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1. Summary 1 

1. Summary 

1.1 Summary 

Retinoblastoma is the most prevalent intraocular malignant tumor among very young 

children (Kivelä 2009, Mahajan et al. 2011). Most of the children are younger than two years 

when they are diagnosed with retinoblastoma (Young et al. 1999). The initial step for 

retinoblastoma formation is a mutation in the retinoblastoma gene, RB1, which is either 

sporadic or heritable. Besides the involvement of the tumor suppressor RB1, recent studies 

also revealed a link between retinoblastoma development and the p53 pathway through 

involvement of its negative regulators Mdm2 and Mdm4 (Laurie et al. 2006). 

The mouse tumor model we use to study the molecular mechanisms of retinoblastoma, 

relies on the absence of both Rb1 and the Rb1 family member p107. As a consequence of the 

Rb1/p107 deficiency, these mice develop retinoblastoma late in life. Additional loss of Trp53 

(or p53) in these mice further accelerates tumor formation and increases the aggressiveness of 

the tumor spectrum (Zhang et al. 2004b, Laurie et al. 2006). 

The p53 tumor suppressor is commonly compromised in human cancers – either by 

direct mutation within the p53 gene (TP53) or by deregulation of its upstream regulators or 

downstream effectors such as Mdm2 and Mdm4 (Marine et al. 2006, Toledo and Wahl 2006). 

Moreover, mutations in p53 are often associated with aggressive tumor development and poor 

prognosis in disease outcome (Soussi and Béroud 2001). 

Therefore, identification of p53 interactors crucial for the survival of p53-

compromised mutant cells might highlight potential novel cancer cell-specific drug targets. 

Those targets would have the benefit that therapeutically targeting these p53 interactors would 

lead to synthetic lethality in p53-deficient cancer cells but leaving healthy tissue with an intact 

p53 pathway unharmed. 

 

In this work we show that homozygous loss of Dicer1, a central enzyme in the 

microRNA processing machinery and a haploinsufficient tumor suppressor (Lambertz et al. 

2010, Kumar et al. 2009), prevents retinoblastoma formation in mice by synthetic lethal 

interaction with p53. Although loss of Dicer1 is tolerated during normal retinogenesis and in 

retinoblastoma-tumor initiating cells with an intact p53 pathway, Dicer1 deficiency is 

synthetic lethal upon p53 inactivation in tumor initiating cells. However, oncogenic stress, 
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such as Rb1/p107 inactivation in the mouse model we used, is required for the Dicer1/p53 

synthetic lethality. 

Importantly, the synthetic lethal effect of Dicer1 and p53 can fully be replaced by 

deletion of the oncogenic microRNA cluster miR-17~92 instead of Dicer1, as we show that 

inactivating the miR-17~92 cluster in tumor-prone mice deficient of p53 suppresses 

tumorigenesis. Accordingly, in vitro co-silencing of miR17/20a and p53 cooperatively 

decreases the viability of pre-formed human retinoblastoma cells. 

 

Taken together, we provide important insights into the genetic mechanisms explaining 

why Dicer1 is not lost during tumorigenesis and identified miR-17~92 as a first microRNA 

cluster of which loss is synthetic lethal with p53. Consequently, while inhibition of Dicer1 

should be considered with caution, microRNAs such as miR-17/20a should be explored as a 

highly selective therapeutic approach for the treatment of retinoblastoma. 

Ultimately, the question should be addressed, whether there are other tumor systems in 

which the miR-17~92 cluster, or any other microRNAs, would show a synthetic lethal 

interaction with p53 and could therefore be an important new avenue of research in fighting 

diseases with a compromised p53 pathway. 

1.2 Samenvatting 

Retinoblastoma is de meest voorkomende intraoculaire maligne tumor bij kinderen 

(Kivelä 2009, Mahajan et al. 2011). De meerderheid van de kinderen zijn jonger dan twee jaar 

op het moment van diagnose (Young et al. 1999). De initiële stap naar retinoblastomavorming 

is een mutatie in het retinoblastomagen, RB1. Deze mutatie is weinig voorkomend of 

overerfbaar. 

Naast de betrokkenheid van de tumorsuppressor, RB1 tonen recente studies de link aan 

tussen retinoblastomaontwikkeling en de p53-signalisatieweg door de betrokkenheid van zijn 

negatieve regulatoren, Mdm2 and Mdm4 (Laurie et al. 2006). 

Het muismodel dat we gebruiken om de moleculaire mechanismen van retinoblastoma 

te bestuderen is afhankelijk van de afwezigheid van zowel Rb1 en het Rb1-familielid, p107. 

Als gevolg van de Rb1/p107-afwezigheid, ontwikkelen deze muizen retinoblastoma laat in het 

leven. Bijkomend verlies van Trp53 (of p53) in deze muizen versnelt verder de 

tumorontwikkeling en verhoogt de agressiviteit van het tumorspectrum (Zhang et al. 2004b, 

Laurie et al. 2006). 
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De tumorsuppressor, p53 is vaak aangetast in menselijke kankers, dit door directe 

mutatie binnen het p53-gen of door ontregeling van opwaartse of neerwaartse effectoren zoals 

Mdm2 and Mdm4 (Marine et al. 2006, Toledo and Wahl 2006). Bovendien zijn mutaties in 

p53 dikwijls geassocieerd met agressieve tumorontwikkeling en slechte prognose in de afloop 

van de ziekte (Soussi and Béroud 2001). 

Zodoende kan identificatie van p53-interactoren, die noodzakelijk zijn voor de 

overleving van cellen met gewijzigd p53, nieuwe celspecifieke doelwitten onthullen 

waartegen nieuwe therapeutische middelen kunnen ontwikkeld worden. Kankermedicijnen 

gericht tegen deze p53-interactoren zou leiden tot synthetische letaliteit in p53-deficiënte 

kankercellen maar zou gezond weefsel met een intacte p53-signalisatieweg ongedeerd laten. 

 

In dit werk tonen we aan dat homozygotisch verlies van Dicer1, een centraal enzyme 

in de biogenese van microRNA’s en een haploinsufficiente tumorsuppressor (Lambertz et al. 

2010, Kumar et al. 2009) retinoblasomavorming in muizen voorkomt door zijn synthetisch 

letale interactie met p53. Hoewel tijdens de normale retinogenese en in startende 

retinoblastomatumorcellen met een intacte p53-signalisatieweg het verlies van Dicer1 tolerant 

is, is een Dicer1-tekort synthetisch lethaal bij p53-inactivatie in tumor-initiërende cellen. 

Oncologische stress zoals Rb1/p107-inactivatie in het gebruikte muismodel is hoe dan ook 

nodig voor de Dicer1/p53-synthetische letaliteit. 

Niet onbelangrijk is dat het synthetisch letaal effect van Dicer1 en p53 volledig kan 

worden herhaald door de deletie van de oncologische microRNA-cluster, miR-17~92 in plaats 

van Dicer1. Zo tonen we aan dat in p53-deficiënte muizen, vatbaar voor tumoren de 

inactivatie van de miR-17~92-cluster de tumorontwikkeling onderdrukt. Ook in vitro zien we 

een verminderde leefbaarheid van humane retinoblastomacellen wanneer we miR17/20a en 

p53 gelijktijdig uitschakelen. 

 

Alles samenvattend leveren we belangrijke inzichten in de genetische mechanismen 

die verklaren waarom Dicer1 niet verloren is tijdens de tumorontwikkeling en identificeren 

we miR-17~92 als eerste microRNA-cluster die een synthetisch letale interactie vertoont met 

p53. Derhalve moet de remming van Dicer1 voorzichtigheid overwogen worden, terwijl 

verder onderzoek van de microRNA’s, miR-17/20a nodig is voor een zeer selectieve 

therapeutische benadering in de behandeling van retinoblastoma. 

Tenslotte moet men zich afvragen of er andere tumorsystemen zijn waarbij de 

miR-17~92-cluster of andere microRNA’s synthetische letaliteit vertonen met p53 en 
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bijgevolg kunnen leiden tot een nieuwe onderzoeksweg naar de strijd tegen ziekten met een 

gecompromitteerde p53-signalisatieweg. 
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2. Introduction 

2.1 The microRNA pathway 

2.1.1 Non-coding RNAs are crucial for normal development and for 
disease 

Protein-coding genes account for 2% of the genome (Alexander et al. 2010). But 

although the rest of the genome does not give rise to proteins, there are many non-coding 

genomic regions which have a crucial functional role for normal development and for disease. 

Non-coding RNAs (ncRNAs) are a relatively new class of RNA which contribute to normal 

development and to many different human diseases (van Kouwenhove et al. 2011, Nikitina et 

al. 2012). There are many different types of ncRNAs (see Table 2.1). The first identified and 

also most studied type of ncRNAs are microRNAs (miRNAs) (Lee et al. 1993, Wightman et 

al. 1993). 

2.1.2 Biogenesis of miRNA 

miRNAs are small non-coding RNAs with a length of 19-24 bp and are evolutionarily 

well conserved. They regulate gene expression post-transcriptionally by either inducing 

degradation or repressing translation of their target mRNA molecules. The general – 

"canonical" – biogenesis of miRNAs starts from primary precursor miRNAs (pri-miRs) which 

are transcribed by RNA polymerase II or III (see Figure 2.1). These pri-miRs contain a so 

called stem-loop structure in which the sequences are not perfectly complementary. This 

motif is recognized by a ribonuclease Drosha together with the dsRNA-binding protein 

(dsRBP) DGCR8 (together they are called Pasha) in the nucleus. The pri-miRNA is processed 

into a ~70-nucleotide precursor miRNA (pre-miR) by a mechanism called cropping. This pre-

miR is now exported into the cytoplasm with the help from Exportin 5 (XPO5). In the 

cytoplasm, the pre-miR now binds to another dsRBP (TRBP) in complex with the 

ribonuclease Dicer1, and is processed into a double-stranded miRNA/miRNA* to its mature 

length of ~20 bp. This process is called dicing. One strand of the miRNA/miRNA* duplex – 

the guide strand – is incorporated together with Argonaute 2 (Ago2) into the miRNA-induced 

silencing complex (miRISC) whereas the other strand is released and degraded. The mature 

miRNA strand can then either silence its target mRNA by translational repression and/or 
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deadenylation within the miRISC or direct an endonucleolytic cleavage (slicing) with the help 

of the AGO2 protein. In most cases, the grade of complementarity of the "seed" sequence of 

the miRNA (positions 2 to 8 from the 5' end of the miRNA) to the "seed match" (3' UTR of 

the target mRNA) is responsible for the specificity of miRNA targeting (reviewed in 

Lujambio and Lowe 2012, Winter et al. 2009). 

Besides the common mechanisms of silencing mRNA of target genes described above, 

miRNAs were also found to be able to target DNA, ribonucleoproteins, or even increase 

expression of its target mRNA (Garzon et al. 2010). 

 

Table 2.1: Types of ncRNAs. 
From Esteller 2011. 

 

 

*There is not necessarily a clear delineation between classes of non-coding RNA (ncRNA); for example, X-inactivation specific transcript (XIST) and its antisense transcript
TSIX could be considered as large intergenic non-coding RNAs (lincRNAs). In the ‘Location’ column, ‘–’ represents the number of base pairs upstream of the transcription start
site (TSS) and ‘+’ represents the number of base pairs downstream of the TSS. CAP1, CAP, adenylate cyclase-associated protein 1; CCDC52, coiled-coil domain containing 52
(also known as SPICE1); EXT1, exostosin 1; HOTAIR, homeobox (HOX) transcript antisense RNA; HOTTIP, HOXA distal transcript antisense RNA; HYMAI, hydatidiform mole
associated and imprinted; IAP, intracisternal A-particle; lncRNA, long non-coding RNA; miRNAs, microRNAs; piRNAs, PIWI-interacting RNAs; PASRs, promoter-associated
small RNAs; PROMPTs, promoter upstream transcripts; RASGRF1, RAS-protein-specific guanine nucleotide-releasing factor 1; RBM39, RNA-binding motif protein 39; RNF12,
ring finger protein 12 (also known as RLIM); snoRNAs, small nucleolar RNAs; TERRAs, telomeric repeat containing RNAs; tiRNAs, transcription initiation RNAs; TSSa-RNAs,
TSS-associated RNAs; T-UCRs, transcribed ultraconserved regions.

Name Size Location Number
in humans

Functions Illustrative examples Refs

Short ncRNAs

miRNAs 19–24bp Encoded at
widespread locations

>1,424 Targeting of mRNAs and many others miR-15/16, miR-124a,
miR-34b/c, miR-200

3–8

piRNAs 26–31bp Clusters, intragenic 23,439 Transposon repression, DNA
methylation

piRNAs targeting RASGRF1
and LINE1 and IAP elements

13–19

tiRNAs 17–18bp Downstream of TSSs >5,000 Regulation of transcription? Associated with the CAP1 gene 37

Mid-size ncRNAs

snoRNAs 60–300 bp Intronic >300 rRNA modifications U50, SNORD 20–22

PASRs 22–200 bp 5′ regions of
protein-coding
genes

>10,000 Unknown Half of protein-coding genes 10

TSSa-RNAs 20–90 bp –250 and +50bp of
TSSs

>10,000 Maintenance of transcription? Associated with RNF12 and
CCDC52 genes

35

PROMPTs <200 bp –205bp and –5kb
of TSSs

Unknown Activation of transcription? Associated with EXT1 and
RBM39 genes

36

Long ncRNAs

lincRNAs >200 bp Widespread loci >1,000 Examples include scaffold DNA–
chromatin complexes

HOTAIR ,HOTTIP, lincRNA-p21 2,28–30

T-UCRs >200 bp Widespread loci >350 Regulation of miRNA and mRNA levels? uc.283+, uc.338, uc160+ 31–34

Other
lncRNAs

>200 bp Widespread loci >3,000 Examples include X-chromosome
inactivation, telomere regulation,
imprinting

XIST,TSIX, TERRAs,p15AS ,
H19,HYMAI

2,23–25



 

2. Introduction 7 

  

Figure 2.1: The biogenesis of miRNAs. 
For detailed description of the biogenesis of miRNAs: see text (figure modified from Krol et al. 2010). 
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The above-described canonical pathway is used for the processing of most miRNAs. 

There are however many more variations of miRNA maturation (Figure 2.2). These include 

the Drosha-independent form of pri-miRNA processing where intron-derived miRNAs 

(mirtrons) are spliced by the splicosome with bypassing the cleavage by Drosha (Ruby et al. 

2007, Okamura et al. 2007, Berezikov et al. 2007). Other examples for Dicer1-mediated but 

Drosha-independent miRNAs are some miR-tRNAs (Babiarz et al. 2008) and also some small 

nucleolar RNAs (snoRNAs) with miRNA-like functions (Ender et al. 2008). 

 

Figure 2.2: Canonical and non-canonical ways of pri-miRNA processing. 
(A) Canonical maturation process involving the cleavage of the pri-miRNA by the microprocessor complex 
Drosha-DGCR8 and release of the pre-miRNA. (B) For effective cleavage, some miRNAs require additional 
factors like p68 and p72 for more specificity. See also Figure 2.10 for more details. (C) For processing of 
pri-miR-18, hnRNP A1 has to interact with the pri-miR to facilitate the cleavage by Drosha-DGCR8. 
(D) Cleavage of pri-miR-21 depends on binding of SMAD, induced by TGFβ signaling. (E) Drosha-DGCR8 
processing can be completely replaced by the splicing mechanism of the spliceosome itself if the released and 
debranched intron (called mirtrons) resembles the length and hairpin structure of a pre-miRNA (figure modified 
from Winter et al. 2009). 
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2.1.3 Dicer1-independent maturation of pre-miRNAs 

More recently, a Dicer1-independent form of miRNA maturation was also found 

(Cifuentes et al. 2010, Cheloufi et al. 2010, Yang et al. 2010). The biogenesis of the highly 

conserved miR-451 does not depend on the cleavage by Dicer1. Instead, the pre-miRNA-451 

only binds Ago2 which cleaves the paired mRNA* passenger strand 10 nucleotides away 

from the 5' end of the miRNA guide strand incorporated into the Ago2 protein. It is suggested 

that polyuridylation and nuclease-mediated removal of uridines and template nucleotides is 

followed by the Ago2 cleavage to generate the mature miRNA (Figure 2.3). 

 

Figure 2.3: Model for Ago2-mediated pre-miRNA processing. 
Pre-miRNA-451 can be processed by Ago2 independently of Dicer1. Ago2 is able to cleave the bound 
double-stranded pre-miRNA (miRNA/miRNA*) by itself followed by unwinding, uridylation, trimming of 
uridines and nucleotides to give rise to the mature miRNA (figure modified from Cifuentes et al. 2010). 

Interestingly, processing of miRNAs by Ago2 alone instead of a Dicer1-mediated 

cleavage is determined by the secondary structure of the hairpin and not only by the sequence 

of the miRNA itself. Cifuentes and colleagues were able to mimic the structural traits of 

pre-miR-451 and applied them to pre-miR-430. Solely by adapting the structure, pre-miR-430 

was now Dicer1-independently processed by Ago2 to a fully functional mature miRNA which 

could rescue the morphogenesis defects which normally occur upon loss of Dicer1 (Cifuentes 

et al. 2010). 

These findings might also have implications for the normally Dicer1-dependent 

processing of the canonical miRNAs. A change in structure of canonical pre-miRNAs could 

circumvent the need of miRNAs to be processed by Dicer1 and could therefore induce 

cleavage and maturation by Ago2. In this scenario, miRNA processing would be possible, 

even if Dicer1 is lost or mutated. 
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2.1.4 Genetic defects in miRNAs are a common hallmark of disease 

MicroRNAs are well-known to be able to influence and control normal processes like 

differentiation, cellular proliferation, and apoptosis by repressing many target genes involved 

in these processes. Importantly, more and more evidence shows that miRNAs also have 

crucial functions in human diseases. Differential expression of miRNAs, and therefore 

controlling of gene expression, is well-known in many types of cancer (Calin et al. 2002, Lu 

et al. 2005, He et al. 2005). They can either act as tumor suppressors or as oncogenes (Table 

2.2 and Calin et al. 2002, Esquela-Kerscher and Slack 2006). When acting as tumor 

suppressors, miRNAs are usually deleted or downregulated, while in the role of oncogenes, 

they are commonly overexpressed. 

The miR-34 family is an example for such a tumor suppressor function. miR-34 is 

downregulated in neuroblastoma (Cole et al. 2008), pancreatic cancer cell lines (Chang et al. 

2007), non-small cell lung cancer (Bommer et al. 2007), and several other cancer types (Table 

2.2). Interestingly, miR-34 is a direct target gene of p53 (He et al. 2007). It was shown that 

activation of miR-34 can induce apoptosis, cell-cycle arrest, and senescence, and inhibit 

migration through targeting and degrading genes involved in those processes (summarized in 

Hermeking 2009). Downregulation of miR-34 in many cancers therefore comes with no 

surprise, since inhibition of apoptosis, circumvention of senescence, or enhanced migration 

potential present typical hallmarks of cancer and metastasis (Hanahan and Weinberg 2000, 

Hanahan and Weinberg 2011). 

The probably best known family of miRNAs acting as oncogenes is the miR-17~92 

cluster, also called oncomiR-1 (He et al. 2005). It is located at chromosome 13q31.3, a region 

which is amplified in several hematopoietic cancers and solid tumors such as diffused B-Cell 

lymphoma (DLBCLs), lung carcinoma, follicular lymphomas, and Burkitt's lymphomas (Ota 

et al. 2004). Overexpression of miR-17~92 has also been observed in many other tumor types 

(Volinia et al. 2006, Petrocca et al. 2008a, He et al. 2005). Since it negatively regulates 

proteins involved in blocking both proliferation (p21) and angiogenesis (CTGF, Tsp1), and 

also inducing apoptosis (Pten, Bim), upregulation of miR-17~92 as seen in tumors leads to 

induction of proliferation and/or angiogenesis and also a block of apoptosis (Olive et al. 

2010). Again, processes which are typical hallmarks of cancer and metastasis. More about the 

miR-17~92 cluster in section 2.1.5, page 17. 
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Table 2.2: Key miRNAs involved in cancer. 

Figure modified from Lujambio and Lowe 2012. 
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miRNAs are globally downregulated in cancer cells 

It is noteworthy that somatic mutations in the seed sequence of tumor-suppressor 

miRNAs, which could abrogate the suppressive/degrading function of those miRNAs, is very 

rare (Diederichs and Haber 2006). Instead, it seems that the levels of miRNAs 

(upregulation/downregulation) per se are much more crucial in the control of cancer 

development. Although several oncogenic miRNAs are upregulated in cancer, it is generally 

accepted that the overall levels of miRNAs are decreased in cancer cells (Chang et al. 2008, 

Thomson et al. 2006). An explanation for this phenomenon might be the MYC oncoprotein-

induced repression of several miRNAs (Chang et al. 2008). MYC is overexpressed in many 

cancers and by downregulating the expression levels of tumor suppressor miRNAs, MYC 

might even further implement its oncogenic function. 

Another explanation for the downregulated state of miRNAs in cancer might be the 

fact that levels of proteins involved in the biogenesis of miRNAs are often low (Thomson et 

al. 2006). In a reverse experiment, we and others (Lambertz et al. 2010, Kumar et al. 2009) 

could show that downregulation of Dicer1 (and Drosha, Kumar et al. 2007) itself can promote 

tumorigenesis. This data is supported by the fact that reduced levels of Dicer1 and Drosha are 

associated with poor clinical prognosis in ovarian cancer (Merritt et al. 2008). 

Taken together, relatively small changes in miRNA levels might have a huge impact 

on tumor development and homeostasis. 

miRNAs as cancer diagnostic tool 

Besides the role of miRNAs in cancer initiation, there are also reports that miRNAs 

can influence cancer progression and metastasis (Ma et al. 2007, Tavazoie et al. 2008, Ma et 

al. 2010, Valastyan et al. 2009). In breast cancer, mir-10b is found to be highly expressed in 

metastatic breast cancer cells and can positively regulate cell migration and invasion. Further 

experiments have shown, when overexpressed in non-metastatic breast tumors, miR-10b can 

by itself trigger initiation of robust invasion and metastasis (Ma et al. 2007). 

 

Similar to protein-coding genes, miRNAs can act as either oncogenes or tumor 

suppressors in a tissue-specific manner. Depending on the tissue in which they are expressed, 

miRNAs can target different sets of genes, resulting in a different outcome of the cell 

physiology. As shown for the miR-29 family, their tumor-suppressive effect in lung tumors 

stands in sharp contrast to the oncogenicity in breast cancer. It is suggested that targeting 

either the DNA methyltransferases DNMT3A and DNMT3B or ZFP36 leads to such different 
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outcomes (Figure 2.5 and Fabbri et al. 2007, Gebeshuber et al. 2009, Mott et al. 2007, 

Pekarsky et al. 2006). 

 

Taken together the importance of miRNAs in cancer, the tissue-specificity of their 

expression pattern and resulting differences in output, combined with the fact that several 

oncogenic miRNAs are highly overexpressed in tumors, could make them a powerful 

diagnostic tool for cancer. In the context of prostate cancer, elevated levels of miR-141 

measured in blood plasma could distinguish patients with prostate cancer from healthy control 

individuals (Mitchell et al. 2008). Not only are circulating miRNAs in human plasma very 

stable and protected from endogenous RNase activity (Mitchell et al. 2008), they also are 

remarkably stable in formalin-fixed tissue (Nelson et al. 2006, Li et al. 2007, Xi et al. 2007). 

In the near future, therefore it should become feasible to detect elevated miRNA levels in 

human plasma and use them as a prediction for possible cancer initiation/progression or to 

correlate high miRNA levels in tissue sections with disease outcome, cancer classification, 

treatment decisions, and treatment efficacy. 

miRNAs as targets of new potential cancer therapies 

As the expression of miRNAs is frequently deregulated in human cancer (reviewed in 

Esquela-Kerscher and Slack 2006, Calin and Croce 2006) and miRNA expression itself and 

their pattern of target genes is commonly tissue-specific in human cancer (Lu et al. 2005, 

Fabbri et al. 2007, Gebeshuber et al. 2009), miRNAs have a great potential as new drug 

targets in cancer but also other diseases (Figure 2.4). 

That miRNA inhibition can decrease angiogenesis resulting in a decreased tumor 

burden was shown for miR-132 (Anand et al. 2010). miRNA-132 is present in the 

endothelium of human tumors but undetectable in normal endothelium. In tumors, upon being 

highly expressed, miR-132 suppresses p120RasGAP expression and induces 

neovascularization. Upon delivery of the oligonucleotide anti-miR-132 to tumor endothelium 

with the help of nanoparticles that specifically target tumor neo-vasculature (Hood et al. 2002, 

Murphy et al. 2008), angiogenesis was successfully suppressed in mice and resulted in a 

decreased tumor burden. 

Taking miR-132 as an example of successfully and tissue-specifically administering 

miRNAs to tumors to reduce the tumor burden, it should be clear that influencing expression 

levels of miRNAs might be key in miRNA-targeted therapy. But besides repressing miRNAs 

by using anti-miRs (complementary antisense oligonucleotides), other techniques have been 
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reported as well. Using miR-sponges, oligonucleotide constructs with specific multiple 

complementary miRNA binding sites in tandem, individual miRNAs could be depleted in 

different model organisms (Valastyan et al. 2009, Loya et al. 2009, Zhu et al. 2011). 

Furthermore, antagomirs, siRNA, and locked nucleic acids (summarized in Garzon et al. 

2010) are other known methods to inhibit oncogenic miRNAs and therefore eventually 

blocking or reducing cancer formation or progression. 

Another strategy for miRNA-targeted therapy is the restoration of expression of 

miRNA with tumor-suppressor function. This can be either achieved by synthetic miRNA 

mimics or viral delivery of miRNAs (Garzon et al. 2010). In both cases, mouse models were 

successfully used to show that upon reconstitution of miRNAs, the tumor burden was 

decreased (Kota and Balasubramanian 2010, Bonci et al. 2008). 
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Figure 2.4: Potential miRNA targets for cancer therapy. 
Overview of miRNAs that are reported to be upregulated (upward arrow) or downregulated (downward arrow) in 
different forms of cancer and could be correlated with alterations in cell growth, apoptosis, or invasiveness of 
these cancer cells. For possible cancer therapy, expression of miRNA with oncogenic function could be 
downregulated (-) by different methods described in the text. Tumor suppressor miRNAs on the other hand could 
be targeted by reconstitution therapy (+) with viral overexpression or synthetic miRNA mimics (figure modified 
from Kota and Balasubramanian 2010). 
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miRNAs can influence the cancer epigenome and vice versa 

Many studies are indicating that miRNAs are also able to change and control 

epigenetic modifications such as DNA methylation patterns, histone modifications, and 

chromatin remodeling (Figure 2.5). Changes of those epigenetic marks, either globally or 

gene-specific, define the cancer "epigenome" (Portela and Esteller 2010). Thus miRNAs are 

also able to change processes of cancer initiation and progression by targeting components of 

the epigenetic machinery. One example includes the already mentioned miR-29 family which 

targets the DNA methyltransferases DNMT3A and DNMT3B in lung cancer and therefore is 

acting as tumor suppressor (Fabbri et al. 2007 and Figure 2.5). Other examples compromise 

the commonly lost in prostate cancer miR-101 which inhibits the histone methyltransferase 

EZH2, known to be overexpressed in aggressive solid tumors (Varambally et al. 2008) and 

others shown in Figure 2.5 (miR-449a, miR-9*, miR-124). 

 

Figure 2.5: Epigenetic machinery and interplay among epigenetic factors. 
DNA methylation (A), histone modifications (B), and chromatin remodeling (C) are epigenetic marks which are 
catalyzed by different epigenetic complexes. Their main families and interaction partners are shown. Examples 
of miRNAs which regulate or are involved in those epigenetic complexes, are indicated in bold (figure modified 
from Portela and Esteller 2010). 
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Interestingly, changes in epigenetic marks such as DNA methylation and histone 

modifications can also influence the expression of miRNAs. It was shown for miR-127 – 

normally downregulated in cancer cells – that, upon inhibition of DNA methylation and 

histone deacetylation, miR-127 could be highly induced and downregulate its target, the 

proto-oncogene BCL6 (Saito et al. 2006). The reason for miR-127 downregulation in cancer 

cells is the fact that it is embedded in a CpG island that, in cancer, becomes hypermethylated 

and therefore silenced. Removing the methylation marks therefore activates transcription of 

miR-127. 

Other examples of miRNAs influenced by epigenetic changes are miR-181a, miR-

181b, miR-200b, miR-200c, and miR-203 which are epigenetically repressed by PCR2, a 

polycomb repressive complex that contains EZH2 which methylates histone H3 on lysine 27 

(H3K27) (Cao et al. 2011). 

2.1.5 The miR-17~92 cluster 

The miR-17~92 cluster, also known as OncomiR-1 (He et al. 2005), consists of six 

tandem stem-loop hairpin structures that encode for six mature miRNAs (miR-17, miR-18a, 

miR-19a, miR-19b-1, miR-20a, miR-92a-1) and belongs to a family of polycistronic miRNA 

genes which are highly conserved among different species (Tanzer and Stadler 2004). Other 

members of this family are the miR-106a~363 and miR-106b~25 clusters. Together, these 

three clusters can express 15 miRNAs which can also be grouped according to their seed 

sequences determining their target genes. miRNAs of the same seed group are predicted to 

target largely overlapping set of genes (Figure 2.6 and Ventura et al. 2008, Sage and Ventura 

2011). 
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Figure 2.6: Schematic representation of the miR-17~92 cluster. 
(A) Schematic of the miR-17~92 cluster and its two paralogs, miR-106a~363 and miR-106b~25. Pre-miRNAs 
are indicated as color-coded boxes. Black boxes correspond to the mature miRNA. The color code identifies 
miRNAs with the same seed sequence. (B) Sequence comparison of the 15 miRNAs encoded by these three 
miRNA clusters. miRNAs with the same seed sequence (bold) are grouped together and color-coded according 
to (A). miRNAs of the same seed group are predicted to target largely overlapping gene sets (figure modified 
from Ventura et al. 2008 and Sage and Ventura 2011). 

The miR-17~92 cluster is crucial for mammalian development 

Targeted deletions in the miR-17~92, miR-106a~363 and miR-106b~25 clusters in 

mice have shown that the miR-17~92 cluster is important for mammalian development while 

miR-106a~363 and miR-106b~25 are dispensable (Ventura et al. 2008). B-cell development, 

particularly the transition from pro-B to pre-B state, highly depends on miR-17~92. Loss of 

miR-17~92 leads to enhanced apoptosis in the pro-B-cells during fetal but also adult B-cell 

development. Other developmental defects resulting from deletion of miR-17~92 are lung 

hypoplasia and ventricular septal defects (Ventura et al. 2008). It was also shown that there is 

a functional interaction between miR-17~92 and miR-106b~25 since loss of both clusters 

resulted in a more severe developmental defect compared to loss of miR-17~92 alone. 

Additionally, loss of both clusters miR-17~92 and miR-106b~25, as well as loss of all three 

clusters combined, resulted in higher levels of apoptosis in the fetal liver, the ventral horns of 

the spinal cord, and the lateral ganglionic eminences (Ventura et al. 2008). It is worth 

mentioning that miR-17~92 and miR-106b~25 show very similar expression levels and tissue 

distribution. This suggests that, depending on the tissue, it might be possible that 

miR-106b~25 compensates for the loss of miR-17~92, explaining why loss of both, 

miR-17~92 and miR-106b~25, shows more severe effects. 

Recently, miR-17~92 was also found to be important for growth and skeletal 

development in humans (de Pontual et al. 2011). It was shown that a subset of patients with 

the Feingold syndrome – an autosomal dominant syndrome causing microcephaly, relative 

short stature, and digital anomalies (Feingold et al. 1997, Celli et al. 2003) – have germline 

A B
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hemizygous deletions of a specific gene locus that includes the miR-17~92 cluster. Loss of 

miR-17~92 in those patients therefore mimicked the loss-of-function mutations of MYCN, the 

gene that is responsible for the Feingold syndrome in the majority of the cases (van Bokhoven 

et al. 2005, Marcelis et al. 2008). 

miR-17~92 is overexpressed in a wide variety of tumors 

The miR-17~92 cluster is the first cluster of miRNAs which was found to be 

overexpressed in cancer, hence the name OncomiR-1 (Ota et al. 2004, He et al. 2005). In 

2004, a focal amplification of the miR-17~92 locus in diffuse large B-cell lymphoma 

(DLBCL) was reported for the first time (Ota et al. 2004). Since then, overexpression of the 

miR-17~92 cluster has been found in a wide range of blood cancer and solid tumors such as 

small cell lung cancer (Hayashita et al. 2005, Matsubara et al. 2007), colon cancer (Dews et 

al. 2006), medulloblastoma (Uziel et al. 2009), and neuroblastoma (Schulte et al. 2008, 

Mestdagh et al. 2010). 

A study of Conkrite et al. (Conkrite et al. 2011) which was published in parallel with 

our work on the miR-17~92 cluster in retinoblastoma, additionally confirmed our finding that 

miR-17~92 is also overexpressed in retinoblastoma (shown later in this thesis in section 4.4, 

page 62). 

Pleiotropic functions of miR-17~92 are achieved by repressing specific targets 

Levels of E2F and MYC (and/or MYCN) are known to be elevated in many cancer 

cells. For example, E2F activity is high in RB1 mutant cells such as retinoblastoma cells 

because E2F is normally repressed by RB1. Also, levels of the MYC oncogene were shown to 

be high in mouse and human retinoblastomas (Lee et al. 1984, MacPherson et al. 2007) and 

neuroblastoma (Schulte et al. 2008, Kohl et al. 1983). Both, E2F1 and MYC, are known to 

transcriptionally target miR-17~92 directly (O'Donnell et al. 2005, Sylvestre et al. 2007, 

Woods et al. 2007) and might therefore be responsible for elevated levels of miR-17~92 in 

these tumors. 

The mechanisms through which elevated levels of miR-17~92 lead to its oncogenic 

activity and accelerate tumorigenesis are at the center of many different studies in various 

tumor models (Figure 2.7). It was previously shown that miR-17~92 can (i) promote 

proliferation by inhibition of p21/p57 (Petrocca et al. 2008b, Ivanovska et al. 2008, Conkrite 

et al. 2011), (ii) increase cell survival by suppressing apoptosis through inhibition of 

PTEN/BIM (Mu et al. 2009, Olive et al. 2009, Mavrakis et al. 2010), (iii) increase 
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angiogenesis by blocking CTGF/Tsp1 (Dews et al. 2006), and (iv) create resistance to TGFβ 

signaling by inhibition of SMAD2/SMAD4/TGFβR2 (Mestdagh et al. 2010). 

However, the molecular basis of the pleiotropic functions of the miR-17~92 cluster is 

not yet fully understood. As mentioned before, expression levels of the miR-17~92 cluster are 

highly tissue-specific. Additionally, each mature miRNA of the six members of the 

miR-17~92 cluster might also show different expression levels individually, since upon 

cleavage of the miR-17~92 pri-miRNA by Drosha, each of the members of this cluster could 

theoretically be processed independently. Thus, maturation of individual members of the miR-

17~92 cluster might contribute to the complex regulatory network of this cluster. An example 

of selective elevation of expression levels of individual miRNAs of the miR-17~92 cluster is 

the VEGF-mediated upregulation of miR-17, miR-18, and miR-20. Only those three members 

were found to participate in the control of angiogenic phenotypes upon VEGF upregulation 

(Suárez et al. 2008). 

  

Figure 2.7: The pleiotropic functions of miR-17~92 are achieved by repressing specific targets. 
The miR-17~92 cluster has many pleiotropic functions and oncogenic activities which are tightly controlled in a 
complicated regulatory network. Depending on cell type and physiological context, miR-17~92 can (i) promote 
proliferation by inhibition of p21/p57, (ii) increase cell survival by suppressing apoptosis through inhibition of 
PTEN/BIM, (iii) increase angiogenesis by blocking CTGF/Tsp1, and (iv) create resistance to TGFβ signaling by 
inhibition of SMAD2/SMAD4/TGFβR2 (figure modified from Sage and Ventura 2011 and Osada and Takahashi 
2011). 
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One of the mechanisms of how the miR-17~92 cluster is possibly involved in the cell-

cycle regulation is through a finely tuned auto-regulatory feedback loop involving E2F, MYC, 

and miR-17~92. On the one hand, it was reported that E2F1 is a target of both miR-17 and 

miR-20 and that both E2F2 and E2F3 are targets of miR-20 alone (O'Donnell et al. 2005). On 

the other hand, E2F directly activates transcription of miR-17~92 (Woods et al. 2007). 

Additional experiments in fibroblasts have demonstrated that inhibition of miR-17/miR-20a 

leads to G1 checkpoint activation due to accumulation of DNA double-strand breaks through 

activation of E2F1 transcription factor (Pickering et al. 2009). Taken together, these data 

suggest that the MYC-regulated miRNAs miR-17/miR-20a might play an important role in 

controlling the right timing of E2F1 expression and therefore bypassing the G1 checkpoint 

caused by accumulation of E2F1. Consequently, an amplified miR-17~92 cluster, and 

therefore high levels of miR-17/miR-20a in cancer cells, might dampen the positive 

E2F/MYC feedback loop and reduce the apoptotic potential of E2F1, leading to an enhanced 

proliferative signal (Figure 2.7 and Osada and Takahashi 2011, Olive et al. 2010). Whether 

high levels of E2F and MYC are a cause or a consequence of high miR-17~92 levels in human 

cancers, is, however, not known. Further studies are required to find the cause of deregulation 

of miR-17~92/E2F/MYC in human cancers and to develop drugs to restore the non-

pathological cell homeostasis. 

miR-17~92 is a target of p53 and vice versa 

Studies in colon cancer cell lines also revealed a direct interaction between the 

miR-17~92 cluster and the p53 tumor suppressor protein (Yan et al. 2009). Yan et al. 

suggested that, in cells under hypoxia, p53 can bind to a potential p53-binding site in the 

proximal region of the miR-17~92 promoter and repress transcription of pri-miR-17~92. 

Reduced levels of miR-17~92 mediated by p53 might therefore give rise to apoptosis under 

hypoxic conditions, eventually via PTEN/BIM. Transcriptional repression of miR-17~92, 

induced by p53, is mediated through inhibition of TATA-binding protein (TBP) recruitment 

to the miR-17~92 promoter. Both, TBP and p53, have overlapping binding sites within the 

miR-17~92 promoter and are competing with each other. Whereas binding of TBP results in 

miR-17~92 expression, replacement of TBP by p53 within the miR-17~92 promoter results in 

repression (Figure 2.9 and Yan et al. 2009). 

Very recently, p53 was also identified as a possible target of miR-92a, a member of 

the miR-17~92 cluster, linking overexpression of individual members of the miR-17~92 in 
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chronic lymphocytic leukemia (CLL) patients with the downregulation of p53 and therefore 

contributing to the oncogenic phenotype (Li et al. 2012). 

Besides the possible direct regulation of p53 by members of the miR-17~92 cluster, 

p53 is also indirectly regulated by miR-17~92 via the PTEN-PI3K-AKT-MDM2-p53 pathway 

(schematic in Figure 2.9). Upregulation of miR-17~92 would lead to a block in PTEN 

expression and to activation of the PI3K-AKT signaling pathway, and thereby suppressing 

p53 function via MDM2 (Zhou et al. 2001, Mayo and Donner 2001, Xiao et al. 2008, Lenz et 

al. 2008). 

2.2 The p53 tumor suppressor 

2.2.1 p53 is an important regulator of the miRNA pathway 

Very little is known about the interaction of p53 with the miR-17~92 cluster and their 

contribution to disease phenotypes. But many studies have shown that the p53 tumor 

suppressor protein is a key regulator of miRNA processing in general (Figure 2.9, Figure 2.10 

and Suzuki et al. 2009, Suzuki and Miyazono 2010, Boominathan 2010b, Boominathan 

2010a, Feng et al. 2011). 

The p53 tumor suppressor protein and its canonical pathway and regulation 

p53, also known as "the guardian of the genome", is a well-studied tumor suppressor 

which is connected to virtually all types of cancer, either by direct mutation within the p53 

gene or by mutation/deletion of its upstream regulators or downstream effectors such as 

Mdm2 and Mdm4 (Levine et al. 2004, Olivier et al. 2004, Toledo and Wahl 2006, Marine et 

al. 2006). Mutations in p53 are often associated with aggressive tumors and poor prognosis in 

the outcome of a disease (Soussi and Béroud 2001, Soussi 2007). 

p53 is a core regulator in a signaling pathway, starting from a wide variety of 

intracellular and extracellular stress signals detected by the cell and passed on to p53 by 

various mediators. Stabilized and activated, p53 then transcriptionally activates or, very 

rarely, represses numerous target genes – the downstream effectors – which cause a variety of 

cellular responses, usually involved in tumor suppression by promoting growth arrest and 

apoptosis (Figure 2.8 and reviewed in Vogelstein et al. 2000, Kruse and Gu 2009, Levine and 

Oren 2009, Vousden and Lane 2007, Vousden and Ryan 2009). 

 



 

2. Introduction 23 

Besides its canonical function as a transcriptional activator, p53 was recently shown to 

have transcriptional-independent – cytoplasmic – activities such as regulation (inhibition is 

controversial) of autophagy (Tasdemir et al. 2008), transactivation-independent proapoptotic 

activities of p53 regulated by FOXO3a (You et al. 2006) or direct activation of Bax by p53, 

leading to mitochondrial membrane permeabilization and apoptosis (Chipuk et al. 2004). 

  

Figure 2.8: Signalling pathway of the p53 tumor suppressor. 
Stress signals from within or outside of the cell are detected and passed on to p53 with the help of many different 
mediators (list shown is not exclusive). These signals lead to increased levels of p53 through degradation of its 
main negative regulator Mdm2. The accumulation and therefore activation of p53 leads to transcriptional 
activation of p53 target genes which can initiate various cellular responses to fulfill the tumor suppressive 
function of p53 (graph from Feng et al. 2011). 

The classical stress signals activating p53 are DNA damage, rNTP depletion, spindle 

damage, telomere attrition, oncogene activation, nutrition deprivation, and hypoxia. The 

usually short-lived p53 protein is generally activated due to posttranslational modifications 

that cause its accumulation and stabilization and therefore increase in its transcriptional 

activities. Such modifications include phosphorylation, acetylation, methylation, 

ubiquitination, summolation, and neddylation. 

Upon activation, p53 can act as a transcription factor and binds to specific DNA 

sequences, so called p53-responsive elements (RE), to regulate the transcription of its target 

genes like p21, Puma, TIGAR, or PAI-1, leading to a specific cellular response. These include 

cell cycle arrest, apoptosis, senescence, and DNA repair. So upon stress – also highly cell type 

dependent – p53 can induce cell cycle arrest, apoptosis, or senescence in order to prevent 

possible propagation of damaged or mutated cells which could initiate tumor formation 

(Levine et al. 2006, Vousden and Prives 2009). 
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Since p53 has such a crucial importance in not only preventing tumorigenesis, but also 

in being able to impede on embryonic development and stem cell homeostasis, p53 has to be 

tightly regulated. The core regulators of p53 are the two structurally related RING finger-

domain containing proteins Mdm2 and Mdm4. Mdm2 usually inhibits p53 function by acting 

as an E3 ligase and ubiquitylating p53 to mark it for proteasomal degradation (Haupt et al. 

1997, Kubbutat et al. 1997). Mdm4 however, despite being structurally related to Mdm2, does 

not directly target p53 for degradation through ubiquitylation. Mdm4 rather assists Mdm2 in 

regulating the stability of p53 (Migliorini et al. 2002). Additionally, Mdm4 can also regulate 

p53 transcriptional activity independently of Mdm2 (Francoz et al. 2006, Maetens et al. 

2007). 

It is therefore not surprising that not only p53 is crucial for tumor development, but 

that its negative regulators Mdm2 and Mdm4 are, too. Both were found to be upregulated in 

various cancers, thus keeping low levels of p53 in the cell to prevent apoptosis, senescence, or 

cell cycle arrest, hallmarks of cancer cells which have to be overcome in order to allow for 

formation of tumors. Among others, Mdm2 was found to be overexpressed in non-small cell 

lung cancer (NSCLC) (Dworakowska et al. 2004), soft tissue tumors such as Ewing's 

sarcoma, leiomyosarcomas, lipomas, liposarcomas, malignant fibrous histiocytomas, 

malignant Schwannomas and other sarcomas (Momand et al. 1998, Ragazzini et al. 2004), 

and malignant melanoma (Muthusamy et al. 2006). Overexpression of Mdm4 was found in 

various tumors such as breast carcinomas, and colon and lung cancers (Danovi et al. 2004), as 

well as pre-B lymphoblastic leukemias (Han et al. 2007). Most importantly for the study 

described in this thesis, both Mdm2 and Mdm4 were found to be overexpressed in 

retinoblastoma (Laurie et al. 2006). As a possible cause for p53 dysfunction that allows for 

tumor formation, Mdm2 and Mdm4 are potential targets for chemotherapeutical treatment 

(Danovi et al. 2004, Garcia et al. 2011, Laurie et al. 2006). Inhibition of negative regulators, 

such as Mdm2 and Mdm4, could reactivate p53 in tumors with an otherwise wild-type form of 

p53 that could compromise survival of tumor cells. 

However, tumors with a mutated form of p53 would not be suitable for such a therapy 

of p53-reactivation. In the latter case, one possible strategy of taking advantage of the mutated 

form of p53 in tumor cells would be the application of synthetic lethality (more about 

synthetic lethality in section 2.3, page 28). Finding a synthetic lethal partner of p53 and 

chemically inhibiting this candidate would specifically remove the p53 mutant cells and leave 

cells without p53 mutation unharmed. 
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Transcriptional regulation of miRNA expression by p53 

The p53 tumor suppressor is known as a transcription factor which can 

transcriptionally regulate a huge set of protein-coding target genes to elicit cellular responses 

mainly involved in tumor suppression. However, recent studies of different groups unraveled 

a new mechanism, connecting p53 with the miRNA pathway to suppress tumorigenesis. 

miRNAs with tumor suppressive function were found to be direct  transcriptional targets of 

p53. Expression of the miR-34 family, consisting of miR-34a, miR-34b, and miR-34c and 

encoded by two different genes, was first found to be directly regulated by p53 (Chang et al. 

2007, He et al. 2007, Raver-Shapira et al. 2007, Tazawa et al. 2007, Tarasov et al. 2007, 

Corney et al. 2007). It was further shown that, on the one hand, ectopic expression of 

miR-34a would lead to p53-mediated apoptosis, cell cycle arrest, and senescence, while on 

the other hand, inactivation of endogenous miR-34a inhibits p53-dependent apoptosis in cells. 

miR-34 can induce apoptosis or decrease cell proliferation by repressing the expression of 

specific targets involved in survival, cell cycle regulation, or cell proliferation. Among those 

targets are cyclin E2, cyclin-dependent kinases 4 and 6 (CDK4 and CDK6), and Bcl-2 (Figure 

2.9). 

The miR-34 family is not only directly regulated by p53, and thereby involved in the 

downstream pathway of p53, but it also regulates p53 activity upstream by suppressing the 

silent information regulator 1 (SIRT1) (Yamakuchi et al. 2008). SIRT1 is a negative regulator 

of p53 which deacetylates Lys382 of p53 and leads to repression of apoptosis (Luo et al. 

2001). This interaction with SIRT1 creates a positive feedback loop between p53 and the 

miR-34 family, showing for the first time that miRNAs can function to enhance p53 

signaling. 

Interestingly, decreased expression of miR-34 could be found in various tumors such 

as NSCLC (Bommer et al. 2007), pancreatic cancer (Chang et al. 2007), and colon cancer 

(Tazawa et al. 2007), suggesting a tumor suppressive role of miR-34. This is in line with the 

previously mentioned findings that miR-34 and p53 build a positive feedback loop and 

therefore loss of either p53 or the miRNA miR-34 would promote tumorigenesis. 

 

Besides the miR-34 family, there are several other miRNAs of which expression is 

transcriptionally regulated by binding of p53 to their promoters, including miR-192, miR-194, 

miR-215, miR-17-5p, miR-20a, miR-143, miR-145, miR-16-1, and miR-107 (Figure 2.9). 

Among those, miR-145 was reported to negatively regulate the oncogene c-Myc (Sachdeva et 

al. 2009). Overexpression of miR-145 would reduce c-Myc expression, leading to growth 
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inhibition and therefore functioning as a putative tumor suppressor. miR-107 can repress the 

expression of the hypoxia inducible factor 1 beta (HIF-1beta), thus blocking hypoxia 

signaling and angiogenesis (Yamakuchi et al. ). Two other miRNAs, miR-192 and miR-215, 

were shown to be induced by p53 and cause cell cycle arrest (Braun et al. 2008, Georges et al. 

2008) through targeting several regulators of DNA synthesis and the G1 and G2 cell cycle 

checkpoints (such as CDC7, MAD2L1, and CUL5). 

Taken together, p53 is able to repress processes like cell proliferation, cell survival, 

and angiogenesis not only through transcriptional activation of the classical protein-coding 

downstream effectors but also trough activation of miRNAs with a tumor suppressive 

function (Figure 2.9). 

p53 itself is directly and indirectly regulated by miRNAs 

Besides involvement of the positive feedback loop p53/miR-34/SIRT1, there are also 

other miRNAs functioning as upstream regulators of p53 by either upregulating or 

downregulating p53 (Figure 2.9). 

Among the miRNAs indirectly activating p53 and inducing p53-mediated apoptosis 

are miR-29 and miR-122. The miR-29 family members (miR-29a, miR-29b, miR-29c) repress 

p85a, a regulatory subunit of PI3 kinase (PI3K) (Park et al. 2009) which is an upstream 

regulator of AKT. AKT is known to negatively regulate p53 activity by phosphorylation and 

thereby activation of MDM2 (Zhou et al. 2001). Therefore miR-29 is able to upregulate p53 

through the negative feedback loop between PI3K-AKT-MDM2-p53 and acting as a tumor 

suppressor. Downregulation in various cancers such as leukemia (Pekarsky et al. 2006) and 

lung cancer (Fabbri et al. 2007) illustrates its tumor suppressive function. 

Several miRNAs such as miR-504 (Hu et al. 2010) and miR-125 (Le et al. 2009) can 

also directly target p53 and suppress apoptosis, thus showing oncogenic functions. miR-504 is 

able to bind to two binding sites in the 3'-UTR of human p53 and negatively regulate its 

expression (Hu et al. 2010). Upregulation in cancer cells of either of those two miRNAs 

therefore impairs the tumor suppressive function of p53. 
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Figure 2.9: Interaction of the p53 pathway with the miRNA network. 
The p53 tumor suppressor interacts with the miRNA pathway in various interconnected ways. (i) The p53 
protein can transcriptionally regulate target miRNAs which can then further change the expression levels of 
several downstream effectors involved in cell proliferation, cell survival, and angiogenesis. (ii) Upstream 
regulators of p53, such as SIRT1 or Cyclin G1, can also be targeted by several miRNAs and therefore indirectly 
change levels of p53 and influence the cellular response. (iii) Several miRNAs, such as miR-125 and miR-504, 
can directly downregulate p53 and suppress apoptosis (Le et al. 2009, Hu et al. 2010) (figure based on Suzuki 
and Miyazono 2010 and Feng et al. 2011). 
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p53 regulates miRNA processing and maturation 

In addition to its function as transcriptional activator of miRNAs, p53 can also 

promote post-transcriptional maturation of miRNAs (Figure 2.10 and Suzuki et al. 2009). For 

miR-143, miR-145, and miR-16-1 it was shown that p53 promotes Drosha-mediated 

processing, additionally requiring the interaction with p68 and p72 as well. These miRNAs 

negatively regulate important regulators of cell cycle and cell proliferation, such as K-Ras, 

CDK6, Bcl-2, and Cyclin D1 and are consequently decreased in various human cancers. 

Interestingly, transcriptionally inactive p53 mutants (such as R175H and R273H) were 

hindering the pri-miRNA maturation process by Drosha, resulting in low levels of those 

miRNAs. 

Involvement in miRNA processing and maturation might therefore be an additional 

way of p53 to contribute to cancer progression independently of its transcriptional regulation 

properties. 

 

Figure 2.10: p53 is a regulator of miRNA biogenesis. 
The p53 tumor suppressor is able to directly regulate miRNA biogenesis by interacting with the Drosha-p68-p72 
processing complex in response to DNA damage and enhancing the post-transcriptional processing of miR-143, 
miR-145, and miR-16-1, leading to induction of growth-suppressive signals (schematic from Suzuki and 
Miyazono 2010). 

2.3 Synthetic lethality 

The principle of synthetic lethality was first described in 1946 (Dobzhansky 1946) and 

later in 1968 found in Drosophila melanogaster where simultaneous inactivation of two 

otherwise non-lethal genes dor and ry lead to embryonic lethality (Lucchesi 1968 and 

schematic in Figure 2.11). 
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The mechanism behind the synthetic lethal outcome can be either due to two genes 

involved in parallel redundant pathways or due to two genes that are important in the same 

essential pathway and consequently loss of the two genes would have a lethal effect (Ferrari et 

al. 2010). 

Since the concept was first found, many studies identified new synthetic lethal 

interactions, mainly through genetic screens in yeast (Bender and Pringle 1991, Tong et al. 

2001) and other model organisms and cell lines (Ma et al. 2012 and reviewed in Hartman et 

al. 2001, Ferrari et al. 2010). Finding new synthetic lethal interactions not only makes it 

possible to identify new features of essential processes in mammals and other organisms, it 

also gives us more insights about human genetic variation which helps us to understand 

genetic mutations and their contribution to different disease phenotypes, such as cancer. 

Especially with regards to mutations of a gene causing cancer in humans, identifying a 

synthetic lethal partner would help to selectively kill those cancer cells and making the 

synthetic lethal partner a promising drug target for chemotherapy. 

Many synthetic lethal interactions were found in combination with important proteins 

involved in cell cycle regulation and cancer biology. Some of these proteins are Ha-RAS, Ki-

RAS, proteins of the protein kinase networks (such as PI3K, EGFR, mTOR, Notch1, AKT-2), 

c-MYC, n-MYC, RB1, and p53 (reviewed in Weidle et al. 2011). 

Since p53 is the most frequently mutated gene in human cancers (Hainaut and 

Hollstein 2000, Petitjean et al. 2007), synthetic lethality in the context of p53 loss of function 

is a very promising approach for anticancer drug development. Among others, synthetic lethal 

partners of p53 are CHK1, ATM, WEE-1, PKL-1, MK2, MYT-1, MAP-4, AMPK, GEF-H1, 

SGK2, PAK3, and ATR (Weidle et al. 2011, Ruzankina et al. 2009). 

For example, the compound paclitaxel was found to target microtubule-associated 

protein-4 (MAP-4), transcriptionally repressed by p53, and selectively killing cells with 

transcriptionally inactive p53. However, in the case of wild-type p53, sensitivity to paclitaxel 

was reduced (Zhang et al. 1999, Murphy et al. 1996, Zhang et al. 1998). 

More recently, checkpoint kinase Atr was identified as another synthetic lethal partner 

of p53 in mice, emphasizing the importance of synthetic lethality not only for in vitro 

experiments but also in vivo (Ruzankina et al. 2009). 

 

To our knowledge, nothing is known about synthetic lethal interactions of miRNAs 

and protein-encoding genes. Since there are multiple methods available to specifically 

downregulate or block expression and maturation of single miRNAs or miRNA families (anti-
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miRs, miR-sponges (Valastyan et al. 2009, Loya et al. 2009, Zhu et al. 2011), antagomirs, 

siRNA, and locked nucleic acids (summarized in Garzon et al. 2010), miRNAs might 

represent an ideal target for cancer treatment in the context of synthetic lethality. Especially in 

case of synthetic lethal interactions of miRNAs with known tumor suppressors such as p53 

which are lost or mutated in many cancers, targeting these miRNAs might be novel way of 

removing cancer susceptible or already formed tumor cells. 

 

Figure 2.11: Principle of synthetic lethality. 
(A) In the classical model of synthetic lethality inactivation of either gene A or B is tolerated by the cell and has 
no further consequences for its growth or metabolism. However, simultaneous inactivation of both genes A and 
B leads to cell death. (B) For therapeutic applications a synthetic lethal mechanism which is only applicable in 
tumor initiating cells but not in normal somatic non-mutated cells is desired. In such a scenario, concurrent 
inactivation of genes A and B (or inactivation of either gene) does not harm the cells. Inactivation of either gene 
A or B in a tumor initiating background has no or little viability (being "less fit") compromising effects on the 
cell. Then again, simultaneous inactivation of both genes A and B leads to cell death and therefore removal of 
the tumor initiating cells. The latter would enable tumor tissue to be removed by inhibition or removal of both 
genes A and B but would leave the surrounding healthy somatic tissue unharmed. 
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2.4 Biology of the eye and retina 

2.4.1 Anatomy of the eye and retinal architecture 

The retina consists of seven main cell types derived from a common progenitor. They 

compromise six cell types of neuronal origin, namely the photoreceptors (PR) (rods and 

cones), horizontal, amacrine, bipolar, and ganglion cells and one glial cell type known as the 

Müller glia (Figure 2.12 B). All different cell types are precisely organized into a discrete 

laminar structure forming the retina, situated at the back of the eye (Figure 2.12 A) 

 

 

Figure 2.12: Anatomy of the eye and retinal architecture. 
(A) Schematic of the human eye with enlarged view of the retina. Hematoxylin and Eosin staining of an adult 
mouse retina on the right shows the cytoarchitecture of a retina. (B) The retina is composed of six neuronal cell 
types and one glial cell type: the photoreceptors (PR) (rods and cones), horizontal, amacrine, bipolar, ganglion 
cells, and Müller glia (RPE: retinal pigmented epithelium, OS: outer segments, OLM: outer limiting membrane, 
ONL: outer nuclear layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, 
GCL: ganglion cell layer, NFL: nerve fiber layer). Figure modified from Poché and Reese 2009. 

The retina can be sub-divided into different layers. Starting from the outermost region, 

adjacent to the retinal pigmented epithelium (RPE), there is (i) the outer nuclear layer (ONL), 

consisting of the light-sensing photoreceptors (PR) – the rods and cones. The rods and cones 

form specialized apical extensions at the outer limiting membrane (OLM) of the retina, 

forming the outer segments (OS) carrying the light-sensitive photopigments and all 

components for the visual transduction machinery that are needed for generating a neural 

signal upon response to light. Different cell types transfer the signal further through (ii) the 

outer plexiform layer (OPL), (iii) the inner nuclear layer (INL), (iv) the inner plexiform layer 
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(IPL) to the (v) ganglion cell layer (GCL). More specifically, upon receiving the signal from 

the outer retina, the bipolar cells stretching through the INL transmit the signal radially to the 

ganglion cell layer. The signal is thereby modulated within the OPL by horizontal cells, 

inhibitory interneurons also residing in the INL. The bipolar cells also make synapses with 

different amacrine cells and ganglion cells within the inner retina. Different amacrine cell 

types in the IPL further modulate retinal function through specific circuitry and signaling 

mechanisms. When the visual signal reaches the dendrites of retinal ganglion cells, it is 

further transmitted through their axons which form the (vi) nerve fiber layer (NFL) of the 

retina and transmit the signal to the visual centers of the brain. Additionally, the Müller glia 

cells, the primary glial cell population of the retina, are essential for the structure and the 

functional support of the other population of neurons. Their cell bodies are thereby extending 

across the whole retina, from the ONL to the GCL (reviewed in Poché and Reese 2009). 

2.4.2 Retinal development 

In contrast to the several months-long process of forming of the retina in the human 

embryo, retina formation takes only a few weeks in the mouse embryo (Figure 2.13). During 

this process, retinal progenitor cells divide and generate postmitotic transition cells with 

commitment to different neural and glial cell fates. Upon differentiation, the retinal progenitor 

cells form all synaptic connections necessary for correct visual signaling. 

The mammalian retina is composed of seven main retinal classes (rod cells, cone cells, 

horizontal cells, amacrine cells, bipolar cells, Müller glia, and ganglion cells) which can be 

subdivided into roughly 55-60 functionally distinct cell types. The order in which the different 

classes of cell types emerge during retinal development is evolutionary conserved. For 

example, ganglion cells arise early during development while bipolar cells appear during later 

stages of retina formation. 

Multipotent retinal progenitor cells normally change their cellular features in an 

unidirectional way to give rise to different cell types. Early progenitor cells, for example, are 

only able to differentiate into early-born cell types such as ganglion cells and cones but cannot 

differentiate into late-stage progenitor cells such as bipolar cells and Müller glia. Late-stage 

progenitor cells are on the other hand only able to differentiate into other late-born cell types 

such as bipolar cells but not to early-born cell types. 

It should be noted that different cell types can originate at the same time point of 

development. Between embryonic days 13.5 (E13.5) and 17.5 (E17.5) in the mouse retina, 

cones, horizontal cells, and amacrine cells arise simultaneously. Spatial heterogeneity in 
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progenitor cells, such as syntaxin-positivity, was shown to play an important role in the 

process of deciding into which cell type the progenitor cell will differentiate. For example, 

syntaxin-positive cells were shown to be biased to differentiate into amacrine cells (reviewed 

in Dyer and Bremner 2005).  

 

Figure 2.13: Retinal development. 
Retinal formation takes several weeks (wk) in the mouse embryo and several months in the human embryo. The 
different cell types are represented by different colors: early-born cell types in red and late-born cell types in 
blue (figure modified from Dyer and Bremner 2005). 

2.4.3 Retinoblastoma 

Clinical features of retinoblastoma 

Retinoblastoma is an intraocular ("in the eye") cancer mostly diagnosed in very young 

children. It occurs in 1 in 15 000 to 20 000 live births and is therefore the most common 

intraocular malignant tumor of childhood (Kivelä 2009, Mahajan et al. 2011). These numbers 

correspond to around 900 newly diagnosed cases of retinoblastoma in children worldwide 

each year (Kivelä 2009), including 300 new cases in the United States (Mahoney et al. 1990). 

The mean age of diagnosis is 13 months for bilateral (affecting both sides) and 25 months for 

unilateral (affecting one side only) retinoblastoma (Abramson et al. 1998). Unilateral cases 

(71.9%) are more common than bilateral cases (26.7%) (Tamboli et al. 1990, Broaddus et al. 
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2009). Two thirds (63%) of all children are two years or younger when they are diagnosed 

with retinoblastoma. 95% of all cases occur within the first 5 years of life (Figure 2.14 and 

Young et al. 1999). 

 

Figure 2.14: Age-specific incident rates of uni- and bilateral retinoblastoma (1976-84 and 1986-94). 
Most cases of retinoblastoma occur in very young children. 63% of all children are two years or younger when 
they are diagnosed with retinoblastoma. 95% of all cases are seen within the first 5 years of life (data and graph 
from Young et al. 1999). 

In regions such as Asia and Africa, the mortality rate is between 40 - 70%, whereas it 

is only 3 - 5% in Europe, Canada, or the USA (Kivelä 2009, MacCarthy et al. 2006, Nyamori 

et al. 2012, Leal-Leal et al. 2004, Rodrigues et al. 2004, Canadian-Retinoblastoma-Society 

2009). Socio-economic factors and poor recognition of the seriousness of such an eye cancer 

are the reasons for the dramatic difference in mortality observed between western and 

developing countries (Canturk et al. 2010).  

One of the most common first signs of retinoblastoma in a child is the presence of 

leucocoria (Abramson et al. 1998, Abramson et al. 2003, Goddard et al. 1999, Poulaki and 

Mukai 2009), the white tumor tissue covering the retina which reflects the light (Figure 2.15 

A, B). Pictures of a person taken with a flash often give the effect of "red eyes". Reason for 

that is the reflection of the retina when hit by the flash at the right angle resulting in a red 

papillary light reflex. But upon early stages of retinoblastoma and formation of leucocoria 
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these "red eyes" appear white since the flash is reflected from the white tumor tissue in the 

eye instead of the retina itself (Figure 2.15 B). 

 

Figure 2.15: Detection of retinoblastoma. 
(A) Leucocoria formation in the eye. White tumor tissue covering the retina is visible (Mahajan et al. 2011). (B) 
Early detection of retinoblastoma, the tumor is still contained within the eye. A white papillary light reflex 
makes early detection possible. (C) Proptosis of the eye at a very late detection stage of retinoblastoma (Dimaras 
et al. 2012). 

Besides leucocoria, strabismus, poor visual tracking, glaucoma, spontaneous hyphema, 

pseudohypopyon, orbital cellulitis, or phthisis bulbi are other signs for the onset of 

retinoblastoma (Bowman et al. 2008, Owoeye et al. 2006, Mahajan et al. 2011). 

Secondary nonocular malignancies are also observed in patients who survived the 

disease at a rate of 1% per year of life. These malignancies include osteogenic sarcoma of the 

skull and long bones, soft-tissue sarcoma, pinealoblastoma, cutaneous melanoma, and brain 

tumors among others (Mahajan et al. 2011). When bilateral retinoblastoma occurs together 

with pinealoblastoma it is referred to as "trilateral" retinoblastoma (Bader et al. 1980). The 

expression "trilateral" in combination with pinealoblastoma – cancer in the pineal gland – has 

its origins from the pineal function as a photoreceptor organ in lower animals. The pineal 

gland resembles the retina histologically and is described as a "third eye" (Bader et al. 1982). 

Etiology of retinoblastoma 

There are two forms of retinoblastoma: a genetic, heritable form (hereditary or 

germline mutation) and a non-heritable form caused by a somatic mutation (reviewed in 

Knudson 2001, Berger et al. 2011). Mutation in the germline accounts for 40% of all 

retinoblastomas (Knudson 1971). Inherited forms of retinoblastomas are usually bilateral 

(Knudson 1971, Richter et al. 2003) and very aggressive and are sometimes even associated 

with pinealoblastoma (together known as trilateral retinoblastoma) (Bader et al. 1982, Marcus 

et al. 1998). Unilateral retinoblastoma on the other hand is rarely passed on to the next 

generation (Knudson 1971; Richter et al. 2003). 

A B C
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Since children with unilateral retinoblastoma are usually diagnosed much later than 

children with the bilateral form, Alfred Knudson concluded that two hits – two mutational 

events – are the rate-limiting step for the development of retinoblastoma (Knudson 1971 and 

Figure 2.16). Several additional studies confirmed his "two-hit hypothesis" with the discovery 

of the first tumor-suppressor gene RB1 at chromosome 13q14 in the 1980s (Comings 1973, 

Friend et al. 1986, Dryja et al. 1986, Lee et al. 1987), showing that loss of RB1 is responsible 

for the initiation of retinoblastoma. Later it was also shown that loss of function of RB1 can 

also be found in many other types of human cancers (Burkhart and Sage 2008, Talluri et al. 

2010, Isaac et al. 2006, Longworth and Dyson 2010) such as lung and breast cancer (Harbour 

et al. 1988, Lee et al. 1988). 

 

Figure 2.16: One-hit and two-hit curves for retinoblastoma. 
Semilog plots of unilateral and bilateral retinoblastoma cases that are not yet diagnosed at plotted ages show that 
bilateral retinoblastoma cases match the expected shape of a one-hit curve. The unilateral cases on the other hand 
match the shape of a two-hit curve. Even though the bilateral cases also involve two mutations of RB1, they 
match the shape of a one-hit curve. This is due to the fact that in bilateral retinoblastoma one genetic mutation is 
always inherited and therefore only one additional mutation after birth is necessary to initiate tumor development 
(figure modified from Knudson 2001). 

A biallelic mutation of the RB1 gene initiates retinoblastoma formation, both in the 

heritable and non-heritable form of retinoblastoma (symbolized as constitutional RB1 

mutation M1 and somatic RB1 mutation M2 in each allele in Figure 2.17). In the heritable 

form, all cells of the organism are predisposed due to a constitutional mutation in RB1 (M1 in 

Figure 2.17). After this monoallelic loss of RB1, a second, now somatic mutation (M2 in 

Figure 2.17) in the other RB1 allele in one or more developing fetal retinal cells will result in 
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complete loss of function of RB1 and will therefore initiate tumor formation. Since it is very 

likely that the second mutation will occur in some of the rapidly dividing fetal retinoblasts, 

this cancer-susceptibility phenotype is dominantly inherited whereas the tumor initiation itself 

can be considered as a recessive trait. Then again, in the non-heritable form where initially all 

cells of the organism are wild-type for RB1, both mutations M1 and M2 covering both alleles 

have to happen in one and the same fetal retinoblast before it is completely differentiated in 

order to lose RB1 and initiate the development of retinoblastoma. The higher probability of 

acquiring mutations in both RB1 alleles in the heritable form of retinoblastoma therefore also 

explains the earlier detection and onset of retinoblastoma formation compared to the non-

hereditable form. In the non-hereditary cases, a first mutation might have occurred in some 

retinoblasts but a second mutation might not arise before the retinal cell is completely 

differentiated. In this case, the mutated cells would be cancer-susceptible but would not 

directly give rise to tumors. 

 

Figure 2.17: Genetics of the "two-hit" tumor formation in heritable and non-heritable retinoblastoma. 
In the hereditary form of retinoblastoma, all cells and therefore all retinoblasts have one mutation and represent a 
so-called "one-hit" clone. In non-hereditary retinoblastoma, only one single precursor gets mutated and forms the 
one-hit clone, eventually giving rise to more one-hit clones before a mutation in the second allele can occur. The 
chances of accumulating a second mutation are therefore higher in the hereditary form. Consequently, acquiring 
a third mutation (event X or M3) resulting in the onset of tumor formation will be earlier compared to the non-
hereditary form (figure modified from Knudson 2001 and Dimaras et al. 2012). 
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Molecular and genetic events in retinoblastoma progression 

Indeed, virtually all patients harbor a mutation in the RB1 locus. In hereditary cases 

(around 55%), all cells of the body carry a germline inactivated RB1 allele and a somatic loss 

of the second allele occurs in retinal cells. In non-hereditary cases (the remaining 45% of all 

patients) both RB1 alleles are somatically inactivated in a single retinal progenitor cell (Aerts 

et al. 2006). But loss of function of RB1 is insufficient to cause retinoblastoma by itself. 

Instead, biallelic loss of RB1 only leads to formation of retinoma – “distinctive retinal lesions, 

highly associated with retinoblastoma but lacking malignant characteristics” (Gallie et al. 

1982) – and causes genomic instability (Dimaras et al. 2008). However, due to this genomic 

instability caused by RB1 loss, stable retinoma is not very common and leads in most cases to 

formation of retinoblastoma. A “third hit”, a mutation or event additional to biallelic loss of 

RB1, is required for full-blown retinoblastoma formation (mutation M3 or event X in Figure 

2.17). The event that leads to malignant proliferation is, however, not fully understood. One 

possible explanation might be genomic instability caused by loss of RB1 which leads to 

changes in other genes (Corson and Gallie 2007) and therefore to initiation of the formation of 

retinoblastoma. Among others, several candidate genes responsible for full-blown 

retinoblastoma formation are MDM4 (Laurie et al. 2006), MDM2 (Laurie et al. 2006), and 

MYCN (Lee et al. 1984, Squire et al. 1986). Those oncogenes were reported to be 

overexpressed or gained in copy number. But also other mechanisms like gene loss (e.g. 

RBL2, CDH11) or even hypermethylation (e.g. CASP8, MLH1) can be responsible for the 

onset of retinoblastoma (Zhang et al. 2012, reviewed in Corson and Gallie 2007). As we later 

show in this study, overexpression of miRNAs – specifically the miR-17~92 cluster – can also 

play an important role in retinoblastoma formation. Identification of such candidate lesions is 

of cardinal importance, as it can open up new possibilities in the treatment of retinoblastoma. 

In the line with this, as demonstrated using mouse models (Zhang et al. 2004b, Laurie 

et al. 2006), additional inactivation of the p53 tumor suppressor on Rb1/p107-deficient 

background dramatically accelerates retinoblastoma formation in mice. p53 is therefore 

thought to be essential for apoptosis in Rb1-deficient cells which prevents or delays cancer 

formation (Sherr and McCormick 2002). Surprisingly, TP53 (or p53) is usually not mutated in 

primary retinoblastoma. Mutations could only be found in metastatic retinoblastoma cells 

(Kato et al. 1996). p53 could even be activated in retinoblastoma cells to induce apoptosis 

(Nork et al. 1997), also showing that p53 is still functional in primary retinoblastomas. One 

suggested mechanism for p53 inactivation in primary retinoblastoma is through 

overexpression of Mdm2 and Mdm4 (Laurie et al. 2006 and Figure 2.18), two negative 



 

2. Introduction 39 

regulators of p53. An in vitro study also suggests nuclear exclusion of p53 as a possible 

mechanism of p53 inactivation even though the status of p53 is wild-type (Schlamp et al. 

1997). 

 

Figure 2.18: Role of Mdm2 and Mdm4 proteins in retinoblastoma. 
(A) Under normal conditions – Rb1 is active – p53 protein levels are kept low by its negative regulator Mdm2 
through ubiquitinylation and subsequent degradation. The gene-regulatory activity of p53 can additionally be 
inhibited by direct interaction with its other negative regulator Mdm4. (B) Upon mutation of the retinoblastoma 
gene (Rb1), p14ARF protein levels increase, leading to inactivation of Mdm2 and promoting the activation of the 
p53 pathway. The results are usually cell-cycle arrest or cell death or sometimes facilitation of DNA repair. (C) 
Amplification of Mdm2 or Mdm4 in the absence of Rb1 blocks the activation of p53. Partly, because despite an 
increase of p14ARF protein levels, the high levels of Mdm2 or Mdm4 cannot be sufficiently decreased. 
Consequently, mutated cells survive, leading to enhanced proliferation and tumor progression. It is also 
speculated (Ganguli and Wasylyk 2003) that p53-independent interactions of Mdm2 with other proteins that 
regulate cell division, survival, or differentiation could additionally promote tumor progression (figure modified 
from Wallace 2006). 

However, recent studies (Zhang et al. 2012) showed that upon loss of RB1 the genome 

is in fact quite stable despite the previously reported genomic instability. RB1 itself was 

actually the only known cancer gene which was mutated. More importantly, deregulation of 

different cancer pathways due to epigenetic changes was identified as a possible cause for the 

onset of retinoblastoma following biallelic loss of RB1. 

Additionally, large deletions including RB1 on chromosome 13q have been reported to 

result in fewer tumors than those with the common null mutations (DiCiommo et al. 2000, 

Albrecht et al. 2005). It is suggested that unknown adjacent genes that might be essential for 

the survival of the tumor cells could be deleted or partially deleted when large deletions of the 
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RB1 locus occur. Deletion of those adjacent genes might therefore partially block or delay 

tumor formation. 

Mouse models of retinoblastoma 

The first described genetically-engineered mouse model of spontaneous 

retinoblastoma was a transgenic mouse line in which cells of the retina expressed the 

oncogenic T antigen from the SV40 virus (Windle et al. 1990). T antigen was artificially 

introduced into the retinal cells since it inhibits the Rb1 protein which is responsible for 

retinoblastoma formation in human. But besides Rb1, T antigen also inhibits many other 

proteins, such as Rb1 family members p107 and p130. Even the p53 tumor suppressor is 

inhibited. This unspecific inhibition made it impossible to study the molecular mechanisms 

behind retinoblastoma. So different labs created a knockout mouse model where Rb1 alone 

was specifically inactivated (Clarke et al. 1992, Lee et al. 1992, Jacks et al. 1992). These mice 

were lacking one copy of the Rb1 gene, similar to the situation in humans. Surprisingly, these 

mice never developed retinoblastoma and even had perfectly normal retina. Further studies 

showed that the Rb1 family member p107 compensates loss of Rb1 in mice during retinal 

development (Donovan et al. 2006) whereas loss of RB1 is not tolerated in human retinal 

development. Indeed, mice lacking both Rb1 and p107 (Zhang et al. 2004b, Laurie et al. 

2006) show unilateral retinoblastoma later in life. Additional loss of Trp53 (or p53) in these 

Rb1/p107-deficient mice could further accelerate tumor formation and change the tumor 

spectrum from mostly unilateral retinoblastoma in Rb1/p107-deficient mice to mostly bilateral 

in Rb1/p107/p53-deficient mice. Consequently, the first knockout model of retinoblastoma 

(Zhang et al. 2004b, MacPherson 2004, Chen 2004) was created. Since p53 is usually not lost 

in human retinoblastoma (Kato et al. 1996), it was later shown that overexpression of Mdm4 

could mimic p53-loss in Rb1/p107-deficient mice and therefore resemble the human 

molecular mechanisms involved in retinoblastoma formation more closely (Laurie et al. 2006, 

McEvoy et al. 2011). Instead of direct loss of p53, MDM4 can suppress p53-mediated cell 

death in RB1-deficient retinoblasts and therefore initiate tumor formation. 

It is important to note that the knockout mouse model of retinoblastoma makes use of 

the retinal cell-specific Chx10Cre-transgene, which leads to the creation of mutant cells only 

in a subset of retinal cells (more about the mosaic expression of Chx10Cre, see chapter 4.1.1, 

page 45). 



 

2. Introduction 41 

Current treatment strategies and clinical implications 

Upon detection at an early stage, when the tumor is still contained within the eye, a 

vision-preserving treatment using systemic chemotherapeutics is preferred over enucleation, 

the removal of the eye. Upon first signs of leucocoria, retinoblastoma remains intraocular and 

is curable for about 3 to 6 months. With the usage of systemic chemotherapy in the 1990s, the 

5-year survival rate is about 99% in the developed countries (Gombos and Chevez-Barrios 

2007). But upon proptosis, the protrusion of the eye from the socket due to advanced 

spreading of tumor into the orbit (severe case in Figure 2.15 C), the only chance of cure is 

enucleation. 

Recent studies, identifying MDM2 and MDM4 as possible targets for chemotherapy, 

should make it possible to specifically activate p53 to induce apoptosis in retinoblastoma 

cells. A small molecule inhibitor (nutlin-3a) of the interactions between p53 and both MDM2 

and MDM4 was already shown to kill tumor cells (Laurie et al. 2005). A combination with a 

topoisomerase inhibitor (topotecan) which induces a p53-mediated DNA damage response 

could even enhance the effect (Brennan et al. 2011). 

Better understanding of the molecular mechanisms of retinoblastoma may lead to 

identification of new pharmacological targets for the therapy against retinoblastoma. These 

new potential targets, such as miRNAs or even epigenetic modifications, could make it 

possible to very specifically target and kill the mutant cells without causing detrimental side 

effects that are common for chemotherapeutics available today. 
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3. Aims of the project 
Several studies demonstrated that the overall levels of miRNAs are decreased in most 

human cancers (Chang et al. 2008, Thomson et al. 2006). This phenomenon could be 

explained by the known reduced stability and/or activity of proteins involved in the 

biogenesis of miRNAs, such as Dicer1, an RNAse III endonuclease (Hill et al. 2009, Karube 

et al. 2005, Thomson et al. 2006). At the same time, the absence of homozygous DICER1 loss 

in human tumors and the fact that also in a number of mouse models homozygous loss of 

Dicer1 was selected against (Kumar et al. 2009, Lambertz et al. 2010, Arrate et al. 2010), 

indicate that Dicer1 is required for tumorigenesis. 

To further investigate the molecular mechanism underlying the addiction to Dicer1 in 

human cancers, we studied its role in an established pre-clinical mouse model of 

retinoblastoma. 

 

First, we tested whether Dicer1, and therefore a functional microRNA pathway, is 

required for normal retinal development in the mouse, both on wild-type and on a tumor 

susceptible background where the Rb1 pathway was compromised. 

 

Then, Dicer1-deficient mice and appropriate control strains were regularly checked for 

retinoblastoma development to determine whether Dicer1 would be required for tumor 

formation on different genetic backgrounds. 

 

We found that simultaneous loss of Dicer1 and p53 is synthetic lethal on a tumor 

susceptible background. To shed light on the molecular mechanisms behind the synthetic 

lethal interaction and to identify a possible candidate microRNA responsible for the 

Dicer1/p53 synthetic lethality, we performed various rounds of microRNA expression 

profiling on human and mouse tumors and control tissue. 

 

Subsequently, we bred a conditional knockout mouse strain of the identified 

microRNA, namely miR-17~92, into our tumor susceptible mouse colony to determine the 

dependency of retinoblastoma formation on miR-17~92. 

 

Upon realizing that both Dicer1 and miR-17~92 are synthetic lethal partners of p53, 

we tested a possible pharmacological application of downregulating different sets of 
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microRNAs of the miR-17~92 cluster in established human retinoblastoma cell lines to 

specifically alter the growth of those cancer cell lines. 

 

Ultimately, our finding of a set of microRNAs (miR-17/20a), of which downregulation 

could potentially kill retinoblastoma cells, should be explored as a highly selective therapeutic 

approach for the treatment of retinoblastoma or eventually even diseases with a compromised 

p53 pathway in general. 
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4. Results and conclusions 
All experiments from the following sections were performed by the author (David N.) if not 

stated otherwise. All immunohistological stainings were done by Irina L. and Natacha R. 

4.1 Mosaic inactivation of Dicer1 in normal and Rb1/p107-
deficient retinoblasts is tolerated during retinogenesis 

In order to follow Dicer1 deficient developing retinal progenitor cells (RPC), we 

crossed Dicer1 conditional knockout mice (Murchison et al. 2005) with the retinal cell-

specific Chx10Cre transgenic mouse line (Rowan and Cepko 2004) to conditionally inactivate 

Dicer1 in the retina. 

The BAC Chx10Cre transgenic construct (see also Figure 4.1) contains a sequence for 

a Cre-GFP fusion protein and an alkaline phosphatase (AP) reporter gene. Both can be used to 

specifically visualize the Cre-expressing retinal cells. 

 

Figure 4.1: Schematic representation of the BAC Chx10Cre transgenic construct. 
The GFP Cre-IRES-AP cassette of the modified BAC construct is integrated into the first exon of Chx10 in the 
mouse genome (Rowan and Cepko 2004). Figure modified from Donovan and Dyer 2004 and Zhang et al. 
2004b. 

4.1.1 Chx10Cre-expression shows mosaicism in the retina 

Expression of the BAC Chx10Cre construct can be visualized by AP staining of 

vibratome-cut 40µm sections of the mouse retina. We observed specific AP staining as early 

as of embryonic day 9.5 (E9.5) in the eye on sections from wild-type animals as shown in 

panel A in Figure 4.2. However, at day E9.5, only very few cells started to show a positive 

AP staining, which correlated with the expression of the Cre recombinase, while in the 

developing mouse, endogenous Chx10 was expressed throughout the anterior optic vesicle 

and all neuroblasts of the optic cup. In the mature retina, the Chx10 protein is restricted to the 

inner nuclear layer (Liu et al. 1994). Therefore, starting at day E9.5, recombination of any 

floxed locus in the mouse genome may only occur in a fraction of progenitor cells. 

Later on, at days E10.5 and E11.5 (panels B and C in Figure 4.2), more and more cells 

started to become AP stained. Importantly, even after retinal progenitor cells (RPCs) cease 
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proliferation by post-embryonic day P11 (Young 1985), AP staining – suggesting Chx10Cre-

expression – remained mosaic. This notion is supported by anti-GFP immunohistochemical 

(IHC) stainings in Figure 4.3 which show that indeed only a fraction of Chx10-positive were 

GFP-positive as well. 

Additionally, the grade of mosaicism can be highly variable between littermates. This 

mosaicism is probably due to the nature of the integration site or chromatin configuration of 

the BAC DNA (Rowan and Cepko 2004). 

As a consequence of this mosaicism of Chx10Cre-expression in this mouse model, 

only a small subset of retinoblasts are mutant cells. The majority of the retinal cells remains 

wild-type. 

 

Figure 4.2: Expression of the Chx10Cre construct starts as early as of embryonic day 9.5. 
The earliest time of Chx10Cre expression is at embryonic day 9.5 (E9.5). Chx10Cre-negative (Chx10Cre-) and 
Chx10Cre-positive (Chx10Cre+) embryos at embryonic days 9.5, 10.5, and 11.5 were whole-mount stained for 
AP reporter activity. AP activity can be observed in the developing eye as early as of E9.5 when single cells are 
visible. Later, at days E10.5 and E11.5, the AP reporter activity is visible in the whole retina. 

E9.5

Ch
x1

0C
re

-
Ch

x1
0C

re
+

10x 10x

1.5x 1x 0.7x

E10.5 E11.5

10x

A B C

un
st

ai
ne

d



 

4. Results and conclusions 47 

4.1.2 Dicer1 is dispensable for normal retinal development 

Next, we performed IHC stainings on 5µm sections from paraffin-embedded tissues to 

highlight GFP expression in adult wild-type (WT) retina. GFP was detected in a subset of 

postmitotic bipolar and Müller cells which are located within the inner nuclear layer (INL) 

close to the outer plexiform layer (OPL) and the outer nuclear layer (ONL) (Figure 4.3). 

 

Figure 4.3: Mosaic inactivation of Dicer1 in normal and Rb1/p107-deficient retinoblasts is tolerated during 
retinogenesis. 
Chx10 and GFP immunostaining of adult (P21) Chx10Cre; Dicer1+/+ (WT), Chx10Cre; Dicer1lox/lox (DicKO), 
Chx10Cre; Rb1lox/lox; p107-/- (DKO) and Chx10Cre; Rb1lox/lox; p107-/- ; Dicer1lox/lox (DKO; DicKO) retinae. GFP-
positive cells are detected in all mice (left panels). The three retinal nuclear layers (GL: ganglion layer; INL: 
inner nuclear layer; ONL: outer nuclear layer) and the two plexiform layers (OPL: outer plexiform layer; IPL: 
inner plexiform layer) are indicated. AP-stained transverse retinal sections are also shown (right panels). Regions 
of AP reporter activity are detected in all mice. Scale bars = 40µm. The IHC pictures were kindly provided by 
Irina Lambertz (CMG, UGent). The WT and DicKO IHC pictures were already used in the PhD thesis of Irina 
Lambertz (CMG, UGent) but are shown here for the sake of completeness. 
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GFP-positive cells could also be found in Dicer1-deficient Chx10Cre; Dicer1lox/lox 

retinae (further referred to as DicKO) suggesting that Dicer1 is dispensable for normal retinal 

development. Importantly, also on an Rb1/p107-deficient background (Chx10Cre; Rb1lox/lox; 

p107-/-, further referred to as DKO), which ultimately leads to retinoblastoma development, 

was Dicer1 deficiency still tolerated. Less GFP-positive cells could be found in DKO; DicKO 

retinae (histological sections in Figure 4.3 and quantification of FACS-sorted GFP-positive 

cells in Figure 4.4). 

AP stainings on 40µm vibratome sections from adult retinae (P21) of the same set of 

genotypes could confirm the staining pattern of the IHC sections (Figure 4.3, right panel). 

  

Figure 4.4: Percentage of Cre-GFP expression in the mouse retina at the age of P21 of various genotypes. 
Box plot diagram (bottom and top of the box showing the 25th and 75th percentile, respectively, band inside the 
box shows the median, and the end of the whiskers represent the minimum and maximum of the data) showing 
the percentage of GFP-positive cells in FACS-sorted mouse retinae at the postnatal age of P21 per genotype. For 
genotypes WT, DicKO, and DKO n=3, for DKO; DicKO n=4, and for QKO n=5. There is a clear significant 
difference between the DKO samples and either of the other samples (P-value of P < 0.05 (*) after an unpaired 
T-test with unequal variances between WT (or DicKO, or QKO) and DKO and P < 0.01 (**) between DKO and 
DKO; DicKO). Remark that in the DKO; DicKO samples GFP-positive cells are slightly less abundant than in 
the WT or DicKO retinae, however not significantly. Nonetheless, DKO; DicKO samples are significantly 
different from QKO samples (P < 0.01 (*)). 

In Chx10Cre (WT) and DicKO mice only about 2% of the retinal cells showed GFP 

positivity (1.6 and 1.8%, respectively) whereas mice on a retinoblastoma-sensitized 

background (DKO mice) showed an increased percentage of GFP-positive cells (5.7% GFP-

positive cells) (Figure 4.4). The latter is due to the fact, that with a compromised Rb1-

pathway, retinal progenitor cells inappropriately exit the cycle and keep proliferating, thus 
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forming hyperproliferative lesions later in life, which develop into full-blown retinoblastoma 

(Zhang et al. 2004a, Zhang et al. 2004b). Importantly, Dicer1 deficiency on a Rb1-

compromised background (Chx10Cre; Rb1lox/lox; p107-/- ; Dicer1lox/lox, thereafter referred to as 

DKO; DicKO mice) slightly decreased the amount of GFP-positive cells (1.1% GFP-positive 

cells) compared to either WT mice or Dicer1-deficient mice on a background with functional 

Rb1 pathway (DicKO mice) (Figure 4.4). 

Furthermore, IHC stainings for the two progenitor cell markers Chx10 and syntaxin, as 

well as for calretinin which is expressed in a subset of amacrine and ganglion cells, showed 

that Dicer1 is dispensable for retinogenesis since both WT and DicKO retinae were normal 

and undistinguishable from each other (Figure 4.5). 

 

Figure 4.5: Retinogenesis is not affected in DicKO mice. 
Chx10, Syntaxin, and Calretinin immunostaining of adult (P>21) WT and DicKO retinae. No difference in 
staining of the three retinal markers could be observed. The retinal structure in both WT and DicKO mice was 
normal. Therefore Dicer1 deficiency did not negatively affect retinogenesis. Scale bar = 40µm (GL: ganglion 
layer; INL: inner nuclear layer; ONL: outer nuclear layer). Figure kindly provided by Irina Lambertz (CMG, 
UGent). 

4.1.3 Expression of mature miRNAs is globally suppressed in 
Dicer1-deficient retinoblasts 

The fact that retinogenesis was not compromised in DicKO and was even tolerated in 

DKO; DicKO mice, might be explained by incomplete recombination of the Dicer1 locus and 

therefore remaining functional Dicer1 protein in those mutant cells. To exclude the possibility 

of incomplete recombination of the Dicer1 allele, we FACS-sorted the GFP-positive cells of 

Chx10Cre, DicKO, DKO, and DKO; DicKO retinae at P21 (amount of GFP-positive cells in 

Figure 4.4) and genotyped the Dicer1 locus (flow diagram for sample preparation in Figure 
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4.6 A). As expected, DKO cells only show a PCR product for the wild-type allele. Both 

DicKO and DKO; DicKO sorted mutant cells show a fully recombined Dicer1 locus. No non-

recombined allele was detectable, indicating that indeed these retinae were homozygously 

Dicer1 deficient (Figure 4.6 B). 

 

Figure 4.6: The Dicer1 locus in Cre-positive Dicer1lox/lox cells is completely recombined. 
(A) Flow diagram schematically showing the sample preparation for the recombination PCR in B. (B) 
Genotyping of FACS-sorted GFP-positive cells (GFP +) from adult retinas confirms complete recombination of 
the Dicer1 locus in Cre-positive Chx10Cre; Rb1lox/lox; p107-/- ; Dicer1lox/lox (DKO; DicKO) and Dicer1lox/lox 
(DicKO) cells. A 1:1 mixture of GFP-positive and GFP-negative (GFP +/-) and GFP-negative cells (GFP -) were 
used as controls in the DKO; DicKO background. The possible product bands of the Dicer1 recombination PCR 
are: floxed: floxed allele; WT: wild-type allele; excised: excised allele. The PCR products were visualized using 
the QIAxcel system (Qiagen). 

To show that Dicer1 deficiency also has functional consequences, we performed a 

microRNA expression profiling with the FACS sorted retina cells in collaboration with Pieter 

Mestdagh, Jo Vandesomple, and Frank Speleman (CMG, UGent). With the expression results 

of 509 murine miRNAs which were profiled, we could show that microRNA expression was 

dramatically and globally downregulated (10x downregulation) in either DicKO or DKO; 

DicKO cells compared to control retinae (Figure 4.7). Therefore we conclude that Dicer1 is 

dispensable for retinogenesis by itself (Figure 4.5), and that, additionally, a severely 

downregulated miRNA pathway does not compromise normal retinal development. 
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Figure 4.7: Expression of mature miRNAs is globally suppressed in FACS-sorted Dicer1-deficient 
retinoblasts. 
Mature miRNAs expression levels in FACS-sorted GFP-positive cells from adult (P21) retinae of mice with the 
indicated genotypes show a global suppression of miRNA expression in Dicer1-deficient samples. (A) Box plot 
diagram (bottom and top of the box showing the 25th and 75th percentile, respectively, band inside the box 
shows the median, and the end of the whiskers represent the minimum and maximum of the data) showing the 
expression levels of mature miRNAs in FACS-sorted GFP-positive cells from adult retinae of mice (age is P21) 
with the indicated genotypes. For the WT, DKO, and DicKO genotypes n=3 and for DKO; DicKO n=4. Dicer1-
deficient cells (DicKO and DKO; DicKO) show significantly lower miRNA expression levels (a higher average 
of cycles upon detection) as Dicer1-proficient cells (WT and DKO) (P < 0.0001 (****)). (B and C) Mature 
miRNAs expression levels in FACS-sorted GFP-positive cells from adult retinae of mice with the indicated 
genotypes. Data are presented as mean Ct values where high values represent low miRNA expression levels. 
More than half of the miRNAs expressed at detectable levels in normal and Rb/p107-deficient Chx10Cre-
positive cells are no longer detectable in the purified Dicer1-deficient cells. The vast majority of the remaining 
miRNAs are expressed at levels that are >10-fold lower compared to the levels in Dicer1-proficient cells. 
miRNAs which were expressed in WT or DKO cells but which were not detectable in DicKO (DKO; DicKO, 
respectively) are marked in red and a value of 32 cycles upon detection was used for further calculations and 
representation in the graph. The upper panels of B and C show all expressed miRNAs, whereas the lower panels 
only depict the expressed members of the three miR-17~92 and paralog clusters (miR-17~92, miR-106a~363, and 
miR-106b~25). 
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4.2 Dicer1 is required for retinoblastoma formation 

Retinal progenitor cells in DKO mice which have a compromised Rb1 pathway 

develop early hyperproliferative lesions due to failure to exit the cell cycle (Zhang et al. 

2004b, Donovan et al. 2006) which leads to a slight disruption of the retinal laminar 

organization. As seen in Figure 4.8 B, the immature Rb1/p107-deficient cells (DKO) from the 

inner nuclear layer (INL) could protrude through the outer plexiform layer (OPL) and very 

few cells of the INL were even found in the inner plexiform layer (IPL). Those DKO mice 

only developed retinoblastoma with delayed and variable kinetics (Figure 4.8 A). As shown 

before in Figure 4.4, the knockout of Dicer1 on this Rb1-deficient background (DKO; 

DicKO) decreased the number of mutant cells but was tolerated during retinogenesis (Figure 

4.3). But, similar to retinae of DKO mice, DKO; DicKO retina also showed rosette formation 

and dysplasia (Figure 4.8 B). Surprisingly, even after 2 years, none of the 50 mice observed 

developed any form of retinoblastoma whereas 50% of all DKO mice developed 

retinoblastoma within about 300 days. 

 

Figure 4.8: Dicer1 is required for retinoblastoma formation. 
(A) Kaplan-Meier curve showing the time to first observation of externally visible retinoblastoma. This time was 
markedly decreased in Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox (DKO; p53KO) mice relative to Chx10Cre; 
Rb1lox/lox; p107-/- (DKO) littermates. Chx10Cre; Rb1lox/lox; p107-/- ; Dicer1lox/lox (DKO; DicKO) mice did not 
develop tumors (logrank Mantel-Cox test, P<0,0001) up to a observation period of 2 years (data shown up to 600 
days). (B) Invasive tumors that fill the vitreous and the anterior chamber were found in DKO; p53KO mice as 
early as P60. Hematoxylin and eosin stain with the three retinal nuclear layers (GL: ganglion layer; INL: inner 
nuclear layer; ONL: outer nuclear layer) and the two plexiform layers (OPL: outer plexiform layer; IPL: inner 
plexiform layer) are indicated.. Black scale bars =40µm. Red scale bar = 400µm. The IHC pictures were kindly 
provided by Irina Lambertz (CMG, UGent). 
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The presence of GFP-positive cells in Dicer1-deficient retina on WT or Rb1-sensitized 

background as shown in Figure 4.4 demonstrates that protection against cancer in DKO; 

DicKO mice is not due to the death of tumor initiating cells. A possible explanation for the 

absence of tumor formation might be that, upon Dicer1 inactivation, cells could still develop 

normally but are not able to proliferate at such high rates as Rb1-deficient cells (DKO). Since 

it was reported (Mudhasani et al. 2008) that loss of Dicer1 can activate the p53 pathway, we 

speculated that p53-mediated cell cycle arrest and/or apoptosis might be the reason for the 

decreased number of GFP- and AP-positive mutant retinal cells and the absence of tumor 

formation in DKO; DicKO mice. 

To address the question of whether p53-activation was responsible for the decreased 

fitness of retinal cells and the absence of retinoblastoma formation in DKO; DicKO mice, we 

introduced a conditional p53 knockout allele into our DKO and DKO; DicKO mouse colonies. 

Additional loss of p53 in DKO mice (Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox thereafter called 

DKO; p53KO) accelerates tumor formation dramatically and is a well-accepted mouse tumor 

model (Zhang et al. 2004b, Zhang et al. 2004a, Laurie et al. 2006, McEvoy et al. 2011). More 

than 80% of the DKO; p53KO mice (106 out of 129) developed highly aggressive and 

invasive bilateral retinoblastoma with clear evidence of anterior chamber invasion (Figure 4.8 

A and B). The median time for developing retinoblastoma for the DKO; p53KO mice was 100 

days versus 303 days for DKO mice. Alternatively, instead of directly inactivating p53 using a 

p53-knockout allele, also indirect downregulation of p53 via Mdmx-overexpression can be 

used to accelerate retinoblastoma formation (Laurie et al. 2006, McEvoy et al. 2011, Xiong et 

al. 2010). 

4.3 Dicer1 and p53 act as synthetic lethal partners upon 
Rb1/p107-inactivation 

4.3.1 Chx10/Rb1/p107-mutant cells are lost upon concomitant 
inactivation of Dicer1 and p53 

Next, we wanted to test whether Dicer1 depletion on the DKO; p53KO background 

(Chx10Cre; Rb1lox/lox; p107-/- ; p53lox/lox; Dicer1lox/lox, thereafter called QKO) could lead to 

retinoblastoma formation. Without p53-mediated cell cycle arrest or apoptosis due to loss of 

Dicer1, there might be a possibility that QKO mice could develop retinoblastoma similar to 

DKO or even DKO; p53KO mice. But unexpectedly, no GFP- or AP-positive cells could be 
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found in adult QKO retinae whereas adult DKO; DicKO retinae showed a normal pattern for 

GFP- and AP-stainings (Figure 4.9). 

 

Figure 4.9: Chx10/Rb1/p107-mutant cells are lost upon concomitant inactivation of Dicer1 and p53. 
Chx10 and GFP immunostaining of Chx10Cre; Rb1lox/lox; p107-/-; Dicer1lox/lox; p53+/+ (DKO; DicKO; p53+/+) 
versus Chx10Cre; Rb1lox/lox; p107-/- ; p53lox/lox; Dicer1lox/lox (DKO; DicKO; p53lox/lox or QKO) retinae at P48. 
GFP-positive cells are only detected in p53 wild-type mice (upper panels). In AP-stained transverse retinal 
sections from adult mice with the indicated genotypes, regions of AP reporter activity were only detected in p53 
wild-type mice (lower panels). The three retinal nuclear layers (GL: ganglion layer; INL: inner nuclear layer; 
ONL: outer nuclear layer) are indicated. Scale bars = 40µm. IHC stainings of the upper panel kindly provided by 
Irina Lambertz (CMG, UGent). 

Additionally, the retinal architecture of adult QKO retinae was completely normal 

(Figure 4.10) and indistinguishable from WT retinae (to be compared with Figure 4.5) as 

Chx10, syntaxin, and calretinin stainings showed a normal disposition of the aforementioned 

cells. This opens the possibility that Chx10Cre/GFP-positive mutant cells were specifically 

eliminated or outcompeted during retinal development when Dicer1 and p53 were 

simultaneously inactivated. The mosaic expression level of the transgenic construct of the 

Chx10Cre transgenic mouse line could be the reason that the adult QKO retina in fact only 

consists of WT cells. Since only around 2% to 6% of all retinal cells expressed Chx10Cre 
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(Figure 4.4), an early elimination of these transgenic cells during retinal development might 

still be tolerated through compensation with the surrounding WT cells without compromising 

the morphology of the retina. To test this hypothesis we dissociated among others DicKO, 

DKO; DicKO; and QKO retinae and FACS-sorted the different cell suspensions for GFP 

positivity (Figure 4.4). Only in DicKO and DKO; DicKO (for both n = 3) GFP could be 

detected; this in around 2% of all cells analyzed. No GFP-positive cells could be found in 

QKO retinae (n = 5) at all. 

 

Figure 4.10: Retinogenesis is not affected in QKO mice. 
Chx10, Syntaxin, and Calbindin immunostaining of DKO and QKO retinae at postnatal day 45 (P45). Scale 
bars = 40 µm (GL: ganglion layer; INL: inner nuclear layer; ONL: outer nuclear layer) Figure kindly provided 
by Irina Lambertz (CMG, UGent). 

To prove that the retinae of QKO mice only consisted of WT cells, we analyzed the 

retina of DKO; DicKO, DKO; p53KO, and QKO mice for the recombination of the Dicer1 

and p53 locus with the help of PCR-based genotyping (Figure 4.11). Consistent with our 

hypothesis we could neither detect the Cre-excised Dicer1 nor p53 locus in all QKO samples 

analyzed. Only the floxed locus of both genes was detectable. In contrast to the QKO samples 

the DKO; DicKO and DKO; p53KO samples clearly show PCR products of both the floxed 

and the excised Dicer1 and p53 genes. Due to the mosaicism in the Chx10Cre transgenic line 

and  therefore presence of non-Cre-expressing cells, the non-excised (floxed) form of both 

Dicer1 and p53 genes was detected in DKO; DicKO and DKO; p53KO, respectively. 

Ca
lb

in
di

n
Ch

x1
0

Sy
nt

ax
in

DKO QKO

GL

INL

ONL

GL

INL

ONL

GL

INL

ONL



56 4. Results and conclusions 

 

Figure 4.11: Depletion of the Chx10Cre/Rb1/p107-mutant cells in adult retinae upon co-inactivation of p53 
and Dicer1. 
Schematic representation of the Dicer1 and p53 wild-type, floxed and Cre-excised alleles (Top panels). DNA was 
prepared from P21 retinae of at least 5 mice with the indicated genotypes and examined by PCR using the 
primers depicted in the top panels. Representative PCRs are shown in the lower panels Figure kindly provided 
by Irina Lambertz (CMG, UGent). 

This genotyping analysis therefore also excluded the possibility that Chx10Cre; 

Rb1lox/lox; p107-/-; p53lox/lox; Dicer1lox/lox mutant cells were present without expressing GFP or 

AP reporter genes at the age of P21. 

4.3.2 QKO cells are still present during early retinogenesis 

Another possible reason for the absence of mutant cells in QKO retinae might be a 

compromised Cre expression early during retinogenesis which would result in a lack of Cre-

mediated recombination of each of the involved conditional knockout genes. Consequently, 

without recombination, the retina would only consist of wild-type cells. 

To address this question we performed whole-mount AP stainings on QKO and 

control embryos of the age of around E12 (two left panels in Figure 4.12 A). As mentioned 

earlier, Chx10-positive retinal progenitor cells could be detected as early as day E9.5 (see 

Figure 4.2 and Rowan and Cepko 2004). Subsequently, the embryos were embedded in 

paraffin, 5µm sections were immunostained for GFP and analyzed with a confocal 

microscope (two right panels in Figure 4.12 A). 
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Figure 4.12: QKO cells are still present during early retinogenesis. 
(A) QKO cells were detected during embryonic development. Chx10Cre-negative, Chx10Cre-positive wild-type 
(WT), Chx10Cre; Rb1lox/lox; p107-/- (DKO), Chx10Cre; Rb1lox/lox; p107-/-; Dicer1lox/lox; p53+/+ (DKO; DicKO) and 
Chx10Cre; Rb1lox/lox; p107-/-; Dicer1lox/lox; p53lox/lox (QKO) E12 embryos were whole-mount stained for AP 
reporter activity and subsequently sectioned for immunostaining against GFP. AP activity was observed in QKO 
embryos in distinct areas in the retina. Sections revealed these areas of AP reporter activity to be in retinal 
progenitor cells and not in retinal pigmented epithelium. GFP reporter expression, which was also detected, 
overlapped with areas of AP reporter activity in all but in Chx10Cre- embryos. Black scale bar = 1mm; red scale 
bar = 200µm; white scale bar = 10µm. (B) Box plot diagram showing the number of GFP-positive cells in E12 
retinae from the experiment shown in A with indicated genotypes. The number of cells was evaluated by 
counting the number of GFP-positive cells in 5 microscopic fields of a comparable section from 3 different eyes 
of E12 embryos. DKO embryos showed significantly less GFP-positive cells in the retina compared to WT 
embryos (P-value from an unpaired two-tailed t-test < 0.05 (*)) but were not different when compared to DKO; 
DicKO embryos (ns). QKO embryos showed significantly less GFP-positive cells compared to DKO and DKO; 
DicKO embryos. P-values are < 0.05 (*) and < 0.001, (***) respectively. 
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We found that AP reporter activity could be detected in WT, DKO, DKO; DicKO, and 

QKO retina but, as expected, not in Chx10Cre negative embryos (two left panels in Figure 

4.12 A). Also the immunofluorescence stainings against GFP revealed a similar staining 

pattern as the one of AP in all samples analyzed (two right panels in Figure 4.12 A), 

suggesting that both AP and GFP and therefore the recombinase Cre are expressed in WT, 

DKO, DKO; DicKO, and QKO retinae. 

 

Thus, we can conclude that Cre expression by itself is not compromised in QKO 

retinae even during early retinogenesis and is therefore not the reason for the absence of 

GFP/AP staining in adult retinae. 

 

Quantification of the GFP signal by counting the amount of GFP-positive cells per 

microscopic field revealed that the number of mutant cells in QKO retinae was significantly 

reduced compared to DKO (P-value < 0.05 (*), Figure 4.12 B) or DKO; DicKO retinae (P-

value < 0.001 (***), Figure 4.12 B). This suggests that some of the QKO mutant cells might 

already have been counter-selected and/or removed in the time window between days E9.5 

and E12. 

4.3.3 Synergistic induction of apoptotic cell death by inactivation of 
Dicer1 and p53 

To explain the discrepancy of existing QKO mutant retinal cells at embryonic day E12 

and the absence in adult QKO retinae, we looked for signs of apoptosis in the above-

mentioned E12 embryos and two other embryonic stages (E13.5 and E14.5). More 

specifically, we performed an immunofluorescence co-staining for GFP and the activated 

form of caspase-3 (Casp-3*) as a marker for caspase-dependent apoptosis to visualize QKO 

mutant cells undergoing apoptosis (Figure 4.13). Casp-3* staining only overlapped with very 

few GFP-positive cells (~2%) in QKO retinae at the embryonic stage E12. Neither Chx10Cre 

negative, WT, nor DKO; DicKO retina showed any GFP/Casp-3*-double positive cells. 

Importantly, neither did the later embryonic stages E13.5 and E14.5 in all genotypes analyzed 

reveal any GFP/Casp-3*-double positive cells. 

With these findings, we conclude that caspase-dependent apoptosis might be one 

mechanism via which the QKO mutant cells are eliminated shortly after the transgenic GFP-

Cre protein is expressed in the retinal cells at the embryonic age of E9.5. Hence, Dicer1 is 

required for the survival of Rb1/p107-deficient retinal progenitor cells in which p53 is 
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additionally lost. Early elimination during retinogenesis would therefore be tolerated 

regarding the intact retinal architecture later in life. 

 

Figure 4.13: Synergistic induction of apoptotic cell death by co-inactivation of Dicer1 and p53. 
GFP-positive retinal progenitor cells (green) undergoing apoptosis (as detected by cleaved caspase-3-positivity 
(Casp-3*), red) were seen in E12 QKO, but not in Chx10Cre-, Chx10Cre+ (WT), nor DKO; DicKO embryos. 
Scale bars = 2 µm. 

4.3.4 Synthetic lethality of Dicer1 and p53 depends on Rb1/p107-
deficiency 

Next, we tested whether simultaneous inactivation of Dicer1 and p53 by itself could 

also lead to a loss of retinal cells. To do so, we performed an AP staining on retinae of adult 

Chx10Cre; p53lox/lox; Dicer1lox/lox (p53KO; DicKO) mice (Figure 4.14 A). Positive AP 

stainings in the p53KO; DicKO mice suggest that the synthetic lethality of Dicer1 and p53 

depends on Rb1/p107-deficiency. In other words, inactivation of Dicer1 and p53 are only 

synthetic lethal in cells which are subject to oncogenic stress. 

To ensure complete recombination of both loci, Dicer1 and p53, in the Chx10Cre-

positive p53KO; DicKO retinal mutant cells, we FACS-sorted cell suspensions of dissociated 

p53KO; DicKO mouse retinae for GFP-positivity and performed recombination PCRs for 
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both loci on the sorted GFP-positive and control cells (Figure 4.14 B). Since we could 

exclusively detect the excised products of both Dicer1 and p53 loci in the GFP-positive cells, 

we can conclude that Cre-mediated recombination of both loci was complete and that all 

AP/GFP-positive retinal mutant cells in p53KO; DicKO mice were indeed Dicer1 and p53-

deficient. 

 

 

Figure 4.14: Inactivation of Dicer1 and p53 is only synthetic lethal in Rb1/p107-deficient cells. 
(A) AP-stained transverse retinal sections from adult mice (P21) with the indicated genotypes. Regions of AP 
reporter activity are detected in Chx10Cre; p53lox/lox; Dicer1lox/lox (p53KO; DicKO) and not in control Chx10Cre-
negative retinae. Scale bar = 40µm. (B) Recombination PCRs for the Dicer1 and p53 locus show a complete 
recombination of both loci in retinae of Chx10Cre; p53lox/lox; Dicer1lox/lox (p53KO; DicKO) mice. Only the 
excised PCR product of both loci is detectable in FACS-sorted GFP-positive (GFP +) p53KO; DicKO mutant 
cells, whereas both controls – a 1:1 mixture of GFP-positive and GFP-negative (GFP +/-) and GFP-negative 
cells (GFP -) – show either the floxed and the excised or only the floxed PCR products of both loci. FACS 
sorting and sample preparation was performed as schematically shown in Figure 4.6 A. 
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4.3.5 QKO mice do not develop retinoblastoma due to the synthetic 
lethal interaction between Dicer1 and p53 

Taking together the above mentioned data, QKO mice should not develop any 

retinoblastoma, since the simultaneous inactivation of Dicer1 and p53 in retinal progenitor 

cells on Rb1/p107-deficient background (QKO) leads to loss of those mutant cells, as shown 

in the previous sections. Hence, without mutant cells, the resulting adult retinae of those mice 

would completely consist of wild-type cells (except for the p107 gene which will be null, even 

without Cre-expression, since it is a direct knockout allele and no conditional floxed allele, as 

in all other transgenic mouse lines used in this study), which would not allow formation of 

retinoblastoma. 

As expected, none of the 78 QKO mice observed developed visible retinoblastoma 

after more than 2 years (Figure 4.15) whereas DKO; p53KO mice showed a very aggressive 

and nearly 100% penetrant phenotype with hyperproliferative lesions which ultimately lead to 

retinoblastoma formation within an average time frame of 100 days (Figure 4.8 and Figure 

4.15). Such dysplastic lesions were also observed in retinae of DKO; DicKO mice which did 

not develop retinoblastoma. The important difference between the absence of retinoblastoma 

formation in QKO and DKO; DicKO mice is, that the pool of Rb1/p107-mutant retinoblasts 

was completely eliminated in QKO mice whereas it was still present in DKO; DicKO mice. 

Eventually, there might be a theoretical chance that those Rb1/p107-mutant cells present in 

DKO; DicKO mice give rise to severely delayed retinoblastoma (further discussed in section 

5.1). 

 

Figure 4.15: Dicer1 is required for retinoblastoma formation. 
Kaplan-Meier curve showing the time to first observation of externally visible retinoblastoma. This time was 
markedly decreased in Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox (DKO; p53KO) mice relative to Chx10Cre; 
Rb1lox/lox; p107-/- (DKO) littermates. Chx10Cre; Rb1lox/lox; p107-/- ; p53lox/lox; Dicer1lox/lox (QKO) mice did not 
develop tumors (logrank Mantel-Cox test, P<0.0001) up to a observation period of 2 years (data shown up to 600 
days). 
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4.4 The miR-17~92 cluster is overexpressed in retinoblastoma 

The miRNA screenings and their analysis shown in the following section were 

performed by Pieter M. All human retinoblastoma samples and controls for this miRNA 

analysis were prepared by Johannes S. and Alexander S. The aCGH analysis was performed 

by Candy K. 

 

Based on our data so far, Dicer1 might look like a promising pharmacological target to 

specifically eradicate p53-deficient tumor cells, while leaving p53 wild-type cells unharmed. 

But as our lab previously showed (Lambertz et al. 2010), partial inactivation of Dicer1 leads 

to more rapid and more aggressive tumor formation as compared to Dicer1 wild-type tumor 

cells. We therefore concluded that Dicer1 functions as a haploinsufficient tumor suppressor. 

Targeting Dicer1 through chemotherapy or other approaches of downregulating its enzymatic 

activity might therefore even worsen the tumor phenotype instead of eliminating the tumor 

cells. Thus, another approach might be necessary to find "drugable" synthetic lethal 

interactors of p53 for cell-specific elimination of tumor cells. 

Instead of targeting Dicer1 directly, a set of miRNAs of which processing depends on 

Dicer1, and are therefore downstream of Dicer1, might be a better and more specific 

pharmacological target to remove tumor cells with an impaired p53 pathway. To find such a 

set of miRNAs, we profiled miRNA expression in P21 retinae from Chx10Cre-negative (WT) 

and DKO mice and compared it to the profiling results of tumor tissue from DKO; p53KO 

mice – in collaboration with the labs of Frank Speleman (CMG, UGent), Johannes Schulte 

and Alexander Schramm (both UK Essen, Germany). A set of 102 miRNAs could be 

identified as significantly upregulated in the DKO; p53KO tumors compared to retinae 

samples of WT mice (Figure 4.16 A and Table S 1). 
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Figure 4.16: miRNA profiling of mouse DKO; p53KO tumors. 
(A) Heat map of differentially expressed miRNAs in 3 normal adult mouse retinae (Chx10Cre-negative mice, 
light grey) and 4 mouse DKO; p53KO tumors (black). (B) Heat map of the miR-17~92 and paralog clusters in 3 
normal mouse retinae (Chx10Cre-negative mice, light grey), in 3 retinae from DKO mice (dark grey), and 4 
tumors from DKO; p53KO mice (black). Figure kindly provided by Pieter Mestdagh (CMG, UGent). 

To narrow down the list of putative 102 miRNAs which were upregulated in mouse 

tumors, we also profiled the miRNA expression in 29 different human primary 

retinoblastomas to be able to correlate the human data with the previously mentioned mouse 

data set. When comparing the 29 human retinoblastoma samples with 6 normal human 

retinae, we found 68 miRNAs which were significantly upregulated in the human 

retinoblastoma samples (Figure 4.17 A, Table S 2) 
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Figure 4.17: miRNA profiling of human tumors. 
(A) Heat map of differentially expressed miRNAs in 6 normal adult retinae (light grey) and 29 primary tumors 
(black). (B) Heat map of the miR-17~92 and paralog clusters in 6 normal adult retinae (light grey) and 29 
primary tumors (black). (*) indicates patients with Rb1 germline mutations. Figure kindly provided by Pieter 
Mestdagh (CMG, UGent). 

Comparing the miRNA expression profile across the two species, we could identify 25 

miRNAs that were upregulated in both mouse and human tumors (Table 4.1 and Table S 3).  
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Table 4.1: List of miRNAs that are upregulated both in mouse and human tumors. 

From a list of 102 in tumors upregulated miRNAs in mice and 68 miRNAs in human, a list of 25 miRNAs 
commonly upregulated in both species was compiled. miRNAs in red belong to the miR-17~92 or the two 
paralogue clusters. 

 

Interestingly, 12 of the commonly upregulated miRNAs were members of the 

oncogenic miR-17~92 and miR-106b~25/miR-106a~363 paralog clusters (van Haaften and 

Agami 2010). 

Consistent with the discovery of the putative important role of the miR-17~92 and 

paralog clusters in retinoblastoma, hierarchical clustering of all retinoblastoma samples and 

normal retinae based on miRNA expression also identified 9 of the highly upregulated 

miRNAs in all mouse and human tumor samples analyzed as members of these clusters 

(Figure 4.16 B, Figure 4.17 B, Figure 4.18 ). 

miRNAs

miR-449b   128.99 16.70
miR-449    102.68 155.43
miR-18a 72.28 79.08
miR-106a 51.89 22.47
miR-17-5p 47.58 26.31
miR-20b 45.10 14.16
miR-20a 36.49 26.48
miR-93 30.59 23.38
miR-19b 10.95 4.49
miR-19a 9.93 6.89
miR-186 7.49 1.85
miR-18a* 7.46 63.91
miR-34b    7.06 2.18
miR-17* 7.05 2.95
miR-106b 6.48 10.64
miR-155 5.93 2.13
miR-34c    5.71 11.48
miR-15b   5.45 26.18
miR-301 4.17 7.43
miR-195   3.36 2.86
miR-25 3.30 15.64
miR-16 3.03 7.01
miR-92    2.94 6.41
miR-532 2.12 3.49
miR-130a 1.71 2.25

Murine tumor
vs.
normal retina

Human tumor
vs.
normal retina
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Figure 4.18: The miR-17~92 cluster is overexpressed in retinoblastoma. 
Heat map showing the overexpression of the miR-17~92 and paralog clusters in 4 mouse DKO; p53KO tumors 
(light blue), and 30 different primary human retinoblastoma (dark blue) when compared to normal mouse retina 
(Chx10Cre-negative mice, light green) and normal human retina (dark green). Figure kindly provided by Pieter 
Mestdagh (CMG, UGent). 

To explore the potential causes of miRNA deregulation in human retinoblastoma, we 

looked for genomic aberrations using a 44K oligonucleotide array which had been specifically 

designed to include regions harboring miRNA genes. In addition to identifying previously 

reported retinoblastoma-associated genomic aberrations (1q gain and 6p22 gain were 

frequently seen in our cohort), we found copy number gains, including the miR-17~92 locus, 

which lies on chromosome 13, as well as whole or partial chromosome 13 gains (Figure 4.19). 

miR-17~92 copy number gains, which importantly did not include the closely linked RB1 

locus, were seen in 17% of the patients (5 out of 29 cases analyzed). There was evidence of 

focal amplification in 1 out of 29 cases analyzed (16.450 +/- 1.322 copies per cell). Moreover, 

while the RB1 locus was deleted in 21% of cases (6/29), this deletion never included the 

closely linked miR-17~92 locus. This analysis therefore indicates that upregulation of the 

miR-17~92 cluster is, at least in a subset of retinoblastomas, a direct consequence of increased 

gene copy number. Since transcription of miR-17~92 is positively regulated by the E2Fs 

(Aguda et al. 2008), which are themselves upregulated upon Rb1 loss, and negatively 

regulated by p53 (Yan et al. 2009), deregulation of their transcriptional activities may also 

account for miR-17~92 overexpression. 
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Regardless of the underlying mechanism, our data demonstrate that the miR-17~92 

cluster is overexpressed in 100% of retinoblastomas analyzed. These findings are consistent 

with the recent demonstration that enforced miR-17~92 overexpression in mice cooperates 

with Rb1 pathway mutations to promote retinoblastoma (Conkrite et al. 2011). 

 

Figure 4.19: CGH Analysis of 30 human retinoblastomas. 
Copy number status of the RB1 and miR-17~92 locus on chromosome 13 for 30 retinoblastoma tumor samples. 
Deletions are marked in red, amplifications and gains in blue. * marks one tumor sample exhibiting a focal 
amplification of the miR-17~92 locus (16,450 +/- 1,322 copies per cell as validated and determined by 
quantitative PCR analysis). Figure kindly provided by Candy Kumps (CMG, UGent). 
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4.5 miR-17~92 phenocopies Dicer1 as synthetic lethal partner 
of p53 

The cell culture work with the Y79 retinoblastoma cell lines shown in the following section 

was performed by Frederic C. The miRNA expression analysis in different human 

retinoblastoma cell lines and controls was done by Alexander S. and Johannes S. Western blot 

analysis of these cell lines was done by Aart G. J. 

4.5.1 miR-17~92 deficiency restricts retinoblastoma development in 
mice  

Once we discovered the importance of the miR-17~92 cluster in retinoblastoma due to 

overexpression in 100% of all cases analyzed, we wanted to test the relevance of a conditional 

loss of miR-17~92 in DKO; p53KO mice which are prone to develop rapid and aggressive 

retinoblastoma. The synthetic lethality between Dicer1 and p53 could be, at least partly, 

mediated by miR-17~92. 

Therefore we crossed the already described conditional miR-17~92lox/lox knockout mice 

(Ventura et al. 2008) into the tumor prone Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox 

(DKO; p53KO) background to generate Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox; miR-

17~92lox/lox (DKO; p53KO; miR-17~92KO) mice. Subsequently, we assessed the appearance 

of retinoblastoma formation in those mice every week. Strikingly, none of the DKO; p53KO; 

miR-17~92KO mice (DKO; p53KO; miR-17~92lox/lox in the graph) (19 out of 19) developed 

retinoblastoma in an observation period of up to 300 days. In contrast, 88% of the DKO; 

p53KO (DKO; p53KO; miR-17~92+/+ in the graph) mice (15 out of 17) developed 

retinoblastoma by 125 days of age (Figure 4.20). Altogether, the median age of visibly 

apparent retinoblastoma of the DKO; p53KO mice was 77 days. 

While homozygous loss of miR-17~92 in DKO; p53KO mice completely blocked 

tumor formation, loss of one allele of miR-17~92 on a DKO; p53KO background delayed 

tumor formation significantly (Figure 4.20 A) compared to DKO; p53KO mice. 12 out of 20 

(60%) Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox; miR-17~92lox/+ (DKO; p53KO; miRlox/+) mice 

developed either uni- or bilateral retinoblastoma with a median time of tumor onset of 124 

days of age (n=20) (Figure 4.20 C). Additionally, heterozygous loss of miR-17~92 also 

reduced the aggressiveness of retinoblastoma development compared to DKO; p53KO mice. 

Whereas 87% of tumor-bearing DKO; p53KO mice developed bilateral retinoblastoma, only 

42% of DKO; p53KO; miRlox/+ mice (Figure 4.20 B) did so. 
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Figure 4.20: miR-17~92 deficiency prevents retinoblastoma development in mice. 
(A) Kaplan-Meier plot analysis of the time to first observation of externally visible retinoblastoma. 13 out of 17 
(87%) Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox; miR-17~92+/+ (DKO; p53KO; miR+/+) mice developed aggressive 
and invasive bilateral retinoblastoma with a median time of tumor onset of 75 days of age (n=17). 2 out of these 
16 mice develop unilateral retinoblastoma. None out of 19 Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox; miR-
17~92lox/lox (DKO; p53KO; miRlox/lox) mice developed retinoblastoma up to a 400-days observation period. 12 out 
of 20 (60%) Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox; miR-17~92lox/+ (DKO; p53KO; miRlox/+) mice developed 
either uni- or bilateral retinoblastoma with a median time of tumor onset of 124 days of age (n=20). The Kaplan-
Meier curve of latter mice is significantly different from the two other curves, DKO; p53KO; miR+/+ and DKO; 
p53KO; miRlox/lox.(P < 0.0001 (***) and P = 0.0023 (**) respectively, determined with a logrank Mantel-Cox 
test). (B) Distribution of uni- and bilateral retinoblastoma in DKO; p53KO mice with different miR-17~92 status. 
(C) Percentage of tumor bearing mice with the genotype DKO; p53KO with different miR-17~92 status. 
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4.5.2 Simultaneous loss of miR-17~92 and p53 on a Rb1/p107-
deficient background is synthetic lethal 

To be able to explain the absence of tumor formation in the DKO; p53KO; 

miR-17~92KO mice, we stained adult retinae of various genotypes for AP reporter activity. 

Positive AP staining could be detected in retinae of Chx10Cre; miR-17~92lox/lox 

(miR-17~92KO) and Chx10Cre; Rb1lox/lox; p107-/-; miR-17~92lox/lox (DKO; miR-17~92KO) 

mice, but not in retinae of DKO; p53KO; miR-17~92KO mice (Figure 4.21). 

We therefore conclude, that the absence of retinoblastoma formation in the DKO; 

p53KO; miR-17~92KO mice is due to the synthetic lethal interaction between miR-17~92 and 

p53. Hence, loss of miR-17~92 phenocopies the loss of Dicer1. Furthermore, as with Dicer1, 

simultaneous loss of  miR-17~92 and p53 is only synthetic lethal on a Rb1/p107-deficient 

background, since AP positive mutant retinal cells can also be detected in Chx10Cre; 

p53lox/lox; miR-17~92lox/lox (p53KO; miR-17~92KO) adult retinae (Figure 4.21). 

 

Figure 4.21: Simultaneous loss of miR-17~92 and p53 on a Rb1/p107-deficient background leads to 
synthetic lethality in the mutant cells. 
AP-stained transverse retinal sections (40µm) from adult mice with the indicated genotypes. Regions of AP 
reporter activity are only detected in Chx10Cre (Chx10-Cre+), Chx10Cre; miR-17~92lox/lox (miR-17~92KO), 
Chx10Cre; p53lox/lox; miR-17~92lox/lox (p53KO; miR-17~92KO), Chx10Cre; Rb1lox/lox; p107-/- (DKO), and 
Chx10Cre; Rblox/lox; p107-/-; miR-17~92lox/lox (DKO; miR-17~92KO) but not in Chx10Cre; Rb1lox/lox; p107-/-; 
p53lox/lox; miR-17~92lox/lox (DKO; p53KO; miR-17~92KO) retinae. Scale bar = 40µm. 

Ultimately, our data suggests, that miR-17~92, as is the case with Dicer1, is 

dispensable for normal retinogenesis but is required for aggressive and invasive 

retinoblastoma development in Rb1/p107/p53-deficient retinae, since loss of miR-17~92 on 

this background leads to synthetic lethality with p53. 
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4.5.3 The synthetic lethal interaction between p53 and miR-17~92 
depends on the genetic background 

In order to generate DKO; p53KO; miR-17~92KO mice, a total of 16 breeding pairs 

were set up. Of the 16 breeding pairs, 9 gave offspring to at least one DKO; p53KO; miR-

17~92KO mouse per breeding pair. In total, 19 mice were monitored for visibly apparent 

retinoblastoma over an observation period of up to 400 days (red lined curve in Figure 4.22 

A). As previously described (section 4.5.1, page 68 and Figure 4.20 A), none of the mice of 

this group developed retinoblastoma. We explained the phenotype with our findings that 

simultaneous loss of p53 and miR-17~92 on a Rb1/p107-deficient background leads to 

synthetic lethality and therefore eradication of all mutant cells (section 4.5.2, page 70). 

Further on, this group will be referred to as the cancer-resistant group. 

Surprisingly, 7 out of 16 breeding pairs gave birth to a group of 36 mice of which 23 

mice (64%, Figure 4.22 C) developed either uni- or bilateral retinoblastoma with a median 

time of tumor onset of 137 days of age (curve with red dashed line in Figure 4.22). A majority 

of 18 retinoblastoma incidents (78%) were unilateral and only 5 (22%) were bilateral (Figure 

4.22 B). From now, this group will be referred to as the non cancer-resistant group. 
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Figure 4.22: A sub-population of DKO; p53KO; miR-17~92KO mice developed retinoblastoma. 
(A) Kaplan-Meier plot analysis of the time to first observation of externally visible retinoblastoma. In a sub-
population of Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox; miR-17~92lox/lox (DKO; p53KO; miR-17~92KO) mice, 23 
out of 36 (64%) developed either uni- or bilateral retinoblastoma with a median time of tumor onset of 137 days 
of age (n=36). In another subpopulation of DKO; p53KO; miR-17~92KO mice of a different group of breeding 
pairs, none out of 19 mice developed retinoblastoma up to a 400-days observation period. When only 
considering the genotype itself and disregarding the differences in group-related tumor phenotype, 23 of all 55 
mice got either uni- or bilateral retinoblastoma (42%) with a median time of tumor onset of 229 days of age. The 
Kaplan-Meier curve for Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox; miR-17~92+/+ (DKO; p53KO; miR-17~92WT) 
mice is shown for comparison and is further described in Figure 4.20 A. (B) Distribution of uni- and bilateral 
retinoblastoma in DKO; p53KO mice with different miR-17~92 status. (C) Percentage of tumor bearing mice of 
genotype DKO; p53KO with different miR-17~92 status. 

To further investigate the differences in tumor occurrences in both groups we 

performed AP stainings on young adult (P23) and old adult (P95 and P324) retinae. 

Consistent with the tumor incidences, all retinae analyzed from the cancer-resistant group 
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showed no or occasionally very little AP staining (Figure 4.23 A and B), suggesting an 

eradication of most, if not all, mutant cells. However, all retinae analyzed from the non 

cancer-resistant group always showed an intense AP staining covering the whole surface of 

the retina and both the outer nuclear layer (ONL) and the inner plexiform layer (IPL). Some 

of those surviving DKO; p53KO; miR-17~92KO mutant cells will eventually give rise to 

retinoblastoma as visible in the white tumor tissue covering part of the retina in Figure 4.23 A 

(right panel). 

 

Figure 4.23: The synthetic lethal interaction between p53 and miR-17~92 depends on the genetic 
background. 
(A) Retina of old adult (P324 and P95, respectively) Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox; miR-17~92lox/lox 
(DKO; p53KO; miR-17~92KO) mice stained for AP activity. Whereas the retina of the cancer-resistant group 
shows no AP activity suggesting an eradication of all mutant cells, the retina of the non cancer-resistant group is 
intensely stained for AP activity. White tumor tissue is covering part of the retina which was not visible before 
dissection. (B) The upper panel shows AP-stained transverse retinal sections (40µm) from young adult (P23) 
DKO; p53KO; miR-17~92KO mice of both the cancer-resistant and non cancer-resistant group. The lower panel 
shows AP-stained retinae of the same genotypes indicated before sectioning. The two littermate retinae of the 
cancer-resistant group show little or no AP-positivity. The retina from the non cancer-resistant group shows an 
intense AP staining covering both the outer nuclear layer (ONL) and the inner plexiform layer (IPL) of the whole 
retina. Black scale bars = 1mm, red scale bar = 100µm. 

Together, these data suggest that the synthetic lethal interaction between p53 and miR-

17~92 could depend on a modifier gene or a yet unknown factor, such as a single nucleotide 

polymorphism (SNP) or a polymorphism involving an amino acid change. Serendipitously, 
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through maintaining different breeding pairs on completely mixed backgrounds, we could 

identify those two genetic groups which gave rise to either mice developing retinoblastoma or 

being completely cancer-free due to the synthetic lethality between p53 and miR-17~92. 

4.5.4 miR-17~92 knockdown impairs growth of established human 
retinoblastoma cells 

To test the pharmacological and clinical relevance of the synthetic lethal interaction 

between miR-17~92 and p53 and therefore the survival function of miR-17~92, we used the 

established human retinoblastoma cell lines RBL15, WERI-Rb1 and Y79 to manipulate the 

levels of the various miRNAs of the miR-17~92 cluster, as well as p53 levels itself. 

 

We first looked for the expression levels of miR-17, miR-18a, miR-19a, miR-20a, 

miR-19b, and miR-92 as part of the miR-17~92 cluster in those retinoblastoma cell lines 

compared to two normal retinae (in collaboration with the labs of Alexander Schramm and 

Johannes Schulte (UK Essen, Germany)). Consistent with our miRNA expression analysis in 

mouse and human retinoblastoma tumors, we found that the miR-17~92 cluster was expressed 

at very high levels in the retinoblastoma cell lines (Figure 4.24 A). In Y79 cells, expression of 

the miR-17~92 cluster was around 10 times higher than in normal retinae and in RBL15 and 

WERI-Rb1 cells, expression was even around 100 times higher. 

Subsequently, we inhibited individual members of the miR-17~92 cluster and assessed 

cell growth with a cell titer glow assay. Whereas individual inhibition did not result in 

decreased cell growth, transfection of a mixture of miR-17/20a inhibitors (anti-miR-17/20a) 

into the Y79 cell line showed a reproducible and significant decrease of cell growth at days 7 

and 9 post-transfection (P-values are < 0.05 (*) for day 7 and day 9, sh-ctrl anti-miR-ctrl vs. 

sh-ctrl anti-miR-17/20a in Figure 4.24 B). A similar effect in growth inhibition was also 

observed in WERI-Rb1 cells. 
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Figure 4.24: miR-17~92 knockdown impairs growth of established human retinoblastoma cells. 
(A) Expression analysis by RT-qPCR of miR-17, miR-18a, miR-19a, miR-20a, miR-19b, and miR-92 in normal 
human retina and the established retinoblastoma cell lines WERI-Rb1, Y79 and RBL15. Data represents the 
mean of three independent experiments ±SE. (B) Transfection of a 1:1 mixture of anti-miR17 and anti-miR20a 
into Y79-derived cell lines expressing either shRNAs control (sh-ctrl) or shRNAs directed against human p53 
(sh-p53). Cell growth was assessed using cell titer-glow assays up to 9 days post-transfection. Data represent the 
mean of two independent experiments (±SD) and are presented as the relative growth of anti-miR-17/20a-
transfected cells (anit-miR-17/20a) compared to the growth of cells transfected with a control antagomiR (anti-
miR-ctrl), which was set to 1. P-values from an unpaired two-tailed t-test between sh-control cells transfected 
with the anti-miR17/20a mixture (sh-ctrl anti-miR-17/20a) and transfected with a control antagomiR (sh-ctrl 
anti-miR-17/20a) are <0.05 (*) for day 7 and day 9. P-values from an unpaired two-tailed t-test between sh-p53 
cells transfected with the anti-miR17/20a mixture (sh-p53 anti-miR-17/20a) and transfected with a control 
antagomiR (sh-p53 anti-miR-ctrl) are <0.01 (**) for day 7 and <0.05 (*) for day 9. Importantly, transfection of 
the anti-miR17/20a mixture into sh-p53 cells (sh-p53 anti-miR-17/20a) resulted in significant decreased cell 
growth at both days 7 and 9 when compared to sh-control cells transfected with the anti-miR17/20a mixture (sh-
ctrl anti-miR-17/20a). P-values are <0.05 (*) for day 7 and day 9. (C) Western blot analysis of total protein 
extracts from Y79 cells stably expressing scramble (sh-ctr) or p53-directed (sh-p53) shRNAs. Vinculin (Vinc.) is 
used as a loading control. Data for Figure part A kindly provided by Alexander Schramm and Johannes Schulte 
(University Hospital of Essen, Essen, Germany). Data for Figure part B kindly provided by Frederic Clermont 
(LMCB, VIB-KULeuven, Belgium). Figure part C kindly provided by Aart G. Jochemsen (Leiden University 
Medical Center; Leiden, The Netherlands). 
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It is important to note, that the p53 tumor suppressor pathway is compromised in 

retinoblastoma through overexpression of negative regulators of p53 such as Mdm2 (Xu et al. 

2009) and Mdm4 (Laurie et al. 2006) but that p53 can still be activated (Kondo et al. 1997). 

Such a compromised p53 pathway in Y79 cells, combined with a knockdown of members of 

the miR-17~92 cluster, might explain why we can observe growth inhibition – an indication 

for a possible conservation of the synthetic lethality between p53 and the miR-17~92 cluster 

in pre-formed retinoblastoma – even without additionally altering p53 levels. But since p53 

can still be activated in Y79 cells (Kondo et al. 1997) we wanted to test our finding that the 

survival function of the miR-17~92 cluster is strongly p53-dependent by further artificially 

downregulating p53 levels in Y79 cells. That is why we (in collaboration with the Jochemsen 

lab, Leiden) created a p53-knockdown cell line by stably transfecting an shRNA targeting p53 

vector into the Y79 cell line to decrease the levels of p53 (sh-p53 in Figure 4.24 B and C). As 

shown by a western blot, the protein levels of p53 are virtually undetectable in the sh-p53 

Y79 cell line (sh-p53) whereas levels of Mdm4 (also known as Mdmx) and Mdm2 are similar 

to the transfection control (sh-ctrl) (Figure 4.24 C). Consistent with our finding that the 

survival function of the miR-17~92 cluster in mice is p53-dependent, we also found a 

decrease in cell growth, when transfecting those human sh-p53 Y79 cells with a mixture of 

miR-17/20a inhibitors (sh-p53 anti-miR-17/20a vs. sh-p53 anti-miR-ctrl). Importantly, there 

even was a significantly stronger decrease in cell growth when comparing the anti-miR-

17/20a transfection results of the sh-p53 Y79 cell line (sh-p53 anti-miR-17/20a in Figure 4.24 

B) to its parental or sh-control Y79 cell line (sh-ctrl anti-miR-17/20a in Figure 4.24 B). P-

values are < 0.05 (*) for day 7 and day 9 as indicated in the graph in Figure 4.24 B. 

 

In summary, these transfection experiments in human retinoblastoma cell lines suggest 

that high expression levels of miR-17 and miR-20a are required for survival in human 

retinoblastoma. Low levels of these miRNAs result in a synthetic lethal interaction with p53 

and are therefore not tolerated by the tumor cells. These findings make the miR-17~92 cluster, 

and miR-17 and miR-20a specifically, an interesting target for a new pharmacologic and 

therapeutic approach to selectively remove cancer cells in the context of retinoblastoma 

treatment. 
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5. Discussion, conclusions, and future perspectives 
Cancer is the second leading cause of death in European countries, closely following 

diseases of the circulatory system (Niederlaender 2006). Worldwide it is one of the most 

prominent health problems on earth. When extrapolating those trends to the upcoming years, 

cancer incidents will still rise, mainly due to aging of the population. Genetic mutations 

accumulate – turn healthy cells into tumor cells – and are therefore much more likely to occur 

in an advanced age. 

Among one of the genes identified as relevant player in carcinogenesis, is the tumor 

suppressor protein p53. It is mutated or compromised in virtually all kind of cancers, either by 

direct mutation or by harboring a genetic defect upstream or downstream in the p53 pathway. 

Identification of genes which show synthetic lethal interactions with p53, could therefore 

represent a promising therapeutic approach of treating tumors with an impaired p53 pathway. 

Being able to target and inhibit those new synthetic lethal partners of p53 with drugs, would 

on the one hand allow a tumor-specific treatment while circumventing attacks on the healthy 

tissue, and on the other hand allow treatment of a broad spectrum of cancer types, since p53 is 

widely inactivated across different tumor types. 

miRNAs are small non-coding RNAs which post-transcriptionally regulate gene 

expression by either targeting messenger RNAs (mRNAs) for translational repression or 

induce mRNA degradation. There is growing evidence suggesting an important role of 

miRNAs in human diseases, especially cancer (Calin and Croce 2006). Differential expression 

of miRNAs is well-documented in many types of cancer (Calin et al. 2002, Lu et al. 2005, He 

et al. 2005) and therefore puts inhibition or reconstitution of miRNAs in the focus of many 

therapeutic approaches (see also Figure 2.4). 

Studies to reveal characteristic miRNA signatures in human cancers showed that 

miRNAs can either act as tumor suppressors or as oncogenes – being down- or upregulated in 

human cancers (Esquela-Kerscher and Slack 2006). Interestingly, similar studies also 

demonstrated that, despite several upregulated miRNAs, the overall levels of miRNAs are 

decreased in cancer cells (Chang et al. 2008, Thomson et al. 2006). It is suggested that levels 

of proteins involved in the biogenesis of miRNAs, such as Dicer1, are often low in cancer 

cells (Thomson et al. 2006). This lead us and others (Lambertz et al. 2010, Kumar et al. 2009) 

to subsequent experiments in mice where downregulation of Dicer1 could promote 

tumorigenesis. Whereas downregulation or loss of one allele of Dicer1 is found in human 

tumors (Hill et al. 2009), biallelic loss could never be observed (Karube et al. 2005, 
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Pampalakis et al. 2010). In previous studies we already showed some initial data suggesting 

that complete Dicer1 loss prevents mice from getting retinoblastoma in an otherwise tumor 

prone background (Lambertz et al. 2010). This suggested that although low levels of Dicer1 

or miRNAs are connected with enhanced tumorigenesis, Dicer1 itself or miRNAs processed 

by Dicer1 are required for tumor formation. The reason for the necessity of Dicer1 or specific 

miRNAs for tumor development was, however, not clear. 

 

Here, we identified Dicer1 as well as the miRNA cluster miR-17~92 as synthetic lethal 

partners of p53 in a Rb1/p107-deficient background. In a mouse model of retinoblastoma we 

showed that simultaneous loss of either of the two, Dicer1 or miR-17~92, together with p53 

lead to loss of tumorigenesis due to the synthetic lethal interaction. This not only opens the 

field of miRNAs to new possibilities of cancer treatments but also provides a mechanistic 

explanation for the addiction of cancer cells to Dicer1. 

5.1 The Dicer1/p53 synthetic lethality protects mice from retinoblastoma 

To investigate the consequences of Dicer1 disruption in retinoblastoma development, 

we chose a conditional mouse model expressing Cre under the control of a retina-specific 

promoter in combination with a mouse line prone to develop retinoblastoma. 

 

Since germline inactivation of Dicer1 results in early embryonic lethality in mice 

(Bernstein et al. 2003), we used mice with a conditional floxed allele of Dicer1 (Murchison et 

al. 2005) and specifically inactivated Dicer1 in retinoblasts by combining this Dicer1 allele 

with the retinal Chx10Cre transgenic line (Rowan and Cepko 2004). Chx10 is a transcription 

factor critical for progenitor cell proliferation and bipolar cell determination in the developing 

retina and is exclusively expressed in these cell populations. It is important to note that, due to 

the nature of the integration site or chromatin configuration of the transgenic construct, 

Chx10Cre-expression is mosaic in the retina (Rowan and Cepko 2004). As a consequence, 

only a small subset of retinoblasts express Chx10Cre and are therefore mutant cells. The 

majority of the retinal cells remains wild-type. 

The conditional floxed allele of Dicer1 (Murchison et al. 2005), which we used to 

inactivated Dicer1, is design in such a way that no functional Dicer1 protein can be expressed. 

Murchison and colleagues were not even able to detect protein domains of Dicer1, which 

were not affected by the Cre-mediated excision, suggesting that there is no expression of full 

length or truncated forms of Dicer1 at all. Additionally, since both loxP sites reside in both 
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RNase III domains, Cre-mediated recombination would result in a completely non-functional 

form of a theoretical truncated Dicer1 protein after translation of the recombined Dicer1-

transcript. This design of the floxed allele of Dicer1 would also exclude a functional form of 

t-Dicer, a recently identified splice variant of DICER1 in humans, which lacks the dsRNA 

binding domain and is defective in one active center of one RNase III domain (Potenza et al. 

2010). 

In order to induce retinoblastoma development, two additional mouse lines were 

introduced – the Rb1lox/lox and the p107-null line. On the one hand, conditional inactivation of 

the Rb1 pathway leads to an inappropriate exit from the cell cycle of retinal progenitor cells 

and a block in rod maturation (Zhang et al. 2004a). But on the other hand, development of 

retinoblastoma in mice (but not in humans) is inhibited by the compensatory effects of p107, 

another Rb1 family member (Donovan et al. 2006). Consequently, inactivation of both Rb1 

family members (Chx10Cre; Rb1lox/lox; p107-/-, or DKO mice) in the retina leads to the 

formation of early hyperproliferative lesions (Zhang et al. 2004a), often referred to as 

retinomas (DiCiommo et al. 2000). Aggressive and invasive tumors are, however, rarely 

found in this background. 

Upon additional inactivation of the p53 pathway on the DKO background, mice 

develop highly aggressive and invasive retinoblastoma within a shortened time of tumor onset 

compared to DKO mice. To obtain this exacerbated phenotype, inactivation of the p53 

pathway can either be achieved by direct inactivation of the p53 locus itself with the help of a 

floxed p53 mouse line (Marino et al. 2000, Jonkers et al. 2001) or by transgenic conditional 

overexpression of Mdm4 (Xiong et al. 2010), a negative regulator of p53. Both mouse lines, 

Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox (referred to as DKO; p53KO) (Zhang et al. 2004b, 

Laurie et al. 2006) and Chx10Cre; Rb1lox/lox; p107-/-; Mdm4Tg (referred to as DKO; Mdm4Tg) 

(McEvoy et al. 2011) have a median time of tumor onset at around 100 days compared to 303 

days of the DKO mice. It is important to note, that although the tumor spectrum and kinetics 

of DKO; p53KO and DKO; Mdm4Tg mice are very similar (Zhang et al. 2004b, McEvoy et 

al. 2011), p53 loss has never been found in human tumors (Kato et al. 1996) whereas Mdm4 

overexpression is a common trait in virtually all cases of retinoblastoma (Laurie et al. 2006, 

McEvoy et al. 2011). For all our experiments described in this thesis, DKO; p53KO mice 

were used. Crosses with DKO; Mdm4Tg mice to confirm our findings on a background closer 

to the human situation are presently in progress. 
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In this work we show that, upon simultaneous inactivation of Dicer1 and p53 on a 

Rb1/p107-deficient background (referred to as QKO mice), mutant retinoblasts are lost, 

probably due to an apoptotic cell death. As a consequence of eradication of all mutant cells, 

QKO mice do not develop retinoblastoma. Although loss of Dicer1 in DKO mice (DKO; 

DicKO) also appears to protect against retinoblastoma (Figure 4.8 A), the reason for the 

absence of tumorigenesis is completely different. Whereas QKO mice have a wild-type (WT) 

retina due to death of the mutant cells, DKO; DicKO mice still retain mutant cells and even 

show hyperproliferative lesions and rosette formations in adult retina (Figure 4.3). In an 

observation period of up to two years, DKO; DicKO mice however have not developed 

retinoblastoma, despite retinal defects. 

The fact that these mice do not develop retinoblastoma could be explained in two 

different ways. First, DKO; DicKO mice have a reduced number of mutant cells compared to 

DKO or WT mice, both at the embryonic (Figure 4.12) and adult stage (Figure 4.4). With less 

mutant cells capable of initiating retinoblastoma development, the chances for tumor initiation 

are lower. Given the fact that DKO mice develop retinoblastoma with a median time of tumor 

onset of around 300 days with a penetrance of only 50%, reduction of the amount of mutant 

cells through additional inactivation of Dicer1 might delay tumor formation beyond the 

lifespan of the mice. To test this hypothesis, Rb1lox/lox; p107-/- ; Dicer1lox/lox mice could be 

crossed with another transgenic Cre line, such as Pax6-Cre, in which the whole peripheral 

neuroretina expresses Cre (Marquardt et al. 2001) – instead of using the transgenic Chx10Cre 

line which shows mosaic Cre expression of around 2% of all retinal cells (Rowan and Cepko 

2004 and Figure 4.4). If the hypothesis would be correct, Pax6-Cre; Rb1lox/lox; p107-/- ; 

Dicer1lox/lox should develop retinoblastoma, probably with delayed kinetics compared to 

Pax6-Cre; Rb1lox/lox; p107-/- mice. 

Secondly, and more importantly, the synthetic lethality between Dicer1 and p53 could 

also explain the absence of retinoblastoma in DKO; DicKO mice. Considering that 

inactivation of p53 is such a prevalent oncogenic event during retinoblastoma formation, 

Rb1/p107/Dicer1-deficient retinal cells which survive into adulthood might be killed off as 

soon as p53 function becomes compromised through alterations of the p53 locus itself or by 

alterations of loci of p53 regulators such as Mdm4. As a consequence of the Dicer1/p53 

synthetic lethality, all tumor initiating events, otherwise resulting in retinoblastoma formation, 

would therefore lead to cell death and removal of any cells capable of forming aggressive and 

invasive tumors. Since the Rb1 and p53 pathways are inactivated in most human cancers, 
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Dicer1/p53 synthetic lethality might also explain why homozygous loss of Dicer1 is not seen 

in other human cancers (Karube et al. 2005, Pampalakis et al. 2010). 

5.2 The miR-17~92 cluster might represent a better drug target than 
Dicer1 

Identification and targeting of synthetic lethal interaction partners of p53 might lead to 

novel cancer cell-specific therapeutic modalities. Although we discovered the Dicer1/p53 

synthetic lethal interaction in context of oncogenic stress, our previous data and that of others 

(Lambertz et al. 2010, Kumar et al. 2009) – showing that partial inactivation of Dicer1 

exacerbates tumorigenesis – argue against direct targeting of Dicer1 for therapeutic purposes. 

Additionally, Dicer1 is required for the correct development and homeostasis of several cell 

types and tissues such as skin (Yi et al. 2006), cardiac and skeletal muscles (Singh et al. 2011, 

O'Rourke et al. 2007), white adipose tissue (Mudhasani et al. 2010, Mudhasani et al. 2011), 

neural crest cells (Zehir et al. 2010), male and female mouse reproductive organs (Maatouk et 

al. 2008, Gonzalez and Behringer 2009, Korhonen et al. 2011), and the retina (Georgi and 

Reh 2010, Pinter and Hindges 2010, Georgi and Reh 2011). Thus, by systemically targeting 

Dicer1, one would not only risk to enhance tumorigenesis but also to cause toxicity in normal 

cells. It is important to mention, that the defects in retinal development in Dicer1-deficient 

retinae as observed by others (Georgi and Reh 2010) is not seen in our mouse lines – most 

likely because we use a Cre-expressing transgenic construct which is only expressed in a 

small subset of retinal cells (for mosaic expression of Chx10Cre refer to Rowan and Cepko 

2004 and section 4.1.1, page 45) instead of the whole peripheral neuroretina (Pax6Cre in 

Georgi and Reh 2010). 

Therefore, the ideal therapeutic target would be a specific miRNA or set of miRNAs 

downstream of Dicer1 which could mediate its pro-survival function to avoid the overall 

downregulation of miRNA processing caused by homozygous loss of Dicer1 and the 

associated side effects. Here, we show that the miR-17~92 cluster could be a promising 

candidate for a drug target since genetic inactivation of miR-17~92 phenocopies loss of 

Dicer1 and causes synthetic lethality when simultaneously lost with p53 on an oncogenic 

background. Similar to QKO mice, DKO; p53KO; miR-17~92KO mice do not develop 

retinoblastoma due to the eradication of the mutant cell pool. In contrast to Dicer1, whose 

non-mosaic inactivation in the retina leads to several differentiation defects (Pinter and 

Hindges 2010, Georgi and Reh 2010), absence of miR-17~92 in the retina is tolerated even in 

a non-mosaic fashion (Conkrite et al. 2011). 
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Together, these data suggest miR-17~92 as a promising cancer cell-specific target for 

the treatment of retinoblastoma. 

5.3 Data from preclinical mouse models have to be further validated 

In the preclinical mouse model for retinoblastoma we based our experiments on the 

findings, that direct loss of p53 would be required to cause synthetic lethality with either 

Dicer1 or miR-17~92. As mentioned before, in human retinoblastoma, it is not the direct loss 

of p53 which can be observed (Kato et al. 1996) but rather the overexpression of its negative 

regulator Mdm4 (Laurie et al. 2006, McEvoy et al. 2011). Therefore, it is important to test 

whether the synthetic lethality, already observed between miR-17~92 and p53 in DKO; 

p53KO; miR-17~92KO mice, can also be reconstructed in DKO; Mdm4Tg or other transgenic 

mice in which the p53 function is indirectly altered. 

5.4 The temporal context of the synthetic lethal interactions has to be 
investigated more closely 

As shown by AP stainings during early embryonic development (Figure 4.12), the 

synthetic lethal event in retinoblasts has to take place very early during retinogenesis. We 

argue that probably only very early removal of mutant cells could be tolerated and 

compensated during tightly regulated retinogenesis as we can observe in our experiments. The 

retina of QKO and DKO; p53KO; miR-17~92KO mice is indistinguishable from WT retina, 

both in size and morphology, suggesting that correct retinogenesis is not affected by an early 

induced cell death due to the synthetic lethal interactions. In this context, the used transgenic 

Cre line Chx10Cre might be crucial for the correct and functional development of the retina, 

since expression of transgenic Cre is only mosaic and limited to 2 - 5 % of cells in the retina 

(Figure 4.4). Any broader expression levels of Cre throughout the retina might result in 

developmental defects due to massive cell death caused by the synthetic lethality. It would 

therefore be interesting to test the loss of Dicer1 or miR-17~92 in Rb1lox/lox; p107-/-; p53lox/lox 

mice in combination with different transgenic Cre lines, such as Pax6-Cre or Nestin-Cre, 

where Cre is more broadly expressed throughout the retina. In Pax6-Cre mice, Cre is 

expressed in the peripheral neuroretina but not in central progenitor cells (Marquardt et al. 

2001). Nestin-Cre expression is even broader expressed since it can be detected throughout 

the developing nervous system and in neuronal and glial cell precursors (MacPherson et al. 

2003, Tronche et al. 1999). 
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Furthermore, it is important to know – both for the therapeutic relevance and also to 

understand the molecular mechanism of the synthetic lethal interactions involving Dicer1/p53 

and miR-17~92/p53 – whether the synthetic lethality is only confined to retinal progenitor 

cells as in our mouse models or whether it is also applicable to pre-formed retinoblastoma 

cells. To begin to address this question we used human retinoblastoma cell lines harboring 

p53 pathway alterations as preclinical model system and showed that pharmacological 

inactivation of miR-17/20a, two members of the miR-17~92 cluster, leads to decreased cell 

growth. More experiments are still required to get a deeper understanding of which miRNAs – 

or which combination of miRNAs – of the miR-17~92 cluster would result in the most 

efficient growth defect upon miRNA inactivation. 

Additionally, the question should be addressed, whether the wild type cells 

surrounding the mutant cells in the mouse retina are involved in the induction of synthetic 

lethality. This involvement could explain to some part the differences in the extent of induced 

cell death/growth suppression in the mouse model compared to the experiments in the human 

Y79 retinoblastoma cell lines, which purely consist of cancer cells and are not influenced by 

wild type cells as it could be in the case of the in vivo mouse experiments. 

5.5 The precise mechanism behind the synthetic lethal interaction 
remains unclear 

As we could show, the Dicer1/p53 and miR-17~92/p53 synthetic lethal interactions 

both depend on the presence of oncogenic stress in form of Rb1/p107-deficiency (Figure 4.14 

A and Figure 4.21). However, the precise mechanism explaining the synthetic lethal effect in 

both scenarios remains to be addressed. 

DNA damage could contribute to the synthetic lethal phenotype 

One possible explanation for the necessity of oncogenic stress might include the 

involvement of DNA damage. As previous reports show, loss of Dicer1 causes DNA damage 

and induces p53 pathway activation (Mudhasani et al. 2008, Tang et al. 2008). Additionally, 

both oncogenic stress (Bartkova et al. 2005) as well as loss of Rb1 (Seoane et al. 2008, 

Shamma et al. 2009) induce DNA damage. As a consequence, the extent of DNA damage 

caused by loss of Dicer1 in combination with oncogene-induced DNA replication stress and 

DNA damage due to Rb1 loss might be too high for cells with a disrupted p53 pathway to 

cope with, and therefore cells might die by mitotic catastrophe (Fragkos and Beard 2011). 

Interestingly, in vitro studies suggest that this form of mitotic cell death is independent of 
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apoptosis and autophagy and rather induced by mechanical damage (Fragkos and Beard 

2011). This phenomenon is also in line with the difficulties we had to show a significant 

number of apoptotic cells during retinogenesis at embryonic day 12 (Figure 4.13 and Figure 

4.12). Besides caspase-dependent apoptosis, cell death by mitotic catastrophe might therefore 

be another explanation for the synthetic lethal interaction of Dicer1 and p53. Interestingly, 

another caspase-independent form of retinal cell death was recently identified and connected 

to a receptor interaction protein (RIP) kinase, RIP3 (Trichonas et al. 2010). It was shown that 

RIP3-mediated programmed necrosis is another key mechanism in photoreceptor cell death 

besides the well-studied mechanism of caspase-dependent apoptosis. This RIP3-dependent 

but caspase-independent form of cell death could therefore be yet another mechanistic 

explanation of the Dicer1/p53 synthetic lethal interaction. 

Another major cause for DNA damage and genetic instability are reactive oxygen 

species (ROS) (Sablina et al. 2005). Recent studies in small-cell lung cancer cells (SCLC) 

showed that loss of RB1 induces ROS accumulation and DNA damage (Ebi et al. 2009). 

Importantly, this increase in ROS levels as well as increased DNA damage, which should 

inhibit growth and induce apoptosis in normal healthy cells, was counterbalanced in these 

cancer cells by high levels of miR-17~92 to prevent apoptosis and growth inhibition. As these 

studies demonstrated in non-small cell lung cancer (NSCLC) cells, artificial overexpression of 

miR-20a, a component of the miR-17~92 cluster, could abrogate RB1 knockdown-induced 

apoptosis, ROS generation and induction of DNA damage. Therefore, elevated ROS levels 

and induction of DNA damage due to loss of miR-20a might ultimately be the trigger for cell 

death and could be one possible explanation for the synthetic lethal interaction between miR-

17~92 and p53. These findings would be in line with the assumptions that DNA damage 

might be a possible cause for the synthetic lethal interaction in Dicer1 deficient cells as 

described before. 

Ebi et al. also showed in the same study, that not only miR-20a overexpression could 

reduce DNA damage in NSCLC cells but that also treatment with N-Acetyl-L-cysteine (NAC) 

had the same effect. NAC is a ROS inhibitor which was shown to protect the genome from 

oxidation by ROS and can protect mice from tumor development upon loss of p53 (Sablina et 

al. 2005). To test the involvement of DNA damage response in our mouse model and to 

answer the question for a possible mechanism of the synthetic lethal interactions, we treated 

QKO mice with 50 mM NAC as described by Sablina et al. (Sablina et al. 2005). 

Subsequently, we analyzed adult retinae for AP activity at P21. We hypothesized that, due to 

the NAC treatment, ROS levels should be reduced, thus leading to lower levels of DNA 
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damage in the retina and consequently preventing cell death caused by the Dicer1/p53 

synthetic lethal interaction. Unfortunately, none of the retinae analyzed showed any positive 

staining for AP activity (data not shown) suggesting that either manipulation of ROS levels 

via NAC treatment might not lower levels of DNA damage to a non-lethal stage or that there 

might be other factors – independent of the DNA damage response – contributing to the 

synthetic lethality. 

Small molecules targeting components of the pathway involved in the stress response 

to ROS were already shown to selectively kill cancer cells with elevated transformation-

induced oxidative stress levels (Raj et al. 2011). Combining application of these small 

molecules with inhibitors of miR-17~92 might therefore even be more specific in killing 

cancer cells and could result in less toxic side effects through combinatory therapy. 

Genetic modifiers are likely to contribute to the synthetic lethal interactions 

The fact that the miR-17~92/p53 synthetic lethal interaction depends on the genetic 

background (Figure 4.22 and Figure 4.23), opens up more questions about the molecular basis 

and mechanism of this synthetic lethality. 

 

A possible explanation for the dependency of the synthetic lethal interaction seen in 

DKO; p53KO; miR-17~92KO mice on the genetic background, might be the involvement of 

genetic modifiers, such as single nucleotide polymorphisms (SNPs), a polymorphism 

involving an amino acid change, or variants of enhancer regions in the different breeding 

pairs. Potentially, those modifiers might contribute to the synthetic lethal phenotype by 

influencing pathways involved in the synthetic lethality, such as the p53 or Rb1 pathway. 

However, the precise mechanism of their involvement remains unclear. 

A possible model for the synthetic lethal phenotype involves accumulation of 
various stress levels 

Taken together our data, we suggest a possible model where intra- and extracellular 

stress levels contribute to the synthetic lethal phenotype. Stress in form of oncogenic stress, 

DNA damage, and ROS accumulation might gradually increase stress levels up to a point 

where additional loss of p53 can no longer be tolerated by the cell, leading to cell death. 

Genetic modifiers are thereby likely to play an important role in defining the lethal threshold 

of the stress gradient leading to the synthetic lethal phenotype we could observe in the context 

of loss of either Dicer1/p53 and miR-17~92/p53 (Figure 5.1). 
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Figure 5.1: Model proposition for contribution of various stress levels to the synthetic lethal phenotype. 
Various forms of intra- and extracellular stress such as oncogenic stress, DNA damage, and ROS accumulation 
might gradually contribute to a level of stress which is not tolerable by the cell anymore upon additional loss of 
p53. Additionally, genetic modifiers are likely to play an important role in modifying the lethal threshold of the 
stress gradient (lethal stress level for variant A vs. variant B) and might be another trigger to initiate the synthetic 
lethal effect. Whereas variant B of the genetic modifier might have a lethal effect in the context of simultaneous 
loss of Rb1, Dicer1 (or miR-17~92), and p53, variant A might increase the stress threshold to tolerable, non-
lethal levels and mutant cells might still survive. 

5.6 Clinical relevance and future perspectives 

Collectively, our findings provide new insights into the important role of Dicer1 and 

the miRNA pathway in tumorigenesis. We show that inhibition of miR-17/20a could be 

explored as a highly selective therapeutic target for retinoblastoma treatment and suggest 

further development and optimization of miR-17/20a inhibitors. Although further studies have 

to validate whether the Dicer1/p53 synthetic lethal interaction also occurs in other cancer 

types, our study raises the possibility that targeting miRNAs that function as synthetic lethal 

partners with p53 may represent a new avenue of research in cancer prevention and therapy. 

 

Inhibition of miRNAs as therapeutic intervention was already shown to be very 

valuable and efficient in treating diseases. One example is the well-studied and highly 

abundant miRNA miR-122, of which in vivo inhibition was evaluated in mice and in non-

human primates (Krutzfeldt et al. 2005, Elmen et al. 2008). In mice, an inhibitor against 

miR-122 was successfully administered by intravenous injection in form of an "antagomiR" – 
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a chemically modified, cholesterol-conjugated single-stranded RNA analogue complementary 

to a specific miRNA. The levels of miR-122 were not only undetectable after injection, but 

the inhibition was also long lasting since no miR-122 was detectable for as long as 23 days 

after injection. Additionally it was shown, that these inhibitors were also miRNA specific and 

that even prolonged treatment showed no apparent toxic side effects as measured by 

alterations in body weight or serum markers of liver toxicity. Most importantly, inhibition of 

miR-122, which target genes play an important role in cholesterol biosynthesis, also had a 

functional effect in mice treated with this inhibitor, as cholesterol levels in those mice were 

decreased for at least two weeks (Krutzfeldt et al. 2005). An inhibitor against miR-122 is 

already in Phase II of clinical trials (Santaris Pharma A/S). 

 

In the case of retinoblastoma, sub-conjunctival injection of molecules that inhibit 

miRNAs could be used for treatment. By avoiding systemic exposure to those miRNA 

inhibitors, potential side effects of such a treatment in other tissue or organs should further be 

minimized. 
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6. Materials and Methods 

6.1 Mouse strains and genotyping 

All animal experiments were performed in accordance with the guidelines of the 

University of Leuven Animal Care and Use Ethical Committee. All mouse strains were 

maintained on a mixed genetic background. 

6.1.1 Genotyping 

Table 6.1: Genotyping strategies. 
Transgene Chx10Cre Dicer1 lox miR-17~92 lox p107 KO p53 lox Rb1 lox 

    
          

Primer sequence 1 GGGCACCTGGG
ACCAACTTCACG
A 

ATTGTTACCAGCG
CTTAGAATTCC 

TCGAGTATCTGACAA
TGTGG 

TGTCCTGAGCAT
GAACAGAC 

AAGGGGTATGA
GGGACAAGG 

GGCGTGTGCC
ATCAATG 

Primer sequence 2 CGGCGGCGGTC
ACGAACTCC 

GGGAGGAGGTGTA
CGTCTACAATT 

TAGCCAGAAGTTCCA
AATTGG 

TCGCTGGCAGT
CTGAGTCAG 

GAAGACAGAAA
AGGGGAGGG 

AACTCAAGGG
AGACCTG 

Primer sequence 3  - TCGGAATAGGAAC
TTCGTTTAAAC 

 - ACGAGACTAGT
GAGACGTGC 

CACAAAAACAG
GTTAAACCCAG 

 - 

Amount of DNA [µl] 1.5 1.5 1.5 2 0.5 1.5 
5µl of 5M betaine yes no no yes yes yes 
              

PCR program:             
Temperature 1 [°C] 94 94 94 94 94 94 
Time 1 [sec] 240 300 180 120 240 120 
              
Temperature 2 [°C] 94 94 94 92 94 92 
Time 2 [sec] 60 60 30 60 60 60 
Temperature 3 [°C] 60 60 53 60 60 60 
Time 3 [sec] 60 60 30 120 60 120 
Temperature 4 [°C] 72 72 72 72 72 72 
Time 4 [sec] 60 60 60 120 60 120 
              

Number of cycles 
for steps 2-4 32 35 35 30 32 30 

              

Temperature 5 [°C] - - 72 - - - 
Time 5 [sec] - - 120 - - - 
              

Size WT band [bp] - 560 255 300 430 650 
Size mutant band [bp] 800 760 289 370 580 720 
Size excised band [bp] - 430 - - 610 - 

Mouse described in  Rowan and 
Cepko 2004 

 Murchison et 
al. 2005 

 Ventura et al. 
2008 

 Zhang et al. 
2004b 

 Jonkers et 
al. 2001 

 Zhang et al. 
2004b 
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Genomic DNA was isolated by lysing 1 or 2 toes of the mouse subjected to 

genotyping in 100µl DirectPCR Tail Lysis reagent (Viagen Biotech, #101-T) containing 

0.2mg/ml Proteinase K. If possible, toes were collected between P5 and P15. Lysis was done 

by incubating the samples for 13h at 55 °C in a PCR heating block. Samples were heat-

inactivated for 45 min at 85 °C. The PCR reactions were carried out using a Taq PCR core kit 

(Qiagen, #201225) and contained: 

Volume of DNA as specified in Table 6.1 

2.5µl 10x PCR buffer 

Volume of 5M betaine as specified in Table 6.1 

0.5µl dNTPs (10mM each) 

0.5µl primer 1 (100µM) 

0.5µl primer 2 (100µM), if primer 3 was also used, volume was 0.25µl 

0.25µl primer 3 (100µM), if necessary 

0.125µl Taq DNA polymerase (5 U/µl) 

DNase/RNase free destilled water to 25µl final volume 

 

The resulting PCR products were visualized using a QIAxcel multicapillary 

electrophoresis system (Qiagen). Sizes of the individual PCR products are indicated in Table 

6.1. 

6.2 Mouse handling 

6.2.1 Tumor monitoring 

All mice presented in a Kaplan-Meier curve were weekly screened for appearance of 

visible retinoblastoma in both eyes. As soon as a white cluster of tumor cells was apparent 

with the unaided eye in the anterior chamber of the eye, the mouse was classified as tumor-

bearing animal (see also Figure 6.1 for representative examples of different retinoblastoma 

stages). In rare cases of tumor incidents, white spots of tumor cells were absent in the anterior 

chamber. Instead, the vitreous cavity behind the lens was visibly filled with white tumor 

tissue and the eyes had a swollen appearance. 
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Figure 6.1: Tumor appearance in two representative DKO; p53KO littermate mice. 
Two Chx10Cre; Rb1lox/lox; p107-/-; p53lox/lox (DKO; p53KO) littermate mice at the age of P81 at different stages 
of retinoblastoma. (A) Early stage of retinoblastoma 9 days after tumor detection. A white cluster of tumor cells 
is clearly visible underneath the cornea in the anterior chamber. (B) Late stage of retinoblastoma 24 days after 
tumor detection. Tumor cells invaded most of the anterior chamber and the overall size of the eye is therefore 
increased as well. At this stage blood vessel formation is necessary for the tumor to grow (red tissue in the 
middle of the eye). 

6.2.2 BrdU injections 

Mice were injected intraperitoneally with BrdU (100 µg/g of body weight) 1 hour 

prior to sacrifice. 

6.3 Histology 

6.3.1 Immunohistochemistry 

After enucleation, the eyes were fixed overnight in 4% paraformaldehyde/PBS, 

dehydrated (1 h incubation in each 70% EtOH, 90% EtOH, and 100% EtOH) and immersed 

in 1-Butanol for 2x 1 h (all steps at room temperature) and 3 - 3.5 h in liquid paraffin at 

65 °C. Eyes were paraffin embedded with the optic nerve parallel to the sectioning plane and 

stored at +4 °C overnight prior to sectioning. 5 µm sections were either used for 

Haematoxylin & Eosin (H&E) or further deparaffinized with xylene (2x 5 min) and stepwise 

rehydrated with 100%, 95%, 70%, and 30% EtOH. Each step was performed 2x for 3 min 

each. Samples were then rinsed in tap water, incubated in PBS (pH 7.4) for 5 min, and rinsed 

in ddH2O. The antigens were unmasked by cooking for 20 min in R-buffer A (PickCell 

Laboratories) using a 2100 Retriever (PickCell Laboratories) and cooled down for 100 min. 

Sections were incubated twice for 5 min in PBS before they were either used for 

immunoperoxidase staining or immunofluorescence. 
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Immunoperoxidase staining 

For blocking the endogenous peroxidase activity, sections were incubated in DAKO 

REAL Peroxidase-blocking solution (DAKO, S2023) for 20 min. Additionally, the samples 

were blocked for 30 min with 5% goat serum in DAKO antibody diluent (DAKO, S2022). 

For overnight incubation in a humidified chamber at +4 °C, each antibody was diluted to the 

appropriate concentration with the blocking solution (see Table 6.3). After washing the 

specimen twice with PBS for 5 min, each secondary antibody was used in the appropriate 

dilution in DAKO antibody diluent for an incubation of 1 h at RT. To increase the sensitivity 

of detection of the Chx10, GFP, and Ki67 antigens, the slides were additionally incubated 

with the R.T.U. Vectastain Elite ABC Kit (Vector Laboratories, PK-7200). For detection, the 

DAB Substrate kit (BD Pharmingen, 550880) was used. To visualize the nuclei, the sections 

were briefly counterstained with haematoxylin solution, dehydrated, mounted and finally 

pictures were taken as described for the H&E staining. 

Table 6.2: Antibodies and their dilutions used for immunoperoxidase stainings. 

Antigen Primary antibody Secondary antibody

Company
(catalog ID) Dilution Company

(catalog ID) Dilution

BrdU BD Pharmingen
(550803) 1/10 BD Pharmingen

(550803)
according to 
manual

Ki67 DAKO Cytomation
(M7249) 1/30 DAKO Cytomation

(E0468) 1/300

Chx10 Exalpha biologicals
(X1180P) 1/300 Calbiochem

(JA1310) 1/500

GFP Santa Cruz
(9996) 1/300 DAKO Cytomation

(E0433) 1/500

Syntaxin Sigma
(S0664) 1/20 000 DAKO Cytomation

(K4000)
according to 
manual

Calretinin Millipore
(MAB1568) 1/700 DAKO Cytomation

(K4000)
according to 
manual

Calbindin Abcam
(9481-500) 1/100 DAKO Cytomation

(K4000)
according to 
manual

Cleaved Caspase-3 Cell Signalling
(9664) 1/100 DAKO Cytomation

(K4002)
according to 
manual
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Immunofluorescence 

Sections were blocked for 30 min with 5% goat serum in DAKO antibody diluent 

(DAKO, S2022). For overnight incubation in a humidified chamber at +4 °C, each antibody 

was diluted to the appropriate concentration with the blocking solution (see Table 6.3). After 

washing the specimen twice with PBS for 5 min, each secondary antibody was used in the 

appropriate dilution in DAKO antibody diluent for an incubation of 45 min at RT in the dark. 

The secondary antibodies were removed by washing 3x with PBS. Sections were then 

mounted with mounting medium containing DAPI staining solution (Vectashield) and stored 

at -20 °C until pictures were taken with the Nikon A1 confocal microscope. 

Table 6.3: Antibodies and their dilutions used for immunofluorescence. 

Antigen Primary antibody Secondary antibody

Company
(catalog ID) Dilution

Reactivity and 
fluorochrome
(company)

Dilution

GFP Santa Cruz
(9996) 1/300 anti-mouse Alexa

Fluor-555 (Invitrogen) 1/1000

Cleaved Caspase-3 Cell Signalling
(9664) 1/100 anti-mouse Alexa

Fluor-488 (Invitrogen) 1/1000
 

Haematoxylin & Eosin (H&E) staining 

The 5 µm sections were deparaffinized with xylene (2x 5 min) and stepwise 

rehydrated with 100%, 90%, 70% EtOH, and distilled water. Each step was performed 2x for 

1 min each. The tissues were then stained with haematoxylin solution for 8 min, rinsed with 

water and stained with Eosin for 2 min. To remove all the water from the tissue, sections were 

stepwise dehydrated in each 70% EtOH, 90% EtOH, 100% EtOH, and xylene. Each step was 

performed 2x for 1 min. After mounting with DPX (Fluka Biochemica, 44581) pictures were 

acquired using an Olympus BX51 microscope. 

6.3.2 Alkaline phosphatase (AP) staining 

Dissected retinae (method described in Donovan and Dyer 2006) were fixed for 1h in 

4% paraformaldehyde/PBS on ice or at +4 °C. To heat-inactivate the intrinsic, non-specific 

alkaline phosphatase activity, retinae were incubated at 65 °C for 30 min in PBS. After 

cooling down samples were rinsed once in AP detection buffer (100 mM Tris pH 9.5, 50 mM 

MgCl2, 100 mM NaCl) before developing in 4-Nitro blue tetrazolium chloride/5-Bromo-4-
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chloro-3-indolyl-phosphate (NBT/BCIP Ready-to-Use tablets, Roche) for 4h. Stained retinae 

were embedded in 4% agarose/PBS and 40µm sections were analyzed. 

 

When performing whole mount AP staining on mouse embryos at different embryonic 

stages, the above mentioned protocol was used up to the development in NBT/BCIP solution. 

Instead of 4 h, the embryos were stained overnight in NBT/BCIP solution, rinsed twice in 

PBS and directly analyzed by light microscopy or further treated for immunofluorescence 

analysis as described in 6.3.1. For immunofluorescence stainings of the embryos, the whole 

embryo (more specifically the upper half, the lower half was used for genotyping) was used 

for fixation, dehydration, and paraffin-embedding instead of enucleation of the eyes. 

6.4 Cell sorting and FACS analysis 

Freshly dissected retinae were washed with prewarmed PBS (without Ca2+ and without 

Mg2+) and resuspended in 200µl PBS. After adding 20µl of 100x trypsin stock (10 mg/ml in 

1x PBS, Sigma), cells were incubated for 5 min at 37 °C and several times carefully inverted 

in an eppendorf tube. After the incubation, the tubes were carefully flicked to dissociate the 

cells more easily. After another incubation time of 2-4 minutes at 37 °C, cells were again 

carefully flicked in the eppendorf tubes to generate a single cell suspension. To stop the 

digestion process and remove DNA agglutination, 20 µl of 100x soybean trypsin inhibitor 

stock (10 mg/ml in 1x PBS, Sigma) and 20µl of 100x DNaseI stock (2 mg/ml in 1x PBS, 

Sigma), respectively, were added to the cell suspension and the tubes were carefully flicked. 

After 5 min incubation at 37 °C, 500µl of 1x PBS were added and the suspension was filtered 

using a 70µm cell strainer (BD Biosciences). The filtered flowthrough was put on ice and the 

resulting retinal cell suspensions were directly analyzed using a BD FACSCanto II flow 

cytometer (BD Biosciences) or sorted for GFP-positivity using a FACSVantage cytometer 

(BD Biosciences). 

6.5 Recombination analysis 

DNA was isolated from dissected retinae and isolated tumors using DNeasy Blood & 

Tissue Kit (Qiagen). Dicer1 recombination was analyzed by PCR using the following 

primers: (a) 5’-ATTGTTACCAGCGCTTAGAATTCC; (c) 5‘-TCGGAAT 

AGGAACTTCGTTTAAAC and the reverse (b) primer 

5’-GGGAGGTGTACGTCTACAATT. Tp53 recombination was analyzed by PCR using the 
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following primers:  (d) 5’-CACAAAAACAGGTTAAACCCAG and the reverse primers (f) 

5’-AGCACATAGGAGGCAGAGAC and (e) 5’-GAAGACAGAAAAGGGGAGGG. PCR 

conditions were as follow: 1x precycle at 94°C for 3min and 30cycles of 94°C, 30sec; 60°C, 

30sec; 72°C, 45sec. 

6.6 Retinoblastoma tumor samples and RNA isolation 

Immediately following enucleation, dissected retinae or tumor samples were removed 

from the mouse eyes under the binocular using forceps. The specimens were placed on ice 

and immediately processed for RNA or DNA isolation. Before tumor samples were collected 

from human retinoblastoma samples, serial cryosections where obtained from all tumors. The 

first and last cryosection of each series were H & E stained for tumor cell content verification. 

3 - 5 mm3 samples were placed on ice and immediately processed for RNA and DNA 

isolation. Total RNA and genomic DNA were isolated using the miRNeasy kit (Qiagen) and 

the QIAmp mini kit (Qiagen), respectively, according to manufacturer's instructions. Written 

informed consent was obtained from patients and/or their parents. All procedures have been 

approved by the Institutional Review Board of the Children’s University Hospital of Essen. 

6.7 microRNA expression analyses 

For human samples, miRNA expression profiling was performed as described in 

Mestdagh et al. 2008. For murine samples, 60 ng of total RNA was reverse transcribed using 

the murine stem-loop megaplex pool A and B followed by limited cycle pre-amplification 

(Applied Biosystems). Expression of 430 human and 509 murine miRNAs was profiled using 

Taqman miRNA assays on a 7900HT detection system (Applied Biosystems). Data were 

normalized using the global mean (Mestdagh et al. 2009). miRNA expression data are 

available as RDML-files upon request (Lefever et al. 2009). Differentially expressed miRNAs 

were identified using the Mann-Whitney test followed by multiple testing correction 

according to the Benjamini-Hochberg algorithm. Hierarchical clustering was performed using 

method Ward and distance Manhattan. All statistical analyses were performed using R 

Bioconductor software. 
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6.8 Array-comparative genomic hybridization (array CGH) 

Samples were profiled on a custom designed 44K/60K array (Agilent Technologies) 

enriched for miRNA and T-UCR regions and regions around cancer gene census genes. 

Utilizing random prime labeling (BioPrime ArrayCGH Genomic Labeling System, 

Invitrogen), 150 ng of test and control DNA (DNA from an EBV cell line if cell lines were 

tested or male control DNA, Promega if tumor samples were tested) was labeled with Cy3 

and Cy5 dyes (GE healthcare). Slides were scanned using an Agilent scanner (Agilent 

Technologies) and an in-house developed visualization software program called 

arrayCGHbase (http://medgen.ugent.be/arrayCGHbase) was used for analysis (Menten et al. 

2005). Array CGH profiles were evaluated by using the circular binary segmentation (CBS) 

algorithm. 

6.9 Cell culture and inhibition of miRNAs 

Retinoblastoma cell lines Weri and Y79 were authenticated by DNA fingerprinting 

(DMSZ, Braunschweig, Germany). Cells were cultured in suspension in Dulbecco's Modified 

Eagles Medium (DMEM) (Invitrogen), containing 15% FCS, Penicillin/Streptomycin, 4 mM 

L-Glutamin, 50 µM ß-Mercaptoethanol and 0.1% Insulin (all from Invitrogen). 1,5x 104 Weri 

and Y79 cells/well were seeded on 24-well plates and transfected with 25 pmol of specific 

antagomiRNAs or scrambled Cy3-labelled control oligos (Ambion) using siPORT NeoFX 

Transfection Agent (Ambion) according to the manufacturers recommendations. 

CellTiter-Glo Luminescence Cell Viability Assay was adapted from manufacturer's 

recommendation. Briefly, 30 µl of cell culture medium containing cells were transferred in an 

opaque-walled 96-well plate and equilibrated at room temperature for 30 min. An equivalent 

amount (30 µl) of CellTiter-Glo reagent was added to each well, mixed and incubated for 

10 min before reading luminescence. 
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Supplementary tables 

Table S 1: Differential miRNA expression in DKO; p53KO mouse tumors compared to normal WT and 
DKO retina. 

miRNA 

Tumor vs. normal WT retina Tumor vs. DKO retina 

fold change p value fold change p value 

let-7a 0.7343 0.2731 0.8951 0.6916 
let-7a* 5.5008 0.0196 5.4160 0.0219 
let-7b 3.5353 0.0104 2.7801 0.0444 
let-7c 3.3595 0.0292 2.4385 0.0688 
let-7c-1* 4.7413 0.1266 3.8934 0.1699 
let-7d 1.2341 0.2978 1.1728 0.4568 
let-7d* 0.3691 0.0889 0.5310 0.1190 
let-7e 1.2841 0.1645 1.3964 0.1413 
let-7f 0.9447 0.7769 1.0098 0.9756 
let-7g 1.1351 0.3763 1.3151 0.2585 
let-7g* 2.6332 0.1036 4.1443 0.0723 
let-7i 1.9470 0.0480 1.3034 0.2393 
let-7i* 1.3935 0.5647 2.1864 0.2727 
miR-1 0.7931 0.8285 0.9531 0.9756 
miR-100 2.1246 0.2997 1.6061 0.5144 
miR-101  2.4264 0.0290 2.8409 0.1323 
miR-101b 2.2882 0.0312 2.5512 0.1502 
miR-103 1.3049 0.3953 1.1150 0.7553 
miR-106a 51.8873 0.0092 22.4349 0.0444 
miR-106b 6.4755 0.0088 5.2269 0.0372 
miR-106b* 9.8449 0.0057 7.6453 0.0937 
miR-107 0.5165 0.0760 0.4898 0.0747 
miR-10a 3.0074 0.1099 3.0074 0.1206 
miR-122 2.4119 0.0683 1.8763 0.1940 
miR-124* 0.3852 0.0930 2.1835 0.2348 
miR-124a  0.2011 0.0131 0.4223 0.0905 
miR-125a-3p 0.9347 0.8680 0.8781 0.7553 
miR-125a-5p 1.5965 0.0813 1.3909 0.1699 
miR-125b  1.0885 0.8860 0.8184 0.7691 
miR-125b-1* 1.7703 0.4574 0.8311 0.8301 
miR-125b* 5.2976 0.0623 4.6258 0.0846 
miR-126  2.6622 0.0292 4.8792 0.0442 
miR-126* 1.8118 0.0889 3.2637 0.0487 
miR-127 0.7214 0.4563 0.7071 0.5144 
miR-127-5p 0.6506 0.3709 1.0578 0.9399 
miR-128a 0.6823 0.3889 0.6545 0.3985 
miR-129  0.1129 0.0091 0.1619 0.0318 
miR-129-3p 0.0960 0.1318 0.1375 0.1847 
miR-130a 1.7142 0.0092 1.9926 0.0083 
miR-130b 0.5842 0.2181 0.7669 0.5459 
miR-130b* 0.6481 0.3506 0.9290 0.8843 
miR-132 1.6104 0.0719 1.9958 0.0450 
miR-133a  1.2096 0.8576 1.3416 0.7846 
miR-133b 0.8194 0.8168 0.9131 0.9271 
miR-134 2.5336 0.0828 2.1828 0.1324 
miR-135a 0.9470 0.8970 0.7118 0.5144 
miR-135b 2.6951 0.0569 2.0552 0.1018 
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miR-136 1.4548 0.3691 1.8247 0.3394 
miR-136* 0.8886 0.8697 1.1953 0.8465 
miR-137 4.2927 0.0293 3.8413 0.0625 
miR-138 0.7746 0.4041 0.7345 0.3998 
miR-138* 1.0670 0.8970 1.2778 0.6890 
miR-139-5p 0.9318 0.8680 0.7975 0.6584 
miR-140 2.7350 0.1081 3.0591 0.0936 
miR-140-3p  2.7475 0.1102 3.5982 0.0819 
miR-141 1.9100 0.2255 1.9100 0.2420 
miR-141* 0.7391 0.3384 0.8206 0.3060 
miR-142-3p 16.5844 0.0092 4.8252 0.0492 
miR-142-5p 1.7644 0.2518 1.7644 0.2682 
miR-143 0.9446 0.8674 1.9855 0.2727 
miR-145 0.8744 0.4370 2.0195 0.2727 
miR-146a 11.1182 0.0022 3.3848 0.1699 
miR-146b 7.6094 0.0257 3.4858 0.1569 
miR-146b* 5.4212 0.0341 3.3572 0.2727 
miR-148a 1.4194 0.1722 1.5505 0.1702 
miR-148b 0.4966 0.0192 0.7019 0.2607 
miR-149 1.4135 0.5537 1.0701 0.9271 
miR-150 1.0775 0.8500 1.6054 0.4218 
miR-151 1.4434 0.1206 1.9562 0.0450 
miR-152 1.8558 0.0773 2.1003 0.0759 
miR-153 0.9731 0.9182 1.0123 0.9756 
miR-154 0.4132 0.3501 0.2693 0.0487 
miR-154* 1.4639 0.3501 1.4097 0.4255 
miR-155 5.9336 0.0151 5.0468 0.1346 
miR-15a 0.7947 0.3656 1.5964 0.1408 
miR-15a* 6.4584 0.0151 7.1785 0.0330 
miR-15b 5.4531 0.0425 4.6019 0.1193 
miR-15b* 63.1923 0.0049 54.2893 0.0715 
miR-16 3.0333 0.0311 5.1577 0.0219 
miR-16* 33.0051 0.0049 18.2245 0.0688 
miR-17 47.5831 0.0030 21.5527 0.0487 
miR-17* 7.0508 0.0284 11.1288 0.0219 
miR-181a 0.3894 0.0339 0.3790 0.0450 
miR-181c 0.5412 0.1498 0.5453 0.1699 
miR-182 0.0483 0.1722 0.2757 0.5144 
miR-183 0.0159 0.1133 0.1063 0.2980 
miR-183* 0.0554 0.1909 0.2661 0.5144 
miR-184 0.7025 0.5190 0.7095 0.5857 
miR-185 1.2938 0.2188 1.0978 0.6645 
miR-186 7.4941 0.0022 6.9527 0.0083 
miR-186* 8.5333 0.0151 9.9962 0.0167 
miR-187 1.0276 0.9802 1.0086 0.9939 
miR-188-5p 0.6680 0.4695 1.0183 0.9777 
miR-18a 72.2779 0.0028 20.7957 0.0865 
miR-18a* 7.4614 0.0233 5.8501 0.0318 
miR-190 0.6081 0.4563 0.6424 0.6159 
miR-190b 1.5011 0.8680 1.8966 0.8139 
miR-191 1.5178 0.0030 2.7368 0.0010 
miR-191* 1.0336 0.8168 1.8957 0.0318 
miR-192 2.6147 0.0343 2.8721 0.0703 
miR-193* 1.1542 0.8185 1.4449 0.6211 
miR-193a-3p  3.3841 0.1265 2.5587 0.2219 
miR-193b 2.2055 0.1048 1.3331 0.4568 
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miR-194 1.5270 0.1767 1.6877 0.2391 
miR-195 3.3628 0.0074 2.8812 0.0219 
miR-197 1.1711 0.4563 1.1711 0.5144 
miR-199a-3p 3.2913 0.0929 3.0768 0.1047 
miR-199b 2.0387 0.1778 2.4026 0.1413 
miR-19a 9.9279 0.0102 13.1885 0.0219 
miR-19a* 1.6706 0.1909 1.6706 0.2085 
miR-19b 10.9491 0.0092 13.9927 0.0219 
miR-200b 2.7644 0.2997 2.7644 0.3223 
miR-200c 1.5509 0.3311 1.5509 0.3582 
miR-202 1.3503 0.5042 1.2619 0.6645 
miR-203* 1.5630 0.2250 1.5630 0.2415 
miR-204 0.7206 0.3078 0.7933 0.5522 
miR-205 15.4544 0.0312 10.8745 0.0450 
miR-206 0.2143 0.1318 0.2207 0.1413 
miR-20a 36.4913 0.0094 14.1815 0.0825 
miR-20a* 12.6451 0.0311 12.6451 0.0450 
miR-20b 45.1042 0.0098 17.6974 0.0723 
miR-21 1.5302 0.2411 2.1148 0.0980 
miR-21* 2.1784 0.2736 2.1784 0.2893 
miR-210 1.0680 0.8680 1.8984 0.1526 
miR-211 0.1019 0.0027 0.1843 0.1482 
miR-212 2.0953 0.1217 2.9297 0.0326 
miR-214  1.2490 0.3384 1.2490 0.3688 
miR-214* 6.4445 0.0871 8.7361 0.0864 
miR-215 5.7968 0.0574 5.7727 0.0219 
miR-216b 0.4490 0.7461 0.4562 0.7643 
miR-217 0.9178 0.9331 1.0956 0.9554 
miR-218 3.3595 0.1235 4.3838 0.1120 
miR-218-1* 1.2168 0.2997 1.0399 0.8565 
miR-218-2* 5.3945 0.1267 5.3945 0.1413 
miR-22 0.7261 0.2432 1.4681 0.5497 
miR-22* 0.4397 0.0533 0.7141 0.5176 
miR-221 1.4396 0.4041 1.0983 0.8579 
miR-222 8.2335 0.0025 5.7609 0.0220 
miR-224 1.6168 0.1281 2.4240 0.2832 
miR-23b 0.5494 0.1318 0.5913 0.1847 
miR-24 2.9351 0.0049 3.0090 0.0318 
miR-24-2* 8.2626 0.0098 7.3800 0.0219 
miR-25 3.3014 0.0092 3.9535 0.1474 
miR-26a 0.9554 0.8680 1.1221 0.7553 
miR-26b 0.6224 0.1874 1.3837 0.3910 
miR-26b* 1.5731 0.1645 2.5132 0.0300 
miR-27a 2.1282 0.0292 1.8542 0.0860 
miR-27a* 14.5024 0.0106 8.4701 0.0457 
miR-27b 0.5640 0.2101 0.7368 0.4947 
miR-27b* 2.0195 0.1909 3.2211 0.0898 
miR-28 2.5363 0.0117 2.1815 0.0219 
miR-28* 3.3344 0.0103 2.6166 0.0937 
miR-292-3p 0.7568 0.4627 1.4678 0.2892 
miR-294 0.2846 0.0250 0.4608 0.4454 
miR-296  0.5796 0.3397 0.5533 0.3365 
miR-296-3p 2.7937 0.1417 2.7396 0.1569 
miR-297a* 1.9717 0.1133 2.0102 0.1205 
miR-298 4.0789 0.1011 2.6628 0.2099 
miR-29a 1.1064 0.8649 1.0470 0.9615 
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miR-29a* 0.9828 0.9757 1.1067 0.9208 
miR-29b 0.5328 0.3384 0.6453 0.6137 
miR-29b* 1.1289 0.4044 1.1197 0.6893 
miR-29c* 0.6357 0.3501 1.2751 0.7094 
miR-300* 0.7057 0.4281 0.8751 0.8465 
miR-301  4.1720 0.0250 4.1757 0.0372 
miR-301b 3.7319 0.0256 3.8783 0.0330 
miR-30a-3p 1.1817 0.5681 1.5120 0.2099 
miR-30a-5p 0.7641 0.3703 1.1129 0.7934 
miR-30b* 0.7432 0.2334 1.5592 0.3985 
miR-30c 1.1867 0.3852 1.7333 0.1271 
miR-30c-2* 0.2883 0.3703 0.6800 0.7794 
miR-30d 0.7540 0.2660 0.9910 0.9777 
miR-30e 1.0462 0.8016 1.6850 0.1738 
miR-30e-3p 1.3122 0.2997 1.7629 0.0905 
miR-31 1.2583 0.3397 0.8821 0.7352 
miR-31* 1.3022 0.3622 0.9979 0.9924 
miR-32 1.9687 0.1281 2.7879 0.0833 
miR-320 1.6826 0.1217 1.5497 0.1699 
miR-322* 3.1865 0.0588 4.0280 0.0487 
miR-323-3p 1.3858 0.3116 1.1266 0.7191 
miR-324-3p 1.6934 0.1513 1.3461 0.3743 
miR-324-5p 1.3863 0.3709 1.3679 0.4275 
miR-326 1.3396 0.4122 1.0486 0.6903 
miR-328 0.4018 0.1217 0.3415 0.1011 
miR-329 0.3920 0.0196 0.3923 0.0219 
miR-330 0.3767 0.0476 0.4108 0.0860 
miR-330-5p 0.2085 0.0211 0.2448 0.0689 
miR-331  1.2152 0.3953 1.1564 0.5555 
miR-331-5p 1.3294 0.2010 1.0971 0.4338 
miR-335  0.3479 0.0915 0.6024 0.3636 
miR-335* 0.4924 0.0813 1.1274 0.7268 
miR-337-3p 0.9226 0.7470 0.9876 0.9777 
miR-337-5p 1.1359 0.5503 0.9754 0.9423 
miR-338-3p 1.2643 0.4811 1.0472 0.9271 
miR-339-3p 1.5126 0.1059 3.0514 0.0219 
miR-339-5p 0.7180 0.1998 0.9097 0.7143 
miR-33a*  2.5816 0.0468 3.9783 0.0372 
miR-340  3.1883 0.0716 3.0848 0.0833 
miR-340* 2.6673 0.0682 2.6100 0.0763 
miR-342-3p 3.9970 0.0174 3.7537 0.0219 
miR-342-5p 2.5007 0.0667 2.4875 0.0817 
miR-344 1.6552 0.1761 1.2855 0.4487 
miR-345-3p 0.9222 0.8285 1.1359 0.7643 
miR-345-5p 0.6874 0.2997 0.9324 0.8465 
miR-34b-3p 10.5575 0.0012 5.1247 0.0833 
miR-34b-5p 7.0634 0.0022 3.8219 0.0083 
miR-34c 5.7071 0.0049 2.6295 0.0487 
miR-34c* 3.7234 0.0049 3.3042 0.0444 
miR-350 2.2071 0.0293 2.0651 0.0819 
miR-361 0.5523 0.0656 0.5858 0.1214 
miR-362-3p 0.6335 0.0374 1.1960 0.7203 
miR-362-5p 2.2219 0.0912 2.7138 0.0450 
miR-365 0.8246 0.5950 0.7838 0.6083 
miR-369-3p 0.8199 0.6528 0.6843 0.4192 
miR-369-5p 0.6617 0.3361 0.5250 0.2043 
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miR-370 1.7933 0.1722 1.4955 0.3212 
miR-374-5p 14.9008 0.0027 18.4684 0.0083 
miR-375 0.0266 0.0467 0.0307 0.0487 
miR-376a 1.3294 0.5299 1.2748 0.6645 
miR-376a* 1.4886 0.3292 1.7458 0.3626 
miR-376b 1.6428 0.3687 1.2536 0.7136 
miR-376b* 1.5275 0.3501 1.6135 0.3985 
miR-376c 4.8004 0.0250 4.8834 0.0300 
miR-379 2.5920 0.0293 2.1666 0.0457 
miR-380-5p 1.8584 0.0683 1.8048 0.1413 
miR-381 0.8404 0.7837 0.8379 0.7934 
miR-382 0.6801 0.3775 0.6645 0.4057 
miR-383 0.6043 0.5705 0.6580 0.6926 
miR-384-3p 0.8303 0.4775 0.7495 0.5145 
miR-384-5p 1.2635 0.3564 1.2569 0.5555 
miR-409-3p 1.6686 0.0868 1.4113 0.1879 
miR-409-5p 0.2638 0.0306 0.2331 0.0318 
miR-410 0.7411 0.4093 0.8080 0.5970 
miR-411 3.5429 0.0131 2.9358 0.0219 
miR-411* 2.4803 0.0061 2.5100 0.0450 
miR-412 0.7690 0.4695 0.7296 0.4586 
miR-423-5p 0.4878 0.2733 0.7424 0.6472 
miR-424 3.4286 0.0233 2.5949 0.0490 
miR-425 1.3858 0.1909 2.2440 0.0444 
miR-431 2.8831 0.0518 2.9146 0.1391 
miR-433 0.3933 0.1513 0.3600 0.1413 
miR-434-3p 0.9034 0.7678 0.8936 0.7826 
miR-434-5p 1.6132 0.3109 1.3946 0.4898 
miR-448 0.4229 0.1217 0.2486 0.0492 
miR-449  102.6824 0.0049 56.6108 0.0889 
miR-449b  128.9933 0.0049 44.6129 0.1167 
miR-450a  1.3816 0.1832 0.8302 0.5852 
miR-465a-3p 1.9942 0.2733 1.9942 0.2892 
miR-466d-3p 1.5854 0.2334 1.5854 0.2495 
miR-467* 1.7238 0.0365 1.9223 0.0372 
miR-467b 1.5423 0.1483 1.5060 0.0823 
miR-467c 5.2525 0.0030 3.6882 0.1018 
miR-467d 4.9590 0.0196 3.4905 0.1250 
miR-467e 1.1449 0.5450 0.9649 0.9199 
miR-470* 0.4613 0.2716 0.8217 0.7643 
miR-483* 41.7572 0.1541 16.1906 0.2749 
miR-484 2.6004 0.0049 2.2506 0.0220 
miR-485-3p 1.2244 0.4916 1.2009 0.5767 
miR-485-5p 0.7589 0.4563 0.7212 0.5522 
miR-487b 1.0686 0.9036 0.5106 0.4921 
miR-488*  2.3999 0.0574 2.0392 0.0864 
miR-489 2.2370 0.4399 2.0157 0.5522 
miR-491 1.6681 0.1217 1.5264 0.1877 
miR-493 2.2887 0.2186 2.2394 0.2421 
miR-494 1.9198 0.0656 1.4901 0.1764 
miR-495 0.7644 0.4395 0.6721 0.3743 
miR-496 0.4349 0.1244 0.3695 0.0901 
miR-497 5.1815 0.0092 2.7618 0.0901 
miR-500 0.8217 0.4250 1.0723 0.8146 
miR-501* 0.5962 0.1398 1.2069 0.6760 
miR-503 1.7119 0.1803 1.7119 0.1940 
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miR-503* 3.1265 0.0468 3.2433 0.0487 
miR-504 0.3589 0.2920 0.5071 0.5522 
miR-532  2.1214 0.0467 2.2806 0.0450 
miR-532-3p 1.7822 0.0110 1.6072 0.0318 
miR-541 2.9426 0.0772 2.4917 0.1250 
miR-542-3p 0.8553 0.4775 1.3062 0.4038 
miR-542-5p 0.9508 0.9020 1.4242 0.2543 
miR-543 0.5247 0.0872 0.4468 0.0763 
miR-544 0.3454 0.0889 0.3507 0.1413 
miR-547 2.5416 0.0884 2.2172 0.1250 
miR-551b 0.2835 0.2874 0.2770 0.2928 
miR-574-3p 2.9735 0.0074 2.5155 0.0450 
miR-582-3p 4.1656 0.0574 4.1383 0.0701 
miR-582-5p 1.3990 0.4563 1.1743 0.7553 
miR-592 2.2891 0.2716 1.7788 0.4338 
miR-598 0.4261 0.0683 0.4089 0.0888 
miR-652 0.6363 0.1941 0.7003 0.2909 
miR-665 1.7008 0.1909 1.0357 0.9554 
miR-666 0.4730 0.1166 0.4074 0.0876 
miR-667 0.7111 0.3361 0.6420 0.2585 
miR-668 0.2907 0.1786 0.2467 0.1535 
miR-669a 1.4495 0.1660 1.2224 0.4946 
miR-671-3p 1.3742 0.1434 1.3055 0.2099 
miR-672 8.9835 0.0018 4.0319 0.0763 
miR-673 2.4923 0.0209 2.0431 0.0604 
miR-673-3p 1.6356 0.3691 1.6356 0.4046 
miR-674 1.1551 0.5945 1.1184 0.7553 
miR-674* 2.2261 0.0284 2.1755 0.0282 
miR-676 1.5830 0.2887 0.9890 0.9779 
miR-676* 1.9311 0.1219 1.4014 0.3743 
miR-677 2.1661 0.0138 1.2682 0.6760 
miR-678 0.9520 0.8285 0.9243 0.7352 
miR-680 1.9958 0.1592 1.9958 0.1702 
miR-682 2.0112 0.2733 1.6844 0.4063 
miR-684 1.7926 0.2386 1.1392 0.8807 
miR-685 2.3250 0.3852 2.6443 0.3743 
miR-690 2.3387 0.0196 2.7334 0.0288 
miR-694 1.8394 0.0293 1.4077 0.0882 
miR-699 1.0298 0.8860 1.3836 0.2058 
miR-7*  2.0955 0.0574 3.1629 0.0450 
miR-700 1.1777 0.5450 1.3504 0.1346 
miR-701 8.3604 0.0161 7.5597 0.0219 
miR-702 0.2960 0.0355 0.3671 0.0860 
miR-704 0.4986 0.0761 0.6174 0.0763 
miR-706 3.3156 0.0341 3.2128 0.0487 
miR-708 1.8625 0.5470 1.6621 0.6760 
miR-709 2.4107 0.0196 2.2799 0.0330 
miR-720 3.1417 0.0463 3.1122 0.0905 
miR-721 1.0120 0.9323 1.0280 0.9271 
miR-741 1.1971 0.3564 1.1971 0.3938 
miR-744 1.4084 0.2518 1.4167 0.2607 
miR-744* 1.7295 0.2997 2.3688 0.0708 
miR-760 1.4771 0.0912 1.3503 0.0825 
miR-764-5p 0.8487 0.3703 0.7525 0.1843 
miR-770-3p 0.6794 0.2997 0.5244 0.1239 
miR-770-5p 0.2056 0.0918 0.1670 0.0846 
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miR-7b 0.6986 0.4297 0.5830 0.4129 
miR-802 0.4849 0.3775 0.6832 0.6740 
miR-804 1.8326 0.4343 2.2498 0.2274 
miR-805 7.4550 0.0110 8.3450 0.0219 
miR-872 1.3403 0.3892 2.6172 0.0779 
miR-872* 1.6538 0.1434 3.6208 0.0083 
miR-873 0.4791 0.2982 0.9641 0.9777 
miR-875-5p 0.5021 0.1206 0.8471 0.6893 
miR-877* 0.6536 0.1235 0.7066 0.2099 
miR-878-3p 1.0921 0.4641 0.7632 0.6595 
miR-879 1.1180 0.8680 1.6459 0.3582 
miR-879* 2.8325 0.0635 2.7528 0.0330 
miR-881* 1.3792 0.4641 1.3792 0.5208 
miR-9 1.1033 0.8783 0.9257 0.9271 
miR-9* 1.8695 0.4482 2.6427 0.3140 
miR-92 2.9358 0.0637 5.7739 0.0700 
miR-93 30.5877 0.0022 9.4910 0.1257 
miR-93* 7.5854 0.0018 5.8683 0.0833 
miR-96 0.0107 0.0689 0.0924 0.2099 
miR-99a 1.9748 0.3428 1.5377 0.5522 
miR-99b 0.5731 0.0281 0.6997 0.1413 
miR-99b* 2.2428 0.0199 2.2471 0.0444 
 

Table S 2: Differential miRNA expression in human tumors. 

miRNA tumor vs. normal retina 
fold change p value 

hsa-let-7a 0.3553790 0.0001386 
hsa-let-7b 0.0960455 0.0000072 
hsa-let-7c 0.0857961 0.0000072 
hsa-let-7d 0.2603711 0.0001386 
hsa-let-7e 1.0728688 0.7750257 
hsa-let-7f 0.3486576 0.0004307 
hsa-let-7g 0.2515795 0.0000072 
hsa-let-7i 0.3123420 0.0000401 
hsa-mir-1 0.0590332 0.0004940 
hsa-mir-100 0.0859554 0.0000072 
hsa-mir-101 0.3470506 0.0003348 
hsa-mir-103 2.7203751 0.0000072 
hsa-miR-105 1.5746551 0.0994383 
hsa-mir-106a 22.4668082 0.0000072 
hsa-mir-106b 10.6402635 0.0000072 
hsa-mir-10a 2.1920179 0.0461181 
hsa-mir-10b 1.3439072 0.7415661 
hsa-mir-124a 0.0900642 0.0004307 
hsa-mir-125a 0.5231962 0.0022645 
hsa-mir-125b 0.0787872 0.0000072 
hsa-miR-126 0.4573023 0.2427086 
hsa-mir-126* 0.6257817 0.2560278 
hsa-mir-127 0.0342777 0.0000072 
hsa-mir-128a 0.7824566 0.1386128 
hsa-mir-128b 0.3295381 0.0004307 
hsa-mir-129 0.2818393 0.0000072 
hsa-mir-130a 2.2543328 0.0133951 
hsa-mir-130b 21.4342907 0.0000072 
hsa-mir-132 1.4948522 0.0054634 
hsa-mir-133a 0.0436029 0.0001854 
hsa-mir-133b 0.0646316 0.0003348 
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hsa-mir-134 0.0437214 0.0000072 
hsa-mir-135a 0.6860929 0.3268279 
hsa-mir-135b 2.4677787 0.0153996 
hsa-mir-136 0.2058798 0.0000414 
hsa-mir-137 0.1190246 0.0320335 
hsa-mir-139 0.4108590 0.0013856 
hsa-mir-140 0.4407683 0.0089737 
hsa-mir-142-3p 1.0044799 0.8537212 
hsa-mir-142-5p 1.1893089 0.4895443 
hsa-mir-143 0.4121620 0.0002512 
hsa-mir-145 1.2121639 0.2697602 
hsa-mir-146a 0.6846331 0.1935018 
hsa-miR-146b 0.4938285 0.0548053 
hsa-mir-147 1.0210604 0.7262167 
hsa-mir-148a 0.4356479 0.0015263 
hsa-mir-148b 0.8043338 0.3088958 
hsa-mir-149 1.0112901 0.9077094 
hsa-mir-150 0.5041007 0.0227267 
hsa-mir-151 1.0735959 0.4655902 
hsa-mir-152 0.2517561 0.0000072 
hsa-mir-153 0.3954751 0.0117662 
hsa-mir-155 2.1348908 0.0174956 
hsa-mir-15a 2.0636355 0.0090042 
hsa-mir-15b 26.1777272 0.0000072 
hsa-mir-16 7.0069907 0.0000072 
hsa-mir-17-3p 2.9472995 0.0002512 
hsa-mir-17-5p 26.3119159 0.0004307 
hsa-mir-181a 0.4125044 0.0018715 
hsa-mir-181b 0.4559957 0.0041878 
hsa-mir-181c 0.3884647 0.0001854 
hsa-mir-181d 0.7031880 0.1270344 
hsa-mir-182 0.3523287 0.0004307 
hsa-mir-182* 0.4255779 0.0174956 
hsa-mir-183 0.5743967 0.0285932 
hsa-mir-184 0.0639815 0.0000072 
hsa-miR-185 1.5415554 0.1270344 
hsa-mir-186 1.8543890 0.0012406 
hsa-mir-187 0.4648131 0.3936791 
hsa-mir-188 0.8880624 0.7262167 
hsa-mir-189 0.1689350 0.0003023 
hsa-mir-18a 79.0815882 0.0000072 
hsa-mir-18a* 63.9114703 0.0000072 
hsa-mir-190 1.6401400 0.2889012 
hsa-mir-191 1.1047789 0.2697602 
hsa-mir-192 0.1462240 0.0000072 
hsa-mir-193a 1.1678983 0.6746585 
hsa-mir-193b 4.2090245 0.0001386 
hsa-mir-194 0.2090721 0.0000072 
hsa-mir-195 2.8573946 0.0001854 
hsa-mir-196a 16.7342353 0.0004307 
hsa-mir-196b 17.7581272 0.0004307 
hsa-mir-197 3.3116927 0.0000072 
hsa-mir-199a* 0.5500008 0.1084375 
hsa-mir-19a 6.8875133 0.0000072 
hsa-mir-19b 4.4937336 0.0000130 
hsa-mir-200b 0.4279177 0.0037847 
hsa-mir-200c 1.4157987 0.0174956 
hsa-mir-202 1.1245744 0.2636806 
hsa-mir-203 0.8355882 0.4895443 
hsa-mir-204 0.0370652 0.0000072 
hsa-mir-205 0.5367589 0.0758117 
hsa-mir-206 0.9580725 0.7750257 
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hsa-mir-20a 26.4811479 0.0000072 
hsa-mir-20b 14.1612372 0.0000072 
hsa-mir-21 0.5765650 0.0133951 
hsa-mir-210 0.9628572 0.9906034 
hsa-mir-211 0.0248280 0.0004307 
hsa-mir-213 0.4836200 0.2476658 
hsa-mir-214 1.3894380 0.1270344 
hsa-mir-216 2.3210745 0.0093918 
hsa-mir-217 7.8132242 0.0000130 
hsa-mir-218 0.2517909 0.0076255 
hsa-mir-219 0.9463152 0.9601050 
hsa-mir-22 0.0525316 0.0000072 
hsa-mir-221 1.4094766 0.5272094 
hsa-mir-222 1.0933970 0.6746585 
hsa-mir-223 0.8953460 0.8537212 
hsa-mir-224 291.8648249 0.0000072 
hsa-mir-23b 0.4200482 0.0000244 
hsa-mir-24 0.6389637 0.0490670 
hsa-mir-25 15.6401857 0.0000072 
hsa-mir-26a 0.5955367 0.0442740 
hsa-mir-26b 0.5583957 0.0320335 
hsa-mir-27a 0.3573996 0.0002512 
hsa-mir-27b 0.3622524 0.0000072 
hsa-mir-28 1.0319090 0.6477827 
hsa-mir-296 2.1351466 0.0001386 
hsa-mir-29a 0.0421722 0.0000072 
hsa-mir-29b 0.0482461 0.0002102 
hsa-mir-29c 0.0288659 0.0000072 
hsa-mir-301 7.4250278 0.0004307 
hsa-mir-302a 0.8393894 0.5682995 
hsa-mir-302b 0.6734236 0.5268989 
hsa-mir-302c 1.1932806 0.7750257 
hsa-mir-30a-3p 0.1480078 0.0000072 
hsa-mir-30a-5p 0.5313676 0.0006314 
hsa-mir-30b 0.5458853 0.0133951 
hsa-mir-30c 0.5593936 0.0039131 
hsa-mir-30d 0.7681248 0.5367022 
hsa-mir-30e-3p 0.2106057 0.0000401 
hsa-mir-31 0.0210180 0.0004307 
hsa-mir-32 1.7654894 0.0442740 
hsa-mir-320 1.1200035 0.3483077 
hsa-mir-323 0.3336934 0.0014135 
hsa-mir-324-3p 1.2634500 0.2505400 
hsa-mir-324-5p 1.9327812 0.0022645 
hsa-mir-328 0.3347539 0.0001386 
hsa-mir-329 0.0523792 0.0007761 
hsa-mir-33 0.4896823 0.0913180 
hsa-mir-330 0.0952696 0.0004307 
hsa-mir-331 1.2051349 0.0678533 
hsa-mir-335 0.3110579 0.0000649 
hsa-mir-337 0.2086231 0.0090042 
hsa-mir-338 0.9519232 0.7262167 
hsa-mir-339 0.9702796 0.9906034 
hsa-mir-340 4.3996595 0.0000401 
hsa-mir-342 1.2049924 0.2697602 
hsa-mir-345 2.2335974 0.0006314 
hsa-mir-34a 3.2932512 0.0025184 
hsa-mir-34b 2.1809079 0.0040426 
hsa-mir-34c 11.4800940 0.0004307 
hsa-mir-361 1.6448550 0.0001854 
hsa-mir-362 4.6667567 0.0000972 
hsa-mir-363 0.7669028 0.2697602 
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hsa-mir-365 3.1851319 0.0004307 
hsa-mir-367 0.7884866 0.7071706 
hsa-mir-368 0.2349716 0.0001012 
hsa-mir-369-3p 0.0275169 0.0009109 
hsa-mir-369-5p 0.0836195 0.0025184 
hsa-mir-370 0.0747683 0.0006069 
hsa-mir-371 0.4841878 0.1084375 
hsa-mir-372 0.5430670 0.0441516 
hsa-mir-373 0.9509754 0.6211617 
hsa-mir-374 1.9916325 0.0818948 
hsa-mir-375 1.2503536 0.8537212 
hsa-mir-376a 0.0768353 0.0004940 
hsa-miR-376a* 0.0968149 0.0000094 
hsa-mir-378 0.1296273 0.0000072 
hsa-mir-379 0.0395695 0.0002512 
hsa-miR-380-5p 0.0380046 0.0006955 
hsa-mir-381 0.4618507 0.0254578 
hsa-mir-382 0.0307304 0.0001797 
hsa-mir-383 0.0283853 0.0004940 
hsa-mir-409-5p 0.3510641 0.0004843 
hsa-mir-410 0.0522818 0.0012406 
hsa-mir-411 0.0505212 0.0022499 
hsa-mir-422a 0.1910191 0.0000972 
hsa-mir-422b 0.1233889 0.0005558 
hsa-mir-423 1.2842344 0.0093918 
hsa-mir-424 0.3742888 0.0262440 
hsa-mir-425 1.2801425 0.0244766 
hsa-miR-425-5p 1.6253638 0.0320335 
hsa-mir-429 0.3929063 0.0099459 
hsa-mir-432 0.0528755 0.0033238 
hsa-mir-432* 0.2765759 0.0016392 
hsa-mir-433 0.0306924 0.0003174 
hsa-mir-449 155.4346758 0.0004307 
hsa-mir-449b 16.6971009 0.0004307 
hsa-mir-451 0.4633213 0.0133951 
hsa-mir-452* 50.0864717 0.0004307 
hsa-mir-455 0.7951811 0.6211617 
hsa-miR-484 1.1778933 0.5251131 
hsa-mir-485-3p 0.1108984 0.0006314 
hsa-mir-486 5.9867152 0.0000072 
hsa-mir-487a 0.3434609 0.0000149 
hsa-mir-487b 0.0359722 0.0007474 
hsa-miR-488 0.2012242 0.0000972 
hsa-mir-489 0.3190519 0.0090042 
hsa-mir-491 0.3652790 0.0008133 
hsa-mir-493-3p 0.6859919 0.0025978 
hsa-mir-495 0.0384973 0.0007635 
hsa-mir-496 0.3300278 0.0047903 
hsa-mir-497 0.2185559 0.0007416 
hsa-mir-500 3.2597784 0.0144688 
hsa-mir-501 4.7999094 0.0040426 
hsa-mir-502 4.9972275 0.0037847 
hsa-miR-504 0.4893946 0.0158425 
hsa-mir-511 1.9985553 0.0379916 
hsa-mir-516-3p 2.6945762 0.0007761 
hsa-mir-517c 0.6986132 0.2560278 
hsa-mir-518b 0.6868402 0.2479639 
hsa-mir-520b 1.6296476 0.0251097 
hsa-mir-520c 0.7075127 0.3202043 
hsa-mir-520d 1.1469034 0.9344157 
hsa-mir-520f 1.1115869 0.9077094 
hsa-mir-520g 1.3021177 0.9077094 
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hsa-mir-524 1.4398430 0.1241732 
hsa-mir-526b* 1.0973129 1.0000000 
hsa-miR-532 3.4935996 0.0009837 
hsa-mir-539 0.0521890 0.0007761 
hsa-mir-542-3p 0.1440279 0.0012424 
hsa-mir-544 2.6205227 0.0221123 
hsa-miR-545 1.0114619 0.9077094 
hsa-miR-548a 2.0565578 0.0251097 
hsa-miR-548c 1.4529841 0.4903598 
hsa-mir-548d 67.9436778 0.0004307 
hsa-mir-550 7.7678215 0.0000072 
hsa-mir-551b 1.8929614 0.0748287 
hsa-miR-556 1.4084918 0.1016451 
hsa-mir-563 1.8360975 0.2233519 
hsa-mir-564 0.8040403 0.6903335 
hsa-mir-565 1.8602223 0.0442740 
hsa-mir-572 1.5724844 0.1178823 
hsa-mir-574 1.7388258 0.0400753 
hsa-miR-576 3.4604257 0.0093918 
hsa-miR-579 1.4555087 0.1787665 
hsa-mir-580 1.6740452 0.0758117 
hsa-mir-586 3.5635258 0.0041651 
hsa-miR-589 2.7391901 0.0224632 
hsa-miR-591 1.7820383 0.3261438 
hsa-miR-592 3.6849267 0.0039131 
hsa-miR-594 5.9532556 0.0018715 
hsa-miR-597 1.0740736 0.9344157 
hsa-mir-601 1.5690454 0.2090724 
hsa-mir-604 0.8915881 0.8537212 
hsa-miR-606 0.9303786 0.8316354 
hsa-mir-610 1.6714297 0.0490670 
hsa-mir-616 1.1399930 0.4655902 
hsa-miR-617 0.9964456 1.0000000 
hsa-miR-618 0.5560727 0.1178823 
hsa-mir-624 0.7160710 0.3845464 
hsa-mir-627 1.1708924 0.8537212 
hsa-miR-628 1.7607653 0.0691615 
hsa-miR-629 13.7301513 0.0000072 
hsa-mir-630 0.9105617 0.6477827 
hsa-mir-632 2.1906110 0.0285932 
hsa-miR-638 1.3605807 0.4308006 
hsa-mir-639 1.2894402 0.7278872 
hsa-miR-641 1.1797699 0.7750257 
hsa-miR-642 0.6771290 0.8537212 
hsa-mir-643 1.3567365 0.1505697 
hsa-miR-645 0.6528589 0.0400753 
hsa-mir-650 1.3372344 0.4175414 
hsa-mir-651 2.8328623 0.0056996 
hsa-miR-653 0.3308879 0.0025086 
hsa-mir-655 0.0624041 0.0020042 
hsa-mir-656 0.1359565 0.0001735 
hsa-mir-660 1.7528527 0.0610666 
hsa-mir-7 42.6616607 0.0000072 
hsa-mir-9 0.2639609 0.0000649 
hsa-mir-9* 0.1931189 0.0000244 
hsa-mir-92 6.4057347 0.0000072 
hsa-mir-93 23.3811787 0.0000072 
hsa-mir-95 2.1807093 0.0323956 
hsa-mir-96 0.1514806 0.0000130 
hsa-mir-98 0.3501880 0.0323956 
hsa-mir-99a 0.0903338 0.0000072 
hsa-mir-99b 1.4656772 0.0076255 
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Table S 3: List of miRNAs that are upregulated both in mouse and human tumors. 

miRNAs Murine 

tumour 

vs. 

normal 

retina 

Human 

tumour 

vs. 

normal 

retina 

Mouse Validated 

targets 

according to 

http://mirecord

s.biolead.org/ 

Human Validated 

targets according 

to 

http://mirecords.

biolead.org/ 

Predicted Targets by at least 4 different 

algorithms according to  miRNA body 

map 

(http://mellfire.ugent.be/public/body_m

ap/) 

Other 

putative 

targets - 

PubMed 

miR-449b    128.99 16.70  -  - none - 

miR-449     102.68 155.43 E2F5  - ACCN1,  ADRA1D,  ANK3,  BTBD11,  CCNE2,  

CLIP3,  DBC1,  DLL1,  DOCK8,  E2F5,  

FAM76A,  FGD6,  FKBP1B,  FUT8,  LEF1,  

LMBR1L,  MYCN,  NUMBL,  PALLD,  PGM1,  

PKNOX1,  PKP4,  PLN,  UBE2NL,  XYLT1 

DLL-1,  

NOTCH-1 

miR-18a 72.28 79.08  -  - BTG3, BTN1A1, C20orf30, C7orf42, CAD, 

DSG4, ESCO2, ESR1, HIF1A, IRF2, ITGA2, 

KCNH7, KIAA1012, MAP7D1, NKIRAS1, PCID2, 

PDE4D, PLA2G1B, PNLIPRP3, RAB9A, 

RAD51AP1, RBBP8, RFC4, SEC23IP, TBPL1, 

TNFAIP3 (A20), TOR1B, TRADD, TRPC4, TXK, 

UBTD2, ZNF536 

DLL-1,  

NOTCH-1 

miR-106a 51.89 22.47 MYLIP,  ARID4B,  

LOC100048439 

VEGFA,  RB1,  

RUNX1,  APP 

none K-Ras 

miR-17-5p 47.58 26.31 RB2 (p130) NCOA3,  VEGFA,  

RUNX1,  CCND1 

ARID4B, ATAD2, ATG12, ATP12A, 

C1orf63, C7orf43, CRIPT, DDX51, 

DHTKD1, DIP2A, DOCK4, E2F5, ENTPD4, 

ERBB3, FOXQ1, GAB1, GALNTL2, GLO1, 

GPR6, ITGB8, KIAA1191, KPNA2, 

LAPTM4A, LONP2, LRRC45, MAP3K8, 

MAP3K9, MAPK9, MCHR2, METAP1, 

MINK1, MMP3, MUC17, MYCN, NRBP1, 

NUP35, PBK, PBLD, PDDC1, POLQ, PON2, 

POU6F1, PTPN4, RCCD1, SACS, SC4MOL, 

SLC46A3, SPTY2D1, STAT3, STK17B, 

TBC1D2 

TLE4, TMEM138, TMUB2, TRIM8, TRIP11, 

TRPV6, TSHZ3, UBE2B, VDAC1, VSX1, 

WEE1, ZNFX1 

  

miR-20b 45.10 14.16 MYLIP,  ARID4B,  

LOC100048439 

VEGFA CCL1, DDX5, SLC40A1, STK33 HBP1 

miR-20a 36.49 26.48 ZBTB7A,  STAT3 VEGFA,  E2F1,  

RUNX1,  CCND1 

AGTPBP1, CAPRIN2, CROT, KIAA0922, MAGI3, 

MASTL, MTCH2, NTN4, PFKP, TRIP10, 

TSG101, VLDLR 

  

miR-93 30.59 23.38 STAT3 E2F1,  VEGFA,  

CDKN1A 

(p21Cip1) 

FGD5, OSR1, TRIM3   

miR-19b 10.95 4.49 MYLIP,  

LOC100048439 

 - FAM69A, PCDH10, SOX4, ZC3HAV1L   

miR-19a 9.93 6.89  - PTEN >100   

miR-186 7.49 1.85  -  - >100   

miR-18a* 7.46 63.91  -  - none   

miR-34b     7.06 2.18  -  - >100 DLL-1 
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miR-17* 7.05 2.95  -  - none CREB 

miR-106b 6.48 10.64  - E2F1,  VEGFA,  

CDKN1A 

(p21Cip1),  ITCH 

ACPL2,  BAMBI   

miR-155 5.93 2.13 SFPI1, MYB,  

RHEB,  BAT5,  

JARID2,  

TRP53INP1,  

IKBKE,  FADD,  

RIPK1,  MAF,  

AICDA,  SOCS1 

AGTR1,  BACH1 

(FANCJ),  LDOC1,  

MATR3,  TM6SF1,  

RHOA,  ETS1,  

MEIS1 

DHX40, NARS, RCN2, SDCBP, SYPL1, 

TP53INP1, TRIM32, TRIP13 

  

miR-34c     5.71 11.48  -  - B3GALNT1, MET, MFAP4, PPP2R5A, RRAS, 

TMEM55A, XBP1 

DLL-1 

miR-15b    5.45 26.18  - BCL2,  CCNE1 ATXN7L1, C14orf129, CHORDC1, EFCAB5, 

EIF2B2, FAM91A1, GLT1D1, ITPR1, MAP2K1, 

MBNL2, MKNK1, PDIA6, RECK, RSPO3, 

SFRS16, SPRYD3 

DLL-1 

miR-301 4.17 7.43  -  - ABHD3, ACPL2, BAI3, BTBD3, C3orf64, 

CASP8, CENPO, CSMD1, DUS4L, F3, FBXO9, 

FSTL5, GADD45A, GAP43, GTF2H1, HABP4, 

HHEX, KIAA1217, MAT2B, NME7, NPTN, 

NUP133, PLAA, PSD, PTH, RAPGEF4, SAP18 

SLAIN1, SNX2, USP28, WNT1 

DLL-1 

miR-195    3.36 2.86  -  - ATP10B, CDC23, IKBKB, NFATC3, PCMT1, 

PEX13, PPAP2A, RBM6, RUNX1T1, ZBTB34 

MEOX2 

miR-25 3.30 15.64  -  - ACADL, ADARB2, ADCY3, ADM, AP1AR, 

ARHGEF17, CDH10, CHKA, CHST1, CLDN11, 

COL1A2, DNAJB12, EGR2, GOLGA4, HIPK3, 

LMO2, MOBKL2A, NFIA, PCDH11X, PPCS, 

RNF4, TMEM87A, ZNF287 

  

miR-16 3.03 7.01  - CCND1 CCNT2 PTEN,  BIM,  

MITF 

miR-92     2.94 6.41 MYLIP,  

LOC100048439 

 - FAM70A, GPR172B, NKX2-4, SETD5   

miR-532 2.12 3.49  -  - ADORA1, ARPC3, BPHL, C1orf144, C2orf24, 

CARHSP1, CFD, CFLAR, CHD3, CIRBP, CSF3, 

CTNNA2, ETNK2, FAM83E, GALNT6, GCNT1, 

GORASP1, GP6, HIPK2, HTR3B, IGFBP4, IRX1, 

LIMK2, MTMR12, MYOM3, NMT2 

OASL, OTUD7B, PRDM7, PTK6, SIAH2, 

SLC25A42, SLCO4A1, SMARCD2, SRRM2, 

TAF15, TM2D3, TMEM100, TMEM101, 

TNFSF11, TRAF2, TRAPPC4, TTC8, USP48, 

WFDC1, ZNF74 

BIM,  p63 

miR-130a 1.71 2.25  - TAC1,  CSF1,  MAFB,  

MEOX2,  HOXA5 

CALM2, CASD1, CCDC85A, CCT6A, CD69, 

CEP55, CHD9, CLCN5, CLUL1, CSK, CXCL6, 

DSG1, DYNC1LI2, DYNLL2, ELK3, ENPP5, 

EREG, FRMD6, HPRT1, IL15, INHBB, 

KIAA0802, KLHL20, MASTL, MED12L, MEOX2, 

MET, MMP10, MPHOSPH9, MUM1L1, NPAT, 

PHF3, PRR15, PSAP, RAB34, RAB40B, RBM25, 

RPS6KA5, SEC23B, SMARCD2, ST8SIA3, 

SYT16, TGOLN2, TMEM9B, TNRC6A, TRIM3, 

VPS37A, WDR20, WDR47 

DLL-1 
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