et al. (2008) performed similar experiments as 

Joo et al. (2014) and found that averaging the in- and outflow rates results in a reasonable 

measurement of the ventilation rates. 
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No studies could be found that give a detailed image of the velocity profiles in the vents of full scale 

animal houses (not accounting for CFD simulations). However, such a velocity profile is the link 

between outdoor and indoor conditions. Therefore, a more in depth knowledge concerning what 

influences the profile’s heterogeneity could deliver insights useful for the measurement, distribution 

and control of the airflow rate. Furthermore, from a detailed velocity profile the minimal measuring 

density can be deduced necessary to obtain a reliable estimate of the ventilation rate. 

1.3. Emissions from naturally ventilated animal houses  

As discussed in 1.2, the indoor climate of an animal house needs to be controlled and maintained 

between certain limits of, amongst others, temperature, relative humidity and concentrations of 

harmful gases. The main influencing factor is the ventilation rate as it refreshes the indoor air and 

removes pollutants such as NH3, CO2, CH4, N2O, H2S and dust. Consequently, these pollutants are 

emitted into the environment causing harm to fauna and flora. National and international regulations 

exist to enforce the mitigation of the emission of harmful gases (see1.3.2). A source oriented approach  

is necessary to reduce the release of these pollutants as much as possible (see 1.3.1). How these 

emission rates are currently measured is discussed in section 1.3.3. 

1.3.1. Mitigation techniques  

Pollutants in livestock facilities have two main sources: the animals themselves and the manure they 

produce. NH3, CO2, CH4, N2O, H2S are all gases that are released from manure, either under aerobic 

and/or anaerobic conditions. Additionally CO2 is also released through the animal’s exhalation 

(Philippe and Nicks, 2015) and up to 80% of the emitted CH4 originates from enteric fermentation 

(Ngwabie et al., 2014). Dietary strategies can reduce the enteric CH4 production and have been 

reviewed by Boadi et al. (2004). To reduce the emissions originating from manure there exists an array 

of mitigation techniques. They can be subdivided into three main mitigating strategies: 1) Changing 

the properties or composition of the manure, 2) reducing the contact surface and exposure time of 

manure to the indoor air and 3) creating an indoor climate that does not stimulate the release of 

pollutants.  

Most of these techniques focus on NH3 reduction. The first strategy can be accomplished through e.g. 

adaptation in the animals diet, avoiding contact between urine and faeces to counter the formation of 

NH3, lowering the temperature of manure through cooling elements, lowering the pH of the manure. 

The second strategy can be accomplished through e.g. frequent removal of manure from the pits 

and/or solid floors, reducing the emitting surface through the application of e.g. sloped pit walls, solid 

floors covering the manure pits beneath the animals. More information concerning abovementioned 

techniques can be found in e.g. Sommer et al. (2013) and UNECE (2014). As the focus of this general 

introduction lies on the link between airflow rates or patterns and the indoor climate, these techniques 

will not be discussed further.   
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However, the indoor climate itself also has an impact on the emission rate which leads to the third 

strategy. Reducing the air velocities over the emitting surface of slatted or solid floors and pits can 

lower the emission rate of NH3 considerably (Rong et al., 2009). It should be noted that it is not 

necessarily the ventilation rate that is the key factor. When large airspeeds over emitting surfaces are 

avoided through a well-controlled airflow pattern, the ventilation rate might not need to be decreased. 

However, with current techniques the airflow pattern is not easily controlled, especially not in dairy 

farms due to their large and naturally ventilated vents. In these cases lowering the ventilation rate, 

without compromising the indoor climate, is the best option to lower internal air speeds. Wu et al. 

(2012) found a significant linear relation between NH3 emission and ambient temperature. Hence by 

controlling the indoor climate and avoiding unwanted high temperatures, emissions might be lowered. 

Nevertheless, concerning the third strategy, Philippe and Nicks (2015) rightfully stated that the indoor 

climate parameters should be primarily controlled to fulfil the physiological needs of the animals. 

Only in second order it should be examined whether the indoor climate could be adjusted to diminish 

emissions. 

Unlike mechanically ventilated animal houses the use of end of pipe techniques is scarce but rising. 

This is mainly due to the variability of the outlet location and the large differential pressure differences 

that are necessary to overcome airscrubbers and biobeds. 

In any case, research efforts should be aimed at “front of pipe” techniques, as they do not only lower 

the emission rate but help in maintaining a healthy indoor climate for animals and farmers. 

More detailed information on the formation of pollutants and on mitigation strategies can be found in 

in Monteny et al. (2006), Ndegwa et al. (2008);, Philippe et al. (2011) and Webb et al. (2005). 

1.3.2. Impact and regulatory aspects 

The pollutants emitted from an animal house can have a considerable effect on the surrounding and 

even global environment. In the vicinity of the barn the emitted ammonia can cause soil acidification 

and eutrophication, thus damaging the ecosystem. CO2, CH4, N2O contribute to the greenhouse effect 

which can cause severe climate changes and increase the occurrence of extreme weather phenomena. 

In more densely populated areas odours from animal houses are becoming an increasing problem. 

Agriculture is considered to be responsible for the contribution of 93% and 18% of ammonia and 

methane emissions, respectively, in Europe (EEA, 2014). The negative effects on the environment 

have brought about international legislation (Kyoto-Protocol, 1998; NEC-Directive, 2001). In Flanders 

this has reached a culmination point in April 2014 with the acceptance of the specific conservation 

objectives (in Dutch: specifieke instandhoudingsdoelstellingen (S-IHD)). This program was created as 

an answer to the NATURA2000 framework which imposes a predetermined area of “protected special 

areas of conservation” in Europe. In Flanders some animal husbandry farms are located in or near 

these protected and nitrogen sensitive areas. The PAN (2014) program (programmatic approach 

nitrogen) has been created to set regulations and eventually compensations for this sector in specific. 
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In light of this program approximately 970 farmers have recently been informed that when they have 

to renew their licenses, an emission reduction of 30% will be imposed. Additionally for about 70 

farms, the license renewal will be rejected with closure as a result. In Flanders emission abatement 

techniques in animal husbandry are already enforced through national legislation (MB, 2004) to reach 

the European goals. However, these techniques do not apply for naturally ventilated dairy farms. 

Unfortunately it is mostly these farms that are targeted by the PAN. Therefore there is an urgent need 

for specific abatement techniques. Parallel there is a need for measuring techniques to accurately 

quantify the efficiency of the abatement techniques and the emission rate in general. Without these 

measuring techniques, legislators are forced to base their decisions on numbers provided by models, 

generalisations of earlier studies and simplifications. As mentioned in 1.2.5 and 1.3.3 the accuracy of 

existing measuring techniques for determining the ventilation rate cannot be guaranteed as no 

reference method exists. 

1.3.3. Measurement of the emission rate  

An extensive review on measurement techniques for the emission rate in naturally ventilated animal 

houses by Phillips et al. (2001), discussing techniques up to 2000, was updated by Ogink et al. (2013) 

up to 2013. Ogink et al. (2013) distinguished five techniques: 

1) product of measured differential concentration and ventilation rate 

2) tracer gas ratio method  

3) direct measurements using passive flux samplers  

4) flux chamber methods  

5) combination of downwind measurement and dispersion modelling 

For the first technique the measurement of the ventilation rate can be carried out by applying direct 

and indirect techniques as discussed in 1.2.5.3. The measurement of the differential concentration 

(inlet vs outlet) of the pollutant of interest is subjected to the same inaccuracies as the ventilation rate 

measurement by tracer gases. Such methods assume a homogenous pollutant or tracer distribution 

across the vents and a fixed in or- outlet character of that vent. Both assumptions can lead to large 

errors, especially when the wind incidence angle is not perpendicular to the vents. In these cases, a 

measurement of the wind velocity profile in the vents is essential to know the exact locations of the in- 

and outlets. Such a measurement could be used simultaneously to determine the airflow rate. Due to 

the multitude of emission sources e.g. animals and manure, the pollutants could be considered 

homogenously released throughout the animal house. However, this does not necessarily imply a 

homogenous indoor distribution. Certain airflow patterns can induce “dead zones” of still air 

(Daskalov et al., 2005), where the pollutant concentration can build up affecting in its turn the 

heterogeneity of the concentration profile in the vents. The number of measuring points in the vents 

will be proportional to the uncertainty of the method (Joo et al., 2014). In any case finding 
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representative locations to measure the inlet and outlet concentrations remains a challenge. The causes 

of the uncertainties associated with this method are shown in Fig. 1-2.  

 

 

Fig. 1-2: Uncertainty diagram concerning the determination of gas emissions from livestock buildings. Potential sources of random errors 

(precision) and systematic errors (bias) are indicated. Figure adapted from Calvet et al.(2013). 

The tracer gas ratio method is based on the assumption that the ratio between the release rates of the 

pollutant and the injection rate of the tracer gas is equal to the ratio of the pollutant and tracer gas 

concentrations (both corrected for background concentrations) (Mosquera et al., 2005). Hence, a big 

advantage of this method is that it does not require knowledge of the ventilation rate, thus avoiding the 

uncertainties associated with such a measurement. Also, a perfectly homogenous distribution of tracer 

and pollutant throughout the animal house is not necessary as long as both behave in the same manner. 

Therefore, a prerequisite is that the applied tracer gas and pollutant are thoroughly mixed and have a 

similar distribution of sources and similar transport and dispersion properties. The difficulty of the 

ratio method lies is in fulfilling these criteria (Scholtensa et al., 2004). Although no homogenous 

distribution is necessary, the measuring points should be located where the mixing of tracer and 

pollutant is optimal. Ogink et al. (2013) stated that the most representative sampling locations are 

situated at the outlets. Therefore, a determination of the velocity profiles in the vents remains 

advisable to avoid errors due to the changing in- and outlet character of the vents. However, it must be 

noted that Mendes et al.(2015) found that measuring the concentrations above the animal occupied 

zone would also deliver satisfactory results. This would be a viable option when it is impossible to 

determine the in- or outlet locations.  

Passive flux samplers for NH3 are tubes internally coated with acid that capture the NH3 at a rate 

proportional to the NH3 concentration and the wind velocity flowing through the tube. These tubes 
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only perform optimally when the air is flowing directly towards them (Ogink et al., 2013). Therefore a 

fixed wind incidence angle is necessary. Additionally, the samplers need a longer sampling time 

required for the diffusion reaction. The method is therefore, on the one hand, not suited for long term 

measurements where changes in wind incidence angles can be expected. On the other hand it is also 

not suited for measurements were short term variations in the emission rates are to be examined.  

The flux chamber method is used to single out certain parts of the animal house. A small chamber is 

positioned over the location of interest resulting in a controlled environment where the emission rate 

can be determined. However due to the high spatial variability of the emission sources and strengths, 

multiple locations inside the animal house need to be sampled when a representative average over the 

whole building is wanted. The amount of measurements and their locations are difficult to determine. 

Additionally the presence of these flux chambers disturbs the normal airflow patterns, potentially 

altering the emission rate of the measured locations. Therefore, it is not recommended to use these flux 

chambers to determine the total emission rate of an animal house.  

Dispersion modelling uses concentration measurements downwind of the animal house to calculate the 

emission rate. As these measurements should be taken at large distances (e.g. 100m) downwind, the 

wind incidence angle determines the location of these sampling points. Therefore the surroundings of 

the animal house can impede such measurements when no open field is present. Also, when more 

animal houses are located closely together, their individual contributions to the total emission rate will 

be difficult to assess.  

A practical emission monitoring technique should be robust, low maintenance and able to deliver 

reliable results whilst relying on only few measuring points. Most abovementioned measuring 

techniques could potentially be very accurate. However, large heterogeneities of velocity profiles and 

gas concentration distributions are common in naturally ventilated animal houses. Therefore, the 

amount of measuring locations to take this fully into account would be so high that these methods 

would at least become highly impractical and expensive. Being able to measure a detailed velocity 

profile in a naturally ventilated vent would be a stepping stone towards reducing the need for such 

high measuring densities. As mentioned in 1.2.5.4, in depth knowledge concerning what influences the 

velocity profile’s heterogeneity could deliver insights into the distribution of the airflow rate which 

can be linked to the gas concentration distribution. Furthermore, it is only from a detailed velocity 

profile that the minimal measuring density, necessary to obtain a reliable estimate of the ventilation 

rate, can be deduced. 
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1.4. Problem statement 

In light of sustainable livestock production, the management of a naturally ventilated animal house 

needs to be focused at lowering the emissions of pollutants whilst keeping an optimal indoor climate. 

This has to be approached from three sides. Firstly, a farmer needs full and automated control of the 

air renewal rate. In this way he can be sure that, whilst keeping the exhaust airflow at an optimal level, 

the animals will not be harmed as an adequate air renewal rate is guaranteed (EFSA, 2009). Secondly, 

new source oriented techniques need to be developed to diminish the release of the pollutants from 

manure (Philippe and Nicks, 2015; Philippe et al., 2011). Lastly, the emission rate of animal houses 

needs to be measured accurately to give the possibility to base the legislation on reliable numbers in 

order to be effective. All three approaches have a strong connection to the airflow rate and the 

associated wind velocity profiles in the vents. Most common emission rate measurement techniques, 

for instance, rely on an accurate determination of the ventilation rate and the location of the in- and 

outlets (Ogink et al., 2013). For the research on source oriented approaches, the emission rate of 

animal houses where the mitigation techniques are applied can give insight into the reduction potential 

of these techniques. In mechanically ventilated animal houses there exist accurate techniques which 

can serve as reference techniques to determine the airflow rate. Also the locations of the outlets are 

known and constant. These are both factors that contribute largely to the reliability of the emission rate 

determination (Groot Koerkamp et al., 1998). This is in stark contrast with naturally ventilated animal 

houses where variations in e.g. wind speed and wind direction have a large influence on the airflow 

rate and outlet locations (Linden, 1999). As a result of these variable conditions, there is no reliable 

measurement technique for the airflow rate to this day. Consequently, no generally accepted reference 

technique exists to measure the emissions from naturally ventilated animal houses. Therefore, also the 

reduction potentials of existing and new abatement techniques remain uncertain and prone to 

discussion. It is clear that a reference measuring technique for the ventilation and emission rate in 

naturally ventilated animal houses is necessary to construct an unambiguous regulatory framework 

aiding farmers, constructers, legislators and researchers. This is acknowledged throughout the 

scientific community and  extensively discussed in the special issue of Biosystems Engineering on 

‘Emissions from Naturally Ventilated Livestock Buildings’ (November 2013). This issue emphasizes 

the importance of accurate practical measuring techniques for the ventilation rate and draws the 

attention to the lack of a reference measuring method to validate such techniques (Calvet et al., 2013; 

Ogink, Mosquera, Calvet, & Zhang, 2013). In this respect, Takai et al. (2013) concluded that one pillar 

of future research must be the development of practical field methods that can be used as reference 

standards. The development of a reference method for measuring the airflow rate in naturally 

ventilated animal houses, would be a key milestone for both the quantification of the emissions and 

the further development of adequate measuring and control techniques. 
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Takai et al. (2013) also concluded that a dedicated facility needs to be established that can be used to 

obtain precise reference measurements of ventilation rates in naturally ventilated buildings. The 

authors state that such a facility would enable researchers to investigate and determine error sources 

and underlying mechanisms for measurement inaccuracies. This knowledge would be an essential tool 

for the development and selection of measuring techniques with higher accuracy and lower costs.  
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1.5. Research objectives 

The overall objective is to develop a reference method for ventilation rate measurements in a naturally 

ventilated test facility towards application in naturally ventilated animal houses.  

 

Sub-objectives 

- The test facility should be built in a way representative of a commercial animal house, i.e. 

with side and ridge vents. This should allow to gain insights that are transferable to these 

commercial buildings concerning the airflow rate distribution among the vents.  

- The reference technique should be developed for both side vents and ridge vents 

measurements. 

- In this set-up the reference technique should give detailed information on airflow rate and 

velocity profiles in the vents under varied wind conditions. The location of the outlets should 

be known at all times. 
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1.6. Thesis outline 

A measuring technique for the ventilation rate through rectangular vents will be developed, capable of 

coping with  heterogeneous velocity profiles. As no reference exists for naturally ventilated flows, this 

technique will be validated with a reference technique for mechanical ventilation (Chapter 2). A fully 

automated version of the airflow rate measuring technique will be developed to allow for an 

automated measurement of rectangular vents. Again a validation with a reference technique for 

mechanical ventilation will be necessary. The method will be validated for heterogeneous velocity 

profiles and larger vents (Chapter 3). A naturally cross ventilated testing room will be built where the 

fully automated measuring technique will be applied. The development of the airflow rate measuring 

method will be focussed on the capability of measuring the temporal and spatial variability of velocity 

profiles (Chapter 4). A dedicated naturally cross and ridge ventilated test facility will be built, 

equipped with the automated ventilation rate measuring technique. The usability of the method in 

more representative circumstances (larger vents and internal volume, sloped roof and ridge opening) 

will be determined. A technique will be developed for measuring the ventilation rate through the ridge, 

accounting for the velocity profile through that ridge (Chapter 5). Although it is not within the scope 

of this research to develop a method directly transferable to commercial animal houses, a first step 

towards a possible simplified measuring strategy will be taken. Therefore, the velocity profiles that 

will be determined in Chapter 5 will be examined in more detail. Especially the influence of wind 

direction will be discussed (Chapter 6). A more elaborate discussion will be held on why certain 

choices concerning the development of the measuring method were made and how these choices relate 

to the existing literature. Also the transferability of the developed method to commercial animal 

houses will be discussed, ending with some recommendations for future research (Chapter 7).      



 

*Adapted from: Van Overbeke, P., Pieters, J.G., De Vogeleer, G., Demeyer, P., 2014b. 

Development of a reference method for airflow rate measurements through rectangular 

vents towards application in naturally ventilated animal houses: Part 1: Manual 2D 

approach. Comput. Electron. Agric. 106, 31–41. doi:10.1016/j.compag.2014.05.005 

 

Chapter 2. Experiments under conditions of mechanical 

ventilation: Manual 2D approach.*  
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2.1. Introduction 

Velocity profiles in ventilation openings induced by natural ventilation can be heterogeneous and will 

change according to e.g. wind incidence angles and speeds (De Paepe et al., 2013). Therefore, the 

challenge in measuring the velocity profile in a naturally ventilated vent is twofold: finding a method 

that can (1) cope with the large variety in the profile characteristics and (2) deal with the temporal 

variability of these profiles. In this chapter the first challenge (1) was studied as an initial step in the 

development of a robust and accurate technique that can act as a reference for airflow rate 

measurements through rectangular sections. This implied the subjection of the method to a variety of 

velocity profiles in order to determine the appropriate sensor locations.  

2.2. Materials and Methods 

In order to determine the accuracy of a method, we need a reliable reference. As this was impossible to 

obtain under conditions of natural ventilation, experiments conducted under mechanical ventilation 

were needed. Evidently, the conditions in such experiments are not fully representative of the 

conditions under natural ventilation as these mechanically induced airflows are constant in speed and 

direction and therefore different from the continuously changing wind (Larsen, 2006). Nevertheless, at 

the current state-of-the-art there was no real alternative and such experiments can procure valuable 

insights into the behaviour of the examined measuring method under different conditions, albeit in 

steady state. Therefore, first a test installation based on mechanically induced airflows was developed 

for this specific application (See 2.2.1).  

Some airflow rate measuring techniques have already been developed especially for the application in 

naturally ventilated vents. These techniques have been discussed in 1.2.5.3 and none of them are ready 

for use in practice. Therefore, rather than to invest a large amount of time in the development of a 

completely new sensor, it was decided to use an existing sensor technique i.e. ultrasonic anemometry 

for the development of a new method (See 2.2.1.3). Ultrasonic anemometry was suggested by Ogink 

et al. (2013) and Takai et al. (2013) for direct velocity measurements due to its robustness and has 

been used in the field by many authors (Fiedler et al., 2013; López et al., 2011a; Samer et al., 2011b; 

Wang et al., 1999). According to a Thies Clima Manual of a 2D ultrasonic anemometer it was 

advisable to install the sensor at a minimum distance of 1 meter to surrounding objects. Ignoring this 

advice could lead to echoing when the sound packages meet reflecting surfaces, resulting in incorrect 

measurements. As this would be a limiting factor in sensor location, the influence of walls in the 

vicinity (<1.00m) of the sensor was examined in a first experiment (See 2.2.2.1).  

Because of the relatively large size of a 2D ultrasonic sensor,  measurements of the air velocity close 

to walls (<0.05m) was difficult. Thus, part of the velocity profile information could be lost due to an 

incomplete measurement. This could lead to an overestimation of the airflow rates, especially near the 

edges where the biggest velocity gradients are to be expected as the velocity is zero at the borders. In a 
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second experiment (See 2.2.2.2), a comparison was made between an airflow rate measuring method 

with a 2D ultrasonic sensor and a hotwire method with a finer measuring grid to gain insight into the 

possible loss of information.  

As stated in the introduction the measuring method should be able to cope with different velocity 

profile characteristics, e.g. airflow unsteadiness and velocity distributions. The unsteadiness of an air 

velocity profile (UF) is a measure of its instability over time. In a third experiment (See 2.2.2.3) the 

effect of the UF on the airflow rate measured by the developed method was studied. 

In a fourth experiment (See 2.2.2.4), the ability of the chosen measuring set-up with the 2D ultrasonic 

anemometer to accurately measure different airflow rates was determined using the airflow reference 

system following the VDI2041. Since a free running impeller was part of the test installation and is a 

reference method to determine the airflow rate and thus emissions through a mechanical ventilation 

shaft, this method was also included in the experimental set-up.  

In a last experiment  (See 2.2.2.5) a closer look was taken at the side wall effects in an attempt to 

explain the deviations found in previous experiments. 

2.2.1. Overall set-up of the test installation 

The test installation consisted of four airflow rate measurement techniques (see Fig. 2-1): a reference 

technique based on a differential pressure measurement over an orifice following the guidelines of 

VDI2041 (see 2.2.1.1), a free running impeller (see 2.2.1.2), the method developed with a 2D 

ultrasonic sensor (see 2.2.1.3) and a hotwire method (See 2.2.1.4), with the last two methods making 

use of a manual measuring frame.  

 

Fig. 2-1: General set-up with three simultaneous airflow rate measurement systems: A) differential pressure over an orifice according to 
the VDI2041 (Qvdi), B) free running impeller (Qimp) and C) the developed method with a 2D ultrasonic sensor (Q2DS). In a fourth method the 
ultrasonic sensor was replaced by a 2D hotwire. With Ød and ØD the inner and outer diameters of the orifice (m), respectively. With Porifice, 

Patm and ΔP the static pressure downstream of the orifice, the atmospheric pressure and the differential pressure between the prev ious, 
respectively (Pa). A weather station measured the temperature (K) and Patm. The side wall frame could be placed at the end of the duct or 
inside the duct at the location marked with TF.  

The airflow was produced by an axial fan (See  2.2.1.2). Two set-ups were constructed, one for the 

lowest airflow rates (1000m³/h to 1500m³/h) with a fan, impeller and pipeline diameter of 35cm (Ø 35 
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set-up) and one for the higher rates (1500m³/h to 6500m³/h) with a fan, impeller and pipeline diameter 

of 56cm (Ø 56 set-up). Both set-ups could be fitted at the inlet of the airflow duct. This duct guided 

the airflow to the plane where measurements were taken by means of a traversing movement of an 

anemometer. This plane was referred to as the traverse plane. Three rectangular ventilation ducts were 

constructed with a height of 0.5m and a width of 1.0m. Two ducts had a length of 2.0m and one a 

length of 1.0m. These three ducts can be combined in any order to form an airtight duct of up to 5.0m 

long. The heights of the ducts were chosen in order to represent a section of an in- or outlet side vent 

of a naturally ventilated pig barn. The horizontal walls were made of smooth plywood and the vertical 

walls of polymethyl methacrylate. The transparency of the sidewalls ensured correct placement of the 

sensors in the tunnel and visibility of the smoke propagation during smoke tests. A flow straightener 

made of plywood was positioned inside the tunnel in order to diminish the influence of the airflow 

swirl caused by the axial fan. The flow straightener was located 0.3m behind the inlet of the duct and 

had a length of 1m with a mesh size of 0.05m x 0.05m. 

Two sensor frames were developed to guide the traverse movement of the sensor described in 2.2.1.3 

and 2.2.1.4. One frame of 0.5m x 1.0m x 0.2m was meant to simulate a section of the sidewall vents 

and is referred to as the side wall frame (Fig. 2-2). The second frame of 0.15 m x 1.00 m x 0.50 m was 

meant to simulate a section of the ridge opening and is referred to as the ridge frame (Fig. 2-3). 

The sidewall frame could be placed at the end of the airflow duct or between tunnel parts thus creating 

the possibility to measure inside the tunnel. The vertical walls were made of polymethyl methacrylate. 

The bottom horizontal wall had a sled in which the sensor was fixed and was further covered with 

canvas in order to minimize air leakage. The horizontal movement was carried out by turning the left 

or right handle, rolling up the canvas and moving the sled. The vertical positioning was carried out by 

placing the sensor higher in the sled. The sled could be adapted to hotwires or ultrasonic sensors.  

 

 

Fig. 2-2: Side wall frame with 2D ultrasonic anemometer (2DS). By moving the handles the sled was moved left or right. To measure 

higher or lower inside the frame, the 2DS was put higher or lower in the sled. The frame could be placed at the end of the duct or between 
duct parts. 
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Fig. 2-3: Ridge frame with 2D ultrasonic anemometer (2DS). The 2DS could be placed in one of the four slots. The frame could onle be 

placed at the end of the duct. 

 

In the ridge frame, the air velocity sensors could be placed in four slots distributed over the length of 

the outflow opening and centrally placed over the height of the sensor frame. During measurements 

the three unused slots were covered to minimize air leakages. This frame could only be mounted at the 

end of the airflow duct. 

2.2.1.1. Airflow calibration system (VDI 2041) 

A method described by the standard VDI 2041 was chosen as a reference for the airflow rate 

measurements and has a combined standard measurement uncertainty of 3.0% (VDI2041). This 

standard is based on a differential pressure measurement over a standardized orifice and is further 

referred to as VDI2041. The steel orifices used in these experiments meet the requirements of DIN EN 

ISO, 5167-2:2004-01 (2003). As the VDI2041 imposes a pipeline length of at least 10 times the outer 

diameter of the orifice, the Ø35cm and Ø56cm set-up had a pipe length of 4.0m and 6.0m, 

respectively. The maximum diameter ratio (inner diameter/outer diameter of the orifice) of 0.75 was 

chosen for both set-ups to minimize the pressure build-up. The polyethylene pipes came in lengths of 

1.0m. The different pipe pieces were coupled with ring pieces to form a smooth interconnection. The 

outlet of the pipe was connected to the impeller. 

The pressure difference over the orifice was measured with a calibrated (11/2011) Dimed P26 

differential pressure sensor (-100..100Pa ± 0.3%) for pressures below 100Pa. A Testo400 differential 

pressure sensor (0..1000Pa ± 30Pa ) was used for higher pressures. Both had a measuring frequency of 

1Hz. The Testo400 was compared to a calibrated (06/2012) Dimed P26 (-1000..1000Pa ± 0.3%). The 

average value of 600 measurements made with both devices at 1Hz only differed by 2Pa at an average 

pressure difference of 255Pa. The Testo400 was not connected to the logger and could not log separate 

values but gave the average value of the measurements made at 1Hz after a predefined period. This 

made it impossible to calculate the standard deviations (SD). These missing standard deviations were 

indicated by “/”. The differential pressure over the orifice was measured throughout the whole 

duration of each experiment. Temperature and atmospheric pressure were obtained from a weather 



Chapter 2 

10 

 

station located next to the test installation. As both parameters were not expected to vary considerably 

during these short measurements (approximately 30 to 60 minutes) they were only registered once 

after each measurement. The airflow rate Qvdi was calculated using equations [2.1 to 2.3] (VDI2041). 

 

ε = 1 − 0.41
Δp

ϰ 𝑝𝑎𝑡𝑚
    [2.1] 

Qm(g s⁄ ) = 𝐶𝑑  ε π 
d²

4
(2 Δp ρ) 0.5 [2.2] 

Qvdi(m3 h⁄ ) = 3600 
Qm

ρ
  [2.3] 

 

With ε the upstream expansibility factor (-); Δp the differential pressure over the orifice (Pa); ϰ the 

isentropic exponent (-); ρ the density of the fluid (kg/m³) calculated  with following equation: patm /(R 

* T). With patm the atmospheric pressure (Pa), R the specific gas constant (J/(Kg * K)) and T the 

temperature (K); Qm the mass flow rate (g⁄s); Cd the discharge coefficient (-); d the inner diameter of 

the orifice (m). The calculations were made with Cd = 0,6 (VDI2041) and ϰ = 1.4 (for diatomic 

molecules) (Carter, 2001) and R = 287,1. The standard deviation of the air flow rate was calculated 

based on the fluctuations of Δp for the duration of each experiment (see 2.2.2.4). 

2.2.1.2. Airflow generation and control 

Direct current fans were chosen since their propeller speed is stable, even at low speeds, and can be 

adjusted almost steplessly. Two direct current axial fans (Fancom® IF Ø35cm and Ø56cm) with 

respective working ranges of up to 3540 m³/h and 12300m³/h at 0Pa were used to produce different 

steady airflow rates. The pressure build-up of the orifice (max. 256Pa) reduced the working range of 

the Ø56cm fan to almost 6500m³/h. The fans were combined with their respective free running 

impeller systems. Two Fancom®  ATM-Units (Impeller + Control Damper) were used (Ø35cm and 

Ø56cm). The impellers have working ranges of 125m³/h to 3500m³/h (Ø35cm) and 350m³/h to 

11000m³/h (Ø56cm). The imposed airflow rates ranged from 1000m³/h to 6500m³/h and correspond to 

an average speed of 0.55 to 3.6m/s, respectively, in the outlet opening (0.5m²) of the airflow duct. This 

range was chosen to represent the average air speed velocity in Belgium which lies between 2 and 

7m/s depending on the region (KMI, 2015). Higher speeds were not attainable as the fan reached its 

limits due to the pressure build-up caused by the orifice.  

The rotational speed of the fan was automatically controlled and stabilized by a Fancom®  ITM-iF 

unit that uses the feedback signal of the impeller. The impeller sends a frequency signal which is a 

measure of the airflow rate. From this logged frequency (f), the average value and standard deviation 

of the flow rate were calculated using the following equation provided by Fancom®  [2.4]: 

 

Qimp (m³/h)= (f/4) 60 F  [2.4] 
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Where F is a conversion factor calculated by Fancom® during the calibration of their impellers that 

converts the frequency of the impeller to the supplied airflow rate.  f is the mean turning frequency of 

the impeller (Hz). F is 1.74 and 5.16 for the Ø35cm and Ø56cm impellers, respectively. The frequency 

signal was logged at 1Hz and checked with an oscilloscope to ensure correct functioning. 

2.2.1.3. 2D ultrasonic method (2DS method) 

A 2D ultrasonic anemometer or 2DS (Thies®  4.3820.02.300) was selected (See Fig. 2-4:A). Due to 

the measuring principle of the 2DS, temperature, air pressure and absolute air humidity had no or only 

a small influence on the air speed measurements and were therefore not taken into account (Thies 

Clima manual). According to the manufacturer the 2DS had an air velocity accuracy of ±0.1 m/s  

below 5m/s and ±2% of the measured value above 5m/s (RMS-mean over 360°). The sensor was able 

to detect the direction of the airflow with an accuracy of ±1°. An extra calibration conducted by 

Deutsche WindGuard Wind Tunnel Services GmbH (calibration mark 22997; D-K-15140-01-00 ; 

10/2011) showed a standard uncertainty of max. 0.05m/s in a range of 0.557m/s to 5.470m/s.  

The traverse area of 0.5mx1.0m (side wall frame) was divided into 20 areas or elementary surfaces 

(Fig. 2-4:D). All areas were consecutively measured for 2 minutes at 1Hz (De Paepe et al., 2012). 

Each time the sensor was manually moved to the next measuring point. The ultrasonic sensor was 

placed within each area so the intersection of the measuring paths coincided with the centres of these 

areas. The transducer arms were placed at an angle of 45° with respect to the sidewalls. As the sensor 

was placed inside the duct, only the vector normal to the traverse plane had to be accounted for (Fig. 

2-4:C). Every normal vector (Vi┴) was multiplied by its accompanying area Ai (m²) after which the 

individual airflow rates were summed [2.5]. With n the number of elementary surfaces, i.e. 20 in this 

case. In every area the SD of the Vi┴ was calculated (Visd). The combined standard deviation from one 

complete traverse (SD Q2DS) was calculated following equation [2.6]. 

 

Q2DS(m³ h)⁄ = ∑ (Vi┴ A𝑖  3600)n
i=1   [2.5] 

SD Q2DS (m³⁄h) = √∑ (V𝑖𝑠𝑑 A𝑖  3600)2𝑛
𝑖=1   [2.6] 

 

Due to the geometry of the 2D ultrasonic anemometer the lowest measuring point was situated 12cm 

above the bottom edge of the sensor frame. Therefore the lowermost 5 areas (area 1 to 5) were chosen 

larger. In these areas the measurements were taken 2cm above the area centre.  
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Fig. 2-4: A: 2DS geometry, with the measuring paths coloured red and green; B: Top view of the measuring paths of the 2DS. The paths 
cross where the traverse plane is located. Dotted blue line is the projection of the measuring paths on the traverse plane; C: Airflow 
through traverse plane (TP), all air passes through the TP before leaving the duct; D: Division of the traverse plane of the side wall frame 
into elementary surfaces with the projected measuring paths of the 2DS  represented by dotted blue lines. Bottom row is larger as the 2DS 
could not go lower in the frame.  

The traverse area of the ridge section (0.15m x 1.00m, see Fig. 2-5) was divided into 4 equal areas. 

The measurements were taken at a height of 7.5cm from the bottom. The measuring set-up of the 

method was equal to the set-up for the side wall frame.  

 

 

Fig. 2-5: Division of the traverse plane in the ridge frame with dotted blue lines the projected measuring paths of the 2DS.  

2.2.1.4. Hotwire method 

The traverse plane was divided into 66 areas (Fig. 2-6). A 2D hotwire (TSI® 8465) was used to 

measure the air velocities in the centre of each of these areas. This hotwire is considered 2D as, when 

it is set-up vertically, its measuring probe reacts mainly to flows from a horizontal plane at the height 

of the probe. However, this hotwire is not capable of giving the velocity components in that plane.  

Hotwires with such capabilities do exist, but these are in a much higher price range. The areas near the 



Manual 2D approach 

13 

 

walls were smaller to account for the influence of wall friction. Every point was logged for 2 min at 

1Hz (De Paepe et al., 2012). In every area the mean velocity vector (m/s) and its SD were acquired. 

The airflow rate and its combined standard deviation were calculated using equations [2.5] and [2.6] 

applied to the hotwire method with n=66. 

 

 

Fig. 2-6: Division of the traverse plane in the side wall frame into elementary surfaces for the 2D hotwire anemometer measurement 

density test. All hotwire point measurements were taken in the centre of the elementary surfaces. 

2.2.2. Experiments for testing the validity of the 2DS method 

During the period of  June 2011 to June 2012, several tests were conducted to test the validity of the 

2DS method. To evaluate these experiments, the relative measurement error (Eq) in % was used (Van 

Buggenhout et al., 2009) [2.7]. 

 

𝐸𝑞 =
𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑄𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑄𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
100  [2.7] 

 

Considering that these experiments are a first step towards the development of a reference method for 

the ventilation rate of naturally ventilated animal houses, a maximum relative measurement error of 

10% was considered acceptable for these experiments. 

The most influential parameter in each experiment was the fan rotation speed which was easily 

controlled. The reported standard deviations are therefore primarily the results of the small variations 

in fan rotation speed and airflow unsteadiness during one complete traverse. Although the SD are 

mentioned, they are not used for comparison purposes (except in 2.2.2.3), but give an idea of the 

stability of the airflow during one experiment. The orifice set-up was only installed for the 

experiments in 2.2.2.4. Each resulting airflow rate was calculated from data logged during one 

complete traverse movement. In each experiment (except 2.2.2.4) the desired airflow rate was 

manually selected by increasing the fan rotation speed with the Fancom® ITM-iF unit until the desired 

frequency of the impeller was reached. All measurements were taken at a frequency of 1Hz and 

logged by a Squirrel 2010 logger. 
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2.2.2.1. Sensor interference 

To reduce the possibility of reflection of sound packages, the transducer arms were placed at an angle 

of 45° with respect to the walls (personal communication Thies®). To examine the influence of the 

surrounding walls, experiments were set up trying to induce errors through signal reflection. Four 

experiments were carried out. In each experiment the surrounding walls of the side wall frame were 

entirely covered by a different material: a rigid and smooth material, i.e. metal plates, a flexible and 

smooth material, i.e. rubber plates, a flexible and thin material, i.e. cloth and lastly the walls without 

additional materials i.e. polymethyl methacrylate and canvas. The air velocity was measured in areas 

1, 5, 16 and 20 (Fig. 2-4:D) using a 2DS, each time for 2 minutes (De Paepe et al., 2012). These 

measuring locations were chosen because at these points interference was most likely to occur. As a 

reference, the air velocity was also measured in area 8, since less reflection was expected in this 

location. All experiments were performed at the same airflow rate, i.e.1330±25 m³/h. 

2.2.2.2. Effect of the measurement density 

A hotwire sensor is much smaller than a 2D ultrasonic sensor and can measure the air velocity in a 

much denser measuring grid. It was assumed that the hotwire method would deliver an airflow rate 

value that was closer to the true value. A comparison test was set-up  between the hotwire method and 

the 2DS method at two different airflow rates.  

2.2.2.3. Effect of airflow unsteadiness 

The airflow unsteadiness was calculated by dividing the overall combined deviation by the mean air 

velocity. To examine the effect of UF, several adjustments were made to the test installation. The 

closer to the fan, the more the pulsing effect of the fan blades will have an influence on the flow. 

Therefore, to lower the UF, the duct was extended from 5m to 8m in steps of 1m by adding extra 

ducts. To increase the UF, 2 other set-ups were realized. First an obstruction (10 litre bucket) was 

placed in the tunnel at 0.50m upstream of the outlet at 0.35m from the left wall. The sole purpose of 

this obstruction was to increase the unsteadiness of the flow by an abrupt change in the mostly 

unidirectional flow inside the duct. Location and shape of this obstruction were rather arbitrarily 

chosen and had no additional purpose. In a second set-up the sensor frame was removed from the 

outlet and placed between 2 duct parts 3m downstream of the fan (TF in Fig. 2-1). Each test was 

carried out for 2 airflow rates, except for the obstruction experiment. 

2.2.2.4. Effect of airflow rate 

The effect of the airflow rate on the relative measurement error of the 2DS method was tested with the 

side wall frame (0.5mx1.0m) at 8 different airflow rates ranging from 1044m³/h to 6210m³/h. At the 

beginning of each experiment the desired airflow rate was manually selected by increasing the fan 

rotation speed with the Fancom®  ITM-iF unit until the desired pressure difference over the orifice 

was reached. Airflow rates 1 and 2 were measured with the Ø35 set-up, airflow rates 3 to 8 with the 



Manual 2D approach 

15 

 

Ø56 set-up. The relative measurement error of the free running impeller systems were tested 

simultaneously with the side wall frame experiments.  

With the ridge frame two airflow rates, 1447m³/h and  2596m³/h, were measured. As the Ø56 orifice 

was not yet available at that time, the Ø35 orifice was connected to the Ø56 fan and impeller by means 

of a transition box. This box might have disturbed the measurements of the impeller which were 

therefore not taken into account.  

2.2.2.5. Side wall effects 

The 2DS gives the average wind velocity over its measuring paths with a length of 0.2m (Komiya and 

Teerawatanachai, 1993). These measurements must rather be seen as line instead of point 

measurements. As these paths are placed with an angle of 45° with respect to the traverse plane, the 

projected length that was captured by the sensor in this plane was 0.14m (Fig. 2-7:A). 

 

Fig. 2-7: A: Top view of the side wall frame, with the measuring paths of the 2DS in red and green and the projection of the paths on the 

traverse plane (dotted blue line). Almost the entire width of the vent is covered by such a measurement resulting in a high horizontal 
measuring density ; B: Side view of the side wall frame. From the side the projected measuring paths are similar to point measurements 
(blue dots), the vertical measuring density is, therefore, much lower than the horizontal density.   

 

A horizontal traverse movement in the 2DS method (from area 1 to 5, 6 to 10, 11 to 15 and 16 to20) 

consisted of 5 consecutive measuring points which meant that 70% (5m x 0.14m = 0.70m) of the 

horizontal velocity profile was measured. On the other hand, a measurement in a vertical traverse 

could be seen as a point measurement (Fig. 2-7:B). This meant that the vertical traverse was captured 

by only 4 points. Together with the inability to measure the bottom 12cm, this lead to the assumption 

that an overestimation could be caused by an insufficient measuring density in the vertical direction to 

fully account for the edge effects. Therefore, both the middle horizontal (areas 6 to 10) and vertical 

(areas 3, 8, 13 and 18) traverse movements were repeated with the 2DS and compared with higher 

density traverses (25 points each) using a calibrated 1D hotwire (TSI® 8455) (Fig. 2-8). The 5 points 

closest to the top and bottom wall in the vertical hotwire traverse movement were 1cm apart, the other 

points were taken every 2.5cm. In the horizontal hotwire traverse the 4 points closest to the left and 

right walls, starting at 2cm from each wall, were also 1cm apart, the other points 5cm. For every 
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traverse the ventilation rate was calculated. The surface areas were adjusted according to the number 

of measuring points.  

 

Fig. 2-8: The traverse plane of the side vent divided into elementary surfaces. A horizontal and vertical traverse is made with a 2DS and a 

hotwire.  Measurement points for the 2DS are represented by the projection of its measuring paths () and measuring points of 
the 1D hotwire by green dots(). All hotwire point measurements are taken every 5cm in both the horizontal and vertical traverse (only 
shown for two elementary surfaces), except for the five measurements closest to each border which are taken every 2,5cm. This adds up 
to 25 measuring points in both the horizontal and vertical traverse. 

2.3. Results & Discussion 

2.3.1. Sensor interference test 

Table 2-1 shows the air velocities and SD for the different wall coverings of the side wall frame. The 

largest difference between corresponding corner measurements was found in area 5 and amounted to 

0.11m/s. As this was a single event and the remaining differences were not bigger than the measuring 

limit of the 2D sensor, it was concluded that a limited influence of reflection was to be expected under 

normal testing conditions where the walls are mainly polymethyl methacrylate and wood and in 

further research, concrete. 

Table 2-1: Influence of different wall materials of the side wall frame on the velocities obtained by the 2DS in order to exclude the possible 

echoing of the acoustic signals against the duct wall which might lead to unreliable measurements.  

Area 

(Fig.2-4D) 

Rubber (SD) 

(m/s) 

Steel (SD) 

(m/s) 

Cloth (SD) 

(m/s) 

Reference (SD) 

(m/s) 

1 0.69 (0.10) 0.71 (0.13) 0.70 (0.17) 0.64 (0.13) 

5 0.92 (0.16) 0.96 (0.15) 1.01 (0.14) 0.90 (0.16) 

8 0.92 (0.09) 0.95 (0.10) 0.94 (0.11) 0.93 (0.10) 

16 0.98 (0.16) 1.03 (0.16) 1.01 (0.17) 1.00 (0.17) 

20 0.72 (0.12) 0.68 (0.12) 0.71 (0.11) 0.67 (0.12) 

 

2.3.2. Effect of the measurement density 

Fig. 2-9 and  Fig. 2-10 show the velocities measured by the hotwire method and  the 2DS method 

respectively, for two imposed airflow rates, i.e. approximately 1600m³/h and 3300m³/h. The curved 

velocity profile caused by the edge effects was visualized more clearly when using a higher 



Manual 2D approach 

17 

 

measurement density. Considering the large difference in methodology, the difference in airflow rates 

obtained by the two methods was limited  (Table 2-2).  

 

Fig. 2-9: Velocities measured by the 2DS method in the 20 elementary surfaces of the side wall frame, whiskers represent the SD. Two 
airflow rates were imposed:   1600m³/h and  3300m³/h (approximately). The rectangle represents the traverse plane and the grey 
rectangles the row within the traverse plane on which the measurements are taken. The measurement areas can be found in Fig.2-4D. 

 

Fig. 2-10: Velocities measured in the 66 measuring areas by the hotwire method, whiskers represent the SD. Two airflow rates were 
imposed:   1600m³/h and  3300m³/h (approximately). The rectangle represents the traverse plane and the grey rectangles the row 
within the traverse plane on which the measurements are taken. The measurement areas can be found in Fig.2-6. 

 

Table 2-2: Comparison between 2 airflow rate measurement methods: 2DS  method where the traverse plane is divided into 20 measuring 
areas  and the hotwire method where the traverse plane is divided into 66 measuring areas. The hotwire method serves as the reference, 
with Eq the relative measurement error. 

 2DS method
 
(SD) 

(m³/h) 

Hotwire method
 
(SD) 

(m³/h) 

Eq  

(%) 

1 1625 (40) 1635 (15) -0.6 

2 3240 (85) 3340 (25) -3.0 

 

It should be noted that the used 2D hotwire was unable to measure the airflow direction. This could 

have led to an overestimation as it was necessary to calculate the airflow rate using only the vector 

normal to the traverse plane. Furthermore, the influence of the different sensor geometries could not 

be taken into account. Therefore, this experiment could not deliver conclusive proof for the correct 

choice in measurement density. 

2.3.3. Effect of airflow unsteadiness 

The experiment with the duct length of 5m was considered the reference for comparison purposes (see 

Table 2-3). The extension of the duct from 5 to 8m lowered the UF from 11% to 4%. The placement of 
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an obstruction in the tunnel (5m*) changed the shape of the velocity profile drastically and the UF 

increased to 33% for airflow rate 1. The measured velocities in this experiment are shown in Fig. 2-11. 

The grayscale gives an impression of the shape of the profile. The lee in the velocity profile clearly 

showed the asymmetrical positioning of the obstruction. This experiment also reinforced the proof that 

the measurement density was adequate as for two completely different velocity profiles (with and 

without obstruction) almost no difference was found in the airflow rate (5m and 5m*: Eq = 2.2%). The 

translocation of the frame (TF in Fig. 2-1) from the outlet to 3m behind the fan increased the UF up to 

22% for airflow rate 1. The largest relative measurement error was -2.3%. This indicates that airflow 

unsteadiness did not affect the 2DS method considerably under these conditions. 

Table 2-3: Influence of airflow unsteadiness (UF) on the measurement of two imposed airflow rates. The UF was influenced by changing 
the duct length from 5 to 8m; by placing the side wall frame between duct parts (see Fig. 2-1, location marked with TF); by placing an 
obstruction (10L bucket) inside the duct (5m*). The reference set-up was the 5m duct without obstruction.  

Imposed airflow rate      1:  1330m³/h         2: 2690m³/h 

Duct length UF (%) Eq (%)  UF (%) Eq (%)  

5m 11 reference 11 reference 

6m 6 -2,3 10 -1,1 

7m 7 -2,3 8 -1,1 

8m 4 -1,1 4 0 

5m* 33 +2,2 / / 
TF 22 +1.9 / / 

 

 

Fig. 2-11: Influence on the velocity profile of an obstruction placed 0.5m upstream of the outlet. The obstruction, a 10L bucket is drawn in 
red. In each elementary surface the average and SD of the measured velocities are shown (m/s). The greyscale is linked to the velocities 
and shows the lee in the profile caused by the obstruction.  

2.3.4. Effect of airflow rate 

Table 2-4 shows the measured values of the airflow rate for each side wall frame experiment as 

provided by the VDI2041, the 2DS method and the free running impeller, respectively. The relative 

measurement error of the 2DS method did not change much for different airflow rates and ranged from 

+4.0% to +6.9% while the relative measurement error of the free running impeller ranged from -12.1% 

to -5.2%. It should be taken into account that only one impeller of Ø35cm and Ø56cm was tested and 

that these results might not be representative of other impellers. Nevertheless, this gives an indication 
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that the use of an uncalibrated off-the-shelf impeller in emission rate experiments or for comparison 

with tracer gas experiments is not without risk (Heber, Ni et al. 2001; Hinz and Linke ,1998). It should 

be considered, however, that for the practical use as an airflow rate controller in mechanically 

ventilated animal houses the accuracy is sufficient.  

Table 2-4 : Eight airflow rates measured simultaneously by three methods, i.e. VDI2041 as the reference (Qvdi) ; 2DS method (Q2DS) and 

free running impeller (Qimp).  The relative measurement errors E2DS and Eimp, are given for the 2DS method and free running impeller, 
respectively. 

 Qvdi (SD) 

(m³/h) 

Impeller  Q2DS (SD) 

(m³/h) 

E2DS 

(%) 

Qimp (SD) 

(m³/h) 

Eimp 

(%) 

1 1040 (10) Ø35  1105 (35) +6.3 915 (25) -12,1 

2 1500 (15) Ø35  1570 (45) +4.6 1330 (25) -10,8 

3 1750 (20) Ø56  1835 (25) +4.9 1550 (75) -11,3 

4 2705 (45) Ø56  2835 (35) +4.8 2475 (75) -8,0 

5 3645 (15) Ø56  3840 (45) +5.3 3405 (75) -6,4 

6 4610 (/) Ø56  4825 (50) +4.6 4255 (75) -7,4 

7 5464 (/) Ø56  5725 (65) +4.7 5110 (75) -6,6 

8 6215 (/) Ø56  6550 (60) +5.4 5880 (75) -5,2 

 

Fig. 2-12 shows the velocity values obtained in the 20 measuring areas for airflow rates 3 to 8 in Table 

2-4. During these tests the installation remained unchanged (Ø56 set-up) except for the airflow rates. 

Therefore the increasing velocity gradient at the walls was completely attributable to the augmentation 

of the airflow rate. However, this had a limited effect on the relative measurement error.  

 

 

Fig. 2-12: Velocity measurements obtained by the 2DS method in the side wall frame:  1750m³/h,  2750m³/h, ▲3645m³/h,  
4610m³/h,  5464m³/h,  6215m³/h. The average standard deviation did not surpass 0.2m/s. The rectangle represents the traverse plane 
and the grey rectangles the row within the traverse plane on which the measurements are taken. The measurement areas can be found in 
Fig.2-4D. 

The two airflow rates measured in the ridge frame (Table 2-5) showed  a comparable relative 

measurement error as the side wall frame. Fig. 2-13 shows a relatively constant velocity over the 

length of the opening. The variation in velocity between the measurement areas was less than 0.05m/s. 

In the ridge frame the ratio between the circumference of the opening and its surface area was greater 

than in the side wall frame (15.3m-1 vs. 6 m-1). Hence a larger edge effect was to be expected. 

However, the relative measurement errors were still within the desired range.   
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Table 2-5: Two airflow rates measured by 2 methods simultaneously: VDI2041 as a reference and the 2DS method. With Eq the relative 

measurement error. The 2DS method was applied to the ridge frame. 

 

VDI2041 (SD) 

(m³/h) 

2DS (SD) 

(m³/h) 

Eq  

(%)  

1 1445 (5) 1525 (10) +5.3 

2 2596 (/) 2770 (10) +6.6 

 

 

Fig. 2-13: Velocity measurements obtained by the 2DS method with two imposed airflow rates:  1525m³/h,  2770m³/h. The average 
standard deviation did not surpass 0.04m/s. The measurement areas can be found in Fig. 2-5. 

2.3.5. Side wall effects 

In the experiments carried out with the VDI2041 as the reference, an overestimation of approximately 

5% was found when using the 2DS method. The experiments in 2.3.2 show that a higher measuring 

density did not lower the measured airflow rate. However, the measuring grid was only considerably 

finer in the horizontal direction. This suggested that the origin of the overestimation could be mainly 

attributable to edge effects in the vertical direction. Indeed, the 2DS measurements showed a 1.6% and 

4.8% higher airflow rate than the hotwire measurements for the horizontal (Fig. 2-15)  and vertical 

(Fig. 2-14) traverse movement, respectively. This relatively higher difference for the vertical traverse 

strengthens the hypothesis that the relative measurement error of the total airflow rate was mostly due 

to unaccounted edge effects close to the top and bottom edge. Fig. 2-14 shows that the vertical “point” 

measurement of the 2DS in area 3 (Fig. 2-4:D) was less representative of its related sub-area. Fig. 2-15 

shows that the average taken by the 2DS over its measuring paths can replace a much denser 

horizontal point velocity measurement. Overall, it could be concluded that a more detailed vertical 

traverse was needed to obtain the most accurate flow rate estimation. However, the extra obtained 

accuracy would entail a much higher execution time as more areas will have to be measured.  This is 

unfavourable for later use in naturally ventilated vents as a more time consuming method will have a 

larger influence of the time-dependency of the velocity profile. The 20 points traverse was withheld. 

This experiment could not deliver conclusive proof for the influence of the vertical and horizontal 

traverse densities as the influence of the different sensor geometries could not be taken into account.  



Manual 2D approach 

21 

 

 

Fig. 2-14: Comparison between 2 vertical traverses in the side wall frame with different measuring densities:  represents measurements 
by the hotwire anemometer and  measurements by the 2DS. The location of the measurement areas 3, 8, 13, 18 can be found in Fig. 
2-4:D. 

 

Fig. 2-15: Comparison between 2 horizontal traverses with different measuring densities:  represents measurements by the hotwire 
anemometer and  measurements by the 2DS. The location of the measurement areas 6 to 10 can be found in Fig. 2-4:D. 

2.4. Conclusions 

The 2DS method accurately measured mechanically induced airflow rates in a range of 1040m³/h to 

6215m³/h through a rectangular opening of 0.5m x 1.0m at the end of a 5.0m long duct. The relative 

measurement error remained under the self-imposed limit of 10% (max.: 6.3%). Possibly, a lower 

error can be obtained through additional air velocity measurements near the top and bottom wall of the 

opening. As the results were already below the 10% relative error limit, no additional measurements 

were deemed necessary at this point. 

Tests under varying conditions of airflow unsteadiness (UF ranging from 4% to 33%) resulted in a 

maximum change in airflow rate of -2.3%. This indicates that variations in UF did not have a large 

impact on the 2DS method. Deliberately disturbing the velocity profile gave rise to an increase of the 

measured airflow by 2.2% as compared to the undisturbed flow. Experiments show that the 2D 
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ultrasonic sensor is applicable in the vicinity of walls without causing false measurements due to an 

echoing effect. 

Tests performed on free running impellers with Ø35cm and Ø56cm showed that, for lower airflow 

rates (1040m³/h to 1750m³/h), relative measurement errors of up to -12% are possible. These errors 

were found to decrease with higher airflow rates. This indicates that the use of an uncalibrated off-the-

shelf impeller is not without risk in emission rate experiments or for the validation of tracer gas 

experiments, especially at low airflow rates. 



 

*Adapted from: Van Overbeke, P., De Vogeleer, G., Pieters, J.G., Demeyer, P., 2014a. 

Development of a reference method for airflow rate measurements through rectangular 

vents towards application in naturally ventilated animal houses: Part 2: Automated 3D 

approach. Comput. Electron. Agric. 106, 20–30. doi:10.1016/j.compag.2014.05.004 

Chapter 3. Experiments under conditions of mechanical 

ventilation: Automated 3D approach* 
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3.1. Introduction 

In Chapter 2 it was stated that the main challenges in measuring velocity profiles in a naturally 

ventilated vent are: (1) to cope with the large variety in velocity distributions and (2) to deal with the 

continuous and the temporal variability of these profiles. The first challenge (1) was partly addressed 

in Chapter 2 by imposing different steady state velocity profiles to a mechanically ventilated 

laboratory set-up with 2D anemometers. Chapter 3 further addresses the first challenge (1) 

concerning the variety in velocity distributions. The aim of this chapter was to further develop and 

adapt the airflow rate measurement method under conditions which are more representative of 

naturally ventilated openings with regard to vent size (i.e. larger vents), velocity profile (i.e. 

heterogeneous velocity distributions) and sensor position (i.e. measurements behind a vent instead of 

in the vent).  

3.2. Materials and Methods 

The test set-up built in Chapter 2 was adapted (Fig. 3-1) to perform experiments under conditions 

which are more representative of naturally ventilated animal houses, and this with regard to (1) vent 

size, (2) velocity profile and (3) sensor position. To further develop the method on a more 

representative vent scale (1), also a 3.0m wide tunnel was constructed next to the 1.0m wide tunnel 

(section 3.2.1.1). For practical reasons no tunnel wider than 3.0m could be built. The velocity profiles 

can have many shapes in a naturally ventilated opening (2) and are rarely completely unidirectional 

such as the profiles found in ventilation ducts. Therefore, some airflow obstructions were built (section 

3.2.1.1) which could be placed inside the tunnels during the experiments. Size and location of the 

obstructions were rather arbitrarily chosen and had no other purpose than to change the velocity 

profile to a less unidirectional pattern.  

To allow for continuous measurements with a high measurement density, and to limit manual labour 

and operator influence, the traverse sensor movement and data logging were fully automated. For this 

purpose an automated sensor frame was built (section 3.2.1.2). The used 2D and 3D sensors are 

described in section 3.2.1.3. Concerning the sensor position (3), it is impractical and almost infeasible 

to perform measurements within the actual ventilation openings without altering the vents. Therefore, 

measuring inside the duct was no longer an option. The best alternative was to measure as closely as 

possible to the in- or outlet of the vent. Consequently, the anemometers were placed directly behind 

the outlet of the ducts with the automated sensor frame as a support structure. At this position, 

however, the air can fan out giving the airflow a more pronounced 3D character. Therefore, the 2DS 

method developed in Chapter 2 was accordingly adapted (section 3.2.2) and also more advanced 3DS 

methods were developed (section 3.2.3). 

As in Chapter 2, the standard VDI2041 (2001) was used as the reference to assess the accuracy of the 

examined airflow rate methods. The airflow rate was calculated following equations [2-1] to [2-3] in 
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Chapter 2.  To evaluate the experiments, the relative measurement error (E) in % was used (Van 

Buggenhout et al., 2009) [3.1]. 

 

𝐸𝑞 =
𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑄𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑄𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
100  [3.1] 

 

Considering the practical applications in naturally ventilated animal houses, a maximum relative 

measurement error of 10% was regarded as acceptable. The standard deviations (SD) found in tables 

3-1, 3-3 and 3-4 are a measure for the stability of the airflow during one complete traverse and do not 

represent the variability of the method. 

3.2.1. Overall experimental set-up  

 

Fig. 3-1: Overall set-up with two simultaneous airflow rate measurement systems: A) differential pressure over an orifice according to the 
VDI2041 (Qvdi) and B) the developed method with a 2D or 3D ultrasonic sensor (Q2DS / Q3DS). With Ød and ØD the inner and outer 
diameters of the orifice (m), respectively. With Porifice, Patm and ΔP the static pressure downstream of the orifice, the atmospheric pressure 
and the differential pressure between the previous, respectively (Pa). A weather station measured the temperature (K) and Patm. An 
automatic sensorframe with a vertical (V-guide) and horizontal (H-guide) guidance, automatically moves the sensor across the vent 
opening. The frame is controlled with a graphical user interface (GUI) connected to a programmable logic control (PLC).  

3.2.1.1. Wind tunnels 

In addition to the 5.0m long tunnel with a 0.5m x 1.0m outlet opening (built in Chapter 2), a tunnel 

with a length of 5.0m and an outlet opening of 0.5m x 3.0m was constructed. The horizontal walls 

were made of smooth plywood and the vertical walls of polymethyl methacrylate. 

In the 1.0m wide tunnel a flow straightener made of plywood was placed inside the tunnel in order to 

diminish the influence of the airflow swirl caused by the axial fan. It was positioned 0.3m behind the 

outlet of the fan and had a length of 1m with a mesh size of 0.05m x 0.05m. When the 3.0m wide 

tunnel was used, the part of the 1m wide tunnel with the flow straightener was placed at the centre of 

the inlet of the 3.0m wide tunnel (see Fig. 3-2). The two 1.0m wide openings at both sides of the flow 

straightener were sealed with triplex. The airtightness of the combination of the 3.0m wide tunnel, 
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flow straightener and VDI2041(2001) pipeline (Ø0.56m set-up, see Chapter 2) were tested by 

pressurising the installation and visualizing the air leakages through smoke tests.  

To prove that the measuring method was able to deliver accurate results even when the velocity 

profiles have a more heterogeneous pattern, obstructions were placed inside the tunnels. The sole 

purpose of these obstructions was to cause abrupt changes the geometry of the velocity profile. For the 

1.0m wide tunnel, a ramp was built to guide the airflow upward (Fig. 3-3:A: obstruction set-up 1). For 

the 3.0m wide duct, 3 small obstacles were placed together inside the duct at 0.50m upstream of the 

outlet. The locations of these obstacles were varied (see Fig. 3-3:B) to obtain three different 

obstruction set-ups and, therefore, three different profile shapes (obstructions 2,3 and 4). 

 

Fig. 3-2: Top view of the test installation with the 3.0m wide tunnel.  

 

 

Fig. 3-3: A: Outlet of the 1.0m wide tunnel with obstruction set-up 1: upward guidance; B: Outlet of the 3.0m wide tunnel with the 

obstruction set-up composed of 3 buckets (I, II and III). Bucket I was moved to three different locations (L) to obtain three obstruction set-

ups.  For obstruction set-up 2 bucket I was located at L =1.8m, for obstruction set-up 3: L =1.4m and for obstruction set-up 4: L =0.4m). 

The sole purpose of these obstructions was to change the shape of the velocity profile. 
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3.2.1.2. Automated sensor frame and integrated data logging 

The automated sensor frame consisted of a connected horizontal (4.5m, H-guide) and vertical (0.7m, 

V-guide) linear guidance system located at the outlet of the duct (see Fig. 3-4) . This allowed to scan 

an area of 4.5m x 0.7m by a sensor rigidly fixed with a sensor mount to the top of the V-guide. The 

sensor mount brought the sensors as close as possible to the outlet of the opening. A linear speed of up 

to 2m/s was obtainable. Therefore every location in the scan area could be reached in less than 3 

seconds. The movement of the sensor was driven by 2 electro motors controlled by a Siemens Step 7® 

PLC program. The desired measuring locations could be reached within 1mm. It was possible to create 

different recipes within the PLC program, each containing a set of coordinates of the respective 

measuring points. A signal to the connected data logger (Datataker® DT85M) was given by the PLC 

when the sensor reached a pre-set coordinate, giving the authorization to start logging. After a 

predetermined and adjustable time the logging stopped and a signal was automatically given to move 

the sensor to the next coordinate after which the logging restarted. Therefore, no measurements were 

made during the movement of the sensor. The movement itself had a ramp up and ramp down to 

diminish the vibration of the sensor. It was assumed that due to these precautions no false 

measurements would be made attributable to residual sensor vibration or sensor movement. The 

control of the measurement variables (measuring time, number of measuring points, starting point) and 

sensor movement (choice of the recipe, start, stop) took place by means of a graphical user interface 

on a touchscreen. To simulate the effect of the building structure of a naturally ventilated animal 

house, a wall was placed in front of the tunnel. The opening in this wall was adaptable in order to have 

the same dimensions as these of the tunnel. The automated sensor frame was then fixed to this wall as 

would be the case in a barn. The wall mounts ensured a good alignment with respect to the opening. 
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Fig. 3-4: Automated sensor frame on wall prepared for measurements in the 3m wide tunnel. For a schematic overview see Fig. 3-1. 

3.2.1.3. Sensors  

The 1D air velocity measurements were performed with a hotwire anemometer (TSI® air velocity 

transducer model 8455). This type of anemometer has a protective cap surrounding the fragile sensor 

wire. This cap is a blockage for air velocity components from other directions than those normal to the 

opening in the protective cap and the sensor is therefore referred to as the 1D hotwire. However, a 

small range of incidence angles other than normal could also have an influence on the signal (personal 

communication supplier TSI). Although the hotwire cannot be regarded as a true 1D sensor, it was 

assumed that the velocity reading was mainly attributable to the normal component. According to the 

manual the 1D hotwire has an accuracy of ±2.0% of the reading or ±0.5% of full scale of selected 

range. The selected range was 0.0 - 5.0m/s. The 2D air velocity measurements were made with a 2D 

ultrasonic anemometer or 2DS (Thies® 4.3820.02.300) (for more detailed information see Chapter 2). 

The 3D air velocity measurements were made with a Thies® 3D ultrasonic anemometer or 3DS 

(Thies® 4.3830.22.300). According to the manual the 3DS has a wind speed accuracy of ±0.1 m/s 

below 5m/s and ±2% of the measured value above 5m/s (RMS-average over 360°). An additional 

calibration conducted by Deutsche WindGuard Wind Tunnel Services GmbH (calibration mark 22997; 

D-K-15140-01-00; 10/2011) showed a standard uncertainty of max. 0.05m/s in a range of 0.557m/s to 

5.470m/s. The sensor is able to detect the direction of the airflow with an accuracy of ±1°.  

All movements of the sensors were made with the automated sensor frame. Once the sensor was 

installed on the frame it was not removed until the end of an experimental series. The atmospheric 

pressure and temperature needed for the calculation of the density of the air in Qvdi (see Fig. 3-1 and 
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equations [2-2] and [2-3]) were checked once after every experiment on a weather station next to the 

installation as these parameters were not expected to vary considerably during the short measurements. 

All other measurements were taken at 1Hz and logged with the Datataker® DT85M. 

3.2.2. Adapted 2DS method  

The traverse plane is located 0.10m downstream of the outlet (see Fig. 3-5, TP2). TP1 indicates the 

traverse plane inside the duct as used in Chapter 2. TP2 coincides with the intersection of the 2DS’s 

measuring paths when the sensor is placed on the automated sensor frame’s V-guide. To be able to 

make a direct comparison with the tests carried out in Chapter 2, a similar test set-up was chosen with 

identical measuring areas (Fig. 3-6, areas 1 to 20). All areas were measured for 2 minutes (De Paepe et 

al., 2013). Every vector component normal to the traverse plane (vi┴) was multiplied by its respective 

area Ai (m²) after which the individual airflow rates were summed (n=20) [3.2]. In every area the SD 

of the Vi┴ was calculated (Visd). The combined standard deviation from one complete traverse was 

calculated according to equation [3.3]. 

 

𝑄2𝐷𝑆(𝑚³ ℎ)⁄ = ∑ (𝑉𝑖┴ 𝐴𝑖  3600)𝑛
𝑖=1    [3.2] 

SD Q2DS(m³⁄h) = √∑ (𝑉𝑖𝑠𝑑 A𝑖  3600)2𝑛
𝑖=1   [3.3] 

 

Fig. 3-5: The repositioning of the traverse plane from the position indicated by TP1 to the position indicated by TP2.  

 

Fig. 3-6: Subdivision of the traverse plane into areas 1 to 20, for the adapted 2DS method. To allow comparison with the measurements in 

Chapter 2 the areas 1 to 5 are larger to obtain an identical subdivision of the traverse plane as in Chapter 2.  
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3.2.3. Developed 3DS methods 

Different calculation techniques were developed based on the measurements by a 3D ultrasonic 

anemometer (3DS). An ultrasonic anemometer does not measure point velocities but the average 

velocity over each of its measuring paths (Komiya and Teerawatanachai, 1993). The 3DS has three of 

these paths and these are electronically transposed by the sensor’s software into an orthogonal 

coordinate system identical to the coordinate system of the tunnel (see Fig. 3-2). The 6 transducers of 

the 3DS fit inside a cuboid of 0.25m x  0.25m x 0.125m (see Fig. 3-7). This cuboid will be referred to 

as the measuring volume and was the building block of the traverse based measurements of the 

developed methods. The X-, Y-, and Z- components provided by the sensor were considered to be 

representative of the average velocities through the side planes, the front plane, and the top and bottom 

plane of the measuring volume, respectively. The representativeness of this measuring volume was 

examined in 3.2.3.1.  

Two airflow rate methods were developed to cope with the 3D character of the velocity profile: the 

Basic and Extended method (section 3.2.3.2 and 3.2.3.3). Each method provided in different relations 

between the velocity vectors and their corresponding measuring volume. A third method only took 

into account the Y-components of the Basic method (Y- method). This allowed to evaluate the 

influence of the other velocity components (X and Z) by comparison with the Basic and Extended 

method. All measurements with the 3DS were taken at 1Hz during 60s per measuring volume.  

 

Fig. 3-7: 3D ultrasonic sensor with measuring paths coloured green, blue and red. The 6 transducers of the 3DS fit inside a cuboid (brown 

cuboid) which is referred to as the measuring volume. The velocity components (X, Y and Z) obtained with the 3DS are associated with the 

areas of the measuring volume to which they are perpendicular.   

3.2.3.1. Validity of the measuring volume approach 

The measuring volume approach was based on the assumption that the X, Y, Z velocity components as 

measured by the 3DS, were representative of the actual flows through the respective planes of the 

measuring volume. Since the airflow will mainly pass through the front plane of the measuring volume 

(Y-component) in the conducted experiments, this assumption was verified for the front plane through 

comparison with a 1D hotwire anemometer. 
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Both the 3DS and the 1D Hotwire were mounted on the V-guide of the automated sensor frame. A 

measuring volume was chosen at 2.37m from the left wall and 0.31m from the bottom wall of the 3m 

wide tunnel. The hotwire was positioned in such a way that it could traverse an area of 0.25m x 

0.125m inside and 0.13m upstream of the front plane of that measuring volume (see Fig. 3-8). This 

area was divided into 20 equal sub-areas of 0.03 x 0.05m. An automated sensor frame motion recipe 

was written to alternately move the 3DS and the hotwire to specific measuring locations. One cycle 

consisted of the 3DS measuring the measuring volume for 60s followed by the hotwire measuring one 

of the 20 equal sub-areas inside that measuring volume for 60s. The 3DS returned every cycle to the 

same measuring volume, whereas the hotwire moved to the next sub-area. After 20 cycles, the 

measuring volume was measured 20 times for 60s by the 3DS, while the hotwire finished 1 traverse of 

the area composed of 20 sub-areas inside that measuring volume. This alternating movement was 

imposed to counter possible changes in the airflow during the experiment. Two airflow rate levels 

were imposed (approximately 4600 and 6000 m³/h, Table 3-2). A deviation of maximum 10% between 

the two methods was deemed acceptable. The SD’s of the 3DS vector components were based on the 

20 one minute averages made by the 3DS. These SD’s represented the stability of the flow during the 

experiment. The SD’s of the hotwire measurement represented the combined standard deviation of all 

20 sub-areas measured by the hotwire. 

 

 

Fig. 3-8: Test set-up to alternately scan a measuring volume (MV) with a 3DS and a plane within that measuring volume with a 1D hotwire 

anemometer. The plane measured with the hotwire is divided into 20 elementary surfaces. These are consecutively sampled with the 

hotwire whilst alternating with the measurement of the MV with the 3DS.  

3.2.3.2. 3DS Basic method 

When the traverse plane is located inside the duct, evidently all air has to flow through that plane (Fig. 

3-9 A). Therefore measuring the velocity component normal to the traverse plane multiplied by the 

area of that plane will deliver the total airflow rate. However, as the sensor is now located outside the 
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duct, also the traverse plane moves to this location. Behind the outlet of the duct the flow can fan out 

freely and only the forward oriented flows, i.e. parallel to the length axis of the duct, will flow through 

the traverse plane (Fig. 3-9 B). To measure the up-, down- and sideward oriented flows, traverse 

planes normal to these orientations are added to the original traverse plane. These planes virtually fill 

up the gap between the duct and the original traverse plane (Fig. 3-9 C). All air leaving the duct now 

has to flow through the combination of these different oriented traverse planes, i.e. the Combined 

Traverse Plane or CTP. The velocity Y- component was measured on the front plane, the X- 

component on the left and right side planes and the Z- component on the top and bottom planes (Fig. 

3-9 D). The 3DS cannot measure the complete CTP at once. Therefore, the volume created by the CTP 

was subdivided into smaller volumes equal to the size of the 3DS’s measuring volumes (Fig. 3-9 E). 

By doing so, the traverse planes themselves were subdivided into smaller elementary surfaces. In total, 

the CTP consisted of 32 or 80 elementary surfaces for the 1.0m or 3.0m wide tunnel, respectively. By 

traversing the CTP with the 3DS, the velocity components normal to all elementary surfaces were 

measured. The total airflow rate was calculated following equation [3.2]. The airflow rates that 

originate from inside the CTP and travel outward are referred to as positive airflow rates and are added 

to the total airflow rate. Airflow rates caused by returning flows originate from outside the duct and 

flow into the CTP. Therefore, these flows are considered as negative airflow rates and are subtracted 

from the total airflow rate. Such returning flows could be induced by nearby obstructions deflecting 

the airflow (Fig. 3-9 F). Each location within the CTP was measured for 1 minute after which the 

sensor was moved to the next location. This method is further referred to as the Basic method.  
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Fig. 3-9: The dashed red lines represent the traverse planes. A: Side view of the duct. When the traverse plane is located inside the duct 

all flow passes through that plane. B: When traverse plane is located outside the duct not all flow passes through that plane as it can 

escape undetected to the sides. C: Additional traverse planes to virtually envelop the flow. D: The combined traverse plane (CTP) through 

which all air has to flow. Differently oriented flows are measured at their acssociated traverse planes. E: Virtual volume created by the CTP 

is subdivided into 16 measuring volumes, which in their turn subdivide the traverse planes into 32 elementary surfaces. F: Top view of the 

duct. Possible returning flows due to obstructions. Returning flows are considered negative flows. 
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3.2.3.3. 3DS Extended method 

In the Basic method a positive flow rate, originating from inside the CTP, first passes through a 

measuring volume before it travels through the virtual boundary set by the CTP. Returning flows, on 

the other hand, first pass through the CTP and then through the measuring volumes inside the CTP 

(Fig. 3-9 F). A new method is suggested to examine whether a different treatment of flows depending 

on their origin would influence the measurement result. In this method, further referred to as the 

Extended method, the outward directed or positive flows will only be accounted for in the measuring 

volumes located inside the CTP. Additional measuring volumes are added (measuring volumes A to P, 

Fig. 3-9 G), bordering the CTP, in which only the inward directed or negative flows will be accounted 

for. Therefore, in contrast to the basic method, every measured flow first has to pass a measuring 

volume before it passes the CTP and this independent of the flow direction. Due to the 2D movement 

of the automated sensor frame, it was not possible to add measuring volumes behind the front plane. 

Hence, these measurements remain the same as in the basic method. 

  

Fig. 3-10: Combined traverse plane of the Extended 3DS method in the 1m wide duct (areas 1 to 16 + areas A to P). Outward oriented 

flows (from duct to surroundings) are measured in the white measuring volumes (1 to 16) and are considered positive, inward oriented 

flows (from surroundings to duct) are measured in the grey measuring volumes (A to P) and are considered negative. The arrows 

represent the X- and Z-flow direction that will be measured in a measuring volume. When the direction is opposite the velocity is not 

accounted for. The grey circles represent the Y-components. These are measured irrespective of their direction.  

3.3. Results & Discussion 

3.3.1. Applicability of the adapted 2DS method  

Table 3-1 gives the relative measurement error of the adapted 2DS method under different airflow 

rates and obstructions. These results show that the method delivered satisfactory results when there 

was no obstruction in the airflow (free flow). These results were similar to the measurements carried 

out inside the tunnel in Chapter 2, where the relative measurement errors were 4.8% and 5.3% for 

airflow rates of 2705m³/h and 3645m³/h. The 3D character of the outflowing air did not show a clear 

influence on the accuracy. This can be explained by the predominant Y-components which occurred in 
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the airflow jet 0.10m behind the outlet (see Fig. 3-11, left). Measuring the X- and Z- component would 

not have contributed to a meaningfully higher accuracy as the relative measurement errors are already 

well below the 10% limit. However, when obstruction set-up 1 forced the airflow away from its 

mostly perpendicular and thus unidirectional path, the relative measurement error increased up to -

18.5%. This demonstrated that measuring only the Y-component (see Fig. 3-11, right) can cause a 

large underestimation of the airflow rate in disturbed airflows. It was evident that in this case the Z-

component was necessary for an accurate measurement.  

It should be noted that a 2DS gathers its information from line measurements. For extremely distorted 

velocity profiles, the chance of having larger velocity gradients throughout the profile increases. 

Therefore, the location of the line measurement, especially where the velocity profile shows sudden 

changes, will be of great importance. Consequently, every velocity profile will have its own optimal 

measuring locations. Even though the experiments with obstruction set-up 1 are an extreme example 

of a sudden alteration in the velocity profile, it can be expected that in naturally ventilated openings 

there exist no optimal static sampling locations as the profile changes continuously. This problem can 

be partly solved by introducing more measuring locations with the 2DS or by measuring with a 3DS. 

Although a 3DS also takes line measurements, these measurements are assumed representative of a 

larger area due to the distribution of these lines. 

Table 3-1::Relative measurement error Eq (%) of the adapted 2DS method (Q2DS) under different airflow rates and obstruction set-up 1 

with VDI2041 (Qvdi) as the airflow rate reference. Duct width is 1m. Measurement (Standard deviation); 

Obstruction Qvdi (m³/h) Q2DS (m³/h) Eq (%) 

Free flow 2625 (25) 2760 (55) +5.2 

Free flow 3650 (35) 3780 (90) +3.6 

Free flow 4610 (45) 4785 (85) +3.8 

Obstruction1 3450 (30) 2870 (50) -16.8 

Obstruction1 4500 (45) 3665 (90) -18.5 

 

 

Fig. 3-11:Profile measurements with the adapted 2DS method in the 1m wide duct Left: velocity components normal to the traverse plane, 

free flow, 4610 m³/h; Right: velocity components normal to the traverse plane, obstruction set-up 1, 4500m³/h. Dotted line represents the 

outlet area. 
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3.3.2. Applicability of the developed 3DS methods 

3.3.2.1. Validity tests of the measuring volume approach 

Table 3-2 gives the three velocity components measured with the 3DS and the deviation between the 

Y-component and the hotwire measurement. It can be seen that the deviation between the 1D hotwire 

measurement and the Y-component of the 3DS remains under the 10% limit. This supports the 

assumption that the 3DS Y-component is representative of the average velocity on the front plane of 

the measuring volume. Side, top and bottom planes were not further investigated.   

Table 3-2: Validity tests of the measuring volume approach under two imposed airflow rates (Qvdi) (See Fig. 3-8). Measurement (Standard 

deviation); 3DS ultrasonic velocity components 3DS -X, -Y, -Z; Hotwire as the reference compared with 3DS-Y;. 

Qvdi (m³/h) 
3DS-X 

(m/s) 

3DS-Y 

(m/s) 

3DS-Z 

(m/s) 

Hotwire 

(m/s) 

Deviation(%) 

H and 3DS-Y 

4600 0.01 (0.02) 2.21 (0.03) 0.40 (0.01) 2.31 (0.05) -4.3% 

6000 0.01 (0.02) 2.88 (0.03) 0.53 (0.02) 3.05 (0.06 ) -5.6% 

 

Although a calibrated 1D hotwire anemometer was used, these tests could not give conclusive proof of 

the correctness of the assumptions. For example, as the influence of the sensors on the velocity profile 

was not clear, it was not possible to be certain of the complete similarity of the velocity profiles 

measured with the hotwire and the 3DS. Also, as mentioned in 3.2.1.3, a small influence of velocity 

components other than the Y-component could not be ruled out.  

3.3.2.2.  Wind tunnel tests (1.0m) 

Table 3-3 shows  the relative measurement error of the Y-, Basic- and Extended method under 

different airflow rates and obstructions. Without obstructions (free flow), the additional measurements 

of the X- and Z- velocity components did not have a large influence, as was expected due to the 

primarily unidirectional perpendicular flow as can be seen in the vector plot in Fig. 3-12 (Left). On 

average, the Y-method showed a relative measuring error of -2.5±1.0% in these free flow experiments. 

The Y-method resulted in a slight systematic underestimation of the airflow rates, while the 2DS 

method gave rise to an overestimation. The mean relative measuring error of the Basic method in the 

free flow experiments was 4.7±1.4% and showed no advantage compared to the Y-method. The mean 

relative measuring error of the Extended method was 3.0±1.5% in the free flow experiments. None of 

the methods showed a clear dependence on the airflow rate.  

When the directionality of the flow was changed by introducing obstruction set-up 1 in the tunnel, 

measuring only the Y- component proved to be insufficient as the relative measuring error reached the 

10% limit. It is clear that in these cases the Y-method underestimated the airflow rate as it was not 

capable of capturing the upward oriented airflow. A smaller error was found when using either the 

Basic or Extended method. Overall, the Extended method showed the best results under most imposed 
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airflow rates and different velocity profiles as also the errors of the obstructed airflow experiments fell 

within the variation of the error of the free flow experiments. Fig. 3-12 (right) gives the velocity vector 

plot and clearly shows the influence of the obstruction set-up 1 on the direction of the vectors. Since 

the three 3DS methods were measured simultaneously, only the SD for the Basic method was given as 

a measure for the stability of the airflow.  

Table 3-3 Relative measurement error Eq (%) of the Y-, basic- and extended method under different airflow rates and obstruction set-up 1. 

With VDI2041 (Qvdi) as the  airflow rate reference; 3DS Y: Y-method; 3DS B: Basic method; 3DS E: Extended method. Duct width is 1m. 

Measurement (Standard deviation) 

Method Obstruction 
Qvdi  Q3DS  

Eq (%) 

(m³/h) (m³/h) 

3DS Y 

Free flow 
 

1660 -3,8 

3DS B 1725 (10) 1770 (40) 2,6 

3DS E 
 

1735 0,6 

3DS Y 

Free flow 

  3410 -1,7 

3DS B 3470 (30) 3665 (70) 5,6 

3DS E   3625 4,5 

3DS Y 

Free flow 
 

3385 -3,1 

3DS B 3495 (30) 3632 (70) 3,9 

3DS E 
 

3595 2,9 

3DS Y 

Free flow 

  4475 -2,1 

3DS B 4570 (55) 4815 (85) 5,4 

3DS E   4725 3,4 

3DS Y 

Free flow 
 

4500 -1,6 

3DS B 4575 (40) 4855 (85) 6,1 

3DS E 
 

4750 3,8 

3DS Y 

Obstruction1 

  3160 -9,8 

3DS B 3505 (35) 3765 (45) 7,4 

3DS E   3650 4,1 

3DS Y 

Obstruction1 

 
4070 -11,1 

3DS B 4580 (60) 4890 (60) 6,8 

3DS E   4680 2,2 
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Fig. 3-12: Profile measurements with the 3DS in the 1m wide duct Left: 3D vector plot, Free flow, 4575m³/h; Right: 3D vector plot, 

Obstruction1, 4555m³/h. Dotted line represents the outlet area. 

3.3.2.3. Wind tunnel tests (3.0m) 

The width of the tunnels could have a large influence on the edge effects since the edge length vs. 

outflow area ratio diminished from 6.0m-1 to 4.6m-1 for the 1.0m and the 3.0m wide tunnel 

respectively. Table 3-4 shows the relative measurement error of the Y-, Basic- and Extended method 

under different airflow rates and obstructions. Since the three 3DS methods were measured 

simultaneously, only the SD for the Basic method was given as a measure for the stability of the 

airflow. 

The Y-method showed a systematic overestimation of the airflow rate (Eq = 12.1±0.6%), averaged 

over the eight experiments. In general it would be expected that the Y-method delivers an 

underestimation of the airflow rate as part of the flow can escape undetected in the upward or 

sideward direction. This was the case for obstruction set-up 1 in the 1m wide tunnel (see 3.3.2.2). 

However, in the 3m wide tunnel we see the opposite effect as the Y-method resulted in an 

overestimation. This suggests that there existed returning flows that resulted in flows entering through 

the side planes and leaving through the front plane. Furthermore these negative flows should be larger 

than the upward and sideward oriented positive flows. Otherwise the positive and negative flows 

would compensate one another. To visualise these possible flow patterns two 3D velocity vector plots 

are given. Fig. 3-13 shows the vector plot from a free flow experiment (5770m³/h, see Table 3-4). 

Because of a skewed alignment of the fan and the tunnel most of the airflow passed through the right 

side of the tunnel. In Fig. 3-14 the 3D vector plot for an obstructed flow is given (obstruction set-up 4, 

5355m³/h, see Table 3-4). Here it can be seen that the majority of the airflow passed through the left 

side of the opening. In both cases a returning flow can be seen. For the vector plot in Fig. 3-14 it was 

found that 341m³/h escaped through the sides of the CTP whilst 1130m³/h entered through the side 

planes of the CTP. This means that 789m³/h of the flow caused by the returning flows had to exit 

through the front plane of the CTP. It is clear that this was the cause for the overestimation of the 

airflow rate by the Y-method. Similar results were found for the remaining experiments.  
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The mean relative measurement error of the Basic 3D method was 1.3±2.6%. The extended 3D 

method showed marginally better results with a mean relative measurement error of -0.6±2.6%. As the 

relative measurement errors of the Basic and Extended method are so small that they do not have a 

practical significance, no further investigation was performed to identify the cause of these deviations. 

The different airflow rates as well as the different obstructions did not seem to influence the relative 

measurement errors of the three methods. The small relative measurement errors from the Basic and 

Extended method prove that the methods were capable of detecting and correctly processing the more 

complex velocity profiles, in contrast to the Y-method. 

Table 3-4: Relative measurement error Eq (%) of the Y-, basic- and extended method under different airflow rates and obstructions. With 

VDI2041 (Qvdi) as the airflow rate reference; 3DS Y: Y-method; 3DS B: Basic method; 3DS E: Extended method. Duct width is 3m.  

Measurement (Standard deviation) 

Method Obstruction 
Qvdi  

(m³/h) 

Q3DS 

 (m³/h) 
Eq (%) 

3DS Y   3900 +12.2 

3DS B Free flow 3480 (30) 3535 (200) +1.6 

3DS E   3585 +3.1 

3DS Y   4670 +11.6 

3DS B Free flow 4185 (40) 4355 (215) +4.1 

3DS E   4235 +0.8 

3DS Y   6485 +12.4 

3DS B Free flow 5770 (55) 5915 (255) +2.6 

3DS E   5905 +2.5 

3DS Y   4575 +11.0 

3DS B Obstruction 2 4120 (50) 4255 (210) +3.3 

3DS E   3970 -3.6 

3DS Y   5940 +11.8 

3DS B Obstruction 3 5315 (45) 5425 (255) +2.0 

3DS E   5225 -1.8 

3DS Y   5095 +13.3 

3DS B Obstruction 4 4495 (40) 4605 (245) +2.5 

3DS E   4470 -0.5 

3DS Y   6030 +12.6 

3DS B Obstruction 4 5355 (56) 5240 (270) -2.2 

3DS E   5190 -3.1 

3DS Y   6825 +11.8 

3DS B Obstruction 4 6100 (62) 5900 (280) -3.3 

3DS E   5945 -2.6 
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Fig. 3-13: 3D vector plot of velocities measured in the 3m wide tunnel, Free flow, 5770m³/h. 

 

 

Fig. 3-14: 3D vector plot of velocities measured in the 3m wide tunnel, obstruction set-up 4, 5355m³/h. 

3.3.3. General discussion  

Compared to Chapter 2, the conducted series of experiments incorporated additional challenges in 

order to be more representative of naturally ventilated openings. The developed airflow rate methods 

proved to cope adequately with challenges concerning vent size, velocity profiles and sensor positions. 

Still further research is needed since these experiments were conducted under conditions of 

mechanical ventilation with airflow rates that were kept constant. Therefore,  these methods are 

premature to  be used as a reference technique for naturally ventilated openings. For the Basic and 

Extended method respectively, the execution times are approximately 48 and 80 minutes for a 3.0m x 

0.5m opening. In this timespan it is most likely that the velocity profile could have changed 

significantly under conditions of natural ventilation. This lack of constant conditions could render the 

measured profiles to be insufficiently accurate. The next important challenge in measuring velocity 
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profiles in a naturally ventilated vent is therefore to deal with the temporal variability of the velocity 

profiles. This aspect needs to be investigated under conditions of natural ventilation. In order to tackle 

this challenge further research was conducted in a naturally ventilated test facility in which our 

developed 3DS method was incorporated (Chapter 4). In any case, when a very intensive sampling of 

a naturally ventilated vent is necessary to obtain meaningful conclusions, the developed automated 

sensor frame and 3DS methods will be valuable tools.  

3.4. Conclusions 

Different airflow rate measurement techniques were further adapted and developed under conditions 

which are more representative of naturally ventilated openings with regard to vent size, velocity 

profile and sensor position.   

It is clear that positioning the sensor behind the outlet resulted in more complex 3D flows through the 

traverse plane. For the 1.0m wide tunnel and with disturbed velocity profiles, the 2D sensor 

measurements delivered unacceptably large relative measurement errors of up to -18.5%. Also, 

measuring only the Y-component (Y-method ) at the 3.0m wide tunnel  showed a systematic error of 

12.1±0.6% for velocity profiles with different shapes and airflow rates. Therefore, it was further 

examined whether the additional information generated by the 3D sensor would result in a more 

reliable technique with smaller relative measurement errors under these conditions.  

Two measuring methods were proposed to capture the 3D character of the airflows. Both the Basic 

method and the Extended method were based on traversing the outlet opening with a 3D sensor. Each 

method resulted in different relations between the velocity vectors and their corresponding sub-areas 

in the traverse planes. The Basic method showed a mean relative measurement error of 5.4±1.7% and 

1.3±2.6% for a 1.0m and 3.0m wide duct, respectively, and for different undisturbed and disturbed 

airflows. The Extended method showed a mean relative measurement error of 3.1±1.3% and -

0.6±2.6% for a 1.0m and 3.0m wide duct, respectively, and for different undisturbed and disturbed 

airflows. Visualisation of the velocity profiles for the 3.0m wide duct evidenced that both the Basic 

and Extended method took into account returning flows. As all relative measuring errors remained 

under the 10% limit, both methods are to be considered satisfactory for measuring airflow rates 

through large openings regardless of the shape of the velocity profile. Therefore, the use of a 3D 

ultrasonic sensor is recommended when measuring airflow rates at the in- or outlets of naturally 

ventilated housing systems. As these methods are very labour intensive, a sensor frame was 

successfully developed that allowed an automated measurement. 





 

*Adapted from: Van Overbeke, P., de Vogeleer, G., Brusselman, E., Pieters, J.G., Demeyer, 

P., 2015. Development of a reference method for airflow rate measurements through 

rectangular vents towards application in naturally ventilated animal houses: Part 3 : 

Application in a test facility in the open. Accepted in Computers and Electronics in 

Agriculture. 

Chapter 4. Experiments under conditions of natural 

ventilation: Cross ventilated test room*  
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4.1. Introduction 

In Chapter 3, two airflow rate measurement methods were developed, based on an automated traverse 

movement of a 3D ultrasonic anemometer across the outlet plane of the vent. However, these methods 

were not yet tested under conditions of natural ventilation, which are characterized by fluctuating 

wind speed and incidence angles. As the accuracy of both measuring methods did not differ 

considerably, the method with the fastest execution time was withheld. This method is further referred 

to as the Basic 3DS method. In Chapter 4 it is shown how the Basic 3DS method was applied to a 

naturally cross ventilated test room built inside a full size naturally ventilated mock-up building. The 

advantages of such an approach are discussed in chapter 1.2.5.1 and compared to similar set-ups in 

7.1.1. The aim was to develop a new measuring method for the airflow rate that can take into account 

the variations of the external wind conditions by finding an appropriate sampling strategy for a sensor 

traversing the vents. This was achieved by (1) optimizing the sampling strategy using the Basic 3DS 

method in order to account for the temporal variations of the wind, (2) assessing the accuracy of the 

optimized method under a broad range of wind conditions, (3) examining the influence of wind speed 

and wind incidence angle on the airflow rate and (4) investigating whether the 3D velocity 

measurement could be replaced by a 2D or 1D velocity measurement without compromising a correct 

ventilation rate measurement. 

4.2. Materials and Methods 

4.2.1. Test Facility 

4.2.1.1. The building 

In this study a real scale section of a naturally ventilated pig house was mimicked. The geometry of a 

pig house was chosen because of its simple building design and relatively small ventilation openings 

compared to cattle houses. This building, further referred to as the test facility (see Fig. 4-1), was built 

at a site of the Institute for Agricultural and Fisheries Research in Merelbeke, Belgium (+50° 58' 

38.56" N, +3° 46' 45.68" E; A on Fig. 4-2). This location was selected because of the absence of large 

flow disturbances such as buildings or rows of trees South-West (SW) of the facility, which is the 

prevailing wind direction in Flanders. 

The test facility has internal dimensions of 12.0m × 5.3m × 4.9m (length x width x ridge height) and a 

volume of  251m³. No pen equipment was installed. Both concrete sidewalls have a ventilation 

opening of 4.5m by 0.5m with a depth of 0.2m (Vent A and Vent C, Fig. 4-1). No wind guidance 

systems or screens were installed in the vents. The vents are located at a height of 2.2m above the 

floor. They are oriented according to the SW – NE axis. This is the recommended positioning in 

practice in order to make maximum use of the potential of natural ventilation (Choinière and Munroe, 

1990; Hellickson and Walker, 1983). The ridge opening has a length of 4.0m and a width of 0.3m. The 

test facility contained a smaller cross ventilated test room which was constructed by placing a wooden 
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wall, 4.0m behind the wall facing the South-West. The height of the test room was 2.9m with an 

internal volume of 61m³. The test room was closed with a suspended ceiling. The vent (Vent B) in the 

wooden wall was identical in size and location to the vents in the sidewalls of the test facility. This 

room was constructed to create a more controllable environment at this stage of the research whilst 

creating also the possibility to perform comparative measurements between a vent directly exposed to 

external conditions (Vent A) and an internal vent sheltered by a room on both sides (Vent B). The vent 

openings of the walls could be varied in size. In this study the opening size of both Vent A and Vent B 

was kept at 0.5m x 1.0m, Vent C was kept at 0.5m x 4.5m. The airtightness of the test room was 

examined by performing a standard blower door test (ASTM international E 779-03) at a 

pressurization of 4Pa and sealing the major leaks that were visualised through a smoke test. The 

results of the blower door tests indicated an effective leakage area of 0.0105m². No further attempts to 

diminish this leak were undertaken as its area only represented a small percentage (1%) of the 

combined size of the ventilation openings (2 x 0.5m²).  

 

 

Fig. 4-1: 3D model of the naturally ventilated test facility at the Institute of Agricultural and Fisheries Research. A smaller 

test room (TR) was built inside the test facility to obtain a more controllable testing environment.  An automatic sensorframe 

was installed at Vent A and B to allow an automated traverse movement of a 3D ultrasonic anemometer across the vent 

openings. 
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Fig. 4-2: Satellite image of test facility (A), a meteomast with a 2D ultrasonic sensor at a height of 10m (M) and nearest 

surrounding buildings (B, C, D and E) at the Institute of Agricultural and Fisheries Research. (Google Maps) 

4.2.1.2. Air velocity sensors on automated sensor frame and meteomast 

Two automated sensor frames, developed in Chapter 3, were attached to the inner walls of the test 

room, underneath vents A and B (Fig. 4-1). The automated sensor frame consisted of a vertical linear 

guidance of 0.7m attached to a horizontal linear guidance of 4.5m. The movement of the two 

guidances was automated by two PLC controlled servo motors. Every test was carried out with this 

fixed set-up, eliminating operator influences. On both sensor frames, a Thies ultrasonic 3D 

anemometer or 3DS (Thies 4.3830.22.300) was fixed on top of the vertical guidance. All sensor 

movements were made with the automated sensor frame with a positioning accuracy within 1mm.  

A meteomast with a height of 10m was placed in the vicinity of the test facility (see Fig. 4-2, M) and 

equipped with a Thies ultrasonic 2D anemometer or 2DS (Thies 4.3820.02.300) on top. 

All ultrasonic sensors were connected through a serial interface (half duplex mode), allowing a 

virtually simultaneous response of all sensors. The sensors had an internal measuring rate of 50Hz (2D 

sensor) and 33Hz (3D sensor). However, a moving average over 1s was continuously saved in the 

sensors’ internal buffers. The value in this buffer was retrieved by the logger at 1Hz (Etheridge, 2012; 

Fiedler et al., 2013). A control connection was established between the logger and the control of the 

sensor movement to prevent measurements being taken whilst the sensor was moving. 

For all ultrasonic sensors a coordinate system was chosen where the positive Y-component was 

aligned with the South-West wind direction (See Fig. 4-3). For illustrative purposes a South-West 

wind was taken equivalent to a wind incidence angle of 180°. A wind incidence angle of 90° was 

equal to a North-West wind. Airflow rates induced by flows moving from Vent A to Vent B were 

referred to as positive airflow rates. All polar plots of wind incidence angle and speed were based on 
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the coordinate system of the 3D or 2D sensor and are composed of the sensors’ X- and Y-components 

(see Fig. 4-3).  

 

 

Fig. 4-3: Coordinate system of the ultrasonic sensors with respect to the wind directions, with : moving 3D ultrasonic 

anemometer in side vents A and B;  : 2D ultrasonic anemometer on meteomast at height of 10m.  

4.2.1.3. Implementation of the Basic 3DS method 

Airflow rate measurements through the vents were initially performed with a set-up based on the Basic 

3DS method as developed in Chapter 3. This method sampled the outflow surface behind the opening 

by traversing that area once with a 3D ultrasonic sensor mounted on the automated sensor frame. 

The measurement volume of a 3D ultrasonic sensor was approximately 0.25m x 0.25m x 0.125m. To 

measure the outlet opening of 0.5m x 1.0m, 16 of these separate measuring volumes were considered 

to create the combined traverse plane. The velocity vector in the Y- direction was measured in every 

measuring volume. Additionally, the velocity vector in the X- direction or the Z- direction or both 

were measured for the measuring volumes at the edges. In total 32 velocity components were 

measured, which can be related to 32 elementary surfaces (Fig. 4-4). Such velocity components will be 

further referred to as e.g. VA-16-z (Ventilation opening A – measuring volume 16 – velocity 

component z).  
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Fig. 4-4:Left: Front view of the combined traverse plane in Vent B, made up of 16 measuring volumes or 32 elementary 

surfaces. Four representative measuring volumes for Vent B in which continuous measurements were taken to determine the 

optimal sampling method are coloured grey (see 4.2.2) (for Vent A the mirrored image is applicable). Right: flat folded 

combined traverse plane, indicating the different traverse planes and the velocity components associated with these planes. 

A full traverse of the combined traverse plane consisted of the consecutive measurement of the 16 

measuring volumes by the 3DS. Each measuring volume was measured for a certain time (tm). The 

total measuring time (ttot) and airflow rate through Vent A (Qva) and Vent B (Qvb)  could be calculated 

by equations [4.1] and [4.2], respectively.  

 

ttot (s) = Nmv (tm + ttr )    [4.1] 

𝑄𝑣𝐴/𝐵(𝑚³ ℎ)⁄ = ∑ (𝑉𝑖┴ 𝐴𝑖  3600)𝑛
𝑖=1    [4.2] 

 

With Nmv: number of measuring volumes (16); tm: the measuring time per measuring volume (s); ttr: 

average time to move sensor from one measuring volume to the next (2s); QvA (m³/h) and QvB  (m³/h) 

the airflow rates through Vent A and Vent B, respectively; n: number of elementary surfaces (32); Ai: 

the area of the elementary surface “i” for which the normal velocity component was measured (m²); 

𝑉𝑖┴: the average velocity component normal to an elementary surface “i” (m/s). 

 

The Basic 3DS method was developed with the intention of taking into account the influence of 

returning airflows by differentiating positive and negative airflow velocities in X-, Y- and Z- 

directions. For example, a returned airflow could be characterized by a flow entering one or more 

measuring volumes through the side surfaces (X- or Z-direction) and that same flow leaving the 

measuring volumes through the front surfaces (Y-direction). As the flow in the X- or Z-direction is 

defined as a negative flow in this case, it will be subtracted from the total airflow rate, therefore 

compensating for the “false” flow rate through the front surfaces caused by returned flows. However, 

these are complex situations which need to be avoided as much as possible at this stage of the 

research. Therefore, a flange was built at the two vertical sides and the top horizontal side on the two 
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ventilation openings in order to obstruct flows from the X- and Z-directions and diminish these  

possible effects (see Fig. 4-5 and Fig. 4-6). Evidently, it was not possible to build a flange that 

completely bordered the vent as the vertical guide of the automated sensor frame needed to pass. The 

flange had a width, height and depth of 1.14m, 0.64m and 0.30m respectively. 

 

Fig. 4-5: Top view of the vent with flanges (dotted red line represents the composed traverse plane). A schematic impression 

is given of a possible returning airflow pattern shielded by the flanges.  

 

Fig. 4-6: Vent B with flange and 3D ultrasonic sensor mounted on the vertical guidance of the automated sensor frame. 

4.2.2. Optimization of the sampling strategy 

The followed procedure to optimize the sampling strategy is illustrated in Fig. 4-7 based on real life 

measurements. The top graph in Fig. 4-7 shows continuous measurements (500s at 1Hz) of the air 

velocity in a certain measuring volume (here volume 6). This illustrates that the constantly changing 

external wind speed and direction are reflected in the unsteadiness of the velocity measured in the 

measuring volume. For a tm of 20s (arbitrarily selected), ttot equals 352s ( equation [4.1]). When 
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applying the traverse motion of the ultrasonic anemometer to the vent, with the traverse starting at t0 

and ending at ttot the sensor sequentially samples each measuring volume and passes through 

measuring volume 6 for only 1/16
th

 of the total measuring time. Such a ‘sampling window’ is 

illustrated by the red rectangle in the top graph of Fig. 4-7. It is clear that the average velocity 

measured during this short time interval at volume 6 might not be representative for the respective 

average velocity over the time period from t0 to ttot To account for these unsteady conditions, the 

sampling strategy could be adapted in two ways: a) by increasing the sampling duration, i.e. increasing 

tm, or b) by increasing the number of samples of each measuring volume, i.e. averaging over not only 

one traverse but over multiple traverses, further referred to as iterations (I). As the number of iterations 

evidently influences the total measuring time ttot, equation [ 4.1] is adapted to equation [4.3].  

 

ttot = I Nmv (tm + ttr )    [4.3] 

 

With Nmv: number of measuring volumes (16); tm: the measuring time per measuring volume (s); ttr: 

average time to move the sensor from one measuring volume to the next (2s). Increasing both I and tm 

increases the total measuring time ttot which could lead to even larger variations during the total 

measuring period. Therefore an optimal combination of tm and number of iterations has to be found. 

Such a sampling strategy is illustrated in the bottom graph of Fig. 4-7. This graph shows the 

application of a sampling strategy with a tm of 20s and 5 iterations applied to continuous measurements 

of the air velocity in measuring volume 6 for a period of 2000s at 1Hz. 

In total 24 different combinations of I and tm were tested to find the optimal sampling strategy (Table 

4-1). A maximum was set for the total measuring time of approximately 30 minutes. 
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Fig. 4-7: Illustrative example of a continuous measurement of the air velocity (Y-component) in measuring volume 6 at 1 Hz 

(blue dots). Top Graph: The vertical dashed lines represent the start (t0) and end (ttot) time of a complete traverse movement 

of the ultrasonic sensor through the vent. The red rectangle illustrates the period in which the sensor stops in measuring 

volume 6. A measuring time per measuring volume (tm) of 20s was chosen for illustrative purposes. Bottom Graph: Air 

velocity data for five consecutive traverses (t0 to t5) with the red rectangles representing the respective periods at which the 

sensor samples volume 6.  

Table 4-1: Tested combinations of number of iterations (I) and measuring time per measuring volume (tm) to find the optimal 

sampling strategy 

I 1 2 3 4 5 6 8 10 

tm (s) 

10, 35, 

55, 75, 

90 

10, 15, 

25, 35, 

45, 55 

10, 15, 

25, 30, 

35 

10, 25 5, 20 10 5, 10 10 

 

The sampling strategies were tested by applying them to a large dataset of continuous velocity 

measurements whereby different measuring volumes were measured for longer periods without 

moving the sensor. These measurements were performed in four measuring volumes in Vent A and B, 

i.e. 6, 8, 14 and 16 (grey areas in Fig. 4-4). These 4 volumes were considered to be a representative 

selection of all 16 measuring volumes. Depending on the type of measuring volume, other components 

of the air velocity were considered (Table 4-2). In each vent only one volume was measured at a time 

to prevent obstructed airflows. The experiments were carried out between August and December 2013 

for periods of 4 to 16 days depending on the measuring volume. Some measurements were performed 
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longer as more interesting wind incidence angles were predicted (KMI), i.e. incidence angles other 

than the predominant one. Simultaneous measurements of the 2D anemometer on the meteomast were 

processed in order to assess the variability in external wind speed and direction during the 

experiments. 

Table 4-2: Components continuously measured at four representative measuring volumes (MV) in both Vent A and B (8 

measuring volumes in total). Locations of the measuring volumes can be found in Fig. 4-4. 

Continuously 

measured MV 
Type Similar MV’s 

Components 

measured 

6 Inner MV 7, 10, 11 Y 

8 Horizontal border MV 5, 9, 12 X, Y 

14 Vertical border MV 2, 3, 15 Y, Z 

16 Corner MV 1, 4, 13 X, Y, Z 

 

For each sampling strategy, the average of all data over the period ttot (Vc) was calculated and 

compared to the average (Vs) obtained by imposing the respective sampling strategy over that period. 

Applied to our illustration (bottom graph in Fig. 4-7) this implies that Vc is the average velocity over 

the period from t0 to ttot and Vs is the average velocity of all data measured within the red rectangles. 

Evaluation was performed using the relative measurements error |Emv| which is calculated following 

equation [4.4].  

 

𝐸𝑚𝑣 =
𝑉𝑠 − 𝑉𝑐

𝑉𝑐
100                [4.4] 

 

For each sampling strategy different Emv values were obtained for different trials (Si) performed over 

the complete dataset. The first trial (S1) started at t0. In total Si trials were performed starting 

respectively at t0 + (i-1)*tm. The trials stopped when t0 + (i-1)*tm exceeded the end time of the dataset. 

For each sampling strategy, the percentage of trials was calculated for which  |Emv| of max. 20%. This 

percentage  is further referred to as R20 (%). For each of the 16 measured components, belonging to 

the 8 measuring volumes (4 for vent A and 4 for vent B), such a R20 value was obtained. 

The influence of number of iterations on the R20 value was examined. Also the influence of the 

different combinations of I and tm  on the R20 value was examined. The method with the highest R20 

value was chosen for further experiments. 

Due to the use of a relative comparison method [4.4] small velocities could possibly result in high 

Emv’s. The influence of these low velocities on the R20 was examined by calculating the Emv for 

different reduced datasets for which  average wind velocities (Vs or Vc) below certain respective limits 

(0.05, 0.1, 0.2, 0.3, 0.4 and 0.5 m/s) were omitted. This was only performed using the most promising 

sampling strategy. 
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4.2.3. Implementation and evaluation of the optimized sampling strategy 

The airflow rates through Vents A and B were measured with the selected optimal sampling strategy 

determined in 4.3.1. According to the law of mass conservation the total influx of air into the test room 

had to be equal to the total outflow of air (Boulard et al., 1997), assuming an incompressible medium. 

Therefore, the accuracy of the method was assessed by the relative measurement error (Eq, see [4.5]) 

in % (Van Buggenhout et al., 2009).  

 

𝐸𝑞 =
𝑄𝑣𝐴 − 𝑄𝑣𝐵

𝑄𝑣𝐵
100         [4.5] 

 

Where QvA (m³/s) and QvB  (m³/s) were the airflow rates through Vent A and Vent B, respectively. Vent 

B was chosen as the reference based on measurements in 4.3.1.2. An acceptance criterion for the 

airflow rate measurement method had to be set. In the review of Calvet et al. (2013) an estimation of 

the standard uncertainty is given for different airflow rate measuring techniques in naturally ventilated 

buildings (techniques are discussed in 1.2.5.3). There it is shown that tracer gases can provide the 

lowest estimated uncertainties, i.e. 10 to 15%. For all other techniques the estimated uncertainties are 

higher. However, also for tracer gas techniques, much higher uncertainties (up to 230%) were found in 

other studies (Ozcan, 2011). When looking specifically at studies based on ultrasonic anemometer 

measurements, relative measurement errors between the in- and outfluxes of air through the vents are 

found ranging from 1 % (López et al., 2011b) over 19% (Joo et al., 2014) to 37% (Molina-Aiz et al., 

2009). Based on expert judgement and abovementioned literature research, a relative measurement 

error between the airflow rates in Vents A and B (Eq, see [4.5]) of max. 20% was deemed acceptable 

as a criterion to evaluate our experimental results. The goal was to reach this criterion for the broadest 

range of wind incidence angles and speeds as possible.  

The influence of the wind incidence angle and the average air velocity in the vent on Eq was studied. 

Also the influence of the external weather conditions (wind incidence angle and speed) on the airflow 

rate was examined. The necessity of taking a 3D measurement was studied by examining the 

contributions of the X- , Y- and Z-components to the total airflow rate under different wind incidence 

angles. The validity of using Vent B as a fixed reference was examined in more detail.  

Also an alternative method of evaluating the optimized sampling strategy was examined by taking a 

different approach to calculate the relative measurement errors. Instead of comparing the airflow rate 

through Vent A to the airflow rate through Vent B (see equation [4.5]), the total building’s inflow 

rates and  total outflow rates (equation [4.6]) were compared (equation [4.7]). To accomplish this, the 

air velocities measured at the elementary surfaces were no longer averaged but split into a subset for 

air velocities contributing to an inflow rate and a subset for air velocities contributing to an outflow 

rate. The time weighted averages of the inflow and outflow subsets are referred to as vi+ and vi-, 

respectively. 
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𝑄𝑖𝑛 = ∑ ∑ (𝑣𝑖+ 𝐴𝑖 ∙ 3600)𝑗     𝑛
𝑖=1

𝑚
𝑗=1 [4.6] 

𝐸𝑞2 =
𝑄𝑖𝑛−𝑄𝑜𝑢𝑡

𝑄𝑎𝑣𝑔
100        [4.7] 

 

Where: Qin: the total building inflow rate (m³/h); m: the number of vents (2);  n: number of elementary 

surfaces in the vent (32); vi+: the time weighted average of the velocity component contributing to the 

inflow rate through elementary surface “i” (m/s); Ai: the area of the elementary surface “i” for which 

the velocity component was measured (m²). Equation [4.6] was also used to calculate the total building 

outflow rate (Qout, m
3
/h ) by substituting vi+ to vi-, which was the time weighted average velocity 

component contributing to the outflow rate through an elementary surface “i”. Qavg was taken as the 

reference (Qavg = (Qin + Qout)/2) in equation [4.7] (Ndegwa et al., 2008b).   
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4.3. Results & Discussion 

4.3.1. Optimizing the sampling strategy 

4.3.1.1. Experimental conditions 

Fig. 4-8 gives an overview of frequency distribution of the wind speed and a polar plot of the wind 

direction at the meteomast during the experiments. A mean wind speed of (4.0 ± 2.4)m/s was found. 

The predominant wind direction was South to South-West. Consequently, Vent A and Vent B acted 

primarily as inlet and outlet, respectively.  

 

Fig. 4-8: Frequency distribution of the wind speed (m/s) and polar plot of the wind direction measured at the meteomast 

during all experiments for the determination of the optimal sampling strategy. 

A more detailed view on the wind conditions in each separate experiment is given in Fig. 4-9. The 

horizontally adjacent plots of meteomast and measuring volumes represent simultaneously obtained 

data. The respective average velocities in the X-, Y- and Z-directions are given in the adjacent table. 

The component values used in the Basic 3DS method (see Fig. 4-4) are represented in bold. The wind 

incidence angles observed at measuring volume 6 and measuring volume 14 in Vent A, compared well 

with the meteomast data. This is in contrast to Vent B, where incidence angles closer to SW, and thus 

normal to the vent, were observed. This can be explained by the buffering effect of the test room, 

diminishing exterior influences at Vent B. This observed difference between Vents A and B was less 

clear at measuring volume 8, presumably because this measuring volume was positioned next to the 

vertical edge of the vent. Therefore, in Vent A, measuring volume 8 was partially shielded from the 

direct influence of a predominantly Southern wind. During the measurements at measuring volume 16, 

the wind came partly from the North resulting in less interpretable polar plots. The average velocities 

found for the X- and Z-components were in all cases considerably smaller than those for the Y-
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components. This does not only mean that the X- and Z-components contributed less to total airflow 

rate than the Y-components, but that they could also lead to larger relative errors. These two effects 

combined resulted in a difficult interpretation of the R20 values.  

 

Fig. 4-9: Polar plots of wind direction from simultaneous measurements at the meteomast and at different measuring volumes 

in Vent A and B. The velocity components X, Y and Z (m/s) and incidence angles (°) averaged over the total experimentation 

time are given together with their standard deviations (SD). The component values used in the Basic 3DS method are 

represented in bold. 
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4.3.1.2. Minimising measurement error 

In order to assess the optimal sampling strategy, the measurement error (Emv) was calculated for 

different combinations of I and tm. The different sampling strategies are referred to via their I and tm, 

e.g. an I of 5 and an tm of 10 gives the 5x10 method. In Fig. 4-10 the influence of the number of 

iterations was examined (fixed tm of 10s) in relation to the R20. As the limit for the total measuring 

time was set at approximately 30min in this study, longer lasting sampling methods were not tested. 

Still, the trend in Fig. 4-10 shows that a higher number of iterations would possibly ameliorate the 

results, albeit an increasingly smaller gain. It can be seen that the lowest R20 values can be found for 

the X-components whilst the highest are found for the Y-components. No conclusions could be drawn 

for the Z-components as they varied from results as high as those of the Y-components to as low as the 

X-components. This distribution was maintained throughout the different sampling combinations. The 

generally lower R20 values for Vent A compared to Vent B can be attributed to the direct influence of 

the external wind conditions on Vent A, resulting in higher turbulence intensities at the windward side 

(Boulard et al., 2000; Teitel et al., 2008a). Evidently it is more challenging to find a correct sampling 

method under these conditions. Although in Vent B the differences between the 6x10 and the 10x10 

method were very small, the 10x10 method was withheld because of the better results in Vent A. 

 

 

 

Fig. 4-10: Effect of increasing the number of iterations (fixed tm of 10s) on the R20 values (%) at Vent A and B with = 6-Y;  

= 8-X; = 8-Y; X= 14-Y; =14-Z ; = 16-X; + = 16-Y;  - = 16-Z.  

In Fig. 4-11 it is shown, for combinations of I and tm (I x tm) with a similar ttot as the 10x10 method, 

that higher R20 values were obtained with a larger number of iterations (I) and thus a smaller tm. The 

velocity components 6-Y, 14-Z and 16-X shown in Fig. 4-11 and other components measured but not 

shown, follow the same trend. The small differences in ttot were inherently due to differences in the 

number of sensor movements (see [4.3]). From Fig. 4-10 and Fig. 4-11 we can conclude that the best 

results will be found for sampling strategies with a longer total measuring time which is divided in a 

high number of iterations.  
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Fig. 4-11: Effect of the combinations of I and tm on the R20 values (%).  Four methods with similar total measuring times but 

different combinations of I and tm are compared at Vent A and B with = 6-Y;  =14-Z ; = 16-X. These components 

represent highest, middle and lowest values, respectively. Results of other components lie between these ranges and were not 

shown to simplify the figure. 

Only three velocity components (VB-6-y, VB-8-y and VB-16-y) had R20 values above 90%, even with 

the best performing method (10x10 method). However, some important considerations had to be 

made. Due to the variability of the wind a large part of the measured velocities in the vents can be 

lower than  0.5m/s especially in the X- and Z-direction. The use of a relative measurement error [4.4] 

can induce large errors when dealing with these low wind speeds. In Fig. 4-12 the influence of these 

low velocities on the R20 was examined by omitting the data below a certain velocity limit and 

recalculating the R20. It can be seen that omitting the data below 0.05m/s already had a large impact on 

the results, especially for the X-components in Vent A. This is in contrast to the Y-components where 

the omission of the lower air velocities did not have a large impact.  

 

 

Fig. 4-12: Effect of low air velocities measured at the measuring volumes on the R20 values (%) for sampling method 10x10 (I 

x tm). Different limits for the air velocity below which the data is omitted are shown for Vent A and B with = 6-Y;  = 8-

X; = 8-Y; X= 14-Y; =14-Z ; = 16-X; + = 16-Y;  - = 16-Z.  

It should be noted that the observed increase in R20 for the X- and Z-components by omitting low 

airflow velocities resulted from omitting a large part of the data. This can be seen in Fig. 4-13 where 
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the difference is shown between the complete dataset and a dataset where all measurements below 

0.05m/s were omitted. Again the 10x10 method (Ix tm) was applied. The total amount of data was 

divided into different ranges of the relative error Emv. A substantial part of the data had an Emv smaller 

than 10% even when all data was considered, especially in VB-8-y. The amount of data with an Emv 

higher than 100% remained small for all elementary surfaces. However, it was clear that these high 

values of Emv were more common in Vent A. When removing all data with an average velocity lower 

than 0.05m/s,  the high Emv values disappeared almost completely. Although this removal resulted in 

an increase of R20, it also caused a considerable loss of data, especially for the X- and Z-components.  

 

Fig. 4-13: The influence of omitting air velocities below 0.05m/s on the Emv. The absolute amount of data in different ranges 

of Emv are given. Data obtained by applying tm = 10s and I = 10.  

The higher R20 values in Vent B suggest that a measurement in this vent would possibly be more 

reliable due to the sheltering effect of the test construction. Therefore, Vent B was chosen as the 

reference for the evaluation of the airflow rate measurement method (See [4.5]).  

Only the best performing sampling method with I= 10 , tm = 10 and a total measuring time of 32min. 

was withheld for further experiments. The results attained within this time interval can give insight 

into the further applicability of the method for either airflow rate control systems or emission rate 

measurements. In case of emission measurements this time interval is certainly adequate, as generating 

average values at a daily basis could be sufficient (Estelles et al., 2010b). It must be noted that under 

highly variable wind conditions, it cannot be excluded that the selected sampling strategy might 

deliver unsatisfactory results.  

4.3.2. Implementation and evaluation of the optimized sampling strategy 

4.3.2.1. Experimental conditions 

Experiments were conducted in the test room from April till November 2013. Fig. 4-14 gives the 

frequency distribution of the wind speed and the polar plot for the wind direction at the meteomast 

during the airflow rate measurements. A mean wind speed of (2.4 ± 1.6)m/s was found. Although the 

wind was primarily blowing from South to South-West, a considerable amount of data was also 
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gathered for other wind directions. During this testing period 1005 airflow rates were computed and 

calculated according to the  method developed in 4.3.1. 

 

Fig. 4-14: Frequency distribution of the wind speeds (m/s) and polar plot of wind direction and wind speed frequency 

measured at the meteomast during all airflow rate experiments. 

4.3.2.2. Influence of wind speed and incidence angle on the relative measurement error (Eq) 

In Fig. 4-15 it is clear that the lowest air velocities, averaged in Vent A, usually resulted in higher 

relative measurement errors (Eq). As can be seen, the largest errors occurred for air velocities below 

0,05m/s (between the dotted vertical lines). These data represented only 5% of the 1005 measured 

airflow rates. Five measurements with Eq’s over 100%, also with average air velocities below 0.05m/s, 

were omitted from Fig. 4-15. Outside these boundaries, the Eq remained for 96% of the data below 

±20% with an average and standard deviation of -1 ± 11%. It was verified that setting the boundary 

higher than 0.05m/s would not result in a further improvement of the Eq. Setting the boundary at 

±0.15m/s for instance, resulted in an average Eq of –0 ± 9%. The improvement was deemed non-

essential compared to the loss of data as only 70% of the data remained. There was no clear relation 

between the magnitude of the air velocities and the Eq  (R² = 0.42, y = 20.8 x - 4.2, data within the 

range of |0,05m/s| was not accounted for). Therefore, no evidence was found that higher average air 

velocities in a vent in- or decreased the relative measurement error.   
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Fig. 4-15: Influence of the average air velocity in Vent A (m/s) on the relative measurement error (Eq, %). The dotted vertical 

lines represent the measurement limit at ±0.05 m/s. The dotted horizontal lines represent the ±20% interval of Eq. 

In Fig. 4-16 the relative measurement error is examined per wind incidence angle class.  It can be seen 

that for most wind incidence angles the Eq remained between the limits of 20%. These results show 

that, although the optimal sampling method was obtained through measurements for a predominantly 

S to SW wind (see 4.3.1.1), the method was also capable of delivering satisfactory results for other 

wind directions. However, the ranges 45° - 75°, 75°-105° , 255°- 285° and 285° - 315° show a larger 

spread of the error. It was assumed that this was due to complex airflow patterns caused by these wind 

incidence angles parallel to the vents.  

 

Fig. 4-16: Boxplot of the relative measurement error of the airflow rate in relation to the wind incidence angle for all data 

when calculated following equation [4-5]. Dotted red lines represent the 20% acceptance criterion, full red lines are the 

means and “n” are the number of airflow rate measurements. 
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It was concluded that for a broad range of wind incidence angles and speeds the acceptance criterion 

was fulfilled as the measuring method results in Eq’s mainly below 20%. However, average air 

velocities below |0.05m/s| and wind incidence angles close to 90° or 270° will result in higher Eq’s.  

4.3.2.3. Influence of 3D airflow information on the relative measurement error (Eq) 

As can be seen in Fig. 4-4 the total virtual outflow area of 1.25m² (100%) consisted of three 

differently oriented subareas: 0.25m² (20%), 0.50m² (40%) and 0.50m² (40%) for the X- Y- and Z-

components, respectively. From this percentage distribution it can be expected that the X-components 

contributed the least to the airflow rate (see also 4.3.2.5). Additionally, due to the flanges built around 

the vents, the most influential components are expected to be the Y- and Z-components through the 

front and bottom plane of the composed traverse plane, respectively. However, in Fig. 4-17 it is shown 

that the average Eq is strongly influenced by the addition of the  X- and Z-components to the airflow 

rate determination. For these calculations 6 additional data points with relative errors higher than 

200% have been removed from the data. These were due to the subdivision of the airflow rate into X-, 

Y- and Z-components resulting in very small airflow velocities. The average Eq over all wind 

incidence angles decreases from 8 ± 29% when only the Y-component was accounted for to -5 ± 10% 

when also the Z-component was added to the airflow rate measurement. Adding the X-component 

resulted in an average Eq of -1±10%. This strengthens the proof that measuring all components, as 

required by the Basic 3DS method in Chapter 3, is also advisable under conditions of natural 

ventilation, even with a flange around the vents. Removing the flange could result in more complex 

airflow patterns around the combined traverse plane and could increase the contributions of the X- and 

Z- components to the total airflow rate. However, as a flanged opening is not representative of vents in 

actual naturally ventilated animal houses, the influence of this flange and its removal should be further 

examined. It is also to be kept in mind that larger openings – as is the case in commercial animal 

houses -  will show reduced edge effects. 

 Although in the studied cases the contribution of the X-components was perhaps too small to be of 

use in practice, they were considered to be necessary for a reference measurement technique in this 

installation. It is, however, expected that, as the size of the vent enlarges, the contribution of the Y-

component will become even more predominant, rendering the X- and Z-components insignificant.  
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Fig. 4-17: The relative measurement error (Eq) as a function of the wind incidence when the X- and Z-components are added 

to the total airflow rate measurement. With : Eq when only the Y-components are accounted for; : Eq with Y- and Z-

components; ▲ : Eq with X-, Y- and Z-components. Averages of the Eq’s are taken over 15° intervals. Data within the range 

of |0,05m/s| and 6 additional data points with relative errors higher than 200% were not accounted for, 94% of the data 

remained. 

4.3.2.4. Influence of wind speed and incidence angle on airflow rate 

In Fig. 4-18 the airflow rates in relation to the wind incidence angle are shown  for Vent A. A similar 

result was found for Vent B. Mostly positive airflow rates were found for wind incidence angles from 

90° to 270°. For this range, Vent A and Vent B mainly acted as the in- and outlet, respectively. For 

other wind incidence angles negative airflow rates were induced. For both Vents A and B the largest 

airflow rates, up to 6000m³/h, were found at incidence angles around 180° and 360°, i.e.,  

perpendicular to the vents, whilst the smallest were found around angles of 90° and 270° i.e. parallel 

to the vents. To see also the influence of the external wind velocity, the airflow rates were classified 

into 6 different categories according to the respective air velocities simultaneously measured at the 

meteomast. The emerging pattern showed a clear dependency of the airflow rate on the external wind 

velocity and wind incidence angle. This confirms earlier studies where these are defined as two of the 

most influential parameters for the airflow rate in naturally ventilated buildings (Saha et al., 2013; 

Teitel et al., 2008b). Lower air velocities at the meteomast combined with wind incidence angles 

between 105° and 255° (dotted lines L2 and L3) or above and below 285°( L4) and 75° (L1), 

respectively (see Fig. 4-18), result in small airflow rates. However, in the wind incidence angle 

intervals of 75° to 105° (L1 - L2) and 255° to 285° ( L3 - L4), even for the higher wind velocities 

measured at the meteomast, the airflow rates remained relatively small. In certain cases, especially 

when the wind is blowing parallel to the openings, a vent can be an in- and outlet simultaneously 

(Teitel et al., 2008b). As a consequence, it is possible that the mean airflow rate through an opening is 

very small or even zero, while in reality a significant amount could be entering the room. In the 
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alternative approach of calculating airflow rates and relative measurement errors, these situations are 

assumed to be accounted for (see 4.3.2.7). Although such conditions do not occur often when the 

animal house is built facing the predominant wind direction, they do present considerable difficulties 

when it comes to controlling the indoor airflow pattern. Obtaining an adequate and homogenous 

distribution of fresh air and temperature throughout the barn under these conditions is challenging as 

most control systems in ACNV act on the entire vent regardless of the possible duality of that vent. 

The data with an average velocity in Vent A of less than |0,05m/s| is represented by the surface 

between the dotted vertical lines L5 and L6 in Fig. 4-18.   

 

Fig. 4-18: Measured airflow rates in relation to the wind incidence angle for Vent A. The areas between dotted horizontal lines L1 to L2 and 

L3 to L4 represent wind incidence angles ranges of 75° to 105° and 255° to 285° respectively. The area between the dotted vertical lines 

L5 and L6 represent airflow rates with average air velocities in the vent lower than 0.05m/s. The wind speed at the meteomast is 

represented by the different colours.  

4.3.2.5. Influence of wind incidence angle on 3D airflow rate distribution 

The relation between the airflow rates through the Y- and Z-planes were dependent on the wind 

direction. When Y-components were positive in Vent A (wind blowing from the SW), there was no 

strong relation between the airflow rates through the Z- and Y-planes (slope value = 0.07, R² = 0.52) 

(see Fig. 4-19, Vent A). This is caused by the more unidirectional pattern close to the inlet opening. 

However, with negative Y-components, i.e. Vent A acted as an outlet, a stronger effect was found 

(slope value = 0.33, R² = 0.82). This indicates that the Z-components had a larger influence in the vent 

that acted as an outlet. As the internal airflow meets the wall it has to travel alongside the wall to leave 

through the vent. Due to the flange around the border, only the bottom plane is unobstructed. 

Therefore, the Z-components measured in this plane, will contribute the more to an outflow rate. 

Comparable results were found for Vent B ( See Fig. 4-19, Vent B, inlet: slope value = 0.11, R²= 0.69, 

outlet: slope value = 0.37, R²= 0.93).  
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Fig. 4-19: Relation between the airflow rate through the top and bottom planes of the combined traverse plane (Z-planes) and 

the front plane (Y-plane) in both Vent A and Vent B. All components were averaged for the total duration of the airflow rate 

measurement period. The location of the planes can be found in Fig. 4-4. 

The relative contributions of the airflow rates through the side planes (X-component), the top and 

bottom planes (Z- component) and front plane (Y- component) to the total airflow rate can be found in 

Table 4-3 for Vents A and B. The airflow rates were subdivided into 5 ranges of wind incidence 

angles (0-75°, 75-105°, 105-255°, 255-285°, 285-360°) measured at the meteomast. These ranges were 

chosen to set apart the influences of wind incidence angles almost parallel to the vents. In the range of 

105° to 255°, where it is assumed that Vent A was the inlet, the respective X-, Y-, Z-component 

contributions to the total airflow rate were roughly 11%, 80% and 9%. When Vent A acted as an outlet 

(range 0° to 75° and 285° to 360°), the contribution of the Z-component was considerably larger with 

a distribution of roughly 4%, 67% and 29% for the X-, Y- and Z-components, respectively. As can be 

seen from the standard deviations (SD) these distributions were relatively stable and almost identical 

to the averages found for Vent B. For ranges 75° to 105° and 255° to 285°, where the wind incidence 

angle was almost parallel to the openings, similar averages were found. However, the larger standard 

deviations reveal an unsteady distribution between the respective components.  
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Table 4-3: All measured airflow rates were subdivided into their relative contributions (%) given by the  X, Y Z-components 

(see Fig. 4-4). This data was subdivided into 5 wind incidence angle ranges and the average and standard deviation (SD) per 

range is given. Data within the range of |0,05m/s| was not accounted for as these seemed to result in high relative 

measurement errors and, therefore, might wrongly influence the relative contributions.   

 Vent A Vent B  

Incidence 

angle (°) 

X-

comp. 

(SD) 

Y-

comp. 

(SD) 

Z-

comp. 

(SD) 

In/ 

Outlet 

X-

comp. 

(SD) 

Y-

comp. 

(SD) 

Z-

comp. 

(SD) 

In/ 

Outlet 

#data 

0-75 
3.8 

(2.3) 

63.3 

(5.1) 

32.9 

(6.0) 
Outlet 

7.9 

(3.6)  

83.5 

(6.0) 

8.6 

(6.2) 
Inlet 109 

75-105 
7.9 

(15.0) 

64.1 

(23.7) 

28.1 

(37.7) 
/ 

5.8 

(6.6) 

69.8 

(25.8) 

24.3 

(31.9) 
/ 6 

105-255 
10.8 

(4.0) 

80.3 

(8.2) 

8.9 

(7.7) 
Inlet 

5  

(1.8) 

66.7 

(3.3) 

28.3 

(3.3) 
Outlet 675 

255-285 
9.3 

(11.9) 

72.4 

(15) 

18.3 

(25) 
/ 

6  

(5.9) 

76.3 

(27.3) 

17.7 

(32.5) 
/ 49 

285-360 
4.1 

(3.1) 

69.5 

(6.2) 

26.4 

(5.2) 
Outlet 

5.9  

(4.0) 

86.4 

(6.7) 

7.7 

(6.2) 
Inlet 149 

 

It is clear from Table 4-3 that the contribution of the X- and Z-components to the total airflow rate 

depended on whether a vent acted as the in- or the outlet. This implies that the airflow distribution 

through Vent A will be different from that in Vent B, creating two different velocity profiles. Both 

profiles are measured with the same method, delivering two similar airflow rates. This adds to the 

reliability of the method as the distribution of the airflow rate through the vents does not seem to 

influence the measurement result. 

4.3.2.6. Validity of chosen reference vent  

It must be noted that taking Vent B as the reference was based on the assumption that for all wind 

incidence angles Vent B would deliver a more reliable airflow rate measurement as it was sheltered at 

both sides from the external wind by the test facility. However, when the data was distributed amongst 

positive and negative airflow rates, different regression coefficients were found for data from Vents A 

and B (see Fig. 4-20). Although the correlation coefficient was very high in both cases (R²= 0.99), the 

slopes showed that the vent acting as the outlet always delivered smaller airflow rates than the inlet 

vent. This was similar to the results of Joo et al.(2014). However, the discrepancy between Vents A 

and B was larger when Vent A acted as an outlet.  This was possibly caused by the more complex flow 

patterns at the leeward vent directly in contact with the outside environment (Nikas et al., 2010). 
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It was, however, impossible to determine which vent under- or overestimated the airflow rates for 

negative or positive airflow rates. Therefore Vent B was kept as the reference vent regardless of its 

function as the in- or outlet.   

 

Fig. 4-20: Airflow rate measured in Vent A (QVA) in relation to the airflow rate measured in Vent B (QVB). Airflow rates 

measured at an inlet are higher than airflow rates measured at an outlet.  

4.3.2.7. Alternative approach to the evaluation of the measuring method  

Fig. 4-21 shows the results of the alternative method for calculating the relative measurement error 

(see 4.2.3). A considerable improvement of the variability of the relative measurement error was found 

in the wind incidence ranges 45° - 75°, 75°- 105° , 255°- 285° and 285°- 315°. It is in these ranges that 

vents could possibly be an in- and outlet simultaneously. It seems that by differentiating the inflows 

from the outflows these situations are accounted for. An average Eq2 of 4 ± 7% was found. However, 

outside the abovementioned wind incidence ranges, both relative measurement error approaches (see 

equation [4.5] and [4.7]) delivered similar results. Comparable as to 4.3.2.6 it can be seen in Fig. 4-22 

that the building’s total outflow rates are lower than the total inflow rates. Therefore it was assumed 

that this was independent of the airflow rate calculation approach through equation [4.2] or [4.6], but 

inherent to the measuring method itself.  
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Fig. 4-21: Boxplot of the relative measurement error of the airflow rate in relation to the wind incidence angle when calculated 

following equation [4-7]. Dotted red lines represent the 20% acceptance criterion, full red lines represent the means. 

 

Fig. 4-22: Total inflow rate through the building (Qin) in relation to the total outflow rate (Qout). 

4.4. Conclusions 

A naturally ventilated test facility was built for the development of airflow rate measurement methods. 

The time-dependent airflow rates through a naturally ventilated vent were examined. The traverse 

based airflow rate measurement technique (Basic 3DS method) as developed in Chapter 3, was 

successfully adapted with a sampling method  that could deal with the variable nature of naturally 

induced airflows. Optimal results were found when repeating the traverse movement 10 times whilst 

measuring each sampling point for 10s. The developed method was applied to both vents of a test 

room built inside the test facility.  

The relative difference between the simultaneously measured airflow rates in both vents served as a 

tool to assess the accuracy of the method. A relative measurement error of 20% was deemed 

acceptable. For a wide range of average velocities in the vent and wind incidence angles, the average 

relative measurement error remained under ±20%, i.e. -1±11%. However, for wind incidence angles 

(almost) parallel to the vent a larger spread of the relative error was found. Calculating the relative 
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measurement error between the total building’s inflow rates and the total outflow rates instead of 

between the airflow rate through Vent A and Vent B, reduces the relative measurement error. This was 

especially the case for wind  angles close to 90° or 270° (i.e. parallel to the vents). This approach will 

be examined further in Chapter 5.  

It was confirmed that measuring the X- and Z-components of the air velocity, additional to the Y-

components normal to the inlet opening, was necessary to obtain satisfactory relative measurement 

errors. It was also shown that for an inlet the X-, Y- Z-component contributions to the total airflow 

were 11%, 80% and 9% respectively. For an outlet these respective contributions were roughly 5%, 

65% and 30%. It was concluded at this stage that for the use as a reference technique none of the 

components could be omitted.  

It must be noted that remaining below the self-imposed 20% limit allows us to move forward with this 

measuring method. It does not imply that this method, as is, will be applicable as a reference method. 

Especially for emission rate applications where the accuracy needs to be higher, more research is 

needed on how this relative measurement error can still be reduced or in what conditions (e.g. wind 

direction, vent size,..) lower measurement errors can be guaranteed.    

The building and ventilation conditions under which the method was developed in this chapter ( in 

particular the presence of the test room) were not yet similar to those found in a standard animal 

house. Therefore the method is not yet readily transferable to conditions in commercial animal houses. 

In Chapter 5 the technique developed and tested in Chapter 4 will be applied under conditions that are 

more comparable to those met in commercial animal houses i.e. larger vents and cross and ridge 

ventilation. 





 

*Adapted from: Van Overbeke, P., de Vogeleer, G., Brusselman, E., Demeyer, P., Pieters, 

J.G., 2015. Development of a reference method for airflow rate measurements through 

rectangular vents towards application in naturally ventilated animal houses: Part 4:Cross 

and ridge ventilated test facility. Submitt. Publ. 

Chapter 5. Experiments under conditions of natural 

ventilation: Cross and ridge ventilated test 

facility*  
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5.1. Introduction  

In Chapter 4 the procedure for a new measuring method for the ventilation rate in naturally ventilated 

buildings was described. The method’s ability of coping with the continuously changing velocity 

profiles in the vents was examined. Although satisfying results were obtained in Chapter 4, the method 

has so far been applied to small openings only (0.5m×1.0m ) in a naturally cross ventilated test room. 

However, cross ventilation alone rarely occurs in naturally ventilated animal houses, as they usually 

feature a ridge vent. The ridge plays an important role in the airflow patterns and might significantly 

affect the ventilation rate as well (Choinière et al., 1994; Scholtens et al., 2004). Therefore, in Chapter 

5, the applicability of the method in situations more representative of commercial animal houses, i.e. 

cross and ridge ventilation, was examined. The method was applied to and validated for larger vent 

openings (0.5m×3.0m) and an additional measuring technique for the ventilation rate through the 

ridge was developed and validated.  

5.2. Materials and Methods 

5.2.1. Test facility 

The wall of the test room was removed from the test facility (See Fig. 5-1). A detailed description of 

the test facility can be found in Chapter 4. Both concrete sidewalls have ventilation openings of 0.5m 

× 4.5m with a depth of 0.2m. The width of these vents can be changed by placing wooden boards that 

cover parts of the opening area. The ridge vent of 0.3m × 4.0m has upright flanges of 0.3m and can be 

sealed completely (see Fig. 5-2). During the monitoring period, no large obstructions were present in 

the area surrounding the test facility within a radius of 40m (see Chapter 4). A “standard blower door 

test” (ASTM international E 779-03) was performed at a pressurization of 4Pa to examine the 

airtightness of the building. Major leaks were visualized with smoke tests and sealed where possible. 
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Fig. 5-1: 3D drawing of the test facility built at the Institute for Agricultural and Fisheries Research. An automatic sensorframe was installed 

at Vent A and B to allow an automated traverse movement of a 3D ultrasonic anemometer across the vent openings. Top view of the test 

facility with the X-Y coordinate system of the anemometers compared to the wind rose. : moving 3D ultrasonic anemometer in side vent; 

: static 2D ultrasonic anemometer in ridge. 

5.2.2. Hardware configurations 

An automatic sensor frame was developed and described in Chapter 3. This frame was used to perform 

an automated traverse movement by a 3D ultrasonic anemometer or 3DS (Thies® 4.3830.22.300, 

Göttingen, Germany) across the in- or outlet area of a vent. More detailed information concerning the 

frames can be found in Chapter 3. Two of these frames were positioned on the inner walls of the test 

facility beneath Vents A and B (Fig. 5-1). 

In the experimental set-ups where the ridge was kept open (see 5.2.4), 8 2D ultrasonic anemometers or 

2DS (Thies® 4.3820.02.300, Göttingen, Germany) were fixed inside the ridge. The positioning of 

these sensors can be seen in Fig. 5-2 A and B (side views) and C (top view). Holes were cut in the 

purlins in order to house the sensors. However, due to a lack of depth, the sensor heads were not 

located in the centre of the ridge but 2cm further away. This was the only feasible sensor set-up as 

other set-ups would cause larger flow obstructions. 
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In order to acquire more detailed information on the cross-sectioned air velocity profile through the 

ridge, 1D hotwire anemometers were used. A total of 9 hotwire anemometers were fixed across the 

width of the ridge (Fig. 5-2:B) (in the centre: TSI®, Air Velocity Transducer Model 8455, USA, 

Shoreview, and remaining hotwires:  E+E Elektronic®, EE66-VC5K1000, Germany, Engerwitsdorf).  

A meteorological tower (meteomast) equipped with a 2DS at a height of 10m was installed South-East 

of the test facility. All sensors were connected to a datalogger (DataTaker® DT85M, Australia) 

through a serial interface (RS422). This allowed for a simultaneous readout of all sensors. The data 

was collected at 50Hz and 33Hz for the 2DS and 3DS, respectively, and stored as 1s averages. 

Hotwire anemometer readings were logged at 1Hz.  

 

Fig. 5-2: A: Cross section of the ridge with an installed 2D ultrasonic anemometer. B: Green circles represent measurement locations of 

the 1D  hotwire anemometers (not to scale). They are located beneath sensor 6. One of the hotwires malfunctioned and is marked with an 

. C: Top view of the ridge with 8 2D ultrasonic anemometers and their allocated outflow areas. Dotted red lines represents the 

measuring path of the 2D ultrasonic anemometer. Sensor 7 malfunctioned and was removed.  
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5.2.3. Ventilation rate measuring method

5.2.3.1. Data collection at side and ridge vents  

Gathering the air velocity data at the side vents was performed by the method developed in Chapter 4.  

The method consisted of dividing the volume immediately downstream of the vent opening into 

cuboids with the size of the measuring head of the 3DS (0.25m × 0.25m × 0.125m, L×B×H), further 

referred to as measuring volumes. Each volume was sampled consecutively for 10s by a 3DS. Fig. 

5-3:A illustrates how this method was applied to an opening of 0.5m × 3.0m. To capture the time 

dependent velocity profile, the complete vent was consecutively traversed 10 times. Hence each 

measuring volume was sampled for a total of 100s. More detailed information on the data collecting 

method can be found in Chapter 4.  

For the ridge (Vent C) all measuring points were monitored simultaneously. Air velocity data at the 

ridge was collected over the same time period in which the side vents were traversed 10 times. 2D 

sensor 7 had to be removed from the ridge due to software errors and could not be replaced during 

further experiments. The ridge areas related to sensors 6 and 8 were widened to fill this gap (see Fig. 

5-2:C). The width of the ridge was taken at the centre of the 2DS measuring path. Therefore the 

elementary surface area per 2DS was considered to be 0.35m × 0.50m for sensors 1 to 5 and 0.35m × 

0.75m for sensors 6 and 8. Only the velocity component normal to these areas was utilized in the 

calculations.  

 

Fig. 5-3: A: Impression of a velocity profile measured in Side Vent B with North-Western winds. The vent is divided into 48 measuring 

volumes or 88 elementary surfaces. Arrows represent the velocity components sampled at each surface. Grey and white areas represent 

airflow flowing out of and in to the building, respectively. Airflow through grey surfaces is added to the total outf low rate (Qout) airflow 

through white surfaces to the total inflow rate (Qin); B: Side vent with the measuring paths of the 3D anemometer (green, red and blue 

lines) projected on the front plane in each of the 48 measuring volumes.  

5.2.3.2. Determination of the ridge pipe factor 

An additional consideration had to be made in view of the calculation of the in- and outflow rates 

through the ridge. An ultrasonic anemometer gives average wind speeds over its measuring paths. In 

Fig. 5-3:B and Fig. 5-2:C the measuring paths of the ultrasonic anemometers are projected on the 
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plane of the side vent (red, green and blue lines, 3DS) and ridge vent (dotted red line, 2DS), 

respectively. By moving the 3D sensor (see 5.2.3.1) most of the side vent area was covered by the 

paths. On the contrary,  the coverage over the ridge area was much lower, requiring a different data 

processing method.  

When the velocity profile in a vent is known, the average velocity (Vavg) can be found and multiplied 

by its related outlet area to obtain the airflow rate. However, only the velocity close to the longitudinal 

central axis (Vr) of the ridge was measured in this set-up. Assuming Vr to be representative of the total 

outflow area can lead to large inaccuracies of the airflow rate (Ozcan, 2011). The ratio between Vavg 

and Vr  is represented by the pipe factor (PF = Vavg/ Vr ). For instance, the PF for a laminar flow 

through a wide rectangular channel is 2/3 (ASHRAE, 2009). However for a turbulent flow, which is 

expected in the ridge, determination of the PF is more complex and is dependent on the Reynolds 

number and roughness coefficient of the duct. A PF of 0.91 is given for a Reynolds number of 10
6
. 

Although the ridge is not a truly “smooth rectangular duct”, the expected value of the PF is thus 

situated between 0.66 and 0.91(ASHRAE, 2009). Hotwire anemometer measurements in the ridge 

were carried out to give an estimate of the general shape of the velocity profile. All hotwire 

anemometers were calibrated. The measurements were taken directly beneath sensor 6 (see Fig. 5-2B). 

Sensors were positioned at the centre and at 0.03, 0.06, 0.12 and 0.14m to the left and right of the 

centre. The hotwire located at 0,03 cm to the left of the sensor malfunctioned and no valid data could 

be retrieved. All hotwires measured simultaneously at a frequency of 1Hz and results were based on 5 

minutes averages. From these point measurements, a velocity profile was composed from which the 

Vavg was calculated. In this velocity profile, the velocity at the borders was considered zero. Vr was 

measured by the hotwire in the centre. A PF was calculated for each 5 minute measurement interval. It 

must be noted that in 2.3.4, where the ridge was simulated in a wind tunnel set-up, the low relative 

measuring errors inferred that additional measurements would not be necessary. However, the 

considerable difference in experimental conditions led to the belief that a more detailed study was 

needed.  

5.2.3.3. Calculation of the ventilation rate  

In Chapter 4 the airflow rates and associated relative measurement errors were calculated following 

two appraoches: calculating the relative measurement error between (A) the building’s total inflow 

and total outflow rates and (B) between the airflow rate through Vent A and the airflow rate through 

Vent B. It was proven that approach (A) delivered better results for wind incidence angles close to 90° 

or 270°. It was assumed that in these cases the vents were simultanuously partly in- and outlet 

(Albright, 1990). Therefore, differentiating between in- and outflow rates was an essential step in the 

determination of the relative measurement error. Hence, approach (A) will be followed throughout this 

chapter. 
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The air velocities measured at the elementary surfaces were split into a subset for air velocities 

contributing to the inflow rate and a subset for air velocities contributing to the outflow rate. The time 

weighted averages of the inflow and outflow subsets are referred to as Vi+ and Vi-, respectively. The 

same procedure was followed in the ridge vent but all measured air velocities were multiplied by the 

PF (see 5.2.3.2).  As a final step, all elementary in- and outflow rates of all vents were summed into a 

total building inflow (Qin ) and outflow rate (Qout ), respectively (Equation [5.1]) 

 

𝑄𝑖𝑛 = ∑ ∑ (𝑉𝑖+ 𝐴𝑖 ∙ 3600)𝑗     𝑛
𝑖=1

𝑚
𝑗=1  [5.1] 

 

With Qin: the total building inflow rate (m³/h); m: the number of vents (2 or 3 depending on whether or 

not the ridge is open);  n: number of elementary surfaces in the vent (varying between 7 and 88 

depending on the related vent and set-up); vi+: the time weighted average of the velocity component 

contributing to the inflow rate through elementary surface “i” (m/s); Ai: the area of the elementary 

surface “i” for which the velocity component was measured (m²). Equation [5.1] was also used to 

calculate the total building outflow rate (Qout, m
3
/h ) by substituting vi+ to vi-, which is the time 

weighted average velocity component contributing to the outflow rate through an elementary surface 

“i”. 

The relative measuring error  (Eq ) between Qin and Qout (Equation [5.2]) was used as a measure for the 

accuracy of the method. Throughout the experiments the average value between Q in and Qout was taken 

as the reference (Qavg = (Qin + Qout)/2).  

 

𝐸𝑞 =
𝑄𝑖𝑛−𝑄𝑜𝑢𝑡

𝑄𝑎𝑣𝑔
100            [5.2] 

 

As also stated in Chapter 4, the method was considered to be sufficiently accurate when the |Eq| 

remained under 20% under a large variety of external wind conditions. 

5.2.4.  Imposed measurement conditions  

In Chapter 4, the ventilation rate measuring method was validated for naturally ventilated openings of 

0.5m × 1.0m in a cross ventilated room. In Chapter 5, the final goal was to determine the airflow rates 

through the test facility featuring an open ridge and side vents of 0.5m × 3.0m. Therefore, three 

different set-ups of the test facility were examined (see Table 5-1).  

In Set-up 1 the measuring method was applied to a wider vent, i.e. Vent A with an opening area of 

0.5m × 3.0m (see 5.3.2.1) and validated by considering Vent B with an opening area of 0.5m × 1.0m 

as the reference. To allow the use of Vent B as the reference, this vent was set up in the same manner 

as was done in Chapter 4, i.e. with a flange of 1.14m × 0.64m × 0.30m bordering the vent. There it 

was shown that applying the measuring method to a flanged vent delivered satisfactory results. In 
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Chapter 4 it was also concluded that measuring the X- and Z- components at the borders of the 0.5m × 

1.0m vent was necessary to obtain the most accurate measuring method. In Set-up 1 this was re-

evaluated with the wider Vent A. To allow for an even larger possible influence of the X- and Z- 

components, no flange was built around Vent A. In this set-up the ridge was closed.  

In Set-up 2 the opening areas of Vents A and B were 0.5m × 3.0m and the ridge was kept open. This 

allowed the validation of the measurement method in the ridge (see 5.3.2.2). 

In Set-up 3 the width of Vent B  was set to 1.0m in order to force more air towards the ridge in cases 

where Vent A was the inlet ( see 5.3.2.3). This increased the ridge’s relative contribution to the 

outflow rate. Set-up 3 was built to test the effect on the Eq of a predominantly ridge ventilated set-up as 

compared to Set-up 2. This allowed for an additional check of the ridge measurement method.  

Table 5-1: Stepwise approach for validating the side vent and ridge airflow rate measuring methods. The size of the vents are shown in 

relation to the different set-ups. 

 Side Vent A Side Vent B Ridge Vent C 

Set-up 1 0.5m × 3.0m 0.5m × 1.0m Closed 

Set-up 2 0.5m × 3.0m 0.5m × 3.0m 0.35m × 4.0m 

Set-up 3 0.5m × 3.0m 0.5m × 1.0m 0.35m × 4.0m 
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5.3. Results and Discussion 

5.3.1. Experimental conditions 

In Fig. 5-4 an overview is given of the wind conditions during the experiments in Set-ups 1, 2, and 3, 

and averages ± standard deviations (SD) are provided in Table 5-2 for the total measuring period of 

each set-up. In Fig. 5-4, the distributions of the wind incidence angles are given in the polar plots 

together with the relative and cumulative wind speed frequencies. These parameters were measured at 

the meteomast and are based on the averages taken during 443, 833 and 710 airflow rate 

measurements in Set-ups 1, 2, and 3, respectively. The angle of 180° corresponds to the South-West 

direction. In Set-up 1, all directions except for south-east incidence angles were covered (Fig. 5-4:A). 

While, in Set-ups 2 and 3, only a relatively limited amount of data is coming from wind directions 

other than South to South-West (Fig. 5-4:B and C).  

 

Table 5-2: Averages ± standard deviation (SD) of wind speed and wind direction measured at the meteomast during the complete 

measuring period of Set-ups 1, 2 and 3. 

 Total measuring time 

(h) 

Wind speed 

(m/s) 

Wind direction (°) n 

Set-up 1 708 2.3 ± 1.1 213 ± 92 443 

Set-up 2 1333 3.9 ± 2.1 185 ± 65 833 

Set-up 3 1136 3.4 ± 1.7 137 ± 71 710 
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Fig. 5-4 A, B and C: Relative and cumulative wind frequencies and polar plot of the wind direction measured at the meteomast during 

experiments in Set-up 1(A), Set-up 2 (B) and Set-up 3 (C) (See Table 5-1). 
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5.3.2. Evaluation and validation of the measuring method 

5.3.2.1. Conditions of cross ventilation with closed ridge (set-up 1) 

Relative measurement error 

In Fig. 5-5:A the relative measurement error of the ventilation rate (Eq) as a function of wind incidence 

angle is shown. For all wind incidence angles Eq remained between 5 ± 8% which is below the 

established tolerance level of ±20%. Therefore, it can be seen that the method developed in Chapter 4 

was successfully adapted and transferred to the larger vent of 0.5m × 3.0m. In Fig. 5-5:A, a slight 

dependence of Eq on the wind incidence angle can be seen. 

In Table 5-3 the relative contributions of Vents A and B to the total in- or outflow rates, classified 

amongst 4 ranges of wind incidence angles are shown. In the wind direction ranges of 135° to 225° 

and 315° to 45° a relatively stable contributions are found. Higher percentages suggest fixed in- and 

outlets in these situations. However, the contributions changes entirely in the ranges of 45° to 135° 

and 225° to 315°. These ranges contain wind directions parallel to the vents. A relative contribution to 

the inflow rate ranging from 34 to 69% for both Vents A and B indicates that these vents acted 

simultaneously as both in- and outlets. Nevertheless, as even in these complex situations Eq remained 

between ±20% (Fig. 5-5:A), it can be stated that the measurement method and data analysis were 

robust. In Fig. 5-6:A the change in relative in- or outflow contribution as a function of the wind 

incidence angle can be seen. From approximately 50° onward, the relative contributions begin to shift 

drastically to become stable again at around 120°. The amount of data for these wind directions was 

too low to see a clear start and end of this unstable region. However, the same trend is much clearer in 

the range of 225° to 315°, due to the larger amount of measuring points. There, the wind angle range 

in which the side vents shift from inlet to outlet and vice versa is approximately 250° to 300°.  

Table 5-3: Relative contribution of Vents A and B to the total in- or outflow rate through the test facility for Set up 1, classified amongst 4 

different ranges of wind incidence angles. Positive and negative values are relative inflow and outflow contributions, respectively. 

Range (°) 0 - 45 and 315 - 360 45 - 135 135 - 225 225 - 315 

Vent Ain (%) 11 ±15% 58 ± 32% 96 ± 7% 69 ± 34% 

Vent Bin (%) 92 ± 16% 41 ± 34% 5 ± 5% 34 ± 33% 

Vent Aout (%) -82 ± 8% -53 ± 23% -19 ± 11% -44 ± 26% 

Vent Bout (%) -15 ± 9% -48 ± 25% -79 ± 9% -53 ± 24% 

N 111 28 173 131 
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Fig. 5-6: Relative contributions of Vent A, B and C to the in- or outflow rate for set-ups 1 (A), 2 (B) and 3 (C) (See Table 5-1), with : flow 

through Vent A (blue); : flow through Vent B (red); : flow through Vent C (green); positive and negative values are relative inflow and 

outflow contributions, respectively. 
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Need of 3D measurements 

In Fig. 5-7: Eq values as a function of the wind incidence angle are shown, averaged over wind 

direction intervals of 30
o
. The in- and outflow rates measured in Vent A that are added to Qin and Qout, 

respectively, are calculated in 4 different ways. Namely, by accounting for different velocity 

components: (a) only the Y-components; (b) the Y- and X-components; (c) the Y- and Z-components 

and finally (d) all three components. Fig. 5-3 clarifies where these components were measured. The 

opening areas related to the Y- and Z- components (Y: front plane, Z: top and bottom plane) were 

considerably larger than those of the X-components (left and right plane). The in- and outflow rates in 

Vent B were calculated accounting for all components, as was recommended for this type of vent in 

Chapter 4. In Fig. 5-7 it can be seen that only accounting for the Y-components in Vent A resulted in 

larger relative measurement errors, in the range of 11 ± 35%. Highest errors were found in cases where 

the wind was blowing perpendicular to the vents. Adding the Z-components to the calculation lowered 

the range of Eq to 5 ± 8%. As seen in Fig. 5-7, this result is approximately equal to the result obtained 

by including all components. Therefore, including the Z-components was an essential part of the 

measuring method for this set-up. The X-component on the other hand, did not significantly alter the 

relative measurement error and, in the conditions of this study, could be omitted. However, for future 

study of flow patterns around the vents, all components deliver valuable information. The X-

components are therefore not omitted in further measurements.  

It must be noted that the large influence of the Z-components is partly attributable to the top and 

bottom planes being of almost equal area as the front plane (see Fig. 5-3:A). The larger the vent, the 

higher the influence of the front plane will be compared to that of the top and bottom plane. Therefore 

in very large vents, such as those found in cattle houses, measuring only the Y-component could be 

sufficient. 

This statement seems to be in agreement with other studies where the ventilation rate in naturally 

ventilated buildings is determined by some anemometer measurement data multiplied by vent area. 

Also there, only the velocity component normal to the vent opening is usually considered (Joo et al., 

2014; Molina-Aiz et al., 2009; Teitel et al., 2008a). However, compared to the present study, the 

applied vent areas related to the sampling points are much larger in these studies e.g. from 0.9m² 

(López et al., 2011a) and 2.1m² (Molina-Aiz et al., 2009) up to 110m² (Joo et al., 2014). Also 

measurements close to the vent’s borders are mostly avoided in these studies. Air velocities are 

generally highest in the centre of the openings (Kiwan et al., 2012) as there is little influence of the 

vent’s borders. Therefore these velocities can overestimate the in- and outflow rates when multiplied 

by the vent area. It is in such cases that applying mass conservation as a validation tool can be 

misleading as this overestimation cannot be identified. This might explain why, even when applying a 

low measurement density, the in- and outflow rates can still agree relatively well, e.g. within 12 to 

19% (Joo et al., 2014), 1 to 28% (López et al., 2011b), -3 to 37% (Molina-Aiz et al., 2009) 

(percentages are calculated similar to equation [5.2]). Therefore, when the measurement set-up does 
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not sufficiently account for the spatial variability of the velocity profile, errors can occur which could 

remain undetected when validating with the mass conservation principle. 

Although present study also relies on this principle, the reliability of our results was increased by the 

high measurement density and the large range of measurement conditions under which the method was 

validated.  

 

Fig. 5-7: The relative measurement error (Eq, %) as a function of wind incidence angle. The in- and outflow rates through Vent A are 

calculated with four different methods: : only accounting for the Y- velocity component (red); : accounting for the Y- and Z- velocity 

components (green); : accounting for the Y- and X- velocity components (purple); : accounting for all velocity components (blue). The 

in- and outflow rates through Vent B (needed for the calculation of Eq) were calculated accounting for all components. For each method the 

relative measurement errors (%) were calculated and averaged within intervals of wind incidence angles of 30°. (Set-up 1)  

5.3.2.2. Conditions of cross and ridge ventilation (Set-up 2)  

Pipe factor 

In order to establish a PF value of the ridge, a total of 186 velocity profiles were determined with 

measurements carried out over a period of 4 days. In Table 5-4 the velocity profiles were subdivided 

into 8 Vr ranges, i.e. the wind velocity measured by the hotwire anemometer at the centre of the 

velocity profile in the ridge (Fig. 5-2:B). In Table 5-4 it can be seen that an increasing Vr resulted in a 

slight decrease in PF. Linear regression analysis indicated a rather weak, but present, correlation 

between the Vr and the associated PF’s (R²=0.42, P<0.001). In Fig. 5-8, where 7 of these velocity 

profiles are shown, it can be seen that a higher Vr resulted in profiles with a more “bullet shaped” 

profile. A lower Vr resulted in a more homogenous distribution of the air velocity. Although the 

profiles were not symmetrical, the velocity at the centre mostly remained the highest value. 

The wind incidence angle during the tests varied between 105° and 168° (N= 152) and between 284° 

and 314° (N=22). However, only the 105 – 168° range was considered. Linear regression analysis 

showed a relatively weak correlation between wind incidence angle and the associated PF’s (R²=0.27, 

P<0.001). Nevertheless, one may notice that larger variations in wind incidence angles might have a 

significant effect on the shape of the velocity profile.  
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The ridge experiments indicated that the PF might be dependent on wind incidence angle and air 

velocity in the ridge. However, within the ranges of our measurements the correlations were weak. 

Hence, under the conditions met here, the PF was considered to be constant. Based on the average 

taken of all velocity profile measurements, a PF of 0.78 was withheld to calculate the airflow rates in 

set-ups 2 and 3.     

Table 5-4: Pipe factors (PF, dimensionless) related to wind speeds at the centre of the velocity profile (Vr) measured in the ridge. N is the 

number of measurements within the associated range of Vr.  

Vr range (m/s)  PF (SD) N 

0.50 to 0.74 0.79 ± 0.03 11 

0.75 to 0.99 0.81 ± 0.04 46 

1.00 to 1.24 0.79 ± 0.02 13 

1.25 to 1.49 0.79 ± 0.02 14 

1.50 to 1.74 0.77 ± 0.02 31 

1.75 to 1.99 0.76 ± 0.02 21 

2.00 to 2.24 0.75 ± 0.02 34 

2.25 to 2.65 0.75 ± 0.02 16 

 

 

 

Fig. 5-8: Velocity profiles with different Vr (velocity in the centre of the profile, i.e. 15cm) measured in the ridge with : 0.50m/s (light blue); 

: 0.75m/s (orange); : 1.00m/s (blue); : 1.50m/s (purple); :1.75m/s (green); :2.00m/s (red); :2.25m/s (dark blue). The velocities 

at the borders, i.e. at 0 and 30cm were assumed zero and do not represent measured values. 

Relative measurement error  

Values of Eq varied in the range of 8 ± 5% for the measurements in Set-up 2, thus successfully 

remaining below the ±20% limit. As this is in agreement to what was found in Set-up 1, the 

measurement method applied to the ridge was considered to be effective. Similar to Set-up 1, a 

dependence of Eq on the wind incidence angle can be seen in Fig. 5-5:B. Although in this set-up Eq 
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seems to reach lower values at wind incidence angles parallel to the vents, it presented an increased 

variability, as compared to Set-up 1.  

In Fig. 5-6:B the relative contributions to the total inflow and outflow are shown. For all wind 

directions the contribution of the ridge to the inflow was nearly non-existent 0 ± 1%. This means that 

the ridge can be considered a full and permanent outlet, independent of the wind incidence angle. A 

wind tunnel study by Choiniere and Munroe (1994) showed that at wind incidence angles close to 

270° or 90° part of the ridge opening function fluctuated between in- and outlet. In present study it 

was assumed that the short length of the test facility’s ridge compared to those found in commercial 

animal houses diminished this effect. The contribution of the ridge to the total outflow rate was 

relatively constant and therefore also independent of the wind incidence angle. The outflow 

contribution of the ridge varied in the range of 46 ± 7%. Vents A and B showed a similar behaviour as 

in Set-up 1 where the in- or outlet character of the vents were determined by the wind incidence angle. 

Again the wind incidence ranges in which the inlets completely changed into outlets and vice versa 

were 50° to 120° and 250° to 300°. At approximately 90° and 270° there were cases in which both 

Vents A and B accounted for 50% of the inflow rate. The closer the wind incidence angle was to 180° 

or 360°, the higher the contribution to the inflow of Vent A or B, respectively. Fig. 5-6:B is 

summarised in  

Table 5-5 where the data is classified amongst 4 ranges of 90°.  

Table 5-5: Relative contribution of Vents A, B and C to the total in- or outflow rate through the test facility for set up 2, classified into 4 

different ranges of wind incidence angles. Positive and negative values are relative inflow and outflow contributions, respectively. 

  

 
0-45° and 315-360° 45-135° 135-225° 225-315° 

Vent Ain (%) 3 ± 7% 69 ± 37% 103 ± 5% 70 ± 37% 

Vent Bin (%) 101 ± 9% 32 ± 37 % 2 ± 4% 32 ± 36 % 

Vent Cin (%) 0 ± 0% 0 ± 0% 0 ± 0% 1 ± 1% 

Vent Aout (%) -46 ± 8% -15 ±13% -3 ± 2% -18 ± 15% 

Vent Bout (%) -4 ± 2% -28 ± 13% -48 ± 6% -33 ± 14% 

Vent Cout (%) -46 ± 9% -55 ± 8% -44 ± 6% -46 ± 6 % 

N 82 57 579 115 

 

5.3.2.3. Conditions of cross and adapted ridge ventilation (Set-up 3) 

In Table 5-6 and Fig. 5-6:C it can be seen that the relative outflow rate contribution of the ridge was 

20 to 30% higher than in Set-up 2. This effectively increased the contribution of the ridge 

measurement method on the relative measurement error. Values for Eq of -9 ± 7% were found for the 

measurements in Set-up 3, remaining under the 20% limit. However, compared to Set-ups 1 and 2, a 

shift towards more negative values of Eq can be seen. In the ranges 45°-75°, 75°-105° and 275°-315° 
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the values of Eq average around -20%. Although it is to be expected that in these ranges the 

measurement errors increase due to the more complex airflow patterns, it is not clear why this 

particular set-up seems to increase this effect. To determine whether the asymmetry of the side vent 

sizes was one of the influencing parameters, a more detailed view on velocity profiles and related 

indoor airflow patterns is necessary. It cannot be determined whether these negative values were due 

to an under- or overestimation of the inflow or outflow rate, respectively.  

It should be noticed that the increase in the ridge’s relative outflow contribution was only expected in 

situations where Vents A and B were full inlet and outlet, respectively. In such cases the outlet area 

through Vent B was 3 times smaller than that of the ridge. However, the relative outflow contribution 

of 77 ± 7% seemed to be approximatelly constant over all wind directions. Combined with the results 

found for Set-up 2, it can be inferred that the relative outlet contribution of the ridge was independent 

from the wind incidence angle, but strongly dependent on the side vents configuration. Experiments 

with more varied vent configurations should allow to derive the relation between the ridge’s relative 

outlet contribution and the vent configuration.  

In the range of 315° – 45°, it was expected that Vent A would be completely an outlet with a relative 

inflow contribution of nearly 0%. However an inflow contribution of 20 ± 14% was found (see Table 

5-6). This effect can also be seen in Fig. 5-6:C. There, the ranges in which Vents A and B changed 

from approximatly 0 to 100%  inlet contribution widened considerably towards 360° as compared to 

Fig. 5-6:A and B. This means that even with wind incidence angles near 360°, there existed cases 

where Vents A and B were still partially in- and outlets. These situations are more challenging for the 

measuring method and could be a partial explanation for the higher absulute values of Eq. This also 

suggests that the wind incidence angles in which a side vent can be considered a full in- or outlet is 

dependent on vent size configuration. Therefore, studies that rely on the assumption that a vent is  a 

permanent outlet, e.g. for emission rate measurements, should account for this effect. In such cases, 

special care should be taken when the vent has a variable area, as when curtains are used.  

Table 5-6: Relative contribution of  Vents A, B and C to the total in- or outflow rate through the test facility for set up 2, classified into 4 

different ranges of wind incidence angles. Positive and negative values are relative inflow and outflow contributions, respectively. 

  0 - 45° and 315 - 360° 45 - 135° 135 - 225° 225 - 315° 

Vent Ain (%) 20 ± 14% 66 ± 24% 96 ± 3% 81 ± 21% 

Vent Bin (%) 74 ± 15% 25 ± 23 % 2 ± 2% 14 ± 17 % 

Vent Cin (%) 0 ± 0% 1 ± 1% 0 ± 0% 1 ± 2% 

Vent Aout (%) -17 ± 6% -13 ± 4% -5 ± 3% -12 ± 6% 

Vent Bout (%) -7 ± 3% -14 ± 5% -25 ± 4% -20 ± 5% 

Vent Cout (%) -82 ± 7% -82 ± 7% -73 ± 4% -72 ± 6 % 

N 125 188 360 37 
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5.4. Conclusions 

A naturally ventilated test facility was adapted for cross and ridge ventilation schemes, to which an 

automated airflow rate measuring technique was applied. For the side vents, a technique developed in 

Chapter 4 was successfully adapted to larger vents (0.5m × 3.0m) and a new technique was developed 

for the ridge. A validated pipe factor of 0.78 was attributed to the ridge. Detailed measurements of the 

velocity profiles in the vents were possible and the in- and outflow rates in each vent were processed 

separately.  

It was found that the method for the side vents should account for all air velocity components, while 

the Y- and Z- components were essential to the calculations. 

A relative measurement error between the building’s total in- and outflow rate of 8 ± 5% was found 

for the most open set-up, successfully remaining below the self-imposed limit of 20%.  

The relative contribution of a side vent to the building’s total in- or outflow rate was dependent on the 

wind incidence angle. The range of wind incidence angles in which a side vent entirely contributed to 

an inflow or an outflow depended on the size of the vents. Outside these ranges, the vent gradually 

changed from completely contributing to the inflow rate to completely contributing to the outflow rate 

or vice versa, as a function of wind incidence angle.  

The ridge had no considerable contribution to the inflow rate and was considered a complete and 

permanent outlet, independent of wind direction. Moreover, the relative contribution of the ridge to the 

total outflow rate was relatively constant since a standard deviation of only 7% was found throughout 

all measured wind incidence angles. However, measurements in two different set-ups showed that the 

ridge’s relative outflow contribution was dependent on the side vents configuration.  

Due to the complexity of the measuring technique it is practically and economically unfeasible to 

transfer the technique to a full size animal house. However, as the test facility is equipped with a 

validated measuring technique, it can be used for development, comparison and validation of new and 

existing airflow rate measuring techniques for use in naturally ventilated buildings. The design of 

these new techniques should be focussed on the possible transfer to very large vent sizes such as those 

found in cattle houses. Modelling is a possible way to reduce the complexity of the measuring 

technique. The test facility can be used to develop, validate and test such models. Although these 

models will probably not be directly transferable to other buildings, proving that certain modelling 

approaches work in the test facility can provide useful information to guide the research on full scale 

animal houses.  





 

 

Chapter 6. Experiments under conditions of natural 

ventilation: complementary data-analysis towards 

reduced measurement techniques      
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6.1. Introduction  

The method described in Chapter 5 was developed to give accurate measurements of the airflow rate 

through the test facility. It was essential for the correct functioning of this method to account for the 

possibility that a vent can function simultaneously as both an in- and outlet. This approach led to a 

technically complex installation which was not transferable to commercial animal houses. Although it 

was not within the scope of this research to develop such a directly transferable method, a first step 

towards a possible simplified measuring strategy was taken, which might lead to insights into the 

development of a more practical measuring technique.  

Considering the actual ACNV systems in practise, it would be safe to assume that a farmer would be 

willing to install at least 1 static anemometer in an animal house for control purposes. However, the 

location of this sensor will be essential. In this chapter it is examined whether one static sensor could 

predict the airflow rate, and where the ideal location of this sensor would be. 

Not only the airflow rate but also the velocity profile in the vents is important. For emission rate 

measurements it is necessary to know exactly where the outlets are situated at all times, as it is at 

these locations that the pollutant concentrations should be measured (Ogink et al., 2013). Pollutant 

concentrations measured at an inlet are in principle lower than those measured at the outlet. When an 

inlet is mistaken for an outlet due to incomplete knowledge of the velocity profile the emission rate will 

be largely underestimated. Additionally, measuring the air velocity at unrepresentative locations 

within a heterogeneous profile in a vent can lead to an under- or overestimation of the  airflow rate. 

Therefore, the heterogeneity of the velocity profiles gathered in Chapter 5 (Set-ups 2 and 3) is studied.  

6.2. Methods 

6.2.1. Estimating the ventilation rate with 1 static 2D sensor 

The aim was to find a method to estimate the airflow rate using only 1 static ultrasonic sensor. Two 

approaches were considered, i.e. using a 2D sensor placed within the test facility’s vents (indoor 

sensor) and an external 2D sensor placed outdoors. The most suitable location of the indoor sensor had 

to be found. Therefore, firstly, the vent with the most constant relative contribution to the total airflow 

rate through the building was sought. Secondly, the measuring location within that vent was sought 

that had the most constant contribution to the airflow through that vent. The 2D-ultrasonic sensor on 

the meteomast was taken as the outdoor sensor (see Fig. 4-2). This added to the simplicity as it was 

present during all measurements in Set-ups 2 and 3 (see Chapter 5) resulting in a large available 

dataset for this sensor. 
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6.2.2. Analysis of the velocity profiles 

6.2.2.1. Relative effective outlet area 

The area of a vent that acts as an outlet relative to the total area of that vent is referred to as the 

relative effective outlet area (Aeff). It was examined in which ranges of wind incidence angles the Aeff 

of a vent was close to 100%, which means that that vent was a complete outlet. As such it was also 

determined in what ranges of incidence angles the Aeff was most variable, resulting in a vent that was 

neither a complete in- or outlet.  

6.2.2.2. Variability of the outlet velocity profile 

Conducting emission rate measurements under conditions for which the Aeff differs significantly from 

100% is not recommended without detailed velocity profile measurements. Otherwise, the uncertainty 

concerning the size and location of the outlets could lead to large errors. However, even when the Aeff 

is close to 100%, it cannot be assumed that a velocity profile is homogeneous. Measurements at 

unrepresentative locations within a heterogeneous velocity profile can lead to under – or 

overestimations of the airflow rate. Within a homogeneous velocity profile each measurement location 

within the vent would deliver the same relative contribution to the total airflow through that vent. It 

was examined if such profiles could be found in vents when the Aeff is higher than 95% and whether 

the wind incidence angle influences this homogeneity.  

The high number of sampling locations in the side vents (12 rows of 4 measuring volumes for the 

0.5m x 3.0m vent, see Fig. 5-3 in Chapter 5) makes it difficult to give a visual overview of the 

variability of the relative contributions of the different measurement locations. The profiles were 

simplified by taking the average velocity of the Y-components in each of the 12 columns and in each 

of the 4 rows to study the horizontal and vertical variability of the profile, respectively.  

6.3. Results and discussion 

6.3.1. Estimating the ventilation rate with 1 static 2D sensor 

6.3.1.1. Indoor sensor 

In all set-ups in Chapter 5 it was seen that the relative contribution to the in- or outflow rate of Vent A 

and Vent B both had large variations due to changing wind incidence angles (see Fig. 5-6, Chapter 5). 

Therefore, these vents are not a suitable location for the static anemometer. The ridge on the other 

hand did not have these large variations. For example, in Set-up 2, the highest inlet contribution of the 

ridge relative to the total inflow of the building was 6%, and in 95% of the measurements the 

contribution was lower than 1%. Therefore, the ridge was considered a complete and constant outlet. 

The relative outlet contribution of the ridge was 46 ± 7% and 77 ± 7% for Set-up 2 and 3, respectively. 

The relatively small standard deviation on these results underline the stability of the ridge’s outlet 

contribution. 
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The measuring location within the ridge with the most constant contribution to the total outflow rate of 

the ridge can be found in Fig. 6-1. An average contribution of 12.5 ± 1.4% over all sensors was found. 

However, the variability of this contribution changed per sensor, while sensors 4 and 5 show the least. 

Sensor 4 was chosen for further  processing. No data was available for sensor 7.  

 

Fig. 6-1: The relative contribution to the outflow rate through the ridge (Qout ridge) measured by each 2D ultrasonic sensor in that ridge. 

Data gathered from Set-up 2 in Chapter 5. Red horizontal lines indicate the means. Sensor 7 malfunctioned and did not deliver data.  

A correlation coefficient of  R² = 0.97 (y = 9072x - 485) and R² = 0.99 ( y =6105x - 561) between the 

average airflow rate (Qavg = (Qin + Qout) /2, for Qin and Qout  see Chapter 5) and the air velocity measured 

by sensor 4 was found in Set-up 2 and 3, respectively. It was therefore concluded that one 2D-sensor 

in the ridge centre could be sufficient to give a good estimate of the airflow rate in Set-up 2 and 3. 

However, as was expected, the equation was clearly dependent on the set-up as the slope of the 

regression equation for Set-up 2 was 49% higher than the one for Set-up 3. This illustrates that these 

linear equations predicting the airflow rate will have to be determined case by case. Consequently the 

need for a more complex and accurate measuring system might remain for the validation or calibration 

of simplified measuring methods.  

6.3.1.2. Outdoor sensor 

Lo and Novoselac (2012) concluded that the ventilation rate of a naturally cross ventilated building 

correlates very well to the velocity component of the approaching wind which is normal to the inlet 

openings. This relation was confirmed for Set-ups 2 and 3 (Fig. 6-2) where the Y-component of the 

meteomast is shown in relation to Qavg. However, it is clear that this relation will change according to 

different side vent configurations. For Set-up 2 it can be seen that two side vents of equal area resulted 

in a graph symmetrical about the Y-axis (Fig. 6-2). A difference in slope between the positive or 

negative Y-components of only 7% was found. In Set-up 3, where Vent A was 3 times the size of Vent 

B, the graph was clearly asymmetrical. Positive Y-components at the meteomast, i.e. wind blowing 

towards the largest vent, delivered on average more than twice the airflow rate as for negative Y-

components. Considerably larger ventilation rates were found in Set-up 2, even for positive Y-
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components. This was attributed to the internal pressure build-up caused by the smaller outlet area in 

Set-up 3 that counteracts the inflow of air. More different side vent configurations should be examined 

to determine how sensitive the airflow rate estimation model is to those changes in configuration. It 

must be noted that, especially for unequal vent sizes, the regression model should differentiate 

between positive and negative air velocities as these clearly induce a different slope steepness.  

 

 

Fig. 6-2: The relation between the Y-component at the meteomast (m/s) and the average of the in- and outfow rates, Qavg (m³/h). A strong 

correlation is found and the linear regression equations are dependent on side vent configuration and direction of the Y-component. With 

(a): Set-up 2 and (b): Set-up 3.and : the negative Y-components measured at the meteomast : the positive Y-components measured 

at the meteomast.  

6.3.2. Analysis of velocity profiles  

6.3.2.1. Relative effective outlet area 

During our experiments, as was proven in Chapter 5, the ridge can be assumed to have an Aeff of 100% 

irrespective of the wind incidence angle. However it must be noted that Choiniere and Munroe, (1994) 

and Choiniere et al. (1992) showed that with wind incidence angles close to parallel to the ridge, parts 

of the ridge can fluctuate between in- and outlet. Norton et al. (2009) even found that for wind 

incidence angles of 90°, 50% to 70% of the ridge area could act as an inlet (CFD simulation). This was 

not observed during our experiments, probably due to the relatively short length of the ridge in 

comparison to those in actual animal houses. In any case it is safe to state that a ridge vent is less 

variable than side vents. In Fig. 6-3:(a) the Aeff of the side vents in relation to the wind incidence angle 
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is given for Set-up 2. The vertical dotted lines show the ranges within which a side vent had an Aeff 

higher than 95% , i.e 120 to 240° and 290 to 50° for Vent B and A, respectively. All data points in the 

range of 120 to 240° that had a lower Aeff than 95% were due to very low average wind speeds (± 

0.1m/s) in Vent B. In the range of 240 to 290° the Aeff was extremely variable, which agrees with the 

findings of Norton et al. (2009). In this relatively small range of 50° the Aeff dropped from 100 to 0% 

for Vent B and rose from 0 to 100% for Vent A. Not enough data was available for the 45 to 135° 

range, but still the same trend can be seen. For Set-up 3 it can be seen in Fig. 6-3:(b) that Vent A 

showed no characteristic range of wind incidence angles for which the vent was a complete outlet. 

Although this might be partly attributed to fewer data compared to setup 2, there is still a pattern 

visible that can support this statement. This implies that the wind incidence angle ranges for which 

vents were complete outlets, are dependent on the side vent configuration.  

Fig. 6-3:(a) and (b) must not be confused with Fig. 5-6:B and C in Chapter 5. In Chapter 5 the relative 

contribution of a vent to the outflow rate was shown, while in present chapter the relative size of the 

outlet is given, both in relation to the wind incidence angle. Therefore, by combining the information 

delivered by these two types of figures, it is possible to determine how large the outlet area is and how 

it contributes to the total outflow rate under certain wind incidence angles. For example, in Set-up 2, 

with a wind incidence angle of 270°, 46% of Vent A acted as an outlet (Fig. 6-3:(a)) whilst 38% of the 

total outflow rate passed through that vent (Fig. 5-6:B). Such information can be very valuable for the 

set-up of emission rate experiments. During such experiments it cannot be expected that the wind 

incidence angle remains constant. Fig. 6-3:(a) shows that small variations in incidence angle can have 

a considerable impact on the in/outlet character of the vent when the wind direction is almost parallel 

to the vents (270°). Without a detailed measurement of the velocity profile, large errors can be made 

when vents are mistakenly considered to be complete in – or outlets. Therefore emission experiments 

should be avoided under such circumstances, unless the velocity profile is completely known.  
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Fig. 6-3:The area of a vent acting as an outlet relative to its total area (Aeff) as a function of the wind incidence angle for set-up 2 (a) and 3 

(b) with : Aeff of Vent B (blue); : Aeff of Vent A (red) Above the horizontal dotted line the Aeff is higher than 95%. The vertical dotted lines 

indicate the transition between zones with a stable Aeff and zones with a highly variable Aeff (visually determined). 

6.3.2.2. Variability of the outlet velocity profile 

Only the wind incidence ranges with Aeff higher than 95% were accounted for. As the ridge has a 

constant Aeff close to 100%, the complete range from 0 to 359° is discussed. However, for the side 

vents only the ranges 120° to 240° and 290° to 50° are discussed for Vent B and A, respectively, in 

Set-up 2.  

 

Ridge  

In Fig. 6-4 the influence of the wind incidence angle on the relative contribution to the ridge’s outflow 

rate is shown for sensors 1, 5 and 8. The location of these sensors can be found in Fig. 5-2 in Chapter 

5. The interlaying sensors S2, S3, S4 and, S6, gave similar patterns, with less variable contributions 

for sensors closer to the ridge’s longitudinal centre. Over all wind incidence angles, the minimum and 

maximum contributions were 3% and 19%, 12% and 15%, 6% and 22%, for sensors S1, S5 and S8, 

respectively. This shows that although the ridge is a complete outlet, the velocity profiles are not 

homogeneous over all wind incidence angles. However, within the ranges of 120 to 210° and 315 to 
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45° even sensors S1 and S8, gave a relatively constant contribution as they remained within a range of 

10 to 15% contribution. This infers that velocity profiles in these wind incidence ranges can be 

considered homogeneous.  

The velocity profiles are comparable to the ones found by Choiniere and Munroe (1994). With wind 

incidence angles close to 90° or 270° the sensors at the sides reach a maximum or minimum relative 

contribution for the windward and leeward sensors, respectively. In Fig. 6-1 the relative contribution 

for all ridge sensors can be found.  

 

Fig. 6-4: The relative contribution of three 2DS sensors to the outflow rate through the ridge in function of the wind incidence angle, with: 

: sensor 1 (green); : sensor 5 (red); O: sensor 8 (purple). Above, 3 schematic representations of the ridge with the coloured arrows 

representing the relative contribution of the three sensors influenced by the wind incidence angle. Data gathered from Set-up 2 (Chapter 

5). Data from the other ridge sensors fall inside the range between the results from S1 and S8. 

Side vents 

In Fig. 6-5 the relative contributions of columns 1, 3, 5, 8, 10 and 12  to the outflow rate through Vent 

B is shown. It can be seen that the contributions of all columns remained mainly within 5 to 10% for 

wind incidence angles between 120° to 240°, with slightly lower contributions for the columns closer 

to the vent sides. This is visualised more clearly in the boxplot in Fig. 6-6 which again consists of all 

data from the wind incidence range 120° to 240° for Vent B (Set-up 2). Indeed all columns show a 

similar variability and in columns 1 and 12 the relative contribution decreases. In Fig. 6-7 the relative 

contribution of rows 1 to 4 to the outflow rate through Vent B is shown. On average a contribution of 

21±4%, 27±2%, 28±2% and 24±3% was found for rows 1 to 4 respectively which is visualised more 

clearly in Fig. 6-8. This shows that the rows at the borders had a smaller contribution to the outflow 

rate than the rows at the centre which is attributable to the edge effects. Hence, a large part of the 

velocity profile can be considered to have a homogeneous distribution, i.e. the overlapping areas of 

columns 2 to 11 and rows 2 and 3 (see Fig. 6-9, green area) and can be accurately sampled with a 

lower measuring density. On the other hand, the remaining areas (red and blue) should each be 
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measured separately. It must be noted that these results are only valid in Set-up 2, within the wind 

incidence range where the Aeff was close to 100%.  

 

Fig. 6-5: Relative contribution to the outflow rate through Vent B for columns 1, 3, 5, 8, 10, 12. Added schematic representation of vent B 

illustrating the location of the twelve columns and associated symbols and colours. Data gathered from Set-up 2 (Chapter 5). 

 

Fig. 6-6: Relative contribution to the outflow rate through Vent B (Qout ) for each column (see Fig. 6-5). Data gathered from Set-up 2 in the 

wind incidence angle range of 120° to 240° (Chapter 5). Red lines indicate the means. 

 

Fig. 6-7: Relative contribution to the outflow rate through Vent B for rows 1 to 4. Added schematic representation of vent B illustrating the 

location of the rows and associated symbols. Data gathered from Set-up 2 (Chapter 5). 
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Fig. 6-8: Relative contribution to the outflow rate through Vent B for each row (see Fig. 6-7 ). Data gathered from Set-up 2 in the wind 

incidence angle range of 120° to 240° (Chapter 5).Red lines indicate the means. 

 

Fig. 6-9: Vent B divided into 9 different areas. All elementary surfaces within such an area have a similar and almost constant relative 

contribution to the outflow rate for wind incidence angles between 120° and 240°.  

Illustrative examples of velocity profiles 

From Fig. 6-10 to Fig. 6-13 the velocity profiles for both side vents and the ridge vent under 

conditions of different wind incidence angles and wind velocities are shown. It is clearly illustrated 

that wind incidence angles of 180° and 360° induce relatively heterogeneous profiles in the side outlet 

vent and the ridge. Also the decrease in air speed towards the borders of the side vents is visible. For 

the wind incidence angles of 90° and 270°, large differences in air velocity can be found along the 

length of the side vents and even in the ridge. Side vents became partial in – and outlets 

simultaneously under these conditions.  
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Fig. 6-10: Velocity profiles of Vents A and B and the ridge in Set-up 2, for wind incidence angles close to 180° for two different external 

wind speeds. Colours in the profiles are associated with the air velocities noted in each elementary measurement surface of the vents (Y-

components). Positive and negative velocities(m/s)  represent in- and outflows, respectively.  
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Fig. 6-11: Velocity profiles of Vents A and B and the ridge in Set-up 2, for wind incidence angles close to 360° for two different external 

wind speeds. Colours in the profiles are associated with the air velocities noted in each elementary measurement surface of the vents (Y-

components). Positive and negative velocities (m/s) represent in- and outflows, respectively. 
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Fig. 6-12: Velocity profiles of Vents A and B and the ridge in Set-up 2, for wind incidence angles close to 90° for two different external wind 

speeds. Colours in the profiles are associated with the air velocities noted in each elementary measurement surface of the vents (Y-

components). Positive and negative velocities (m/s) represent in- and outflows, respectively. 
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Fig. 6-13: Velocity profiles of Vents A and B and the ridge in Set-up 2, for wind incidence angles close to 270° for two different external 

wind speeds. Colours in the profiles are associated with the air velocities noted in each elementary measurement surface of the vents (Y-

components). Positive and negative velocities (m/s) represent in- and outflows, respectively. 
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6.4. Conclusions 

As the developed methodology at this stage is too expensive and complex to be transferred to a 

commercial livestock building, an exploratory analysis was performed towards a more practical and 

reduced measuring technique. A strong correlation was found between the velocity component normal 

to the vents measured on a 10m high meteomast and the total building’s airflow rate. Also, a very 

strong correlation was found between an air velocity measurement in the longitudinal centreline of the 

ridge and the total building’s airflow rate. Such findings could lead to simplified measuring methods 

for application in practice. However, it was also clear that all linear regression models found in this 

chapter were strongly dependent on the building’s side vent configuration. This could imply that each 

set-up should be characterised by a different set of parameters. More research is necessary to examine 

the influence of different vent set-ups on the models.  

The developed airflow rate measuring technique allows a detailed determination of the velocity profile 

in both side vents and the ridge vent. The ridge was a complete outlet independent of the wind 

incidence angle. Ranges of wind incidence angles were found (approximately 120° to 240° and 290° 

to 50° in Set-up 2) in which a side vent could be safely assumed to be a complete outlet. Within the 

range of 120° to 240°, it was shown that the outlet profiles in the side and ridge vents of Set-up 2 

might be determined with a lower measuring density as large parts of the outlet area were 

characterised by similar relative outflow contributions. Needing less sampling locations would render 

the method more practical. By comparing Set-ups 2 and 3 it was found that these ranges changed 

according to the side vent configuration. This has to be taken into consideration when performing 

experiments in commercial animal houses where side vent configurations could change as a function 

of indoor climate requirements and outdoor climate conditions. 

Knowledge concerning velocity profiles can be important for the correct implementation of emission 

rate experiments as gas concentration measurements should be taken at the outlet and corrected for 

background concentrations measured at the inlet. However, it must be noted that although a vent can 

be a complete outlet and might even have a homogenous velocity profile, it is not guaranteed that the 

gas concentration profile at that outlet is homogeneous. Therefore, a point measurement of the 

concentration taken at the outlet might not be representative of the whole opening (see 1.3.3). A 

homogeneous mixing of the pollutants throughout the whole animal house would, in principle, lead to 

strongly related velocity and concentration profiles. However, this cannot be assumed to be the case 

and should be checked by appropriate sampling throughout the building. Pollutant sampling locations 

in the outlet are thus subject to similar uncertainties as velocity measurements.  





 

 

Chapter 7. General discussion and future perspectives 
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7.1. Development of the measuring method 

As stated in the introduction there is a clear and urgent need for a reference technique for airflow rate 

measurements through naturally ventilated openings. Such a technique can play an essential role in the 

development of accurate emission rate measurement techniques and automatic control systems for the 

ventilation rate and indoor airflow patterns. The goal of this thesis was to develop a reference test 

platform, equipped with an accurate measurement method for velocity profiles and related airflow 

rates, where new and existing methods could be developed, validated, and calibrated. It must be noted 

that the focus of this thesis lies on the measurement of velocity profiles in the vents and the related 

airflow rates. Although indoor airflow patterns play a large role in the climate control of naturally 

ventilated animal buildings, they were not discussed in this thesis. A stepwise approach was followed, 

starting from controlled steady state experiments in a wind tunnel, up to experiments under varying 

wind conditions in a cross and ridge ventilated test facility in the open. The steady state wind tunnel 

experiments focused at the spatial variability of the velocity profile whilst the experiments in the test 

facility focused at the combined spatial and temporal variability.  

7.1.1. Choice of building geometry 

Takai et al. (2013) state that “ a better synergy between mathematical modelling, physical modelling 

and field measurements of ventilation rates in naturally ventilated livestock buildings is required”. 

Although experimental approaches such as scaled models in wind tunnels or CFD modelling can 

deliver valuable information, even then, experiments under conditions of natural ventilation are still 

essential as a validation tool. A choice had to be made between measurements in a full size mock up 

building or a real life commercial animal house. As this set-up was meant as a reference building 

where other techniques could be compared and developed, the commercial animal house was not a 

feasible option. In such a building the well-being of the animals has to be the main concern. Hence, 

the need to continuously adapt vent sizes to maintain an adequate indoor climate would make it 

difficult to perform long term measurements with fixed set-ups. Therefore the mock up building 

approach was followed. Such an approach has been used in other studies, but was predominantly 

focused at civil buildings (Lo and Novoselac, 2012; Park, 2013; Straw, 2000). These buildings 

evidently do not have the typical shape of an animal house with side vents, sloped roofs and ridge 

vents. As mentioned in the introduction, the building geometry can have a large influence on the 

ventilation rate and the airflow distribution. Therefore it was considered essential that the mock up 

building had the shape of a standard animal house. Hence, the test facility was based on a section of a 

pig house. Such a building was also present at the Silsoe research institute, i.e the Silsoe Structures 

Building, that was predominantly used to examine pressure distributions over the building envelope 

(Demmers et al., 2001; Richardson and Blackmore, 1995; Richardson et al., 1997).  
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7.1.2. Choice of measurement density 

Most common direct measuring methods are based on sampling the air velocity in the vents and 

multiplying those results with the related vent area to obtain the in- and/or outflow rate (López et al., 

2011a). As mentioned in the introduction the main source of uncertainty stems from the amount of 

sampling locations, i.e. the measurement density, that are deemed sufficient to deliver a representative 

average over the total vent area. Joo et al. (2014) stated that “establishing the minimum number of 

measurement points that do not compromise accuracy of emission rates at a reasonable cost” is a 

challenge for this type of measurement techniques. Knowing the lowest measurement density that 

delivers enough detail is only possible when the complete velocity profile is known. Therefore, to 

lower the uncertainty of such a direct measuring method, one should start with the highest measuring 

density that is practically and economically feasible.  

Choosing ultrasonic anemometers has helped in obtaining high measuring densities. Unlike most of-

the-shelf anemometers, the ultrasonic sensors do not give point measurements but the average 

velocities over their measuring paths (Barth and Raabe, 2011; Komiya and Teerawatanachai, 1993). 

The paths of the standard ultrasonic anemometers used in our study are relatively short (±0.2m). 

However, when they are virtually concatenated by moving the sensor approximately one path length 

per sampling location, a high measurement density can be reached with a relatively low number of 

measurement locations compared to e.g. applying point measurements with a hotwire anemometer. 

This property of the sensors has not been used in most other studies concerning natural ventilation. 

Some examples can be found for the application in cylindrical gas distribution ducts (Drenthen and de 

Boer, 2001). The measurement density in our research was adapted to take maximum advantage of 

this effect. It is also at this point that our approach differs from other studies where the choice in 

measurement density seems to be predominantly driven by sensor availability or cost of the set-up due 

to the large size of the vents  (Joo et al., 2014). The wind tunnel tests had proven that for a steady state 

velocity profile, the method took sufficient sampling points to accurately determine a heterogeneous 

velocity profile (Chapter 3). Therefore the same measurement density was adopted for measurements 

under conditions of natural ventilation.  

Applying a large number of anemometers to reach this measurement density is not a feasible solution 

as this would possibly obstruct the airflow and certainly increase the total cost of the method. Already 

from the wind tunnel experiments it was decided that traversing a vent with one anemometer was the 

only viable option. Other studies have also applied this approach to larger vents (Boulard et al., 2000, 

1997; López et al., 2011a; Molina-Aiz et al., 2009). However, varying outside conditions will result in 

time dependent measurements. The abovementioned studies handled these phenomena by: 1) 

measuring only at constant wind incidence angles and 2) normalising the measured air velocities using 

a fixed outside reference measurement. Naturally, a constant wind incidence angle does not occur and 

a certain amount of variation will be unavoidable. However, Campen and Bot (2003) showed that, in 
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the case of greenhouses, variations in wind incidence angle as small as 10° could change the airflow 

rate by up to 50% in some cases. This effect can also be observed in Chapter 4 Fig. 4-18. Furthermore, 

the stability of the wind incidence angle can be dependent on the region or season, influencing the 

time frame in which measurements can be performed with a nearly constant wind incidence angle. 

Some studies needed to discard large parts of their datasets as wind incidence angles were not optimal 

(Lengers et al., 2013). However, a reference airflow rate measuring technique should be reliable and 

applicable under all wind incidence angles. When the wind velocities are normalised to account for 

changing wind conditions the variations of the wind velocity in the vents are assumed to be directly 

proportional to the variations of an external fixed reference (Molina-Aiz et al., 2009). However, it 

cannot be excluded a priori that this proportionality might be dependent on the measuring location 

inside the vent and on the wind incidence angle. Therefore, it was chosen to develop a method that 

was independent of the stability of the wind incidence angle and had no need for the normalisation 

procedure. To take into account the temporal variability of the velocity profile, measuring each 

sampling location within the vent for 10s and repeating the complete vent traverse for 10 times was 

found to be the most satisfactory sampling strategy (Chapter 4).  

7.1.3. Necessity of 3D air velocity measurements 

The high measurement density (see 7.1.2) together with the need for continuous measurements 

imposed the automation of the anemometer’s traverse movement. Consequently, the only practically 

feasible location for the ultrasonic sensor was directly behind the vent. At this location the flow could 

no longer be considered unidirectional. Indeed, in both the wind tunnel (Chapter 3) and test facility 

experiments (Chapter 4 and 5) it was shown that to obtain a measuring method that was independent 

of flow disturbances or profile shape, measuring the X- Y- and Z-components of the air velocity 

around the borders of the vent was necessary (with the Y-component normal to the in- or outflow 

plane and the Z-component the vertical velocity component). Doing so, the measuring method was 

able to account for the fanning out or narrowing of the flow depending on it being an in- or outflow, 

respectively. In some cases the airflow rate contributed by the Z-components was equal to 39% of the 

total airflow rate through that side vent when it was a complete outlet. On the other hand when a side 

vent was a complete inlet the relative contribution of the Z-components was less than 16% (see 

Chapter 4, Table 4-3). Therefore, our study showed that the relative contribution of the Z- components 

was also dependent on the wind incidence angle.  

It must be noted that the necessity of a 3D measurement only applies to the measurements made at the 

edges of the vent, i.e. measuring the flow through the side, top and bottom planes of the combined 

traverse plane (Fig. 5-3). Therefore this aspect will possibly be less crucial in larger vents where the 

ratio of the vents’ front plane area to the total area of the border planes is much higher. From the 

experiments in this thesis it was not possible to estimate when this ratio would be high enough to 

ignore these edge effects. However, it is assumed that in large vents, such as those typically found in 



General discussion and future perspectives 

111 

 

dairy farms, measuring velocity components other than normal to the vents would be unnecessary. In 

any case, there were no studies found where the ventilation rate was measured in large vents with 

more than the velocity component normal to the vents. 

At least two studies experimented with small opening sizes where the ventilation rate was measured 

by an ultrasonic anemometer. Straw (2000) did measurements in a cross ventilated cubical structure 

with openings of 1.0m x 1.0m. He found that measuring only the normal velocity component in the 

centre of the vent and multiplying it to the vent area does not give a representative airflow rate. He 

used CFD to compensate for the low measuring density. Larsen (2006) carried out wind tunnel 

measurements in a cross ventilated full scale structure with vents of 0.15m x0.86m. Again, only the 

normal velocity component was measured. However, the measurements were taken inside the vent 

opening (depth of 0.1m) instead of behind the opening. This might have prevented the airflow of 

fanning out at the measurement plane, possibly making the measurement of X- and Z-components 

unnecessary.  

It must be noted that ridge measurements were taken within the ridge cross section. Therefore, 

similarly as Larsen (2006), only the velocity component normal to the outlet plane was taken into 

account. 

7.1.4. Determining the accuracy of the measuring method 

Currently there is no airflow rate measurement technique for naturally ventilated flows that is proven 

to be accurate enough to be considered the reference technique (Ogink et al., 2013). Without a 

reference there exist two main ways of estimating the accuracy of airflow rate measurement methods, 

i.e. comparison to other methods under the same circumstances (Kiwan et al., 2013), or by relying on 

the conservation of mass (López et al., 2011a; Molina-Aiz et al., 2009). Comparing methods of which 

none are suitable as reference techniques could evidently lead to large errors. When all methods give 

results that are in the range of realistic values, it is difficult to state which method performs better. 

Additionally, the range of realistic airflow rate values can be very large. Relying on the principle of 

mass conservation, which in our case translates into the inflow rate equalling the outflow rate, does not 

guarantee an accurate measurement technique. When measurements of both inflows and outflows have 

a similar under- or overestimation of the actual airflow, a closed balance could still fail to estimate the 

true absolute airflow rates. However, it cannot be avoided to use one of these methods as it is essential 

to obtain an idea of the accuracy of the developed method. As in all our experiments in the test facility 

the airflow rates through all vents were simultaneously measured, mass conservation was the logical 

approach.  

It must be noted that side and ridge measurement methods have been tested under a large range of 

wind incidence angles and velocities and that these conditions strongly affected the velocity profiles in 

the vents (see Chapter 6 and section 7.1.5). It was also shown that the profile shape in the side vents 

caused by an inflow or an outflow was substantially different in terms of heterogeneity and 
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contribution of X- Y- and Z-components. Under all of these different external conditions, the different 

profiles in all vents were measured with such an accuracy that the relative difference between in- and 

outflow rates did not surpass the 20% limit. It was shown that wind incidence angles close to 90° or 

270° induced complex velocity profiles in both side vents (Chapter 6). Although, in such cases the 

variation on the relative measurement error increased compared to incidence angles close to 180° or 

360°, it still remained below the 20% limit. In any case, the extensiveness and variety of the performed 

experiments will reduce the risk that all in- and outflow rates were over- or underestimated similarly. 

Other studies where in- and outflow rates were compared as a validation tool found relative 

measurement errors of 12 to 19% (Joo et al., 2014), 1 to 28% (López et al., 2011b) and -3 to 37% 

(Molina-Aiz et al., 2009). However, none of the studies could give an in depth insight into the 

influence of the wind incidence angle on the relative measurement error, partly due to the lack of long-

term measurements.  

7.1.5. Measurement of velocity profiles 

At the Silsoe research institute there exists a mock up building for natural ventilation measurements  

(“the Cube”) that can be turned towards different wind directions. Such a feature can be of great value 

as much of the research on natural ventilation concerns the effect of wind incidence angles on airflow 

rates or patterns (De Paepe et al., 2013; Νikolopoulos et al., 2012). Such a feature was infeasible in 

our case due to practical limitations. This meant that the amount of data that could be collected for the 

different wind directions was entirely dependent on the wind conditions. Evidently the largest amount 

of data was gathered for the predominant wind direction (South-West). It is important to have an in 

depth insight into these conditions as they are the most prevalent in practice. However, it was our aim 

to validate the method under a more or less continuous range of wind incidence angles, and not only 

the predominant one. When there are no obstructions in the surroundings of the building and the vent 

sizes and building geometry are symmetrical, the number of measurements can be reduced accordingly 

(Tecle et al., 2013). Hence, measurements in a range of 180° to 90° or 270° (with 180° equal to normal 

to the side wall) could be sufficient. However, this is rarely the case. The experiments in this thesis 

were continued until a sufficient amount of data was gathered for different combinations of wind 

speed and incidence angle. In total, more than 3000 sets of velocity profiles were measured and 

processed, gathered in 4 different naturally ventilated set-ups. Still, some wind incidence angles 

occurred so rarely that these were underrepresented in the data. However, due to the automation of our 

measuring technique allowing continuous measurements, the amount of data gathered from other than 

the predominant wind direction is considerably higher compared to other studies. Evidently, studies 

where anemometers were moved manually had a much more limited amount of data. For example  

López et al. (2011) and Molina-Aiz et al. (2009) each had only 4 complete airflow rate measurements. 

On the other hand studies where multiple static sensors were used, had large datasets but low 

measurement densities in the vents (Joo et al., 2015, 2014).  
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It must be noted that all data was gathered for wind effect only. Although stack and wind effect often 

occur simultaneously in animal houses (Zhang et al., 1989), it was not considered necessary to 

simulate the stack effect by adding heat sources in the test facility. The measurement method was 

developed to accurately determine the velocity profile through each vent, irrespective of the cause of 

this profile. Hence, adding heat sources might have an influence on the profiles themselves, but not on 

the accuracy of the measuring method.  

Few studies have been found where the velocity profiles in the vents were studied in detail. Some 

studies delivered such information through CFD modelling (Nikas et al., 2010; Teitel et al., 2008b). 

Other studies in wind tunnels (Choiniere and Munroe, 1994; De Paepe et al., 2013; Larsen, 2006), or 

studies in full scale commercial greenhouses (López et al., 2011a) or livestock buildings (Kiwan et al., 

2012) also delivered some information on the velocity profiles, albeit less detailed. And while the 

wind incidence angle is one of the most influential parameters of the profile shape, none of the 

abovementioned studies gives detailed profiles for more than a few distinct incidence angles. This is in 

contrast to our study where each pair of data points (relative inflow and outflow contribution)  shown 

in Fig. 5-6 in Chapter 5 represents a complete and detailed measurement of the velocity profile (as 

shown in Chapter 6). The velocity profiles, and especially those in the side vents, were measured in 

more detail than in the mentioned studies (not accounting for CFD models). Additionally, 

measurements were carried out for a much larger range of wind incidence angles. 

The velocity profiles found in our experiments followed similar patterns as those found in literature.  

Although the study of Choiniere and Munroe (1994) was performed in a wind tunnel, it was the most 

comparable study in terms of building geometry where the effect of  different wind incidence angles 

(180°, 150°, 120° and 90°) on the airflow patterns in the ridge and side vents were studied. The 

profiles in the side vents were more or less homogeneous for wind incidence angles close to 180° or 

360°. The variations in the profiles became larger as the wind incidence angle deviated further from 

180° or 360° to reach the most complex profiles around 90° and 270°, where side vents acted 

simultaneously as in- and outlet (Norton et al., 2009). The velocity profiles in the ridge also showed 

larger variations towards incidence angles closer to 90° and 270°, albeit less pronounced. 

The high degree of detail in which the velocity profiles were measured made it possible to make a 

more substantiated estimate of the wind incidence ranges in which vents remained complete in- or 

outlets. This is valuable information for emission rate measurements that need the exact locations of 

the outlets. For the side vents it was shown in Chapter 6 that there exists a wide range of wind angles, 

approximately 120° to 240°, where a vent is a complete outlet. However outside this range, the outlet 

can change into a complete inlet over a relatively small range of approximately 50°. This was in 

contrast to the findings in the ridge where it was shown that the ridge remained a complete outlet 

irrespective of the wind incidence angle. However, Choiniere and Munroe (1994) found that in some 

cases (incidence angles of 120° and 90°) part of the ridge could fluctuate between in- and outlet. This 

difference was attributed to the larger (relative) length of the ridge in their scale model. 
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It was also found that the relative contribution of the ridge to the total outflow rate was relatively 

constant (standard deviation: 7%) throughout all wind directions. Again this is very different from side 

vents that vary from 0% to 100% relative outflow contribution depending on the wind incidence angle. 

The independence of the relative outflow contribution of the ridge to the wind incidence angle makes 

it very promising for the development of measuring methods with a reduced number of measuring 

points (see 7.2.2) 

7.2. Transferability to commercial animal houses 

7.2.1. Experimental set-up 

As the gable walls of the test facility are close to each other (5m), they will certainly have a 

considerable impact on the velocity profiles in the vents and the airflow patterns inside the building. 

This effect will be less pronounced for wind incidence angles normal to the vents (De Paepe et al., 

2013) i.e. wind angles of 180° or 360°. For these conditions transferring the conclusions made in the 

test facility concerning velocity profile shape to wider commercial buildings might be possible. On the 

other hand, the more the wind incidence angle deviates from normal to the vents, the more influence 

the gable walls will have on patterns and profiles. In any case, the small width of the test facility will 

have made the velocity profiles more heterogeneous, therefore subjecting the measuring method to a 

worst case situation. 

The measuring method in the side vents was not designed to be transferable to a commercial building. 

It is practically infeasible to automatically move a sensor across vents that can be tens of meters long. 

There are not only the technical and economical obstacles, but also the dangers of a continuously 

moving sensor near farmers and/or animals. Additionally, maintaining the absolute measuring density 

in these large vents, i.e. 32 samples per m², would lead to extremely high measuring times. 

Considering the small vents in the test facility as a scaled version of the large vents in commercial 

animal houses might lead to the assumption that 48 measuring locations, equally distributed over the 

vent area, would be an adequate measuring density. However, without validation measurements in 

larger vents there is no evidence that this approach would be satisfactory. In any case, as an automatic 

movement would not be possible and a manual movement would impede long term measurements, a 

large amount of static sensors would be necessary. It is clear that for commercial buildings a strongly 

reduced method is required. Additionally, as long as the method relies on non-simultaneous 

measurements, the temporal variability of the velocity profiles will be a source of inaccuracy. To 

account for this variability the vents are repeatedly traversed to obtain representative averages of the 

airflow rate. However, this resulted in a measuring method with an execution time of 1h32min. For 

future use in ACNV systems, this output frequency is much too low. Therefore developing a faster 

measurement method could not only further reduce the influence of profile fluctuations but also 

increase the applicability of the method. It must be noted that this only applies for the side vents as the 
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measurements in the ridge were performed with 7 static ultrasonic 2D sensor. In conclusion, to make 

the method transferable to commercial animal houses it will need to be based on few measuring points 

and deliver airflow rate values at a higher rate (see 7.2.2).  

7.2.2. Reduced measurement methods through modelling  

The experiments in the test facility have shown two reduced approaches that seem to be promising, i.e. 

estimating the airflow rate through measurements at the longitudinal centre of the ridge only (linear 

regression with R² = 0.99) or at a nearby meteomast (linear regression with R² = 0.89). Evidently, the 

linear model behind both approaches could only be found when the airflow rate is known beforehand, 

i.e. measured by the complex method. Although only two different cross/ridge ventilated set-ups were 

examined in Chapter 6, it was clear that the model was dependent on the side vents configuration. It is 

expected that every parameter that will have an influence on the airflow rate should be included in the 

model. These parameters can be subdivided into static parameters such as building geometry, building 

surroundings and pen configuration, and variable parameters such as wind incidence angle and speed, 

temperature differences between in- and outside of the building, vent permeability, amongst others. 

These parameters are discussed in the introduction. The large variability that can occur within these 

parameters and the possible interaction between them, infers that each building might need a unique 

calibration of the model for predicting the airflow rate accounting for external and internal governing 

climate conditions. This means that methods based on velocity measurements limited to the ridge or a 

meteomast will need to be calibrated and/or validated by another method that delivers more detail on 

the airflow rate distribution through all the vents. The downside of this conclusion is that the need for 

complex and detailed measurements cannot be discarded. However, it also shows that after a 

calibration / validation period, the complex method might be completely replaced by models and a 

relatively small number of sensors. For research purposes this would mean that part of the equipment 

can be recuperated after a certain time and used for other experiments, whilst long term measurement 

can be performed with a minimum of remaining equipment. For commercial purposes a supplier of 

ACNV systems could make the calibration equipment available for a certain time after which it is 

removed and installed on the next newly built animal house. Additionally, the more different animal 

houses are measured with the complex technique, the stronger the models can become. This might 

eventually shorten validation/calibration time to a minimum. 

It must be noted that the models given in Chapter 6 do not give any information on the velocity 

profile. The complexity of the model will be dependent on the degree of detail in which the profile 

needs to be known. Avoiding black box modelling will provide insights into the many influential 

parameters. However, due to the large variety of parameters this might not be a feasible solution and 

applying modelling approaches such as response surface methodology (Shen et al., 2013) or artificial 

neural networks (Ayata et al., 2007; De Vogeleer et al., 2014) could be more appropriate. 
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7.2.3. Development of new techniques  

Due to the extensiveness of the experiments under a large variety of external conditions, a unique test 

platform was created. The in depth knowledge of the velocity profiles and the associated airflow rates 

through each vent, create possibilities for the development, the calibration and the validation of new 

airflow rate measurement techniques. These techniques need to be designed to allow the transferral to 

commercial animal houses. Although the test platform would not give definitive conclusions on how a 

new technique would perform in real life animal houses, it can give strong indications on its ability to 

cope with the highly variable conditions in the vents.  

7.3. Future perspectives 

The test facility can be used to develop, calibrate and validate new airflow rate measurement 

techniques. Ideally, as our method would act as a reference, a higher output frequency than that of the 

technique under development is needed. At the moment the developed method has an output rate of 1 

per 92 minutes, due to the multiple traverses and the high number of sampling locations. In some cases 

this frequency could be a limitation for the development of new techniques, especially for airflow rate 

control techniques. When such a technique needs to be transferred to a commercial animal house, the 

complexity and total cost of the technique are important parameters. In any case, it is practically and 

economically infeasible to transfer the developed method as is, to a commercial animal house due to 

the method’s complexity.  

Both the increase in output frequency and the decrease in method complexity can be obtained by 

developing models that only need a small amount of input sensors. The extensive datasets that were 

gathered during our experiments can serve as the basis for such model development efforts. Ideally, 

the model should be able to predict the air velocity profiles and the related airflow rates in each vent. It 

is clear that such a model will at least need representative air velocity and wind incidence angle data as 

input parameters. The data gathered in our test facility can be used to determine the ideal location of 

the air velocity measurements and its relation with the profiles and airflow rates. As mentioned in the 

discussion, the ridge and meteomast are promising sampling locations. It must be clear that although 

the measurements in the test facility are a stepping stone towards measurements in commercial animal 

houses, there is no guarantee that the results and related models are transferable without additional 

research. For example, the ridge in the test facility has a very small length compared to those of 

commercial animal houses. It is possible that the amount of sensors needed to characterise the airflow 

through the vent will be proportional to the length of the vent.  Evidently, the less measurement 

locations are needed, the cheaper the complete method. As a lower measurement density would be 

allowed, the need for moving sensors would decrease. The sensor movement was the main reason for 

the low output frequency of the method. An optimum has to be found between the amount of velocity 

profile detail that the model can deliver and the cost and practical feasibility of the method. 
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When focusing on the transferability of a predictive model to a commercial animal house, the 

influence of building geometry and location, vent size, internal pen design, heat sources a.o., on the 

model should be accounted for. The test facility can be used to gain insight into the variability or 

sensitivity of these models by examining variations on some of the influencing parameters. Although 

linear regression models often seemed to be satisfactory for the results in this thesis, accounting for 

parameters such as stack effect, pen design, vent size, and others, will significantly increase the 

complexity of the models. In a follow up project, the possible use of grey or black box modelling will 

be examined to cope with these additional parameters. 

Even though the test facility can give insights into the sensitivity of a model, it cannot be assumed that 

the model would directly apply to commercial animal houses. Therefore, there is still a need for 

techniques based on direct measurements of the airflow rate and velocity profile, applicable in 

commercial animal houses, that can be used to calibrate the model. The test facility could be used as a 

test platform to develop and validate new or existing techniques that serve such a purpose. The focus 

must lie on the transferability of the developed methods to a commercial animal house, i.e. accounting 

for large vents, changing vent sizes, harsh environments, and others. There already exist several 

techniques to measure the airflow rate in naturally ventilated buildings (tracer gas tests, air velocity 

measurements combined with normalisation, differential pressures). These techniques could all be 

compared to the method developed in this thesis and where possible improved and validated or their 

shortcomings examined. New techniques such as the one described by Lule et al. (2014) can be 

examined and compared. This method is based on the heat dissipation from a line source to 

characterise the ventilation rate. 

Research efforts should also go towards the design of the vent openings and related air guidance 

systems. They are primarily essential for the control of the airflow rate and possibly the airflow 

pattern. However, a well-designed vent might be able to reduce part of the turbulences caused by the 

vent’s borders, thus improving the homogeneity of the velocity profiles. A more homogenised profile 

could possibly be determined by less measurement locations. 

Additional to the knowledge of the velocity profiles and related airflow rates, the understanding of 

how these are linked to the internal airflow pattern is of much importance. As mentioned in the 

introduction, when an airflow pattern is properly guided, high airflow speeds over emitting surfaces 

could be avoided, reducing the release of NH3, whilst delivering an adequate indoor climate. Ideally 

the control of airflow rate and indoor airflow patterns should always go together. During experiments 

with different vent sizes, ultrasonic anemometers can be distributed inside the test facility to obtain 

information concerning airflow patterns. Especially cases where the side vents have different opening 

areas can be interesting as this is a much applied strategy in practice. Installing commercially available 

airflow valves or windscreens on the vents of the test facility could also be a possible research setup. 

However, the fixed relatively small size of the side vents could be an obstacle.  
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The test facility is also an ideal structure for the development and validation of CFD models, as the 

geometry is relatively simple and velocity profiles can be used as boundary conditions. A CFD model 

of the test facility and its immediate surroundings can be developed to gain insight in the different 

airflow patterns related to the airflow rate distributions through all vents. The model could be 

validated against measurements made in this thesis supplemented with measurements of the internal 

and external flows using 2D or 3D anemometers. The external flows are also of importance as these 

flows are responsible of negative pressures at the ridge which influences the flow pattern and rate. 

Also, as the maximum side vent size in the test facility is limited to 0.5m x 4.0m, a CFD model could 

be of use to simulate larger vent sizes and examine the effects on the airflow pattern. This might allow 

comparisons with the larger vents found in dairy farms. 

Knowledge of the airflow rate and especially the velocity profiles in the vents are of great value for 

emission rate measurements as the location of the outlets needs to be known at all times. All progress 

made, whether through a modelling approach or the development of an accurate direct measuring 

technique, is a step closer to reliable and accurate emission measurements. The relation between gas 

concentration profiles in the vents and the velocity profiles might not be directly proportional, 

especially with an incomplete mixing of the pollutant and the indoor air. Therefore, also for the gas 

concentration profiles a high measurement density could be recommended. In the test facility the 

release of pollutants can be simulated. Detailed measurements of gas concentrations throughout the 

room combined with an airflow rate or pattern measurement can give insight into the relations 

between gas concentration distribution and air velocity patterns and profiles. 
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