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Samenvatting vii

Samenvatting

De FDTD-methode wordt heden ten dage intensief gebruikt voor het oplossen van
de vergelijkingen van Maxwell voor een zeer gamma van toepassingen. De afkor-
ting ’FDTD’ staat voor ’Finite Difference Time Domein’, dus ’eindige verschillen
in het tijdsdomein’. De infinitesimale verschillen die opduiken in differentiaal-
operatoren omzetten in kleine, eindige verschillen is een intuïtieve techniek om
differentiaalvergelijkingen op te lossen. In de afgelopen 20 jaar werd veel aan-
dacht besteed aan het modelleren van golven in allerlei media. Het succes dat
de techniek kende maakte dat gaandeweg de complexiteit van de media waarin
het golfgedrag bekeken werd kon opgedreven worden. Door de grote nood aan
het doorgronden van golfverhittingsproblemen in experimentele fusiemachines
werd FDTD onder andere ook toegepast op gemagnetiseerde plasma’s. Verschil-
lende ’smaken’ van FDTD kwamen daarbij aan bod: recursieve convolutie, di-
recte integratie, de Z-transformatiemethode, de transmissielijnmatrixtechniek, de
opgedeelde-stap-methode, het volledig expliciet en volledig impliciet formuleren
van de vergelijkingen, en tenslotte de hybride methoden. Volledig expliciete me-
thodes zijn zeer intuïtief en makkelijk te implementeren maar vereisen het nemen
van zeer kleine tijdstappen om stabiliteit te garanderen. Volledig impliciete me-
thoden zijn daarentegen bewijsbaar stabiel maar vereisen complexere matrixma-
nipulaties. Gezien in dat licht lijken hybriede technieken een groot potentieel te
hebben: ze zijn stabiel als aan de relatief weinig beperkende Courant-voorwaarde
voldaan is, en ze vereisen bij elke tijdstap slechts het oplossen van een beperkt
aantal vergelijkingen. Het onderwerp van deze doctoraatsthesis is de ontwikke-
ling van een globaal FDTD-model dat toelaat golven (en meer in het bijzonder
golfkoppeling) te beschrijven in een koud, gemagnetiseerd plasma. Teneinde dat
model te kunnen bouwen werd eerst een algoritme opgesteld en uitgebreid getest.
Conform met de geometrie van een tokamak werd geopteerd de vergelijkingen te
beschrijven in cylindercoördinaten, waar bij de radiale richting fungeert als de
grote straal van de tokamak, en de polaire hoek toelaat de toroidale geometrie te
beschrijven. De poloïdale periodiciteit werd voorlopig buiten beschouwing gelaten
en vormt mogelijk het onderwerp van later werk. Het opgestelde model laat toe
golfvoortplanting in toroïdale geometrie te bestuderen; de hoek tussen het mag-
neetveld en de richting waarin de golf zich voortplant kan willekeurig gekozen
worden.

Niet enkel in fusiemachines is de relevante geometrie torusvormig: fluxbuizen in
de zonnecorona hebben dezelfde vorm. Het hier ontwikkelde model kan dus - zij
het in een drastisch ander frequentiegebied en voor karakteristieke lengten die be-
duidend groter zijn dan die van een laboratoriumopstelling - toegepast worden om
astrofysische plasma’s te helpen begrijpen. De volledige dynamiek van plasmagol-
ven vatten in een thesis is onbegonnen werk. Afbakenen van het doel was daarom
noodzakelijk. De focus in deze thesis ligt op de golfdynamica terwijl golfinter-
ferentie kunstmatig omzeild werd. Die interferentie is in belangrijke mate het
gevolg van het feit dat golven in een tokamak weerkaatsen op de metalen wanden
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die een Faraday-kooi vormen voor de elektromagnetische golven. Reflecties ver-
mijden gebeurt door kunstmatige wijze demping in te voeren. Een hoofdstuk van
de thesis wordt gewijd aan het ontwerpen van een dempingsschema dat enerzijds
toelaat ongewenste weerkaatsingen te vermijden maar dat anderzijds de fase en
amplitude van de golven in het gebied waar we de echte fysische oplossing willen
kennen niet aantast.

Een van de specificiteiten van golven in fusiemachines is dat alnaargelang van het
antenneontwerp verschillende soorten golven kunnen opgewekt worden in het
plasma. Bovendien zorgt het feit dat het magneetveld en de dichtheid intrinsiek
inhomogeen zijn er in een tokamak voor dat er zones in het plasma bestaan waar
de verschillende golfsoorten met mekaar koppelen en dat er zones zijn waar de
golven evanescent zijn. Met name tussen de antenne en het eigenlijke plasma
ligt er een evanescentiezone. En vlak bij de plaats waar de golven hun energie
overdragen aan het plasma is er een zone waar de beide types golfgedrag (koppe-
ling en evanescentie) gezamenlijk optreden. Hoewel een voldoende gesofistikeerd
model - buiten het bereik van deze thesis - nodig is om die energieoverdracht van
golven naar geladen deeltjes te beschrijven, ligt het beschrijven van de golfkoppe-
ling en de tunneling perfect binnen het toepassingsgebied van het hier beschreven
werk.

In deze thesis is de beschrijving van de diëlectrische respons vervat in de koud-
plasma diëlectrische tensor (voor het stuk dat over de dispersie handelt), of de
’vloeistof’-plasmastroom (voor de eigenlijke FDTD-toepassing). Zulke beschrij-
ving is voldoende accuraat om de belangrijkste aspecten van de golfdynamiek te
vatten. Voor een meer volledige beschrijving moet echter overgegaan worden op
een model dat het plasma niet als een vloeistof beschrijft maar als een distributie
van deeltjes, elk met een eigen snelheid. In het frequentiedomein zijn er uitdruk-
kingen voor de diëlectrische respons voorhanden die rekening houden met zulke
kinetische effecten. Binnen FDTD-domein is dat vooralsnog niet het geval. Een
niet onbelangrijk aspect van een computerberekening is een criterium dat bepaalt
wanneer de oplossing gevonden is. Zulke ’stopcriteria’ zijn belangrijk om de be-
rekening tijdig stop te zetten (het maken van grote aantallen kleine tijdstappen
vereist veel computertijd) maar ook om ze niet voortijdig te beëindigen wanneer
de oplossing onvoldoende geconvergeerd is. Een aantal golfkoppelingsvoorbeel-
den worden in deze thesis getoond.

Deze thesis bestaat uit 6 hoofdstukken. Hoofdstuk 1 geeft de nodige achtergrond
over het gebruikte fysisch model dat een ’koud gemagnetiseerd plasma’ beschrijft
en een introductie tot Maxwells vergelijkingen samen met de stroomvergelijking.
In hoofdstuk 2 komt de FDTD-techniek aan bod en worden een aantal eerder be-
reikte resultaten besproken teneinde de specifieke bijdrage van deze thesis beter te
kunnen plaatsen. Hoofdstuk 3 is één van de zwaartepunten van deze thesis: hier
wordt het ontwikkelde numeriek algoritme afgeleid en besproken. Een bespreking
van de aangewende randvoorwaarden is gereserveerd voor een van de delen van
het hoofdstuk 3, zie (3.4). In dit hoofdstuk ging ook speciale aandacht uit naar
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het ontwikkelen van criteria die toelaten na te gaan of een stationaire toestand be-
reikt is. Een ’stop’-criterium dient hoofdzakelijk - en dit voor een systeem waarin
de oplossing ’aangedreven’ wordt en dus steeds tijdafhankelijk blijft - onderscheid
te maken tussen een stationaire en een niet-stationaire toestand. De Poynting flux
wordt gebruikt om na te gaan of convergentie bereikt is (zie (3.5)). De afleiding
van de numerieke dispersie-uitdrukking die verbonden is met het numeriek FDTD
algoritme is het onderwerp van hoofdstuk 4. In het hoofdstuk 4 is ook verklaard
waarom het afgeleiden van de discrete dispersie relatie in een cylindrisch coördi-
naatstelsel niet vanzelfsprekend is en waarom deze analyse ook in een cartesiaans
coördinaten stelsel kan worden uitgevoerd. Ook de stabiliteitsanalyse van een
aantal speciale gevallen komt hier aan bod. Een bespreking van de nauwkeurig-
heid en de stabiliteit van het algoritme gebeurt in het hoofdstuk 5 samen met de
numerieke validatie van de code. Simulatieresultaten van de golfkoppeling wordt
bekeken in sectie (5.5). In hoofdstuk 6, tenslotte, worden de conclusies die in
dit thesiswerk bereikt werden opgesomd. De alternatieve methode om de discrete
dispersie relatie te bekomen is weergegeven in het addendum A.





Summary

The finite-difference time-domain method is widely used to obtain solutions of
Maxwell’s equations for a broad range of electromagnetic problems. Especially,
in the last two decades, the problems posed by modeling plasma waves have at-
tracted a great deal of attention. A lot of research efforts have been spent over
many years in order to improve the FDTD-methods to model wave propagation
in different types of media and in particular in magnetized plasma. These efforts
highlighted the potential of the convolution (RC) method, the direct-integration
(DI) method, the Z-transform method, the transmission line matrix method, the
split-step, the fully explicit, the fully implicit and the hybrid FDTD methods. Fully
explicit methods are straightforward and easy to implement but may suffer from
restrictive stability conditions. Fully implicit methods are provably uncondition-
ally stable but require computationally intensive matrix calculations. In this light,
hybrid methods seem an attractive option : they are stable at the relatively nonre-
strictive vacuum Courant limit (though to our knowledge no general-case proof of
this is known), and require only the solution of very small sets of equations every
time-step.

The objective of the work discussed in this dissertation is to develop a global FDTD
model including a magnetized cold plasma algorithm that accounts the effects of
the mode conversion. To generate this model, a three-dimensional cylindrical
magnetized cold plasma algorithm is developed and first validation results in 1D
and 2D have been obtained. This algorithm has the capacity to simulate wave
behaviour in cold plasma under the influence of an externally applied magnetic
field of arbitrary direction and magnitude.

Both in flux tubes of the solar corona and in fusion devices, the geometry is ba-
sically toroidal. In this work, wave propagation is studied adopting a toroidally
symmetrical configuration.

In order to compare computational results with theoretical predictions (focusing
on wave dynamics rather than wave interference), it is often convenient to sup-
press reflections of the waves at the edge of the simulation region. For this pur-
pose, an effective absorbing layer that acts like as an accurate and computationally
efficient damping condition is constructed.

Of special interest is the case of fusion plasma when the antennas can launch
different electromagnetic modes into the nonuniform plasma where they can tun-
nel through the evanescent layers or convert to the other modes. The plasma
density increases from a very low magnitude near the antenna and the chamber
conductive wall to very high on the magnetic axis. Usually the problems of the
wave propagation through such structures are solved in the frequency domain.
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The other approach is to apply the FDTD method to study the problems in fusion
plasma.

The FDTD hot plasma description requires the solution of the kinetic equations
instead of the current equations for plasma species. Constructing the current
equations from the plasma conductivity tensor is also always problematic since
the conductivity tensor is known only in the frequency domain.

The cold plasma approximation is adopted, which provides a fully local time-
domain description for the plasma currents. Curvature effects are included by
using the appropriate expression for the curl operator in cylindrical coordinates.
After having grasped the cold plasma wave dynamics and having tested the suit-
ability of the FDTD method, kinetic corrections can be incorporated to upgrade
the adopted model.

A special technique to terminate the simulations after the steady state is reached
is also developed in this work.

An example of mode conversion simulations is presented in this dissertation.

The dissertation consists of 6 chapters. Chapter (1) presents a background infor-
mation about the physics basis of plasma parameters and the electromagnetic cold
plasma waves, and a short introduction to the Maxwell’s equations together with
the current equation. The formulations of the basic Yee algorithm and the funda-
mentals of FDTD method and previous related numerical studies are described in
Chapter (2). Chapter (3) contains the detailed description of the developed nu-
merical algorithm together with its characteriscs. Namely, two types of boundary
conditions are developed in this code (see Section (3.4)): one models the power
source that launches the wave into the plasma and the second one is designed
to control the wave fields at the plasma edges. Besides boundary conditions, a
special techinique to terminate the numerical simulations when the steady state is
reached is also developed in this code. The calculation of the Poynting flux is used
as criteria to check whether the steady state is reached. The results of this study
can be found in Chapter (3.5).

The associated discretized dispersion relation is derived explicitely in Chapter (4),
and special-case stability proofs are given. Section (4.2) justifies on why a deriva-
tion of the discrete dispersion relation in the cylindrical system is not straigtfor-
ward and why this analysis still can be performed in Cartesian coordinate system.

Chapter (5) provides the description of the process and the results of the valida-
tion of the developed numerical code, i.e. the accuracy and stability analysis, the
comparison of the analytical and numerical solutions, the validation of the numer-
ical dispersion relations and its comparison to the theory. The curvature effects
are studied in Section (5.4). The results of the mode conversion simulations are
presented in Section (5.5).

Finally, Chapter (6) concludes the dissertation. In Appendix A the alternative way
to obtain the discrete dispersion relation is presented.
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Notations

ÆÆÆ

In this thesis the consistency of notations and definitions is respected. Tables
below summarize the symbolic conventions throughout the document. Some
symbols are used to denote different quantities, in which case the context and
dimensions should remove any ambiguity. Temporary use of symbols outside
or beyond these conventions, when required by calculations or reference to
original work, will be clearly indicated. The International System of units (SI)
is used in all formulas.

Mathematical symbols

j imaginary unit

∇ nabla operator

ℜ real part

ℑ imaginary part
|·| magnitude

x a vector

⊥ , ‖ components perpendicular and parallel to the confining
magnetic field

r, ϕ, ϑ radial, toroidal and poloidal components in tokamak ge-
ometry

Electromagnetic symbols

c speed of light [m/sec]
t time [sec]
ω frequency [rad/sec]
k wavenumber [rad/m]
λ wavelength [m]
ε0 electric permittivity [F/m]
µ0 magnetic permeability [H/m]
E electric field vector [V/m]
H magnetic field vector [A/m]
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D electric flux density [C/m2]
B magnetic flux density [T]
J electric current density [A/m2]

Plasma physics symbols

s index denotes any particle specie

e electron index

i ion index

ms mass of the specie [kg]
qs specie charge [C]
ns particle density [1/m3]
ϑs collision frequency [rad/sec]

Plasma parameters

ωps =
p

q2ns/ε0ms plasma frequency [rad/sec]

ωp =
Æ

ω2
pe +ω

2
pi total plasma frequency [rad/sec]

Ωcs = qsB/ms cyclotron frequency [rad/sec]
ωLH =
((ΩciΩce)−1 +
ω−2

pi )
−1/2

low hybrid frequency [rad/sec]

Special functions

Jn n-th order Bessel function of the first kind

Yn n-th order Bessel function of the second kind
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APPLICATION OF THE HYBRID EXPLICIT/IMPLICIT

FINITE-DIFFERENCE TIME-DOMAIN METHOD (FDTD) FOR

ELECTROMAGNETIC COMPUTATIONS IN COLD MAGNETIZED

TOROIDAL PLASMA





1
Introduction to cold plasmas

and electromagnetic wave
propagation therein

ÆÆÆ

Plasma is a special class of gas that includes a large number of electrons, ion-
ized atoms and molecules, on top of neutral atoms and molecules that are
present in a normal gas. Plasma is a many-particle ensemble and is character-
ized by its collective behaviour. The plasma medium is often referred to as the
fourth state of matter because it has properties profoundly different from those
of the gaseous, liquid and solid states. Plasma is generally a high-temperature
entity. However, a plasma is sometimes referred to as "cold plasma" if the
thermal motion of the electrons and ions is negligible.
The following section describes the important concepts of the electromagnetic
wave propagation in cold plasma.

1.1 The concept of plasma parameters

1.1.1 Particle density

Particle density is measured in particles per unit volume with ne representing the
electron density and ni representing the ion density. A plasma is quasi-neutral
when ne =< Z > ni , where < Z > is the average charge state of the ions.
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1.1.2 Plasma Frequency
Plasma frequency is the oscillation frequency of a charged particle species in a sim-
ple unmagnetized plasma when the charge distribution is locally pertubed from
its equilibrium. The plasma frequency is given by

ωpe =
p

q2ne/ε0me (1.1)

for electrons and

ωpi =
p

q2ni/ε0mi (1.2)

for ions. For a simple plasma consisting of electrons and one ion species, the total
plasma frequency is then given by

ωp =
Æ

ω2
pe +ω

2
pi (1.3)

which can be approximated by the electron plasma frequency ωpe for many cases
because of the large mass ratio of ions to electrons.

1.1.3 Cyclotron Frequency
The response of a charged particle to an applied magnetic field B is a spiral motion
around the magnetic line of force with a specific angular frequency referred to
as cyclotron frequency (also known as gyrofrequency). The raduis of the spiral
motion is called Larmor radius. The cyclotron frequency of a charged particle
species j is mathematically defined as ωc j = qiB/m j .

1.2 Overview of the electromagnetic wave
propagation in a cold plasma

1.2.1 Dispersion relation in a uniform cold plasma
The dispersion relation of the electromagnetic way can be found by solving the
wave equation, with the assumption that first-order quantities vary as ex p( j(k ·
r−ωt)) [1].

n× (n× E) +K · E= 0 (1.4)

where the index of refraction n is defined as

n=
c

ω
k (1.5)
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with k as a wave vector and the dielectric tensor is










S −iD 0

iD S 0

0 0 P











(1.6)

with P, S and D are defined as

P = 1−
∑

s

ω2
ps

ω2 , (1.7)

S =
R+ L

2
, (1.8)

and

D =
R− L

2
, (1.9)

where

R= 1−
∑

s

ω2
ps

ω(ω+Ωcs)
(1.10)

and

L = 1−
∑

s

ω2
ps

ω(ω−Ωcs)
. (1.11)

The letters P, S, D, R and L stand for the ’product’, ’sum’, ’difference’, ’right-hand’
and ’left-hand’, respectively. The R and L terms arise in a derivation based on
expressiong the fields in terms of rotating polarization. The second term of the R-
and L-terms is usually called a susceptibility term. For more detail, the reader is
referred to [1].

Since plasma is isotropic, the applied magnetic field can be expressed as B = Bz.
Defining θ as the angle between B and n and assuming that n is in the x−z plane,
the Equation ( 1.4) can be written in matrix form [1] as:











S− n2 cos2 θ −iD n2 cosθ sinθ

iD S − n2 0

n2 cosθ sinθ 0 P − n2 sin2 θ





















Ex

Ey

Ez











= 0 (1.12)

where Ex , Ey and Ez are the electric field components.
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The index s denotes the particle species. In order to have a nontrivial solution for
Equation (1.6), one requires that the determinants of the coefficients vanish. The
resulting equation is the dispersion equation.

This condition generates the biquadratic Equation (1.13):

An4 − Bn2 + C = 0 (1.13)

where

A= Ssin2θ + Pcos2θ , (1.14)

B = RLsin2θ + PS(1+ cos2θ) (1.15)

and

C = PRL (1.16)

The solution of Equation (1.13) may be written in terms of the angle θ as

tan2θ =−
P(n2 − R)(n2 − L)
(Sn2 − RL)(n2 − P)

(1.17)

The dispersion relations for propagation at θ = 0 and θ = π/2 are quickly ob-
tained from Equation (1.17). For θ = 0:

P = 0, n2 = R, n2 = L (1.18)

For θ = π/2

n2 =
RL

S
, n2 = P (1.19)

1.3 Cold plasma waves. Dispersion relations.
Plane waves in a cold plasma (one-specie plasma)

A special case of Equation (1.18), the (ω − k) dispersion relation of the plane
waves in a cold collisionless one-specie plasma has the form:

ω2 = k2c2 +ω2
p (1.20)

These waves propagate in any direction and in the absence of plasma (ω2
p ∝ n2→

0) the dispersion relation of these plasma waves takes the well-known form of that
of light waves:

ω= kc (1.21)

Fig.(1.1) is theω−k diagram for the plane waves in a cold homogeneous isotropic
plasma. This figure shows that plane waves propagate in a plasma only for fre-
quencies higher than the plasma frequency. In the vicinity of ω = ωp, the wave-
length becomes very large.
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Figure 1.1: Frequency versus wave number diagram for plane electromagnetic
waves in a cold collisionless plasma. For ω<ωp waves are evanescent.

1.3.1 Waves that propagate perpendicular to the
magnetic field in a cold magnetized plasma

In many magnetically confined plasmas, waves are launched in a direction per-
pendicular to the strong, confining magnetic field. The wave with its E vector
parallel to the magnetic field is called the ordinary wave, because the dispersion
relation is the same as if the magnetic field was zero. The wave with its E vector
perpendicular to the magnetic axis is called the extraordinary wave [2], [3].

To obtain the dispersion relation of the high-frequency waves propagating perpen-
dicular to the magnetic field, set θ = π/2 [1].

For the ordinary wave E||B0 the dispersion relation is (1.19)

k =±
ω

c

 

1−
ω2

p

ω2

!1/2

(1.22)

At high frequencies (ω >> ωp) this electromagnetic wave takes no notice of the
plasma, and k = ω/c. For the extraordinary wave E ⊥ B0 the dispersion relation
(1.19) takes the form:

k =±
1

c

�

(ω2 −ω2
1)(ω

2 −ω2
2)

ω2 −ω2
H

�1/2

(1.23)
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where ω1 and ω2 are the cutoff frequencies, i.e.

ω1 =
Ωce

2






−1+

 

1+
4ω2

p

Ω2
ce

!1/2





, (1.24)

ω2 =
Ωce

2






1+

 

1+
4ω2

p

Ω2
ce

!1/2





(1.25)

A resonance appearing in this extraordinary wave dispersion relation is at ω =
ωH , where ωH is an upper hybrid frequency and it is equal to

ωH =
�

ω2
p +ω

2
ce

�1/2
(1.26)

The frequency bands in which these waves exist and the velocities of these waves
are seen in Fig. (1.2).

Figure 1.2: Index of refraction n2 = k2c2/ω2 versus ω for the ordinary and ex-
traordinary waves.

At high frequency ω → kc for all the modes. The extraordinary mode has two
distinct frequency ranges, with a characteristic index of refraction:

ω>>ωH : n2 =
�

kc

ω

�2

= 1 (1.27)

ω≤ωH : n2 >> 1, (1.28)

and there are two bands ωH < ω < ω2 and ω < ω1 in which the wave doesn’t
propagate.
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Figure 1.3: Index of refraction n2 = k2c2/ω2 versus ω for the extraordinary
waves.

1.3.2 Fast and slow waves
The Equation (1.6) can be rewritten in terms of parallel and perpendicular com-
ponents of n. I.e., setting n|| = n cosθ and n⊥ = n sinθ the wave equation takes
the form:











S− n2
|| −iD n||n⊥

iD S− n2
|| + n2

⊥ 0

n||n⊥ 0 P − n2
⊥





















Ex

Ey

Ez











= 0 (1.29)

Analogously, if n|| is set by plasma parameters then it is possible to solve Equa-
tion (1.29) for a non-trivial solution for n⊥ by setting the determinant of the ma-
trix to zero.

For waves with ω << ωps, P >> n2 and the dispersion realtion can be simplified
to a 4th order algebraic equation with solutions such as

n2
⊥ =

(S− n2
||)

2 − D2

S− n2
||

(1.30)

n2
⊥ =

P(S− n2
||)

S
(1.31)

Generally, the mode described by solution (1.30) is classified as the fast wave
while (1.31) as the slow wave. The dispersion relationship of fast waves in the ion
cyclotron frequency range (1.30) may be also rewritten in the following form [3]:

n2
⊥ =

�

n2
|| − R

��

n2
|| − L

�

S− n2
||

(1.32)
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where R, L, S are 1.10, 1.11, 1.8, respectively. This solution indicates that there are
regions of two cut-offs defined by R = n2

|| and L = n2
|| and one resonance defined

by S = n2
|| respectively. This resonance referred as the Alfven resonance, implying

that the perpendicular wavenumber becomes infinite when the wave approaches
this region.

The concept of the ion cyclotron resonant heating was first suggested by Stix [1]
using the ion cyclotron mode. Frequency of this mode, referred as the ’slow wave’
is a little bit lower than the ion cyclotron frequency. For tokamak and other sys-
tems Stix has shown that only another branch of wave with frequency higher than
the ion cyclotron frequency can propagate into the central region of plasma, this
branch is referred as the fast wave [1], [4].

Here, the extraordinary and ordinary waves are actually the fast and the slow
wave, respectively, however, they work in the different ranges of frequency.

Below, a short introduction to the Maxwell’s equations and the Lorentz equation
of motion is given.

1.4 Maxwell’s Equations and the Current
Equation derived from the Lorentz
Equation of Motion

ÆÆÆ

In this section a short introduction to the Maxwell’s equations and the current
Equation derived from the Lorentz equation of motion which form the basis of
the FDTD method for simulations of electromagnetic wave interactions [5] is
presented.

1.4.1 Maxwell’s equations
Considering a source-free region containing materials that may absorb electric
energy, the time-dependent Maxwell’s equations are given in differential form as
follows:

Faraday’s Law:

∇× E=−∂ B/∂ t (1.33)

Ampere’s Law:

∇×H=−∂D/∂ t + J (1.34)
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Gauss’s Law for the electric field (charges are omitted):

∇ ·D= 0 (1.35)

Gauss’s Law for the magnetic field:

∇ ·B= 0 (1.36)

These equations relate E, H, D, B, and J, all of which are functions of the space
and time. For linear isotropic non-dispersive medium, electric flux density D is
related to E by constitutive relationship D = ε0E, B is related to magnetic field H
by B= µ0H. Substituting these three proportions into Equations (1.33) and (1.34)
and writing out components of the curl operator∇ in Cartesian coordinates yields
the following coupled scalar equations:

∂ Hx

∂ t
=

1

µ0

�

∂ Ey

∂ z
−
∂ Ez

∂ y

�

(1.37)

∂ H y

∂ t
=

1

µ0

�

∂ Ez

∂ x
−
∂ Ex

∂ z

�

(1.38)

∂ Hz

∂ t
=

1

µ0

�

∂ Ex

∂ y
−
∂ Ey

∂ x

�

(1.39)

∂ Ex

∂ t
=

1

ε0

�

∂ Hz

∂ y
−
∂ H y

∂ z
− Jsx

�

(1.40)

∂ Ey

∂ t
=

1

ε0

�

∂ Hx

∂ z
−
∂ Hz

∂ x
− Js y

�

(1.41)

∂ Ez

∂ t
=

1

ε0

�

∂ H y

∂ x
−
∂ Hx

∂ y
− Jsz

�

(1.42)

The above six coupled partial differential equations form the basis of the FDTD
method for simulations of electromagnetic wave interactions.
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1.4.2 Current equation
The equation of motion of a particle in electromagnetic field is given by the Lorentz
force law

F= qs(E+ v×B) (1.43)

The current equation derived from the Lorentz equation of motion has the follow-
ing form:

(
∂

∂ t
+ ϑs)Js = ε0ω

2
psE−ΩΩΩs × Js. (1.44)

As it is mentioned above, the set of Equations (1.33-1.34) and the Equation (1.44)
lay the groundwork for the upcoming FDTD approach for simulations of the
electro-magnetic waves.
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2
Introduction to the FDTD

method

ÆÆÆ

The finite-difference time-domain (FDTD) algorithm was originally proposed
by Kane Yee [1] in 1966 and was later named and further developed by Taflove
[2] and others for numerically solving Maxwell’s equations.
The FDTD algorithm is based on a central difference approximation of the
spatial and time derivations of Maxwell’s equations. The algorithm works by
dividing the solution space along a regular grid and calculating the electric
and magnetic field values at every location in the grid. The FDTD method is
a time marching algorithm in which the values of the electric field are based
on the values of the magnetic and the electric field at the previous time step
and vice versa. As time progresses in the algorithm, time varying fields are
propagated through the FDTD grid. In the FDTD algorithm the position of
the field values are staggered in both space and time due to the use of central
differences. Below Fig. 2.1 shows a standard Yee cell in which the distance
between any field value along a Cartesian plane is one half of the length of
the unit cell. The original FDTD technique directly discretized Ampere’s and
Faraday’s laws into a system of difference equations based on the electric field
(E) and the magnetic field (H). The FDTD method can be easily parallelized
and scaled on high performance computing systems. In the following chapter
the fundamentals of the FDTD method are briefly introduced.
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2.1 Formulations of the basic Yee algorithm

2.1.1 Yee mesh
To numerically discretize Maxwell’s equations (see Chapter 1.4), Yee defined an
orthogonal cubic lattice whose unit cell is illustrated in Fig. 2.1 to spatially allo-
cate the field components. For this allocation, each field component is sampled
and evaluated at a particular space position so that every E component is sur-
rounded by four circulating H components, and every H component is surrounded
by four circulating E components. This provides an elegant yet simple picture of
three-dimentional (3D) space being filled by interlinked arrays of Faraday’s and
Ampere’s law contours. The two Gauss’s law are also simultaneously satisfied by
this arrangement. Thus, it is possible to identify the E components linking with the
H loops and, correspondingly the H components linking with the E loops as shown
in Fig. 2.1. In the time domain, the H− and E− fields are obtained at time instant
delays by half the sampling time step. The time advancing algorithm is explicit
and can be easily adapted into computer programs to be solved numerically.

Figure 2.1: Orthogonal Yee cell.

2.1.2 Discretization of Maxwell’s Equations
Yee’s FDTD algorithm denotes any function f of space and time evaluated at a dis-
crete point as f (i∆x , j∆y, k∆z, n∆t) = f n

i, j,k, where∆t is the time increment and
∆x , ∆y and ∆z are the lattice step increments in the x , y and z coordinate direc-
tions, respectively. The indices i, j, k and n are all integers. Utilizing the spatial
gridding scheme defined in Fig. 2.1, Yee applied a second-order accurate central-
difference scheme to both the space and time derivatives of Equations (1.37-1.42)
based on Taylor’s series expansion. For example, the first partial time derivative
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∂ Ex

∂ t
of Equation (1.40) evaluated at (i, j+ 1/2, k+ 1/2, n) can be expressed as

∂ Ex |ni, j+1/2,k+1/2

∂ t
=

Ex |n+1/2
i, j+1/2,k+1/2 − Ex |n−1/2

i, j+1/2,k+1/2

∆t
+O

�

(∆t)2
� (2.1)

where the ±1/2 increment in the time-coordinate superscript n denotes a time
domain finite-difference over ±1/2∆t. Similarly, the first partial space derivative
∂ Hz

∂ z
and

∂ H y

∂ z
of Equation (1.40) evaluated at (i, j+1/2, k+1/2, n) can be expressed

as follows

∂ H y |ni, j+1/2,k+1/2

∂ z
=

H y |ni, j+1/2,k+1 −H y |ni, j+1/2,k

∆z
+O[(∆z)2] (2.2)

∂ Hz |ni, j+1/2,k+1/2

∂ y
=

Hz |ni, j+1,k+1/2 −Hz |ni, j,k+1/2

∆y
+O[(∆y)2] (2.3)

where the +1 increment in the space-coordinate superscript j and k denotes a
space domain finite-difference over ∆y and ∆z, respectively. The approximations
of the partial derivatives in Equations (2.1-2.2) are said to be of second order
accuracy. That means the second and higher order derivatives of the Taylor series,
which are usually not computed, are treated as a rounding error of the order
O[(∆t)2],O[(∆y)2] and O[(∆z)2], respectively.
The Ex values can be defined via the so-called semi-implicit approximation such
as

Ex |ni, j+1/2,k+1/2 =
Ex |n+1/2

i, j+1/2,k+1/2 + Ex |n−1/2
i, j+1/2,k+1/2

2
(2.4)

Next, using the approximations mentioned above the final explicit time-stepping
relation for Ex can be obtained.Similarly, the time-stepping equations for all other
field components Ey , Ex , Hx , H y and Hz can be obtained by analogous procedures.

2.1.3 Courant Condition
The choice of space and time increments for the FDTD algorithm can affect the
propagation characteristics of numerical waves in the FDTD lattice, and therefore
the numerical error and stability. To avoid numerical instability, the time step ∆t
is required to have a specific bound relative to the lattice space increments ∆x ,
∆y and ∆z in accordance with the Courant-Fredrich-Levy stability condition [2]
known as a Courant condition.

c∆t

s

1

∆x2 sin2
�

βx∆x

2

�

+
1

∆y2 sin2

�

βy∆y

2

�

+
1

∆z2 sin2
�

βz∆z

2

�

≤ 1

(2.5)
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The rigorous derivation procedure of the Courant condition is based on complex-
frequency analysis and can be found in [2]. According to this analysis, Equa-
tion (2.5) has to be hold to maintain the numerical solutions bounded in time,
where βx ,βy and βz are the wavevector components. Equation (2.5) can always
be satisfied if the Courant number C fulfills

C≡ c∆t

r

1

∆x2 +
1

∆y2 +
1

∆z2 ≤ 1 (2.6)

The Courant condition defining the upper bound of the time step ∆t can then be
derived as:

∆t ≤
1

c
q

1
∆x2 +

1
∆y2 +

1
∆z2

(2.7)

When ∆x = ∆y = ∆z = ∆, Equation (2.7) becomes ∆t ≤ ∆/(c
p

n), where n
is the dimension of the simulation domain. The Courant condition imposes an
upper limit to the time increment which is related to the space increments. En-
forcement of this upper bound on ∆t guarantees the stability of the numerical al-
gorithm. However, this condition can lead to small time increments for fine space
discretization problems causing a highly computer intensive problem in terms of
simulation time.

2.1.4 Cell-size Determination
In general, there are three key-points that have to be reached:
(1) the waves should be spatially well-resolved (which requires enough sampling
points per wavelength),
(2) the waves should be temporally well-resolved (enough points per period),
(3) the Courant stability should be satisfied.
The first and second points determine accuracy, the third one determines stability.

The cell size must be much less than the smallest wavelength involved in the
simulation. The number of points per wavelength is dependent on many factors.
However, an often required constraint is 10 cells per wavelength [2], [3]. Also, the
time step must be much smaller than the smallest period (highest frequency). But
on one side, in 1D vacuum FDTD, (3) follows from (1) and (2): if there are 10∆x
per wavelength (∆x = λ/10), and also 10∆t per period P (∆t = P/10 = 1/(10 ·
f ) = λ/(10·c)), the Courant condition is obeyed : ∆x/∆t = (λ/10)/(λ/(10·c)) =
c but in general, (3) imposes limits on ∆t above and beyond those demanded
by accuracy, which can greatly increase the number of program steps needed,
and which is why increasing the Courant limit (e.g. by using (partially) implicit
methods) is considered to be advantageous.
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2.2 Overview of existing FDTD methods for
cold plasma

Many different FDTD techniques have been employed in the past to simulate the
cold plasma medium such as the recursive convolution (RC) method [4], [5],
[6], [7], [8], the direct integration (DI) method [9], [10], [11], [12],[13], [14],
[15], the Z-transform method [16], [17], the transmission line matrix method
[18] and the fully implicit method [19] which will be analyzed below. Among
these many approaches the RC method and the DI method are the most widely
used techniques because of their ease of implementation. A systematic analysis of
these FDTD techniques has been detailed in [20] and [21].

The RC method utilizes the following property: the time-domain constitutive rela-
tion between displacement vector D and electric field E is given as a convolution
integral whose time domain susceptibility function is known. An iteration derived
from this time-domain convolution integral is then coupled with the difference
approximations of Maxwell’s equations to form the whole iteration set. For the RC
method, a general algorithm can be derived that allows efficient simulation of any
material with a complex electric permittivity that can be parameterized by means
of a proper rational function of frequency. The major shortcoming, however, is
that the accuracy can be influenced by using more or less exact algorithms for the
numerical integration involved, which results in a trade-off between accuracy and
computational efficiency. For studies requiring an extensive time interval to be
considered, the accumulation of errors may be too large [22].

The DI method is based on direct finite-difference approximations of the complete
field equations of the medium that consist of Maxwell’s equations coupled with
an auxiliary ordinary differential equation. Compared to the RC method, the DI
method needs no changes in the algorithm when modeling materials with different
permittivity functions, and the implementation is also much more straightforward.

2.2.1 DI methods for isotropic cold plasma

The theory describing EM wave propagation in cold plasma is known as magne-
toionic theory [23] that assumes zero thermal velocity for the charged species.
This is a good approximation as long as the thermal velocity is much less than
the phase velocity of waves in cold plasma [24]. The governing equations for a
source-free nonmagnetized cold plasma containing only electrons are shown as
Equations (2.8-2.10). In this equation set, the Maxwell’s Equations (2.8) and
(2.9) are coupled with the auxiliary Equation (2.10) that relates the current J and
the electric field E.

∇× E=−µ0
∂H

∂ t
(2.8)
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∇×H= ε0
∂ E

∂ t
+ J (2.9)

∂ J

∂ t
+ ϑJ= ε0ω

2
pE (2.10)

where ωp is the plasma frequency and ϑ is the collision frequency. To numer-
ically discretize Equations (2.8-2.10), many different leapfrog approximations
have been developed as detailed in [21] and [20]. The following section will
discuss the different requirements and simulation conditions for each of these de-
veloped techniques. For all of the methods listed below, J and E components
occupy the same spatial locations in the Yee grid. H and E components are inter-
leaved with a time-domain interval ∆t/2 and a space domain interval ∆/2.

Young’s method

In Young’s method [10], J and E components are interleaved with a time interval
∆t/2, which means that J and H are collocated in time domain. For this reason,
Young’s method is also referred to as an H − J collocated method. By central-
differencing the derivatives of Equations (2.8-2.10) and central-averaging the ϑJ
term of Equation (2.10), the resulting leapfrog approximations can be expressed
as

Hn+1/2 = Hn−1/2 −
∆t

µ0
∇× En (2.11)

ε0

�

En+1 − En

∆t

�

+ Jn+1/2 =∇×Hn+1/2 (2.12)

Jn+1/2 − Jn−1/2

∆t
+ ϑ

Jn+1/2 + Jn−1/2

2
= ε0ω

2
pEn (2.13)

Young’s method requires only one time level storage of each field component, and
uses significantly fewer multiplication and addition operations per time step than
the other methods mentioned above.

Nickisch and Franke’s Method

Different from Young’s method, the J and E components in Nickisch and Franke’s
method [9] are collocated in time domain. As a result, the current derivative term
∂ J/∂ t of Equation (2.10) is then central-differenced as (Jn+1 − Jn−1)/(2∆t). B
y central-averaging the J term of Equation (2.9), Equations (2.8-2.10) are then
discretized as
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Hn+1/2 = Hn−1/2 −
∆t

µ0
∇× En (2.14)

ε

�

En+1 − En

∆t

�

+

�

Jn+1 + Jn

2

�

=∇×Hn+1/2 (2.15)

Jn+1 − Jn−1

2∆t
+ ν · Jn = ε0ω

2
pEn (2.16)

Observed from Equations (2.15-2.16), the memory requirement of Nickisch and
Franke’s method is bigger than that of Young’s method since two-levels of J must
be stored now.

Cummer’s method

In Cummer’s method [20], the J and E components are collocated in both time
and space domain so it is referred to as E − J collocation method. Different from
Nickisch and Franke’s method, Equation (2.10) is now discretized at time step
n + 1/2 instead of n. By central-averaging the J terms of Equations (2.9) and
(2.10) and the E term of Equation (2.10), the resulting leapfrog approximations
of Equations (2.8-2.10) are

Hn+1/2 = Hn−1/2 −
∆t

µ0
∇× En (2.17)

ε0

�

En+1 − En

∆t

�

+

�

Jn+1 + Jn

2

�

=∇×Hn+1/2 (2.18)

Jn+1 − Jn

∆t
+ ϑ ·

Jn+1 + Jn

2
= ε0ω

2
p

�

En+1 + En

2

�

(2.19)

Cummer’s exponential fitting method

Notice that the analytical solution of Equation (2.10) varies as e−ϑt , indicating a
growth per time step factor of e−ϑ∆t . To provide a more accurate approximation,
Cummer [20] proposed a new discretization scheme shown as Equation (2.22) by
applying a one step exponential fitting to Equation (2.10). The approximations
of Equations (2.8) and (2.9) are kept the same as in Cummer’s method described
above. The resulting time stepping algorithm of Equations (2.8-2.10) can be writ-
ten as
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Hn+1/2 = Hn−1/2 −
∆t

µ
∇× En (2.20)

ε0

�

En+1 − En
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�

+

�

Jn+1 + Jn

2

�

=∇×Hn+1/2 (2.21)

Jn+1 = e−ϑ∆tJn +
ε0ω

2
p

ϑ2∆t

��

ϑ∆t + e−ϑ∆t
�

En+1 + (1− e−ϑ∆t − ϑ∆te−ϑ∆t)En
�

(2.22)

The homogeneous solution of the leapfrog approximation (2.22) has a growth
per time step factor of eϑ∆t so it is exponentially fitted to the auxiliary differential
Equation (2.10). For non-small ν∆t values, Cummer’s exponential fitting method
is considered as a more accurate numerical approach.

Smithe’s method

Simulations of dense plasma in the radiofrequency range are typically performed
in the frequency domain. This technique is well-suited for the study of linear heat-
ing and quasilinear evolution, but does not generalize well to the study of non-
linear phenomena. Conversely, a time-domain simulation in this range is difficult
because the time scale is long compared to the electron plasma wave period, and
in addition, the various cutoff and resonance behaviours within plasma leads to
the fact that any explicit finite-difference scheme would be numerically unstable.
To resolve this dilemma, explicit finite-difference Maxwell terms are maintained
but a carefully time-centered locally implicit method is introduced to treat the
plasma current, such that all linear plasma dispersion behaviour is reproduced at
the available temporal and spatial resolution. Smithe’s [25] algorithm requires
that the time step abides by the vacuum Courant condition, and may be described
as being explicit in vacuum wave propagation terms, and implicit in plasma wave
terms.

The complete update set of equations for the time-domain plasma turns out to be:

Explicit:

Bn+1/2 = Bn − (∆t/2)∇F D ×M t ranspose · En (2.23)

Implicit:
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Implicit:

En+1 = En −
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c2∆t
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∇F D ×Bn+1/2
i (2.25)

Explicit:

Bn+1 = Bn+1/2 − (∆t/2)∇F D ×M t ranspose · En+1 (2.26)

where ∇F D× refers to the finite-difference curl operations, B are the Yee-cell mag-
netic field components localized to the faces of the unit cell, and provision has
been made for future use of the usual half time step Yee-cell edge-component par-
ticle currents, Jn+1/2

p . Here, Jp is set to zero. Since the fields E and Js are localized
at the nodes of a Yee-cell, it is necessary to map the two Yee-edge fields to the com-
mon node with a mapping M to be able to apply the other vector update equations
[25].

The method of Smithe is applied in this work and the study on the application of
this method to a magnetized toroidal plasma is discussed in Chapter 3.

2.2.2 Tierens’ method
If Smithe solves the set of equations (2.23-2.26) in an explicit/implicit way by
repeatedly interpolating from Yee-cell positions to collocated positions and back,
then a fully implicit time-domain approach which is unconditionally stable such
that the space and the time step can be chosen independently is developed by
Tierens.

To give a particular example, a plasma wave beach, which is a slab configuration
in which the density increases monotonically, simulation would be very difficult
for Young’s method, because ∆t would have to resolve the very large plasma
frequency. Smithe’s method and Tieren’s method can do plasma wave beaches
easily, because the plasma frequency does not influence their Courant condition.
Both Smithe’s method and Young’s method have trouble with phenomena whose
wavelength is much smaller than c/ f , because those force them to use a∆t which
is much smaller than the period, and thus they need prohibitively many time steps
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just to do a few periods. Tieren’s method, on the other hand, has no problem with
that either because you can just set ∆t to whatever fraction of the period you
prefer.

A more detailed explanation can be found in [19].

2.2.3 Analysis of the existing FDTD methods

Method Courant condition

Young’s method ∆t < 1
Ç

c2

∆x2 +
ω2

p
4

Nickisch and Franke’s method ∆t < 1
Ç

c2

∆x2 +
ω2

p
4

Cummer’s method ∆t < ∆x
c

Cummer’s Exponential Fitting method ∆t < ∆x
c

Smithe’s method ∆t < ∆x
c

Tierens’ method ∞ (implicit)

Table 2.1: Maximum numerical stability factors for different FDTD methods [20],
[21], [25].

An important property of a numerical technique is its stability. For a stable algo-
rithm, an error, whatever its cause, does not grow exponentially during the itera-
tion, meaning that the solution changes by only a small amount for each time step.
To the contrary, if a method is unstable, any small error generated during the itera-
tion will grow to be a much larger error and it will overwhelm the desired solution.
This will cause the algorithm to produce unrepresentable numbers (NaN) instead
of real values. In other words, it should be noted that the Courant condition is not
the condition under which the simulation approximates physics acceptably, it is
the condition under which the simulation is stable. In time-domain, one typically
takes stability to be a necessary condition (but not a sufficient one) for approxi-
mating physics, because instability implies the existence of exponentially-growing
modes which are not physical. Accuracy is then obtained by choosing the space
and time step small enough. The advantage of having a large Courant number is
that it allows to choose the space and time steps independently, one purely based
on the expected wavelengths, and one purely based on the expected periods. It
does not mean that the arbitrarily large time steps can be taken- the arbitrarily
large time steps can be taken without losing stability, but not without losing ac-
curacy. Also it has to be mentioned that the discrete time-stepping operator in
Tieren’s method, as in all stable methods, has eigenvalues on the unit circle. The
eigenvalues of the corresponding true continuous time-stepping operator are also
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on the unit circle, but they have different arguments /"phases". And modifying
the time step does move the eigenvalues along the unit circle, and making the
time step too large will change the phases such that they no longer resemble the
true physical phases. Depending on the method this may happen before or after
stability is broken.

Table 2.1 summarizes the numerical stability properties of these methods in terms
of their maximum Courant limits (defined as c∆t/∆x).

For Young’s method, the maximum Courant number to keep the algorithm stable
is
p

1− (ωp∆t/2)2 for zero collision frequency. Cummer has proven through
numerical stability analysis that this Courant number is also valid for ϑ∆t 6= 0.
Notice that, the maximum Courant number depends on the plasma frequency.
This can result in an extremely small time step to ensure the stability of the whole
system.

For Nickisch and Franke’s method, the maximum Courant number to keep the
algorithm stable is

p

1− (ωp∆t/2)2 as well for zero collision frequency. However,
this method will become unconditionally unstable if ϑ∆t 6= 0, and the instability
becomes more severe with increasing non-zero ϑ∆t values.

The maximum Courant number for both Cummer’s and exponential fitting method
is one for all of the possible collision frequencies. This unity Courant number does
not depend on the plasma properties (ωp and ϑ) and remains the same as for free
space.

The second important property of a numerical technique is its accuracy. The errors
produced in a particular algorithm depend on many issues such as the discretiza-
tion of the derivatives. According to the dispersion analyses of [20], Young’s
method is the most accurate algorithm for lowloss plasma (ϑ∆t << 1) among
the aforementioned schemes. The accuracy property of Nickisch and Franke’s
method is identical to Young’s method for lossless plasma (ϑ = 0). However, as
mentioned earlier, it becomes unconditionally unstable of ϑ 6= 0. For a low-loss
plasma, Cummer’s method is the most accurate one.

In this dissertation, Smithe’s technique is chosen as the discretization scheme to
develop our 3D cold magnetized plasma algorithm.
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3
3D Numerical Cold Plasma

Algorithm and Its
Characteristics

ÆÆÆ

A three-dimensional hybrid explicit/implicit finite-difference time-domain
(FDTD) numerical technique is proposed herein to simulate the elec-
tromagnetic (EM) wave propagation in a cold magnetized homoge-
neous/inhomogeneous (tokamak) plasma for an applied magnetic field. The
3D numerical code is built using a cylindrical coordinate system, and it can
be applied for tokamak configurations. It is based on Maxwell’s equations
and the current equation for plasma species (the equation of motion). The
hybrid explicit/implicit FDTD method is implemented. As is done classically
for FDTD schemes, Faraday’s law is solved here explicitly like in the classical
FDTD scheme, while the Ampere’s law is chosen to be solved implicitly.

3.1 Hybrid FDTD scheme
The cold plasma governing equations are expressed in terms of Maxwell’s equa-
tions coupled with current equations derived from the Lorentz equation of motion.
The resulting governing equation set in a time-domain is given in subsection 1.4
and by the set of Equations (1.33- 1.34) and the Equation (1.44).

Notice that the cyclotron frequency is a function of the applied magnetic field.
Thus, the cross-product terms in (1.44) make the plasma anisotropic so that the
wave behaviour depends on its propagation direction relative to the direction of
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the applied magnetic field. This makes the whole system challenging to imple-
ment. Equation (1.44) contains a collision frequency term ϑs which describes the
power dissipation of the plasma currents due to the collision processes between
the plasma particles.

In cylindrical coordinates the governing differential set of equations is expanded
into the following set of scalar expressions:
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r

∂ Ez

∂ ϕ
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The components of electric and magnetic fields and plasma currents are tightly
coupled through Equations (3.1 - 3.9), which increases the numerical complexity
of this algorithm. As a result, the plasma current terms cannot be explicitly elimi-
nated from the equation system (3.1 - 3.9). Spatial- and temporal-average values
of some of the field variables are therefore required for the algorithm implemen-
tation.
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3.2 Hybrid FDTD Discretization Scheme
Time Discretization

We now introduce a finite- difference discretization of (1.33-1.34) and 1.44, and
following Yee’s notation [1], we denote a mesh point as (i, j, k) = (i∆, j∆, k∆),
where ∆ = ∆r,∆z is the space increment and ∆ = ∆φ is the angular incre-
ment in the cylindrical coordinate system, and any function of space and time as
F n(i, j, k) = F(i∆, j∆, k∆, n∆t), where ∆t is the time increment. By positioning
the field components of E,H,J on the mesh the way it will be described below, we
evaluate the E-field and the current density J-field at integer time steps while the
H-field is defined at half-integer time steps [2]. By central averaging the J terms
of Equation (1.34) and Equation (1.44) and the E term of Equation (1.44), the
resulting approximations of Equation (1.33) - (1.34) and 1.44 are:
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Space Discretization

In the following subsection, the set of scalar Equations (3.1-3.9) is applied to the
FDTD mesh. The modified Yee-cell describing the spatial positioning of the E, H,
and Js field-components is shown in Fig. 3.1. The components Hr , Hϕ, Hz of the
magnetic field H are localized at the center of the edges of the Yee-cell, as is typical
in FDTD. The method proposed here initially locates the Jr , Jϕ, and Jz components
at the same positions as the Er , Eϕ, and Ez components, i.e. together at the center
of the Yee-cell as in [2]. This simplifies the calculation of the cross product in
Equation (1.44) while adding extra complexity to the calculation of the curl in
Equation (1.33). Spatial averaging is required to calculate the central-difference
derivatives. For example, to update the H- field components, four neighbouring
field values of E should be averaged in order to find the field value at the centers
of the faces of the Yee-cell. Thus, in order to interpolate the (∇× E), the twelve
field values (four neighbouring values for each of the component) surrounding
the desired position are then used to evaluate the corresponding derivative at that
point. Unlike Equation (3.10) (which is initially explicit), the set (3.11) - (3.12)
is implicit. In order to obtain explicit expressions, the term Jn+1 is defined from
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Figure 3.1: Modified Yee-cell for spatial positioning of the fields components. The
components Hr , Hϕ, Hz of the magnetic field H are localized at the center of the
edges of the Yee-cell. The Jr , Jϕ, Jz and Er , Eϕ, Ez components are collocated.

(3.12) and substituted in (3.11), which yields all field components of E at time
step (n+ 1) on the left side of (3.13) and all other values calculated at previous
time steps on the right- hand side of (3.13). As such, Equation (3.13) becomes
suitable for the FDTD implementation.
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Using (3.13), the set of equations is completed with:
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where I is a unit matrix [3], [4].

3.3 Characteristics of the Developed
Numerical Code

3.4 Boundary Conditions

ÆÆÆ

In this Section the description of the necessary boundary conditions for the
computational domain is given. The boundary conditions were developed to
describe two important phenomena. First, one has to model the power source
that launches the wave into the plasma. Second one has to model the wave
fields at the plasma edges.
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3.4.1 Description of the boundary conditions
As a power source we use a so-called hard source [5] or a "point" source, which in
our cylindrical case is really an infinitely thin cylindrical surface along the toroidal
direction carrying a constant amplitude current with sinusoidal time-dependence
at a particular frequency ω. It is switched on at t = 0 and flows until regime
conditions are met. In more detail, the wave electric field is defined at a surface
ra − Ncel ls = const which models, as is mentioned above, the Radio Frequency
(RF) antenna or a power source condition (PSC) in the tokamak. Here, Ncel ls is
the number of cells. Among the waves that are possibly excited by the hard source
we choose to investigate only the wave mode that is used for plasma heating in
the tokamak, i.e. only the mode that propagates towards the cylindrical axis.

In the presented study, the RF antenna is unrestricted in ϕ− and z-directions to
exclude the antenna edge effects on the wave propagation. The external confining
magnetic field (uniform or nonuniform) is oriented along the ϕ-direction. The or-
dinary wave (the electric field is parallel to the external magnetic field) is launched
by the PSC Eϕ = E0 sin(ωt). The extraordinary wave (the electric field is perpen-
dicular to the external magnetic field) is launched by the PSC Ez = E0 sin(ωt).
Plasma media occupies the space of [rb, ra] in the r- direction, where ra − rb is
the width of the plasma column.

One of the applied types of the boundary conditions is the Perfect Electric Conduc-
tor (PEC). Thus, the wave reaching the surface rb = const is reflected completely
back to the antenna. Since at ra = const, the PSC plays the role of PEC for the
reflected waves, and we expect a process of multireflection between the surfaces
ra = const and rb = const. We would like to note that the multireflection process
might evoke the unrestrained growth of the electromagnetic field amplitude and
under these circumstances the steady state condition cannot be reached. However,
including the collision frequency term ϑs (Equation (1.44)) will cause wave dissi-
pation which allows the steady state to be reached. The magnitude of the collision
frequency term defines the time needed to reach the steady state. Note, that there
is a restriction on the collision frequency term value. It has to be large enough
to minimize the wave reflection from the boundary rb back to the antenna. In
Section 3.4.2 such estimations of the collisional term values will be given.

A general frame of the simulation structure is illustrated in Fig. 3.2 together with
the direction of the wave propagation and the location of the antenna.

3.4.2 Collision Frequency Term Effect
Here, the approximate analysis will be carried out to estimate the effect of the
collision frequency term in Equation (1.44). In order to simplify the estimation
the analysis will be done in a Cartesian coordinate system.

The fast wave propagates to the boundary x = xb according to the law Ey(x) =
E0ex p( jkx x), where E0 is the wave amplitude defined by the antenna and kx is
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Figure 3.2: Illustration of the simulation structure. 1D case. Perfect electric con-
ductor is used as a boundary condition. The power source is located close to the
right edge of the simulation domain. The direction of the wave propagation is
indicated in Fig. 3.2. The damping boundary condition indicated as an "absorbing
area" is set at the distance that would allow to provide the effective damping of
the wave. The collision frequency term that influences the process of damping is
ϑs =ω/100. The background magnetic field is 3 T.

the x-component of the FW wave vector which is defined by the FW dispersion
relation [6]. Reaching the boundary x = xb the FW is partially reflected with
coefficient R and partially transmitted with coefficient T . Hence, the wave field in
the range [xb, xa] is defined as Ey(x) = E0(ex p( jkx x)+Rex p(− jkx x)). The wave
field behind the boundary x = xb is defined by Ey(x) = E0Tex p( jk

′

x x), where k
′

x
stands for the FW wave vector in a plasma media with collisions. The well-known
relation between the electric and magnetic fields of the FW is ∂ Hz

∂ t
= − ∂ Ey

∂ x
(the

problem is uniform along the y direction). Since the tangential components of the
electromagnetic field have to be continues at the boundary x = xb it provides two
equations:

1+ R= T, (3.19)

kx(1− R) = k
′

x T. (3.20)

These equations can be resolved for the transmission R and reflection T coeffi-
cients, respectively:

T =
2

1+ k′x/kx
, (3.21)
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R= T − 1. (3.22)

Since the time-averaged Poyting flux for plane waves is proportional to the square
of the wave field amplitudes, the coefficient of the power transfer through the
boundary is equal to |T |2 and the coefficient of power reflection from the boundary
is 1− |T |2. In Fig. 3.3 the power reflection coefficient is calculated in a Cartesian
coordinate system. It is compared with the penetration depth of the FW behind
the boundary x = rb (it is defined from Im(k

′

x)). The power reflection does not
even reach 7% when the collisional frequency is equal to the antenna frequency.
However, the wave penetration depth in this case is only 0.0641 (m) which does
prevent the wave to reach the axis. The analysis shows that even ϑs = 0.1ω
with a power reflection of 0.1% is already enough for efficient damping of the
electromagnetic wave.

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

ν/ω

W
av

e
P
en

et
ra

ti
on

D
ep

th
(c

m
)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

P
ow

er
R

efl
ec

ti
on

C
o
effi

ci
en

t

Figure 3.3: The dependence of the absolute value of the reflection coefficient R on
the normalized value of the collisional frequency. The power reflection coefficient
(green solid line) is compared to the wave penetration depth in cm (black solid
line). It can be seen that even with the collision frequency term νs equal to 0.1ω
the efficient damping of the electromagnetic wave is guaranteed.

Selection of the collision frequency term

As is mentioned above, a collision frequency term can be also used as an artificial
cause of the damping of the wave and as a result the inclusion of the collision
frequency term builds some sort of damping boundary condition. Therefore, it is
interesting to analyse which value of the collision frequency term can be chosen
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and how strong it damps the electromagnetic wave before it reaches the PEC. In
Fig. 3.4 a sample of the propagation of the z-component of the electromagnetic
wave is presented. The simulations are performed in homogeneous magnetized
plasma with plasma density of ne = nDE = 3 · 1019 (1/m3) and background mag-
netic field of 3 T. The set of collision frequency terms is included in simulations in
the form of Const ·ω where the source frequencyω is equal to 2.8·109 (rad/sec).
On purpose, the length of the simulation domain is chosen to be rather long, i.e.
16m. In Fig. 3.4 the most effective damping is observed when Const = 1.9. The
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Figure 3.4: The effectiveness of the damping due to the chosen value of the colli-
sion frequency term.

other technique to choose the collision frequency term is based on the analysis
of the imaginary part of the wavenumber k. Fig. 3.5 shows how Im(k) depends
on the collision frequency term. It can be seen that the peak of the collision fre-
quency term is at about 1010 (1/sec) independent from the initially chosen value.
In Section 3.4.2 the collision frequency term is introduced as a part of the artificial
damping boundary condition.
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Figure 3.5: How to choose the value of the collision frequency term.

3.5 Steady State Criteria

ÆÆÆ

An important issue in a simulation is a stopping criterion. The stopping crite-
rion has to cover mainly the transition from the unsteady to the steady state.
After the steady state there is no need to continue evaluating the variables at
new time steps. In this CSection the Poynting flux is introduced as a criterion
to terminate the simulation when the steady state is reached.

3.5.1 Poynting Flux. Averaged Energy Flux.

Here, the derivation of the Poynting flux is introduced in the FDTD simulation in
plasma media. The calculation of the Poynting flux is used as a criterion to check
whether the steady state is reached. For the wave propagation through the plasma
column the steady state is reached when the averaged flux in front of the antenna
becomes equal to the outgoing flux on the opposite side of the plasma column.
The equality of the fluxes is used as an internal criterion to terminate calculations
and to optimize the computational time.

The developed numerical technique can be described in the following way. The
flux of the Poynting vector S (3.23) given by the vector product of an electric field
(E) and a magnetic field H represents the flow of energy through a surface. Its



3.5. Steady State Criteria 39

direction is that of the flow, and its magnitude is the intensity.

S= E×H (3.23)

In order to find the components of the Poynting vector, the components Hr , Hϕ, Hz
of the magnetic field H should be interpolated at the location of the components
of the electric field E and currents Js. Here, Equation 3.24 provides a sample of
the calculation of the r-component of the Poynting vector.

Sr = Eϕ|n+1/2
i+1/2, j+1/2,k+1/2H̃z |n+1/2

i+1/2, j+1/2,k+1/2

− Ez |n+1/2
i+1/2, j+1/2,k+1/2H̃ϕ|n+1/2

i+1/2, j+1/2,k+1/2

(3.24)

The ϕ− and z− components of the Poynting vector are calculated in the same
way.

The divergence of the Poynting vector in the cylindrical coordinate system is de-
fined as:

∇ · S=
1

i∆r

 

i∆r

 

Sr |ni+1/2, j,k − Sr |ni−1/2, j,k

∆r

!!

+
1

i∆r

 

i∆r

 

Sϕ|ni, j+1/2,k − Sϕ|ni, j−1/2,k

∆ϕ

!!

+

 

Sz |ni, j,k+1/2 − Sz |ni, j,k−1/2

∆z

!

(3.25)

First, we choose to investigate the fast wave in an one-dimentional (1D) Carte-
sian coordinate system. Since the space is uniform in y− and z− directions, the
expression of the Poynting flux takes the form:

Sx = Ey Hz (3.26)

For this numerical simulation the following initial parameters have been chosen:
the one-ion (HD) plasma is homogeneous with a density of 3 · 1019 (1/m3). The
background magnetic field is inhomogeneous and it decreases as 1/R with 3 Tesla
at 3 m. The fast wave is excited by the antenna that is located at a distance of 4
m at a frequency 2 · 108 (rad/sec).

It has to be noted that the configuration of the simulation is chosen in such a way
that the ion-cyclotron resonance would appear on the radial axis. At the high field
side (HFS) the absorbing boundary condition is applied in order to damp a wave
in a couple of wave periods. The result of the performed analysis is presented
in Fig. 3.6. The blue line shows the behaviour of the averaged Poynting flux
calculated near the antenna. The red line presents the averaged Poynting flux at
the HFS. It can be seen that the steady state is reached at approximately 1.6 ·10−7
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Figure 3.6: Time-averaged energy flux versus time.
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Figure 3.7: Comparison of the time-averaged energy fluxes in Cartesian and cylin-
drical coordinate systems.

(sec) when the averaged flux on one side of the simulation area becomes equal to
the averaged flux on the other side.

Since the described above analysis is performed in the Cartesian coordinate sys-
tem, the analogous approach is applied to calculate the averaged Poynting flux in
the cylindrical geometry. The initial parameters of the performed simulation stay
the same. In Fig. 3.7 the averaged Poynting flux is compared to the one calculated
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in the cylindrical coordinate system. The green and blue lines show the compar-
ison between the averaged Poynting fluxes at LFS (near antenna) in a Cartesian
and cylindrical geometry, respectively. The black and red solid lines represent the
averaged Poynting flux at HFS in Cartesian and cylindrical coordinate systems,
respectively.

The results of the performed numerical test presented above show that the de-
veloped technique to recognize the steady state and therefore to terminate the
simulation can be applied in both Cartesian and cylindrical coordinate systems.
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4
Derivation of the full discrete

dispersion relation

ÆÆÆ

The fully discretized dispersion relation is given in this Chapter. The behaviour
of the dispersion relation for a number of specific scenarios is studied.

4.1 Derivation of the full discrete dispersion
relation

In a uniform medium the eigensolutions of Maxwell’s equations are complex ex-
ponentials with a wavevector k and an (angular) frequency ω. Real sources do
not excite just a single frequency, nor just a single wavevector, but nonetheless the
understanding of the general-case behaviour of EM fields in the medium in terms
of just these simple eigensolutions (a situation which is conveniently analogous to
the well-known Fourier series) can be reached. For this reason the behaviour of
the electromagnetic fields is often specified through its dispersion relation : how
the wavevector k relates to the frequencyω. In order to understand the behaviour
and applicability of computational models, it is needed to understand how this dis-
persion relation is affected : how does the discrete dispersion relation differ from
the continuous one? To this end, it is proceeded much as it would be done in
the continuous case and a complex exponential ersatz (4.1) is inserted into the
discrete update equations (1.33-1.34) and (1.44):

E, H, Js = ex p(kr r + nϕ+ kzz−ωt) (4.1)
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where kr , kz are the r, z components of the numerical wavevector and r is a radial
coordinate. Substituting the wave expression of (4.1) into the finite-difference set
of equations of (1.33-1.34) and (1.44) yields, after simplification, the following
set of equations:
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The solution may be found if the determinant (D) of (4.2-4.10) is set to zero.
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Assuming r is sufficiently large, i.e. the studied region is far from the cylindrical
axis where the limiting case of the Cartesian coordinate system is still valid, the r-
dependent terms of D become negligible and the discrete dispersion relation may
be obtained under a specific condition (4.33) with n equal to 0.
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, (4.33)

which means that for sufficiently small ∆r, if the wavelength is significantly
shorter than the distance from the point of consideration to the cylindrical axis, i.e
kr >> 1/r (where r is a distance from the point of consideration to the cylindrical
axis), the cylindrical dispersion relation approximates the cartesian one.

ÆÆÆ

To support the choice of the coordinate system in the mathematical analysis,
below, the comparison of the analytical dispersion relations in Cartesian and
cylindrical coordinate systems is performed.

In the 1D cylindrical coordinate system where space in φ- and z- direction is
chosen to be uniform, the analytical expression of the dispersion relation of the
fast wave is the following:
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To carry out this analytical analysis the following test case was chosen: the disper-
sion relation of the fast wave in homogeneous collisionless plasma is investigated.
The density of plasma (ne = nHD) is 3 · 1019 1/m3. The background magnetic
field is homogeneous and it is equal to 3 T. The source frequency ω is 2.87 · 108

rad/sec.

Fig. 4.1 shows the result of the performed analysis. As it can be observed, the cur-
vature effects appear at a radius of the order of the wavelength. In this particular
case, the wavelength λ is equal to 0.0026 m. Coming back to the discretization of
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Figure 4.1: Comparison of the analytical dispersion relation in the cylindrical and
Cartesian coordinate systems. The curvature effects appear at a radius (0.2 m) of
the order of the wavelength. In this particular case, the wavelength λ is equal to
0.0026 m. The blue dashed lines show the two roots of the dispertion relation in
the Cartesian coordinate system. The black, red and green solid lines are the roots
of the dispersion relation in cylindrical coordinates.

the Maxwell’s equations, the expression for the 3D discrete dispersion relation is:
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To simplify the equation, the following notations are used:
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To validate the obtained discrete dispersion relation, a number of specific scenar-
ios is studied below.

4.1.1 Vacuum case
For a vacuum, when the plasma density is zero, the discrete dispersion relation
(4.37) becomes:
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Ensuring that the problem is well-resolved (∆r, r∆ϕ, ∆z << λ) and using the
Taylor series expansion of the sine and cosine for a small parameter, a1, a2, a3 are
1 to first order, and we obtain the vacuum dispersion relation:

k2
r + (

n

r
)2 + k2

z ≡ k2 =
ω2

c2 . (4.40)

Demanding that real k always map to real ω leads to the Courant condition:

c∆t <
1

q

( 1
∆r )

2 + ( 1
r∆ϕ )

2 + ( 1
∆z )

2
. (4.41)

Equation (4.40) is the well-known dispersion relation for electromagnetic waves
in vacuum, when the frequency is proportional to the wavenumber [1], [2].

4.1.2 Nonmagnetized plasma
In the absence of a background magnetic field, the term in ε1 in equation (4.37)
becomes equal to the term in ε3, and the term in ε2 is zero. The full discrete
dispersion relation (4.37) reduces to:
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1a2
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3) + a2
2(b

2
1 + b2
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3(b

2
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2)
�

ε2
3 b2

4

+ε3
3 b4

4 = 0.

(4.42)

Neglecting the higher order terms of the Taylor series expansion, the nonmagne-
tized plasma dispersion relation (4.42) becomes

k̃2 = ε3 b2
4. (4.43)

If the collisional frequency term is neglected, ω̃ becomes equal to ω∗ and ε3 takes
the form

ε3 = 1−
�∆t

2

�2
cot2

�ω∆t

2

�
∑

s

ω2
ps. (4.44)
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Now Equation (4.43) can be solved for sin(ω∆t/2):

k̃2 =
�

2

c∆t

�2

sin2(ω
∆t

2
)−

1

c2 cos2(ω
∆t

2
)
∑

s

ω2
ps. (4.45)

Here, only the terms of the first order of the Taylor series expansion are retained,
and we obtain the slow wave dispersion relation [2]:

k2 =
ω2

c2

 

1−
∑

s

ω2
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ω2

!

= ε3
ω2

c2 . (4.46)

The stability condition in case of non-magnetized plasma can be found in the
following way. The dispersion relation (4.45) can be rewritten as

[( 2
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))2 sin2(kr
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2
+ ( 2

r∆ϕ
)2 sin2(n∆ϕ
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2
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(4.47)

After cos2(ω∆t/2) is replaced by 1 − sin2(ω∆t/2) the Equation (4.47) can be
simplified to

[( 2
∆r
))2 sin2(kr

∆r
2
+ ( 2

r∆ϕ
)2 sin2(n∆ϕ

2
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)2 +
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ω2
ps]−

∑

ω2
ps

(4.48)

The range of the values on the left-hand side of the Equation (4.48) must be
constrained within the range of the values that the right-hand side of the Equa-
tion (4.48) can take, hence

2c2[(
1

∆r
)2 + (

1

r∆ϕ
)2(

1

∆z
)2]< (

2

∆t
)2 (4.49)

Analysis of the Equation (4.49) shows that the Courant condition for a nonmag-
netized plasma is completely equivalent to the vacuum Courant condition (4.41).

4.1.3 Magnetized plasma

3D

Equation 4.37 represents the general form of the numerical dispersion relation in
the full three-dimensional case.
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2D and 1D dispersion relations

Neglecting the terms of second order of the Taylor series expansion in the grid
step, Equation (4.37) becomes:
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�

b4
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(4.50)

When the problem is uniform along the z- direction (b3 = 0), the magnetized
dispersion relation (4.50) becomes:
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(4.51)

When the problem is uniform along z- and ϕ− directions b2 = b3 = 0 and the
wave is transverse, Equation (4.51) can be further simplified to:

ε1k̃4 −
�

ε1ε3 + (ε2
1 − ε

2
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2
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�
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(4.52)

Equation (4.52) gives two well-known solutions. One of them is the slow wave
dispersion relation (4.43) k̃2 = ε3 b2

4 and the second one is:

k̃2 =
ε2

1 − ε
2
2

ε1
b2

4 = αb2
4. (4.53)

Keeping the terms of the first order of the Taylor series expansion, Equation (4.53)
gives the dispersion relation of the extraordinary wave [2]:

k2 =
ε2

1 − ε
2
2

ε1

ω2

c2 = α
ω2

c2 . (4.54)

In this Chapter, a full discrete disprsion relation in vacuum, non-magnetized and
magnetized cases is obtained. It is shown that under certain assumptions the dis-
crete dispersion realtion conincides with the theoreticall obtaines ones. However,
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the reader may notice that the numerical model has been developed in the cylin-
drical coordinates whereas the mathematical analysis of the discrete dispersion
relation has been performed in the Cartesian coordinate system. Below an am-
ple justification of why a dispersion analysis can’t be performed in the cylindrical
coordinates and why it still can be done in a Cartesian one is demonstrated.

4.2 Justification on the choice of the
coordinate system

ÆÆÆ

As pointed out in the previous section the developed numerical code is build in
cylindrical coordinates, but in the end all mathematical analysis is performed
in the cartesian ones. Despite given justification that the cartesian results
will be applicable in certain limits (4.33), the additional analysis on why
a derivation of the discrete dispersion relation in the cylindrical system is not
straigtforward and why this analysis still can be done in Cartesian coordinates
and it is presented in this Section.

4.2.1 Purpose of the substudy
To explain the purpose of this substudy it is important to give a ’definition’ of
what a discrete dispersion relation is. The discrete dispersion relation is not just
a local condition for non-trivial solutions of the sourceless wave equation, it is a
description of the properties of the global solutions of the time-stepping operator.
And therefore it is important to derive a stability condition of the discrete disper-
sion relation. In a Cartesian coordinate system in a uniform linear medium the
discrete solutions can be transformed straightforward to the exact solutions, in
other words, the knowledge of the eigenfunctions of the spatial operator k maps
to the knowledge of the eigenfunctions of the time-stepping operator. And there-
fore the derivation of the discrete dispersion relation and its stability condition is
rather straighforward. After the discrete dispersion relation is derived, the FULL
knowledge of the behaviour of the waves in the continuous and discrete physics is
obtained. In other words, a full description of the properties of the global solutions
of the time-stepping operator is gained. However in the cylindrical coordinate sys-
tem in the same uniform media the derivation of the discrete dispersion relation
based on eigensolutions cannot be performed by just deforming the continuous
dispersion relation: the eigensolutions do not correspond to the ones in the con-
tinuous physics. And therefore it is desirable to find out whether it is possible to
construct a discrete dispersion relation in the cylindrical coordinate system. The
following substudy attempts to show a fundamental difference between Cartesian
discretisation and non-Cartesian one, i.e. that the acceptance of the coordinate-
dependent dispersion relation is going to reduce the disperion relation from an
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exact description of global solutions of discretized physics to an approximate dis-
persion relation that can predict wavelength in areas where the dispersion relation
varies slowly.

4.2.2 Origin of justification

In cartesian coordinates, it happens to be the case that the solutions ex p( jkx −
jωt) can be inserted in the discrete equations and it can be found that they
are indeed exact solutions of the discrete equations provided some condition
f (k, w) = 0 holds. This procedure is exactly analogous to the procedure for
obtaining the continuous (exact) dispersion relation g(k, w) = 0 therefore the
effectiveness of a certain discretisation scheme by comparing f(k,w) and g(k,w)
can be judged. As it is a rather convenient assumption, it has become background
knowledge that some people take for granted, forgetting its justification, and just
assuming it will always work. Unfortunately, this is not the case: in some other
sufficiently regular coordinate systems, such as spherical and cylindrical coordi-
nates, the exact solutions of the exact equations still can be written down, but still
have two parameters : a spatial scale parameter analogous to k, and a frequency
parameterω. In cylindrical coordinates these exact solutions would involve Bessel
functions. But, in general, these exact solutions are not exact solutions of the dis-
cretized equations (not even if the dispersion relation is changed), which means
that the construction of the discrete dispersion relation in the same way as it is
done in the cartesian coordinates is not possible.

Here, it is intended to show that the exact solutions of the discrete equations in
cylindrical coordinates are not exactly Bessel functions.

4.2.3 Justification

Consider the Bessel functions Jν(kr), which are the solutions for Eϕ in cylindri-
cal coordinates if kϕ = 0. In a cylindrical geometry with radius R the boundary
condition Jν(kR) = 0 is present, which gives possible values of k (and with it,
the resonant frequencies). Assuming ki is the set of k for which Jν(kiR) = 0, the
functions Jν(ki r) are linearly independent, and in fact orthogonal under a certain
inner product [3], [4], [5]. This means that (almost) any function on [0, R] can
be written as a linear combination of Jν(ki r). In particular, an eigensolution of the
cylindrical FDTD time stepping operator can be written as a linear combination of
Jν(ki r) and the coefficients can be looked at : an exact Bessel function will have
all coefficients 0 except one, and an approximate Bessel function will have a peak
surrounded by small values (much like an approximate sin function has a peak in
its Fourier spectrum) The description of the procedure and the obtained results
are given below.
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Description of the procedure

A general scheme of the proposed analysis is the following. The first step is to
write down the time-stepping operator and to obtain the eigenvalues λi and the
eigenvectors vi . The eigenvectors vi can be interpreted as the frequency-domain
solution for an angular frequency arg(λi)/∆t. Then, a λi and a vi of interest are
picked up (in this case, well-resolved and ill-resolved ones). Finally, the chosen vi
can be written as a linear combination of continuous eigensolutions fk (i.e. Bessel
function in the cylindrical case and sine in the Cartesian coordinate system):

vi =
∑

(ak fk(r)) (4.55)

Below it is shown that in case a Cartesian coordinate system this is always possible,
and, if the discrete solution coincides with a continuous solution, all but one of
the ak will be 0. In a cylindrical coordinate system, if the discrete solution merely
approximates a continuous solution, many ak will be nonzero, though one will be
much larger than the others.

4.2.4 case A: Cartesian
In a Cartesian coordinate system 1D box in [0, 1] a continuous solution
with Ey = sin(nπx)ex p( jωc(n)t) exists and a discrete solution with Ey =
sin(nπx)ex p( jωd(n)t) also exists, where ωc(n) is the continuous resonant
frequency, a function of a mode number n and ωd(n) is the discrete resonant
frequency as a function of the mode number n. It can be seen that the discrete
solution coincides with a continuous one and the discretisation has caused a
deformation of the ω− k plane (dispersion relation): ωc(n) 6=ωd(n) (see Fig. 4.3
and Fig. 4.2).

4.2.5 Case B: cylindrical system
In a cylindrical 1D box in [0, 1] a continuous solution with Eϕ = J1(kr)ex p( jωc(n)t)
exists and a discrete solution with Eϕ = J1(kr)ex p( jωd(n)t) does not exist. A
discrete solution with Eϕ = f (r)ex p( jωd(n)t) exists, though f (r) is not of the
form J1(kr) for any k. It can be seen that J1(kr) 6= f (x),i.e. the discrete solution
does not coincide with a continuous solution and the discretisation influences the
solution beyond merely deforming the ω− k plane (see Fig. 4.4- Fig. 4.5).

Conclusion

What does this all imply? In Cartesian system it is rather easy to prove the
statement of the form if f (kx)ex p( jωt) is an exact eigensolution of the con-
tinuous physics, then ( f (g(k)x) + 0)ex p( jh(ω)t) is an exact eigensolution of
the discretized physics. The accuracy of the approximation would then be
judged by how closely g(k) approximates k, and h(ω) approximates ω. This
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Figure 4.2: Upper figure: well-resolved eigensolution of FDTD time-stepping op-
erator in Cartesian coordinates. Lower figure: Expansion of this solution in or-
thogonal Sine functions.

statement can be simplified to if d(k,ω) = 0 is the continuous dispersion re-
lation, then d(g(k), h(ω)) = 0 is the discrete dispersion relation. However, in
the cylindrical system, it may be possible to prove the statement of the form:
if f (kr)ex p( jωt) is an exact eigensolution of the continuous physics, then
( f (g(k)r) + e(r, k,ω))ex p( jh(ω)t) is an exact eigensolution of the discretized
physics. The accuracy of the approximation would then be judged by how closely
g(k) approximates k, and h(ω) approximates ω and e(r, k,ω) approximates 0,
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Figure 4.3: Upper figure: ill-resolved eigensolution of FDTD time-stepping opera-
tor in Cartesian coordinates. Lower figure: Expansion of this solution in orthogo-
nal Sine functions.

perhaps |e|� | f |. Generally, it can be concluded that the results are as expected:
the discrete solutions are not exact Bessel function (contrast with the cartesian
case, where the discrete solutions are exact complex exponentials). And this gives
a justification for why it is rather complex to perform a dispersion analysis in
the cylindrical coordinate system the way it is possible to do it in cartesian : in
cartesian, the only effect of the discretisation is a deformation of the dispersion
curve, while in cylindrical coordinates, the expression for the solutions itself
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Figure 4.4: Upper figure: well-resolved eigensolution of FDTD time-stepping op-
erator in cylindrical coordinates. Lower figure: Expansion of this solution in or-
thogonal Bessel functions.

changes from a pure Bessel to something that approximates a pure Bessel, which
is an effect that cannot be described by dispersion curve deformation alone.
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Figure 4.5: Upper figure: ill-resolved eigensolution of FDTD time-stepping opera-
tor in cylindrical coordinates. Lower figure: Expansion of this solution in orthog-
onal Bessel functions.
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5
Validation of the Developed

Numerical Code

5.1 Accuracy and Stability Analysis

ÆÆÆ

Before employing the proposed numerical algorithm, it is needed to determine
if it is applicable to the problem at hand. Tackling any problem numerically
(rather than analytically) inevitably introduces discretization errors. In this
Section the accuracy and stability analysis of the developed numerical algo-
rithm is presented. A stability proof is provided for nonmagnetized uniform
plasma, in which case the stability condition is the vacuum Courant condition.
For magnetized cold plasma the stability condition is investigated numerically
using the von Neumann technique [1].

5.1.1 Accuracy

The study of a numerical algorithm’s accuracy involves studying, and imposing,
bounds on these errors. An analysis of the discretization error can be performed
by comparing numerical and exact dispersion relations, as in [2], [3], [4], [5].
The approach followed by [2] is based on comparing the numerically calculated
dispersion which expresses how the index of refraction depends on the wave fre-
quency with the analytically predicted dispersion. Subsequently the numerical
errors are calculated as the deviation of the numerical results with respect to the
corresponding values obtained analytically. However, rather than using the rela-
tive error on the dispersion (as [2] did) we propose to use the relative dispersion
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error defined as :

δ = |Re
�

Nnum − Nanal
�

/Re
�

Nanal
� |, (5.1)

where Nnum and Nanal are the numerically and analytically obtained indexes of
refraction. In order to evaluate the relative dispersion error we choose to investi-
gate the dispersion relation of the extraordinary wave [6]. This particular plasma
mode is selected because the range of the propagation of this wave contains ion-
cyclotron frequencies (Ωci = qiB/mi ), The numerical tests were conducted in
the frequency range from 0 to the low hybrid frequency (ωLH = ((ΩciΩce)−1 +
ω−2

pi )
−1/2 ), because exactly in this range the values of the wave vector are real

and the wave itself propagates through the simulation region (see Fig.5.1). The

Figure 5.1: Analytical dispersion relation of the extraordinary wave. The fre-
quency range from 0 to ωLH marked in red is chosen for numerical simulations.

considered time-steps lie in an interval from 0 to π/ω. The numerical simulations
are conducted in the collisionless homogeneous media with initial plasma param-
eters ne = nD = 1019 (1/m3) and background magnetic field B0 equal to 3(T ).
On Fig. 5.2 the contour plot shows the relative dispersion error (see Eq. (5.1)), as
a function of frequency ω and time-step ∆t. The contour lines (of this contour
plot) demarcate the borders of the areas in the (ω, ∆t) plane where the relative
dispersion error is below a certain numerical value of the dispersion error. This
will give us guidance on how to choose ∆t for a certain frequency range provided
that we require a certain accuracy. For example, if the values of the frequency and
time-step are chosen within the area demarcated by the contour labeled "0.01",
it is guaranteed that the dispersion error will not exceed 1 %. The conclusion
from the discussion is that in order to get a sufficient accuracy (i.e. a relative dis-
persion error of less than, e.g. 1%) the time-step has to be chosen such that the
point (ω,∆t) lies in an area demarcated by and below the two ’0.01’ contours as
illustrated in Fig. (5.2).

In what follows extra attention is devoted to the result shown in Fig. (5.2). Each
point in the figure is obtained by selecting a particular frequency ω and a corre-
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Figure 5.2: A contour plot of the dispersion error as a function of ω and ∆t. The
lines of the contour plot demarcate the borders of the areas corresponding to a
certain accuracy. The Courant limit (red solid line) shows the border between
stable and unstable simulation areas.

sponding time-step ∆t. Using ω, the dispersion relation is invoked to determine
the space-step ∆r as a fraction of the relevant wavelength (e.g. 1/100 of that
wavelength). In this way, one can make sure that time- and space-steps are suf-
ficiently small, such that the simulated wave phenomena are well-resolved both
in time and space. It is clear that, when increasing the time step (points located
higher on the y-axis of the figure), accuracy can be expected to decrease. How-
ever, it is unclear and puzzling that for points closer to ωLH but still very small
∆t, i.e. points located near the lower right corner of the figure, accuracy is poor,
regardless of the Courant limit.

We would like to that W. Tierens for suggesting the following possible explanation.
When approaching ωLH , the resonant behaviour becomes dominant. It could very
well happen that the numerical discretization of the problem gives rise to a slightly
different resonance frequnecy then the analytical one and that this numerical reso-
nance frequnecy is higher than the analytical one. In that case, when approaching
ωLH , Nanal increases dramatically when approaching ωLH , while Nnum does not,
and hence the relative error goes to 1.

It has further be noted that in [7], Y. Pavlenko discusses a very similar problem.
He suggests that a nondissipative FDTD method cannot correctly treat the wave
processes near the resonance frequency. Without going into further discussion on
this point, it is clear that when Nanal no longer becomes infinite at the resonance
frequency, the effect of a possible difference between analytical and numerical
resonance frequency will also be less dramatic.
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5.1.2 Stability

Theoretically, each difference scheme has an exact solution. However, when ex-
plicit calculations are carried out in a computer, errors are commited due to the
finite precision of the arithmetic operations.

One of the standard analytical approaches to examine the stability of a numerical
technique is a method developed by von Neumann [8]. Stability approach means
that an explicit solution is stable if it produces a bounded result giving a bounded
input. The numerical solution is unstable if it produces an unbounded result given
a bounded input. The Von Neumann method expresses the error in a numerical
solution at any point in time as a finite spatial Fourier series. Numerical stability
results if each Fourier term has a unity-or-less growth factor over one time-step.
Then, assuming that each Fourier term is initially bounded, each term remains
bounded at all subsequent time-steps. Since the system is linear, the total error
represented by the finite sum of the Fourier terms must also be bounded at any
time-step.

In other words, if the method is stable, its source-free solutions will not diverge
no matter what the initial fields are. Because the simulation region is finite, any
initial field configuration can be expanded as a linear combination of complex
exponentials with real wavenumbers k. Because the time-stepping operator is
linear, the stability can be verified for every one of these compex exponentials. In
uniform Cartesian cases, these complex exponentials are eigenvectors of the time-
stepping operator, which makes verifying their stability rather straighforward: it
has to be ensured that the corresponding eigenvalues lie in or on the unit circle. If
there are eigenvalues outside the unit circle, the associated solution will increase
exponentially with time.

The 1D problem with the wave propagating in the r- direction with non-zero com-
ponents Er , Ez , Hϕ, Jr , Jz in magnetized plasma is considered. The difference equa-
tions can be written in the general form:

F t+1
︸︷︷︸

f uture

= M F t
︸︷︷︸

past

,
(5.2)

where F represents a column vector containing all discretized electric, magnetic
and current field components and where M is the amplification matrix. The nu-
merical scheme is stable if the eigenvalues of M lie on the unit circle in the com-
plex plane. Only when there are losses either due to the nature of the material
or due to radiation escaping from the simulation region, some of the eigenvalues
may fall inside the unit circle [9]. In Fig. 5.3 the eigenvalues of the amplification
matrix of the applied FDTD method for magnetized plasma are presented.

In this particular case the simulation parameters are: ne− = 3 · 1019 (1/m3),
nD = 0.98ne− (1/m3), nH = 0.02ne− (1/m3). The background magnetic field
is uniform and it is equal to 3 T. The space step ∆r is calculated based on the
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Figure 5.3: Numerical stability test. The eigenvalues of the amplification matrix
M are located on the unit circle in the complex plane. The initial simulation
parameters are: ne− = 3·1019 (1/m3), nD = 0.98ne− (1/m3), nH = 0.02ne− (1/m3).
The background magnetic field is uniform and it is equal to 3 T.

analytical dispersion relation [10], [6]. The time-step ∆t is determined in agree-
ment with the Courant stability condition [8]. This numerical analysis shows that
the developed technique is indeed stable at these parameters. In particular, we
find that the time-step has to be suffciently small, i.e. it must satisfy the vacuum
Courant condition. If it exceeds the Courant limit, instability could occur [11].

5.2 Validation of the developed numerical
code

ÆÆÆ

Having developed a global cold magnetized toridal plasma numerical model,
this FDTD algorithm is validated, firstly, by comparing analytical and numeri-
cal electromagnetic wave solutions in vacuum, nonmagnetized and magnetized
plasma. The results of these simulations are presented below. Then, numerical
simulations are performed to check whether the numerical dispersion relations
for the above mentioned cases coincide with the dispersion relations predicted
analytically. The performed analysis shows a very good agreement with the
theoretically obtained results.
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5.2.1 Vacuum Case
It is well-known that the analytical solution to Maxwell’s differential equation may
be written in terms of Bessel functions. In order to demonstrate the reliability of
the developed numerical code, a set of simple numerical tests were conducted.
First, the behaviour of the electromagnetic waves in vacuum is validated. To ini-
tial conditions of the simulations are the following: the electromagnetic wave is
generated by a hard source in the middle of the computational domain. The total
number of cells is Ncel ls = 700. The source frequency is ω = 2.7 · 109 (rad/sec).
The size of the space step is chosen with regard to the analytically obtained wave-
length λ (k0 =ω/c) and it is equal to ∆r = λ/10= 0.031 (m).

Figure 5.4: Validation of the developed numerical algorithm. Comparison of
the analytical and numerical electromagnetic wave solution in the vacuum case.
The total number of cells is Ncel ls = 70. The source frequency is ω = 2.7 · 109

(rad/sec). The size of the space step is chosen with regard to the analytically
obtained wavelength (k0 =ω/c) and it is equal to ∆r = 0.031 (m).

In Fig. 5.4 a numerically obtained behaviour of the z-component of the electric
field E in vacuum is compared to the analytical solution of Maxwell’s equations.
The black dashed line shows the numerical solution. As the source is located in
the middle of the simulation area, two analytical solutions are plotted: the cyan
dashed line represents the left-hand side of the predicted solutions, the red dashed
line stands for the right-hand side. In this case the numerical error is about 0.5 %.
Fig. 5.4 shows a good agreement between analytically and numerically obtained
solutions.

5.2.2 Nonmagnetized plasma case
Analogously, the developed numerical code is validated in case of nonmagnetized
plasma. Fig. 5.5 presents a sample of the z-component of the electric field. The
numerically obtained data is compared to the analytically calculated solution. The
electromagnetic wave is excited in the middle of the simulation domain. In Fig. 5.5
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the black dashed line represents the numerical solution. The green solid line and
the pink dashed line show the right-hand side and the left-hand side analytical
solutions, respectively. The initial parameters of this test are: the frequency of the
source is ω = 1.4 · 109 (rad/s), the space lattice increment is ∆r = 0.0099 (m).
The density of plasma is ne = nDE = 3 · 109 (1/m3). The number of cells in the r-
direction is 346. Fig. 5.5 shows that the numerically obtained data coincide well
with the predicted solution (numerical error is about 2 %).

Figure 5.5: Validation of the numerical algorithm. Comparison of the analyti-
cal and numerical electromagnetic wave solution in nonmagnetized case. The
frequency of the source is ω = 1.4 · 109 (rad/s), the space lattice increment is
∆r = 0.0099 (m). The density of the plasma is ne = nDE = 3 · 109 (1/m3).

5.2.3 Magnetized plasma case

The method to validate the constructed numerical code was described above. The
same approach is applied for the analysis of the electromagnetic waves in mag-
netized plasma. Fig. 5.6 compares the analytical and numerical solution of elec-
tromagnetic waves. The source is located in the middle of the simulation area.
The red dashed line shows the numerically obtained solution. The black solid
line illustrates the right-hand side behaviour of the analytical solution and the
green dot-dashed line stands for the left-hand side solution. The initial parame-
ters are: the source frequency is ω= 2.7 ·109 (rad/s), the space lattice increment
is ∆r = 0.0026 (m). The density of the plasma is ne = nDE = 3 ·1019 (1/m3). The
background magnetic field is equal to 3 T. The number of cells is 670. Fig. 5.6
shows a very good agreement (0.5 % numerical error) with the theory.
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Figure 5.6: Validation of the numerical algorithm. Comparison of the analytical
and numerical electromagnetic wave solution in the magnetized plasma case. The
source frequency is ω = 2.7 · 109 (rad/s), the space lattice increment is ∆r =
0.0026 (m). The density of the plasma is ne = nDE = 3 · 1019 (1/m3). The
background magnetic field is equal to 3 T.

5.3 Dispersion relations

In the section 4.1 it is proven that the dispersion relation of the actual problem
and its FDTD counterpart obtained when using the hybrid FDTD method [12] will
become identical for a sufficiently small time step. In the following section, this
claim is further substantiated by providing numerical data from the developed
numerical FDTD code. As was mentioned above, this code is based on [12], but
adapted to a cylindrical coordinate system (r,ϕ, z) and is particularly suited for
tokamak/stellarator configurations.

5.3.1 Nonmagnetized plasma dispersion relation

Fig. 5.7 compares the theoretical dispersion curve of the hybrid explicit/implicit
method to the numerical one. The numerical results are obtained for the 1D case,
the model is invariant in ϕ- and z-direction. The blue and the green starred lines
represent the analytical and the numerical dispersion relation of the electromag-
netic wave in a nonmagnetized plasma, respectively. The slope of the red dashed
line is equal to the speed of light. The initial parameters of the presented analysis
are: the density of electrons ne is 3 · 1019 (1/m3), the plasma frequency is equal
to 3.08 · 1011 (rad/sec).

The numerical dispersion curve is obtained in the following way. As a source a
"point" source is used, which in this cylindrical case is really an infinitely thin
cylindrical surface along the toroidal direction carrying a constant amplitude cur-
rent with sinusoidal time-dependence at a particular frequency ω. This current
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is switched on at t = 0 and flows until regime conditions are met. The source
is also called a hard source [13]. Observing the fields sufficiently far from the
origin the wavelength λ can be found from consecutive maxima and minima and
k(ω) = 2π/λ (for real k). This procedure is repeated to cover the complete fre-
quency range of interest. To be sure that FDTD simulations are sufficiently accu-
rate, the space increment ∆r is chosen to be λ/100 (1/100-th of the theoretically
determined wavelength λ) and the time-step ∆t equal to ∆r/2c, where c is the
speed of light in vacuum. Fig. 5.7 clearly shows that the numerical results are in
a good agreement with analytical predictions.

Figure 5.7: Validation of the developed numerical algorithm. Comparison of the
analytical and numerical dispersion relations in nonmagnetized plasma. The ini-
tial parameters are the following: ne is 3 · 1019 (1/m3), the plasma frequency is
equal to 3.08 · 1011 (rad/sec).

5.3.2 Homogeneous magnetic field. Magnetized plasma
Fig. 5.8 and Fig. 5.9 compare the theoretical dispersion curve of the hybrid ex-
plicit/implicit method to the numerical one over a wide frequency range. In
Fig. 5.8 the blue line illustrates the behaviour of the analytical dispersion rela-
tion of the extraordinary wave. The starred red line stands for the numerical
dispersion relation. In Fig. 5.9 the red line represents the dispersion relation of
the ordinary wave and the black triangled line shows its numerical dispersion re-
lation. The numerical results are obtained for the 1D case, the model is invariant
in ϕ- and z-direction. A one-ion homogeneous collisionless plasma is considered.
The initial simulation parameters are the following: ne = nDe = 3 · 1019 (1/m3).
The background magnetic field is equal to 3 T. The plasma specie frequencies
are ωpe = 3.08 · 1011 (rad/sec), ωpDe = 5.09 · 109 (rad/sec). The electron cy-
clotron frequency is Ωce = 5.27 · 1011 (rad/sec). The ion cyclotron frequency is
Ωci = 1.43 · 108 (rad/sec). The real solutions of the numerical dispersion re-
lation in case of a homogeneous magnetized plasma are obtained analogously to
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Figure 5.8: Validation of the developed numerical algorithm. Comparison of the
analytical and numerical dispersion relations in case of magnetized plasma in a
homogeneous background magnetic field. The initial simulation parameters are
the following: ne = nDe = 3 ·1019 (1/m3). The background magnetic field is equal
to 3 T. The plasma specie frequencies areωpe = 3.08·1011 (rad/sec),ωpDe = 5.09·
109 (rad/sec). The electron cyclotron frequency is Ωce = 5.27 · 1011 (rad/sec).
The ion cyclotron frequency is Ωci = 1.43 · 108 (rad/sec).

Figure 5.9: Validation of the developed numerical algorithm. Comparison of the
analytical and numerical dispersion relation of the ordinary and extraordinary
waves in magnetized plasma in a homogeneous background magnetic field. The
initial simulation parameters are the same as in Fig. 5.8.

the approach described in Section 5.3.1. It has to be noted that an alternative way
to obtain the numerical dispersion relation is to calculate the eigensystem of the
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amplification matrix for which the eigenvalues are related to the frequencies and
the eigenvectors. This method was also implemented and identical results were
obtained.

In case of evanescent waves, k can be found using the exponentially decaying
behaviour of the fields. Evidently, E0ex p( jkx)ex p(− jωt) is a solution to the
wave equation. If k is a purely imaginary number, so then it can be replaced by
jβ , where β is a real number. Accordingly, the expression E0ex p( jkx)ex p(− jωt)
becomes E0ex p(−β x)ex p(− jωt). This no longer oscillates as a function
of position- it exponentially decays, but it is still oscillates as a function of
time. Thus on a logarithmic scale the solution mentioned above has the form
log(E) = log(E0ex p(− jωt))− β x , from which β can be obtained by making a
linear fit. For example, Fig. 5.10 shows a sample of the behaviour of the electric
field in the case of evanescent waves. For this specific case of the homogeneous
collisionless plasma the following parameters are chosen: ne = nHD = 1019

(1/m3). The background magnetic field is equal to 3 T. The source frequency
ω is 1.07 · 1010 rad/sec. The space lattice increment ∆r is 0.000102 m. For
convenience, Fig. 5.10 is presented on a logarithmic scale. Clearly there is some
range in which the data is linear, and some other ranges where the amplitude is
too low and is noise-dominated. Nevertheless, the points in between which the
plot is sufficiently linear are picked by hand. The slope of the chosen line relates
to the decay length. Fig. 5.8 and Fig. 5.9 show a good agreement with the theory.

5.3.3 Magnetized plasma case. Inhomogeneous
magnetic field

Here, in Fig. 5.12 the simulation results in magnetized 2-ion plasma in case of an
inhomogeneous magnetic field are compared with the analytical results [10]. The
initial parameters are ne = 3·1019 (1/m3), nHD = 0.2·1019 (1/m3), nDE = 0.8·1019

(1/m3). The plasma frequency of the species is ωpe = 3.08 · 1011 (rad/sec),
ωpHD = 1.86 · 109 (rad/sec), ωpDE = 2.63 · 109 (rad/sec). The background mag-
netic field decreases as 9/r and its behaviour is shown in Fig. 5.11. In Fig. 5.12
the FDTD simulation results are seen to be in a very good agreement with the
analytical results.

The set of numerical examples provided in Section 5.3 shows that the developed
algorithm based on the hybrid FDTD method performs properly and that the dis-
persive behavior is predicted correctly.

5.4 Impact of the cylindrical geomentry
ÆÆÆ

In this Section the impact of the curvature geometry on the behaviour of the
electromagnetic wave is shown.
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Figure 5.10: Calculation of the wavelength in case of evanescent waves. The initial
simulation parameters are: ne = nHD = 1019 (1/m3). The background magnetic
field is equal to 3 T. The source frequency ω is 1.07 · 1010 rad/sec. The space
lattice increment ∆r is 0.000102 m.

Figure 5.11: Behaviour of the inhomogeneous background magnetic field. The
background magnetic field decreases as 9/r.

The typical geometry of the JET tokamak and its plasma parameters will be used
to carry out some of the numerical tests. The RF antenna is located at ra = 4
(m). The diameter of the plasma column is 2 m therefore rb = 2 (m). In order to
simplify the numerical tests we assume that the magnetic field is uniform and it is
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Figure 5.12: Dispersion relation of the fast wave in a magnetized plasma with an
inhomogeneous background magnetic field. The initial parameters are ne = 3·1019

(1/m3), nHD = 0.2 · 1019 (1/m3), nDE = 0.8 · 1019 (1/m3). The plasma fre-
quency of the species is ωpe = 3.08 ·1011 (rad/sec), ωpHD = 1.86 ·109 (rad/sec),
ωpDE = 2.63 · 109 (rad/sec). The background magnetic field decreases as 9/r
(see Fig. 5.11).

equal to 3 (T ). The antenna launches the fast wave (FW) with a source frequency
f that is equal to 45.7 (MHz). The corresponding angular frequencyω is 2.87·108

(rad/sec). The ion- and electron density in the plasma is 3 · 1019 (m−3).

Fig. 5.13 shows the comparison of the field structures in the Cartesian (red dotted
solid line) and the cylindrical (black dotted solid line) coordinate systems. The
figures show the steady state distribution of the wave fields. The amplitude of
the wave field is constant in a plasma column in the Cartesian coordinate system.
Using the definition of the energy flux density, i.e. Poynting vector S= [E×B], the
growth of the amplitude in the cylindrical coordinate system may be estimated.
For example, we propose to compare the magnitude of the time-averaged Poytning
flux at two different positions: at ra = 4 (m) and at rb = 2 (m), which gives us

S1ra = S2rb (5.3)

that leads to S2 =
ra

rb
S1. Since for sinusoidal electromagnetic plane waves the time-

averaged Poyting flux S is equal to E2
0 (E0 is the amplitude of the electric field),

the amplitude of the electromagnetic wave grows in
Æ ra

rb
times, which means that

in our case it grows in
p

2 times and as it can be seen on a Fig. 5.13, the numerical
results are in good agreement with theoretical predictions.

5.5 Mode conversion simulations
ÆÆÆ
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Figure 5.13: Curvature effects.

This Section presents the results of the numerical simulations including
toroidal and poloidal components of the background magnetic field.

To start Fig. (5.14) and Fig. (5.15) show a space-dependent dispersion relation
(real and imaginary components of kr , respectively) obtained using the discrete
dispersion relation obtained in A. It has to be noted that Fig. (5.14) is an approx-
imation which gives us only the approximate wavelength that are expected but
not the exact ones. In Fig. (5.14) it can be seen that the blue line that correspond
to the fast wave that propagates with the long wavelength and therefore smaller
kr at some point sharply transforms into the ion-cyclotron wave with the shorter
wavelength and thus bigger kr . Therefore the mode conversion can be expected
in this particular region when the fast wave suddenly converts to the ion-cyclotron
wave. Also the imaginary part of the kr can help to predict where the mode con-
version occurs. (see Fig. (5.15)). To construct the dispersion relation the plasma
model is taken from [11] and [12] and has the following parameters: the com-
ponents of the background magnetic field are Br = 0.15B(r) cos(π/4), Bϕ = B(r),
Bz = 0.15B(r) sin(π/4), where B(r) decreases like 1/r from 6.5 T at high field
side (HFS) to 5.5 T and low field side (LFS) and has the form Br = a/(r + b)
where
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a = BLFS(rLFS +
BLFS rLFS − BHFS rHFS

BHFS − BLFS
) (5.4)

and

b =
BLFS rLFS − BHFS rHFS

BHFS − BLFS
(5.5)

The 3-ion specie plasma has the following density: ne = 2 · 1020 1/m3, nHD =
0.33ne, nDT = 0.44ne, nHe = 0.115ne. The frequency of the antenna used to
construct the dispersion relation is 5.057 · 108 rad/sec. The simulation has PEC
boundary conditions and kϕ = 14.5 1/m. To perform the numerical simulations
∆r = 0.176mm has been chosen which is 1/100 of the shortest wavelength that
we expect to see based on the dispersion relation. The Gaussian pulse (5.6) that
is used as a source to perform the numerical simulations has a form

G = ex p(−1016π2(t∆t − 3 · 10−8)2)cos(6108π(t∆t − 3 · 10−8)cos(∆ϕ · j · kϕ))
(5.6)

The techniques developed in chapter related to the steady state criteria could be
conceivably used to reach a state which is dominated by a single mode that is de-
sired to be investigated, but that would require absorbing boundary conditions.
As in [11] and [12] PEC boundary conditions are used, instead a wide-band
source will be used and the desired mode will be isolated by means of the Fourier
transform. Also, since the PEC is chosen as a boundary condition, the use of the
Gaussian pulse makes sure that only a limited amount of energy in injected into
the cavity, and therefore the fields will remain bounded while a nearly single-
frequency source (sin(ωt)Heaviside(t)) would keep adding energy to the system
and never converge. This can be justified by the fact that gaussian pulse is a
square-integrable function while sin(ωt)Heaviside(t) is a non-square-integrable.

In order to avoid the influence of the reflection from the boundaries the collision
damping frequency term (ϑs = ω/100) has been added at the end of the simula-
tion region to damp the propagation of the electromagnetic wave.

Since Gaussian pulse is used to excite the electromagnetic wave the fast fourier
transform (FFT) algorithm has to be used to extract the desired mode. Fig. 5.16
shows the behaviour of the electric field amplitude at the aforementioned fre-
quency ω = 5.075 · 108 rad/s in space. It can be seen that the wavelength of the
wave on the left side of the graph is slighly longer than on the right hand side as
expected from the dispersion relation (see Fig. 5.14).

In order to show that the mode conversion occurs in the predicted area the double
FFT (Fast Fourier Transform) procedure, first in time, than in space, has been
applied to get the k- spectrum. Fig. 5.17 shows two forward modes, one with a
shorter wavelength than the other, clearly showing that mode conversion occurs.
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Figure 5.14: Numerical dispersion relation of the real values of kr in space.

Figure 5.15: Numerical dispersion relation of the imaginary values of kr in space.
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Figure 5.16: The behaviour of the radial electric field component in space.

Figure 5.17: k -spectrum.
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6
Conclusions and future work

6.1 Conclusions
The aim of this dissertation is to develop a global FDTD model that includes the
effects of the toroidal symmetrical configuration to account for physics introduced
by the magnetized cold plamsa.

To generate this model, a cylindrical magnetized cold plasma algorithm based on
the hybrid finite-difference time-domain principle is developed and validated first
in Cartesian and then in the cylindrical coordinate systems. A full discrete dis-
persion relation is derived and compared to the existing analytical solutions. The
accuracy and stability analysis are performed, in particular, the analytical proof
of stability in case of nonmagnetized plasma is established. It is demonstrated
that in case of nonmagnetized cold plasma the maximum stable Courant number
of the hybrid method coincides with the vacuum Courant condition. In case of
magnetized plasma the stability of the applied numerical scheme is investigated
numerically using von Neumann method. The developed numerical algorithm has
been validated by calculating the numerical dispersion relations of electromag-
netic waves in vacuum, nonmagnetized and magnetized plasma cases. Additional
numerical studies if EM wave propagation are also demonstrated. The conducted
analysis show that the developed numerical algorithm is trustworthy and accurate.

Next, in order to compare computational results with theoretical predictions, fo-
cusing on wave dynamics rather than wave interference, an effective absorbing
layer that acts like as an accurate and computationally efficient damping condi-
tion has been constructed. The advantage of this boundary condition lies in its
flexibility. The collision frequency term that acts like a damping condition can
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be switch on/off when it is necessary. Besides, the collision frequency term can
perform as a ’bridge’ between two branches of the dispersion curve. The inclusion
of the collision frequency term provides an additional power dissipation near the
evanescent layer, i.e. near the range between the resonance and the cut-off.

Also in this work, a special numerical technique to terminate a simulation the
moment steady state is reached is developed and validated both in the Cartesian
and in the cylindarical coordinate systems. The physics of Poynting flux has been
taken as the basis to develop this particular stopping criteria.

The results of the numerical simulations including the toroidal and poloidal com-
ponents of the background magnetic field are performed and the results of the
mode conversion simulations are presented in this thesis.

6.2 Future work
Ongoing work includes the implementation of the other mode conversion scenar-
ios and further extensive tests with the code. Moreover, the extension to the full
3D scenarios can be performed. Besides, future work could be dedicated to the
modification of the numerical code in such a way that it will be suitable for paral-
lelization.
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A
Derivation of the time-discrete

space-continuous dispersion
relation of the explicit/implicit

FDTD method to model
magnetized toroidal plasma

using the amplification matrix

A.1 Basic Equations
Including the equation of motion, Maxwell’s equations in the three-dimensional
case describing cold two-specie (ion and electron) plasma in time-domain are:

∂H

∂ t
=−

1

µ0
∇× E; (A.1)

ε0
∂ E

∂ t
=−

∑

s=1,2

Js +∇×H; (A.2)

∂ Js

∂ t
= ε0ω

2
psE−ΩΩΩs × Js. (A.3)

Here, E is the electric field vector V/m, H is the magnetic field vector A/m, Js is
the current density vector of a particular specie A/m2. The vacuum permeability
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Appendix A. Derivation of the time-discrete space-continuous dispersion relation of the
explicit/implicit FDTD method to model magnetized toroidal plasma using the

amplification matrix

µ0 H/m and vacuum permittivity ε0 F/m are independent of the frequency. The
plasma frequency ωps 1/sec is defined as

ωps =

È

nsq2
s

msε0

(A.4)

where ns is the density, qs is the charge and ms is the effective mass of a given
specie. The cyclotron frequency is:

Ωs =
qsB0

ms
, (A.5)

where B0 is the background magnetic field oriented along the z-axis, denoted as
B0 = B0z.

A.2 Derivation of the Discrete Dispersion
Relation

A.2.1 One-Dimensional Case
Continuous Dispersion Relation

To start we restrict ourselves to a one-dimensional situation, i.e. a case in which
the fields only depend on x, but remain independent of y and z. We are looking
for an eigensolution proportional to eikx eiωt with ω the circular frequency and k
the wave-number. The dispersion relation of interest is k(ω). For the continuous
case the dispersion relation is found to be:

n2 =
(k(ω))2c2

ω2 =
RL

S
, (A.6)

with

R= 1−
ω2

pe

ω(ω+Ωce)
−

ω2
pi

ω(ω+Ωci)
; (A.7)

L = 1−
ω2

pe

ω(ω−Ωce)
−

ω2
pi

ω(ω−Ωci)
; (A.8)
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S =
1

2
(R+ L) , (A.9)

where ωpe, ωpi are defined as species plasma frequency, and where Ωce and Ωci
are the electron and ion cyclotron frequency.

Discrete Dispersion Relation

We choose the mode where the electric field E is perpendicular to the background
magnetic field. In this one-dimensional case only the Ex , Ez and H y components
play a role, together with the currents Jxs and Jzs (s = 1,2) of the two particle
species. Time-domain discretization of (A.1)-(A.3) with the method of [1] yields

1

∆t































H y(t +∆t)−H y(t)

Ex(t + 1/2∆t)− Ex(t − 1/2∆t)

Ez(t + 1/2∆t)− Ez(t − 1/2∆t)

J1x(t + 1/2∆t)− J1x(t − 1/2∆t)

J1z(t + 1/2∆t)− J1z(t − 1/2∆t)

J2x(t + 1/2∆t)− J2x(t − 1/2∆t)

J2z(t + 1/2∆t)− J2z(t − 1/2∆t)































= [M]T





































































H y(t)

Ex(t − 1/2∆t)

Ez(t − 1/2∆t)

J1x(t − 1/2∆t)

J1z(t − 1/2∆t)

J2x(t − 1/2∆t)

J2z(t − 1/2∆t)

H y(t +∆t)

Ex(t + 1/2∆t)

Ez(t + 1/2∆t)

J1x(t + 1/2∆t)

J1z(t + 1/2∆t)

J2x(t + 1/2∆t)

J2z(t + 1/2∆t)





































































(A.10)
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with ∆t the time step and with the matrix M given by

[M]T =









































































0 0 i
ε0

d
d x

0 0 0 0

0 0 0
ε0ω

2
pe

2
0

ε0ω
2
pi

2
0

0 0 0 0
ε0ω

2
pe

2
0

ε0ω
2
pi

2

0 − 1
2ε0

0 0 −Ωce

2
0 0

0 0 − 1
2ε0

Ωce

2
0 0 0

0 − 1
2ε0

0 0 0 0 −Ωci

2

0 0 − 1
2ε0

0 0 Ωci

2
0

0 0 0 0 0 0 0

0 0 0
ε0ω

2
pe

2
0

ε0ω
2
pi

2
0

i
µ0

d
d x

0 0 0
ε0ω

2
pe

2
0

ε0ω
2
pi

2

0 − 1
2ε0

0 0 −Ωce

2
0 0

0 0 − 1
2ε0

Ωce

2
0 0 0

0 − 1
2ε0

0 0 0 0 −Ωci

2

0 0 − 1
2ε0

0 0 Ωci

2
0









































































(A.11)

Expressing the eiωt dependence in A.10 allows to relate Ex

�

t + 1
2
∆t
�

to

Ex

�

t − 1
2
∆t
�

, i.e. Ex

�

t + 1
2
∆t
�

= eiω∆t Ex

�

t − 1
2
∆t
�

(and similarly for the

other field components). The eikx -dependence allows to replace d
d x

in (A.11) by
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ik. Hence, (A.10) becomes

1

∆t































H y(t)(eiω∆t − 1)

Ex(t − 1/2∆t)(eiω∆t − 1)

Ez(t − 1/2∆t)(eiω∆t − 1)

J1x(t − 1/2∆t)(eiω∆t − 1)

J1z(t − 1/2∆t)(eiω∆t − 1)

J2x(t − 1/2∆t)(eiω∆t − 1)

J2z(t − 1/2∆t)(eiω∆t − 1)































=



































ik
µ0

Ez(t − 1/2∆t)eiω∆t

− 1
2ε0

J1x(t − 1/2∆t)(eiω∆t + 1)− 1
2ε0

J2x(t − 1/2∆t)(eiω∆t + 1)
ik
ε0

H y(t)−
1

2ε0
J1z(t − 1/2∆t)(eiω∆t + 1)− 1

2ε0
J2z(t − 1/2∆t)(eiω∆t + 1)

ε0ω
2
pe

2
Ex(t − 1/2∆t)(eiω∆t + 1) + Ωce

2
J1z(t − 1/2∆t)(eiω∆t + 1)

ε0ω
2
pe

2
Ez(t − 1/2∆t)(eiω∆t + 1)− Ωce

2
J1x(t − 1/2∆t)(eiω∆t + 1)

ε0ω
2
pi

2
Ex(t − 1/2∆t)(eiω∆t + 1) + Ωci

2
J2z(t − 1/2∆t)(eiω∆t + 1)

ε0ω
2
pi

2
Ez(t − 1/2∆t)(eiω∆t + 1)− Ωci

2
J2x(t − 1/2∆t)(eiω∆t + 1)



































(A.12)

The system matrix Md of seven linear equation is:

Md =

































iω̃ 0 − ik̃
µ0

0 0 0 0

0 iω̃ 0 1
ε0

0 1
ε0

0

− ik̃
ε0

0 iω̃ 0 1
ε0

0 1
ε0

0 −ε0ω
2
pe 0 iω̃ 0 0

0 0 −ε0ω
2
pe Ωce iω̃ 0 0

0 −ε0ω
2
pi 0 0 0 iω̃ −Ωci

0 0 −ε0ω
2
pi 0 0 Ωci iω̃

































(A.13)

where k̃ is equal to k sec(ω∆t
2
) and ω̃ stands for

2t g(ω∆t
2
)

∆t
.

The set of equations A.12 is homogeneous. A non-trivial solution only exists if the
determinant of (A.13) becomes zero. This turns to be the case provided

ñ2 =
R̃L̃

S̃
, (A.14)
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where ñ2 = k̃2c2

ω̃2 . The quantities R̃, L̃, S̃ are equal to their counterparts in (A.7)-

(A.9) with ω replaced by ω̃ and k by k̃. Equation A.14 shows that if ∆t is suf-
ficiently small the discrete dispersion relation tends towards the continuous case.
Moreover, for small ∆t the error will be of the order of (ω∆t)2.

A.2.2 Three-Dimensional Case
The discrete dispersion relation in the three-dimensional case can be obtained in
complete analogy to the previous one-dimensional case. The eigensolution is now
proportional to: eikr eiωt = eikx x eiky y eikzzeiωt .

In the general three-dimensional case the system matrix takes the form:

Ms =



























































iω̃ 0 0 0 − ikz
µ0

f̃
iky

µ0
f̃ 0 0 0 0 0 0

0 iω̃ 0 ikz
µ0

f̃ 0 − ikx
µ0

f̃ 0 0 0 0 0 0

0 0 iω̃ −
iky

µ0
f̃ − ikx

µ0
f̃ 0 0 0 0 0 0 0

0 ikz
ε0

f̃ −
iky

ε0
f̃ iω̃ 0 0 1

ε0
0 0 1

ε0
0 0

− ikz
ε0

f̃ 0 − ikx
ε0

f̃ 0 iω̃ 0 0 1
ε0

0 0 1
ε0

0
iky

ε0
f̃ − ikx

ε0
f̃ 0 0 0 iω̃ 0 0 1

ε0
0 0 1

ε0

0 0 0 −ε0ω
2
pe 0 0 iω̃ 0 −Ωce 0 0 0

0 0 0 0 −ε0ω
2
pe 0 0 iω̃ 0 0 0 0

0 0 0 0 0 −ε0ω
2
pe Ωce 0 iω̃ 0 0 0

0 0 0 −ε0ω
2
pi 0 0 0 0 0 iω̃ 0 −Ωci

0 0 0 0 −ε0ω
2
pi 0 0 0 0 0 iω̃ 0

0 0 0 0 0 −ε0ω
2
pi 0 0 0 Ωci 0 iω̃




























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



























(A.15)

where ω̃ remains
2t g(ω∆t

2
)

∆t
, f̃ is equal to sec(ω∆t

2
) and kx , ky , kz are the x−, y−,

z− components of the propagation vector k respectively. We again see that the
discrete case will tend to the continuous one for small ∆t.

Moreover, remark that all the components of the propagation vector k are multi-
plied by the same factor. Hence, the discretization does not introduce unwanted
anisotropy.
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