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1.  THE INTESTINAL MICROBIOTA: A COMPLEX ECOSYSTEM  
The primary function of the gastro-intestinal tract (GIT) is the digestion of food and absorption of 

nutrients. In vertebrate hosts such as humans and chickens, the gut is the most densely populated 

and complex ecosystem, hosting bacteria, archaea, yeasts and filamentous fungi (Ley et al., 2008; 

Lu et al., 2003). Through the interkingdom cross-talk between the microbiota and the host, the 

intestinal microbiota plays a key role in numerous host metabolic, physiological, nutritional and 

immunological processes (O'Hara & Shanahan, 2006). As an example, the breakdown of 

complex food-derived substrates, and the metabolites produced during breakdown, is driven by 

the composition of the intestinal microbiota.  

Most of our knowledge on gut microbiota comes from human studies, which have given us a 

better idea on how the microbiota of broilers could play a role in the intestinal health. Nowadays 

quite a lot is already known about the gut microbiota of chickens (Lei et al., 2012; Lu et al., 

2003; Torok et al., 2011; Wei et al., 2013). One of the major differences between humans and 

chickens is the gut compartment in which bacterial fermentation takes place. In humans bacterial 

fermentation mainly occurs in the colon, while in chickens, fermentation takes place in the caeca 

(Lei et al., 2012). In addition the composition of the chicken caecal microbiota has been shown to 

be even more complex than that of the human fecal microbiota (Eckburg et al., 2005; Lei et al., 

2012; Wei et al., 2013). Here we will first briefly introduce the intestinal microbiota of humans 

and then we will describe what already is known about the intestinal microbiota of chickens. 

1.1 THE HUMAN INTESTINAL MICROBIOTA 

1.1.1 Diversity throughout lifetime 
The development of the human intestinal microbiota is a dynamic process that starts at birth and 

proceeds for several years through successive stages (Power et al., 2014) (Figure 1A). The way 

of delivery already influences the initial colonization and early establishment. One-month-old 

children born via Caesarean section have a lower count of gut bacteria with fewer bifidobacteria 

compared to naturally delivered babies (Huurre et al., 2008). This suggests that the environment 

is an important source for the initial colonization of bacteria. In naturally delivered babies the 

mothers’ vaginal and intestinal microbiota have been shown to be a major source of intestinal 

microbes for the baby (Power et al., 2014). During infancy (0-2 years), the gut microbiota is 

characterized by low-species diversity and high instability. The type of food influences the 

microbiota composition directly by providing the substrates for bacterial proliferation and 
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function (Guaraldi & Salvatori, 2012). In the gut of breast-fed infants, the dominant phylum 

Actinobacteria is represented by Bifidobacterium spp. (Harmsen et al., 2000; Jost et al., 2012) 

and the Firmicutes phylum is dominated principally by Lactobacillus, Enterococcus and 

Clostridium species (Turroni et al., 2012; Voreades et al., 2014). In contrast, the intestinal 

microbiota of formula-fed infants counts higher numbers of Bacteroides spp. as well as members 

of the family Enterobacteriaceae (Fallani et al., 2010; Harmsen et al., 2000). However, a study 

of Adlerberth and Wold showed only minor differences between the intestinal microbiota 

composition of breast- and formula-fed infants, suggesting that the modern formulas are 

mimicking more closely the composition of breast milk (Adlerberth & Wold, 2009). 

Supplementation of prebiotics to formula-fed infants affects the early development of the 

microbiota by increasing the number of bifidobacteria, as observed in breast-fed infants (Marques 

et al., 2010; Oozeer et al., 2013). The infant gut microbiota undergoes a shift with the 

introduction of solid food resulting in a more complex, but stable adult community (Koenig et al., 

2011; Yatsunenko et al., 2012). During this second life stage, the intestinal microbiome 

comprises seven different bacterial phyla: Firmicutes, Bacteroidetes, Proteobacteria, 

Actinobacteria, Fusobacteria, Verrucomicrobia and Cyanobacteria (Eckburg et al., 2005). A 

recent study investigating the gut microbiota of 37 healthy adults showed that members of the 

phyla Bacteroidetes and Actinobacteria are significantly more stable components than those of 

the phyla Firmicutes and Proteobacteria and that 60% of the strains remained stable over the 

course of five years (Faith et al., 2013). Environmentally introduced changes like dietary changes 

or antibiotic intake (Delgado et al., 2006) or changes according to life events including puberty, 

pregnancy or menopause (Nicholson et al., 2012) are primarily affecting the abundance but not 

the presence of specific microbial species (Rajilic-Stojanovic et al., 2012). During adult life, 

butyrate-producing members of the phylum Firmicutes are important because they are 

responsible for the breakdown of indigestible polysaccharides and resistant starch (Bergstrom et 

al., 2014; Koenig et al., 2011). In the elderly, the relative stability and diversity of the microbiota 

decrease again, usually proportional to the state of health (Biagi et al., 2010; Claesson et al., 

2012). 

1.1.2 Diversity and abundance along the intestinal tract 
Multiple human gut microbiome studies based on the 16S ribosomal-RNA-encoding gene have 

reported species diversity within and between individuals (Arumugam et al., 2011; Eckburg et 

al., 2005; Hayashi et al., 2002; Lay et al., 2005). Within individuals the microbial composition  

changes along the GIT, ranging from a narrow diversity and low number of microbes in the 
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stomach to a wide diversity and high numbers in the large intestine (O'Hara & Shanahan, 2006; 

Tiihonen et al., 2010) (Figure 1B). Microorganisms of the genus Helicobacter and Lactobacillus 

are exposed to very acidic conditions in the stomach and to secreted bile salts and pancreatic 

juices in the proximal part of the small intestine (duodenum and jejunum) (Van den Abbeele et 

al., 2013). Members of the class Bacilli (predominantly the Lactobacillaceae family) are 

significantly more abundant in the small intestine (jejunum and ileum), while member of the 

phylum Bacteroidetes and family Lachnospiraceae within the phylum Firmicutes are more 

prevalent in the colon (Frank et al., 2007). In addition to variation in the composition of the 

microbiota along the axis of the GIT, surface-adherent and luminal microbial populations also 

vary (Eckburg et al., 2005; Van den Abbeele et al., 2013) (Figure 1C). Many species present in 

the intestinal lumen do not access the mucus layer and epithelial crypts (Swidsinski et al., 2005). 

Bacteroidetes and Proteobacteria species are enriched in the luminal content while Firmicutes 

rather colonize the mucin layer, with Clostridium cluster XIVa or Lachnospiraceae family 

accounting for almost 60% of the mucin-adhered microbiota (Van den Abbeele et al., 2013). 
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Figure 1. The human gastro-intestinal tract: A. Selected features affecting the establishment and 
maintenance of the microbiota and factors influencing the composition of the microbiota. C-section, 
Caesarean section; CFU, colony-forming units; B. fragilis, Bacteroides fragilis; E. coli, Escherichia coli; 
C. difficile, Clostridium difficile (Power et al., 2014). B. Variation in microbial numbers and composition 
across the length of gastro-intestinal tract (Sekirov et al., 2010). C. Longitudinal variations in microbial 
composition in the intestine (Sekirov et al., 2010). 
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The species diversity between individuals was shown in a metagenomic sequencing study using 

124 human fecal samples, as each individual harbored only 160 species out of 1000 prevalent 

bacterial species (Qin et al., 2010). Almost 80% of the faecal bacteria belong either to the phylum 

Firmicutes (including Anaerostipes, Ruminococcus, Clostridium, Enterococcus, Roseburia and 

Eubacterium genera) or the phylum Bacteroidetes (including Bacteroides, Prevotella and 

Alistipes genera) (Eckburg et al., 2005; Rajilic-Stojanovic et al., 2007) (Figure 2A). Lower 

numbers of bacteria belong to other phyla like Actinobacteria (including the genus 

Bifidobacterium), Proteobacteria (including the genus Escherichia) and Verrucomicrobia 

(including the genus Akkermansia) (Arumugam et al., 2011; Zoetendal et al., 2008). Recently, Li 

et al. established the integrated gene catalog (IGC) of human faecal microbiome based on 1267 

stool samples from individuals from three different continents. This IGC allows a rapid and 

multi-omic profiling of the genetic and functional repertoire of a given gut metagenome, and 

facilitates investigation of its geographical, genetic, temporal and physiological characteristics 

(Gill et al., 2006; Kurokawa et al., 2007; Li et al., 2014; Nielsen et al., 2014; Qin et al., 2010). 

Additionally, analysis of the gut microbial communities has resulted in three predominant 

variants or “enterotypes”, independent of host properties like nationality, sex, age or body mass 

index (BMI) (Arumugam et al., 2011; Wu et al., 2011). Enterotypes are identified by the variable 

level of one of three genera depending on species composition (Arumugam et al., 2011) (Figure 

2B-C). The first enterotype is enriched in Bacteroides, which mainly derives energy from 

carbohydrates and proteins through fermentation. The starch utilization system (Sus) in human 

gut Bacteroidetes coordinates the action of several enzymes involved in substrate binding and 

degradation, suggesting that closely related genera have a very broad saccharolytic potential 

(Martens et al., 2009). Degradation of mucin glycoproteins is one of the characteristics for the 

second enterotype that is enriched in Prevotella. Bacterial enzyme activities for mucin 

desulphation are found in cell extracts from Prevotella and Bacteroides (Capon et al., 1992; 

Corfield et al., 1987; Rho et al., 2005). Mucin-degrading Prevotella species co-exist with 

Desulfovibrio species and enhance the rate-limiting mucin desulphation step in mucin 

degradation by removing the sulphate (Wright et al., 2000). Prevotella can also ferment more 

complex fibres like xylan and cellulose that are present in a diet with high concentration of 

carbohydrates through carbohydrate-active enzymes such as xylanases, endoglucanases and 

carboxymethylcellulases (De Flippo et al., 2010). The third enterotype is most frequently 

encountered. It is enriched in Ruminococcus with co-occurrence of Akkermansia, to comprise 

species capable of growth on mucins as sole carbon and nitrogen source (Derrien et al., 2004; 

Derrien et al., 2010). Characteristic for species of this enterotype is the efficient binding of mucin 
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and its subsequent hydrolysis as well as the uptake, transport and degradation of simple sugars 

(Arumugam et al., 2011). The phylogenetic and functional differences among enterotypes seem 

to reflect different combinations of microbial trophic chains (Siezen & Kleezebezem, 2011). 

Since methodological aspects such as clustering methodology, distance metrics, operational 

taxonomic units (OTUs)-picking approaches, sequencing depth, data type and 16S rRNA region 

all can influence the conclusions in enterotyping (Koren et al., 2013), the enterotype concept 

needs standardized enterotyping methods to gain utility. Huse et al. screened 200 individuals but 

were unable to identify the three enterotypes. Instead they identified two ‘biome types’ 

(Bacteroides-Ruminococcus and Prevotella) (Huse et al., 2012). A similar distribution was 

demonstrated in the study of Wu et al., the Bacteroides enterotype was characterized by the 

additional presence of Alistipes and Parabacteroides and the Prevotella enterotype was 

characterized by the additional presence of Paraprevotella and Catenibacterium (Wu et al., 

2011). On the other hand the study of Claesson et al. introduced six co-abundance groups 

(CAGs) based on the dominant occurrence of members of the genus Bacteroides, Prevotella, 

Ruminococcus, Oscillibacter, Alistipes or Odoribacter (Claesson et al., 2012). This 

categorization differs from the enterotypes, because here the individual microbiota is 

characterized by dominance of two or three CAGs rather than one of the three enterotypes. 

Recent analyses of human-associated bacterial diversity have categorized individuals into 

‘enterotypes’ or clusters based on the abundance of key bacterial genera in the gut microbiota. 

There is a lack of consensus, however, on the analytical basis for enterotypes and on the 

interpretation of these results. Instead, it was recently found that rather than forming enterypes, 

most samples fell into gradients based on taxonomic abundance of bacteria (Koren et al., 2013). 

1.1.3 Diversity through diet 
A number of studies suggest that enterotypes can be linked to long-term dietary patterns (Wu et 

al., 2011). For example the Bacteroides enterotype has been shown to be highly associated with a 

diet based on animal proteins or a European diet, while the Prevotella enterotype has been 

associated with a diet with high concentrations of carbohydrates and simple sugars or an African 

diet (De Flippo et al., 2010). Also vegetarianism alters the composition of the intestinal 

microbiota, resulting in a decreased number and diversity of species belonging to Clostridium 

cluster IV, XIVa and XVII (Kabeerdoss et al., 2012; Liszt et al., 2009). Humans in long-term 

residential care eating a less diverse diet have a less diverse microbiota with higher abundance of 

the phylum Bacteroidetes. In contrast, community-dwelling humans receiving a more diverse and 

fiber rich diet have a more diverse microbiota with higher proportion of the phylum Firmicutes 
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(Claesson et al., 2012). These studies show that diet is a factor that undoubtedly influences the 

composition of the intestinal microbiota (Power et al., 2014). These diet-associated 

compositional changes can lead to changes in the metabolic activity of the intestinal microbiota 

and the associated host response. Unfortunately, lack of detailed information and control on the 

diet hampers the thorough investigation of the precise effect of different dietary components on 

the intestinal microbiome in humans. 
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Figure 2. A. Phylogenetic tree of human gut microbiota of two most important phyla with different 
important classes. The phylogenetic arrangement is done on species level for different important genera of 
the human microbiota. B. Phylogenetic differences between enterotypes, abundance of the main 
contributors of each enterotype from the Sanger metagenomics (Arumugam et al., 2011). C. Phylogenetic 
differences between enterotypes and co-occurrence networks within the three enterotypes from the Sanger 
metagenomes. Unclassified genera under a higher rank are marked by asterisks (Arumugam et al., 2011). 
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1.2 THE CHICKEN INTESTINAL MICROBIOTA 

1.2.1 Development and composition of the chicken microbiota 
The development of the chicken gut microbiota is also a dynamic process. Although the 

alimentary tract of newly hatched chicks is usually sterile just like in humans, bacteria derived 

from the mother and the surrounding environment rapidly gain access (Amit-Romach et al., 

2004). Since commercial chickens are hatched in industrial hatcheries, they are exposed to a 

diverse range of bacteria from environmental sources such as human handlers, bedding material, 

feed and transport boxes, rather than from parental sources (Stanley et al., 2014). Microbial 

colonization of the digestive tract of the chickens evolves very rapidly after hatching and 

achieves its functional capacity, including optimal digestion and fermentation of nutrients, during 

the first week (Lan et al., 2005). Maximum bacterial densities are reached in the gut within the 

first five days post hatch and remain relatively stable, but the composition undergoes major 

changes (Apajalahti et al., 2004). During the first four days of life the environmental conditions 

along the intestinal tract do not allow microbial differentiation, resulting in the dominance of 

facultative anaerobes like streptococci and enterobacteria in all segments of the intestine (van der 

Wielen et al., 2002). As chickens age, changes in environmental conditions in different segments 

of the intestine such as pH, nutrients and oxygen tension, result in the development of a specific 

bacterial community for each intestinal compartment (van der Wielen et al., 2002). At seven days 

post hatch the caecal microbiota is a subset of the ileal microbiota and is dominated by three 

genera (Flavonifractor, Pseudoflavonifractor and Ruminococcus) (Oakley et al., 2014a). A 

typical adult gut microbiota is suggested to be established within three weeks. In the caecum the 

genus Faecalibacterium accounts for 23-55% of the identified 16S rRNA sequences according to 

Oakley et al., while Stanley et al. found an abundance of Clostridium, Ruminococcus, 

Eubacterium, Faecalibacterium and Lactobacillus species in the caecum (Oakley et al., 2014a; 

Stanley et al., 2014). The establishment of the small intestinal microbiota is faster than the caecal 

microbiota, but the microbial community in the caeca has greater richness and diversity in 

comparison to the ileal community (Lan et al., 2005; Shaufi et al., 2015). 

Chicken gut 16S rRNA gene sequences have been deposited in three public databases (Genbank, 

Silva and Ribosomal Database Project) (Wei et al., 2013). A total of 915 species-equivalent 

OTUs are divided over 12 phyla and 117 established bacterial genera (Wei et al., 2013). 

Firmicutes constitute the most predominant phylum accounting for almost 70% of all bacterial 

sequences (Wei et al., 2013). Bacteroidetes (12.3%) and Proteobacteria (9.3%) are the second 

and third predominant phylum respectively (Wei et al., 2013). Arumugam et al. suggested that 



GENERAL INTRODUCTION 

 

22 

enterotypes also exist in animals (Arumugam et al., 2011). This is confirmed by Kaakoesh et al., 

who compared the faecal microbiota of thirty-one 56-day old chickens from two Australian farms 

and showed that the gastro-intestinal microbiota of the chickens can be classified into four 

enterotypes (Figure 3). Enterotype 1 is dominated by Firmicutes, enterotype 2 by Firmicutes and 

Proteobacteria, enterotype 3 by Firmicutes and Actinobacteria and enterotype 4 by Firmicutes 

and Bacteroidetes (Kaakoesh et al., 2014). The enterotypes of chickens are based on phylum 

level while those of humans are based on genus level. When looking at lower phylogenetic level, 

it can be stated that enterotypes 2 and 3 are derived from enterotype 1 that is dominated by 

lactobacilli at genus level and Peptostreptococcaceae at family level. Chickens with enterotypes 

2 and 3 are suggested to be later on efficiently colonized by Escherichia, Shigella and 

Enterobacter species belonging to the phylum Proteobacteria or Corynebacterium and 

Brevibacterium species belonging to the phylum Actinobacteria. In contrast, the 

Ruminococcaceae family dominates the Firmicutes from enterotype 4 and this dominance is 

shared with the Bacteroidetes genera Alistipes and Bacteroides. Recently, the existence of a 

Ruminococcaceae dominated enterotype in chickens was confirmed by Videnska et al. (Videnska 

et al., 2014). No other studies have divided the microbiota of the chickens into enterotypes, 

which suggests that further research is necessary to confirm this classification. 

 

Figure 3. Taxa identified to be the highest contributors within each enterotype in broiler chickens 
(Kaakoesh et al., 2014). 
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1.2.2 Impact of nutrition on the chicken intestinal microbiota 
The feed composition for broilers is traditionally changed three times during their lifespan. These 

changes influence the microbiota composition. Broiler chickens get a starter diet from day 1 until 

around day 14, which determines the initial composition of the microbiota. From day 15 onwards, 

chickens receive a grower diet. During the last phase, which takes from day 29 until slaughter 

age, a finisher diet is given The feeding programs for broilers can also include 4 or 5 phases and 

even multiphase diets where feed is changed every seven days (Buteri et al., 2009). The 

multiphase feeding programs are designed to meet the nutritional needs of birds more closely at 

specific points in their life cycle (Gutierrez et al., 2008), while the traditional programs are based 

on average requirements and thus can provide lower or greater amounts of nutrients than those 

needed (Hauschild et al., 2014). 

It is generally accepted that the gut microbiota has an impact on avian growth and health and that 

the activities of the microbiota can be manipulated by altering the diet (Knarreborg et al., 2002; 

Pan & Yu, 2014). In several studies it has even been suggested that diet might be the main 

contributor to differences and abundance in microbial community (Gong et al., 2002a; Lu et al., 

2003; Zhu et al., 2002). High levels of non-starch polysaccharides (NSP) as found in wheat or 

rye, lead to increased viscosity, decreased passage rate of the digesta, and lower nutrient 

digestibility, which in turn favors the growth of Clostridium perfringens. This bacterium is 

considered one of the predisposing factors of necrotic enteritis (Choct et al., 1996; Timbermont et 

al., 2011). Chickens fed a rye-based diet have increased numbers of total lactic acid bacteria in 

duodenum, ileum and caecum compared to chickens fed a corn-based diet (Tellez et al., 2014). 

Torok et al. was the first to correlate diet-associated changes in the gut microbial community 

with improved performance (Torok et al., 2008). This was taken a step further in another study, 

where three feeding trials were investigated in order to identify gut bacteria consistently linked 

with better broiler performance (Torok et al., 2011). This study was able to identify eight OTUs 

from ileum or caecum linked to broiler performance using terminal restriction fragment length 

polymorphism (T-RFLP). Sequencing of these OTUs revealed that they might represent 26 

different bacterial species or phylotypes. Some of them showed high sequence homology with 

Lactobacillus salivarius, L. aviaries, L. crispatus, Faecalibacterium prausnitzii, Escherichia coli, 

Gallibacterium anatis, Clostridium lactatifermentans, Ruminococcus torques, Bacteroides 

vulgatus and Alistipes finegoldii (Torok et al., 2011). All these studies underline the importance 

of dietary influences on the intestinal microbiota affecting broiler performance. 
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Every chicken has its own unique dominant intestinal bacterial community and host-specific 

factors are suggested to be important in the establishment of that community (van der Wielen et 

al., 2002). As feed passes through the GIT, it encounters specialized microbial communities that 

perform important digestive functions (Oakley et al., 2014b; Stanley et al., 2014) (Figure 4). The 

crop is dominated by various Lactobacillus spp. that break down starch with the formation of 

lactate (Rehman et al., 2007). Lactobacilli also dominate the proventriculus and the gizzard. The 

main difference between the crop and gizzard as detected by measuring metabolic products is the 

lower fermentation activity in the gizzard, due to low pH (Engberg et al., 2004; Rehman et al., 

2007). Using classic culturing methods, Lactobacillus spp. have been found to be dominant in the 

duodenum and ileum (Stanley et al., 2014), together with Streptococcus, Enterobacteriaceae and 

various Clostridiaceae (Gong et al., 2002b; Kohl, 2012; Pan & Yu, 2014; Stanley et al., 2014). 

The function of the ileum is mainly nutrient absorption, while in the caecum mainly bacterial 

fermentation occurs (Gong et al., 2002a). Since these regions function differently and provide a 

different environment, it is expected that they are colonized by different types of bacteria (Gong 

et al., 2002a). The most abundant bacteria in the chicken caeca are members of the 

Clostridiaceae, Bacteroidaceae, Lactobacillaceae, Proteobacteria, butyrate producing clusters of 

Firmicutes, with an abundance of the genera Clostridium, Ruminococcus, Eubacterium and 

Faecalibacterium among a number of unknown and uncultured phylotypes (Stanley et al., 2014). 

Beside the composition also the function of the microbiome can be affected by various factors 

such as dietary ingredients, nutrient level, environment, probiotic, and antibiotic treatments (Qu 

et al., 2008). 



GENERAL INTRODUCTION 

 

25 

 

Figure 4. A. Gastro-intestinal tract of a three-week-old broiler chicken. B.Variation in microbial numbers 
and composition along the gastro-intestinal tract (GIT) of chickens (Adapted from Sekirov et al., 2010). 

Further insight into the gut ecosystem is needed to understand the exact role of microbiota in 

health and gastro-intestinal disease. Nutritional strategies to manage the composition of the 

intestinal microbiota, their function and thus the detrimental or beneficial outcomes, will have 

practical value in the future.  



GENERAL INTRODUCTION 

 

26 

2. BACTERIAL METABOLITES IN THE INTESTINE 
Metabolites are produced by various members of the microbial community and consumed or 

transformed by others. These metabolites serve different functions. They also constitute an 

important communication tool between the microbiota and the host immune system (Dorrestein 

et al., 2014; Geuking et al., 2013). Therefore not only the composition but also the functional 

capacity of the intestinal microbiota is important (Hamer et al., 2012).  

Studies analyzing the gut microbiome of different animal species including chicken (Qu et al., 

2008) have emphasized the critical role of the diet in shaping the microbial community structure. 

In addition, observations from reciprocal microbiota transplantation experiments are consistent 

with the idea that a number of selection pressures in the host act to influence the community 

structure during or after colonization (Gootenberg & Turnbaugh, 2011). Furthermore differences 

in anatomical structures between the chicken and human lower intestinal tract may affect the 

availability of fermentable substrates causing the specialization of the colonizing microbiota. 

These observations suggest that the host exerts key influences on the composition of the gut 

microbiome. However in both human and chicken the sequences belonging to Lachnospiraceae 

and Ruminococcaceae are shown to dominate (Jozefiak et al., 2010; Lozupone et al., 2012). 

Additionally Lei et al. revealed that human fecal microbiota share many phylogenetic groups 

with chicken caecal microbiota at the genus level, while at the species level significant 

differences may be attributed to the metabolic characteristics associated with each species (Lei et 

al., 2012). The vast majority of papers analyzing bacterial metabolites in the intestine relate to the 

human microbiome and to some extent also that of lab animals, while literature specifically 

investigating the chicken is limited. Therefore, in this chapter the metabolic pathways reviewed 

are microbial group specific with information derived mostly from studying human microbiota, 

and results and conclusions can partly be extrapolated to the chickens. 

It is generally accepted that carbohydrate fermentation results in beneficial effects for the host 

because of the generation of short-chain fatty acids (SCFA), whereas protein fermentation is 

considered detrimental for the host’s health (Windey et al., 2012). Particular metabolic profiles 

may serve as a diagnostic tool for the identification of several diseases in humans, such as 

ulcerative colitis (UC), with increased faecal concentration of hydrogen sulphide and Crohn’s 

disease (CD), with a decreased concentration of SCFAs in faecal extracts (Huda-Faujan et al., 

2010; Ohge et al., 2005; Pitcher et al., 2000; Roediger et al., 1997). 
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2.1 PROTEIN FERMENTATION 
Protein fermentation results in the production of a wide range of metabolites that are in direct 

contact with the colonic mucosa and interact with the mucosal cells (Windey et al., 2012). 

Degradation of proteins starts with the hydrolysis into smaller peptides and amino acids by 

bacterial proteases and peptidases (Windey et al., 2012). Further anaerobic fermentation of 

aromatic amino acids such as tyrosine and tryptophan results in phenols and indoles. Oxidative or 

reductive deamination of the amino acids results in ammonia while decarboxylation results in 

different amines (Rinttila & Apajalathi, 2013) (Figure 5). 

 

Figure 5. Different metabolites produced from colonic fermentation of carbohydrates and proteins. 
BCFA, branched-chain fatty acids; SCFA, short-chain fatty acids (adapted from Hamer et al., 2012).  

2.1.1 Phenolic and indolic compounds 
Phenolic and indolic compounds are formed following bacterial degradation of aromatic amino 

acids such as tyrosine, tryptophan and phenylalanine (Hughes et al., 2000). Different degradation 

products of tyrosine are phenol and p-cresol while tryptophan degradation generates indole and 

derivatives, including skatole. Bacterial metabolism of phenylalanine leads to derivatives such as 

phenylpyruvate and phenyllactate (Windey et al., 2012). The intestinal bacteria involved in these 

processes include clostridia, Bacteroides, enterobacteria, bifidobacteria and lactobacilli 

(Aragozzini et al., 1979; Botsford & Demoss, 1972; Chung et al., 1975; Elsden et al., 1976; 

Hughes et al., 2000; Yokoyama & Carlson, 1974).  

Phenol is a potential driver of gut-barrier alterations (Leclercq et al., 2014). This was 

demonstrated in the study of McCall et al. who showed a dose-response effect of phenol on 

epithelial barrier function using transepithelial resistance (TER) and FITC-dextran permeability 

measurements on SK-CO15 cells, a transformed human colonic epithelial cell line (McCall et al., 

2009). The TER decreased with increasing concentration of phenol (1μM, 100μM, 1mM, 3.2mM, 

6.4mM, 10.6mM, 15.9mM, 21.2mM) suggesting disruption of the epithelial barrier after 

exposure to phenol. In addition a significant increase in flux of FITC-dextran was shown, 
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suggesting a phenol induced increase of the increases epithelial paracellular permeability in vitro 

(McCall et al., 2009). Phenol (1.25-1.5mM) has also been shown to significantly impair the 

viability of human colonic epithelial HT-29 cells, suggesting a direct toxic effect of phenol in 

vitro (Pedersen et al., 2002).  

Indole, on the other hand was shown to have a beneficial role in establishing an epithelial barrier 

in vitro and in vivo by inducing the expression of several genes involved in epithelial cell 

function (Bansal et al., 2010; Shimada et al., 2013). The in vitro study of Bansal et al. showed 

coordinated control of inflammation in the presence of 1mM indole through the repression of 

several inflammatory cytokines and coordinated regulation of signaling pathways (Bansal et al., 

2010). Germ-free mice treated with indole-containing capsules (15mg) showed a higher 

resistance to epithelial damage induced by dextran sodium sulphate (Shimada et al., 2013). This 

suggests that indole promotes the stability of the intestinal epithelial barrier and has no toxic 

effects (Shimada et al., 2013). But further hydroxylation of indole results in 3-hydroxy-indole, 

the majority of which is sulfonated to indoxyl sulphate, an uremic toxin (Meijers & Evenepoel, 

2011; Niwa, 2010). There is a direct association between indoxyl and cardiovascular disease and 

overall mortality, and it is also markedly accumulated in the serum of patients with chronic 

kidney disease (Barreto et al., 2009; Meijers & Evenepoel, 2011; Niwa, 2010). 

In chickens, to our knowledge there is nothing to be found about the effects of phenol and indole. 

The only thing that was found were Spirochetes chicken isolates that were able to produce indole 

(McLaren et al., 1997).  

2.1.2 Ammonia 
Ammonia is produced through oxidative or reductive deamination of the terminal amine group of 

the amino acids or to some extent also through urea hydrolysis catalyzed by urease activity in the 

distal gut (Blachier et al., 2007; Hughes et al., 2000; Rinttila & Apajalathi, 2013; Windey et al., 

2012). Large amounts of ammonia are generated by Gram-negative anaerobes, clostridia, 

enterobacteria, or Bacillus spp., while Gram-positive non-spore forming anaerobes or 

streptococci produce modest amounts of ammonia. Only small amounts are formed by 

lactobacilli or yeasts (Vince & Burridge, 1980). 

The presence of ammonia (35μmol/g) in the hindgut has been shown to affect the kinetics of 

colonocytes including increased mucosal cell turnover, which suggests the possible involvement 

in tumor promotion and thus the increase in incidence of colon carcinomas (Ichikawa & Sakata, 
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1998; Rowland et al., 1998). Another study using a rat model showed the increased production of 

ammonia (1-2μg) and incidence of colon cancer as a result of a high protein diet (Topping & 

Visek, 1976). Also ammonium acetate (24.8mg) has been shown to increase the incidence and 

total number of colonic carcinomas in rats (Clinton et al., 1988). It has been hypothesized that 

this toxic effect of ammonia can be counteracted by butyrate (Bartram et al., 1993; Windey et al., 

2012). In normal conditions ammonia is rapidly absorbed into the portal blood, converted to urea 

in the liver and excreted in the urine (Hamer et al., 2012; Hughes et al., 2000). 

In the blood circulation of broiler chickens, ammonia is easily absorbed through the intestinal 

epithelium and has toxic effects on enterocytes (Karasawa & Nakata, 1986; Macfarlane & 

Macfarlane, 2012; Rinttila & Apajalathi, 2013). 

2.1.3 Amines 
The decarboxylation of amino acids results in the presence of different amines in the gut 

(Pessione et al., 2005; Windey et al., 2012). Amines found in the gut are produced by colonic 

bacteria belonging to the genera Clostridium, Bifidobacterium and Bacteroides and include 

agamatine, tyramine, pyrrolidine, histamine, piperidine, cadaverine, putrescine and 5-

hydroxytryptamine (Allison & Macfarlane, 1989; Drasar & Hill, 1974; Hughes et al., 2000) 

which are further detoxified by monoamine and diamine oxidases (Hughes et al., 2000; Windey 

et al., 2012). The most active amines are histamine and tyramine that are decarboxylation 

breakdown products of histidine and tyrosine, respectively (Ladero et al., 2010). 

Histamine binds specific receptors in the gut and results in the contraction of the intestinal 

smooth muscle cells and the dilatation of the surrounding blood vessels (Jarisch, 2004; Ladero et 

al., 2010). There are no histamine effects when the plasma histamine concentration is 0-1 ng/mL 

(Maintz & Novak, 2007). Higher histamine concentrations (1-2ng/mL) have been associated with 

a number of inflammatory and neoplastic diseases such as CD, UC and colorectal neoplasms 

(Ladero et al., 2010; Maintz & Novak, 2007). An excess of tyramine (> 6mg/kg) in the GIT can 

lead to its entering into the systemic circulation, through which it can reach adrenergic nerve 

terminals or can be β-hydroxylated to octopamine and stored in vesicles with the gradual 

displacement of norepinephrine, resulting in a transient increase in blood pressure (Ladero et al., 

2010). Indirect toxic effects have been described for putrescine and other polyamines, with a role 

in the regulation of cell growth, proliferation and maturation (Dufour et al., 1988; Ladero et al., 

2010; Seiler et al., 1998). Their levels (daily intake for adult vary between 350 and 550μmol) 

need to be tightly regulated since a disturbed equilibrium may lead to the dysregulation of certain 
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physiological functions such as neurotransmitter, cell growth and differentiation, gastric acid 

secretion, immune response, increased cardiac output, regulation of gene expression, etc. (Ladero 

et al., 2010). This suggests that putrescine and others have a role in promoting the malignant 

transformation of cells (Gerner & Meyskens, 2004; Ladero et al., 2010; Seiler et al., 1998; 

Wallace & Caslake, 2001). Other amines have been linked to different diseases like migraine, 

hepatic coma, hypertension, heart failure, cancer and gastro-intestinal disease (Hughes et al., 

2000; Ladero et al., 2010; Macfarlane, 1997; Murray et al., 1993; Seidel et al., 1984; Smith, 

1981). 

Amines like phenylethylamine (4.8mg/kg), putrescine (49mg/kg), cadaverine (107mg/kg), 

histamine (131mg/kg) or a combination of all these amines have been implicated in causing poor 

performance and intestinal lesions in broilers (Bermudez & Firman, 1998).  

2.1.4  Sulphides 
Hydrogen sulphide (H2S) is a bacterial metabolite present in the lumen of the distal intestine, 

which is produced through fermentation of sulphur-containing amino acids, through the reduction 

of inorganic sulphate and sulphating agents such as sodium and potassium sulphite, 

metabisulphite, bisulphites and sulphur dioxide (SO2) or through intestinal sulphomucin 

metabolism (Blachier et al., 2007; Roediger et al., 1997). Sulphate-reducing bacteria (SRB) are a 

diverse group that reduce inorganic sulphate to H2S. Therefore, SRB are sharing the ability to use 

sulphate as terminal electron acceptor and H2 as their electron donor for respiration with the 

concomitant production of H2S (Carbonero et al., 2012; Fite et al., 2004) (Figure 6). The amounts 

of dietary inorganic sulphate and sulphur amino acids are critical in determining sulphate and 

H2S production in the distal intestine (Hughes et al., 2000). 

H2S has been shown to modulate peripheral nociceptive (pain-related) signals (Kawabata et al., 

2007). H2S (1-2mmol/L) is highly toxic to colonocytes and impairs their metabolic function, 

especially butyrate oxidation (Roediger et al., 1993a, b). The anionic sulphide concentration is 

elevated in the colon of patients with UC (Roediger et al., 1997). Either increased sulphidogenic 

activity or reduced sulphite detoxification in the colonic epithelium might explain the increased 

H2S concentrations (0.6mM) in UC patients and their potential inflammatory impact (Carbonero 

et al., 2012; Ohge et al., 2005; Pitcher et al., 2000). H2S can damage the intestinal epithelium 

leading to chronic inflammation (Babidge et al., 1998; Roediger et al., 1997; Roediger et al., 

1993a) as well as perturbation of the balance between cellular proliferation and apoptosis (Cai et 

al., 2010; Deplancke & Gaskins, 2003; Leschelle et al., 2005). The studies of Attene-Ramos et 
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al. confirmed that H2S (> 500μM) perturbs cellular homeostasis in the colonic mucosa, affecting 

cell proliferation and increasing inflammation (Attene-Ramos et al., 2006; Attene-Ramos et al., 

2010). The observed association of increased H2S with colorectal cancer is derived from cysteine 

fermentation rather than sulphate respiration (Carbonero et al., 2012). H2S is toxic to microbes in 

general. It also helps to maintain the anaerobic status (Carbonero et al., 2012). 

No effect of sulphides and sulphate-reducing bacteria related to chickens are already described.  

2.1.5 Branched-chain fatty acids  
Branched-chain fatty acids (BCFA) are end-products of bacterial fermentation of proteins and are 

not produced from carbohydrate fermentation (Blachier et al., 2007; Nordgaard et al., 1995; 

Rasmussen et al., 1988). Compared to previous protein fermentation products, BCFAs are not 

toxic to the host cell. 

Little is known about the metabolism of BCFAs in colonic epithelial cells. Iso-butyrate may serve 

as a fuel in colonocytes when butyrate availability is defective (Jaskiewicz et al., 1996). So far no 

measurable effect of BCFAs could be shown on proliferation, differentiation or apoptosis using 

in vitro models of colonic adenocarcinoma cells (Blachier et al., 2007). 

The level of iso-butyrate, valerate and iso-valerate were measured in a study that describes the 

effect of isomalto-oligosaccharides in broilers (Zhang et al., 2003). This study showed that the 

levels of BCFA were decreased when the chickens were fed with isomalto-oligosaccharides. This 

suggested that there is indeed production of BCFA possible in chickens.  
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2.2 CARBOHYDRATE FERMENTATION 
Under the anaerobic conditions of the distal intestine, undigested carbohydrates are fermented 

mainly to gases and SCFAs (Flint et al., 2012a; Flint et al., 2012b; Louis et al., 2014; Samuel & 

Gordon, 2006) (Figure 5). 

2.2.1 Gases 
The production and metabolization of colonic gases such as hydrogen (H2), carbon dioxide 

(CO2), methane (CH4), nitrogen (N2) and oxygen (O2) influences health and disease (Carbonero 

et al., 2012). H2, CO2 and CH4 are produced solely by microbes in the distal gut, which ferment 

dietary components that escape digestion by host enzymes and endogenous substrates derived 

from the distal gut mucosa (Carbonero et al., 2012; Suarez et al., 1997). The accumulation of gas 

in the colonic lumen is dependent on the interplay between various microbial metabolic pathways 

and host physiology. The role of gaseous by-products of microbial fermentation has been 

implicated in irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), obesity and 

colorectal cancer (CRC) (Carbonero et al., 2012). The concentrations of gases were difficult to 

measure as they are very rapidly absorbed during passage through the intestine. 

Luminal N2 can be derived from either swallowed air or diffusion from the blood (Suarez et al., 

1997).  

To our knowledge, there were no studies that describe directly the effect of the colonic gases in 

chickens. But different microbiota studies showed the presence of bacteria that are responsible 

for the production of gases (Lu et al., 2003). For example, the study of Saengkerdsub et al. could 

successfully detect methanogenic archaea in faecal samples from 3- to 12-day-old broiler by 

qPCR (Saengkerdsub et al., 2007).  

2.2.1.1  Carbon dioxide 

CO2 is derived predominantly from bacterial fermentation (Suarez et al., 1997). Most CO2 is 

absorbed by the colonic mucosa and recirculates in the blood or passes as flatus (Carbonero et al., 

2012; Christl et al., 1992). 

2.2.1.2  Hydrogen  

Hydrogen (H2) can be produced by cleavage of pyruvate to formate and subsequent conversion 

by formate hydrogen lyase, or by generation from pyruvate through the activity of 

pyruvate:ferredoxin oxidoreductase and hydrogenase (Carbonero et al., 2012; Macfarlane, 1997). 
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The production of H2 by hydrogenogenic microbes such as Ruminococcus spp., Roseburia spp., 

clostridia spp. and Bacteroides spp., is crucial for the efficiency of fermentation and has a key 

role in anaerobic ecosystems (Carbonero et al., 2012; Flint et al., 2012a). 

Bacterial H2 production affects the metabolism of hydrogen-utilizing fermentative bacteria (Flint 

et al., 2012a; Macfarlane & Macfarlane, 2003). Microorganisms that use H2 (hydrogenotrophic 

bacteria), such as methanogenic archaea (e.g. Methanobrevibacter smithii), acetogenic bacteria 

(e.g. Blautia hydrogenotrophica) and sulphate-reducing bacteria (e.g. Desulfovibrio spp., 

producing H2S), have a particularly important role in anaerobic metabolism via interspecies 

cross-feeding interactions (Louis et al., 2014) (Figure 6). Reductive acetogens are more 

metabolically versatile than methanogenic archaea or sulphate-reducing bacteria (Carbonero et 

al., 2012). The nature of the interaction of acetogens with these two groups of hydrogenotrophic 

microbes and the extent to which they contribute to H2 disposal in CH4-excretors versus non-

excretors remains to be resolved (Carbonero et al., 2012). 

2.2.1.3  Methane  

Colonic methanogenic archaea (Methanobrevibacter smithii and Methanosphaera stadtmanae) 

derive all (or most) of their metabolic energy from methanogenesis by reducing CO2 or methanol 

to methane (CH4) using H2 or formate as electron donor (Carbonero et al., 2012; Hedderich & 

Whitman, 2006). 

CH4 is a colorless, volatile inert gas that has long been thought to have no negative effects in 

humans other than discomfort from gaseous distension (Pimentel et al., 2012). However, 

increasing evidence has linked CH4 production to various disease states (Pimentel et al., 2012). 

There has been a correlation observed between high breath CH4 level (50ppm) and decreased 

intestinal motility (Pimentel et al., 2006). Moreover, there is a strong association between 

methanogenesis and chronic constipation (Attaluri et al., 2009; Pimentel et al., 2012; Pimentel et 

al., 2006). 

2.2.2 Lactate and succinate 
L-lactate and/or D-lactate are the major fermentation products of lactic acid bacteria, including 

lactobacilli, bifidobacteria, enterococci and streptococci and can also be produced by strict 

anaerobes such as Eubacterium spp. (Barcenilla et al., 2000; Macfarlane, 1997). Under some 

environmental conditions succinate is a metabolic end-product of some Bacteroidetes like the 

genera Alistipes and Bacteroides (Macfarlane, 1997; Rautio et al., 2003). Both lactate and 
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succinate are intermediates in the global fermentation process and are to varying extents 

metabolized to SCFA by cross-feeding species (Belenguer et al., 2007; Bernalier et al., 1999; 

Duncan et al., 2004b; Macfarlane & Macfarlane, 2012). 

Lactate tends to reduce residual pH more than SCFA (Rinttila & Apajalathi, 2013). However, it is 

rarely present in high quantities, as it is normally rapidly absorbed from the intestine or used as a 

substrate for lactate-utilizing bacteria, such as representatives of the genera Eubacterium, 

Anaerostipes, Veillonella and Megasphaera (Belenguer et al., 2006; Duncan et al., 2004a; 

Harmsen et al., 2002b; Rinttila & Apajalathi, 2013) (Figure 6). Succinate is the intermediate for 

propionate formation through decarboxylation of this symmetrical compound in the succinate 

pathway (Hosseini et al., 2011; Reichardt et al., 2014) (Figure 6). 

In chickens, different studies found that Lactobacillus spp. were dominant in the duodenum and 

ileum (Oakley et al., 2014b; Stanley et al., 2014). The presence of this species suggested the 

production of lactate but normally it’s rapidly absorbed from the intestine or used by some 

butyrate-producing bacteria (Duncan et al., 2004a). Also succinate is an intermediate that can be 

absorbed by the intestine. The study of Kimmich et al. showed that isolated chick intestinal 

epithelial cells take up succinate by a Na+-coupled transport system (Kimmich et al., 1991).  

2.2.3 Short-chain fatty acids  
SCFAs are the major end-products of bacterial metabolism (Macfarlane & Macfarlane, 2003). 

They are formed principally from polysaccharide, oligosaccharide, protein, peptide and 

glycoprotein precursors by anaerobic microorganisms. Carbohydrates are the most important 

SCFA progenitors (Cummings & Macfarlane, 1991). The rate and amount of SCFA production 

depends on the site of fermentation and the composition and density of the gut microbiota in 

combination with the type of (complex) dietary fibers available for microbial fermentation 

(Macfarlane et al., 2006). SCFAs are rapidly absorbed from the gut lumen, but their subsequent 

distribution, fate and effects on host cell metabolism differs (Louis et al., 2014). 

The caecum in broiler chickens is the main fermentative chamber and, in comparison with other 

gastro-intestinal tract segments, contains the largest number of bacteria (Nabizadeh, 2012). 

Looking at the microbiota composition of the caecum showed us that the chickens have different 

bacterial groups who were able to produce SCFA in the caecum (Lu et al., 2003; Oakley et al., 

2014b; Stanley et al., 2014). Most of the characteristics of the SCFA in humans could extrapolate 

to the chickens.  
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2.2.3.1  Acetate

Acetate is the most abundant SCFA and is produced by most enteric bacteria as fermentation 

product (Louis et al., 2014) (Figure 6). Acetogens are a group of obligate anaerobic bacteria 

related to the genera Ruminococcus, Blautia, Clostridium or Streptococcus (Drake et al., 2008). 

These bacteria utilize the acetyl-CoA (Wood-Ljungdhal) pathway to synthesize acetate from CO2 

and H2 or from formate (Bernalier et al., 1996a; Bernalier et al., 1996b; Doré et al., 1995). This 

acetogenesis is the most prevalent pathway of H2 utilization in the human colon (Rey et al., 

2010). Non-acetogenic anaerobes, which comprise most of the microbiota, dispose reducing 

equivalents by formation of other products in addition to or instead of acetate, including 

succinate, propionate, butyrate, formate, lactate and ethanol (Louis et al., 2014). Less widely 

recognized is that acetate is also an intermediate that is consumed by the major butyrate-

producing bacteria (Flint et al., 2012a; Louis & Flint, 2009). 

Acetate (75mM) enhances ileal motility (Scheppach, 1994). It is suggested that acetate may have 

a trophic effect on the colonic epithelium not only by local action, but also by increasing mucosal 

blood flow (Scheppach, 1994). So acetate, the principal SCFA in the colon, is readily absorbed 

and transported to the liver, and therefore less metabolized in the colon (Hijova & Chmelarova, 

2007). As the liver takes up acetate, it is used as substrate for lipogenesis and gluconeogenesis 

(Tremaroli & Backhed, 2012). In human studies, acetate is often used to monitor colonic events 

because it is the main SCFA in the blood (Hijova & Chmelarova, 2007). 

2.2.3.2  Propionate 

Three different pathways are used by the human gut microbiota to produce propionate (Reichardt 

et al., 2014) (Figure 6). It is mostly formed via the succinate pathway by Bacteroidetes and by 

some Firmicutes of the class Negativicutes (Louis et al., 2014). The acrylate route from lactate is 

found in bacteria belonging to Clostridium cluster IX (Louis et al., 2007; Reichardt et al., 2014). 

A third pathway, the propanediol pathway, is employed by the butyrate-producing bacterium 

Roseburia inulinivorans with fucose as substrate (Scott et al., 2006). The proportion of 

propionate that is present in total faecal SCFA correlates with the relative abundance of 

Bacteroidetes, which confirms that the succinate pathway is the dominant source for propionate 

production (Louis et al., 2014; Salonen et al., 2014).  

Propionate of gut microbial origin is known to possess biological activities at the level of the 

intestinal epithelium, although it may affect other organs and tissues due to its efficient transport 

across the gut epithelium (Hosseini et al., 2011). Propionate has potential health-promoting 
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effects that include anti-lipogenic, cholesterol-lowering, anti-inflammatory and anti-carcinogenic 

actions (Delzenne & Williams, 2002; Hosseini et al., 2011; Jan et al., 2002; Vinolo et al., 2011). 

It inhibits stimuli-induced expression of adhesion molecules, chemokine production and 

consequently suppresses monocyte/macrophage and neutrophil recruitment, suggesting an anti-

inflammatory action (Vinolo et al., 2011). 

2.2.3.3  Butyrate  

Butyrate is produced by many Firmicutes species using either butyryl-CoA:acetate CoA-

transferase or, less commonly, phosphotransbutyrylase and butyrate kinase to catalyze the final 

steps of the pathway (Duncan et al., 2004a; Louis et al., 2004) (Figure 6). The butyryl-

CoA:acetate CoA-transferase route is used by several genera of the healthy gut microbiota 

including Faecalibacterium, Roseburia, Anaerostipes and Butyricicoccus (Eeckhaut et al., 2011; 

Flint et al., 2012a; Louis & Flint, 2009; Louis et al., 2014; Louis et al., 2010; Walker et al., 

2011). 

Butyrate is preferentially used as energy source by colonocytes and plays a multifunctional role 

in intestinal cells (Hamer et al., 2008). It influences a wide range of cellular functions that affect 

intestinal health. 
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Figure 6. Pathways for the biosynthesis of the major microbial metabolites that result from carbohydrate 
fermentation and bacterial cross-feeding. Of the three main short-chain fatty acids (SCFAs; shown in red), 
acetate can be produced by many enteric bacteria from pyruvate via acetyl-CoA and also via the Wood-
Ljungdahl pathway by acetogens, such as Blautia hydrogenotrophica. Butyrate is formed from two 
molecules of acetyl-CoA by several Firmicutes, and butyryl-CoA:acetate CoA-transferase is usually used 
to catalyze the last enzymatic step (Louis et al., 2004). The predominant propionate production pathway is 
the succinate pathway, which is used by Bacteroidetes to generate propionate from carbohydrates and by 
some Firmicutes to produce propionate from lactate or succinate. Two other propionate formation 
pathways are found in some gut bacteria: the acrylate pathway, which uses lactate, and the propanediol 
pathway, which uses deoxyhexose sugars (such as fucose and rhamnose) (Reichardt et al., 2014). The 
pathway that is involved in hydrogen metabolism is also shown. The bacterial species that are shown are 
based on studies of cultured isolates and metagenomic analyses and are thus not exhaustive. Archaea are 
shown in orange, Bacteroidetes are shown in grey, Lachnospiraceae (Firmicutes) are shown in blue, 
Ruminococcaceae (Firmicutes) are shown in purple, Negativicutes (Firmicutes) are shown in green and 
Proteobacteria are shown in brown. HAP, dihydroxyacetinephosphate; PEP, phosphoenolpyruvate (Louis 
et al., 2014). 
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2.3 LIPID METABOLISM 
A diet is composed of digestible and fermentable elements.. For carbohydrates and protein 

fermentation a lot of research has already been done on their microbial fermentation and the 

effects of the resulting metabolites, but for the lipid metabolism there is less research on this 

topic. Nevertheless it has been demonstrated that the microbiota acts at many levels, from lipid 

processing and absorption to systemic lipid metabolism and storage (Greer et al., 2013; Tremaroli 

& Backhed, 2012).  

The influence of dietary fat on the gut microbiota may be indirectly mediated by bile acids 

(Conlon & Bird, 2015). Bile acids are synthesized in hepatocytes as cholesterol moieties 

conjugated to either a taurine or a glycine amino acid and stored in the gallbladder before 

secretion into the duodenum via the common bile duct (Joyce et al., 2014; Brestoff & Artis, 

2013). Bacterial bile salt hydrolase (BSH) enzymes in the gut catalyze the generation of 

unconjugated bile acids which are then further modified by bacteria to yield secondary bile acids. 

Functional BSH activity is a conserved microbial adaptation that is unique to the gut-associated 

microbiota and significantly influences lipid metabolism, weight gain and cholesterol levels in 

the host (Joyce et al., 2014). 

However, further research is required on the interactions between dietary fat, the type and amount 

of bile acids that reach the large bowel, and the population structure and function of the 

microbiota (Conlon & Bird, 2015). 

  



GENERAL INTRODUCTION 

 

39 

3. THE ROLE OF BUTYRATE IN INTESTINAL HEALTH 
The four-carbon SCFA, butyrate, produced by microbial fermentation of dietary fibers, has 

multiple beneficial effects on host health (Canani et al., 2011; Guilloteau et al., 2010; Leonel & 

Alvarez-Leite, 2012). Butyrate is the energy source for epithelial cells in the hindgut and is 

involved in the maintenance of the gastro-intestinal mucosal health (Hamer et al., 2008). In 

addition, butyrate stimulates the growth and differentiation of healthy epithelial cells but inhibits 

growth and induces apoptosis in human colon carcinoma cells and a variety of other tumor cell 

types (Comalada et al., 2006; Luciano et al., 2002). 

3.1 ANTI-INFLAMMATORY FUNCTION 
Butyrate exerts anti-inflammatory activity by several mechanisms, such as the inhibition of 

nuclear factor-kappa B (NF-κB) activation, interferon γ (IFNγ) production and the upregulation 

of peroxisome proliferator-activated receptor γ (PPARγ) (Inan et al., 2000; Klampfer et al., 2003; 

Wächtershäuser et al., 2000) (Figure 7). NF-κB is a transcription factor that regulates genes 

involved in early immune and inflammatory responses (Baeuerle & Henkel, 1994). Butyrate is a 

histone deacetylase (HDAC) inhibitor. Hyperacetylation of histones has been reported to 

modulate the activity of the transcription factor NF-κB in a number of different cell types, 

including colon cancer cells and macrophages (Boffa et al., 1978; Inan et al., 2000; Luhrs et al., 

2002; Place et al., 2005; Segain et al., 2000). Inhibition of activation of NF-κB by butyrate 

results in decreased expression of pro-inflammatory cytokines such as interleukin-1 (IL-1), IL-6 

and tumor necrosis factor-α (TNF-α) (Place et al., 2005; Segain et al., 2000). The study of Place 

et al. demonstrated that butyrate influences NF-κB activity by preventing the proteasome-

dependent degradation of ubiquitinated inhibitor-kappa B α (IκBα), which is an inhibitory protein 

that inhibits the translocation of NF-κB into the nucleus (Scherer et al., 1995) (Figure 7A). This 

inhibition of ubiquitinated IκBα proteasome degradation appears to arise from butyrate’s ability 

to directly inhibit HDAC activity, since similar results are obtained with the specific HDAC 

inhibitor trichostatin A (TSA) (Finco et al., 1994; Miyamoto et al., 1994; Place et al., 2005). 

The signaling of the pro-inflammatory cytokine IFNγ, secreted by lamina propria cells, is 

inhibited by butyrate at the level of phosphorylation of the signal transducer and activator of 

transcription 1 (STAT1) transcription factor (Klampfer et al., 2003). The Janus kinases (JAK1/2) 

are responsible for the phosphorylation of STAT1. This results in STAT1 dimerization, its 

translocation to the nucleus, DNA binding and stimulated expression of the IFN-responsive genes 

(Jove, 2000; Schroder et al., 2004). Klampfer et al. demonstrated that butyrate inhibits STAT1 
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activation at least in part through the inhibition of JAK2 phosphorylation, which suggests that 

JAK2 is the target of the butyrate action for the inhibition of IFNγ signaling (Figure 7B). 

PPARγ is a ligand-activated transcription factor that belongs to the nuclear hormone receptor 

family and that participates in a variety of immune processes (Schwab et al., 2007; 

Wächtershäuser et al., 2000). In the human adenocarcinoma cell line Caco-2, butyrate increases 

PPARγ at mRNA and protein level (Wächtershäuser et al., 2000). The PPARγ receptor is highly 

expressed in epithelium, indicating a role in the physiology of human colon cell proliferation and 

differentiation but also in modulating cell cycling (Desvergne & Wahli, 1999; Theocharis et al., 

2004). PPARγ can inhibit the action of NF-κB (Daynes & Jones, 2002; Dubuquoy et al., 2002; 

Schwab et al., 2007) (Figure 7C). 

 

Figure 7. Butyrate exerts anti-inflammatory activity by several mechanisms. A. The inhibition of 
NF-κB. Inactive NF-κB dimers are sequestered in the cytoplasm of cells by the IκB family of inhibitory 
proteins. In response to inflammatory stimuli, IκB kinase is activated and IκB is phosphorylated, 
ubiquinated and degraded. The activated NF-κB complex translocates to the nucleus and binds DNA, 
regulating gene expression of the pro-inflammatory cytokines. Butyrate prevents the NF-κB activity by 
inhibiting the proteasome dependent degradation of ubiquitinated IκB. B. The inhibition of IFNγ. The 
binding of IFNγ to the IFN receptor initiates signaling through transphosphorylation and activation of the 
Janus kinases JAK1. This induces phosphorylation of STAT1, which results in STAT1 dimerization, its 
nuclear translocation, DNA binding and stimulation of expression of the IFN-responsive genes. The IFNγ-
induced JAK2 activation is inhibited by butyrate. C. The upregulation of PPARγ. When a ligand binds 
to PPARγ, they prevent the activation of NF-κB. Butyrate increases PPARγ on mRNA and protein level 
and the activation of this receptor prevented NF-κB activity. NF-κB, nuclear factor-kappa B; IκB, 
inhibitor-kappa B; IFNγ, interferon-gamma; STAT1, signal transducer and activator of transcription 1; 
JAK1/2, Janus kinase1/2; PPARγ, peroxisome proliferator-activated receptor-gamma 
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3.2 STABILIZATION OF MUCOSAL BARRIER INTEGRITY 
Butyrate also has a role in reinforcing the colonic defense barrier by affecting several 

components of this barrier (Canani et al., 2011; Hamer et al., 2008; Leonel & Alvarez-Leite, 

2012). One of these components is the intestinal mucin 2 (MUC2) gene that encodes a 

glycosylated mucin (Jiang et al., 2013). MUC2 mediated mucin production is stimulated by 

butyrate in human colon cancer cells, resulting in an important protective mucosal layer and thus 

protection against luminal agents (Hatayama et al., 2007; Jiang et al., 2013; Willemsen et al., 

2003). 

Another important component are the tight junctions which form a major paracellular barrier in 

the epithelial tissues (Mitic et al., 2000). The regulation of tight junctions depends on the 

activation of AMP-activated protein kinase (AMPK) (Zhang et al., 2006). Butyrate increases the 

AMPK activity, which facilitates the assembly of tight junctions and thus enhances the intestinal 

barrier function (Peng et al., 2009). The expression of Claudin-1, a major tight junction trans-

membrane protein, is significantly upregulated by the addition of sodium butyrate (Wang et al., 

2012). The loss of intestinal epithelial integrity and will affect the protection against pathogens as 

well as uptake of nutrients and digestion. 

The expression of antimicrobial peptides (AMP) such as cathelicidins and defensins forms a first 

line of defense protecting the gastro-intestinal mucosa against invasion and adherence of bacteria 

and thereby preventing infection (Hilchie et al., 2013). In humans, there are various defensins 

while LL-37 is the only cathelicidin-derived peptide (Durr et al., 2006). Butyrate increases the 

expression of LL-37 in a dose and time dependent manner by stimulating the activation of 

different mitogen-activated protein (MAP) kinases. The molecular mechanism may be linked to 

an increase in histone acetylation (Schauber et al., 2003; Schauber et al., 2004). In chickens, four 

cathelicidins (fowlicidins 1-3 and cathelicidin-B1) have been described (Goitsuka et al., 2007; 

Xiao et al., 2006). These cathelicidins are widely expressed throughout the GIT (Achanta et al., 

2012). Butyrate has a strong capacity to induce expression of AMPs such as defensins AvBD9 

and AvBD14 and cathelicidin B1. Consequently, the supplementation of butyrate can augment 

disease resistance and reduce bacterial colonization in chickens (Sunkara et al., 2014; Sunkara et 

al., 2011). 
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3.3 PATHOGEN CONTROL 
A correlation has been found between the presence of butyrate and the control of pathogens such 

as Salmonella Enteritidis and Clostridium perfringens. Different studies by Van Immerseel et al. 

show that butyrate significantly reduce Salmonella colonization and shedding in chickens and 

invasion of Salmonella in epithelial cell lines (Van Immerseel et al., 2004a; Van Immerseel et al., 

2004b; Van Immerseel et al., 2005). The invasion of intestinal epithelial cells is an important step 

in the pathogenesis of Salmonella infection and requires a set of genes encoded by the Salmonella 

pathogenicity island 1 (SPI1). Butyrate has been shown to suppress the HilA-dependent 

regulation of SPI1 by altering the regulation of hilD transcription (Gantois et al., 2006). In 

addition to the effect on Salmonella, butyrate also has the ability to influence C. perfringens-

induced necrotic enteritis (NE). NE is a widespread and economically important bacterial disease 

in broiler flocks that occurs in two forms (Van der Sluis, 2010). The subclinical form is 

characterized by poor performance (reduced growth, reduced feed efficiency) without mortality, 

while the clinical form appears with clinical signs and mortality (Shojadoost et al., 2012). 

Butyrate has no significant antimicrobial effect against C. perfringens, but it is able to reduce the 

number of animals developing necrotic lesions in the small intestine in an in vivo model 

(Timbermont et al., 2010). 
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3.4 GLUCAGON-LIKE PEPTIDE-2 UPREGULATION 
How butyrate, which is mainly produced in the distal parts of the intestinal tract, can beneficially 

affect the small intestine is supposed to be due to the activity of glucagon-like peptide-2 (GLP-2) 

(Rowland & Brubaker, 2011). GLP-2 is a 33-amino acid peptide derived from the tissue-specific, 

post-translational processing of the proglucagon gene expressed in the intestinal enteroendocrine 

L-cells, which are located predominantly in the distal small intestine and colon (Burrin et al., 

2001; Holst, 2000). GLP-2 acts via specific binding with receptor GLP-2R, which is a G protein-

coupled receptor (GPCR) (Drucker, 2001; Munroe et al., 1999). The expression of GLP-2R is 

highly tissue specific and is located on enteric neurons, enteroendocrine cells (Guan et al., 2006) 

and subepithelial myofibroblasts (de Heuvel et al., 2012; Orskov et al., 2005; Yusta et al., 2000). 

These cells produce multiple downstream mediators affecting the intestinal epithelium (Drucker, 

1999; Drucker & Yusta, 2014; Dube & Brubaker, 2007; Sigalet et al., 2010). The different 

biological functions of the intestinotrophic peptide GLP-2 are related to the regulation of energy 

absorption and maintenance of mucosal morphology, function and integrity (Benjamin et al., 

2000; Drucker et al., 1997; Drucker et al., 1996; Estall & Drucker, 2006; Janssen et al., 2013; 

Tsai et al., 1997a; Tsai et al., 1997b). A key beneficial effect of GLP-2 on the gut is its ability to 

increase intestinal epithelial growth by enhancing crypt cell proliferation and inhibiting 

apoptosis, resulting in increased villus height (Drucker et al., 1996; Janssen et al., 2013; Tsai et 

al., 1997a; Tsai et al., 1997b). These multiple functions display the benefit of GLP-2 in a setting 

of intestinal dysfunction (Dube & Brubaker, 2007). SCFA have been shown to mediate GLP-2 

release by the enteroendocrine L-cells in the distal gut (Guilloteau et al., 2010; Tappenden et al., 

2003). Butyrate appears to be the strongest stimulator of GLP-2 and is associated with increased 

plasma concentration of GLP-2 (Guilloteau et al., 2010; Mangian & Tappenden, 2009; 

Tappenden et al., 2003). 

In chickens, GLP-2 is secreted by L-cells located in the epithelium of crypts and lower part of 

villi in the jejunum and ileum (Monir et al., 2014; Nishimura et al., 2013). L-cells in the chicken 

are characterized by secretory granules, which store GLP-1 and GLP-2, and microvilli covering 

the apical surface (Nishimura et al., 2013). Intraperitoneal injection of GLP-2 in broilers reverses 

the negative effects of corticosterone induced stress on morphology, absorptive functioning and 

weight of the small intestine and positively influences the feed conversion ratio (FCR), daily gain 

and final body weight (Hu et al., 2010). On the other hand, intracerebroventricular administration 

of chicken GLP-2 potently suppresses feed intake. This suggests a role in the regulation of 

appetite and might function as an anorexigenic peptide in chicken brain (Honda et al., 2014; 
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Honda et al., 2015). GLP-1 is already known as an anorexigenic peptide. In animal models GLP-

1 inhibits food and drink intake upon intracerebroventricular injection The study of Honda et al. 

raises the hypothesis that in chickens the mechanism underlying the anorexigenic action of GLP-

1 is identical to that of GLP-2. This suggests that GLP-1 and GLP-2 might play an important role 

in the central regulation of appetite in chicks. 
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3.5 INFLUENCING PERFORMANCE 
Different studies already evaluated the effect of unprotected or fat-coated butyrate and butyrate 

glycerides in chickens on performance and showed their ability to beneficially influence FCR and 

body weight gain (BWG), intestinal villi structure and carcass quality, suggesting that butyrate 

and its glycerides may serve as a possible alternative to antimicrobial growth promoters. This will 

not be further elaborated but just a small overview is given of the effect of different butyrate 

derivatives on the growth performance of broiler chickens (Moquet et al., in preparation). In-feed 

supplementation of sodium butyrate results in an increased BWG, decreased FCR, and increased 

ratio of villus height to crypt depth (Hu & Guo, 2007). Chickens with a 0.4% or 0.6% 

unprotected butyrate treatment had significantly higher BWG and reduced FCR than the control 

when the whole experimental period of five weeks was considered (Panda et al., 2009). While 

Zhang et al. showed no effect of unprotected butyrate supplementation on performance 

parameters (Zhang et al., 2011). Fat-coated butyrate can significantly reduce FCR (Smulikowska 

et al., 2009), increases feed intake and BWG (Hautekiet et al., 2011). On the other hand, a 

mixture of butyrate glycerides (mono-, di- and triglycerides) was shown to have no significant 

effect on performance parameters, except a significantly higher slaughter weight (Aghazadeh & 

Taha Yazdi, 2012; Antongiovanni et al., 2007; Leeson et al., 2005; Mahdavi & Torki, 2009). 
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4. METHODS TO ENHANCE THE ENDOGENOUS PRODUCTION 
OF BUTYRATE 
Butyrate provides a link between diet, intestinal microbiota and metabolic health (Brahe et al., 

2013). As already noted above butyrate has several beneficial effects on intestinal health. 

Because of those beneficial effects, it is a justifiable strategy to stimulate the butyrate production 

in the intestine. This can be done through the use of butyrogenic pro- and prebiotics. 

4.1 PROBIOTICS 
The Food and Agriculture Organization of the United Nations (FAO) and the World Health 

Organization (WHO) originally defined probiotics as “Live microorganisms which when 

administered in adequate amounts confer a health benefit on the host” (FAO/WHO, 2001). At the 

end of 2013, the International Scientific Association for Probiotics and Prebiotics (ISAPP) 

organized a meeting to re-examine the concept of probiotics. The panel worded a more 

grammatically correct definition and support use of this wording going forward. The definition is 

inclusive of a broad range of microbes and applications, whilst capturing the essence of 

probiotics (microbial, viable and beneficial to health). The distinction between commensal 

microorganisms and probiotics is also inferred from this definition (Hill et al., 2014). The 

definition of probiotics is from now on “Live microorganisms that, when administered in 

adequate amounts, confer a health benefit on the host” (Hill et al., 2014). 

A probiotic can act in a number of ways. It can interact with the gut microbiota or it can exert its 

effect by bacterial enzymatic activities (Rijkers et al., 2010). More-over, a probiotic can exert 

beneficial effects by interacting with the gut mucus and the epithelium, exert effects on the gut 

barrier, modify digestive processes, and stimulate the mucosal immune system and the enteric 

nervous system. Finally, probiotics can have beneficial effects outside the GIT, on the liver, the 

systemic immune system, and other target organs including the brain. Probiotics are not only able 

to influence the composition, but also the metabolic activity of the intestinal microbiota (De 

Preter et al., 2011). It is important to note that each probiotic strain has its own specific properties 

(Gerritsen et al., 2011). Most commonly used probiotic microorganisms belong to the bacterial 

genera Lactobacillus and Bifidobacterium (Boesten & de Vos, 2008; Kleerebezem & Vaughan, 

2009). In recent years, however, there is also an increasing interest in the use of butyrate-

producing bacteria as probiotics (Van Immerseel et al., 2010). 
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4.1.1 Butyrate-producing bacteria as probiotic candidates 
Combined efforts in species isolation (Barcenilla et al., 2000) and metabolic characterization 

(Belenguer et al., 2006) have led to the identification of functional groups of highly oxygen-

sensitive micro-organisms within the phylum Firmicutes which are significant contributors to the 

butyrate pool. Most of the butyrate-producing bacteria have been shown to be related to 

clostridia, of which the full phylogenetic diversity has become apparent with the analysis of 16S 

rRNA gene sequences. In 1994, Collins et al. aligned the 16S rRNA sequences of more than 100 

clostridial strains and assigned them to different clusters within the Firmicutes based on their 

phylogenetic interrelationship (Collins et al., 1994). Recently, Yutin and Galperin proposed an 

updated taxonomic framework based on the phylogenetic reciprocal relation between different 

ribosomal proteins for the clostridia, in order to accommodate wrongly assigned species within 

the different clusters (Yutin & Galperin, 2013). This system, however, has not been widely 

adopted by the scientific community and so far, none of the proposed genus names has been 

validated by publication in the International journal of Systematic and Evolutionary 

Microbiology. 

Butyrate-producing bacteria are an important component of the microbiota both in terms of 

abundance and functionality (Louis & Flint, 2009). The majority of the butyrate-producing 

bacteria are members of Clostridium cluster IV (e.g. Faecalibacterium prausnitzii, 

Subdoligranulum variabile, Butyricicoccus pullicaecorum, …) or XIVa (e.g. Anaerostipes spp., 

Roseburia spp., Eubacterium hallii, …), also referred to as Clostridium leptum group or 

Ruminococcaceae and Clostridium coccoides group or Lachnospiraceae, respectively. They 

constitute a major component of the total faecal human microbiota as well as the chicken caecal 

microbiota. Additional species responsible for colonic butyrate production are unevenly 

distributed and intermixed with non-butyrate producing genera within Clostridium cluster I (e.g. 

Clostridium butyricum), IX (e.g. Megasphaera elsdenii), XV (e.g. Anaerofustis stercorihominis) 

and XVI (Eubacterium dolichum, E. cylindroides, E. biforme, …) (Pryde et al., 2002). It should 

be noted that most of these Clostridium clusters comprise a very heterogeneous assemblages of 

bacteria that do not form a phylogenetically coherent group. Therefore further studies are needed 

with respect to the classification of different species in these clusters. Chapter 1 of this thesis 

aims to contribute to this.  
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Figure 8: Maximum-likelihood phylogenetic tree of 16S rRNA gene sequences of butyrate-
producing bacteria. Bootstrap values (expressed as percentages of 100 replicates) are shown at branch 
points. The scale bar represents genetic distance (5 substitutions per 100 nucleotides). The species are 
labelled with an arrow when possessing a sequence related to the butyryl-CoA: acetate CoA transferase 
gene (grey arrow), the butyrate kinase gene (black arrow) and the propionate-CoA transferase (transparent 
arrow). If no arrow is given then there was no information available in the literature. 

It is clear that butyrate-producing bacteria are phylogenetically incoherent, are Gram-positive but 

can decolorize easily and appear Gram-negative or Gram variable, differ in DNA G+C content 

and also differ in their capacity to produce spores. Nevertheless, 16S rRNA and ribosomal 
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protein sequences have been shown to be better indicators of evolutionary proximity than 

phenotypic traits, when considering key phenotypical traits such as the structure of the cell 

envelope and Gram-staining pattern (Yutin & Galperin, 2013). 

Butyrate-producers belonging to Clostridium cluster IV and XIVa have been shown to be 

significantly less abundant in the gastro-intestinal microbiota of human patients with IBD (Fava 

& Danese, 2011; Sartor, 2008; Sokol et al., 2009). Frank et al. showed a correlation between 

reductions in abundance of the Clostridium cluster IV genera Faecalibacterium and 

Butyricicoccus and the IBD phenotype (Frank et al., 2011). F. prausnitzii has anti-inflammatory 

effects by decreasing the synthesis of pro-inflammatory colonic cytokines and by inducing the 

secretion of anti-inflammatory cytokines (Sokol et al., 2008). Different in vivo and in vitro 

studies support the probiotic potential of the species of this genus Faecalibacterium. B. 

pullicaecorum also seems to be a valuable probiotic candidate because of its anti-inflammatory 

potential in the IBD rat model (Eeckhaut et al., 2013) and the good intrinsic bile acid tolerance 

(Geirnaert et al., 2014). Despite the fact that Clostridium cluster XIVa is one of the most 

abundant groups of faecal bacteria in adult humans, there are currently no known members that 

comprise the properties of a probiotic (Hold et al., 2002; Matsuki et al., 2004). To our 

knowledge, the reason for this is not known. One possible reason is that Clostridium cluster XIVa 

is preferentially present in the mucus layer of the intestine and more difficult to isolate and to 

characterize as probiotic. Clostridium cluster XIVa can be divided into two sub-groups. The first 

subgroup is related to Roseburia and Eubacterium rectale, for which all available isolates show 

high levels of butyrate production, together with net acetate utilization (Aminov et al., 2006; 

Barcenilla et al., 2000; Louis & Flint, 2007; Pryde et al., 2002). The second subgroup is related 

to Eubacterium hallii and Anaerostipes caccae and includes isolates that show the ability to 

convert acetate and D-/L-lactate into butyrate (Belenguer et al., 2006; Duncan et al., 2004a). 

Thus they can cross-feed on lactic acid produced by lactic acid bacteria, which co-occur in the 

gut. Stimulation of butyrate production may indeed explain the probiotic properties of some 

bifidobacteria and lactobacilli (Marteau, 2013; Veiga et al., 2010). 

Another butyrate-producing species that has documented probiotic potential in humans and 

animals is Clostridium butyricum, which belongs to Clostridium cluster I (Han et al., 1984; 

Jonsson & Conway, 1992; Nakanishi et al., 2003; Seki et al., 2003). Administration of this 

bacterium has been shown to suppress chemically induced aberrant crypt foci and preneoplastic 

lesions in the rat colon (Araki et al., 2000; Nakanishi et al., 2003; Okamoto et al., 2000). In 

addition, C. butyricum suppresses intestinal immune disorders by upregulating IL-10 production 
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(Hayashi et al., 2013) and has beneficial effects on Helicobacter pylori infection in humans 

(Shimbo et al., 2005). Together with Bifidobacterium infantis, it can restore microbiota changes 

and attenuate systemic inflammation in mice with antibiotic-associated diarrhea (Ling et al., 

2015). 

Clostridium cluster XVI, also known as the Erysipelotrichaceae family, accounts for no more 

than 1% of the total faecal bacterial count in humans (Child et al., 2006; Hold et al., 2003) and 

harbors different butyrate-producing bacteria which produce considerably lower amounts of 

butyrate in vitro compared to the concentrations produced by butyrate-producing bacteria within 

Clostridium cluster IV and XIVa. At the time of writing, Clostridium cluster XVI comprises 14 

different genera. The genus Erysipelothrix, for which 3 different species are described 

(Stackebrandt et al., 2006), is facultative anaerobe with a weak fermentation activity. In addition 

to lactic acid, small amounts of acetic acid, formic acid and ethanol are produced (Reboli & 

Farrar, 1989). A second genus belonging to cluster XVI is Holdemania, isolated from human 

feces (Willems et al., 1997). It is able to produce lactic and acetic acid as main fermentation end 

product in addition to small amounts of succinic acid from glucose. In 2000, four new genera 

were described and characterized. Based on the 16S rRNA sequences divergence different 

Eubacterium-like strains isolated from human faeces were classified within different new genera, 

for which the names Coprobacillus, Catenibacterium or Solobacterium were proposed 

((Kagayama & Benno, 2000; Kageyama & Benno, 2000a, b). All species were shown to be 

obligatory anaerobic Gram-positive bacteria, able to produce acetic, lactic, butyric and iso-

butyric acids from glucose fermentation ((Kagayama & Benno, 2000; Kageyama & Benno, 

2000a, b). Species belonging to those genera may not be harmless, as several case reports have 

described Solobacterium moorei bacteremia in humans (Pedersen et al., 2011; Lau et al., 2006). 

The short bacilli isolated from human periodontal pockets and dento-alveolar infections were 

shown to be obligatory anaerobic, non-spore-forming, non-motile and Gram-positive and were 

classified within the genus Bulleidia, also within Clostridium cluster XVI (Downes et al., 2000). 

Acetate, lactate and trace amounts of succinate are produced during glucose fermentation. From a 

blood culture of a febrile, 35-year-old man with acute appendicitis a bacterial species was 

isolated for which the genus name Turicibacter was proposed (Bosshard et al., 2002). 

Turicibacter is anaerobic, Gram-positive, non-spore-forming, with lactate as main fermentation 

product. From the faeces of a dog, a Eubacterium-like species was isolated and classified to a 

new genus Allobaculum, based on the phenotypic and phylogenetic characteristics (Greetham et 

al., 2004). This genus contains anaerobic, Gram-positive bacteria producing lactic and butyric 
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acid as end products of glucose metabolism. Phylogenetic analysis of the 16S rRNA sequences of 

Lactobacillus catenaformis, isolated from human faeces and intestinal and pleural infections and 

Lactobacillus vitulinus, isolated from bovine rumen contents, showed the relatedness of these two 

species with members of Clostridium cluster XVI (Salvetti et al., 2011). Both species were 

reassigned to two new genera, Eggerthia and Kandleria respectively. They produce lactic acid as 

main fermentation product. From a stool sample of a patient suffering from anorexia nervosa, a 

strictly anaerobic species was isolated and named Candidatus Stoquefichus (Pfleiderer et al., 

2013). During a genomic update on clostridial phylogeny, misclassified clostridia such as 

Clostridium ramosum have been reclassified into the genus Erysipelatoclostridium (Yutin & 

Galperin, 2013). The genus Dielma is the only genus within Clostridium cluster XVI or family 

Erysipelotrichaceae that contains Gram-negative bacteria isolated from the human digestive tract, 

which are strictly anaerobic and motile. Nothing is yet described about their acid production after 

fermentation (Ramasamy et al., 2013). Recently, a bacterium isolated from an anaerobic digester 

was classified within the new genus Catenisphaera. This genus is obligately anaerobic, Gram-

positive, non-spore-forming, producing lactate as major end product and small amounts of 

butyrate, acetate, formate and hydrogen from glucose fermentation (Kanno et al., 2015). 

Besides the above mentioned genera there are still a few Eubacterium-like and Clostridium-like 

strains within Clostridium cluster XVI as well as a Streptococcus sp.. These species differ in 

shape, sporulation, fermentation end products and DNA G+C content from species of 

Eubacterium, Clostridium and Streptococcus sensu stricto. Therefore they need to be reclassified 

into new genera based on phylogenetic analysis of the 16S rRNA gene sequences. This task is 

partly accomplished in Chapter 1. In the study of Eeckhaut et al. concerning the diversity and 

phylogenetic relationship of cultivable butyrate-producing bacteria from the chicken caeca 

(Eeckhaut et al., 2011), it was concluded that butyrate-producing bacteria related to Clostridium 

cluster XVI may play a more important role in the chicken gut than in the human colon. So far, 

not a single butyrate-producing strain within Clostridium cluster XVI has been tested or proposed 

as a candidate probiotic. 

For the production of intracellular butyrate, two distinct pathways are described in clostridia 

(Gottschalk, 1986) (Figure 6). In the human gut only a few bacterial species use the butyrate 

kinase pathway with the intermediate formation of butyryl-phosphate (Louis et al., 2004). The 

majority of the cultured human butyrate producing strains are found to carry the butyryl-CoA: 

acetate CoA-transferase gene that encodes the enzyme that transfers the CoA moiety to external 

acetate with the formation of acetyl-CoA and butyrate (Charrier et al., 2006; Louis et al., 2004; 
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Louis et al., 2010). The butyryl-CoA:acetate CoA-transferase gene was detected in all 

Clostridium cluster XIVa and in the majority of the Clostridium cluster IV chicken strains. Only 

one Clostridium cluster IV chicken strain was shown to carry the butyrate kinase operon 

(Eeckhaut et al., 2011). In all Clostridium cluster XVI isolates a CoA-transferase gene more 

closely related to propionate CoA-transferase was found. Analysis of draft genome sequences 

from cluster XVI butyrate producers revealed the presence of the gene directly downstream of the 

central pathway genes, which are involved in the formation of butyrate starting from acetyl-CoA. 

Therefore it was hypothesized that a CoA-transferase related to the encoding gene from 

Clostridium propionicum is responsible for butyrate formation in cluster XVI bacteria (Eeckhaut 

et al., 2011).  

The classification of bacteria is currently based on genetic and phenotypic information, which 

usually relies on growth in pure culture. Obtaining pure cultures is often time consuming and 

difficult and is especially challenging for microorganisms that have complex metabolic 

requirements (Yarza et al., 2014). Especially for the interpretation of high-throughput sequence 

data from microbial communities, robust universal reference taxonomy is necessary. Taxonomy 

based on the 16S rRNA gene is the most comprehensive and widely used in microbiology today. 

However, two third of 16S sequences in GenBank are only classified to domain, that is Archaea 

or Bacteria, since most un(der)classified sequences are from culture-independent environmental 

surveys, which leaves users confounded about the phylogenetic affiliation of the submitted 

sequences (McDonald et al., 2012). As such the classification and reclassification of 

misclassified clostridia and bacteria in general is important because of the implications for 

phylogenomic and metagenomic studies since different OTU classifiers use different taxonomic 

frameworks on which to base their sequence assignments. 

In literature, there is not much published on these Clostridium cluster XVI bacteria and their 

characteristics. When looking at species belonging to this cluster, in the original article, Collins et 

al. makes an association of three species Clostridium innocuum, Eubacterium biforme and 

Streptococcus pleomorphus who were incoherent (Collins et al., 1994). Looking at the phylogeny 

of these species, they were all three misnamed. The study of Eeckhaut et al. showed that four out 

of  6 isolates of cluster XVI from poultry were related to Streptococcus pleomorphus. Therefore 

it was decided to reclassify Streptococcus pleomorphus. The closest neighbours of this S. 

pleormorphus are Eubacterium cylindroides (94%) and Eubacterium biforme (93%). Both 

species were also misnamed, so it was decided to reclassify them also during the same study 

(Chapter 1).  
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Butyrate-producing bacteria may be considered to have health promoting effects on the host (Van 

Immerseel et al., 2010). Unfortunately these bacteria are difficult to produce at large scale, 

because of the strictly anaerobic growth requirements and non-spore-forming characteristics. 

Therefore indirect stimulation to butyrate production in the gut, through the supply of carefully 

selected prebiotics or dietary fibres might be a valid alternative. 
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4.2 PREBIOTICS AND/OR DIETARY FIBRES 
The concept of a prebiotic is relatively new, while some effects of fibres are already known for a 

long time (Gibson & Roberfroid, 1995; Gibson et al., 2004; Roberfroid, 2007a; Slavin, 1987). 

Both improve intestinal health by different functions. The differences between prebiotic and 

dietary fibre are described below, both can be used as a feed supplement to improve the level of 

butyrate production in the intestine. 

4.2.1 Prebiotics 
A prebiotic was first defined as a “non-digestible ingredient that beneficially affects the host by 

selectively stimulating the growth and/or activity of one or a limited number of bacteria in the 

colon, and thus improves hosts health” (Gibson & Roberfroid, 1995; Gibson et al., 1995). More 

specific criteria have been set in order to classify a food ingredient as a prebiotic (Gibson et al., 

2004). These criteria are (1) resistance to gastric acidity, to hydrolysis by mammalian enzymes, 

and to gastro-intestinal absorption; (2) fermented by intestinal microbiota; and (3) selectively 

stimulating the growth and/or activity of those intestinal bacteria that contribute to health and 

well-being. The original definition of a prebiotic (Gibson & Roberfroid, 1995) only considers 

microbial changes in the colonic ecosystem. It may be good to extrapolate this to other areas of 

the host body that may benefit from a selective targeting of particular microorganisms (Gibson et 

al., 2004; Roberfroid, 2007b). It has been proposed to refine the original definition of a prebiotic 

to “a selectively fermented ingredient that allows specific changes, both in the composition 

and/or activity of the gastro-intestinal microbiota, that confer benefits upon host well-being and 

health” (Gibson et al., 2004). Benefits of prebiotics include improvement of gut barrier function 

and host immunity, reduction of potentially pathogenic bacterial subpopulations (e.g. C. 

perfringens, Salmonella, E. coli, etc.) and enhancement of SCFA production (Slavin, 2013). 

Therefore prebiotics are considered alternative feed additives that can be used to improve poultry 

health and performance (Hajati & Rezaei, 2010). 

4.2.2 Dietary fibres 
According to the American Association of Cereal Chemists (AACC) report of 2001, the 

definition of dietary fibre is: “the edible parts of plants or analogous carbohydrates, that are 

produced during food processing by chemical and/or physical processes affecting the digestibility 

of starches or by purposeful synthesis, that are resistant to digestion and absorption in the human 

small intestine but completely or partially fermented in the large intestine. Dietary fibres include 

polysaccharides, oligosaccharides, lignin, and associated plant substances and promote beneficial 
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physiological effects including laxation, blood cholesterol and blood glucose attenuation“ 

(DeVries, 2003). Dietary fibre is one of the most heterogeneous and diverse groups of molecules 

found in nature (Hamaker & Tuncil, 2014). According to the Codex Alimentarius (CAC/GL 2-

1985, amendment: 2013) dietary fibres are defined as carbohydrate polymers with ten or more 

monomeric units, which are not hydrolyzed by the endogenous enzymes in the small intestine of 

humans and belong to the following categories: edible carbohydrate polymers naturally occurring 

in the food as consumed such as inulin, carbohydrate polymers which have been obtained from 

food raw material by physical, enzymatic or chemical means like xylo-oligosaccharides (XOS) 

and synthetic carbohydrate polymers such as polydextrose which have been shown to have a 

physiological effect of benefit to health as demonstrated by generally accepted scientific evidence 

to competent authorities. Variation in their chemical structure affects their metabolization by the 

gut microbiota since bacteria have different abilities to cleave the linkages in the structure of 

these complex molecules to obtain simple sugars. The ability of gut microbes to utilize dietary 

fibre depends on their gene content, encoding carbohydrate-active enzymes (CAZymes) that are 

essential for cleavage of certain linkage types, and associated proteins such as carbohydrate-

binding proteins and transporters (Hamaker & Tuncil, 2014). Fermentable fibres may provide a 

number of health benefits by altering the composition of the intestinal microbiota (Slavin, 2013). 

It is clear that not all fibres are equal in terms of the type and extent of health benefits they 

provide. Characteristics such as solubility, fermentability, and viscosity are important 

determinants for the effect the fibre will have in the body (Slavin, 2013). In general, dietary fibre 

represents the main source of energy for the bacteria of the GIT and accordingly, there exists the 

potential for its use to maintain or revert to a beneficial microbiota composition (Hamaker & 

Tuncil, 2014). 

According to these definitions: ‘All prebiotics are fibres, but not all fibres are prebiotics’ (Slavin, 

2013). Both, dietary fibre and prebiotics can be referred to as complex carbohydrates or non-

starch polysaccharides (NSP). NSPs can be further subdivided based on chemical, physical and 

functional properties into soluble and insoluble fibres (Lattimer & Haub, 2010; Sizer & Whitney, 

2008). 

4.2.3 Soluble fibres 
Soluble fibres dissolve in water, bypass digestion of the small intestine and are easily fermented 

in the large intestine (Hetland et al., 2004; Lattimer & Haub, 2010). 
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4.2.3.1  Inulin and fructo-oligosaccharides 

Inulin is a mixture of linear polymers and oligomers of fructose linked by a β-(2-1) glycosidic 

linkage often with a glucose terminal unit (Roberfroid et al., 1998) (Figure 8). The number of 

monomeric units in a macromolecule or oligomer molecule is expressed as the degree of 

polymerization (DP) (Jenkins et al., 1996). Inulin has a DP between 3 and 60 and is produced by 

extraction from foods like onions, garlic, wheat, artichokes and bananas by using a hot water 

diffusion process (Biedrzycka & Bielecka, 2004; Lattimer & Haub, 2010; Niness, 1999). 

Chemical degradation or controlled enzymatic hydrolysis of inulin using endoglycosidases results 

in oligofructose compounds with a DP between 2 and 20 (Roberfroid, 2007b; van de Wiele et al., 

2007). Fructo-oligosaccharides (FOS) and oligofructose are considered to be synonymous names 

for the mixture of small inulin oligomers with maximum DP of less than ten (Coussement, 1999; 

Gibson et al., 2004; Quemener et al., 1994). Oligofructose and FOS can be produced from 

sucrose by transfructosylation and from inulin by controlled hydrolysis (Niness, 1999). FOS 

usually contain between 2 and 4 β-(2-1)-linked fructosyl units (Rehman et al., 2007; Roberfroid, 

2002). The prebiotic effectiveness of inulin-type fructans not only depends on the dietary dosage, 

but also on the DP (van de Wiele et al., 2007; Van Loo, 2004). The DP has an effect on the 

bifidogenic capacity of the fructans or in other words their specific capacity to stimulate 

bifidobacterial growth, on solubility, on the in vitro fermentation time and on the intestinal 

segment where the fermentation takes place (Harmsen et al., 2002a; Roberfroid et al., 1998; 

Tuohy et al., 2001; Van Loo, 2004). This suggests that subtle differences in the chain length of 

carbohydrates can have a major impact on fermentation processes (Van Loo, 2004). A lower DP 

increases the bifidogenic capacity, leads to higher solubility and increases the speed of 

fermentation (Van Loo, 2004). 
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Figure 9. General chemical structure of inulin or inulin-like oligosaccharides (Braz de Oliveira et al., 
2011). 

It is accepted that the main direct beneficial effect attributable to prebiotics is the induction of 

changes in the intestinal microbiota by selective stimulation of health-promoting bacteria (Gibson 

et al., 1995). Fermentation studies in batch cultures using human faecal inocula show an 

increased number of bifidobacteria and low levels of Escherichia coli and Clostridium after 

supplementation with oligofructose and inulin (Wang & Gibson, 1993). Administration of 

chicory inulin hydrosylate to 8 healthy volunteers resulted in an increased number of faecal 

bifidobacteria (Menne et al., 2000). In broilers, FOS has been shown to decrease the caecal 

concentration of Campylobacter, Salmonella (Yusrizal & Chen, 2003), Clostridium perfringens 

(Cao et al., 2005; Kleessen et al., 2003) and E. coli (Xu et al., 2003; Yusrizal & Chen, 2003), and 

to increase bifidobacteria, lactobacilli (Xu et al., 2003) and eubacteria levels (Cao et al., 2005). In 

contradiction, other studies performed in broilers showed no effect of FOS supplementation 

(Fukata et al., 1999; Rehman et al., 2008; Rehman et al., 2009; Yusrizal & Chen, 2003) or inulin 

supplementation (Biggs et al., 2007; Yusrizal & Chen, 2003). In rats, FOS increases the numbers 

of caecal and faecal bifidobacteria (Hsu et al., 2004; Koleva et al., 2012). Inulin in broilers has a 

stimulatory effect on the growth of bifidobacteria and lactobacilli in the ileum (Rebole et al., 

2010) and a suppressive effect on the growth of E. coli in the caecum (Nabizadeh, 2012). The 

caecal Lactobacillus and Bifidobacterium populations were significantly increased in the inulin 

group compared with a control group of pigs (Tako et al., 2008). 

Conflicting results have been reported concerning the effect of inulin and FOS on growth 

performance. Both inulin and FOS gave an improvement in BWG when they were added to a 
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control diet in broilers (Nabizadeh, 2012; Rebole et al., 2010; Xu et al., 2003). This was in 

contrast with other studies that could not show an effect on performance for inulin (Alzueta et al., 

2010; Biggs et al., 2007; Ortiz et al., 2009; Rehman et al., 2008) and FOS (Waldroup et al., 

1993; Williams et al., 2008). In pigs, inulin had no effect on growth performance but it had an 

effect on digestibility and deposition of dietary minerals such as iron (Fe), calcium (Ca) and 

sulfur (S) (Jolliff & Mahan, 2012; Tako et al., 2008; Yasuda et al., 2006). The increase in tissue 

mineral content was accompanied by increases in liver and body weights in pigs (Jolliff & 

Mahan, 2012). Inulin and oligofructose increased caecum weight, decreased the luminal pH and 

increased the intestinal absorption of minerals such as Fe, Ca and Mg in rats (Coudray et al., 

2003; de Càssia Freitas et al., 2012). The butyrate concentration was increased, the caecal pH 

was lower, and the relative caecal weight was higher when rats were fed FOS and oligofructose 

(Campbell et al., 1997; Hsu et al., 2004). 

The apparently contradictory responses of inulin-type fructans may be explained by a variety of 

factors that can influence the outcome of these trials (Rebole et al., 2010; Velasco et al., 2010). 

These factors include inulin source, concentration, diet type, animal species, husbandry hygiene, 

animal age, and environmental stress conditions (Patterson & Burkholder, 2003; Verdonk et al., 

2005). Nevertheless, the results of different in vitro and in vivo experiments support the 

classification of inulin and oligofructose as prebiotics, since they fulfill the three above 

mentioned criteria (Gibson et al., 2004). 

4.2.3.2  Arabinoxylan and arabinoxylan-oligosaccharides  

Arabinoxylan (AX) constitutes the major cell wall polysaccharide in cereal grains such as wheat, 

rye, barley, oats and other plants (Izydorczyk & Biliaderis, 1995). It consists of β-(1,4)-linked D-

xylopyranosyl residues to which α-L-arabinofuranose units are linked as side chains (Cleemput et 

al., 1993) (Figure 9). Some arabinofuranose units can be substituted with ferulic acid (Grootaert 

et al., 2007). Arabinoxylan-oligosaccharides (AXOS) are oligosaccharides obtained by enzymatic 

or autohydrolytic depolymerisation of AX (Broekaert et al., 2011). AXOS have different average 

degrees of polymerization (avDP, i.e. the average number of xylose residues in their backbone) 

and average degrees of substitution (avDS, i.e. the average ratio of arabinose to xylose), which 

may represent different prebiotic properties (Delcour et al., 1999; Grootaert et al., 2007; Sanchez 

et al., 2009; Swennen et al., 2005). The avDP of extracted material is calculated as the sum of the 

total arabinose and xylose contents, divided by reducing end xylose content (Van Craeyveld, 

2009). Swennen et al. have described a large scale procedure for endoxylanase-mediated 

production of AXOS from wheat bran, yielding an AXOS preparation with an avDS of about 
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0.25-0.30 and an avDP ranging from about 3 to 15, depending on the enzyme mixture used 

(Swennen et al., 2006). 

 

Figure 10 A. Chemical structure of AX and the site of activity of the different AX degrading enzymes 
(Grootaert et al., 2007). B. AXOS from wheat bran hemicellulose (Vázquez et al., 2000). 

AXOS resist acidic hydrolysis due to the β-(1,4)-linkage (Courtin et al., 2009; Okazaki et al., 

1991; Sanchez et al., 2009). Humans appear to lack the enzymes able to degrade AX or AXOS 

and this suggests that AXOS remain largely unabsorbed in the small intestine (Broekaert et al., 

2011). In the human colon, the predominant endoxylanase-producing microbiota include species 

of the Gram-negative genus Bacteroides and of the Gram-positive genus Roseburia, which are 

necessary for degradation of AX (Broekaert et al., 2011; Chassard et al., 2007). AX from 

aleurone with low avDS were virtually completely degraded within 8h after inoculation with 

human faeces, whereas with AX from wheat bran with higher avDS, substantial amounts were 

still present after 24h (Amrein et al., 2003). This indicates that AX fractions with high avDS are 

more difficult to degrade than AX with low or moderate avDS (Broekaert et al., 2011; Karppinen 

et al., 2001). Major fractions of AXOS were shown to be degraded within 24h after human faecal 

inoculation and complete in vitro fermentation was obtained after prolonged incubation for up to 

80h with production of acetate, propionate and butyrate (Kabel et al., 2002). The production of 

SCFA upon in vitro fermentation of AX and AXOS has been confirmed through in vivo studies 

(Broekaert et al., 2011). For example, ingestion by human volunteers of an AXOS-rich 

preparation incorporated in bread raised acetate, propionate and butyrate levels (Grasten et al., 

A. 

B. 
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2003). AXOS appear to be a relatively selective substrate. It can be utilized by some 

Bifidobacterium species and, though less efficiently, some Bacteroides and Lactobacillus species 

during in vitro fermentation (Van Laere et al., 2000; Yamada et al., 1993). In vivo intervention 

trials with rats, mice and chickens have also established that AXOS have strong bifidogenic 

properties (Broekaert et al., 2011; Neyrinck et al., 2012; Van Craeyveld et al., 2008; Yamada et 

al., 1993). In chickens, uncleaved AX is well known to hamper efficient feed utilization (Choct & 

Annison, 1992) and in-feed enzymes are used to cleave these polysaccharides. In addition, 

dietary AXOS provide dose-dependent protection against oral infections with Salmonella 

Enteritidis in poultry (Eeckhaut et al., 2008). 

AXOS derived from wheat bran have beneficial effects on feed utilization efficiency resulting in 

an improved FCR without increasing the body weight (BW) of broilers (Courtin et al., 2008b). 

Feeding AXOS did not result in significant differences in growth in piglets, but it upregulated 

part of the small intestinal innate immune response (Niewold et al., 2012). Colonic acetate and 

butyrate production increased and intestinal protein fermentation (branched SCFA and 

ammonium ion concentration) was reduced in rats fed a diet containing AXOS with a low avDP 

(≤ 5) but not with higher avDP (≥ 12) (Van Craeyveld et al., 2008). AXOS administration did not 

affect the BW of rats (Van Craeyveld et al., 2008) but had a protective effect on two types of 

preneoplastic lesions in a rat colon carcinogenesis model (Femia et al., 2010). In mice, AXOS 

improved gut barrier function by looking at the tight junctions e.g. Claudin-3 protein was 

upregulated and decreased gut permeability by looking at the zonula occludens protein (Neyrinck 

et al., 2012). 

4.2.3.3  Xylo-oligosaccharides 

Xylo-oligosaccharides (XOS) are sugar oligomers, which appear naturally in bamboo shoots, 

fruits, vegetables, milk and honey (Vázquez et al., 2000). XOS are made up of a main backbone 

of xyloses linked by β (1 4) bonds, where the structural units are often substituted at position 

C2 or C3 with arabinofuranosyl, 4-O-methylglucuronic acid, acetyl, or phenolic substituents 

(Aachary & Prapulla, 2008; Ebringerová & Heinze, 2000) (Figure 10). The raw material for XOS 

synthesis are xylans extracted from lignocellulosic, xylan-containing materials like corncobs 

(Crittenden & Playne, 1996; Gullon et al., 2008). Depending upon the various xylan sources used 

for XOS production, the structure of XOS can vary in DP (≤ 20), monomeric units and type of 

linkages (Aachary & Prapulla, 2011; Carvalho et al., 2013). Xylan is hydrolyzed to XOS by the 

controlled activity of the enzyme endo-1,4-β-xylanase (Crittenden & Playne, 1996). Sometimes 
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also AX degradation as a results of activity of different enzymes such as endo-1,4-β-xylanases, α-

L-arabinofuranosidases, β-xylosidases, α-glucuronidases or ferulic acid esterases, could give rise 

to XOS (Grootaert et al., 2007) (Figure 9). 

 

Figure 11. Schematic structure of xylo-oligosaccharides (Carvalho et al., 2013). 

XOS (DP=3) are more sensitive to alkaline decomposition than the longer chain AXOS (DP=15), 

but resist acidic hydrolysis under conditions representative for the gastric environment (Courtin 

et al., 2009). The bifidogenic effect of XOS is observed in different in vitro fermentation studies 

and in vivo trials with humans, rats, mice, pigs and chickens (Crittenden et al., 2002; Kabel et al., 

2002; Moura et al., 2008; Okazaki et al., 1990; Van Laere et al., 2000). Many different 

Bifidobacterium species, even when grown in pure culture, can efficiently utilize XOS in vitro 

(Crittenden et al., 2002). In addition, different in vitro studies show that only a small number of 

Lactobacillus species are able to efficiently utilize XOS as carbon source. In addition XOS are 

efficiently fermented by a limited number of dominant bacterial species such as C. perfringens, 

E. coli, B. fragilis, B. vulgatus, Enterococcus faecalis and E. faecium in the intestinal tract 

(Crittenden et al., 2002; Moura et al., 2008). A study of Scott et al. showed that XOS are a more 

selective growth substrate, because only 6 out of 11 Firmicutes strains are able to use XOS for 

growth (Scott et al., 2014). The main fermentation products of XOS are acetate, lactate and/or 

butyrate (Kabel et al., 2002). 

In rats, XOS fermentation results in a decreased caecal pH and a lower serum triglyceride 

concentration, which reduces the risk of cardiovascular disease, but a higher total caecal weight 

and increased bifidobacteria population (Hokanson & Austin, 1996; Hsu et al., 2004). XOS also 

increases caecal cell density via a modest enhancement of caecal epithelial cell proliferation in 

rats and mice (Howard et al., 1995; Hsu et al., 2004). XOS increases lactobacilli numbers by 10-

fold and increases the counts of bifidobacteria in mice, while the levels of sulphite-reducing 

clostridia decrease significantly (Santos et al., 2006). In humans, XOS also increases the 

Bifidobacterium counts but without a significant difference in the counts of Lactobacillus, 

Enterobacteriaceae and Clostridium (Finegold et al., 2014; Na & Kim, 2007). XOS supplements 

in humans had no significant effect on stool pH, SCFA or lactic acid concentration (Finegold et 
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al., 2014). A study of Courtin et al. showed that the administration of XOS increased the number 

of bifidobacteria in the caeca of broilers relative to the control after only one week (Courtin et al., 

2008a). Zhenping et al. showed that broilers receiving a XOS-supplemented diet had a greater 

BWG and a decreased FCR than those receiving the non-supplemented diet (Zhenping et al., 

2013). To clearly understand the link between the beneficial effects of XOS on chicken 

performance and the composition and function of the microbiota, further studies are needed. 

The results obtained in humans and animals show that AX, AXOS and XOS have beneficial 

nutritional effects. Nevertheless until today no study has classified them as prebiotics 

(Roberfroid, 2007b). 

The choice to investigate the effects of XOS on broiler performance was based on the results of 

Zhenping et al. who showed that XOS had an effect on performance at slaughter age (Zhenping 

et al., 2013). In this study, no analyses were performed to evaluate the effect of XOS on the 

microbiota composition although the in vitro study of Scott et al., had shown the ability of 

different butyrate producing bacteria to utilize XOS (Scott et al., 2014). Since butyrate may be 

linked to improved performance a trial was set up in order to check what bacterial populations 

may be affected by XOS administration and may play a role in the improved performance 

(Chapter 2). 

4.2.4 Insoluble fibres 
Insoluble fibres do not dissolve in water, are indigestible and are generally less fermentable by 

colonic microbiota (Slavin et al., 2009). However, they affect gut functioning and modulate 

nutrient digestion (Hetland et al., 2004). Also in poultry, insoluble fibre is not degraded 

extensively by bacterial fermentation, which makes its influence on the composition and quantity 

of the microbiota relatively insignificant suggesting that insoluble fibres are inert and only act as 

nutrient diluents (Angkanaporn et al., 2006; Choct et al., 1996; Langhout, 1998). 

The cell wall of the grain kernel is thick and hydrophobic. It consists of cellulose, xylans, and 

significant amounts of lignin. It primarily plays a role in protection of the kernel (Knudsen, 

2015). Lignin is composed of highly cross-linked phenylpropanoid units like coniferyl, p-

coumaryl, and sinapyl alcohols (Davin et al., 2008; Lee, 1997) (Figure 11). Although lignin is not 

a carbohydrate, it is classified as one because of its tight association with cell wall 

polysaccharides (Knudsen, 2014). The microbial degradation of lignin has been studied in white-

rot and brown-rot fungi, which use oxidative extracellular mechanisms to break down the lignin 
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polymer (Wong, 2009). Bacteria have been less well studied as degraders of lignin, but there are 

several reports of bacteria having this capacity (Bugg et al., 2011; Taylor et al., 2012; 

Zimmermann, 1990). Bacteria isolated from habitats such as soil containing lignified decaying 

plant material or from anaerobic ecosystems such as the rumen where lignocellulosic material is 

degraded, are expected to be able to metabolize lignin or lignin-derived compounds (Bugg et al., 

2011; Zimmermann, 1990). Bacterial strains identified to have lignin breakdown capacity fall 

into three classes: Actinomycetes (e.g. Rhodococcus sp., Microbacterium sp., Streptomyces sp.), 

-Proteobacteria (e.g. Paracoccus spp., Ochrobactrum sp., Shingomonas sp.), and -

Proteobacteria (e.g. Pseudomonas spp., Acinetobacter sp., Citrobacter sp.) (Bugg et al., 2011). 

 

Figure 12. A lignin polymer from poplar, as predicted from NMR-based lignin analysis (Vanholme et al., 
2010) 

4.2.4.1  Cellulose  

Cellulose is composed of β-D-glucopyranose units linked by (1 4) glycosidic bonds and is an 

important structural component of cell walls in green plants and vegetables (Lattimer & Haub, 

2010; O'Sullivan, 1997) (Figure 12). In the cereal co-product hulls, cellulose is the predominant 

polysaccharide, followed by xylans and pectin substances (Knudsen, 2014). Natural cellulose can 

be divided into two groups: crystalline and amorphous components (Lattimer & Haub, 2010). 

The group of crystalline components, which is made up of intra- and intermolecular non-covalent 

hydrogen bonds, is insoluble in water. The group of amorphous cellulose components have less 

intra- and intermolecular H2 bonds, which make them more soluble (Ciolacu et al., 2011). 

However, many modified celluloses such as powdered cellulose, microcrystalline cellulose and 

hydroxypropylmethyl cellulose have been developed and are used as food ingredients (Lattimer 

& Haub, 2010; Takahashi et al., 2003). These modified celluloses differ from the natural 



GENERAL INTRODUCTION 

 

64 

cellulose by the extent of crystallization and H2 bonding whereby they are more soluble (Lattimer 

& Haub, 2010; Takahashi et al., 2003). Wood shavings which are used in many countries as litter 

material consist of cellulose-rich crystalline fibre structures with great mechanical strength, 

determined by H2 bonding density and conformation (Hetland et al., 2004). However, their 

effects on digestibility, gut functions and bird behavior are largely unknown, when they are eaten 

(Hetland et al., 2004). Cellulose is notoriously difficult to hydrolyze enzymatically because it 

contains resilient glycosidic bonds and is tightly associated with other polysaccharides (Mba 

Medie et al., 2012). Two main types of cellulolytic enzyme activities are well characterized. 

Endoglucanases hydrolyze internal bonds at random positions of less ordered (or amorphous) 

regions of cellulose and these enzymes generate chain ends for the action of the second types of 

cellulases, the cellobiohydrolases (Mba Medie et al., 2012). These are exoglucanases, which act 

in a unidirectional manner from the ends of cellulose polysaccharide chains and liberating 

cellobiose as the major product (Mba Medie et al., 2012). 

 

Figure 13: Fragment (repeating unit) of a cellulose chain (O'Sullivan, 1997). 

Cellulose is considered to be a non-fermentable fibre, although it can go through microbial 

fermentation to a certain degree in the large intestine resulting in the production of SCFA (Chen 

et al., 2015; Lattimer & Haub, 2010). The digestion of cellulose is therefore largely restricted to a 

specific group of cellulolytic microorganisms that produce a complex combination of enzymes 

(cellulases, hemicellulases and pectinases) that act synergistically to break down cellulose 

(Leschine, 1995; Mba Medie et al., 2012). Cellulose-degrading species isolated from human 

faeces are Clostridium spp., Eubacterium spp., Enterococcus spp., Ruminococcus spp. and 

Bacteroides spp. (Betian et al., 1977; Hamaker & Tuncil, 2014; Montgomery, 1988; Robert & 

Bernalier-Donadille, 2003; Wedekind et al., 1988). The end products of cellulose fermentation 
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are comparable between Ruminococcus and Enterococcus, with acetate and succinate being the 

main metabolites formed by all species of these genera (Robert & Bernalier-Donadille, 2003). In 

addition, there is also the production of a large amount of H2 from cellulose fermentation, which 

is transferred between H2-producing fibrolytic species, acetogenic or sulphate-reducing bacteria 

and methanogenic archaea. This suggests that cellulose-degrading bacteria could play a role in 

the establishment and the development of methanogens in the gut (Robert & Bernalier-Donadille, 

2003). Another study showed that the structure of the cellulolytic community varies depending 

on the presence of methanogens in the human gut (Chassard et al., 2010). They showed that the 

main cellulose-degrading bacteria belong essentially to Bacteroidetes in non-methane-excreting 

subjects, while they are predominantly represented by Firmicutes in methane-excreting 

individuals (Chassard et al., 2010). 

The effects of the microcrystalline cellulose diet in rats are unclear (Campbell et al., 1997). In 

young adult male rats 10 % cellulose showed no effect on food intake compared with the control 

group (Adam et al., 2014). A study with male piglets showed that microcrystalline cellulose 

alone does not affect intestinal barrier function and it also has no significant effect on 

Bacteroidetes, Lactobacilli, Enterobacteriaceae and Bifidobacterium in the caecum compared 

with the control or AXOS group (Chen et al., 2015). Although powdered cellulose is regarded as 

a nonfermentable fibre, it can be degraded in vitro by cellulolytic bacteria of faecal inocula 

derived from various animal species (Johathan et al., 2012). 

Many studies have evaluated the effect of cellulose in different models, but the data are 

contradictory and this may depend on type of cellulose used in those models and other unknown 

factors (Lattimer & Haub, 2010). For example natural cellulose has been shown to decrease the 

postprandial glucose and insulin levels in rat, dog and cat but has no effect in pigs and humans 

(Lattimer & Haub, 2010; Nelson et al., 1991; Nelson et al., 2000; Nunes & Malmlof, 1992; 

Schwartz & Levine, 1980; Schwartz et al., 1982). More consistent data are available when 

modified cellulose is used. Microcrystalline cellulose, methylcellulose and high viscosity 

hydroxylpropylmethyl cellulose decrease blood glucose levels in different hosts like pig, rat or 

human (Lattimer & Haub, 2010, Lightowler & Henry, 2009; Low et al., 1985; Maki et al., 2007; 

Takahashi et al., 2005) suggesting that modified cellulose is more easily broken down by the host 

to glucose and absorbed in the intestine. Since the breakdown of natural cellulose to glucose 

takes longer, it passes the small intestine, making it for the host not possible to use the glucose as 

an energy source. Therefore modified celluloses such as powdered cellulose, microcrystalline 

cellulose and hydroxypropylmethyl cellulose may be more beneficial than natural celluloses. In 
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addition modified celluloses could act as soluble fibres and thus are able to improve the viscosity 

of the GIT (Lattimer & Haub, 2010). Most studies in poultry indicate that insoluble fibres like 

cellulose are inert and therefore act only as nutrient diluents (Hetland et al., 2004). This was 

confirmed in a more recent study that determined the effect of purified fibre on the growth 

performance and intestinal health of young chicks (Wils-Plotz et al., 2013). In this study 

powdered cellulose had no effect on the nutrient availability, which suggests that cellulose is 

essentially inert (Wils-Plotz et al., 2013). 

There is an increasing interest in the effects of cellulose on the host health because of the use as 

bulking agent to feed. More and more research is done in order to investigate the effect of the 

feed composition on the host health by evaluating the performance and microbiota composition. 

In order to correct the control medium for the added component in the test-medium, cellulose is 

added. Cellulose is seen as bulking agent, but is that correct? (Chapter 3) 
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The gastro-intestinal tract is the body site with the highest bacterial diversity and abundance, 

which is known to play a major role in metabolic, nutritional, physiological and immunological 

processes that influence health and disease (Gerritsen et al., 2011; O'Hara & Shanahan, 2006). 

The microbial communities in the gut of livestock like chickens are becoming a focus of interest 

for veterinaries and animal nutritionists since they are believed to play an important role in host 

welfare and productivity (Chambers & Gong, 2011; Torok et al., 2011). Although a lot of 

research has been done on the human intestinal microbiota, our knowledge of the chicken gut 

microbiota composition, metabolic function, and influence on animal health, welfare and 

performance is still incomplete. Understanding the dynamics of the gut microbial community or 

microbial balance is essential to establish or develop strategies to improve feed conversion 

efficiency and growth rate, to avoid intestinal diseases and proliferation of food-borne pathogens, 

and to identify feed additives and nutrients that support beneficial microbial communities. The 

metabolic activity of the intestinal microbiota results in the production of important metabolites 

such as short-chain fatty acids (SCFAs). Butyrate is considered one of the most important 

SCFAs, due to the multiple beneficial effects it has on human and animal health (Canani et al., 

2011; Guilloteau et al., 2010; Leonel & Alvarez-Leite, 2012). The general aim of the present 

thesis was to further broaden our understanding of the role of prebiotics and microbial cross-

feeding on butyrate production and butyrate producing microorganisms in broiler chickens. In the 

human gut, butyrate is mainly produced by species belonging to Clostridium cluster IV and XIVa 

(Collins et al., 1994; Louis & Flint, 2009), however butyrate-producers related to Clostridium 

cluster XVI seem to play a more important role in the chicken gut than in the human colon 

(Eeckhaut et al., 2011). Not many species of the Clostridium cluster XVI are yet described in 

detail and their function is still obscure.  

Dietary carbohydrate intake has a major impact on the composition of the gut microbiota and its 

metabolic output (Duncan et al., 2007; Flint et al., 2012a; Flint et al., 2012b; Scott et al., 2014; 

Walker et al., 2011; Wu et al., 2011). Different prebiotics enhance health and performance  by 

promoting the growth of specific beneficial groups of gut bacteria (Gibson et al., 2004). They are 

known to influence Bifidobacterium and Lactobacillus species, but some also increase the level 

of butyrate-producing bacteria (Scott et al., 2014). A far more detailed characterization of 

prebiotics or candidate prebiotics that influence the gut community in broilers is needed, 

especially with regard to the stimulation of butyrate-producing species.  
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Therefore, the specific aims of this work are: 

 To characterize and reclassify different strains of the less abundant butyrate-producing 

Clostridium cluster XVI (Chapter 1). 

 To analyse the effect of xylo-oligosaccharides (XOS) administration on the performance 

of broilers and to identify the XOS induced microbial shift in order to explain the 

beneficial effect on the gastro-intestinal health (Chapter 2).  

 To analyse the effect of cellulose administration on the performance of broilers and their 

intestinal microbiota composition (Chapter 3).  
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Chapter pter 1 

Faecalicoccus acidiformansns gen.nov., sp.nov. isolated from the 
chicken caecum and reclassification of f f Streptococcus pleomorphusus, 
Eubacterium cylindroideses as Faecalicoccus pleomorphusus 
comb.nov., Holdemanella biformisisii  gen.nov., comb.nov. and 
Faecalitalea cylindroideses gen.nov., comb.nov., respectively, within 
the family y Erysipelotrichaceae 

 

 

Adapated from: De Maesschalck, C., Van Immerseel, F., Eeckhaut, V., p , , , , , ,
De Baere, S., Cnockaert, M., Croubels, S., Haesebrouck, F., Ducatelle, R. and Vandamme, P.  (2014) International Journal of Systematic and Evolutionary Microbiology 64, 3877-3884
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ABSTRACT 
Strains LMG 27428T and LMG 27427 were isolated from the caecal content of a chicken and 

produced butyric, lactic and formic acid as major metabolic end products. The genomic DNA 

G+C content of strain LMG 27428T was 40.4 mol% and 38.8 mol% for LMG 27427. On the basis 

of 16S rRNA gene sequence similarity, both strains were most closely related to the generically 

misclassified Streptococcus pleomorphus ATCC 29734T. Strain LMG 27428T could be 

distinguished from S. pleomorphus ATCC 29734T based on higher lactic acid and less formic 

acid production in M2GSC medium, a higher DNA G+C content and absence of acid 

phosphatase, leucine, arginine, leucyl glycine, pyroglutamic acid, glycine and histidine 

arylamidase activity while strain LMG 27428 was biochemically indistinguishable from S. 

pleomorphus. The novel genus Faecalicoccus within the family Erysipelotrichaceae is proposed 

to accommodate strain LMG 27428T (= DSM 26963T) as Faecalicoccus acidiformans sp. nov. 

and strain LMG 27427 (= DSM 26962) as Faecalicoccus pleomorphus comb. nov.. Furthermore, 

the nearest phylogenetic neighbours of the genus Faecalicoccus are the generically misclassified 

Eubacterium cylindroides DSM 3983T (94.4% 16S rRNA sequence similarity to the type strain) 

and Eubacterium biforme DSM 3989T (92.7% 16S rRNA sequence similarity to the type strain). 

We present genotypic and phenotypic data that allow the differentiation of each of these taxa and 

formally propose to reclassify these generically misnamed Eubacterium species as Faecalitalea 

cylindroides comb. nov. (DSM 3983T = ATCC 27803T = JCM 10261T) and Holdemanella 

biformis comb. nov. (DSM 3989T = ATCC 27806T = CCUG 28091T), respectively.  
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INTRODUCTION 
The complex microbiota of the gastro-intestinal tract is dominated by microorganisms belonging 

to the phylum Firmicutes (Ley et al., 2008; Stanley et al., 2013). Eeckhaut et al. investigated the 

diversity and phylogenetic relationships of butyrate-producing bacteria isolated from the chicken 

caeca and observed that butyrate producers belonging to Clostridium cluster XVI as determined 

by Collins et al. may play a more important role in the chicken gut than in the human colon 

(Collins et al., 1994; Eeckhaut et al., 2011). Members of Clostridium cluster XVI or the 

Erysipelotrichaceae family stain Gram-positive with incoherent cell morphology and include the 

generically misclassified Streptococcus pleomorphus, Eubacterium cylindroides and 

Eubacterium biforme (Collins et al., 1994). The recent isolation of butyrate-producing bacteria 

from the caecal content of a 14-week old Isa Brown layer type pullet yielded strains LMG 27428T 

and LMG 27427 (Eeckhaut et al., 2011). They were isolated on M2GSC media at 38°C and in an 

anaerobic environment. Based on their near-entire 16S rRNA gene sequence, these strains 

appeared to be most closely related to the above-mentioned members of the Erysipelotrichaceae 

family. In the present study we describe the morphological, biochemical and genotypic 

characterization of strains LMG 27428T and LMG 27427 and their nearest phylogenetic 

neighbours and propose a novel classification for each of these taxa. 
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METHODS 
ISOLATION OF BUTYRATE-PRODUCING STRAINS 
Strains LMG 27428T and LMG 27427 were isolated from chicken caecal content and grown 

anaerobically for 48h on solid M2GSC medium pH 6 at 38°C (Eeckhaut et al., 2011).  

SEQUENCING AND PHYLOGENETIC POSITIONING 
DNA was extracted from strains LMG 27428T and LMG 27427 using an alkaline lysis procedure. 

Universal bacterial primers fD1 and rD1 (Weisburg et al., 1991) and primers H279 and H280 

(Goh et al., 1996) were used to amplify the 16S rRNA gene and part of the 60kDa heat shock 

protein (hsp60) gene, respectively. After purification, the amplicons were sequenced by GATC 

Biotech (GATC Biotech AG, European Genome and Diagnostics Centre, Konstanz, Germany) 

using the same primers for hsp60 and primers pD, Gamma*, 3 and O* for 16S rRNA (Coenye et 

al., 1999). For the 16S rRNA sequence, the closest match to the deduced sequences was found 

using the EzTaxon-e server (Kim et al., 2012), while for the hsp60 gene sequence, an 

independent mapping against a reference cpn60 gene database was used (Hill et al., 2004). The 

sequences were aligned with reference 16S rRNA gene sequences and hsp60 sequences using the 

MUSCLE program (Edgar, 2004a, b). Phylogenetic trees were constructed using MEGA 6 

software (Tamura et al., 2013; Tamura et al., 2011). Clustering was determined with the 

maximum likelihood method based on the Tamura-Nei model (Tamura & Nei, 1993) and 

bootstrap values were calculated based on 100 replications. 

DNA-DNA HYBRIDISATION 
Genomic DNA of S. pleomorphus ATCC 29734T and strain LMG 27427 was prepared according 

to (Pitcher et al., 1989) and DNA-DNA hybridizations were performed as described by (Ezaki et 

al., 1989) with an adapted hybridization temperature of 35°C. 

DETERMINATION OF GENOMIC DNA G + C CONTENT 
The mol% G+C content of strains LMG 27428T and LMG 27427 was determined using a Waters 

Breeze HPLC system and an XBridge Shield RP18 column maintained at 37°C (Mesbah & 

Whitman, 1989). 

QUANTIFICATION OF FATTY ACIDS METHYL ESTER COMPOSITION 
The whole cell fatty acid methyl ester (FAME) composition was determined for strains LMG 

27428T, LMG 27427, ATCC 29734T, DSM 3983T and DSM 3989T using an Agilent 
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Technologies 6890N gas chromatograph (Santa Clara, CA, USA). Fatty acids extraction and 

analysis of the fatty acid methyl esters were performed according to the recommendations of the 

Microbial Identification System, Sherlock version 3.10 (MIDI, Hewlett Packard, Newark, DE, 

USA). Fatty acids were extracted from cultures grown in M2GSC for 24h at 38°C under 

anaerobic conditions. The peaks of the profiles were identified using the TSBA50 identification 

library version 5.0 (MIDI, Hewlett Packard, Newark, DE, USA). 

QUANTIFICATION OF SHORT-CHAIN FATTY ACIDS 
The fermentation pattern of the two strains and their closest phylogenetic neighbours was 

analysed using HPLC-UV after grown in M2GCS for 24h at 38°C under anaerobic conditions 

(De Baere et al., 2013). 
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RESULTS 
Recently two strains LMG 27428T and LMG 27427 were isolated and based on their near-entire 

16S rRNA gene sequence, these strains appeared to be most closely related to three members of 

the Erysipelotrichaceae family namely Streptococcus pleomorphus, Eubacterium cylindroides 

and Eubacterium biforme (Collins et al., 1994; Eeckhaut et al., 2011). Both isolates were further 

characterized in detail and compared with their closest neighbours.  

The colonies of both strains were 0.5-1.5mm in diameter and white in colour. The cell 

morphology was investigated using Gram-staining and scanning electron microscopy (SEM). 

Cells of both strains stained Gram-positive and were observed as cocci-bacilli-shaped pairs 

measuring 1.1-1.2μm and 0.9-1.0μm for strains LMG 27428T and LMG 27427 respectively 

(Figure 1). Spore formation was not detected. 

 

Figure 1. Scanning electron micrograph of cells of Faecalicoccus acidiformans LMG 27428T.  

The phylogenetic tree (Figure 2) showed that strain LMG 27428T has moderate sequence 

similarity to Streptococcus pleomorphus ATCC 29734T (96.0%) and lower similarity to 

Eubacterium cylindroides DSM 3983T (94.4%) and Eubacterium biforme DSM 3989T (92.7%). 

The 16S rRNA gene sequence of strain LMG 27427 was 99.6% similar to that of S. pleomorphus 

ATCC 29734T. Phylogenetic analysis of protein encoding genes such as the hsp60 gene is 

commonly used as an alternative identification instrument to distinguish between closely related 

species. The analysis shown in Figure 3 demonstrates that S. pleomorphus ATCC 29734T and 

strain LMG 27427 have highly similar (98.2%) hsp60 gene sequences that can be used to 

differentiate them from their nearest neighbour, i.e. strain LMG 27428T. The level of DNA-DNA 

hybridization between strain LMG 27427 and S. pleomorphus ATCC 29734T was 83% (the 

reciprocal hybridization values were 94 and 71%), which demonstrated that they indeed represent 

the same species. 
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Figure 2. Rooted tree showing the 16S rRNA phylogenetic relationship of Faecalicoccus pleomorphus 
gen. nov., comb. nov. and Faecalicoccus acidiformans sp. nov. with some other members of the 
Erysipelotrichaceae family. The tree was constructed using the maximum likelihood method based on the 
Tamura-Nei model and based on a comparison of approximately 1300 nucleotides. Percentage bootstrap 
values, based on 100 replications, are shown at branch points. The accession numbers of reference 
organisms are included. Bar, 0.02 substitutions per nucleotide position. Erysipelothrix rhusiopathiae 
ATCC19414T was used as outgroup. The evolutionary analyses were conducted using MEGA 6 software. 

 

Figure 3. Phylogenetic tree based on the hsp60 (heat-shock protein 60kDa) gene sequences of the two 
unknown and three reference strains. The hsp60 gene sequence of two reference strains DSM 3989T and 
DSM 3983T was taken from the cpn60 database while for the two unknown strains and the reference 
strain LMG 17756T we sequenced them in this study. The tree, constructed using the maximum likelihood 
method based on the Tamura-Nei model, showed a comparison of two unknown and three reference 
strains of family Erysipelotrichaceae. Numbers at the nodes indicate the percentages of bootstrap 
sampling, derived from 100 samples, supporting the internal branches. The accession numbers of the 
peptide GenBank are included between brackets. Scale bar: 0.05 substitutions per nucleotide position. The 
evolutionary analyses were conducted using MEGA 6 software. 

The genomic DNA G+C content of strains LMG 27428T and LMG 27427 was determined to be 

40.4 and 38.8 mol% respectively, which is similar to that of S. pleomorphus ATCC 29734T (39.4 

mol%) (Barnes et al 1977.). 
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Table 1: Cellular fatty acids profiles of two strains LMG 27428T and LMG 27427 and their closer 
phylogenetic neighbours of the family Erysipelotrichaceae (determined in this study). Strains: 1, 
Faecalicoccus acidiformans LMG 27428T; 2, F. pleomorphus LMG 27427; 3, F. pleomorphus ATCC 
29734T; 4, Faecalitalea cylindroides ATCC 27803T; 5, Holdemanella biformis DSM 3989T. Major 
differences are highlighted in bold. ND, not detected 

Cellular fatty acid 1 2 3 4 5 
Saturated fatty acid      
C10:0 0.9 0.7 0.6 1.2 1.0 
C11:0 0.8 0.2 ND ND ND 
C12:0 5.3 3.4 4.0 4.5 7.3 
C13:0 1.0 1.2 1.7 1.7 ND 
C14:0 7.5 6.3 9.0 9.0 4.4 
C16:0 12.6 13.5 15.5 16.1 24.5 
C18:0 4.6 7.1 10.6 7.0 20.3 
C19:0 ND 0.4 ND ND ND 
Unsaturated fatty acids      
C15:1 ω6c ND 0.9 1.4 1.1 ND 
C16:1 ω9c 1.5 0.8 1.0 1.8 ND 
C17:1 ω8c 3.5 6.3 4.1 6.4 ND 
C17:1 ω6c ND 1.3 0.8 1.0 ND 
C18:1 ω9c 10.7 12.8 13.2 12.0 8.0 
C18:1 ω7c 5.3 5.8 6.8 3.7 2.6 
C18:1 ω6c ND ND ND ND 3.5 
C20:1 ω9c 0.5 ND ND ND ND 
Branched fatty acids      
iso-C14:0 ND 0.1 ND ND ND 
iso-C15:0 0.5 0.5 ND ND 1.1 
anteiso-C15:0 1.0 0.7 1.1 0.8 2.5 
iso-C16:0 ND 0.3 ND ND 0.9 
iso-C17:0 ND 0.4 ND ND ND 
anteiso-C17:0 ND ND ND ND 1.3 
iso-C18:1 H 2.3 3.2 1.6 1.7 ND 
iso-C19:1 I 17.3 10.7 8.7 6.5 2.1 
Hydroxyl fatty acids      
C16:0 3-OH ND 0.4 0.6 ND 1.4 
Summed features       
Summed feature 1 0.4 0.3 ND 1.1 ND 
Summed feature 2 ND 0.7 ND 1.3 ND 
Summed feature 3 4.4 5.4 6.0 7.3 0.4 
Summed feature 4 11.2 9.6 7.0 9.0 8.7 
Summed feature 5 2.6 2.3 2.1 2.0 7.1 
Summed feature 6 1.1 1.9 1.3 0.7 ND 
Summed feature 7 ND 0.2 ND ND ND 
Summed features are groups of two or three fatty acids that cannot be separated by GLC with the MIDI 

System. Summed feature 1 = iso-C15:0 H, C13:0 3-OH; Summed feature 2 = iso-C16:1 I, C14:0 3-OH; Summed 
feature 3 = C16:1 ω7c, iso-C15:0 2-OH; Summed feature 4 = iso-C17:1, anteiso-C17:1 B; Summed feature 5 = 
C18:2 ω6,9c, anteiso-C18:0; Summed feature 6 = C19:1ω11c, C19:1ω9c; Summed feature 7 = C19:1ω6c, 
C19:0ω10c. 
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The predominant fatty acid for strain LMG 27428T was iso-C19:1 (17.3%), while for the closest 

phylogenetic neighbours it was C16:0 (13.5% - 24.5%) (Table 1). Also other fatty acids were 

present in lower percentages (above 1%) for the 5 strains: C12:0 (3.4%- 7.3%), C14:0 (4.4%- 9.0%), 

C18:0 (4.6%- 20.3%), C18:1 ω9c (8.0%- 13.2%) and C18:1 ω7c (2.6%- 6.8%). 

The strains LMG 27428T, LMG 27427 and S. pleomorphus ATCC 29734T produced 7 - 8.5mM 

lactic acid, 2.4 - 3.5mM butyric acid and 1.5-6.5mM formic acid (Table 2). Strains LMG 27428T 

and LMG 27427 consumed 2.8-3.7mM acetic acid and 0.8-1.1mM propionic acid. Both 

Eubacterium strains DSM 3983T and DSM 3989T produced acids in the range of 0.3-4.0mM 

except for lactic acid of which the concentration was much higher for E. cylindroides DSM 3983T 

(13.6mM).  

Substrate utilization properties of strains LMG 27428T and LMG 27427 were compared to those 

of their nearest phylogenetic neighbour species using the API 20 A, rapid ID 32A and API ZYM 

systems (bioMérieux) according to the manufacturer’s instructions except that the incubation was 

performed anaerobically for API ZYM. S. pleomorphus ATCC 29734T exhibited enzymatic 

activity for acid phosphatase and different arylamidases like leucine, arginine, leucyl glycine, 

pyroglutamic acid, glycine and histidine and differed from strain LMG 27427 only in alanine 

arylamidase and in gelatin hydrolysis. Strain LMG 27428T fermented D-glucose and D-mannose, 

but not D-mannitol, D-lactose, D-saccharose, D-maltose, salicin, D-xylose, L-arabinose, glycerol, 

D-cellobiose, D-melezitose, D-raffinose, D-sorbitol, L-rhamnose and D-trehalose. Hydrolysis of 

gelatin and aesculin was not detected. Strain LMG 27428T did not exhibit arylamidase or acid 

phosphatase activity and could thus easily be distinguished from S. pleomorphus ATCC 29734T. 

E. cylindroides DSM 3983T only fermented D-saccharose and D-raffinose, while E. biforme 

DSM 3989T fermented D-raffinose, D-mannitol, salicin, D-xylose and L-arabinose. Gelatin 

hydrolysis was observed for E. biforme DSM 3989T, while E. cylindroides DSM 3983T 

hydrolysed aesculin and exhibited esterase, ester lipase and α-glucosidase activity, hence 

allowing a straightforward differentiation of strain LMG 27428T and its nearest phylogenetic 

neighbours (Table 2). 
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Table 2: Comparison between the two strains LMG 27428T and LMG 27427 and their closest 
phylogenetic neighbours of the family Erysipelotrichaceae. Strains: 1, Faecalicoccus acidiformans LMG 
27428T; 2, F. pleomorphus LMG 27427; 3, F. pleomorphus LMG 17756T; 4, Faecalitalea cylindroides 
ATCC 27803T; 5, Holdemanella biformis DSM 3989T. All data are from this study unless indicated 
otherwise. +, Positive; -, Negative; ND, not detected. 

Characteristic 1 2 3 4 5 
DNA G+C content (%mol) 40.4 38.8 39.4* 31.0† 33.8‡ 
Fermentation acids (mM)      
  Butyric acid 3.5 ± 0.2 2.4 ± 0.3 3.2 ± 0.3 2.6 ± 0.6 3.2 ± 0.8 
  Acetic acid -3.7 ± 0.6 -2.8 ± 0.3 N.D 1.0 ± 0.3 2.4 ± 0.5 
  Propionic acid -0.8 ± 0.1 -1.1 ± 0.1 N.D 1.3 ± 0.4 3.9 ± 0.2 
  Lactic acid 8.5 ± 0.2 7.9 ± 0.2 7.0 ± 0.3 13.6 ± 2.1 2.1 ± 0.4 
  Formic acid 1.5 ± 0.1 3.8 ± 0.1 6.5 ± 0.3 0.7 ± 0.2 0.3 ± 0.1 
Acid production from (API system):       
   D-Mannitol§ - - - - + 
   D-Saccharose§ - - - + - 
   Salicin§ - - - - + 
   D-Xylose§ - - - - + 
   L-Arabinose§ - - - - + 
   D-Raffinose§ - - - + + 
Hydrolysis of:         
   Gelatin§ - + - - + 
   Aesculin§ - - - + - 
Production of (API system):      
   Alkaline phosphataseǁ - - - + + 
   Esterase (C4)ǁ - - - + - 
   Ester lipase (C8)ǁ - - - + - 
   Acid phosphataseǁ - + + + + 
   α-Glucosidaseǁ¶ - - - + - 
   Arginine arylamidase¶ - + + - - 
   Leucyl glycine arylamidase¶ - + + - - 
   Leucine arylamidaseǁ¶ - + + - - 
   Pyroglutamic acid arylamidase¶ - + + - - 
   Alanine arylamidase¶ - + - - - 
   Glycine arylamidase¶ - + + - - 
   Histidine arylamidase¶ - + + - - 
DNA G+C content data were taken from: *, (Barnes et al., 1977); †,(Cato et al., 1974); ‡,  (Cato et al., 
1974) § api® 20A; ǁ api® ZYM; ¶ rapid ID 32A 
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DISCUSSION 
The high degree of phenotypic similarity together with the DNA-DNA hybridisation value 

demonstrate that strain LMG 27427 should be classified within the generically misclassified S. 

pleomorphus ATCC 29734T. In addition, strain LMG 27428T is the nearest phylogenetic 

neighbour of the latter but can be distinguished from it by a considerable 16S rRNA divergence 

(4.0%), hsp60 sequence analysis, a higher lactic acid production but lower formic acid 

production, a higher DNA G+C content and the absence of acid phosphatase and various 

arylamidases activities. S. pleomorphus, strain LMG 27428T, and the generically misclassified E. 

cylindroides and E. biforme all belong to a single line of descent within the family 

Erysipelotrichaceae and can be distinguished by both genotypic and phenotypic characteristics. 

On the basis of these polyphasic taxonomic data we propose to classify strain LMG 27428T as 

Faecalicoccus acidiformans. Fa.e.ca.li.coc’cus. N.L. adj. faecalis (from L.n. faex faecis), 

pertaining to feces; N.L. masc. n. coccus (from Gr. masc. n. kokkus, a grain, seed), a coccus; N.L. 

masc. n. Faecalicoccus, coccoid bacteria that are isolated from faecal material. A.ci.di.for’mans. 

N.L. n. acidum (from L. adj. acidus, sour), an acid; L. part. adj. formans, forming; N.L. part. adj. 

acidiformans, acid-forming bacteria. The type species is Faecalicoccus acidiformans and strain 

LMG 27428T (= DSM 26963T) is the type strain. 

The generically misnamed S. pleomorphus (Kawamura et al., 1995; Ludwig et al., 1988) is 

reclassify as Faecalicoccus pleomorphus. ple.o.mor’phus. N.L. masc. adj. pleomorphus (from Gr. 

adj. pleos, full, and Gr. n. morphê, form, shape), pleomorphic, different forms for the bacteria. 

The type strain is LMG 17756T (= ATCC 29734T, DSM 20574T). 

Furthermore, there is a growing consensus that the genus Eubacterium sensu stricto should be 

restricted to the type species, Eubacterium limosum ATCC 8486T, and its closest phylogenetic 

relatives, and that the majority of Eubacterium species therefore needs reclassification 

(Kageyama et al., 1999; Moore et al., 1976; Nakazawa & Hoshino, 1994; Willems & Collins, 

1996). The considerable phylogenetic divergence between E. biforme DSM 3989T, E. 

cylindroides DSM 3983T and their nearest phylogenetic neighbours, and the difference in mol% 

G+C content, in lactic acid production and in various other biochemical characteristics, together 

warrant the reclassification of E. biforme and E. cylindroides, as Holdemanella biformis and 

Faecalitalea cylindroides respectively. Hol.de.man.el’la. N.L. fem. dim. n. Holdemanella, named 

in honor of Lillian V. Holdeman Moore, a contemporary American microbiologist, for her 

outstanding contribution to the bacteriology of anaerobes. Bi.for’mis L. fem. adj. biformis, two-
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shaped, two-formed (pertaining to cellular morphology). The type species is Holdemanella 

biformis and strain DSM 3989T (= ATCC 27806T, CCUG 28091T) is the type strain. 

Fa.e.ca.li.ta’le.a N.L. adj. faecalis (from L. n. faex faecis), pertaining to faeces; L.fem. n. talea, a 

rod; N.L. fem. n. Faecalitalea, rods isolated from faeces. Cy.lin.dro’i.des. Gr. n. kulindros, a 

cylinder; L. suff. –oides (from Gr. suff. eides, from Gr. N. eidos, which is seen, form, shape, 

figure), resembling, similar; N.L. fem. adj. cylindroides, cylinder-shaped. The type species is 

Faecalitalea cylindroides and strain DSM 3983T (= ATCC 27803T, JCM 10261T) is the type 

strain. 
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ABSTRACT 
In broiler chickens, feed additives, including prebiotics, are widely used to improve gut health 

and to stimulate performance. Xylo-oligosaccharides (XOS) are hydrolytic degradation products 

of arabinoxylans that can be fermented by the gut microbiota. In the current study it was aimed to 

analyze the prebiotic properties of XOS when added to the broiler diet. Administration of XOS to 

chickens, on top of a wheat/rye-based diet, significantly improved the feed conversion ratio. XOS 

significantly increased villus length in the ileum. It also significantly increased numbers of 

lactobacilli in the colon and Clostridium cluster XIVa in the caeca. Moreover, the number of gene 

copies encoding the key bacterial enzyme for butyrate production, butyryl-CoA:acetate CoA-

transferase, was significantly increased in the caeca of chickens administered XOS. In this group 

of chickens, at species level, Lactobacillus crispatus and Anaerostipes butyraticus were 

significantly increased in abundance in the colon and caecum, respectively. In vitro fermentation 

of XOS revealed cross-feeding between L. crispatus and A. butyraticus. Lactate, produced by L. 

crispatus during XOS fermentation, was utilized by the butyrate-producing Anaerostipes species. 

These data show the beneficial effects of XOS on broiler performance when added to the feed, 

which potentially can be explained by stimulation of butyrate-producing bacteria through cross-

feeding of lactate and subsequent effects of butyrate on gastro-intestinal function. 
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INTRODUCTION 
Cereal fibers are composed of carbohydrate polymers that are resistant to digestion in the small 

intestine of monogastric animals but are completely or partially fermented in the distal gut, and 

are believed to stimulate gut health (McCleary, 2003). The main components of the cereal fiber 

fraction are arabinoxylans (AX), pectins, resistant starch, cellulose, β-glucans and lignin (James 

et al. 2003). Hydrolytic degradation of the heteropolymer AX results in a mixture of arabinose 

substituted xylo-oligosaccharides or arabinoxylan-oligosaccharides (AXOS) and non-substituted 

xylo-oligosaccharides (XOS) (Broekaert et al., 2011). XOS are oligomers consisting of xylose 

units, linked through β-(1-4) linkages (Aachary & Prapulla 2008). Selective fermentation of XOS 

has been shown to induce changes in both the composition and activity of the gastro-intestinal 

microbiota, improving the health and well-being of the host. This suggests that XOS could fulfill 

the definition of a prebiotic (Gibson et al. 2004). The production of lactate and short chain fatty 

acids (SCFA), including butyrate, upon fermentation of XOS, has been confirmed in several in 

vitro and in vivo studies (Broekaert et al., 2011; Scott et al., 2014). Lactate can stimulate butyrate 

production due to cross-feeding between lactate-producing bacteria and lactate-utilizing butyrate-

producing bacteria from Clostridium cluster XIVa (Duncan et al. 2004). Butyrate has proven 

beneficial effects on gastro-intestinal function, since it has anti-inflammatory properties, fuels 

epithelial cells and increases the intestinal epithelial integrity. In addition, butyrate has been 

shown to improve growth performance in production animals and to change the microbiota 

composition and metabolic activity of the microbial ecosystem in the intestine (Canani et al., 

2011; Guilloteau et al., 2010).  

Beneficial effects of XOS have already been described in rats. In these studies, XOS was shown 

to significantly increase the bifidobacteria and lactobacilli population in the caecum (Gobinath et 

al. 2010; Hsu et al.2004). An in vitro study using swine faecal microbiota showed the highest 

SCFA production during fermentation of XOS (Smiricky-Tjardes et al. 2003). To our knowledge, 

there is not much published research on the effect of XOS on the gastro-intestinal health. In 

broiler chickens a recent publication of Zhenping et al., showed increased growth performance, 

enhanced endocrine metabolism and improved immune function after in feed supplementation of 

straw-derived XOS (Zhenping et al., 2013). Moreover, XOS was shown to decrease the ileal 

lactic acid concentration and increase the caecal butyric and total volatile fatty acid concentration 

at 21 days of age (Graham et al., 2003). The effect of XOS on the microbiota composition was 

only investigated in young chicks and showed an increase in the number of bifidobacteria after 

only 1 week of supplementation (Courtin et al., 2008). 
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In the broiler chicken, the distal ileum, the caeca and the colon are regarded as fermentation 

chambers whose function is determined by the microbiota composition (Meimandipour et al., 

2009; Sekelja et al., 2012). The chicken gut microbiota is dominated by species belonging to the 

phyla Firmicutes (up to 75%) and Bacteroidetes (between 10% and 50%) (Dumonceaux et al., 

2006; Gong et al., 2002; Knarreborg et al., 2002; Lepage et al., 2013; Lu et al., 2003; Qin et al., 

2010; Torok et al., 2008). Around 90% of the bacteria in the chicken gastro-intestinal tract are 

unknown species, indicating that the knowledge of the intestinal microbiota of chickens is 

incomplete (Apajalahti et al., 2004). The majority of sequences within the Firmicutes phylum 

belong to the families Ruminococcaceae and Lachnospiraceae, the so called Clostridium cluster 

IV and XIVa, respectively (Collins et al. 1994). Both families contain numerous members that 

are known to produce butyrate as a fermentation end-product and are therefore linked to 

beneficial effects on gastro-intestinal function (Duncan et al., 2007; Pryde et al., 2002). Whether 

the abundance of these groups in the distal gut of chickens is affected by XOS is unclear.  

In the current study, we analyzed the effect of XOS administration on the performance of 

broilers. In addition, we aimed to identify the shifts in microbiota composition induced by XOS 

to explain possible beneficial effects on gastro-intestinal health, with emphasis on butyrate 

production.  
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MATERIALS AND METHODES 
ADDITIVES/SUBSTRATES 
In the in vivo study corncob-derived XOS35 (Longlive Bio-technology, Shandong, China) was 

used as feed additive. XOS35 is a mixture of 35% XOS with a degree of polymerization (DP) 

between 2-7 and 65% maltodextrin. In the in vitro fermentation study XOS35, maltodextrin 

(Sigma-Aldrich, St. Louis, United States) and XOS95 (Longlive Bio-technology, Shandong, 

China), a mixture of 95% XOS with DP 2-7 and 5% xylose, were used. The XOS95 and 

maltodextrin were used be confirm that the effects of XOS35 in the in vivo trial were explained 

by the XOS.  

ANIMALS AND DIETS 
A total of 192 male and 192 female one-day-old Ross-308 broiler chickens were randomly 

divided in 12 pens (3 pens of female and 3 pens of male birds per treatment and 32 chickens per 

pen) and housed on solid floor covered with wood shavings. Light schedule was set to provide an 

18h light/6h dark cycle. The infrared bulbs (1 per pen during the first week) together with the 

central heating system provided optimal temperature. All animals were fed a wheat/rye-based diet 

with XOS (experimental group) or without XOS (control group) of which the composition is 

shown in Table 1. Sunflower meal and rapeseed meal were used as protein source in the diet; 

those proteins are slower digested than others. By using these protein sources, the diet is a 

suboptimal diet compared with the commercially available ones. In this diet also rye was used in 

order to increase the level of non-starch polysaccharides (NSP). The experimental starter feed 

(fed from the first day of age until day 13) was supplemented with 0.2% XOS, the grower feed 

(fed from day 14 until day 26) and the finisher feed (fed from day 27 until day 39) were 

supplemented with 0.5% XOS. At 13, 26 and 39 days of age, all broilers and the feed leftovers 

were weighed per pen to calculate the feed conversion ratio (FCR), weight gain (WG) and feed 

intake (FI). At 26 days of age, three chickens per pen were euthanized by an intravenous 

overdose of sodium pentobarbital 20% (Kela, Hoogstraten, Belgium). The complete content of 

caecum and colon was collected and stored at -70°C, while a part of the ileum at the level of 

Meckel’s diverticulum was fixed in 4% formaldehyde.  
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Table 1: The composition and nutrient content of the wheat/rye diet administered to chickens. Starter diet 
was given from day 1 until 13, grower was given from day 14 until 26 and finisher was given from day 27 
until 39. The treatment group received 0.25% XOS on the top during starter and 0.5% XOS during 
grower and finisher. 

 Starter diet Grower diet Finisher diet 
Feedstuff (%)    
Wheat 44.00 46.51 49.78 
Rye 5.00 5.00 5.00 
Soybean meal (48) 23.30 19.78 16.61 
Soybeans 7.50 5.00 5.00 
Sunflower meal 27 2.50 2.50 2.50 
Rapeseed meal 7.50 10.00 10.00 
Animal fat 3.90 5.00 5.12 
Soy oil 2.80 2.82 2.61 
Vitamin + trace elements  1.00 1.00 1.00 
CaCO3 0.55 0.56 0.75 
Di-Ca-phosphate 0.90 0.62 0.37 
NaCl 0.21 0.21 0.19 
Na-bicarbonate 0.10 0.10 0.10 
L-Lys-HCl 0.14 0.15 0.20 
DL-Methionine 0.50 0.70 0.70 
L-Threonine 0.04 0.03 0.03 
Phytase 0.02 0.02 0.02 
Calculated nutrient composition (% as fed) 
Crude protein  23.00 21.50 20.50 
Crude fat  10.23 10.66 10.91 
Crude fibre 4.17 4.19 4.19 
Non-soluble polysaccharides  13.87 13.98 13.83 
Metabolisable energy (MJ/kg) 11.72 12.15 12.25 
Starch 28.03 29.41 31.76 
Lysine, digestible  1.12 1.03 1.00 
Sulfur amino acids, digestible  1.10 1.27 1.25 
Threonine, digestible 0.73 0.67 0.65 
Valine, digestible  0.84 0.76 0.72 
Ca  0.85 0.80 0.75 
Available P  0.40 0.35 0.30 
NaCl + KCl (mEq/kg) 247 225 208 
Linoleic acid (18:2)  3.34 3.15 3.17 
The difference between the calculated and measured (Weende analysis) value for protein was + 
2.4% in starter and +7.2% in grower diet. For fat it was + 6.9% in starter and + 5.4% in grower 
diet. 

MORPHOLOGICAL EXAMINATION  
Formalin fixed ileum segments taken at the level of Meckel’s diverticulum were dehydrated in 

xylene, embedded in paraffin and sectioned in 4μm slides. The sections were deparaffinized (2 x 

5 min) in xylene, rehydrated in isopropylene (5 min), 95% alcohol (5 min) and 50% alcohol (5 

min) and stained with haematoxylin and eosin. The sections were examined using light 
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microscopy. Villus length and thickness of tunica muscularis were measured by random 

measurement of 10 villi and 10 measurements of tunica muscularis per section using Leica DM 

LB2 Digital (Leica Microsystems Belgium BVBA, Diegem, Belgium) and a PC-based image 

analysis system, LAS V3.8 (Leica application Suit V3, Diegem Belgium).  

MICROBIOTA COMPOSITION 

DNA extraction
DNA was extracted from caecum and colon content using the CTAB method as described 

previously (Griffiths et al., 2000; Kowalchuk et al., 2000). To 100 mg of intestinal content, 0.5 g 

unwashed glass beads (Sigma-Aldrich, St. Louis, United States), 0.5 ml CTAB buffer 

(hexadecyltrimethylammonium bromide 5% (w/v), 0.35 M NaCl, 120 mM K2HPO4) and 0.5 ml 

phenol-chloroform-isoamyl alcohol mixture (25:24:1) (Sigma-Aldrich, St. Louis, United States) 

were added followed by homogenization in a 2 ml destruction tube. The samples were shaken 6 

times for 30 seconds using a beadbeater (MagnaLyser, Roche, Basel, Switzerland) at 6000rpm 

with 30 seconds between shakings. After centrifugation (10min, 8000rpm), 300μl of the 

supernatant was transferred to a new tube. The rest of the tube content was re-extracted with 

250μl CTAB buffer and again homogenized with a beadbeater. The samples were centrifuged for 

10 minutes at 8000rpm and 300μl supernatant was added to the first 300 μl supernatant. The 

phenol was removed by adding an equal volume of chloroform-isoamyl alcohol (24:1) (Sigma-

Aldrich, St. Louis, United States) and a short spin. The aqueous phase was transferred to a new 

tube. The nucleic acids were precipitated with two volumes of PEG-6000 solution 

(polyethyleenglycol 30% (w/v), 1.6M NaCl) for two hours at room temperature. After 

centrifugation (20min, 13000rpm), the pellet was rinsed with one ml of ice-cold 70% (v/v) 

ethanol. The pellet was dried and resuspended in 100μl RNA free water (VWR, Leuven, 

Belgium).  

Quantitative PCR for the total bacteria and the butyryl-CoA:acetate-CoA 
transferase gene  
The number of total bacteria and butyryl-CoA:acetate-CoA transferase genes was quantified in 3 

samples per pen (18 samples per treatment). To determine the number of total bacteria, primers 

Uni 331F (5’-TCCTACGGGAGGCAGCAGT-3’) and Uni 797R (5’-

GGACTAACCAGGGTATCTAATCCTGTT-3’) were used (Hopkins et al., 2005). 

Amplification and detection was performed using the CFX384 BioRad detection system (BioRad, 

Nazareth-Eke, Belgium). Each reaction was done in triplicate in a 12μl total reaction mixture 
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using 2x SensiMix™ SYBR No-ROX mix (Bioline, Kampenhout, Belgium), 0.5μM final primer 

concentration and 2μl of (50 ng/μl) DNA. The amplification program consisted of 1 cycle at 

95°C for 10 min followed by 40 cycles of 1 min at 94°C, 1 min at 53°C and 2 min at 60°C. The 

fluorescent products were detected at the last step of each cycle. A melting curve analysis was 

done after amplification and was obtained by slow heating from 60°C to 95°C at a rate of 0.5°C/5 

sec to confirm the specificity of the reaction.  

To quantify the number of gene copies encoding the butyryl-CoA:acetate-CoA transferase 

enzyme primers BCoATscrF (5’-GCIGAICATTTCACITGGAAYWS-3’) and BCoATscrR (5’-

CCTGCCTTTGCAATRTCIACRA ANGC-3’) were used (Louis & Flint, 2007). Each reaction 

was done in triplicate in a 12 μl total reaction mixture using 2x SensiMix™ SYBR No-ROX mix 

(Bioline, Kampenhout, Belgium), 2.5μM final primer concentration and 2μl of (50 ng/μl) DNA. 

The amplification program consisted of 1 cycle at 95°C for 10 min followed by 40 cycles of 30 

sec at 95°C, 30 sec at 53°C and 30 sec at 72°C.  

16S rRNA gene sequencing to identify microbiota composition 
Faecal samples derived from one animal per pen (6 per treatment) were used for 16S sequencing. 

For each sample, 16S rDNA PCR libraries were generated with the primers E9-29 and E514-430 

(Brosius et al., 1981) targeting hypervariable regions V1-V3. The oligonucleotide design 

included 454 Life Sciences’s A or B sequencing titanium adapters (Roche Diagnostics, 

Vilvoorde, Belgium) and multiplex identifiers (MIDs) fused to the 5’ end of each primer. The 

amplification mix contained 5U of FastStart high fidelity polymerase (Roche Diagnostics, 

Vilvoorde, Belgium), 1x enzyme reaction buffer, 200μM dNTPs (Eurogentec, Liège, Belgium), 

0.2μM of each primer and 100ng of genomic DNA in a volume of 100μl. Thermocycling 

conditions consisted of a denaturation at 94°C for 15 min followed by 25 cycles at 94°C for 40 s, 

56°C for 40 sec, 72°C for 1 min and a final elongation step of 7 min at 72°C. These 

amplifications were performed on an Ep Master System gradient apparatus (Eppendorf, 

Hamburg, Germany). Electrophoresis of the PCR products was done on a 1% agarose gel and the 

DNA fragments were plugged out and purified using the SV PCR purification kit (Promega 

Benelux, Leiden, The Netherlands). The quality and quantity of the products were assessed with a 

Picogreen dsDNA quantitation assay (Isogen, St-Pieters-Leeuw, Belgium). All libraries were run 

in the same titanium pyrosequencing reaction using Roche MIDs. All amplicons were sequenced 

using the Roche GS-Junior Genome Sequencer instrument (Roche, Vilvoorde, Belgium), the 

sequence number of each sample is normalized to 2323 reads.  
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The 16S rDNA sequence reads were processed with the MOTHUR package (Schloss et al. 2009). 

The quality of all sequence reads were denoised using the Pyronoise algorithm implemented in 

MOTHUR and filtered with the following criteria: minimal length of 425bp, an exact match to 

the barcode and one mismatch allowed to the proximal primer. The sequences were evaluated for 

the presence of chimeric amplifications using Uchime (Edgar et al. 2011). The resulting read sets 

were compared to a reference dataset of aligned sequences of the corresponding region derived 

from the SILVA database 1.15 of full-length rDNA sequences (http://www.arb-silva.de/) 

implemented in MOTHUR (Pruesse et al. 2007). The final reads were clustered into OTUs using 

the nearest neighbour algorithm using MOTHUR with a 0.03 distance unit cut-off. At the OTU 

level of analysis (OTU definition level for a 0.02 distance matrix), a total of 3052 OTUs were 

created. A taxonomic identity was attributed to each OTU by comparison with the SILVA 

database (80% homogeneity cut-off). As a secondary analysis all unique sequences for each OTU 

were compared to the SILVA dataset 1.15 using BLASTN algorithm (Altschul et al. 1990). For 

each OTU, a consensus detailed taxonomic identification was given based upon the identity (less 

than 1% of mismatch with the aligned sequence) and the metadata associated with the best hit 

(validated bacterial species or not). The raw sequences were deposited in Genbank (accession 

number: PRJNA277118).  

IN VITRO FERMENTATION 

Bacterial strains, growth and co-culture studies 
The butyrate-producing strain Anaerostipes butyraticus LMG 24724T and the lactate producing 

strain Lactobacillus crispatus LMG 9479T were purchased from the BCCM/LMG bacteria 

collection. A. butyraticus and L. crispatus were grown in M2GSC (Barcenilla et al., 2000) and 

Man-Rogosa-Sharpe (MRS) medium, respectively, in an anaerobic chamber (Ruskinn 

technology, Bridgend, United Kingdom) with 84% N2, 8% H2 and 8% CO2 at 37°C.  

The in vitro fermentation study was conducted using a nutrient-poor medium described by Moura 

et al. (Moura et al., 2007) with minor modifications (0.85 g/l casitone, 0.15 g/l enzymatic digest 

of soya bean, 0.25 g/l NaCl, 0.125 g/l K2HPO4, 5.0g/l bactopeptone, 5.0 g/l yeast nitrogen base 

and 0.5g/l resazurin. After autoclaving 1 mg/ml cysteine-HCl, 1% (v/v) of salt solution A (100.0 

g/l NH4Cl, 10.0 g/l MgCl2.6H2O, 10.0 g/l CaCl2.2H2O), 1% (v/v) trace solution (0.025 g/l 

MnCl2.4H2O, 0.02 g/l FeSO4.7H2O, 0.025 g/l ZnCl2, 0.025 g/l CuCl2.2H2O, 0.05 g/l CoCl2.6H2O, 

0.05 g/l SeO2, 0.25 g/l NiCl2.6H2O, 0.25 g/l Na2MoO4.2H2O, 0.314 g/l NaVO3, 0.25 g/l H3BO3 

dissolved in 0.02M HCl) and 1.2% (v/v) vitamin/phosphate solution (0.0204 g/l biotin, 0.0205 g/l 

 



THE EFFECTS OF XOS ON PERFORMANCE AND MICROBIOTA IN BROILER CHICKENS 

 

121 

folic acid, 0.164 g/l Ca D-pentothenate, 0.164 g/l nicotinamide, 0.164 g/l riboflavin, 0.164 g/l 

thiamin HCl, 0.164 g/l pyridoxine HCl, 0.201 g/l para-amino benzoid acid, 0.0205 g/l 

cyanocobalamin dissolved in 54.7 g/l KH2PO4, filter sterile)) containing a mixture of SCFAs 

(final concentrations: acetate (31mM); propionate (9mM); isobutyrate, isovalerate and valerate 

(1mM each)). A 5% stock solution of XOS35, maltodextrin and XOS95 was prepared in the 

nutrient-poor medium, filter-sterilized (0.2μm), and diluted in the nutrient-poor medium to a final 

concentration of 0.5% (v/v). Un-supplemented nutrient-poor medium was used as control (blank). 

The final pH of the medium was adjusted to 6.5 ± 0.1. The media were pre-incubated in an 

anaerobic cabinet until anaerobiosis, as indicated by the colorless state of resazurin in the media. 

A. butyraticus and L. crispatus, pre-cultured in M2GSC and MRS broth, respectively, at 37°C 

under anaerobic conditions for 24 ± 1h without shaking, were diluted 100-fold in the 

supplemented and non-supplemented nutrient-poor medium. The co-culture of A. butyraticus and 

L. crispatus was prepared using equal portions of the inoculum (2 times 1/200) from the two pure 

cultures. After 24h anaerobic incubation at 37°C, bacterial growth was monitored by measuring 

the optical density at 650nm. After measuring the pH, the cultures were centrifuged at 14000rpm 

for 10 min at room temperature. The supernatants were stored at -20°C until lactate and butyrate 

concentrations were determined using high-performance liquid chromatography (HPLC) analysis. 

The in vitro fermentation assay was done twice in triplicate.  

Determination of butyrate and lactate concentrations 
DL-lactate and butyrate were quantified using HPLC with ultraviolet detection, as described by 

De Baere et al. (De Baere et al., 2013). The supernatant was acidified using concentrated 

hydrochloric acid and extracted with diethyl ether for 20 min. The upper ether phase was 

transferred to another extraction tube and extracted again for 20 min with sodium hydroxide. The 

aqueous phase was transferred to an autosampler vial and concentrated hydrochloric acid was 

added. An aliquot was injected on the HPLC-UV instrument. The HPLC instrument consisted of 

a P1000X type quaternary gradient pump, an AS3000 type autosampler, an UV1000 type 

ultraviolet detector and a SN4000 type system controller, all from ThermoFisher Scientific 

(Breda, The Netherlands). Chromatographic separation was achieved using a hypersilGold aQ 

column (150 x 4.6 mm, particle size: 3μm, ThermoFisher Scientific). Gradient elution (80/20) 

was performed using NaH2PO4 in HPLC grade water and HPLC grade acetonitrile as mobile 

phase A and B, respectively. The detector was set at a wavelength of 210nm. The Chromquest 

software (ThermoFisher Scientific) was used for data processing.  
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STATISTICAL ANALYSIS 
The comparison of the performance data was performed with an independent samples t-test 

(SPSS 22.0). For the qPCR and morphology data were analyzed by means of a linear mixed 

effect model with pen included as random effect (S-Plus). The differences were considered 

statistically significant at P value ≤ 0.05 and considered as a tendency at P ≤ 0.1.  

Statistical differences in bacterial population relative abundance between groups were assessed 

by non-parametric Kruskal-Wallis H test with Benjamin-Hochberg False Discovery Rate screen 

and Tukey-Kramer post-hoc test. Moreover, differences in specific bacterial population relative 

abundance based on 16S profiling were analyzed with non-parametric Mann-Whitney test using a 

two-tailed P value calculation.  

GraphPad Prism software version 5 was used to perform the statistical analysis for the in vitro 

fermentation. All quantitative parameters (pH, OD, SCFA concentrations) were compared using 

the Kruskal-Wallis test. The Dunns post hoc test was applied for multicomparisons of these 

variables if there was a significant difference with the Kruskal-Wallis test.  
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RESULTS 
BROILER PERFORMANCE AFTER SUPPLEMENTATION OF BROILER FEED 
WITH XOS35  
To evaluate the effect of XOS on broiler performance, the body weight and feed intake were 

measured and FCR and growth were calculated. No significant differences were observed for 

body weight, feed intake or FCR parameters between the XOS-supplemented and non-

supplemented group on day 13 (Table 2). The FCR was significantly (P = 0.01) better (lower) 

when chickens received the XOS-supplemented diet compared to the chickens receiving the 

control diet during the grower period (day 13 to day 26). When considering the starter and grower 

period together (day 0 to day 26), the FCR was significantly (P = 0.003) more favorable for 

chickens fed the XOS-supplemented diet compared to the chickens fed the control diet (Table 2). 

For the whole trial period (day 0 – 39), the FCR was also significantly improved (lower) for the 

group receiving the XOS-supplemented diet (P = 0.04). The average body weight at the different 

time points was non-significantly higher for chickens fed the diet supplemented with 0.5 % XOS 

compared to the chickens given the non-supplemented diet. These results together with the 

significantly improved FCR show a biologically relevant improved performance for chickens 

given the XOS-supplemented diet.  
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Table 2: The effect of XOS supplementation on the growth performance of the chickens. Feed conversion 
ratio (FCR), body weight (BW), feed intake (FI) and weight gain (Rey et al.) were measured at three time 
intervals for animals fed a wheat/rye-based diet without or with supplemented with 0.2% XOS (day 1-13) 
and 0.5% XOS (day 14-26; 27-39). Values are the mean of 6 pens with 32 chickens ± standard error of the 
mean. Statistical analysis was done with SPSS. Independent samples t-test was used to determine 
statistical differences between groups receiving non-supplemented and XOS supplemented diet. P-values 
less than 0.05 and 0.001 were considered significant (*, **).  

Intervals in days  FCR BW (g) FI (g/d) WG (g/d) 

0-13 
-XOS  1.40  ± 0.05 331 ± 13.94 30.5 ± 0.83 22.0 ± 1.06 
+XOS  1.38  ± 0.02 342 ± 8.02 31.4 ± 0.56 22.8 ± 0.63 
P-value P = 0.76 P = 0.52 P = 0.36 P = 0.52 

13-26 
-XOS  1.54 ± 0.02 1364 ± 15.39 104.9 ± 4.59 67.8 ± 2.26 
+XOS  1.48 ± 0.01 1421 ± 16.97 108.1 ± 3.98 72.8 ± 2.28 
P-value P = 0.01 (*) P = 0.30 P = 0.54 P = 0.15 

26-39 
-XOS  1.81 ± 0.01 2401 ± 60.01 165.6 ± 4.85 91.2 ± 2.72 
+XOS  1.82 ± 0.01 2446 ± 57.26 162.2 ± 1.98 89.4 ± 0.73 
P-value P = 0.59 P = 0.60 P = 0.54 P = 0.41 

0-26 
-XOS 1.50 ± 0.01  67.3 ± 2.3 44,8 ± 1.50 
+ XOS 1.45 ± 0.01  69.4 ± 2.04 47,8 ± 1.72 
P-value P = 0.003 (**)  P = 0.50 P = 0.19 

0-39 
-XOS 1.66 ± 0.01  100.0 ± 2.75 60.4 ± 1.53 
+ XOS 1.63 ± 0.01  100.4 ± 2.43 61.6 ± 1.46 
P-value P = 0.04 (*)  P = 0.93 P = 0.60 

 

INTESTINAL MORPHOLOGY  
Supplementation of 0.5% XOS to the broiler feed significantly (P = 0.04) increased the villus 

length in the ileum (Table 3). The tunica muscularis showed (P = 0.38) to be thicker in the group 

fed the XOS-supplemented diet (Table 3). 

Table 3: The effects of XOS supplementation on the intestinal morphology of chickens on day 26. The 
data shown are the mean length of the villi (μm) and mean thickness of the tunica muscularis (μm) in ileal 
sections taken at day 26 of animals fed a wheat/rye-based diet, without or with supplemented with 0.5 % 
XOS (n=18). The length and the thickness were measured of 10 randomly selected villi and 10 different 
places for the tunica muscularis using a PC-based analysis system. Statistical analysis was done with S-
plus, using a linear mixed effects model with pen as random factor. P-value less than 0.05 were considered 
significant. 

 - 0.5% XOS + 0.5% XOS  
length of villi (μm) 1059 ± 40.00 1228 ± 59.79 P = 0.04  
thickness of tunica muscularis (μm) 167.0 ± 11.01 178.9 ± 6.32 P = 0.38 
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MICROBIOTA COMPOSITION AS DETERMINED BY QPCR AND 16S 
SEQUENCING 
There was no difference in the number of total bacteria between the XOS-supplemented and non-

supplemented group in both the caecum and the colon (Figure 1A). The number of gene copies 

encoding the butyryl-CoA:acetate-CoA transferase was significantly (P = 0.02) higher in the 

caeca of the chickens that received 0.5% XOS (Figure 1B).  

 
Figure 1. Number of total bacteria (A) and butyryl-CoA:acetate-CoA transferase gene copies (B) 
expressed as log10 copy number of the gene per g of wet content in the caecal and colonic content of 26-
day old chickens fed a wheat/rye-based diet either or not supplemented with 0.5% XOS (18 chickens for 
each treatment). Statistical analysis is done with S-plus using a linear mixed effects model with pen as 
random factor to determine statistical difference between groups of animals fed a wheat/rye- based diet 
without and with XOS. * P ≤ 0.05 
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Significant changes were observed in the abundance of specific 16S sequences in caecum and 

colon samples at different taxonomic levels (Figure 2, Table 4). Supplementing XOS to the 

chicken diet resulted in a significant increase in the Clostridium cluster XIVa family in the caeca 

(P = 0.005, Figure 2). Chickens fed the XOS-supplemented diet showed a significant increase of 

unknown strains belonging to the butyrate-producing families Clostridium cluster IV and 

Clostridium cluster XIVa (Table 4). One of the species that also was found to be significantly 

more abundant in the caecum after supplementing XOS to the feed was Anaerostipes butyraticus, 

classified in the butyrate-producing Clostridium cluster XIVa (from 0.4% to 2.5%, P = 0.048, 

Figure 2). Supplementing XOS to the diet resulted in a significant increase in the 

Lactobacillaceae family (P = 0.033, Figure 2). At species level one species was found to be 

significantly more abundant in the colon after feeding the XOS-supplemented diet, Lactobacillus 

crispatus (from 4% to 15%, P = 0.007, Figure 2). 

 
Figure 2. Box plots showing mean relative sequence abundance of the Clostridium cluster XIVa and 
Anaerostipes butyraticus in the caecum (A) and of the Lactobacillaceae and Lactobacillus crispatus in the 
colon (B) of 26-day old chickens fed without or with XOS-supplemented feed (6 chickens for each 
treatment). The plus represents the mean value and the whiskers are the median, the min/max value and 
1ste/3rd quartiles.  
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IN VITRO FERMENTATION 
To investigate cross-feeding between L. crispatus and A. butyraticus in the presence of XOS, an 

in vitro fermentation assay was carried out. XOS95 and maltodextrin were used to confirm the 

effect of XOS in the in vivo trial. Only the monoculture of L. crispatus resulted in a small pH 

drop when XOS35 was added to the medium (6.4 ± 0.04 versus 6.2 ± 0.04, Figure 3). A. 

butyraticus showed a significantly increased (P = 0.007) proliferation when XOS35 and XOS95 

were added to the medium compared to maltodextrin (Figure 3). The proliferation of L. crispatus 

increased significantly when XOS35 was added to the medium. The proliferation of the strains in 

the co-culture was higher when XOS35 or XOS95 was added compared to the non-supplemented 

media (Figure 3). Supplementation of maltodextrin to the medium did not cause any changes. 

 

Figure 3. pH values and optical densities (650 nm) after 24h of in vitro fermentation of different 
substrates by A. butyraticus, L. crispatus and both in co-culture. All the in vitro fermentation experiments 
were done twice in triplicate. Statistical analysis was done with GraphPad Prism 5, using a Kruskal-Wallis 
test with a Dunns post hoc test. P-values ≤ 0.05 (*) and ≤ 0.01 (**) were considered significant. 

The concentrations of the fermentation acids butyrate and DL-lactate were determined after 

incubation, in all monocultures and co-cultures (Figure 4). It was found that A. butyraticus was 

able to produce butyrate, while L. crispatus produced high concentrations of lactate. The 

concentration of butyrate or lactate produced by L. crispatus and A. butyraticus, respectively, 

were below the cut-off values (1mM and 0.5mM respectively) as determined during optimization 

of the HPLC method (De Baere et al., 2013). XOS35 and XOS95 significantly stimulated lactate 

production by L. crispatus compared with A. butyraticus, which was not able to produce lactate. 

In the co-culture, lactate concentrations were very low, even when XOS35 or XOS95 were added 

to the medium, while the butyrate concentration was higher as compared to the concentrations in 
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the monoculture of A. butyraticus with XOS35 (3.3 ± 0.8 versus 2.3 ± 0.6, Figure 4), but non-

significant. A similar observation was made for XOS95 (2.4 ± 0.8 versus 1.6 ± 0.6).   

 

Figure 4. Butyrate and DL-lactate concentration after 24h of in vitro fermentation of different substrates 
by A. butyraticus, L. crispatus and both in co-culture. The in vitro fermentation experiments were done 
twice in triplicate. Statistical analysis was done with GraphPad Prism 5, using a Kruskal-Wallis test 
followed by a Dunns post hoc test. P-values ≤ 0.05 (*), ≤ 0.01 (**) and < 0.001 (***) were considered 
significant. 
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DISCUSSION 
It is generally accepted that shifts in the intestinal microbiota composition may be the result of 

dietary changes, such as the addition of cereal fibres (Knarreborg et al. 2002; Shakouri et al. 

2006; Torok et al. 2011). In the current study, we demonstrated that administration of XOS to 

broiler feed altered the microbiota composition in the gut, with butyrate-producing bacteria 

and lactobacilli being more abundant in caeca and colon, respectively. The family of the 

Clostridium cluster XIVa is significantly selected out of 35 families in the caecum and has a 

relative abundance of divergent family from 44.29% for the chickens feeding with XOS to 

29.65% for the chickens without XOS. In the colon is the family of the Lactobacillaceae 

significantly selected out of 41 families and the relative abundance of divergent family is 

81.54% for the chickens feeding with XOS and 41.73% for the one without XOS. At species 

level, 834 species were picked up in the caecum and 16 of them showed a significance 

difference with a relative abundance of 40.8% for the chickens fed with XOS and 32.14% for 

those without XOS. In the colon, 721 species were pick-up up and 11 of them showed a 

significance difference with a relative abundance of 79.04% for the chickens fed with XOS 

and 51.86% for those without XOS.  

In the chicken gut, lactobacilli are one of the predominant genera (Wei et al., 2013). These 

bacteria have the ability to adhere to the mucosal layers and epithelium, promoting 

colonisation (Kravtsov et al., 2008; Sengupta et al., 2013). Through interaction with the 

intestinal epithelial cells, lactobacilli can cause immunomodulation and offer protection to the 

intestinal barrier by antagonistic activities against pathogens (Rinttila & Apajalathi, 2013; 

Sengupta et al., 2013; Servin, 2004). In addition, the probiotic use of lactobacilli has been 

shown to sometimes beneficially affect performance in broilers. Broilers fed diets containing 

a mixture of 12 Lactobacillus strains or a single Lactobacillus acidophilus strain had a better 

weight gain and a better FCR (Jin et al. 1998). Lactobacilli are known to ferment 

carbohydrates into lactic acid as major end-product which may lower the pH of the intestinal 

environment resulting in the inhibition of growth of acid-sensitive pathogenic bacteria. 

However, this pH effect may be rather limited as lactic acid is absorbed from the intestine or 

used as a substrate for lactate-utilizing bacteria, such as representatives of the genera 

Eubacterium, Anaerostipes, Veillonella and Megasphaera (Belenguer et al. 2007; Harmsen et 

al. 2002). 
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In the present study, in addition to the significant higher abundance of lactobacilli in the 

colon, we found an increased number of butyryl-CoA:acetate CoA-transferase gene copies in 

the caeca of chickens that received a XOS supplemented diet. Butyryl-CoA:acetate CoA-

transferase is a key enzyme in the major pathway for bacterial butyrate production in the gut 

(Duncan et al. 2004). Hippe et al. showed that this enzyme is a suitable marker for the 

butyrate producing capacity of the intestinal microbiota which mainly belong to Clostridium 

cluster IV and XIVa (Hippe et al. 2011; Louis & Flint 2009). We observed a significant 

increase of members from both clusters in the caeca of chickens that were administered XOS.  

The increased abundance of both lactobacilli and butyrate-producing bacteria can partly be 

explained by cross-feeding mechanisms. Bacteria related to Eubacterium hallii and 

Anaerostipes caccae, both members of Clostridium cluster XIVa, are able to convert acetate 

and lactate into butyrate (Duncan et al. 2004; Sato et al. 2008). This metabolic cross-feeding 

between lactate producing and lactate-utilizing bacteria may help to stabilize the luminal pH 

and may be a factor in the butyrogenic effect of certain dietary substrates (Belenguer et al. 

2006). Our in vivo study showed a significant increase of the lactate-producing species 

Lactobacillus crispatus in the colon and the lactate-utilizing butyrate-producing species 

Anaerostipes butyraticus in the caeca. The sequence of the species of which the abundance 

was significantly different between the different groups showed 100% homology with the 

sequence of the type strains. The lactic acid produced by L. crispatus in the colon may reach 

the caecum and become available for A. butyraticus due to antiperistalsis (Hodgkiss, 1984; 

Janssen et al., 2009). The in vitro fermentation assay showed that reference strains of both 

species metabolized XOS resulting in production of high concentrations of lactic acid by L. 

crispatus, which were supposed to be consumed by the butyrate-producing bacterium A. 

butyraticus. Most likely also many other strains can carry out a similar cross-feeding reaction 

in order to generate high butyrate levels in the chicken hindgut.  

Production of butyrate most probably plays a role in the beneficial effects on gut morphology 

and growth performance observed in the current study. In poultry, butyrate enhances non-

specific intestinal defence mechanisms against pathogens that can affect performance, such as 

Clostridium perfringens, by stimulating the mucin glycoprotein expression in intestinal 

epithelial cells (Gantois et al. 2006; Timbermont et al. 2010; Willemsen et al. 2003). Butyrate 

is a major energy source for the colonocytes and exerts anti-inflammatory activities by several 

mechanisms (Hamer et al., 2008). One of these mechanisms is the suppression of nuclear 

factor kappa B (NF-κB) that regulates the expression of pro-inflammatory cytokines (Inan et al. 
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2000). Butyrate has also been shown to interfere with signalling by interferon-γ (IFN- γ) 

through its inhibitory effect on the activation of signal transducer and activator of 

transcription 1 (STAT1) (Klampfer et al. 2003). Butyrate also upregulates the expression of 

peroxisome proliferator-activated receptor-γ (PPAR-γ), a transcription factor that belongs to 

the nuclear hormone receptor family. PPAR-γ inhibits the expression of inflammatory 

cytokines and directs the differentiation of immune cells towards anti-inflammatory 

phenotypes (Martin, 2010; Schwab et al., 2007; Wächtershäuser et al., 2000).  

We observed longer villi in the ileum of chickens that were fed a XOS-supplemented diet as 

compared to chickens fed a control diet. This effect on the small intestinal morphology may at 

least partly be due to butyrate production by Clostridium cluster IV and XIVa species in the 

hindgut through its effect on the expression of glucagon-like peptide-2 (GLP-2). Butyrate 

indeed appears to be a strong stimulator of GLP-2 production. This hormone is secreted by 

entero-endocrine L-cells and acts indirectly through multiple downstream mediators (Dube & 

Brubaker 2007). Its receptor (GLP-2R) is localized on distinct subpopulations of gut 

endocrine cells in the stomach, small intestine, and colon but also on subepithelial 

myofibroblasts (de Heuvel et al., 2012; Drucker, 2001). Hu et al. showed a beneficial effect 

of intravenous GLP-2 injection in broilers on growth performance, intestinal morphology, 

villi height and crypt cell proliferation (Hu et al., 2010).  

In conclusion, XOS, supplemented to the broiler diet, improved broiler performance by 

improving the feed conversion ratio. Administration of XOS resulted in an increased 

abundance of butyrate-producing bacteria in the caeca and lactobacilli in the colon at day 26 

of age. It is hypothesized that microbial cross-feeding, in which lactic acid produced by the 

lactobacilli is consumed by butyrate-producing bacteria in the caeca stimulates gut heath and 

consequently performance, through the beneficial effects of butyrate. Whether this cross-

feeding also occurs in the complex gut ecosystem, needs to be clarified in further in vivo 

work. 
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ABSTRACT 
Dietary fibres are widely used to improve gut health and to stimulate performance in broiler 

chickens. Cellulose is a β-1,4-linked glucose polymer and a structural component of cell walls in 

green plants and vegetables. It is a non-fermentable fibre and considered inert. The aim of the 

current study was to analyze the effect of feed supplementation of cellulose on the performance 

and gut microbiota composition of broilers. Administration of cellulose to chickens, on top of a 

wheat-based diet, significantly improved feed conversion ratio (1.46 ± 0.02 vs. 1.37 ± 0.03, P = 

0.04) and significantly increased daily weight gain (23.8 ± 0.48 g/day vs. 25.8 ± 0.36 g/day, P = 

0.04) at day 13. No significant effects on performance were observed on day 26 and 39. The 

microbiota composition was determined using pyrosequencing of the 16S rRNA gene. At day 26, 

a significant higher relative abundance (%) of Alistipes genus was observed in the caeca of the 

broilers fed a cellulose-supplemented diet (5.86 ± 2.59 vs. 10.89 ± 3.42, P = 0.000165), compared 

to the animals fed a control diet. In conclusion, feed supplementation of cellulose influences 

broiler performance in the starter phase and it alters the microbiota composition within the 

phylum Bacteroidetes, specifically the Alistipes genus, at day 26. This suggests that cellulose is 

not essentially inert, and can alter the gut environment.  
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INTRODUCTION  
The gastro-intestinal microbiota has an important role in chicken health and production. In a 

broiler chicken, the distal ileum, the caeca and the colon are regarded as fermentation chambers 

whose function is determined by the microbiota composition (Sekelja, et al., 2012). This chicken 

microbiota is dominated by the phyla Firmicutes and Bacteroidetes (Wei, et al., 2013). The 

majority of the sequences within the Bacteroidetes phylum belong to the genera Bacteroides and 

Alistipes (Kaakoesh, et al., 2014). The Firmicutes phylum is more diverse, and the majority of 

the sequences belong to different families, including Ruminococcaceae, Lachnospiraceae, 

Lactobacillaceae, Peptostreptococcaceae and Streptococcaceae (Kaakoesh, et al., 2014). This 

gut microbiota has been reported to be influenced by diet, age and environmental factors (Lu, et 

al., 2003; Torok, et al., 2009; Torok, et al., 2008). In addition, there appears to be a clear link 

between the gut microbiota composition and the bird performance (Torok, et al., 2011a). 

Dietary fibre consists of plant substances, including cellulose, hemicellulose, oligosaccharides, 

pectins and gums that resist hydrolysis by small bowel digestive enzymes (James, et al., 2003). 

As such dietary fibre represents a main energy source for the gastro-intestinal microbiota 

(Hamaker and Tuncil, 2014; Slavin, 2013). Studies have shown a correlation between 

consumption levels of dietary fibre and health benefits (Lattimer and Haub, 2010). The main 

areas of research on the effects of dietary fibre on poultry are related to its influence on rate of 

feed passage and organ size development; secretion of HCl, bile salts and digestive enzymes, and 

nutrient digestibility; feed intake and growth performance; and intestinal health and mucosa 

integrity, bird behavior, and microbial growth (Mateos et al., 2012). 

The dietary fibre cellulose is a linear chain of β-1,4-linked glucose monomers and a structural 

component of the cell wall in green plants and vegetables (Gilbert, 2010; O'Sullivan, 1997). In 

vitro incubation of human faeces with cellulose results in the formation of only small amounts of 

short-chain fatty acids (SCFA), due to the relative resistance of cellulose to bacterial degradation 

(Vince, et al., 1990). This was confirmed by another in vitro fermentation study (Johathan, et al., 

2012), showing that the human gut microbiota is not adapted to ferment cellulose, although 

cellulose is present in various human food products. Consequently, cellulose can be used as a 

bulking agent in monogastric diets in order to decrease transit time or enhance water holding 

capacity (Hetland, et al., 2004; Montagne, 2003). A recent study confirmed that cellulose is 

essentially inert also in broilers as no nutritive value nor effects on growth were observed 

compared with the control animals fed silica sand as feed additive (Wils-Plotz, et al., 2013).  
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In broiler practice, however, beneficial effects of cellulose supplementation in broiler feed have 

been claimed. The study of Saki et al. showed that different ratio’s of pectin and cellulose can 

differentially affect the intestinal condition and performance (Saki et al., 2011). Until today, there 

is not much published research on the effect of cellulose on the gastro-intestinal health and 

performance of broilers. In the present study, we examined whether feed supplementation of 

cellulose could influence the broiler performance and the intestinal microbiota composition.  
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MATERIAL AND METHODS 
ADDITIVE 
The cellulose (Arbocel® B800, Rettenmaier & Söhne, Rosenberg, Germany) used in the in vivo 

study consisted of 99.5% amorphous cellulose and had an average fibre length of 130μm and an 

average fibre thickness of 20μm. The bulking density was within the range of 155 g/L and 185 

g/L and the pH between 5.5 and 7.5  

ANIMALS AND DIETS 
A total of 310 day-old Ross-308 male broiler chicks were housed on solid floor covered with 

wood shavings with 31 chicks per pen. Light schedule was set to provide 18h light and 6h dark. 

Animals were fed a wheat/mash-based diet of which the composition is shown in Table 1, no 

NSP enzyme (i.e. xylanase) were included. Sunflower meal and rapeseed meal were used as 

protein source in the diet; those proteins are slower digested than others. By using these protein 

sources, the diet is a suboptimal diet compared with the commercially available ones. In this diet 

also rye was used in order to increase the level of non-starch polysaccharides (NSP). All chickens 

received a starter feed from day 1 till day 13, a grower feed from day 14 till day 26 and a finisher 

feed from day 27 till day 39. For the chickens of the treatment group, the feed was supplemented 

with 0.5% cellulose during the starter period and 1.0% cellulose during the grower and finisher 

period. For this treatment group, four pens of 31 chickens were used. The animals from the 

control group were given the non-supplemented feed and this group consisted of six pens of 31 

chickens. At day 13, 26 and 39, all broilers were individually weighed, as well as feed leftovers 

to calculate the feed conversion ratio (FCR). At day 26, 3 chickens of each pen were euthanized 

by intravenous injection of an overdose of sodium pentobarbital 20% (Kela, Hoogstraten, 

Belgium). The content of caecum and colon was collected and stored at -70°C until DNA was 

extracted.  
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Table 1. The composition and nutrient content of wheat-based diet administered to chickens. Start diet 
was given from day 1 until 13, grower was given from day 14 until 26 and finisher was given from day 27 
until 39. The treatment group received 0.5% cellulose on the top during starter and 1.0% cellulose 
during grower and finisher. 

 Starter diet Grower diet Finisher diet 
Feedstuff (%)    
Wheat 50.48 55.00 58.94 
Soybean meal (48) 21.12 15.22 11.51 
Soybeans 5.00 5.00 5.00 
Sunflower meal 27 5.35 6.00 6.00 
Rapeseed meal 7.50 7.50 7.50 
Animal fat 5.63 6.68 6.70 
Soy oil 2.80 2.82 2.61 
Vitamin + trace elements 1.00 1.00 1.00 
CaCO3 0.32 0.30 0.34 
Di-Ca-phosphate 1.55 1.25 0.95 
NaCl 0.21 0.25 0.25 
Na-bicarbonate 0.16 0.10 0.06 
L-Lys-HCl 0.31 0.35 0.39 
DL-Methionine 0.26 0.24 0.23 
L-Threonine 0.09 0.10 0.11 
Phytase 0.02 0.02 0.02 
Calculated nutrient composition (% as fed) 
Crude protein  21.50 19.60 18.27 
Crude fat  9.00 10.00 10.00 
Crude fibre  4.80 4.67 4.53 
Non-starch polysaccharides  18.07 17.64 17.35 
Metabolisable energy (MJ/kg) 11.65 12.10 12.30 
Starch 29.0 31.5 33.7 
Lysine, digestible 1.15 1.05 1.00 
Sulfur amino acids, digestible 0.86 0.79 0.75 
Threonine, digestible 0.75 0.68 0.65 
Valine, digestible  0.80 0.76 0.70 
Arginine, digestible  1.24 1.10 1.00 
Isoleucine, digestible  0.74 0.66 0.60 
Leucine, digestible  1.35 1.22 1.10 
Ca  0.91 0.82 0.75 
Available P  0.40 0.35 0.30 
NaCl + KCl (mEq/kg) 240 207 182 
Linoleic acid (18:2)  2.17 2.28 2.23 
The difference between the calculated and measured (Weende analysis) value for protein was + 
7.3% in starter, + 1.0% in grower and + 3.9% in finisher diet. For fat it was + 0.1% in starter, -
4.1% in grower and + 6.8% in finisher diet. 



CHAPTER 3 

 

146 

MICROBIOTA COMPOSITION 

DNA Extraction  
DNA was extracted from caecum and colon content from 3 chickens of each pen, using the 

CTAB method (Griffiths et al., 2000; Kowalchuk et al., 2000). To 100mg intestinal content, 0.5 g 

unwashed glass beads (Sigma-Aldrich, St. Louis, United States), 0.5ml CTAB buffer 

(hexadecyltrimethylammonium bromide 5% (w/v), 0.35 M NaCl, 120 mM K2HPO4) and 0.5 ml 

phenol-chloroform-isoamyl alcohol mixture (25:24:1) (Sigma-Aldrich) were added followed by 

homogenization in a 2ml destruction tube. The samples were shaken six times for 30 seconds 

using a beadbeater (MagnaLyser, Roche, Basel, Switzerland) at 6000rpm with thirty seconds 

between shakings. After 10 min at 8000rpm centrifugation, 300μl of the supernatant was 

transferred to a new tube. The rest of the tube content was re-extracted with 250μl CTAB buffer 

and again homogenized with a beadbeater. The samples were centrifuged for 10 minutes at 

8000rpm and 300μl supernatant was added to the first 300μl supernatant. The phenol was 

removed by adding an equal volume of chloroform-isoamyl alcohol (24:1) (Sigma-Aldrich) and a 

short spin. The aqueous phase was transferred to a new tube. The nucleic acids were precipitated 

with two volumes of PEG-6000 solution (polyethyleenglycol 30% (w/v), 1.6M NaCl) for two 

hours at room temperature. After 20 min at 13000rpm centrifugation, the pellet was rinsed with 

1ml of ice-cold 70% (v/v) ethanol. The pellet was dried and resuspended in 100μl RNA free 

water (VWR, Leuven, Belgium).  

16S rRNA gene sequencing 
For each caecum and colon sample (9 chickens of each group), 16S rDNA PCR libraries specific 

for bacteria were generated with the primers E9-29 and E514-430 (Brosius et al., 1981) targeting 

hyper variable regions V1-V3. The 454 Life Sciences’s sequencing oligonucleotide design 

included two different titanium adapters named A or B (Roche Diagnostics, Vilvoorde, Belgium) 

and multiplex identifiers (MIDs) fused to the 5’ end of each primer. The amplification mix 

contained 5U of FastStart high fidelity polymerase (Roche Diagnostics), 1x enzyme reaction 

buffer, 200μM dNTPs (Eurogentec, Liège, Belgium), 0.2μM of each primer and 100ng of 

genomic DNA in a volume of 100 μl. Thermocycling conditions consisted of a denaturation at 94 

°C for 15 min followed by 25 cycles each of 94°C for 40 sec, 56°C for 40 sec, 72°C for 1 min 

and a final elongation step of 7 min at 72°C. These amplifications were performed on an Ep 

Master system gradient apparatus (Eppendorf, Hamburg, Germany). The PCR products were run 

on a 1% agarose gel electrophoresis and the DNA fragments were plugged out and purified using 

the SV PCR purification kit (Promega Benelux, Leiden, The Netherlands). The quality and 
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quantity of the products were assessed with a Picogreen dsDNA quantitation assay (Isogen, St-

Pieters-Leeuw, Belgium). All libraries were run in the same titanium pyrosequencing reaction 

using Roche MIDs. All amplicons were sequenced using the Roche GS-Junior Genome 

Sequencer instrument (Roche, Vilvoorde, Belgium), the sequence number of each sample was 

normalized to 1836 reads.  

The 16S rDNA sequence reads were processed with the MOTHUR package (Schloss et al., 

2009). The quality of all sequence reads were denoised using the Pyronoise algorithm 

implemented in MOTHUR and filtered with the following criteria: minimal length of 425bp, an 

exact match to the barcode and one mismatch allowed to the proximal primer. The sequences 

were checked for the presence of chimeric amplifications using Uchime (Edgar et al., 2011). The 

resulting read sets were compared to a reference dataset of aligned sequences of the 

corresponding region derived from the SILVA database 1.15 of full-length rDNA sequences 

(http://www.arb-silva.de/) implemented in MOTHUR (Pruesse et al., 2007). The final reads were 

clustered into OTUs using the nearest neighbor algorithm using MOTHUR with a 0.03 distance 

unit cut-off. At the OUT level of analysis (OUT definition level for a 0.02 distance matrix), a 

total of 5967 OTUs were created. A taxonomic identity was attributed to each OTU by 

comparison with the SILVA database (80% homogeneity cut-off). 

As a secondary analysis all unique sequences for each OTU were compared to the SILVA dataset 

1.15 using BLASTN algorithm (Altschul et al., 1990). For each OTU, a consensus detailed 

taxonomic identification was given based upon the identity (less than 1% of mismatch with the 

aligned sequence) and the metadata associated with the best hit (validated bacterial species or 

not). The raw sequences were deposited in Genbank (accession number pending).  

Quantitative PCR 
The number of Alistipes bacteria in the caeca of 3 chickens per pen was determined via qPCR 

using forward (5’-TTAGAGATGGGCATGCGTTGT-3’) and reverse (5’-

TGAATCCTCCGTATT-3’) primers (Vigsnaes et al., 2012). Amplification and detection was 

performed using the CFX384 Biorad detection system (Biorad, Nazareth-Eke, Belgium). Each 

reaction was done in triplicate in a 12μl total reaction mixture using 2x SensiMix™ SYBR No-

ROX mix (Bioline, Kampenhout, Belgium), 3.0μM final primer concentration and 2μl of (50 

ng/μl) DNA. The amplification program consisted of 1 cycle at 95°C for 10 min followed by 40 

cycles of 15 sec at 95°C, 30 sec at 52°C and 20 sec at 72°C. The fluorescent signal was detected 

at the last step of each cycle.  
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STATISTICAL ANALYSIS 
GraphPad Prism software version 5 was used to perform the statistical analysis of the performance data 

except for body weight. Differences in feed conversion ratio, feed intake and daily weight gain between 

the treatment and the control group were analyzed with an independent samples t-test. The body weight 

and qPCR were analyzed by means of a linear mixed effect model with pen included as random effect, 

using S-Plus. The differences were considered statistically significant at P value ≤ 0.05 and considered as 

a tendency at P value ≤ 0.1. 
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RESULTS 
PERFORMANCE 
The broiler performance data are shown in Table 2. During the starter period, supplementation of 

cellulose resulted in a significant increase of the daily weight gain (DWG) (P = 0.0473) and a 

significant decrease of the FCR (P = 0.0291). Feed supplementation of cellulose tended to 

increase body weight (BW) at day 13 (P = 0.0527). No significant differences were seen for 

DWG, FCR and BW at day 26 and 39 between the treatment and the control group. The feed 

intake did not differ significantly between the treatment and the control group during the whole 

trial. There are no differences in mortality between the two treatments.   

Table 2. Effect of cellulose treatment on feed conversion ratio, body weight (g), daily weight gain 
(g/d/bird) and feed intake (g/d/bird) measured at three different time points. 1values are presented as the 
mean ± standard error. Differences were determined by t-test. Means lacking a common superscript 
(within the same row) differ (P ≤ 0.05).  

Intervals in days  FCR BW (g) FI (g/d) WG (g/d) 

0-13 
- cellulose 1.46 ± 0.02 354 ± 4.34 34.7 ± 0.40 23.8 ± 0.48 
+ cellulose 1.37 ± 0.03 381 ± 4.80 35.4 ± 0.38 25.8 ± 0.36 
P-value 0.04 (*) 0.05 0.23 0.04 (*) 

14-26 
- cellulose 1.57 ± 0.01 1210 ± 14.27 103.9 ± 1.14 66.2 ± 0.97 
+ cellulose 1.55 ± 0.03 1258 ± 15.86 107.2 ± 1.18 69.3 ± 1.52 
P-value 0.48 0.18 0.07 0.11 

27-39 
- cellulose 1.82 ± 0.01 2545 ± 30.50 183.9 ± 1.39 101.1 ± 1.15 
+ cellulose 1.86 ± 0.02 2539 ± 35.64 183.5 ± 2.82 98.8 ± 2.06 
P-value 0.11 0.93 0.76 0.35 

0-26 
- cellulose 1.54 ± 0.01  69.3 ± 0.71 45.0 ± 0.68 
+ cellulose 1.50 ± 0.02  71.3 ± 0.44 47.6 ± 0.70 
P-value 0.11  0.07 0.05 

0-39 
- cellulose 1.66 ± 0.01  107.5 ± 0.85 64.8 ± 0.44 
+ cellulose 1.65 ± 0.02  108.7 ± 1.21 65.8 ± 0.98 
P-value 0.91  0.75 0.59 

 

 

MICROBIOTA COMPOSITION AS DETERMINED BY 16S RRNA 
SEQUENCING AND QPCR 
At day 26, the intestinal microbiota in chickens is considered to be stable. Therefore caecum and 

colon content samples were taken at that time point to determine the composition. There were no 

significant differences in microbiota composition in the colon between the treatment and the 

control group. Supplementation of cellulose resulted in a significant increase of bacteria 

 



CHAPTER 3 

 

150 

belonging to the phylum Bacteroidetes in the caecum (P < 0.0001, Figure 1). This increase was 

the result of a specific significant increase in the family Rikenellaceae and within this family 

solely in the genus Alistipes (P < 0.05 and P < 0.0001, Figure 1). One unknown species 

(DQ456324) within this genus was significantly more abundant when cellulose was 

supplemented. A qPCR using primers that specifically amplify Alistipes bacteria confirmed the 

increase of the genus in the caecal microbiota of broilers fed the cellulose-supplemented feed 

(Figure 2).  

The unknown species of the 16S sequencing data showed the highest 16S rRNA gene sequence 

similarity with Alistipes putredinis (96.48%) and Alistipes finegoldii (95.44%) using the EzTaxon 

database. In vitro culture of Alistipes spp., Alistipes putredinis and Alistipes finegoldii were 

shown to grow in the presence of cellulose as only carbon source (data not shown). 

 

Figure 1. The bar charts showing relative population abundance (%) of the phylum Bacteroidetes, family 
Rikenellaceae, genus Alistipes and unknown species within genus Alistipes in the caecum at day 26. 

 

Figure 2. Number of Alistipes bacteria expressed as log10 copy number of the gene per g of wet caecal 
content of 26-day old chickens fed a wheat-based diet either or not supplemented with cellulose. The grey 
line shows the mean and standard error of the mean. , control group; , treatment group. 
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DISCUSSION 
Dietary changes, such as the addition of dietary fibre, may result in a shift in the intestinal 

microbiota composition (Knarreborg, et al., 2002; Shakouri, et al., 2006). This has been shown 

for pectin, xylo-oligosaccharides and animal fat or soy oil (De Maesschalck, et al., 2015; 

Knarreborg, et al., 2002; Shakouri, et al., 2006). Cellulose is often regarded as an inert molecule 

that is considered to be poorly fermentable (Cummings and Englyst, 1987; Slavin, 2013). In the 

current study, we demonstrated that supplementation of cellulose to broiler feed can also induce 

microbiota composition shifts and improve performance, and is as such not inert. 

In the cereal co-product hulls, cellulose is the predominant polysaccharide, followed by xylans 

and pectin substances (Knudsen, 2014). Natural cellulose can be divided into two groups: 

crystalline and amorphous components. They can be modified like powered cellulose, 

microcrystalline cellulose and hydroxypropylmethyl cellulose, which is then more easily broken 

down by the host into glucose and absorbed in the intestine (Lattimer and Haub, 2010; Takahashi 

et al., 2003). In this trial modified cellulose was added to the broiler feed as amorphous powered 

cellulose. The cellulose concentration already present in the feed was calculated as less than 0.5% 

based on the acid detergent fibre (ADF) value, which is the sum of cellulose and lignin. During 

the trial 0.5% or 1% cellulose was added to the feed, suggesting that the effect in performance 

and microbiota composition may actually be due to the cellulose that was supplemented to the 

feed.  

Cellulose is consisting of glucose units and is difficult to hydrolyse by cellulases (Mba Medie, et 

al., 2012; O'Sullivan, 1997). Cellulose, which suggest quite high concentration in grains typically 

fed to chickens, can only be utilized if this is first degraded into simpler forms by the microbiota 

residing in the gut (Stanley, et al., 2013). For example, two types of cellulases are able to liberate 

cellobiose, a disaccharide of glucose (Mba Medie, et al., 2012). After the degradation to smaller 

units, cellulose could eventually lead to glucose. Different studies showed that glucose plays an 

important role as energy source in young chickens (Moran, 2007; Noy and Uni, 2010). To break 

down cellulose, the gut microbiota thus needs specific enzymes that can degrade cellulose. In 

humans, members of the phylum Bacteroidetes harbour several genes encoding cellulases and 

xylanases suitable for the fermentation of cellulose and xylans (De Flippo, et al., 2010; Hamaker 

and Tuncil, 2014). In the present chicken trial administration of cellulose resulted in a higher 

abundance of the phylum Bacteroidetes and more specifically in a significant increase of the 

genus Alistipes. This genus harbours anaerobic, non-spore forming, non-motile Gram-negative 
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bacteria isolated from human faeces (Nagai, et al., 2010; Rautio, et al., 2003; Song, et al., 2006). 

To identify patterns in the microbiota, Claesson et al.  established co-abundance associations of 

genera and clustered correlated genera into six co-abundance groups (CAGs) (Claesson, et al., 

2012). Alistipes spp. are considered to be part of the core microbiome of the human intestine as 

they belong to one of the CAGs (Claesson, et al., 2012). Wei et al. have shown that Alistipes 

species also represent more than 1% of the bacterial sequences in the chicken gut.  

Alistipes strains have already been related to performance parameters of broilers. A. finegoldii, in 

the caeca, is shown to be associated with performance in broilers (Torok, et al., 2011b). The 

exact mechanism by which A. finegoldii could affect performance is still unclear. Cellulose 

degradation and fermentation to succinate may play a role. Indeed, in the present study, we 

showed that Alistipes spp. could grow on cellulose as carbon source. The major fermentation end-

product of Alistipes bacteria is succinate (Rautio, et al., 2003; Reichardt, et al., 2014). Succinate 

can provide energy in two distinct ways. First, it can be taken up directly by chicken intestinal 

cells through a sodium-dependent transport system (Kimmich, et al., 1991). Succinate can then 

directly be introduced in the tricarboxylic acid (TCA) or Krebs cycle. Secondly, it can be used by 

numerous other Bacteroidetes, and be converted to propionate after decarboxylation, which 

appears to be the most abundant route for propionate formation (Reichardt, et al., 2014). 

Propionate in turn can be used as an energy source by the epithelial cells. Moreover, propionate 

has also health-promoting effects, such as an anti-inflammatory action that may influence 

performance (Hosseini, et al., 2011; Vinolo, et al., 2011).  

During this study, a positive effect of cellulose was seen in young chicks by a decreased feed 

conversion ratio. During grower and finisher period, no effect was observed on performance of 

the chickens. The exact reason for that is not known. During starter period the chickens received 

0.5% cellulose, which was increased to 1% in grower and finisher period. This was done because 

it was thought that the microbiota would adapt to cellulose during starter phase. The development 

of the microbiota composition is indeed a dynamic process and it can be manipulated by altering 

the diet. It is possible that the extra 0.5% during the grower and finisher phase does not fully 

compensate for the reduction of directly available energy from digestible ingredients as a 

consequence of the dilution effect. So further research is needed to determine why cellulose has 

no effect on the broiler performance from grower phase onwards. This can been done by setting 

up a new in vivo trial, in which the effect of different doses of cellulose is evaluated on 

performance and microbiota.  
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In conclusion, cellulose is able to improve performance of young broilers when supplemented to 

the broiler diet. Administration of cellulose resulted in an increased abundance of the Alistipes 

genus in the caeca. It is hypothesized that this genus stimulates gut health and consequently 

performance by producing succinate as end-product. Further research on cellulose degradation by 

the microbiota is needed to confirm this statement.   
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Butyrate appears to be an evolutionary highly conserved crucial interkingdom signalling 

molecule that is sensed by the host as a “green light” for activating intestinal digestion and 

absorption, as opposed to high concentrations of hydrogen sulphide and a number of other 

molecules, which serve as “red light” signals. Obviously, these molecules are terminal 

metabolites, which are common to certain specific categories of microbes in the intestinal tract. 

For a number of years, our research group has focused on the direct administration of these 

metabolites and the ensuing effects on susceptibility to certain pathogens, including Salmonella, 

Campylobacter and Clostridium perfringens. More recently, attention has shifted towards a better 

understanding of the microorganisms that are responsible for the massive endogenous production 

of butyrate in the lower gastro-intestinal tract (GIT) for the simple reason that the production 

capacity of the healthy microbiome largely exceeds what can be provided by direct feed 

supplementation of butyrate, even under the most optimal conditions of delivery.  

This thesis fits well into the general strategy that aims at unravelling the mechanisms that protect 

the intestine from continuous life-threatening inflammation and allow for optimal digestion of 

nutrients. The part played by the microorganisms in these processes is crucial. In the first chapter 

of this thesis a modest contribution to knowledge of the intestinal microbiome is made using 

culturing techniques and characterization of some specific microbial species for several reasons 

explained below.  
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CHICKEN INTESTINAL MICROBIOTA INFLUENCES 
PERFORMANCE 
In the last decade, the poultry industry has become the most dynamic sector within the global 

meat business as broilers can be produced in the shortest time (± 42 days) compared to other meat 

producing animals. Poultry meat is important to reduce the shortage of animal protein especially 

in developing countries (Neves et al., 2014). When looking at the AVEC (Association of Poultry 

processors and poultry trade in the EU countries) annual report of 2014 (estimates April 2014) 

the world meat production for broilers and turkey is increased with 1.16% and the consumption 

with 1.46% (from 2013-2014). In 2013, Belgium produced 250 000 tons carcass weight of 

poultry meat and this is 2.4% of the broiler production in the European Union. Changes in 

management, such as optimization of temperature, lighting and bird densities, improvements in 

poultry nutrition and genetic selection for feed efficiency have resulted in the marketing of 

chickens in about half the time and at about twice the body weight as compared to 50 years ago 

(Barbut et al., 2008). The study of Tuyttens described the evolution of performance between 

1998 and 2008 (Tuyttens et al., 2014). The slaughter age decreased from 41.3 to 40.1 days, 

whereas the average slaughter weight increased from 2.1 to 2.4kg. While the mortality decreased 

by 1.9% to an average of 3.9% (Tuyttens et al., 2014). Little attention has been paid to the 

influence of all these changes on the gut microbiome although the composition of the 

microbiome composition has been shown to have a major influence on performance especially 

under conditions of intensive feeding. Indeed intensive (over)feeding can lead to disturbance of 

the intestinal microbiome, termed dysbiosis. 

In the past, disturbance in the intestinal microbiome were kept under control by using growth-

promoting antibiotics. They allowed improving feed conversion and animal growth and reduced 

morbidity and mortality due to clinical and subclinical diseases (Butaye et al., 2003). However, 

concerns were raised that the use of these antibiotics could lead to increased resistance in 

bacteria, particularly in Gram-negative bacteria like Salmonella spp. and Escherichia coli 

(Butaye et al., 2003). Since the European Union banned the use of growth promoting antibiotics 

in 2006, intense research efforts have been undertaken to find alternative tools to improve feed 

conversion and to protect intestinal health. One type of the alternatives are prebiotics, which 

facilitate the growth of an optimal microbiota (Choct, 2009; Nabizadeh, 2012; Sugiharto, 2014; 

Yang et al., 2008).   
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A balanced intestinal microbiome is indeed important for bird performance. Torok et al. were the 

first to demonstrate a positive correlation between gut microbial communities and bird 

performance using terminal restriction fragment length polymorphism (T-RFLP) (Torok et al., 

2008). A limitation of this T-RFLP analysis has been the inability to reliably assign OTUs to 

phylogenetic groups. Nevertheless the presence of specific beneficial bacterial species and/or the 

absence of specific detrimental bacterial species were suggested to contribute to improved 

performance (Torok et al., 2008). Recently, more comprehensive analyses using next generation 

sequencing (NGS) technology have revealed bacteria such as Clostridium hylemonae, 

Lactobacillus celeohominis, Bacteroides fragilis and Ruminococcus sp., to be associated with 

improved growth performance of broilers (Stanley et al., 2014; Stanley et al., 2013a; Stanley et 

al., 2013b). The poultry industry may benefit from the identification of bacterial species, that 

promote bird performance (Geier et al., 2009) and use them as probiotics, which are considered 

nutritional tools that promote growth and meat quality by modulating the intestinal microbiota 

and inhibiting pathogens (Lutful Kabir, 2009).  

The variability in growth performance of broilers has been a matter of interest and investigation 

for farmers. Chickens have been selected based on different parameters including high feed 

intake. The body weight gain of broilers is closely linked to host genetics, diet, age and rearing 

environment (Lu et al., 2003; Singh et al., 2014; Torok et al., 2009). Host genetics associated 

with weight gain and feed conversion efficiency have been shown to play a role in changes in the 

gut physiology and microbial structure of chickens (Lumpkins et al., 2010; Singh et al., 2014). It 

is currently unclear whether any parallel can be drawn between the microbiota associated with 

obesity in humans and the microbiota associated with improved energy harvesting and increased 

FCR in production animals such as broiler chickens (Rinttila & Apajalathi, 2013). In humans, it 

is well established that the ratio between Firmicutes and Bacteroidetes correlates with body 

weight as the ratio is shown to be significantly higher in obese individuals (Ley et al., 2006). The 

potential performance-stimulating bacteria identified in another study by Torok et al. belong 

predominantly to the phylum Firmicutes, and to a lesser extent to the phyla Bacteroidetes and 

Proteobacteria (Torok et al., 2011). This study, however, did not look at the ratio between 

Firmicutes and Bacteroidetes, as bacteria were not quantified. Instead, they looked in more detail 

to bacteria that could affect the performance and identified 10 species including, Lactobacillus 

salivarius, L. crispatus, L. aviaries, Escherichia coli and Gallibacterium anatis in the ileum and 

Faecalibacterium prausnitzii, Clostridium lactatifermentans, Ruminococcus torques and Alistipes 

finegoldii in the caeca (Torok et al., 2011). The three Lactobacillus spp. in the ileum were 
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associated with poor performance. In our XOS trial, we showed an improved performance with 

XOS and a significant increase of lactobacilli in the colon. In the XOS trial, the generated lactate 

was probably very efficiently converted into butyrate by the expansion of the Anaerostipes 

butyraticus population. Further in the study of Torok et al. A. finegoldii was associated with 

either improved or poorer performance. In the present thesis, adding cellulose had a beneficial 

effect on daily gain in association with a significant increase of the Alistipes genus. Therefore 

manipulation of the microbiota to produce a community most conducive to optimal performance 

will be one of the key considerations when designing prebiotic-containing feeding regimes. 

However, the question of how the intestinal bacterial community relates to relevant metabolic 

changes and to broiler performance is not completely understood. The best strategy would be that 

all future studies looking at performance would also study the intestinal microbiota and their 

metabolites. 

The intestinal microbiota creates a complex environment within the intestine that affects many 

host functions such as digestion and fermentation of dietary compounds with a direct 

consequence for gastro-intestinal development; the regulation of intestinal epithelial proliferation, 

inflammatory immune responses and host energy metabolism; synthesis of vitamins; and filling 

of a microbiological niche that might otherwise be colonized by potentially harmful enteric 

microorganisms (Flint et al., 2012; Guarner, 2006; Klasing, 2007; Rakoff-Nahoum et al., 2004; 

Rinttila & Apajalathi, 2013; Walker et al., 2011). A favorable microbiota should have a balance 

between genera, which are not responsible for inflammation and have the possibility to produce 

SCFA by carbohydrate fermentation. Different studies, including our, have shown that in feed 

supplementation of prebiotics promote growth of specific members of the resident gut microbiota 

(Scott et al., 2013). The characterization of the intestinal microbiota is critical to understand the 

influence on growth performance, health and energy uptake. 
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THE IMPORTANCE OF CHARACTERIZING UNKNOWN SPECIES 
Around 90% of the bacteria in the GIT are unknown species, indicating that the knowledge of the 

intestinal microbiota is incomplete (Apajalahti et al., 2004; Bjerrum et al., 2006; Gerritsen et al., 

2011). Microorganisms recovered by cultivation techniques represent only a small fraction of the 

total diversity that exists in the gut because of difficulties encountered during isolation and 

cultivation such as oxygen sensitivity, temperature, pH, the need for specific substrates etc. 

(Gaskins et al., 2002; Oakley et al., 2014; Rappe & Giovannoni, 2003). During the last decade, 

several technical advances such as direct sequencing and metagenomic approaches have allowed 

insights into the uncultured majority (Oakley et al., 2014; Qin et al., 2010). Most studies on 

microbial communities in systems ranging from the open ocean and soil to the gut have depended 

on a single gene, the 16 small subunit ribosomal RNA (16S rRNA) gene (Costello et al., 2009; 

Gilbert et al., 2012; Nemergut et al., 2011; Poretsky et al., 2014). These 16S rRNA fragments 

allow the investigation of bacterial community structures, phylogenetic composition and species 

diversity. In addition these data may provide some information on the metabolic capacity and 

thus functional diversity based on the known characteristics of their closest phylogenetic 

neighbors (Shah et al., 2011; Streit & Schmitz, 2004). The use of either phylogenetic or 

functional genes has improved our knowledge about the ecology of microbial functional groups 

(Salles et al., 2012).  

Although new developed technologies such as metagenomics and metatranscriptomics provide 

more information on functionality of the microbial community, it is still important to isolate and 

cultivate single microbial species in order to gain knowledge and better understanding of 

microbial physiology and to use isolates for various biotechnological applications (Gao et al., 

2013). Since metatranscriptomics shed light on microbial metabolism in situ it may provide 

critical clues for directing the culturing of hitherto uncultured microorganisms (Bomar et al., 

2011). Nevertheless, the obtained 16S rRNA sequences are compared to reference data sets of the 

corresponding region derived from the SILVA database and are clustered into OTUs using the 

nearest (i.e., single-linkage) neighbour hierarchical clustering algorithm with a specific distance 

unit cut-off, this means that all sequences within a specified threshold of any other sequence 

belong to the same OTU (Schloss & Westcott, 2011). When those OTUs represent unknown 

species they are seldom used for further investigation. One of the reasons may be that the 

unknown species occur only at limited concentration and therefore might be less relevant, but 

another probably more important reason is that no characteristics of their functional role in the 

environment are known. The classification and characterisation of newly isolated bacteria not 
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only results in a name but also more importantly provides information on the metabolic capacities 

that help to explain their role or to set up some hypotheses for further research based on their 

function. 

 



GENERAL DISCUSSION 

 

167 

ERYSIPELOTRICHACEAE, A FAMILY WITH SEVERAL NEW 
GENERA 
The majority of sequences within the Firmicutes phylum belong to the families 

Ruminococcaceae and Lachnospiraceae, the so-called Clostridium cluster IV and XIVa, 

respectively (Collins et al., 1994). The bulk of butyrate-producing bacteria belong to one of these 

two families. Previously only a few butyrate-producing strains from chicken origin were cultured 

(Bjerrum et al., 2006). Recently Eeckhaut et al. sampled chicken caecal content and isolated 16 

butyrate-producing strains with a unique 16S rRNA gene sequence that were dispersed among 

Clostridium clusters IV, XIVa, XIVb and XVI (Eeckhaut et al., 2010). In this study butyrate-

producers related to cluster XVI were suggested to play a more important role in the chicken than 

in the human gut. 

Members of Clostridium cluster XVI or family Erysipelotrichaceae are bacteria with incoherent 

cell morphology that produce acid but no gas from glucose or other carbohydrates and normally 

have a respiratory or fermentative metabolism (Collins et al., 1994; Verbarg et al., 2014; Verbarg 

et al., 2004). At the beginning of 2014, the family Erysipelotrichaceae consisted of 13 genera and 

most of them harboured one species: Allobaculum, Bulleidia, Candidatus Stoquefichus, 

Catenibacterium, Coprobacillus, Dielma, Eggerthia, Erysipelatoclostridium, Erysipelothrix, 

Holdemania, Kandleria, Solobacterium and Turicibacter. They all are non-motile and non-spore 

forming Gram-positive bacteria except for the Dielma genus with species Dielma fastidiosa 

which is a motile Gram-negative bacterium (Bosshard et al., 2002; Downes et al., 2000; 

Greetham et al., 2004; Kageyama & Benno, 2000a, b; Pedersen et al., 2011; Pfleiderer et al., 

2013; Ramasamy et al., 2013; Salvetti et al., 2011; Verbarg et al., 2014; Verbarg et al., 2004; 

Willems et al., 1997; Yutin & Galperin, 2013). All genera within this family grow facultative or 

obligate anaerobically except for bacteria of the genus Erysipelothrix, which are also able to grow 

aerobically (Verbarg et al., 2004). Most species are phenotypically similar, so they are 

differentiated based on their 16S rRNA gene sequence.  

Streptococcus pleomorphus, Eubacterium cylindroides and Eubacterium biforme are known as 

members of the Erysipelotrichaceae family, however, it is obvious that they are misnamed 

because at the time they were classified the methods for classification were not as extensive as 

they are now (Collins et al., 1994). In our study, they were renamed as Faecalicoccus 

pleomorphus, Faecalitalea cylindroides and Holdemanella biformis, respectively. During this 

study, also a new isolate was characterized and described as Faecalicoccus acidiformans. 
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Recently, another new genus Catenisphaera has been described as the first genus within the 

family Erysipelotrichaceae isolated from a methanogenic reactor fed with food waste instead of 

intestinal content (Kanno et al., 2015). This brings the total to 17 genera within the family 

Erysipelotrichaceae. Classification ensures that certain properties can be linked to particular 

species or even genera. For example, it has been shown that all genera have the ability to produce 

lactate, but only 6 genera Allobaculum, Catenibacterium, Catenisphaera, Faecalicoccus, 

Faecalitalea and Holdemanella have the ability to produce butyrate (De Maesschalck et al., 

2014; Greetham et al., 2004; Kageyama & Benno, 2000b). This difference in properties can be 

important for further research.  

Within this family, each species appears to have its own metabolic characteristics. Despite the 

fact that these characteristics are described, the exact function and the abundance of the species in 

the gut is not yet known. So further research is necessary to determine and to understand their 

functions in the gut. Few data are available so far. Indeed, a study that compared different kits to 

extract DNA from human stools showed that the family Erysipelotrichaceae is part of the human 

gut microbiota (Kennedy et al., 2014). The Erysipelotrichaceae family was shown to be 

increased in pigs when feeding resistant starch (RS) (Haenen et al., 2013). This study focused on 

changes of the microbiota composition and SCFA concentration and showed that bacterial groups 

belonging to Clostridium cluster IV, IX, XV and XVII as well as propionate-producing 

microorganisms increased in RS-fed pigs, but that RS fed pigs also had a significantly increased 

concentration of total SCFA, acetate, propionate and valerate in the caecum and the colon. In our 

study we showed a significant reduction in the presence of Erysipelotrichaceae in the caeca of 

broilers fed XOS (4.5% versus 2.6%, data not shown) although an in vitro fermentation 

experiment showed that Faecalitalea cylindroides, Faecalicoccus pleomorphus, Holdemanella 

biformis and Allobaculum stercoricanis were able to grow and produce SCFA in the presence of 

XOS35 (data not shown). This may suggest that Clostridium cluster XVI bacteria do belong to 

the gut microbiome of the chicken but that they may be outcompeted by other genera 

(Lactobacillus and Anaerostipes) in the presence of certain substrates. This probably means that 

the redundancy in microbial populations producing butyrate allows the intestinal microbiota to 

dynamically and rapidly adapt to changes in diet. 
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DIET AND PREBIOTICS 
Diet is indeed a main contributor to broiler performance and affects the microbial community 

(Gong et al., 2002; Knarreborg et al., 2002; Lu et al., 2003; Pan & Yu, 2014; Zhu et al., 2002). 

Wheat is a very variable grain in terms of its physical and chemical characteristics, and has great 

influence on broiler performance and nutrient digestibility (Amerah, 2015). Also the source and 

level of protein has a major effect on growth performance. Moreover, it is the most expensive 

component in broiler diets (Dirain & Waldroup, 2002; Zaham et al., 2008). In one of our in vivo 

trials, we compared a wheat-based diet supplemented with either slow or fast fermentable protein. 

Sunflower meal and rapeseed meal were added as slow fermentable protein. These proteins are 

expected to be partly available in the lower digestive tract. In contrast, potato proteins and corn 

gluten were added as fast fermentable proteins, to be absorbed in the upper digestive tract. Slow 

fermentable proteins were shown to have a negative influence on performance in terms of FCR, 

growth and body weight. Although there were significant differences in performance, no 

significant differences in abundance of Firmicutes, Bacteroidetes, Clostridium cluster I, IV, 

XIVa, Enterobacteriaceae and Lactobacillaceae could be found when quantified by qPCR. 

Besides the microbiota composition, also other parameters may influence performance. Effects 

on intestinal morphology could be analysed by measuring the villi length and thickness of the 

tunica muscularis. The presence of inflammation could be analysed by measuring the abundance 

of T-lymphocytes, heterophils, macrophages, etc. These parameters were not investigated in this 

trial, so the reason for the change in performance between slow and fast fermentable proteins is 

still unclear. Further research is necessary to explain these performance data.  

PERSPECTIVES OF XYLO-OLIGOSACCHARIDES AS PREBIOTICS TO 
INFLUENCE BROILER INTESTINAL HEALTH 
Prebiotics are defined as ingredients that improve host health (Gibson & Roberfroid, 1995; 

Gibson et al., 2004) and are therefore used as feed additives in broiler feed in an attempt to 

improve both health and performance of chickens (Hajati & Rezaei, 2010). The farmers and 

poultry industry are interested in healthy chickens, but above all in an increased meat yield with a 

lower cost. In order to keep the cost low, there must be taken into account, the dose and the 

duration of the addition of the prebiotics or dietary fibres. If more than 2% is added to the feed, 

the total nutrient content will be exceeded. In addition, these dietary fibres and prebiotics have no 

direct effect on the host, because this involves a shift in the microbiota composition and so the 

effects will be seen later on. The dose does have an impact on the performance result, because we 

have also looked at 1% XOS and there we saw that the broilers had an increased FCR compared 
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to the control (data not shown). The reason for that was not further explored. If the duration needs 

to be adjusted because of the high cost, then the prebiotic or dietary fibre should be added to the 

diet during the first half of the starter and the grower period. During both periods, the microbiota 

is most formed or edited on the basis of the diet. As such several dietary fibres are tested for their 

influence on intestinal health by looking at the microbial composition and the metabolites they 

produce.  

To our knowledge XOS is still classified as a prebiotic candidate (Mäkeläinen et al., 2009). We 

showed an improved performance at slaughter age for broilers that received XOS. Improved 

performance with XOS has been confirmed in another study using broilers (Zhenping et al., 

2013). For the classification of XOS as prebiotic, it is necessary to review the available data and 

evaluate whether the three criteria are fulfilled (Gibson et al., 2004). These criteria are (1) 

resistance to gastric acidity, to hydrolysis by enzymes and to gastro-intestinal absorption; (2) 

fermented by intestinal microbiota and (3) selectively stimulating the growth and/or activity of 

intestinal bacteria that contribute to health and well-being.  

A study of Courtin et al. showed resistance of XOS towards gastric acidity (Courtin et al., 2009). 

They mimicked gastric conditions (pH 2, 37°C) in vitro and found less than 10% hydrolysis of 

XOS even after 14 days (Courtin et al., 2009). Endoxylanases and xylosidases have been shown 

to hydrolyse XOS, however no reports of mammalian endoxylanases and xylosidases have been 

published, which suggests that XOS are non-digestible (Broekaert et al., 2011). 

Different in vitro and in vivo studies showed the possibility of XOS fermentation by intestinal 

microbiota (Broekaert et al., 2011). In our studies we showed the fermentation of two 

concentrations of XOS (35% and 95%) by chicken caecal and colonic inocula with the 

production of SCFA (data not shown). In vitro fermentation of XOS showed the production of 

SCFA, which has been corroborated by several in vivo studies (Broekaert et al., 2011). The 

differences in the SCFA produced can be dependent on the diet. A particular diet has direct and 

indirect impact on the intestinal microbiota. When the host receives XOS as a feed supplement, 

this may have different effects depending on the intestinal microbiota. In our in vivo study XOS 

was supplemented to a wheat-based diet with slow fermentable proteins, which is a sub-optimal 

diet. Supplementation of XOS resulted in an increase of butyrate-producing bacteria in the caeca 

and an increase of lactate-producing bacteria in the colon. Taking into consideration the 

physiological anti-peristalsis in the chicken intestine, the function of the chicken colon may be 

considered to some extent overlapping with the chicken ileum. Both in vitro and in vivo tests 
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demonstrate that the intestinal microbiota has the ability to consume and ferment XOS, which 

could influence the well-being of the host. 

As a consequence of its fermentation by intestinal microbiota, the XOS prebiotic selectively 

stimulates the growth and the activity of important intestinal bacteria such as lactate- and 

butyrate-producing species. Several studies have demonstrated that different bifidobacteria and 

Lactobacillus species, can efficiently utilize XOS (Broekaert et al., 2011). A number of in vivo 

intervention trials in animals and humans have established that XOS has strong bifidogenic 

properties (Broekaert et al., 2011). Several studies using rats, mice and chickens showed 

increases in colonic and caecal Bifidobacterium spp. following XOS administration (Courtin et 

al., 2008; Hsu et al., 2004; Santos et al., 2006). Our in vivo trial showed an increased level of 

lactobacilli instead of bifidobacteria, which may have different explanations. First of all, the feed 

composition that we used in our trial may be more favourable for lactobacilli. Secondly, the 

intestinal microbiota of chickens develop not always in the same manner as that of mammals 

because different environmental factors have an influence on the intestinal microbiota 

development. In addition the study of Scott et al. showed that XOS is also a growth substrate for 

butyrate-producing species of Clostridium cluster IV and XIVa (Scott et al., 2014). Our in vitro 

fermentation assay with XOS and L. crispatus showed that this species has the potential to grow 

in the presence of XOS. The lactate produced by L. crispatus, could be used for cross-feeding by 

lactate-utilizing bacteria like Anaerostipes butyraticus, which has the ability to produce butyrate 

from lactate (Duncan et al., 2004).  

The results of the in vitro and in vivo experiments using XOS show us that XOS indeed may 

fulfil all three criteria for the prebiotic classification, thus XOS should be classified as a prebiotic. 

COULD CELLULOSE BE MORE THAN JUST AN INERT INSOLUBLE FIBRE? 
The profit of the poultry industry depends mainly on the nutritive value and the cost of the feed 

(feed cost is about 70% of the total cost of intensive poultry production system); therefore one 

searches for new dietary fibres that can reduce the cost without impact on the nutritive value. 

Although cellulose was previously used as a bulking agent in monogastric diets (Hetland et al., 

2004; Montagne, 2003), we showed that cellulose could influence broiler performance during the 

starter phase up to 13 days of age. This suggests that cellulose could be an important dietary fibre 

to get a good start for broilers. How come the effect of cellulose has not been noted before? 

Effects may have been masked by different factors including diet composition, pelleted vs. mash 

feed, concentration of substrate, source of substrate, etc. In our trial, a wheat/mash-based diet 
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with slow digestible protein like sunflower and rapeseed meal was used. Mash feed has the 

advantage that heat sensitive endogenous enzymes that break down the non-starch 

polysaccharides (NSP) are still present (Amerah, 2015; Scott et al., 2003). Pellets on the other 

hand have the advantage that they can be taken up very fast which results in an increased feed 

uptake (Abdollahi et al., 2013).  

The diet used in this in vivo trial had a high protein level by using wheat supplemented with slow 

fermentable proteins. To investigate the possibility of reducing dietary proteins and energy, Tahir 

et al. compared different feed enzymes such as cellulase, hemicellulase and pectinase but also 

multi-enzyme preparations (Tahir et al., 2008). In this study, the feed enzymes were added to the 

diet and they showed that the mixed enzyme preparation could effectively degrade indigestible 

cell constituents and thus enable the protein of the broiler feed to become more digestible. 

Therefore it could be of interest to search for bacterial species that have these enzymes present in 

their genome and could help to consume dietary proteins. Our cellulose trial showed an increased 

abundance of the Alistipes genus and the Carbohydrate-Active-Enzyme database (CAZy) showed 

the presence of at least one cellulase enzyme in the species A. finegoldii and A. shahii. This 

indicates that adding cellulose to the diet is responsible for the increase the presence of the genus 

Alistipes and influences the digestion of dietary protein present in the diet. This digestion of 

proteins can improve the broiler performance of this sub-optimal diet. In our in vivo trial, we 

supplemented cellulose to broiler feed and it induced microbiota composition shifts and improved 

performance, suggesting that cellulose is not essentially inert. 
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FUTURE PERSPECTIVES 
Recently, more bacteria of the family Erysipelotrichaceae or Clostridium cluster XVI were 

isolated and characterized, which shows an increased interest in this family. Some studies have 

demonstrated that they belong to the normal intestinal microbiota of the host and most of them 

produce lactate as major fermentation product and some of them are also able to produce 

butyrate. Until today, there is very little known about the effect of this family on gut health. Are 

they beneficial because of their lactate and/or butyrate production or by other mechanisms?  

Based on the results of the XOS trial we hypothesized a microbial cross-feeding in which lactic 

acid produced by the lactobacilli is consumed by butyrate-producing bacteria, which then 

stimulate gut health and consequently performance. This microbial cross-feeding between 

Lactobacillus crispatus and Anaerostipes butyraticus needs to be clarified in new in vivo 

experiments. For example, this can be done by setting up a new performance experiment where 

we compare the XOS group with three other treatment groups. The first group would receive A. 

butyraticus; the second one L. crispatus and the third group both species. At different time points, 

the performance parameters can be measured as also the number of bacteria and the SCFA 

concentration in the caecal and colonic content. Today XOS are described as a prebiotic 

candidate, although different in vivo and in vitro studies show that XOS fulfil all three criteria for 

the prebiotic classification. This suggests that XOS needs to be classified as prebiotic instead of 

prebiotic candidate.  

Further investigation is necessary to classify cellulose as dietary fibre instead of an inert 

component. First different in vitro fermentation experiments need to be set-up, in order to get an 

overview of the intestinal bacteria that are able to ferment cellulose, focusing on the end-products 

of their metabolism, including SCFA, succinate, lactate, gases etc. As the Alistipes genus is only 

recently established, it would be interesting to know more about this genus. The description 

showed that this genus is able to produce succinate and the study of Reichardt et al. suggests that 

succinate could be converted to propionate after decarboxylation in the succinate pathway 

(Reichardt et al., 2014). This pathway is present in the abundant phylum Bacteroidetes as well as 

in several Negativicutes bacteria. It would be interesting to prove this possible cross-feeding by in 

vitro fermentation assays, and study more in depth the effect of succinate and propionate on gut 

health parameters.  
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CONCLUSION 
The family Erysipelotrichaceae or Clostridium cluster XVI is a relative new identified family in 

the host intestine and is relatively abundant. Therefore further research is necessary to understand 

their function in intestinal health. In addition to the description and isolation of new bacterial 

species in the intestine, it is even more important to stimulate beneficial bacteria in order to 

improve the health of broilers. Prebiotics or dietary fibres could do this. An in vivo trial with 

XOS has demonstrated an improved performance at slaughter age which may be explained by an 

increased number of butyrate-producing bacteria in the caecum and an increased number of 

lactate-producing bacteria in the colon after 16S rRNA sequencing and qPCR analyses. This 

suggests that XOS could be an interesting prebiotic to improve broiler performance by 

stimulating butyrate-producing bacteria. A second in vivo trial with cellulose has demonstrated an 

improved performance in the early life and an increased number of Alistipes species in the 

caecum after 16S rRNA sequencing and qPCR analyses. This suggests that cellulose is more than 

an inert component. Further research is necessary to classify cellulose as a dietary fibre.  
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SUMMARY 
Increasing public concern about the use of antibiotics in the poultry industry has influenced 

the ways in which poultry producers are working towards improving birds’ intestinal health. 

With the scientific information currently available, there is no doubt that the intestinal 

microbiota is directly or indirectly involved in all physiological and pathological processes 

that occur in the digestive tract and even in many processes outside the digestive tract and 

thus play a vital role in host welfare and productivity. The gastro-intestinal tract has the 

largest microbial population and is dominated by two bacterial phyla, Firmicutes and 

Bacteroidetes. Products of microbial metabolism act as signalling molecules and influence the 

host’s metabolism. More specifically protein fermentation results in the production of more 

detrimental metabolites for the host, while fermentation of carbohydrates results mainly in 

short-chain fatty acids, which are known to have a beneficial effect. The most important 

short-chain fatty acid is butyrate because of the different beneficial effects on intestinal health 

and its importance as energy source for the cells. In addition butyrate has also anti-

inflammatory properties and the ability to influence the defence barrier and to control the 

presence of pathogens. Butyrate is mainly produced by bacteria belonging to Clostridium 

cluster I, IV, XIVa and XVI. Their growth and/or activity can be selectively stimulated by 

non-digestible ingredients or prebiotics. Especially in the chicken, cluster XVI appears to be 

more important than in other animal species or in human. 

The aim of this thesis was to search for a carbohydrate or dietary fibre that would improve 

broiler performance by inducing a microbial shift in the gastro-intestinal tract. The use of 

xylo-oligosaccharides (XOS) and cellulose in broiler feed were investigated. 

In order to understand the full extent of bacterial diversity in the gut it is essential to 

characterize and classify the microbial organisms present. Especially for Clostridium cluster 

XVI, there is still a lot of confusion. Therefore in the first experimental study, we classified a 

new isolate and reclassified three misnamed bacteria all belonging to the butyrate-producing 

Clostridium cluster XVI or Erysipelotrichaceae family. The new isolate had 96% 16S rRNA 

gene sequence similarity with its phylogenetic neighbour Streptococcus pleomorphus. Both 

the new isolate and the misnamed Streptococcus pleomorphus were classified in a new genus 

with the name Faecalicoccus. The new species was given the name Faecalicoccus 

acidiformans. In addition, two other phylogenetic neighbours were reclassified, Eubacterium 

cylindroides became Faecalitalea cylindroides and Eubacterium biforme became 
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Holdemanella biformis. It was shown that they all produce lactate and butyrate as major 

fermentation end products in the M2GSC medium. The description of these strains would 

allow for a number of operational taxonomic units (OTUs) to be classified as one of these 

new genera with the aid of the ribosomal database project.  

In the second experimental study, we demonstrated a positive effect on broiler performance of 

XOS by decreasing the feed conversion ratio. In addition, with the aid of 16S rRNA 

sequencing and qPCR, the influence of XOS on the microbiota composition was investigated. 

Both techniques showed that the number of butyrate-producing Clostridium cluster XIVa 

bacteria were significantly increase in the caeca of the chickens that received XOS. This 

increase was attributed specifically to the increase of one genus, and within this genus one 

specific species, Anaerostipes butyraticus. In the colon, there was a significant increase of the 

number of lactate-producing lactobacilli. This increase was attributed to the specific 

expression of only one species, Lactobacillus crispatus. It is already proven that bacteria from 

Clostridium cluster XIVa have the ability to produce butyrate in the presence of lactate. An in 

vitro fermentation assay showed that in the presence of XOS, the lactate production was 

increased by Lactobacillus crispatus. This lactate could then be used by Anaerostipes 

butyraticus, a Clostridium cluster XIVa species, for the production of butyrate. This 

experiment confirmed cross-feeding between lactate-producing and butyrate-producing 

bacteria and was shown to have a positive effect on broiler performance. Based on the 

physiological reflux mechanisms colon content is regularly injected into the caeca, thus 

allowing for the cross-feeding between the XOS degrading lactate producer in the colon and 

the butyrate-producing, lactate consumer in the caeca. 

In the third experimental study, we demonstrated that cellulose supplementation could give a 

good start for broilers by reducing the feed conversion and increasing the daily gain in the 

starter phase. Again with the aid of 16S rRNA sequencing and qPCR we looked at the 

influence of the substrate on the microbiota composition. Although cellulose is traditionally 

considered to be inert, it did influence the microbiota composition by increasing the genus 

Alistipes in the caeca of broilers receiving the cellulose as compared to the control group. No 

shifts in the colon microbiota composition were observed. The link between the presence of 

the genus Alistipes and the improved performance of broilers is not clear and further research 

is necessary.  
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Around 90% of the bacteria in the gastro-intestinal tract are unknown, indicating that the 

knowledge of the intestinal microbiota is incomplete. To understand the mechanisms 

supporting gastro-intestinal health it’s important that new genera would be characterized. 

Beside the isolation and the description of the bacteria, it is even more important to stimulate 

the beneficial bacteria to improve the broiler health. One of the most important conclusions is 

that, prebiotics and other feed ingredients can influence the microbial populations of this 

thesis to the best or to the worst.  
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SAMENVATTING 
Uit wetenschappelijke literatuur is duidelijk dat de darm microbiota direct of indirect 

fysiologische en pathologische processen beïnvloedt die plaatsvinden zowel in als buiten het 

verteringsstelsel. De darm microbiota speelt dan ook een belangrijke rol in de gastheer 

gezondheid en productiviteit. Twee bacteriële phyla, Firmicutes en Bacteroidetes vormen de 

grootste microbiële populaties in het spijsverteringsstelsel. De eindproducten van de 

microbiële fermentatie werken als signaal moleculen en beïnvloeden het metabolisme van de 

gastheer. In grote lijnen zorgt bacteriële fermentatie van eiwitten voor de vorming van meer 

schadelijke metabolieten voor de gastheer, terwijl eerder suiker fermentatie resulteert in korte 

keten vetzuren, met gekende gunstige effecten. Eén van deze korte keten vetzuren is 

boterzuur, dat de voornaamste energiebron vormt voor de colonocyten. Daarnaast heeft 

boterzuur anti-inflammatoire eigenschappen en is het in staat de defensie barrière van de 

darmwand te versterken en de aanwezigheid van pathogenen te onderdrukken. Boterzuur 

wordt voornamelijk geproduceerd door bacteriën die behoren tot de Clostridium cluster I, IV, 

XIVa en XVI. Hun groei en/of activiteit kan selectief gestimuleerd worden door bepaalde 

niet-verteerbare voederingrediënten of door gesupplementeerde prebiotica. Voornamelijk bij 

kippen, lijkt cluster XVI meer van belang te zijn in vergelijking met andere dieren en met de 

mens.  

Het doel van deze thesis was het zoeken naar een voedingscomponent die de zoötechnische 

prestaties van vleeskippen kan verbeteren door het induceren van een microbiële verschuiving 

in de darm ten voordele van de boterzuur produceerders. Meer bepaald werd het effect van 

inmenging van xylo-oligosacchariden (XOS) en cellulose op de darm microbiota en prestaties 

van vleeskippen onderzocht.  

Om de werking van het microbioom in de darm te begrijpen, is het essentieel om de 

aanwezige microbiële organismen zo goed mogelijk te karakteriseren en te classificeren. 

Gezien het belang bij de kip en de verwarring in de literatuur wat betreft Clostridium cluster 

XVI, werd hier speciale aandacht aan besteed. In de eerste experimentele studie werd een 

nieuw isolaat beschreven en geclassificeerd. Daarnaast werden drie verkeerd benoemde 

bacteriële species herbenoemd. Alle behoren tot de boterzuur-producerende Clostridium 

cluster XVI of Erysipelotrichaceae familie. De sequentie van het 16S rRNA gen van het 

nieuwe isolaat heeft 96% gelijkenis met dat van zijn dichtste fylogenetische buur, 

Streptococcus pleomorphus. Beide, het nieuwe isolaat en de fout benoemde Streptococcus 
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pleomorphus werden geclassificeerd in een nieuw genus met de naam Faecalicoccus. Het 

nieuwe species kreeg de naam Faecalicoccus acidiformans. Daarnaast werden twee andere 

fylogenetische buren herbenoemd, Eubacterium cylindroides werd Faecalitalea cylindroides 

en Eubacterium biforme werd Holdemanella biformis. Er werd aangetoond dat al deze 

bacteriën melkzuur en boterzuur produceren als belangrijkste fermentatie eind-producten in 

het M2GSC medium. De beschrijving van deze kiemen zorgt ervoor dat een aantal 

operationele taxonomische eenheden die bekomen worden door 16S rRNA gensequencing, 

geclassificeerd kunnen worden als één van deze nieuwe genera met behulp van ‘Ribosomal 

Database Project’ (RDP). 

In een tweede experimentele studie toonden we het gunstige effect van XOS op de 

vleeskippen prestaties door een verlaagde voederomzet. Daarnaast werd de invloed van XOS 

op de microbiota samenstelling onderzocht met behulp van 16S rRNA sequenering en qPCR. 

Met deze technieken vonden we dat de concentratie aan boterzuur-producerende Clostridium 

cluster XIVa bacteriën significant hoger was in de caeca van kippen die XOS hadden 

gekregen. Deze verhoging werd toegeschreven aan de verhoging van één genus, met binnenin 

dit genus één specifiek species, namelijk Anaerostipes butyraticus. In het colon, werd een 

significant hoger aantal melkzuur-producerende lactobacilli gedetecteerd. Deze verhoging 

werd toegeschreven aan de specifieke verhoging van één enkel species, namelijk 

Lactobacillus crispatus. Het is reeds aangetoond dat bacteriën van Clostridium cluster XIVa 

de mogelijkheid hebben om boterzuur te produceren uitgaande van melkzuur. In een in vitro 

experiment werd aangetoond dat in de aanwezigheid van XOS, de melkzuur productie door 

Lactobacillus crispatus werd verhoogd. XOS hadden geen directe invloed op de metabole 

activiteit van Anaerostipes butyraticus. In co-cultuur echter, werd het melkzuur dat 

geproduceerd was door Lactobacillus crispatus, vervolgens omgezet naar boterzuur door 

Anaerostipes butyraticus. In aanwezigheid van XOS en Lactobacillus crispatus produceerde 

Anaerostipes butyraticus dus veel meer boterzuur. Dit experiment bevestigt dat er een 

uitwisseling mogelijk is tussen melkzuur en boterzuur producerende bacteriën. Deze 

uitwisseling tussen beide bacteriële groepen kan zorgen voor een positief effect op de 

prestatie van vleeskippen. De inhoud van het colon wordt regelmatig geïnjecteerd in de caeca 

door de fysiologische reflux mechanismen waardoor cross-feeding mogelijk istussen XOS 

afbrekende melkzuur produceerders die zich in het colon bevinden en de boterzuur 

produceerders-melkzuur verbruikers boterzuur producerende- melkzuur verbruikers die zich 

in de caeca bevinden. 



APPENDIX 

 

188 

In een derde experimentele studie tonen we dat het toevoegen van cellulose aan het voeder 

kan zorgen voor een betere start van de vleeskippen, meer bepaald door het verlagen van de 

voederomzet en een verhoogde dagelijkse groei tijdens de starter fase. Opnieuw werd met 

behulp van 16S rRNA sequenering en qPCR gekeken naar de invloed van de experimentele 

behandeling op de microbiota samenstelling. Er was toename van het Alistipes genus in de 

caeca van de kippen die cellulose hadden gekregen in vergelijking met de controle groep. Er 

waren geen verschuivingen in de colon microbiota. Ondanks dat cellulose traditioneel als inert 

wordt beschouwd, toont deze studie aan het dat cellulose de microbiota toch kan beïnvloeden.  

De link tussen de aanwezigheid van het genus Alistipes en een verbeterde prestatie van de 

kippen is nog niet gekend en moet dus verder onderzocht worden.  

Ongeveer 90% van de bacteriën in het spijsverteringsstelsel zijn nog ongekend. Dat toont aan 

dat de kennis van de darm microbiota nog zeer onvolledig is. Om de mechanismen van de 

darmgezondheid te begrijpen is het dus van belang dat nieuwe genera en species benoemd en 

gekarakteriseerd worden. De ongekende bacteriën moeten geïsoleerd worden en functioneel 

gekarakteriseerd. Op die manier kunnen nieuwe mogelijkheden ontdekt worden om de 

voordelige bacteriën te stimuleren en zo de darmgezondheid te verbeteren. De take home 

message van deze thesis is dat het zeker mogelijk is om met prebiotica en andere voedings-

ingrediënten, de microbiële populatie in de darm in een gunstige richting te sturen. 
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hybridisatie en het bepalen van vetzuurpatroon van onze kiemen. Voor het kwantificeren van 

de korte-keten vetzuren kon ik dan weet terecht bij Siegrid en Jelle. Bedankt om mij in te 

leiden in de wereld van de HPLC met zijn nodige hinderlagen van foutmeldingen op het 

toestel tot het goed krijgen van onze pieken om zo tot het juiste resultaat te kunnen komen. 

Ook Bernard zou ik graag bedanken voor zijn hulp bij het sequeneren. Verder zou ik ook nog 

graag Annelies (LabMet) bedanken, want ook al hoorde ik niet bij het SBO project toch hielp 

je steeds waar nodig en het was ook aangenaam om niet helemaal alleen te zijn in Aberdeen 

op congres. Veel succes met je nieuwe job in Zwitserland.  

Maar ook binnen-huis zijn er heel wat mensen die hier hun plaatsje verdienen.  

Evy, jij verdient hier meer dan de 1ste plaats! Wie had ooit gedacht dat ik van de planten naar 

de kippen ging gaan… Na een iets moeilijkere start is het me toch gelukt om te wennen aan al 

die darmen. Maar nu het bedanken, waar zal ik beginnen? Ik denk dat het iets te veel is om 

hier allemaal op te noemen dus zeg ik je gewoon bedankt voor alles! Wolf, de enige man in 

ons midden! Alhoewel de enige… ik denk dat het mannelijk-deeltje-van-onze-hersenpan 

ervoor kon zorgen dat je niet alleen was, niet? Karen, ik zie je nog toekomen, een beetje 

verlegen... Maar daar is ondertussen gelukkig niets meer van te merken! Lonneke, mijn thesis-

student, ondanks een hobbelig start van jouw thesis-parcours denk ik dat we er toch in 

geslaagd zijn om er mooie thesis van te maken en dat met misschien zelfs ooit een artikel voor 

jou. Het was dan ook zeer leuk, dat je bent blijven hangen bij ons. Helaas is je parcours nog 

steeds wat hobbelig, maar ik ben er zeker van dat je er zal geraken! Evy, Wolf, Karen en 

Lonneke, bedankt om onze bureau, zo gezellig en leuk te maken!! Sofie G, ook al hebben we 

nooit echt samen in de les gezeten, een echte onbekende was je toch niet. Ik hoop dat jij de 

volgende bent die hier mag staan en heel veel succes met het vinden van je droomjob! 

Karolien, onze dagelijkse bezoeker op de bureau met je duizend vragen waar we helaas niet 

altijd konden op antwoorden, maar ik ben er zeker van dat jij de antwoorden ondertussen zelf 

wel gevonden hebt. Sofie K, ook voor jou veel succes met het afwerken van je doctoraat! 

Gunther en Bonnie, jullie hebben voor de mij de spitst-afgebroken of nee de druk heel hoog 

gelegd. Maar mocht ik de hulp van jullie allemaal niet gehad hebben bij de vele staalnames en 

de kippen-weeg-feestjes in het ILVO, dan had ik hier nu niet gestaan. Dus voor jullie allemaal 

meer-dan-Merci voor alle hulp! Leslie en Wander, bedankt om taxi voor mij te spelen van den 
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aldi tot op de faculteit toen ik met mijn voet in het gips zat. Want wandelen dat was geen 

optie! Wie ik hier zeker ook niet mag vergeten te bedanken zijn Christian en Delphine, merci 

om mijn coupes zo snel te snijden en te kleuren.  

Daarnaast moet ik ook Serge, Arlette, Nathalie, Sofie, Connie, Julie, Marleen en Magda 

bedanken zonder jullie zou onderzoek niet altijd mogelijk zijn, bedankt voor alle hulp! Jo, 

Gunther en Astra, bedankt om de papieren-rompslomp en mijn bestellingen steeds met een 

glimlach in orde te brengen! Verder verdienen Pascal, Pudsa, Marc, An, Caroline, Eva, Ellen, 

Myrthe, Iris, Nele, Maxime, Cheng, Anneleen, Lieze, Gwij, Bram, Elin, Lien, Roel, Chloë, 

Annemieke, Filip, Tom, Mark, Johan, Michiel, Han, Veronique, Nadia, Marjan, Leen, 

Marleen, Norbert, Sarah, Joachim, Nathalie, Laura, Justine, Jonas, … ook een woordje van 

dank voor de leuke momenten in het labo. Merci! 

Gedurende deze 4 jaar zijn er ook heel wat mensen vertrokken die hier niet mogen ontbreken: 

Stefanie, Dorien, Ruth, Sergio, Leen, Beatrice, Sarah, Cyntia, Jordy, Alexander, David, 

Bregje, Miet, Hanne, Anja2, Hannah, Evelien, Shoaji, Guangzhi, … 

Maar ook mijn nieuwe collega’s verdienen hier een woordje van dank. Bedankt om mij een 

meer-dan-welkom gevoel te geven tijdens mijn eerste weken. We gaan er samen eens een lap 

opgeven.  

Dan zijn we nu aangekomen bij het thuisfront. Dat is zowel het West-vlaamse Brugge als het 

Oost-vlaamse Gent! Laten we beginnen bij Brugge-die-schone: Loesje, Benjamin en 

ondertussen ook de kleine Oona-Lou, het is altijd leuk om bij jullie thuis te komen en dat zal 

in jullie nieuwe huis zeker niet anders zijn. Loesje, ik weet dat ik misschien een klein beetje 

een work-o-holic ben, maar ik zal mijn best doen om iets meer tijd vrij te maken voor leuke 

dingen zoals een terrasje of een uitstapje naar de zee, een verre reis is misschien iets te veel 

van het goede, maar je weet nooit. 1 ding is zeker voor ontspanning kan ik altijd terecht bij 

jullie, Merci! Veerle en Tine, hoe lang kennen wij elkaar nu al? Lang! Mijn eerste 

schoolherinneringen zijn deze samen met jullie en ook al zijn we alle 3 een andere weg 

uitgegaan, we komen elkaar weer steeds tegen en dan is het alsof het nooit niet anders 

geweest is. Ik hoop dat we nog vele leuke en plezante momenten mogen samen beleven. 

Charlotte, Basiel en de kleine Leni, bedankt voor de leuke dates of het nu samen koken, een 

spelletje spelen of iets gaan drinken is… In Gent studeren brengt natuurlijk ook heel wat 

vrienden met zich mee Lynda, Morgane, Isabel, Kristof, Corinne, … Bedankt voor alle leuke 
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momenten! Daarnaast mag ik Koen Evy, Fiebe en Finn, zeker ook niet vergeten te bedanken 

voor de vele leuke momenten van samen naaien, een spelletje spelen, boekjes lezen, iets eten 

in Fiebe haar keukentje, … Merci! En dan eindigen we in Gent met de ‘Bende’! Charlotte, 

Miek, en Bram: Merci voor de leuke ski/snowboard-vakanties, de gezellige oud-nieuw avond 

met de kids en ook de vele etentjes! It’s time to go crazy! Op naar onze vele weekendjes in 

d’ardennen, de champagnes-streek en waar gingen we nog allemaal naar toe? Bram, jij 

verdient hier nog een extra woordje van dank: mijn beste vriend! Zonder jou had ik hier 

waarschijnlijk al helemaal niet gestaan, want dat Master-diploma heb ik toch ook deels te 

danken aan jouw cursus met je super-zalig-code-geschrift! Altijd bereid om eentje te gaan 

drinken en te luisteren naar mijn geklaag en veel gezaag, maar ook steeds paraat voor een 

klim-avontuur! Ik hoop dat we ondanks al onze vervelende kwaaltjes toch nog eens die rotsen 

mogen gaan trotseren binnen of zelfs buiten België. Bij deze Merci!  

De VIPS komen meestal als laatste aanbod en dat is ook hier niet anders: papa, mama, 

Camille, Marie + Thomas (joepie, ik heb eindelijk een broer ☺)! Ik zou jullie graag bedanken 

voor de onvoorwaardelijke steun en omdat jullie steeds zijn blijven geloven in mij! Papa, ik 

denk dat er niemand meer gevraagd heeft: ‘of er nu al een datum was, zodat je die toch wel 

zeker kon vastleggen in je agenda?’ Wel die datum is er eindelijk, hij stond toch in je agenda 

é? Bedankt voor alles!! 

En als laatste kan ik enkel nog zeggen: Merci aan iedereen die komen luisteren is en dan nu 

Santé, laten we er eentje (of meer) op klinken! 

  

 


