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Some variable stars show multi–periodic behaviour with, among others, peaks in
their power spectra at harmonically spaced frequencies with ratios 1:2:4. Such modes
are nonlinearly coupled by two second–harmonic interactions and their amplitude
equations are shown by a Painlevé analysis to be nonintegrable in a hamiltonian
sense. Chaotic phenomena are thus expected, especially when other modes and
dissipation are included. An example of stars to which this might apply is G191–16
among the variable white dwarfs.

1. Introduction

Some variable stars, such as certain white dwarfs, have individual pulsation ampli-
tudes which vary with time. Power spectra of e.g. nonradial oscillations in certain
ZZ Ceti stars contain, among others, prominent peaks at harmonically spaced fre-
quencies with ratios 1:2:3, 1:2:4 or 1:2:3:4. Simultaneous nonlinear interactions
between regularly spaced frequencies can theoretically be modelled by very spe-
cial cases of mode coupling, in that selection rules combine three–mode coupling
with degenerate cases of second harmonic generation (SHG), where two modes co-
alesce at half the frequency of another one. The nonlinear amplitude equations are
fundamentally different from the usual three–mode or SHG equations, but can be
brought into hamiltonian form for the regime without dissipation. Painlevé anal-
ysis shows that they are not integrable, in contrast to the simple three–mode or
SHG cases. The 1:2:3 frequency spacing is covered elsewhere (Verheest, Hereman
& Serras 1990), while the case 1:2:4 will be addressed here. Eventually, the system
evolves chaotically, depending very sensitively upon initial conditions.

Before applying these findings to real stars, two inherent restrictions have to
be discussed. First of all, other stellar modes have been left out, and secondly the
analysis was done in a conservative framework. Real stars are dissipative, but the
motivation for nevertheless concluding something about real stars is that if a sim-
pler, hamiltonian model already points to chaotic behaviour, then the inclusion of
additional modes and/or dissipation cannot improve matters (Verheest, Hereman
& Serras 1990). Other researches reached similar conclusions concerning the possi-
bility of chaotic pulsations, especially for the case of harmonic ratios 1:2:4 indicative
of period–doubling phenomena, notably for the variable white dwarfs PG1351+489
(Goupil, Auvergne & Baglin 1988) and G191–16 (Vauclair et al. 1989).



2. Basic formalism

Adhering to a model of three interacting modes, where the second mode is the
second harmonic of the fundamental and the third mode is the second harmonic of
the second, the combined selection rules for the angular frequencies ωj (j = 1, 2, 4)
read

ω2 = 2ω1, ω4 = 2ω2 = 4ω1. (1)

Consequently, the third mode is the fourth harmonic of the fundamental, hence
the mnemonic use of the index 4. The equations governing the slow time changes
in the complex mode amplitudes aj are different from either the usual three–mode
or the simple SHG cases, and also from the 1:2:3 frequency spacing case (Verheest,
Hereman & Serras 1990), and are of the form (Verheest 1976)

ȧ1 = 2iλa1a2, ȧ2 = iλa2
1 + 2iµa2a4, ȧ4 = iµa2

2, (2)

plus their complex conjugates. These equations are derivable from the Hamiltonian
H = λ(a2

1a2 + a2
1a2) + µ(a2

2a4 + a2
2a4), in a description where complex conjugate

variables are at the same time canonically conjugate (Verheest 1987). Besides the
Hamiltonian, there is a second independent first integral E = a1a1 +2a2a2 +4a4a4,
a measure for the global mode energy, but that is not yet enough for complete
integrability. Indications about integrability are given through a Painlevé analysis,
see e.g. Menyuk, Chen & Lee (1983).

3. Painlevé analysis

We formally rewrite the system (2) as a set of ODEs in real variables aj and Aj

(coming from aj) by taking τ = it as a new independent variable, hence

ȧ1 = 2λA1a2, Ȧ1 = − 2λa1A2,

ȧ2 = λa2
1 + 2µA2a4, Ȧ2 = − λA2

1 − 2µa2A4,

ȧ4 = µa2
2, Ȧ4 = − µA2

2.

(3)

For the weak Painlevé test, we expand all variables as

aj = cjτ
pj + djτ

pj+r + · · · , Aj = Cjτ
Pj + Djτ

Pj+r + · · · (4)

and try to find the most singular terms in each equation (with cj 6= 0 and Cj 6= 0).
Using (4) in (3) gives

p1c1τ
p1−1 = 2λC1c2τ

P1+p2 ,
p2c2τ

p2−1 = λc2
1τ

2p1 + 2µC2c4τ
P2+p4 ,

p4c4τ
p4−1 = µc2

2τ
2p2 ,

P1C1τ
P1−1 = − 2λc1C2τ

p1+P2 ,
P2C2τ

P2−1 = − λC2
1τ2P1 − 2µc2C4τ

p2+P4 ,
P4C4τ

P4−1 = − µC2
2τ2P2 .

(5)

All equations, except the second and the fifth, are easy to balance and give

p2 = p− P − 1, P2 = − p + P − 1,
p4 = 2p− 2P − 1, P4 = − 2p + 2P − 1,

(6)



if we call p1 = p and P1 = P . Whether in the second and the fifth equation of (5)
all terms are dominant or not (in the latter case p + P + 2 > 0 is inferred), we find
already useful results in the form

c4 =
µc2

2

2p− 2P − 1
, C4 =

µC2
2

2p− 2P + 1
, c2C2 = − pP

4λ2
. (7)

In the case where p + P + 2 > 0, we try to determine the values for cj and Cj from
(5) reduced to its most singular terms. We calculate that

c2C2 =
(p− P + 1)(2p− 2P + 1)

2µ2
=

(p− P − 1)(2p− 2P − 1)
2µ2

(8)

and have now three expressions for c2C2. The two expressions in (8) are only
compatible provided p = P , in which case (7) and (8) yield

c2C2 = − p2

4λ2
=

1
2µ2

. (9)

There are thus no acceptable values for p, λ or µ, and we are led to the case where
all terms are dominant, implying that P = − p− 2. The values for cj and Cj now
have to be found from

pc1 = 2λC1c2, (p + 2)C1 = 2λc1C2,
(2p + 1)c2 = λc2

1 + 2µC2c4, (2p + 3)C2 = λC2
1 + 2µc2C4,

(4p + 3)c4 = µc2
2, (4p + 5)C4 = µC2

2 .
(10)

Combining some of these equations in a judicious way gives us two expressions for
c1C1, namely

c1C1 =
p

2λ2

{
2p + 1− ξ

p(p + 2)
4p + 3

}
=

p + 2
2λ2

{
2p + 3− ξ

p(p + 2)
4p + 5

}
, (11)

having put for brevity ξ = µ2/2λ2. Both expressions in (11) are only compatible if
either p = −1, so that all the weights become equal to −1, or

p = − 1±
√

1− ξ

16− ξ
≡ − 1± q. (12)

This requires that 1−ξ and 16−ξ have the same sign, in other words that 0 < ξ ≤ 1
or that 16 < ξ. We will return to this case further on, but first address the simpler
case where all the weights are −1. From (7), (10) and (11) we obtain

c2 = − λc2
1

1 + ξ
, C2 =

λC2
1

1 + ξ
, c1C1 =

1 + ξ

2λ2
,

(13)
c4 = − µλ2c4

1

(1 + ξ)2
, C4 =

µλ2C4
1

(1 + ξ)2
.

We note that only one of the constants cj and Cj can be taken arbitrary, either c1

or C1. The determination of the leading terms in (4) is thus complete and we move
on to the next step in the Painlevé analysis, the determination of the resonances
r. Keeping only the terms linear in dj and Dj results in



(1− r)d1 + 2λ(C1d2 + c2D1) = 0,
(1− r)d2 + 2λc1d1 + 2µ(C2d4 + c4D2) = 0,
(1− r)d4 + 2µc2d2 = 0,
(1− r)D1 − 2λ(c1D2 + C2d1) = 0,
(1− r)D2 − 2λC1D1 − 2µ(c2D4 + C4d2) = 0,
(1− r)D4 − 2µC2D2 = 0.

(14)

For this linear and homogeneous system in dj and Dj to have a non–trivial solution
we must equate the determinant of the coefficient matrix to zero. Using (13), the
possible values for r are then given by

(r + 1)r(r − 2)(r − 3)(r − 1− ξ)(r − 1 + ξ) = 0. (15)

A resonance r = −1 corresponds to an arbitrary shift in the origin of τ , and r = 0
to an arbitrary constant (c1 or C1) in the most singular terms. For the system to
be integrable, the other resonances have to be non–negative integers and realisable,
as we are expanding in ascending powers of τ . This requires that

1 + ξ ≥ 0, 1− ξ ≥ 0, (16)

therefore ξ = 1 or ξ = 0. A value ξ = 1 would lead to two resonances zero,
imposing that one could choose two of the cj and Cj arbitrary, which cannot be
done, however. The other possibility, ξ = 0 or µ = 0, corresponds to simple
SHG, long known to be integrable. Hence, we must conclude that the double
SHG studied here is not integrable. Numerical computations have yielded positive
Lyapunov exponents, even when initially all the energy is in the fundamental,
indicating chaotic behaviour (see e.g. Steeb, Louw & Villet 1987).

We return now to the case where p = −1± q, so that (7), (10) and (11) give

c2 = − λc2
1

2(1 + q)
, C2 =

λC2
1

2(1− q)
, c1C1 =

1− q2

λ2
,

(17)
c4 =

µλ2c4
1

4(4q − 1)(1 + q)2
, C4 =

µλ2C4
1

4(4q + 1)(1− q)2
.

As in the previous case, where all the weights were −1, only one of the constants
cj and Cj can be taken arbitrary and we arrive at the system

(1− r − q)d1 + 2λ(C1d2 + c2D1) = 0,
(1− r − 2q)d2 + 2λc1d1 + 2µ(C2d4 + c4D2) = 0,
(1− r − 4q)d4 + 2µc2d2 = 0,
(1− r + q)D1 − 2λ(c1D2 + C2d1) = 0,
(1− r + 2q)D2 − 2λC1D1 − 2µ(c2D4 + C4d2) = 0,
(1− r + 4q)D4 − 2µC2D2 = 0,

(18)

for the dj and Dj . The resonances r are obtained from

(r + 1)r(r − 2)(r − 3)(r − 1−
√

1 + 60q2)(r − 1 +
√

1 + 60q2) = 0, (19)

leading to nonintegrability on similar grounds as in the previous case. Because
the system studied is not integrable, over long time periods we expect irregular



phenomena, in sharp contrast to the usual periodic three–mode interactions. The
presence of other modes would only increase the complexity and hence enforce the
nonintegrability of the model, and so would dissipation.

4. Chaotic pulsations

Stars in which the power spectrum includes peaks at a fundamental frequency and
its second and fourth harmonics (and hence for which our conclusions might be
relevant) include certain ZZ Ceti stars. These are single, normal (hydrogen) DA
white dwarfs with luminosity variations and hence denoted by DAV. There are
also pulsating helium white dwarf (DBV) stars (see Winget (1988) for a review
of these compact pulsators). The most pronounced of the relevant DAV stars is
G191–16, with a light curve dominated by a frequency ν0 = 1.12 mHz and its
harmonics at 2ν0, 3ν0 and 4ν0 (Vauclair et al. 1989). Another example is the DBV
star PG1351+489 with ν0 = 1.028 mHz (Goupil, Auvergne & Baglin 1988). Since
both the special cases with frequency ratios 1:2:3 and 1:2:4 have now been shown
to be nonintegrable, the general case with 1:2:3:4 spacing cannot be integrable
either. Other ZZ Ceti stars which include in their spectra the ratios 1:2:3:4 are VY
Hor (= BPM31594) (with frequencies at 1.620, 3.240, 4.864 and 6.484 mHz) and its
northern hemisphere twin BG CVn = GD154 (O’Donoghue 1986). The conclusions
about deterministic low–order chaos can at this stage only be indicative, in view of
the few stars studied so far observationally in any serious detail (Perdang 1990).
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