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CHAPTER 1

Introduction

1.1 A�ributablemortality of healthcare-associated
infections

A Healthcare-associated infection (HAI) is defined as an infection which was not

incubating at the time of admission to the hospital, usually occurring 48 hours or

more a�er admission (American thoracic society and Infectious diseases society of

america, 2005; Valles and Ferrer, 2009). HAI is common in hospitals worldwide. The

European point-prevalence survey of HAI and antimicrobial use 2011-2012 (ECDC,

2013) found a prevalence for Belgium of 7.1% infected patients, with intensive

care the unit type that is most a�ected (20.3% prevalence). HAI has long been

recognised as an adverse event in clinical care, meaning that it has the potential of

worsening a patient’s health status once it occurs and of being preventable (Valles

and Ferrer, 2009; Chastre, 2005). It is understood that by preventing infection in

a patient in acute care, the risk that this patient dies or needs extra care, can be

reduced. Both these statements, the feasibility of measures for the prevention of
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Chapter 1. Introduction1

infection and the e�ects of infection on mortality and morbidity, are supported by

a vast literature in hospital epidemiology and clinical care.

In what follows we elaborate in particular on the a�ributable e�ect estimation

of HAI. Knowing the exact e�ects of infection is considered important, since it

guides clinicians in prioritising the care of patients with infection, it guides patients

and their relatives on the excess risks of mortality and morbidity, and it guides

hospital sta� and external partners on the expected outcomes when investing in

or adopting novel strategies for the prevention of infection (Muscedere, 2009).

Despite the assumed adverse e�ects of infection on a patient’s health, studies on

a�ributable mortality e�ect estimation of infection give controversial results, with

results that describe this e�ect as being neutral to extremely risk increasing (Carlet,

2001; Muscedere et al., 2010; Timsit et al., 2011; Klompas, 2009; Nguile-Makao et al.,

2010; Melsen et al., 2009; Siempos et al., 2009; Renaud and Brun-Buisson, 2001;

Rello et al., 2000; Digiovine et al., 1999; Rello, 1999). Various explanations can be

given for this. First, no unified case definitions exist for HAI, meaning that it is

di�icult to pinpoint the literature on this subject if it uses di�erent methods to asses

HAI. Second, data on this subject is derived from di�erent study types, ranging

from prospective surveillance studies towards retrospective case-cohort design or

data derived from administrative databases. Third, di�erent populations are o�en

studied, from single-center intensive care units within tertiary hospitals with a

specific patient population to national or even multinational multicentric studies

having a substantial heterogeneity of units and medical practice, and therefore

of the incidence of HAI, mortality and prognostic factors. Fourth, only a minority

of studies provide details on the appropriateness of the treatment for infection,

while it is agreed that presence or absence of this is pivotal for patient outcome.

Fi�h, it is well acknowledged that the e�ect of HAI on mortality or morbidity

needs to be carefully adjusted in order to separate the e�ect of HAI from those

of underlying prognostic factors prior to infection, both intrinsic (related to the

patient’s profile) and extrinsic (related to the treatments the patients receives)

factors. Indeed, groups of patients with and without infection will to a certain

extent be unbalanced in terms of prognostic factors for mortality and infection,

which leads to confounding of the infection-mortality association. Because of
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11.1. A�ributable mortality of healthcare-associated infections

this, adjustment for such prognostic factors in any estimation procedure will be

necessary. Additional adjustment may be needed when only patient follow-up

data within the hospital or ward is available for analysis, as is usually the case.

When studying mortality, this means that a group of subjects has an unobserved

outcome event and correspondingly a censored survival time. This censoring occurs

when a patient dropped out from follow-up, or in this case is being discharged

alive from the hospital or ward. When the reasons for censoring are linked to

the outcome event itself, as will be the case here because a patient will mostly be

discharged from the hospital for health reasons, then further adjustment is needed

for this so-called selective drop-out. In the literature, these adjustments are not

always performed, and even so, a wide variety of models and adjustment methods

are used, not all of which are appropriate.

This thesis looks more deeply at the statistical estimation of the a�ributable

mortality of infection. We will start with explaining how we collected the data

that we used for our analysis. These are derived from the National surveillance

of infections acquired in intensive care units (NSIH-ICU) (Section 1.2, Chapter 2),

a longstanding national surveillance study for monitoring the incidence of HAI,

which has lead to a rich database of participating hospitals, patients, collected

outcomes, and risk factors. Over the years, the NSIH-ICU data have become

an appropriate basis for estimation of a�ributable e�ects of infection. This is

due to the many risk factors that are collected during surveillance, which form

a description of a patient’s health status or therapeutic activity, and therefore

can be considered as prognostic variables for mortality. Such variables are ideal

candidates when wanting to adjust the estimated crude e�ect of HAI on mortality

for underlying patient health, and as such come to an estimated e�ect that is as

much as possible a�ributable to the onset of HAI (Samore et al., 2007; Soufir et al.,

1999; Heyland et al., 1999; Fagon et al., 1996).

In Sections 1.3 and 1.4 of this Introduction, we explain why we have chosen two

types of estimators as the basis for estimating the a�ributable e�ect of HAI on

mortality. These are Inverse probability of exposure and censoring weighted (IPECW)

estimation under a Marginal structural proportional hazards model (MSPHM), and

Inverse probability of censoring weighted (IPCW) G-estimation under a Structural

3



Chapter 1. Introduction1

nested accelerated failure time model (SNFTM). These are estimators of causal e�ects,

meaning that they deliver unbiased e�ects in larger samples, or that the estimated

e�ect does not deviate systematically from the true e�ect. We will demonstrate

that this is a challenge given the observational nature of the study, the time-

dependent exposure to HAI, the presence of time-varying prognostic factors that

can act as cause and e�ect of HAI and as such lead to time-varying confounding

of the infection-mortality relation, and the selective drop-out of patients under

surveillance. Given the specific features of our data, the studied exposure and

outcome, we will then describe relative risks for describing a�ributable e�ects with

causal interpretation, and the underlying assumptions of our analysis that allow us

to identify these. We will then demonstrate why, in this context, standard regres-

sion models usually fail in delivering such e�ects, as opposed to aforementioned

estimators.

The IPECW estimator under a MSPHM is then applied and further developed

in Chapters 3 and 4 respectively, while the IPCW G-estimator under a SNFTM is

further developed and applied in Chapter 5. Finally, Chapter 6 closes this thesis by

summarising the found results, and presenting further comments and ideas for

the future.

1.2 National surveillance of infections acquired in
intensive care units

The National surveillance of infections acquired in intensive care units (NSIH-ICU),

organised by the Scientific institute of public health (IPH), is an observational study

on the incidence of Healthcare-associated infection (HAI) in the Intensive care

unit (ICU). Its objectives are to standardise data collection on infection incidence

within the ICU across acute care hospitals in Belgium, and to collect national

reference data on the incidence of ICU-acquired infection. Both these aspects,

standardisation of methods and collection of reference data, then allow the mon-

itoring of trends on a hospital and a multicentric (regional, national, European)

level and the comparison of infection rates between hospitals. The NSIH-ICU study
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11.2. National surveillance of infections acquired in intensive care units

uses the concept of clinical surveillance, applies it to ICU-acquired infections and

extends it towards a national level. Surveillance is here defined as the collection

of data on particular clinical events and analysing and interpreting its results in

light of historic data (trend analysis) or data of other hospitals (benchmarking

with reference data). When done continuously and systematically, surveillance

has proven to be an essential part in a strategy for the prevention of infection,

specifically when it targets HAI as an adverse clinical event, when it measures

its incidence, and when its results are interpreted with the concerned hospital

sta� (Haley et al., 1985; Gastmeier et al., 2000b).

Surveillance of HAI within intensive care is one of the principal types of surveil-

lance for HAI. This is due to the high prevalence of infections among intensive care

patients, which results in measures of infection incidence that are both precise and

reducible. The focus on the intensive care environment makes this surveillance also

relatively more feasible from a practical point of view as compared to other types

of surveillance that cover the entire hospital. Such practical considerations are

important, for example when unit sta� needs to be trained for epidemiological case

definitions, or when data collection needs to be organised. A high involvement of

unit sta� also guarantees a prospective data collection, which is considered advan-

tageous in terms of completeness and quality of data as compared to retrospective

studies. Such prospective data collection will be beneficial in implementing a

culture of increased awareness for the studied event, and can therefore be instru-

mental in the prevention of such events and in limiting its a�ributable mortality

and morbidity (Blot, 2008).

Because the NSIH-ICU surveillance is multicentric, it provides to a certain extent

representativeness with the Belgian ICU population for the studied time period.

This refers particularly to the inclusion of ICU units from primary and secondary

hospitals, which are o�en lacking in literature reports on a�ributable mortality of

infection that are mostly done by groups from tertiary (teaching and academic) cen-

tres. The amount of data collected also allows deeper investigation of a�ributable

e�ects within particular subgroups of patients, based for example on categories of

severity scores. Furthermore, due to e�orts during the last two decades at a Euro-

pean level in standardising the methodology of national surveillance of infections
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Chapter 1. Introduction1

in the ICU, the results of the Belgian surveillance can be compared with those of

other networks in Europe and contribute to reference data on infection incidence

across Europe (O�ical journal of the European communities, 1998, 2009).

Because HAI surveillance occurs within a context of quality improvement of

clinical care, the outcomes of such surveillance need to support clinical decisions.

Therefore, data collection on infections, their risk factors and outcomes need to

have a su�icient level of clinical detail. This is made explicit by the surveillance

protocol, which is the principal tool for standardisation of data collection over all

participating hospitals, and is elaborated in close collaboration with clinicians from

hospitals performing infection surveillance. Next to stating the objective of the

surveillance, this protocol gives all specifications of the data that is to be collected,

including definitions of the types of HAI under surveillance, their risk factors and

outcomes.

Case definitions of infections are based on exhaustive lists of clinical signs,

symptoms and radiological and microbiological evidence. The collection of data on

the occurrence of HAI is called case-based, meaning that each individual episode

of HAI that occurs within the followed population needs to be documented. This

includes the day of infection onset, which allows preciser adjustment of infection

incidence, for example on aggregated patient- or device days only occurring before

the onset of an infection episode. Data collection on specific characteristics of

infections aims to distinguish particular infection subtypes that are the focus of

prevention strategies (such as invasive device-associated infections), and also to

distinguish the diagnostic strategies within hospitals for particular infections (for

example when due to pneumonia) (Suetens et al., 2002).

The collection of risk factors for infection supports the objective of standardisa-

tion of infection rates for factors related to each hospital’s or unit’s specific patient

population. It therefore objectifies a hospital’s evolution of its HAI incidence over

time, as well as the comparison of its infection incidence with other hospitals (Sax

and Pi�et, 2002). These risk factors form a description of the patient’s health

status at admission to the ICU (intrinsic factors), or of the therapeutic activity

done during a patient’s stay at unit (extrinsic factors). Risk factor data collection

is done on all patients included in the surveillance, therefore making surveillance
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11.2. National surveillance of infections acquired in intensive care units

also patient-based. Furthermore, because the daily infection risk increases with the

number of days that a patient remains in the unit, risk factors for infection are

also collected on a daily basis.

Other outcomes (next to infections) that are collected are the vital status at

discharge from the unit, including the date of discharge which allows calculating

the number of patient days for each patient. Knowing these outcomes is important,

because they can be used to measure the impact of infection incidence on either

mortality, length of stay, or device utilisation. This is done either for a specific

period, or by relating the trend in infection incidence to the trend of other measured

outcomes.

The surveillance protocol is further complemented by registration so�ware

allowing entry and validation of surveillance data locally by the hospital (Freeman

et al., 2013), and by feedback reports that calculate relevant indicators on infection

incidence, their risk factors and outcomes (Gaynes et al., 2001). The registration

so�ware allows in the first place to do manual entry of locally collected surveillance

data. A separate module supports the import of existing electronic data. In practice,

this is a cumbersome task as many computerised systems in hospitals were initially

implemented for administrative purposes. Even when implemented for clinical

reasons, these do not automatically serve the objective of epidemiological follow-

up, and necessitate expert data querying skills by the hospital (Colpaert et al., 2010).

Also, surveillance data in electronic format will need to be collected from many

sources, such as databases on admissions, laboratory results or clinical therapies,

which renders an integrated automatic re-use even more di�icult.

Reporting of surveillance data collected in a multicentric context is a complex

task because it needs to be done for each participating hospital or their individual

units, and for a particular surveillance year or quarter. In a first stage, reporting is

done by the hospital on the local hospital database using the registration so�ware,

which allows for a hospital or unit to validate its data before it is decided to send

these to the national coordinating center. In a second stage, reporting is done on

the national reference data, which enables comparison for each indicator with the

relevant percentiles of the national distribution of these indicators, and enables

the hospital to position their obtained results within the national distribution.
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Results on infection incidence of individual hospitals are considered to be too

sensitive to be made publicly available. This is because infections are considered

as adverse events; a high incidence can be interpreted as bad performance on the

hospital’s or unit part. However, a hospital is not in complete control of the HAIs

that it observes during surveillance, its infection rates are determined by many

other factors that are beyond the control of the hospital and its sta�. Still, due to

this sensitivity, a hospital’s specific results together with their comparison with

national reference data are only reported to the hospital that contributed the

surveillance data. The IPH formally acts here as a Trusted third party (TTP), taking

up the role of intermediate between the hospital and the federal government, by

feeding back the hospital-specific results only to the hospital itself (as described

above), and by reporting results to the Federal or other levels only in aggregated

form, not allowing identification of results of individual hospitals. This definition

and role of a TTP ensures that valid multicentric data on adverse events can

be collected, guaranteeing hospitals confidentiality and preventing their results

from being used against them. In other words, it guarantees a non-punitive or

-blaming environment (O�ical journal of the European communities, 2009; Martin

et al., 2013).

1.3 Causal Inference

1.3.1 Notation

Our study follows a cohort of n subjects in time, with measurements at discrete

time points t = 1, ..., Tm (with Tm the total follow-up time) of a time-dependent

exposure and risk factors, an outcome event, and a drop-out event. In what

follows, we will suppress the identifier for subject i if possible. At each time-point,

the following random variables are defined: the exposure A, the outcome Y , a

vector L of measured prognostic factors a�ecting both A and Y . Variable U is

a vector of unmeasured prognostic factors. The distinction between U and L

is essential, as we assume that it is impossible in a collection of observational

data to measure every common predictor of exposure and outcome. Variable

8



11.3. Causal Inference

C indicates whether the subject is lost to follow-up at a particular time-point,

which will lead to Y being unobserved at that time. Variables A, Y and C are

dichotomous, taking values 0 (not present) or 1 (present). Variables U and L can be

dichotomous, categorical or continuous (or multiples of these combined in a vector).

At a particular t, temporal ordering is (U,L,A,C, Y ). The full data is the vector

of variables V = (U,L,A,C, Y ), while the observed data - which is available for

analysis - will be the vector X = {L,A,C, (1−C)Y }. For any variable Z , a lower

case symbol z will indicate one of its possible realisations; the isolated use of such

a lower case in a counterfactual outcome (see further) or conditioning statement

will indicate “Z = z”, ie. Yz ≡ YZ=z and E(Y |z) ≡ E(Y |Z = z).

All variables defined above are essentially time-varying, meaning that a variable

Z can take a value at a particular time point t that is di�erent from its value at

the previous time point t− 1, Zt will therefore indicate Z measured at t. Variables

A, C and Y are defined to have absorbing states at value 1, meaning that once

this value is obtained it will remain so until the rest of the follow-up time. Denote

the history of a variable up to time-point t as Zt = (Z1, .., Zt), with 0 = (01, .., 0t).

Also, let Z0=0. Let the survival time T be the discrete time from study start at

t = 0 until the time t at which the event of interest Y occurs.

Applying the above notation to our study of the e�ect of infection on mortality

within the ICU, exposure to infection will be denoted by A, death in the ICU by Y ,

being discharged alive from the ICU (or lost to follow-up) by C , and the measured

prognostic factors by L.

1.3.2 A discrete-time proportional hazards model

We can estimate the e�ect of exposure A on outcome Y by calculating λY (t|at),
which is the conditional hazard of the outcome event for each group of subjects

with observed exposure history At = at. When relying on (semi-)parametric

models, this is usually done using a time-dependent Cox proportional hazards

model (Hosmer et al., 2008). Also, because our study design is based on discrete

time-points at which information on exposure and outcome is collected, we will use

the discrete-time representation of the conditional hazard: P (Yt = 1|Yt−1 = 0, at),
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Chapter 1. Introduction1

which is the risk of the outcome event Y at time t conditional on Y not having

occurred until t− 1, and on exposure history At = at at t. Using the way the data

is structured, with one observation for each time a subject is under follow-up, it is

straightforward to calculate the discrete-time hazard under the logistic regression

model

P (Yt = 1|Yt−1 = 0, at; β
st) = expit(βst

0 + βst
1 at) (1.1)

with βst an unknown parameter vector (“st” abbreviation for standard) and expit(u) =

exp(u)/{1+exp(u)}. For the sake of exercise, we used the simplest model possible,

thereby ignoring possible time-specific main e�ects. If we take at = at (therefore

assuming one-dimensional βst
1 ), and assume a rare outcome, or expit(u) ≡ exp(u),

model (1.1) can now be used to define the following contrast

exp βst
1 =

P{Yt = 1|Y t−1 = 0, at = 1; βst}
P{Yt = 1|Y t−1 = 0, at = 0; βst}

(1.2)

or the ratio of discrete-time hazards at t for subject-times under observed exposure

at = 1 versus observed exposure at = 0. Hazard ratio (HR) (1.2) is a subgroup

contrast ; it contrasts a measure of the outcome across subgroups according to

exposure status at t and to being alive at t−1. Causal interpretation of this contrast

is problematic, due to it being defined within subgroups of subjects that are not

exchangeable in terms of prognostic factors U and L. In further sections, we will

elaborate on how we can arrive at contrasts that do have causal interpretation.

1.3.3 Exposure regimes, potential outcomes and causal con-
trasts

Let a ≡ aTm = (a0, a1, ..., aTm), be the exposure regime set through study end Tm,

and Yt,a, the potential or counterfactual outcome of a subject under exposure regime

a (Rubin, 1978; Robins, 1986; Hernàn, 2004). Yt,a is called a potential outcome,

because for each subject it is only potentially observed, or observed counter-to-fact.

Using a simplified study design with study end at Tm = 2, no drop-out before study

end, and taking into account the absorbing state of At = 1 at any t, each subject

10
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will have three potential outcomes at Tm = 2, {Yt,(0,0), Yt,(1,1), Yt,(0,1)}. Of these,

only the potential outcome that corresponds to the observed exposure regime will

be observed.

Potential outcomes are used to define a causal or population contrast, which

is clearly distinguished from the earlier defined subgroup contrast. Assume that

we are able to observe for each subject the potential outcomes under all possible

exposure regimes. For now, let us ignore how we achieved this, in further sections

we will explain the assumptions and techniques behind the identification of the

mean of potential outcomes. In the original dataset, each single observation provides

for one subject the result of his or her outcome Yt for exposure At = at at t. When

all potential outcomes are observed, each observation will be augmented according

to the number of possible exposure regimes; in our example, each observation

will be augmented with two supplementary outcomes, accounting for the two

counterfactual outcomes that are unobserved. Using this augmented dataset to fit

a logistic regression for the risk of the outcome as a function of exposure regime a,

this will yield:

P (Yt,a = 1|Yt−1,a = 0; βc) = expit(βc
0 + βc

1at)

for all a, t ≤ 2 (1.3)

and corresponding contrast

exp βc
1 =

P{Yt,(a1,1) = 1|Y t−1,(a1,1) = 0; βc}
P{Yt,(0,0) = 1|Y t−1,(0,0) = 0; βc}

for t ≤ 2 (1.4)

with βc an unknown parameter vector (“c” abbreviation for causal), of which exp βc
1

is the counterfactual hazard ratio when exposure regime is set to (a1, 1) versus

when exposure regime is set to (0, 0) at t ≤ 2. Contrast (1.4) uses averages of

counterfactual outcomes, and does not su�er from being defined within di�erent

(unexchangeable) subgroups of observed exposure history, as was the case with

contrast (1.2). We would therefore be tempted to interpret this as a causal contrast.

This is however problematic, due to the numerator and denominator of (1.4) still

conditioning on di�erent subgroups, being Y t−1,(a1,1) and Y t−1,(0,0) respectively,

11
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that are not exchangeable in terms of prognostic factors. To resolve this, we can

use the predicted hazards of model (1.3) for the calculation of P (Yt,a = 0), or the

counterfactual risk of survival under exposure regime a at t, as follows

P (Yt,a = 0; βc) =
t∏

s=1

{1− P (Ys,a = 1|Ys−1,a = 0; βc)} (1.5)

and then construct

P{Yt,(a1,1) = 0; βc}
P{Yt,(0,0) = 0; βc}

for t ≤ 2 (1.6)

or the counterfactual survival risk ratio when exposure regime is set to (a1, 1) versus

when exposure regime is set to (0, 0) at t ≤ 2. Contrast (1.6) does not su�er from the

problems due to conditioning on a counterfactual under di�erent exposure regimes,

which makes it a population or causal contrast, or a contrast that is unconfounded

by prognostic factors. We define it as the total causal e�ect of exposure at any time

on outcome.

Let us study other causal contrasts of interest, and consider following model:

P (Yt,a = 1|Yt−1,a = 0, βc,1) = expit{βc,1
0 + βc,1

1 a1

+βc,1
2 a2(1− a1)}

for all a, t ≤ 2 (1.7)

with βc,1 an unknown parameter vector, of which exp βc,1
1 is the hazard ratio when

exposure regime is set to (1, 1) versus when exposure regime is set to (0, 0), and

exp βc,1
2 is the hazard ratio for subjects under exposure regime (0, 1) versus exposure

regime (0, 0). Using formula (1.5) to convert hazards in survival risk, we can

decompose causal contrast (1.6) into contrasts that will give us insight into the

time-varying nature of the causal e�ect of exposure on outcome, and as such be

able to estimate lag-e�ects of exposure. This is because βc,1
1 and βc,1

2 parametrise

the e�ect of exposure starting at time-points t = 1 and t = 2 respectively. A�er

conversion to counterfactual survival risk and when compared to exposure regime

a = (0, 0), these parameters will measure the total or overall e�ect of exposure at

12
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t = 1 and t = 2 on outcome.

Furthermore, contrast exp(βc,1
1 −βc,1

2 ) is the hazard ratio when exposure regime

is set to (1, 1) versus when exposure regime is set to (0, 1). The corresponding

counterfactual survival risk ratio measures the controlled direct e�ect (Robins and

Greenland, 1992; Vansteelandt, 2012) of exposure at t = 1 on outcome at t = 2,

so-called because the only di�erence between these two exposure regimes is the

se�ing of exposure at t = 1 to 0 or 1, with exposure at t = 2 being fixed to

“exposed”. From the above arguments, we call (1.7) a model for the joint causal

e�ect of exposure.

1.3.4 Identifying conditions

As explained above, potential outcomes are an abstract concept, ie. for each subject

only one potential outcome for each subject-day will be observed by definition,

with the distribution of potential outcomes under remaining exposure regimes

needing to be identified. The identification of the average of a potential outcome

[such as the numerator or denominator of contrast (1.4)] is possible under a set of

identifying assumptions for causal inference (Rosenbaum and Rubin, 1983), stated

as follows and explained one by one herea�er:

Consistency of exposure regime : Yt,a = Y if A = a

for all a, t (1.8)

Sequential randomisation of exposure : Yt,a q As|ys−1 = 0, as−1, ls

for all t, s ≤ t, as−1, ls (1.9)

Positivity of exposure risk : P (At = at|yt−1 = 0, at−1, lt) > 0

for all at, t (1.10)

Consistency assumption (1.8) states that a subject’s potential outcome under

her actually observed exposure regime is precisely her observed outcome. Under

this assumption, the mechanisms under which the exposure regime a was set, may
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have no other hypothesised influence on the outcome Y than by se�ing the actual

exposure. It therefore calls for the definition of realistic exposure regimes, and their

corresponding potential outcomes, when relying on these for e�ect estimation.

More specifically, one needs to be able to explain how a particular exposure regime

could hypothetically be assigned to a subject that was in reality exposed to a

di�erent regime. Also, such exposure regime should be in correspondence with

the study that generated the data (Hernàn and Taubman, 2008). Applied to our

study, potential outcome risk for mortality under presence (or absence) of exposure

to infection needs to be unambiguously defined. By defining the e�ect that would

be seen in patients if infection would be prevented (Fagon et al., 1993, 1996; Bonten

et al., 2004; Rello and Valles, 1998), some authors already have phrased the research

question in causal terms, however without resorting to estimators that directly

involve potential outcomes. In Section 1.2, we explained that the surveillance

study that gave rise to our data is actually part of a strategy for the prevention

of infections; hypothesising about the counterfactual outcome mortality when

infections are prevented is therefore a valid exercise, as such an outcome is both

realistic as well as imaginable in the data we use for this study.

The consistency assumption for causal inference has received a�ention in re-

sponse to a few studies that look at exposures that could not be immediately

considered as realistic interventions, nor were the potential outcomes under this

exposure immediately realistic for the studied population (Cole and Frangakis,

2009; Vanderweele, 2009; Haight et al., 2005). For example, in a study of the causal

e�ect of body mass index (BMI) or body composition on mortality (Hernàn and

Taubman, 2008), it is unclear how a studied population could be assigned a par-

ticular BMI, because experiencing a certain BMI at a certain moment is assumed

to depend on a complex series of biological pathways. Also, even when these

pathways are known in such a way that the investigator knows how to arrive

at a particular BMI at a particular time, it is not unrealistic that some pathways

that lead to exposure would also be related to outcome in other ways than by

influencing exposure. As a result, two pathways that lead to the same exposure

level might still lead to di�erent outcomes, resulting in ill-defined potential out-

comes. Applied to our study, imagine for example an exposure regime “absence
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of infection” hypothetically generated by a profylactic drug that not only kills o�

a pathogen but also independently worsens a patient’s prognosis as a side e�ect.

The potential outcome generated under such regime would be ill-defined because

the pathways that generate such a regime influence the outcome by other ways

independently of the regime itself.

The Sequential randomisation assumption (SRA) (1.9) states that, conditional on

survival, exposure and confounder history (Y t−1, At−1, Lt), the potential outcome

Ya is independent of exposure A at t. It says that exposure at t is randomised

within levels of exposure and measured confounder history at t, in other words

that exposure is sequentially randomised. This means that, although the overall

groups formed by exposure may be non-comparable in terms of L, they will be-

come comparable sequentially within the levels formed by (Y t−1, At−1, Lt). We

assume that sequential randomisation holds within levels of measured prognostic

factors At−1 and Lt, which is more strict than when this would also include the

unmeasured U t, and therefore this assumption is also known as the assumption

of No unmeasured confounders (Rosenbaum and Rubin, 1983). Informally, it says

that history of exposure and measured confounders is su�icient in adjusting the

exposure-outcome association at t.

The assumption of Positivity of the risk of exposure (1.10) states that within

each stratum defined by the measured confounder history Lt, there is variation

in the exposure. In other words, there may be no levels of confounders where

no subjects in the population are (un)exposed, or generally where exposure is

deterministically set. Because of this, this assumption is also referred to as the

assumption of Experimental treatment assignment (van der Laan and Robins, 2003).

As an example, we consider a study with a single time point Tm = 1, and verify

how we can use aforementioned assumptions to identify the average of a potential

outcome E(Ya). With a single time-point, these assumptions will be: Consistency

of exposure: Ya = Y if A = a for all a; Conditional randomisation of exposure:

Ya q A|l for all l; Positivity of exposure risk: P (A = a|l) > 0 for all a.

E(Ya) = E {E(Ya|L)}

= E {E(Ya|a, L)}
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= E {E(Y |a, L)} (1.11)

the first equality is due to conditional expectation (Casella and Berger, 2001), the

second to conditional randomisation, the third to consistency of exposure, and

positivity of exposure risk is needed to identify E(Y |A = a, L). Equation (1.11)

shows how to identify the potential outcome from the observed data by means

of standardisation: calculating the outcome’s mean for particular values of the

exposure regime conditional on prognostic variables, and averaging this towards

the risk of the marginal realisations of the prognostic variables, this last step being

called standardisation. Further on, we will use standardisation in the se�ing of

time-varying exposure regimes.

1.3.5 Censoring of survival time

As introduced above, observation of the outcome Yt depends on whether the subject

did not drop-out at or before t, which is encoded in Ct (with values 1 in case of

drop-out and Yt missing, 0 if not). The same applies to observation of exposure

and prognostic variables At and Lt, which will be only observed when Ct−1 = 0.

Due to this, we need to append ct−1 = 0 to the conditioning events of SRA (1.12)

and Positivity (1.10).

Variable C is called the Censoring event because it encodes information on

censoring of the survival time. Because censoring might lead to a selective subset

of subjects relative to the studied source population (see further), our aim is to

identify the distribution of the outcome for those subjects that drop-out, in analogy

to the identification of potential outcomes defined in terms of exposure regimes.

In order to identify Y under missingness, we adapt assumptions (1.8-1.10) for

identifying potential outcomes as follows (Rubin, 1976; Robins et al., 1994):

Ignorable censoring assumption (ICA): we assume that, at any time-point, cen-

soring is independent of the counterfactual outcome, conditional on neither the

outcome nor censoring having occurred, and on the history of exposure and of risk
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factors for censoring and outcome up to that time:

Yt,a q Ct|yt−1 = ct−1 = 0, lt, at for all at, lt, t (1.12)

It follows that past exposure and confounder history until t su�ices to predict

censoring at t, without needing any other information at or a�er t. This means that

conditional on confounder history up to time t, censoring holds no information

about future survival.

Positivity of risk of remaining uncensored : we assume that the risk of staying

uncensored exceeds 0 within levels of exposure and confounder history, or

P (Ct = 0|yt−1 = ct−1 = 0, at, lt) > 0

with probability 1 (1.13)

We repeat earlier procedure of standardisation (1.11) to identify Ya in a study

with Tm = 1. The above assumptions will then be: Ignorability of censoring:

Ya q C|l, a for all l, a; Positivity of risk of remaining uncensored : P (C = 0|a, l) >
0 with probability 1.

E(Ya) = E {E(Ya|L)}

= E {E(Ya|a, L)}

= E {E(Ya|a, L, c = 0)}

= E {E(Y |a, L, c = 0)} (1.14)

with the first equality due to conditional expectation, the second due to SRA, the

third to ICA, and the fourth to consistency of exposure regime. The average in the

last line of (1.14) assumes positivity of the risks of exposure and censoring.

1.3.6 Causal directed acyclic graphs

We will now explain why, in the presence of time-varying and intermediate con-

founders, standard techniques for the adjustment of confounders may fail to esti-
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U0 L1 A1 C1

L2 A2 C2 Y2

Figure 1.1: Causal directed acyclic graph for the e�ect of A1 and A2 on Y2.

mate unbiasedly the causal contrasts as defined above. To do so, causal diagrams

are a powerful tool to visualise variables, their relationships and the assumptions

that encode these, and to reveal possible biases occurring in the estimation of

causal e�ects (Pearl, 1995; Hernàn et al., 2004, 2002; Vanderweele and Robins, 2007).

Figure 1.1 is a causal diagram that shows the random variables defined in Section

1.3.1 by means of nodes, in the temporal order of occurrence (top le� occurs earliest,

bo�om right last) and their possible causal relations by means of directed edges.

The diagram depicts variables and their relationships for 2 time-points t = 1 and

t = 2, except forU which will be only defined as baseline variable at t = 0, however

the results that follow remain valid under a time-dependent U .

Essential to our diagram is that any defined relation between variables depicted

in the diagram is directed, meaning that each edge has only one arrow, and that

the diagram is acyclic, meaning that one can never start from one variable and end

up at the same variable by following the direction of the arrows. The diagram in

Figure 1.1 follows these constraints, and is therefore also called a Directed acyclic

graph (DAG). Two supplementary constraints are needed in order for such DAG to

be called causal, 1) the absence of a directed edge between two variables in the

DAG represents the assumption of absence of a direct causal e�ect between these

variables (which does not mean lack of association, see further), and 2) the DAG
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must incorporate all common causes of any 2 variables in the diagram.

The relationships in Figure 1.1 are explained as follows. Following the last

requirement of the previous paragraph, variables U0, L1 and L2 need to be part of

the diagram because they are common causes of A1, A2 and Y2 (previously these

were called “prognostic factors”). Figure 1.1 postulates that U0 cannot act as a

direct cause of A1 and A2, but only as an indirect cause through intermediates L1

and L2 respectively. This is therefore an assumption formulated through our causal

DAG, which was previously already stated through SRA (1.9). The arrows from L1

into L2 and from A1 into A2 encode our understanding that factors of previous

time-points causally a�ect the risk of these factors at the current time-point. The

arrow from A1 into L2 points out that measured prognostic factors at t = 2 might

be a�ected by exposure at t = 1. Note that L2 has the property to act both as a

common cause and as an intermediate variable of the exposure-outcome relations

A2 − Y2 and A1 − Y2 respectively, the former meaning that it directly causes both

A2 and Y2 and the la�er that it is an intermediate variable in the causal path

that leads from A1 to Y2. Finally, Ct at each time-point is only directly caused by

earlier exposure and measured prognostic variables. Also here, U0 is assumed to

only cause Ct through Lt and At. This follows from ICA (1.12), guaranteeing that

all paths that link Ct with Yt pass through Lt or At. Furthermore, Ct and Yt are

assumed not to be causally related. Importantly, the Ct variable being surrounded

by a square box indicates that it is conditioned on, ie. that our analysis is stratified

on this variable. This is indicative of the fact that once a subject is lost to follow-up,

no further information will be available, or that the analysis is restricted to subjects

with Ct = 0.

The causal e�ects of interest of Diagram 1.1 are shown in Figure 1.2 as isolated

directed edges going from A1 and A2 into Y2 . Subfigure 1.2a shows the overall

e�ect of A1 on Y2, these are all directed edges from A1 into Y2. Subfigure 1.2b

shows the overall e�ect of A2 on Y2, this is the single directed edge from A2 into Y2.

Subfigure 1.2c shows the direct e�ect of A1 on Y2, this is the overall e�ect shown in

Subfigure 1.2a minus directed edges from A1 into Y2 that pass through A2. The

di�erent causal paths between A1 and Y2 and between A2 and Y2 signify that

exposure might have a time-varying and cumulative e�ect, ie. that the e�ect of
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A1

L2 A2 Y2

(a) Overall e�ect of A1.

A1

L2 A2 Y2

(b) Overall e�ect of A2.

A1

L2 A2 Y2

(c) Controlled direct e�ect of
A1.

Figure 1.2: Causal paths between exposure A1 and A2, and outcome Y2.

exposure at t = 1 on outcome could be di�erent from and add to the e�ect at

t = 2.

A causal DAG is linked to the full data distribution as follows. Le�ing f(V ) =

f(V1, ..., Vm) be the joint density of all variables in the diagram withm the number

of variables, Pearl (2009) describes a causal DAG as having an underlying non-

parametric structural equation model. In this model, each observed variable Vj
is represented as the output of a nonparametric functional having as input its

observed and unobserved parent variables. The la�er are not explicitly accounted

for but enter as error terms which are assumed to be jointly independent across

functionals. Parent variables of Vj are those variables in the diagram having a
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direct causal e�ect on Vj . In turn, Vk will be called a descendant of Vj if a causal

path exists between Vj and Vk such that Vk can be reached by starting from Vj

and following the direction of the arrows. Note that

f(V1, ..., VM) =
M∏
j=1

f(Vj|V1, .., Vj−1) (1.15)

which is denoted the Chain rule. Linking this to a causal DAG, we eliminate

from the right part of above equation those variables that are independent of Vj
conditional on its parents, such that

P (Vj|V1, ..., Vj−1) = P (Vj|PAj) (1.16)

in which PAj are the parent variables of Vj as postulated by the DAG. Equation

(1.16) substituted in Chain rule (1.15) is called the Causal Markov Assumption. Using

the study with Tm = 2 under the causal DAG of Figure 1.1 - without censoring

variable Ct - the joint data distribution becomes

f(V ) = f(Y2|A2, L2, A1, L1, U0)f(A2|L2, A1, L1)f(L2|A1, L1, U0)

×f(A1|L1)f(L1|U0)f(U0) (1.17)

The above description of f(V ) based on the variables and relations depicted in

causal DAG of Figure 1.1 is needed to construct the distribution of counterfactual

outcomes. We will use this distribution to identify our causal contrasts of interest.

The counterfactual variables generated under an intervention “set exposure regime

(A1, A2) to level (a1, a2)” can be visualised in the causal DAG by replacing exposure

variables (A1, A2) by (a1, a2), and their descendant variables Vk by Vk,(a1,a2), or

the counterfactual variables under exposure regime (a1, a2). This intervention

will also remove all ingoing edges into (A1, A2) from the diagram. Consider then

f{V 2,(a1,a2)} or the counterfactual joint data distribution under exposure regime

(A1, A2) = (a1, a2):

f{V 2,(a1,a2)} = f{Y2,(a1,a2)|a2, L2,(a1,a2), a1, L1, U0}f{L2,(a1,a2)|a1, L1, U0}
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×f(L1|U0)f(U0)

= f(Y2|a2, L2, a1, L1, U0)f(L2|a1, L1, U0)f(L1|U0)f(U0) (1.18)

the first equality of which is based on se�ing the conditional distribution functions

f(A2|L2, A1, L1, U0) and f(A1|L1, U0) to 1 once exposure regime (A1, A2) is set

or fixed to a particular exposure regime (a1, a2). Se�ing counterfactuals through

intervening on an exposure regime under causal Markov assumption (1.16) is called

Truncated factorisation. The last equality of (1.18) is due to consistency of exposure

regime, and is a next step in the identification of causal e�ects. We will continue

this in Section 1.4, but will first demonstrate how to use causal DAGs to detect

confounding of the exposure-outcome relationship as well as selection bias.

1.3.7 Bias classification

One can now use the causal DAG of Figure 1.1 to verify whether the association

between A and Y is confounded. This happens by inspecting the paths between

A2 (A1) and Y2 that do not allow starting in A2 (A1) and ending in Y2 by following

the direction of the arrows along the considered path. These are called non-causal

paths because any association between A2 (A1) and Y2 by means of such pathway

in the diagram will not reflect causation, and may hence signal confounding of

the exposure-outcome relationship. Not all non-causal paths will however induce

non-causal association (Robins and Morgenstern, 1987; Vanderweele and Shpitser,

2013). To determine whether a non-causal path in the diagram may actually induce

association between exposure and outcome, in which case we call it an “open

path” (as opposed to a “blocked path”), we will rely on 3 rules derived from causal

DAG theory (Pearl, 1995). In these rules, a variable is a collider in a path if two

arrowheads in the path point into (or collide at) this variable. Also, we consider the

analysis to condition on a variable when the analysis stratifies on the values of this

variable; this is depicted on the causal diagram by a square around the conditioned

variable.

1 Any path containing a non-collider that has been conditioned on is blocked.
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2 A path containing no conditioned variables is blocked if it contains a collider.

3 Conditioning on a colliding variable or on one of its descendants will open the

path’s section passing through that variable.

Using the causal DAG of Figure 1.1, we will discuss non-causal paths that link

A2 (A1) with Y2, look for each if it actually creates non-causal association, and see

how it can be resolved in an analysis. Without any adjustment for the e�ect of

exposure on outcome by prognostic variables U0 and/or L at t = 1 or t = 2, this is

seen as a crude analysis of the e�ect of joint exposure (A1, A2) on the mean of Y2.

The diagrams depicted in Figures 1.3 and 1.4 have been created by investigating

and classifying all possible non-causal paths between A1 and Y2 and between A2

and Y2 respectively that are not blocked according to rules 1-3, we will call these

open non-causal paths. Neither diagram depicted in Figures 1.3 and 1.4 can be

considered causal or linked to the data of our study since only part of variables

and their causal relations are shown each time.

For example, the diagram of Subfigure 1.3a identifies the following 4 paths

between A1 and Y2:

A1 ← L1 → Y2 (1.19)

A1 ← L1 ← U0 → Y2 (1.20)

A1 → C1 ← L1 → Y2 (1.21)

A1 → C1 ← L1 ← U0 → Y2 (1.22)

All these paths are non-causal because, by following the direction of the arrows in

these paths, A1 can never lead to Y2. Following rules 1 and 2, paths (1.19) and (1.20)

are open because they do not contain colliders or conditioned variables. These

paths will therefore lead to confounding of the A1 − Y2 relationship.

For example, le�ing L1 indicate exposure to mechanical ventilation, the fact

that L1 is a causal risk factor for both A1 (being exposed to mechanical ventilation

increases the risk for acquiring infection, following the aforementioned example)

and Y2 (being exposed to mechanical ventilation is an e�ect of a worse prognosis,

and thus increases the risk of dying) will create a positive association between A1
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U0 L1 A1 C1

Y2

(a)

U0 L1 A1

L2 A2 C2 Y2

(b)

U0 L1 A1

L2 C2 Y2

(c)

U0 L1 A1 C1

L2 C2 Y2

(d)

U0 L1 A1

L2 A2 Y2

(e)

U0 L1 A1 C1

L2 A2 Y2

(f)

U0 L1 A1

L2 A2 C2 Y2

(g)

U0 L1 A1

A2 Y2

(h)

U0 L1 A1

L2 A2 Y2

(i)

Figure 1.3: Non-causal open paths between A1 and Y2, in an unadjusted analysis of the
joint e�ect of (A1, A2) on Y2.
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and Y2 through L2, even in the absence of a causal e�ect of A1 on Y2.

For paths (1.21) and (1.22) passing through variable C1, recall that our data is

restricted to subjects under follow-up, meaning that the analysis is conditional

on C1 = 0. Variable C1 acts as a collider in these paths, and is conditioned on,

implying that according to rule 3, the section in paths (1.21) and (1.22) fromA1 until

L1 will be open. Because the remaining sections of these paths until Y2 are equal to

open paths (1.19) and (1.20), we conclude that paths (1.21) and (1.22) are also open

paths. The phenomenon when conditioning on a common e�ect of two variables

leads to a spurious or non-causal association between these variables is called

collider-stratification bias. In this case it is also referred to as informative censoring

or selection bias because censoring is associated with both the outcome (through

L2 and U0) as with exposure, and through conditioning on C1 a sample is created

that is selective with respect to these prognostic factors (ie. not representative

of the source population) (Hernàn et al., 2004; Daniel et al., 2012). Such selection

bias may occur independently from the bias through confounding of the A− Y
relation via non-causal paths (1.19) and (1.20).

Such bias can be intuitively understood by the following example. Suppose that

U0 = 1 leads to L2 = 1 and Y2 = 1, that L2 = 1 leads to A2 = 1, Y2 = 1, C2 = 0,

and that A2 = 1 leads to C2 = 0. Assume also the null hypothesis of no e�ect

of exposure on outcome. Then even so, by selecting subjects under follow-up (i.e.

having C2 = 0), we will get the impression that exposure is negatively associated

with outcome because those unexposed (A2 = 0) will likely have L2 = 1 and thus

have a worse prognoses (U0 = 1 and Y2 = 1), since the cause why they remain

under follow-up is not due to the absence of exposure. Similarly, those subjects

that are in a be�er condition (U0 = 0 and L2 = 0) will likely be exposed (A2 = 1),

since the cause why they remain under follow-up is not the fact that L2 = 1. Thus,

in the group of C2 = 0, there is a negative association betweenA2 and U0. Because

U0 is associated with Y2, this means a negative association between A2 and Y2 is

expected a�er conditioning on C2 = 0.

Non-causal paths of Subfigures 1.3e, 1.3f and 1.3g all show A2 as a conditioned

descending variable of L2. Such conditioning on A2 occurs because an analysis

for the unadjusted joint e�ect will measure the e�ect of both variables A1 and
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U0 L1

L2 A2 C2 Y2

(a)

U0

L2 A2 C2 Y2

(b)

U0 L1

L2 A2 C2 Y2

(c)

Figure 1.4: Non-causal open paths between A2 and Y2, in an unadjusted analysis of the
joint e�ect of (A1, A2) on Y2.

A2 simultaneously, therefore the e�ect of A1 on the risk of Y2 will be conditioned

on the values of A2. According to rule 3, these paths will all be opened by this

and hence create non-causal associations between A1 and Y2 (Robins and Hernàn,

2009). Finally, in non-causal paths of Subfigures 1.3b and 1.3h-1.3i, A2 acts as a

collider that is conditioned on, which open these non-causal paths by rule 3.

Figure 1.4 isolates non-causal open paths between variables A2 and Y2 in an

unadjusted analysis of the joint e�ect of (A1, A2) on Y2. The three types of open

non-causal paths of Subfigures 1.4a-1.4c are all due to variables U0, L1 and L2

acting as confounders of the causal e�ect of A2 on Y2. Also, this e�ect will su�er

from the same conditioning on the C2 variable and inherent selection bias as with

C1.

1.3.8 Time-dependent confounding

It is common practice in statistical analysis to eliminate confounding of the

exposure-outcome relationship (like the one described above) by conditioning

on the common cause (e.g. U0 or Lt) of exposure and outcome. This means that

the association between exposure and outcome will be calculated within strata of

the common cause. Because all subjects within a stratum are similar in terms of

this common cause, this will eliminate the association between the common cause

and its e�ects within each stratum. This is what is meant by rule 1 of causal dia-

gram theory, when blocking a non-causal path between two variables (eliminating

spurious association) by conditioning on a non-collider. The same arguments apply
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11.3. Causal Inference

when correcting for selection bias by informative censoring: spurious associations

between censoring and outcome can be avoided by stratifying or conditioning on

common causes of the censoring and outcome variable.

The idea is therefore to find variables that can be used to block the open non-

causal paths in Figures 1.3 and 1.4 between A1 and Y2 and between A2 and Y2
respectively, but without opening blocked paths. In order to block non-causal paths

of our causal DAG, conditioning on U0 is impossible as it is unmeasured and not

available for use in the analysis, which leaves us to work with variables L1 and L2.

Figures 1.5 and 1.6 shows non-causal open paths of Figures 1.3 and 1.4 respectively,

but with L1 and L2 variables conditioned on, visible by a square around these

variables. Conditioning on L1 will block open non-causal paths between A1 and Y2
of Subfigures 1.3a-1.3d, while conditioning on L2 will also block remaining open

paths between A1 and Y2 of Subfigure 1.3b. Conditioning on L1 and/or L2 will also

block paths of Subfigures 1.3h-1.3i that were originally opened because A2 was

conditioned on. Also, conditioning on L1 and/or L2 will block open non-causal

paths between A2 and Y2 of Subfigures 1.4a-1.4c.

We succeeded in blocking above non-causal paths even though U0 is unmea-

sured. This is due to SRA (1.9), under which each causal e�ect of U0 on A1 or A2

must pass through variables L1 or L2. Without this assumption, U0 would have

direct causal e�ects on A1 or A2, and no measured variables would be available

for adjustment. The same argument applies for ICA (1.12), or that U0 only a�ects

censoring variables C1 and C2 through measured confounders L1, L2.

Focus now on non-causal paths betweenA1 and Y2 in whichL2 acts as a collider,

more specifically paths in Subfigures 1.3e-1.3g. Originally, these paths were all

opened due to L2 acting as collider with the descendant A2 in these paths being

conditioned on. Conditioning on L1 and L2 will block all paths except for the

one passing through the U0 → L2 section in Subfigure 1.3e. This is because the

direct e�ect of U0 on L2 o�ers no possibility to block this path by means of a

measured common cause. In summary, we used causal diagram rule 1 to block

open non-causal paths between A1 and Y2, and between A2 and Y2, and rules 2

and 3 to demonstrate that particular blocked non-causal paths will be opened by

conditioning on L2. In this case, collider-stratification or selection bias is created

27



Chapter 1. Introduction1

U0 L1 A1 C1

Y2

BLOCKED paths

(a)

U0 L1 A1

L2 A2 C2 Y2

BLOCKED paths

(b)

U0 L1 A1

L2 C2 Y2

BLOCKED paths

(c)

U0 L1 A1 C1

L2 C2 Y2

BLOCKED paths

(d)

U0 L1 A1

L2 A2 Y2

OPEN paths

(e)

U0 L1 A1 C1

L2 A2 Y2

BLOCKED paths

(f)

U0 L1 A1

L2 A2 C2 Y2

BLOCKED paths

(g)

U0 L1 A1

A2 Y2

BLOCKED paths

(h)

U0 L1 A1

L2 A2 Y2

BLOCKED path

(i)

Figure 1.5: Non-causal paths between exposure A1 and outcome Y2, in an adjusted
analysis of the joint e�ect of (A1, A2) on Y2, when stratifying for prognostic variables
L1 and L2.
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U0 L1

L2 A2 C2 Y2

BLOCKED paths

(a)

U0

L2 A2 C2 Y2

BLOCKED paths

(b)

U0 L1

L2 A2 C2 Y2

BLOCKED paths

(c)

Figure 1.6: Non-causal paths between exposure A2 and outcome Y2, in an adjusted
analysis of the joint e�ect of (A1, A2) on Y2, when stratifying for prognostic variables
L1 and L2.

by conditioning on L2 which acts as a collider in non-causal path U0 → L2 ← A1.

Here, it will lead to time-dependent confounding of the exposure-outcome relation,

so-called because it is induced by conditioning on the time-dependent confounder

L2. In the presence of such confounding, stratification-based regression methods

for Y2 that adjust for confounders acting both as cause and e�ect of exposure may

yield biased e�ect estimates (Hernàn et al., 2004; Robins and Hernàn, 2009; Daniel

et al., 2013). We will elaborate on this in the next section. Avoiding adjusting for

L2 by only conditioning on confounders L1 (occurring before the onset of A1) does

not remedy this problem because then particular non-causal paths between A2

and Y2 that pass through L2 will remain open. All stratification-based methods

that analyse the e�ect of exposure to infection on ICU-mortality will su�er from

this problem of adjustment for time-dependent confounding: while adjustment

is necessary to remove time-dependent confounding, ordinary stratification will

induce selection bias.

Also, besides leading to time-dependent confounding, conditioning on the L2

variable will be problematic when estimating the overall causal e�ect of A1 on

Y2. As seen in the diagram of Subfigure 1.2a, part of this e�ect is mediated by L2,

therefore conditioning on L2 will block part of the causal paths between A1 and

Y2.

29



Chapter 1. Introduction1

1.3.9 Stratified models for the joint e�ect of exposure

While a causal DAG encodes an underlying nonparametric model for counterfactu-

als, in practice we will not be able to model the mean of Yt nonparametrically using

a dataset with moderate sample size and many time-points, exposure regimes a

and multi-dimensional time-dependent confounders Lt. Therefore, we return to

the example of section 1.3.3 where we relied on a parametric regression model

for the discrete-time hazard of counterfactual outcome Yt,a at t ≤ 2. The DAG’s

causal e�ects represented in Subfigures 1.2a, 1.2b and 1.2c will correspond with

aforementioned contrasts exp(βc,1
1 ), exp(βc,1

2 ) and exp(βc,1
1 −βc,1

2 ) respectively that

were derived from model (1.7). Because this example relies on the unrealistic situa-

tion where we could model an original dataset containing counterfactual outcomes

for all exposure regimes, we will now verify if we can obtain causal contrasts by

modelling observed data. In doing so, we will ignore the problems linked to the

causal interpretation of the hazard ratio that we explained in Section 1.3.3, as these

can be resolved by conversion towards the survival risk ratio using (1.5).

First, consider the pooled logistic regression model derived from earlier model

(1.1):

P (Yt = 1|Yt−1 = 0, (a1, a2); β
cr) = expit{βcr

0 + βcr
1 a1 + βcr

2 a2(1− a1)}

at t ≤ 2 (1.23)

with unknown parameter βcr, so-called because it estimates a crude e�ect, due

to no adjustment being made for confounders of the exposure-outcome relation.

Therefore, it will generally fail in delivering causal estimates of the e�ect of exposure

on outcome. To see this, consider the contrast estimated by βcr
1 :

exp βcr
1 =

P{Yt = 1|Y t−1, (a1, a2) = (1, 1); βcr}
P{Yt = 1|Y t−1, (a1, a2) = (0, 0); βcr}

=
P{Yt,(1,1) = 1|Y t−1,(1,1), (a1, a2) = (1, 1); βcr}
P{Yt,(0,0) = 1|Y t−1,(0,0), (a1, a2) = (0, 0); βcr}
at t ≤ 2 (1.24)
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11.3. Causal Inference

or the relative risk for the outcome of subjects under exposure regime (a1, a2) =

(1, 1) versus (0, 0) at t ≤ 2. In order to interpret this as a causal contrast, we use

Consistency assumption (1.8) in the second line of (1.24) to present the numerator

and denominator as means of a counterfactual outcome. Next, we need to turn

the conditional mean for each counterfactual into a population mean, however

we will fail in doing so because SRA (1.9) only defines independence between

Yt,a and At conditional on confounder history Lt, which is a variable lacking from

regression model (1.23). Therefore, contrast (1.24) uses means of counterfactuals

that are defined within di�erent subgroups [a = (1, 1) versus a = (0, 0)] that are

not exchangeable in terms of prognostic factors U and L. This contrast will thus

be biased due to confounding by U and/or L. A same reasoning applies for the

contrast that compares exposure regime (a1, a2) = (0, 1) with (0, 0) at t = 2.

Now consider models for the stratified e�ect of exposure. A causal diagram

adapted towards a conditioned Lt variable represents such a stratified analysis,

ie. by calculating the joint e�ect of exposure at t − 1 and t on outcome at t

by using observations for which Ct = 0 and stratified for Lt. Table 1.1 shows

the identification of causal contrasts under SRA (1.9) using a stratified pooled

logistic regression model for the discrete-time hazard of Yt: P (Yt = 1|Yt−1 =

0, V ; βs) = expit{βs′V } at t ≤ 2. This uses the unknown parameter vector βs (“s”

for stratified), with the following model parametrisations for βs
′
V :

βs0 + βs1a1 + βs2a2(1− a1) + βs3L1 + βs4L2 (1.25)

βs0 + βs1a1 + βs2a2(1− a1) + βs3L1 (1.26)

βs0 + βs1a1 + βs2a2(1− a1) + βs3L1 + βs4L2(1− a1) (1.27)

Model (1.25) stratifies the e�ect of joint exposure for L1 and L2, model (1.26)

stratifies for L1 only, and model (1.27) stratifies for L1 and L2 under (a1, a2) =

{(0, 0), (0, 1)} and for L1 under (a1, a2) = (1, 1). Note that we use a monotonous

exposure where only the onset of exposure is set randomly conditionally on expo-

sure and covariate history, and deterministically (to 1) once onset occurred. Under

such monotonous exposure, the use of SRA will be limited to only one time-point

when identifying the conditional average of the counterfactual outcome under
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exposure regimes (1, 1). This is shown as follows for stratified model (1.25):

P{Yt = 1|Yt−1 = 0, (a1, a2) = (1, 1), L2}

= P{Yt = 1|Yt−1 = 0, a1 = 1, a2 = 1, L1, L2}

= P{Yt = 1|Yt−1 = 0, a1 = 1, L1, L2}

= P{Yt,(1,1) = 1|Yt−1,(1,1) = 0, a1 = 1, L1, L2,(1,1)}

= P{Yt,(1,1) = 1|Yt−1,(1,1) = 0, L1, L2,(1,1)} (1.28)

with the second equality due to monotonous exposure, the third to consistency

of exposure regime, and the fourth to SRA at t = 1. Similarly, we can derive the

conditional average of the counterfactual outcome under exposure regime (0, 0)

as follows

P{Yt = 1|Yt−1 = 0, (a1, a2) = (0, 0), L2}

= P{Yt = 1|Yt−1 = 0, a1 = 0, a2 = 0, L1, L2}

= P{Yt = 1|Yt−1 = 0, a2 = 0, L1, L2}

= P{Yt,(0,0) = 1|Yt−1,(0,0) = 0, a2 = 0, L1, L2,(0,0)}

= P{Yt,(0,0) = 1|Yt−1,(0,0) = 0, L1, L2,(0,0)} (1.29)

with the second equality due to monotonous exposure, the third to consistency of

exposure regime, and the fourth to SRA at t = 2.

Table 1.1 shows that none of the stratified models succeed in delivering joint

causal contrasts. This is due to all regression models failing to identify a valid

causal contrast between exposure regimes (a1, a2) = (1, 1) and (0, 0) at t = 2.

Interestingly, the models and types of exposure that are able to identify averages of

counterfactual outcomes in both numerator and denominator, still fail in identifying

a causal contrast because the counterfactual means are defined within di�erent

subgroups. For example, model (1.25) in the 1st line of Table 1.1 compares a

counterfactual mean defined within subgroup L2,(1,a2) with a counterfactual mean

defined within subgroup L2,(0,a2). Counterfactual variable Lt,a is here defined as Lt
under exposure regime set to a. Because stratification for L2 in a regression model

based on (1.25) will force the subgroups defined by L2,a to be equal, this will lead
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to the time-dependent confounding described in the previous section. Model (1.27)

only partially corrects for this, in that the denominator’s counterfactual mean is

still defined within subgroup L2,(0,a2), which is di�erent from the numerator.

In contrast to this, some models do succeed in identifying the causal contrast

between exposure regimes (a1, a2) = (0, 1) and (0, 0). As shown in the second

part of Table 1.1, this is the case for models (1.25) and (1.27), where contrasts have

a causal interpretation not only because of successful identification of averages of

counterfactual outcomes in both numerator and denominator, but also because

these are defined within the same subgroup. Note however that contrasts are

defined as conditional contrasts, and that for this reason, they may not be equal

to the earlier defined marginal contrast, for example see parameter exp βc2 in model

(1.7) for the e�ect of exposure regime (a1, a2) = (0, 1) versus (0, 0).

It might be insightful to verify whether we can use stratified regression models

to estimate the aggregated overall causal e�ect of exposure, like we did earlier using

model (1.3). In such a stratified model, the coe�icients βs1 and βs2 will be aggregated

into one coe�icient, using a parametrisation such as

βsa0 + βsa1 a2 + βsa2 L1 + βsa2 L2(1− a1) (1.30)

in which coe�icient βsa1 will now encode the e�ect of either exposure regime

(a1, a2) = (0, 1) or (1, 1) versus exposure regime (0, 0), and which will be adjusted

for L1 and/or L2 depending on exposure status at the first time-point. Because βsa1
now summarises the earlier two exposure e�ects into one, for which we showed

that one (the βs1 coe�icient in models 1.25-1.27) cannot lead to a causal contrast, we

conclude that the parameter βsa1 will not identify a causal contrast either. Therefore,

stratified regression models will also be unable to provide estimates of aggregated

causal e�ects.

If we consider a point-treatment study with Tm = 1, we can use the results of

the previous paragraphs to identify a valid causal contrast between exposure a = 1

and 0. To do so, we need to ignore all variables at t = 2, a�er which models (1.25-

1.27) will be equal, and exp βs1 can be shown to estimate a valid causal contrast

P (Y1,a1=1|L1)/P (Y1,a1=0|L1). This shows that, under conditional randomisation in
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11.4. Estimators of joint causal e�ects

a point-treatment study, stratification will be su�icient in identifying a conditional

contrast for the causal e�ect of exposure. However, in a longitudinal study where

the objective is to estimate the e�ect of time-varying exposures in the presence

of time-dependent prognostic factors acting as both cause and e�ect of exposure,

stratification will fail in identifying the causal contrast between exposure regimes

(a1, a2) = (1, 1) and (0, 0). Therefore, it will also fail to identify the causal con-

trasts between exposure regimes (a1, 1) and (0, 0) (the aggregated overall e�ect of

exposure) and between exposure regimes (1, 1) and (0, 1) (earlier described as the

controlled direct e�ect of exposure at t = 1 on outcome at t = 2). We conclude

that, despite the simplicity that lies in the use of stratified regression models

to eliminate confounding, stratification under such models will only be able to

estimate parameters that measure associations between time-varying exposures

and outcomes, instead of causal e�ects.

1.4 Estimators of joint causal e�ects

1.4.1 G-computation

Our objective is to identify the average of Y2,a, thereby avoiding the pitfalls de-

scribed in the previous section. We will try to find ways in which this average

can be identified from earlier derived counterfactual density f(V 2,a) (1.18). The

density f(Y2,a) for the counterfactual Y2,a is obtained by summing (1.18) over all

realisations of variables in set V 2 \ (A2, A1, Y2) as in∑
U0,L1,L2

f
{

(U0, L1, a1, L2, a2, Y2)(a1,a2)
}

= f
{

(Y2, a2, a1)(a1,a2)
}

= f(Y2,(a1,a2)) (1.31)

in which we assume categorical (U0, L1, L2) for simplicity, and similarly for the

right-hand side of the last line of (1.18)

f{Y2,(a1,a2)} =
∑

U0,L1,L2

f(Y2|a2, a1, L1, L2, U0)f(L2|a1, L1, U0)
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×f(L1, U0) (1.32)

which is the standardisation procedure of equation (1.11) but applied to causal

DAG of Figure 1.1. Because (1.32) relies on parent variables of Y2, which includes

the unmeasured U0, this will be of no practical use for identification of the mean

of Y2,(a1,a2). Making use of the assumptions encoded by the causal DAG of Figure

(1.1) (Daniel et al., 2013), we obtain

f{Y2,(a1,a2)} =
∑

U0,L1,L2

f(Y2|a2, a1, L2, L1, U0)f(L2|a1, L1, U0)f(L1, U0)

=
∑

U0,L1,L2

f(Y2|a2, a1, L2, L1, U0)f(L2|a1, L1, U0)f(L1, U0)

×f(A2 = a2|L2, a1, L1, U0)f(A1 = a1|L1, U0)

f(A2 = a2|L2, a1, L1, U0)f(A1 = a1|L1, U0)

=
∑

U0,L1,L2

f(Y2|a2, a1, L2, L1, U0)

× f(a2, L2, a1, L1, U0)

f(A2 = a2|L2, a1, L1, U0)f(A1 = a1|L1, U0)

=
∑

U0,L1,L2

f(Y2|a2, a1, L2, L1, U0)

×f(U0|a2, L2, a1, L1)f(L2|a1, L1)

× f(A2 = a2|L2, a1, L1)f(A1 = a1|L1)

f(A2 = a2|a1, L2, L1, U0)f(A1 = a1|L1, U0)
f(L1)

=
∑
L1,L2

{∑
U0

f(Y2|a2, a1, L2, L1, U0)f(U0|a2, L2, a1, L1)

}
×f(L2|a1, L1)f(L1)

=
∑
L1,L2

f(Y2|a2, a1, L2, L1)f(L2|a1, L1)f(L1)

if (A1, A2) = (a1, a2) (1.33)

In the above derivation, more specifically in the fourth equality, we use SRA (1.9),

by which

f(A2 = a2|a1, L2, L1, U0) = f(A2 = a2|a1, L2, L1)
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11.4. Estimators of joint causal e�ects

f(A1 = a1|L1, U0) = f(A1 = a1|L1) (1.34)

Equation (1.33) is a time-dependent generalisation of standardisation procedure

(1.11) to identify potential outcomes under time-dependent exposure regimes, and

is called the G-computation formula (Robins, 1986; Robins and Hernàn, 2009; Daniel

et al., 2013). G-computation has been shown to be a valid technique to identify

joint causal e�ects in nonparametric se�ings. However, with high-dimensional L

and moderate sample sizes, insu�icient data will be available to allow separate es-

timation of the distributions for f(Yt|Y t−1, a, Lt) and f(Lt|at−1, Lt−1). Therefore,

parametric modelling will be needed to estimate these quantities, with possible

misspecification bounded to occur in the presence of high-dimensional L. Fur-

thermore, Robins (1997) has shown that it is generally not feasible to postulate

nonlinear models for Yt and Lt that allow for both specification of the null hypoth-

esis of no joint exposure e�ect and for intermediate confounding by Lt, leading to

false rejection of the causal null hypothesis when it is true. This is known as the

null paradox of the estimated G-formula.

For example, consider logistic regression modelsP{Yt = 1|Yt−1 = 0, (a1, a2), L2; β
s}

based on model parametrisation (1.25) for the discrete-time hazard of Yt and

P (L2 = 1|a1;α) = expit(α0 + α1a1) for the conditional mean of a binary L2.

Using both models in G-computation formula (1.33) will give a model for the

discrete-time counterfactual hazard as follows

P{Yt,(a1,a2) = 1|Yt−1,(a1,a2) = 0, L1; β
s}

= exp{βs0 + βs1a1 + βs2a2(1− a1) + βs3L1 + βs4}expit(α0 + α1a1)

+ exp{βs0 + βs1a1 + βs2a2(1− a1) + βs3L1}{1− expit(α0 + α1a1)}

=
[

exp{βs0 + βs1a1 + βs2a2(1− a1) + βs3L1 + βs4 + α0 + α1a1}

+ exp{βs0 + βs1a1 + βs2a2(1− a1) + βs3L1}
]

× 1

1 + exp(α0 + α1a1)
(1.35)

in which the direct e�ect of A1 will be estimated by following contrast of counter-

37



Chapter 1. Introduction1

factual hazards for exposure regime (a1, a2) = (1, 1) versus (0, 1):

exp(βs0 + βs1 + βs3 + βs4 + α0 + α1) + exp(βs0 + βs1 + βs3)

exp(βs0 + βs2 + βs3 + βs4 + α0) + exp(βs0 + βs2 + βs3)

× 1 + exp(α0)

1 + exp(α0 + α1)

=
exp(βs1)

exp(βs2)
× 1 + exp(βs4 + α0 + α1)

1 + exp(βs4 + α0)
× 1 + exp(α0)

1 + exp(α0 + α1)

(1.36)

It proves to be very di�icult to find parameter realisations in which the null hy-

pothesis of no direct e�ect of A1 will hold, unless either βs1 − βs2 = α1 = 0 or

βs1−βs2 = βs4 = 0. However, α1 = 0 would imply thatA1 has no causal e�ect onL2,

meaning absence of time-dependent confounding, while βs4 = 0 would imply that

A2 and Y2 are not confounded by L2. Both these conditions are false under causal

DAG of Figure 1.1. For reference, a null e�ect under a normally distributed L2

variable that is modelled linearly with constant variance across exposure regimes

would imply that βs1 − βs2 + βs4α1 = 0, which is feasible under scenarios other than

se�ing βs4 = 0 or α1 = 0, see Young and Tchetgen (2014) for details. Given these

remarks, we will seek other methods for joint estimation of the causal e�ect of

(A1, A2) on Yt

1.4.2 Marginal structural proportional hazard models

Robins (1992, 2000) and colleagues propose Marginal structural proportional hazards

models (MSPHMs) and Structural nested accelerated failure time models (SNFTMs) to

estimate the a�ributable e�ect of a time-dependent exposure on a failure outcome

in the presence of time-dependent confounders and informative censoring. We

will introduce and illustrate MSPHMs here, and SNFTMs in the following section.

A MSPHM is a model for the marginal e�ect of exposure regime a on λYa , the

hazard of the counterfactual outcome Y under this exposure (Robins, 2000; Hernàn
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et al., 2001), and have the form (discrete-time version)

(1.37)

P (Yt,a = 1|Yt−1,a = 0, L0; β
0) = expit{γmsm(at, L0; β

0)}

for all at (1.38)

with γmsm a known function and β0 the (unknown) true parameter vector of interest

that gives the causal e�ect of exposure on survival on the hazard scale. The term

“marginal” implies that the hazard is calculated over the levels of Lt, the measured

time-dependent confounder history until t. Because model (1.37) allows to con-

trast the counterfactual hazard under exposure regime a with that same subject’s

counterfactual hazard under absence of exposure, parameter β0 of the exposure

e�ect a has a causal interpretation. For example, when γmsm{(a1, a2), L0; β
0} =

β0
0 +β0

1a1 +β0
2a2(1−a1), then model (1.37) will be equal to earlier discussed model

(1.7) that parametrised causal contrasts.

Informally, the MSPHM is constructed as follows. Because the potential out-

comes Yt,a of each subject are partly unobserved - instead only outcomes Yt for

the actual received exposures a are observed - the MSPHM cannot be constructed

by only using the observed data. It is however possible to generate the distribution

of the missing Yt,a, and this by upweighting each observation with actual a by the

inverse probability of experiencing this specific a. Hereby, it treats unobserved

potential outcomes Yt,a as missing observations from the distribution of potential

outcomes, and will rely on upweighting according to the probability or propensity

of having the observed data (ie. having actual exposure history a) to create a

population in which everybody experienced a. If upweighting is repeated for all

possible a, we will thus create a pseudo-population of potential outcomes Yt under

all possible exposure regimes a.

Upweighting by the inverse probability of experiencing exposure history a =

(a1, a2) enables identifying the distribution of potential outcomes under the causal

DAG of Figure (1.1) - without C - as follows. We start with the average of the

outcome Y2 that is weighted for the inverse probability of exposure for subjects
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with I(a1, a2) = 1, or those having a = (a1, a2):

E

{
I(A1 = a1, A2 = a2)

f(A2 = a2|L2, A1, L1)f(A1 = a1|L1)
Y2

}
= E

{
I(A1 = a1, A2 = a2)

f(A2 = a2|L2, A1, L1)f(A1 = a1|L1)
Y2,(a1,a2)

}
= E

[
E

{
I(A2 = a2)I(A1 = a1)

f(A2 = a2|L2, A1, L1)f(A1 = a1|L1)
Y2,(a1,a2)

∣∣∣∣A1, L2

}]
= E

[
P (A2 = a2|L2, A1, L1)I(A1 = a1)

f(A2 = a2|L2, A1, L1)f(A1 = a1|L1)
E{Y2,(a1,a2)|A1, L2}

]
= E

[
I(A1 = a1)

f(A1 = a1|L1)
E{Y2,(a1,a2)|A1, L2}

]
= E

[
E

{
I(A1 = a1)

f(A1 = a1|L1)
Y2,(a1,a2)

∣∣∣∣L1

}]
= E

[
P (A1 = a1|L1)

f(A1 = a1|L1)
E{Y2,(a1,a2)|L1}

]
= E

[
E{Y2,(a1,a2)|L1}

]
= E{Y2,(a1,a2)} (1.39)

where the first equality is due to consistency of exposure regime (1.8), the second,

fi�h and last to conditional expectation, and the third and sixth to SRA (1.9) at

times s = 2 and s = 1 respectively. The weighted outcome is only defined under

positivity assumption (1.10).

The weighting procedure shows that the parameters of a MSPHM can be

estimated by Inverse probability of exposure (IPE) weighting. This is indeed how IPE-

weighted estimation under a MSPHM adjusts for confounding of the association

between exposure and outcome by time-dependent variables, not by including

these variables in the functional part of the regression model (as in stratified

models), but by using them to estimate the probability of exposure at each time

and subsequently weighting observations by the inverse of these probabilities in an

unadjusted analysis of the association between exposure and outcome. The weights

can be interpreted as the number of copies of each observation that are necessary

to form a pseudo-population in which there is no time-dependent confounding,

but in which the causal e�ect of exposure on outcome is the same.
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Similarly, one can further adjust the IPE-weighted estimator under the MSPHM

for bias due to informative censoring by calculating supplementary weights derived

from regression models that predict censoring based on time-varying subject

characteristics. As before, this Inverse probability of censoring (IPC) weighting will

create a pseudo-population in which A, L and C are unassociated. Because of this,

the pseudo-population reflects the hypothetical situation in which all subjects

would remain under follow-up until the last observation time, reflecting a situation

without drop-out. IPC-weighting is only valid under ICA (1.12).

In practice, a MSPHM is fi�ed by using a pooled logistic regression model for

the e�ect of exposure on the discrete-time hazard of outcome at t

P (Yt|Yt−1 = 0, at, L0; β
msm) = expit{γmsm(at, L0; β

msm)} (1.40)

Model (1.40) is fi�ed to data that is inversely weighted at each t for the combined

stabilised conditional probabilities of having observed exposure status and being

uncensored until t, expressed as follows:

Wmsm
t = W a,msm

t ×W c,msm
t (1.41)

with

W a,msm
t =

t∏
s=1

πas (Ls)

πas (L0)
(1.42)

W c,msm
t =

t∏
s=1

πcs(As, Ls)

πcs(As, L0)
(1.43)

πas (.) = P (As = as|As−1 = Cs−1 = 0, .) (1.44)

πcs(.) = P (Cs = 0|Cs−1 = 0, .) (1.45)

Probabilities (1.44,1.45) are estimated from separately constructed pooled logis-

tic regression models models for the discrete-time hazard of respectively At = at

and Ct = 0. To prevent extreme weights, inverse conditional probabilities for indi-

vidual patient days are stabilised with probabilities πas (L0) and πcs(As, L0), derived

from pooled logistic regression models similar to the ones above, but di�ering in
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U0 L1 A1 C1

L2 A2 C2 Y2

Figure 1.7: Causal directed acyclic graph depicting association between A1 and Y2 and
between A2 and Y2 a�er Inverse probability of exposure and Inverse probability of
censoring weighting.

that these adjust for baseline confounders L0. The stabilisation is such that the

weights Wt will be equal to 1 when Lt is unassociated with A in the data (Yu and

van der Laan, 2006). When probabilities for exposure and for censoring need to be

estimated from observed data, estimation under a MSPHM will be only valid if

these models are correctly specified.

Calculation of MSPHM (1.40) is done using the Generalised estimating equa-

tions (Liang and Zeger, 1986) technique with independent working correlation

structure, whose approximate variance estimator using the sandwich formula yields

confidence intervals for the causal parameters of model (1.37). These intervals will

be conservative when they do not take into account estimation of the parameters

of the models used for calculation of IPE- and IPC-weights (Robins and Hernàn,

2009). As explained earlier, model (1.40) on weighted data is equivalent to MSPHM

(1.37) for the counterfactual hazard of Yt,a. A MSPHM for Yt,a can be fi�ed using

standard statistical routines, which represents a major advantage relative to other

statistical estimation routines for counterfactual outcomes, and which has lead to

widespread use and implementation of MSPHMs in the literature.

The situation once this combined IPE-IPC weighting is applied and this pseudo-

population is created can be visualised in the causal diagram of Figure (1.1) as
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follows: arrows into exposure and censoring variables A2, A1, C2 and C1 will

be removed, as a result of which there is no further confounding of the A − Y
association through non-causal paths passing through L2, L1 and U0, as in the

adapted causal DAG of Figure (1.7). Because of this, there is no further need

to adjust for L1 and L2 in the analysis. As such, i.e. by avoiding adjustment

via stratification-based methods, we can avoid inducing non-causal associations

between A and Y , which initially arose because of conditioning on L2. The causal

e�ects of interest as shown in Figure 1.2 can therefore be unbiasedly estimated.

The use of a MSPHM to estimate the counterfactual hazard for mortality su�ers

from the weakness that goes with the interpretation of hazards. As mentioned

above, the discrete-time hazard for the outcome Y , P (Yt = 1|Yt−1 = 0), is defined

as the time-dependent probability of Y at a time t conditional on not having expe-

rienced Y until t− 1. Such conditioning on being outcome-free until t− 1 will lead

to non-causal association and additional selection bias of the exposure-outcome

relation (Hernàn, 2010). The problem is visualised in Figure 1.8, which is derived

from the causal DAG of Figure 1.7 and updated with the inclusion of Y1, the out-

come variable at t = 1, to only show the non-casual paths between A1 and Y2
through U0. Note that the hazard’s conditioning on the past (Y1 = 0) is visualised

through the square surrounding the variable. The causal DAG shows that even

when cancelling all relevant non-causal paths between joint exposure (A1, A2)

and Y2, the remaining paths between exposure A1 and unmeasured prognostic

variables U0 will be responsible for residual non-causal associations between A1

and Y2 through conditioning on collider Y1 in this particular path. To avoid this

di�iculty in interpretation, one can use the fi�ed MSPHM to predict conditional

counterfactual hazards for specific exposure regimes, and then use these to calcu-

late the corresponding risk of counterfactual survival for these regimes, as shown

earlier using expression (1.5). Estimating the mean di�erence of risk of survival

with a corresponding 95% confidence interval could then proceed by a series of

bootstrap samples. Estimation of lag e�ects could proceed by calculating risk

di�erences at specific end-of follow-up times that correspond with the onset of

exposure of the studied regime and with the lag time used by the MSPHM.
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U0 A1 Y1 Y2

Figure 1.8: Causal directed acyclic graph depicting non-causal association between expo-
sure A1 and outcome Y2 through intermediate outcome Y1.

1.4.3 Structural nested accelerated failure time models

The Accelerated failure time model (Kalbfleisch and Prentice, 2002; Cox and Oakes,

1984) directly models the survival time T , in contrast to previously described

proportional hazard models for the hazard rate. An Accelerated failure time model

(AFTM) for a non-counterfactual outcome is of the form

T
d
=Tb × exp(ψ′Z) (1.46)

where Z ≡ (L,A) is a vector of measured covariates, ψ a vector of parameters, and

Tb the baseline survival time of subjects for which all covariates equal zero. The

factor exp(ψ′Z) can be seen as an accelerating factor that contracts or expands

baseline survival time Tb as a function of a subject’s covariates Z . The “ d
= ” stands

for equality in distribution, indicating that the equality holds for the respective

distribution functions of the random variables (or functions thereof) in le� and

right parts of (1.46) .

A Structural nested accelerated failure time model (SNFTM) (Robins, 1992) adapts

model (1.46) towards a counterfactual outcome and time-dependent exposure. A

SNFTM for time-dependent exposure At is of the form

Tt,0
d
= (t− 1) +

T∑
u=t

exp{γsnm(Au, Lu;ψ
0)}

for T ≥ t (1.47)

with Tt,0 the counterfactual survival time corresponding to observed exposure

history At until t− 1 but set to zero exposure at t and therea�er, γsnm() a known

function, and ψ0 the unknown true parameter vector of dimension p that describes
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the causal e�ect of exposure on log survival time scale. That this is an accelerated

failure time model is obvious by virtue of it being derived from model (1.46). It is

called structural because it models the counterfactual outcome Tt,0. See further

why it is called a nested model. The parametrisation of the above SNFTM need not

be restricted to the exposure A. It can be extended to any function of measured

variables A and L as long as ψ0 ≡ 0 and at = 1 implies T0
d
=T (with T1,0 ≡ T0).

The fact that interactions of exposure with time-dependent confounders L are

allowed, represents a major advantage of SNFTMs over MSPHMs.

Going back to the example that motivated this study, we can use model (1.47)

to verify what would happen with the distribution of survival times under a hy-

pothetical intervention that would eliminate the onset of HAI. By mapping the

distribution’s observed survival time T into the counterfactual survival time T0
under the absence of exposure, the SNFTM’s ψ0 parameter directly gives the causal

e�ect of exposure on survival time. Because of this, the causal null hypothesis

H0 : T
d
=T0 corresponding to a zero e�ect of exposure on survival will correspond

to testing ψ0 = 0.

Consider SNFTM (1.46) with γsnm(At, Lt;ψ
0} = ψ0At indexed by one-dimensional

causal parameter ψ0. For a subject with observed survival time T = 2 and being ex-

posed at all times t = 1, 2 [giving exposure history a = (a1, a2) = (1, 1)], observed

survival times will be mapped into counterfactual survival times as follows:

T2,0 = 1 + exp(ψ0a2) = 1 + exp(ψ0)

T1,0 = exp(ψ0a1) + exp(ψ0a2) = 2exp(ψ0) (1.48)

When the objective is to measure the joint e�ect of time-varying exposure at t

and t− 1, we can postulate a SNFTM with γsnm(At, Lt;ψ
0} = ψ0

1(1− At−1)At +

ψ0
2At−1At indexed by causal parameter vectorψ0 = (ψ0

1, ψ
0
2). Continuing our exam-

ple, the relevant part of the exposure history at t = 2 then becomes (a0, a1, a2) =

(0, 1, 1). Counterfactual survival times will then become

T2,0 = 1 + exp{ψ0
1(1− a1)a2 + ψ0

2a1a2}

= 1 + exp(ψ0
2) (1.49)

45



Chapter 1. Introduction1

T1,0 = exp{ψ0
1(1− a0)a1 + ψ0

2a0a1}

+ exp{ψ0
1(1− a1)a2 + ψ0

2a1a2}

= exp(ψ0
1) + exp(ψ0

2) (1.50)

The above creation of counterfactual survival times under model (1.47) explains

why it is nested ; this is because the SNFTM creates counterfactual survival times

recursively from t = Tm to t = 1, and conditional on covariate and (possibly)

confounder history (At, Lt), which can be described as nested sets of variable

history, the ones at t nested within those at t− 1 etc.

Estimation of ψ0 proceeds through G-estimation (Robins, 1992): from a grid of

candidate ψ’s that are plausible, those values are sought that, a�er calculating

Tt,0(ψ) through SNFTM (1.47), give zero association with the exposure in a pooled

logistic regression model for the conditional e�ect of Tt,0(ψ) on the discrete-time

hazard of exposure

E(At|At−1 = Y t−1 = 0t−1, Lt) = expit[ψA′L Lt + ψA
′

T gt{Tt,0(ψ), Lt}] (1.51)

in whichE(At|At−1, Lt) is the conditional discrete-time hazard of exposure, ψA an

unknown parameter vector, and gt() a vector function of Tt,0(ψ) with dimension

equal to dim(ψ). By using SRA (1.9), we will search for ψ values that yield ψ̂AT = 0

when fi�ing model (1.51), a procedure that will be equivalent to estimating ψ0.

We demonstrate how the mapping of the counterfactual survival time Tt,0(ψ)

at t = 1 and t = 2 by means of G-estimation leads to unbiased estimates of the

ψ0. To do so, we again rely on causal diagrams. However, because a causal DAG

assumes an underlying nonparametric model, which is in contrast with the use of

a parametric SNFTM, the demonstration that follows is only informal. Figure 1.9

is derived from the causal DAG of Figure 1.1 but with Y replaced by T , and a�er

adjusting for non-administrative censoring (visible by absence of arrows going

into Ct at t = 1, 2). Eliminating exposure at t = 2 through SNFTM (1.47) leads to

counterfactual survival time T2,0, this will result in removal of outgoing arrow of

A2 into T2,0 in causal diagram (a) of Figure 1.9. G-estimation will ensure that A2

and T2,0 are independent conditional on exposure and confounder history (A1, Lt)
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at t = 2. Indeed, by conditioning on L2, L1 and A1, visible in causal diagram (a) of

Figure 1.9 through squares around these variables, all non-causal paths betweenA2

and T2,0 will be blocked. Counterfactual survival time T1,0 will be created by further

removing the e�ect of exposure at t = 1, G-Estimation now verifies conditional

independence between T1,0 and A1 (given L1), visible through blocked non-causal

paths between these two variables in causal diagram (b) of Figure 1.9. Note that

diagram (b) shows outgoing arrows of A1 to allow for a null direct e�ect of A1 on

T1,0 by balancing the paths A1 → T1,0 and A1 → L2 → T1,0

Since SNFTM (1.47) only relies on a selective group of subjects with observed

or administratively censored survival time, we will explain in the next Section

how the G-estimation procedure is adjusted for this. This includes G-estimation

of ψ0 under SNFTM (1.51) using an estimating function, and how this leads to

approximate estimates of its asymptotic variance. Also, see Chapter 5 for details

on how SNFTM (1.47) will be adapted to handle survival times T that are censored

due to administrative end of follow-up.

1.4.4 Semiparametric e�iciency

The previous sections introduced models along with estimation methods that

deliver asymptotically unbiased estimates in the presence of measured time-

dependent confounding of the exposure-outcome relationship. In this last section,

we study asymptotically unbiased estimators which have minimal variance as

well. What follows is for the sake of completeness and therefore only for the

interested reader, because it will be only used to support particular derivations

in the Appendices of Chapters 4 and 5. More specifically, we use results from

semiparametric inference that allow us to find unbiased and e�icient estimators

for the causal parameters of MSPHMs and SNFTM. By applying these to SNFTM

(1.47) for example, we tackle the problem that the default estimators under this

model only use data from subjects with either observed survival time or whose

outcome was not observed at the end of follow-up. We outline the most important

results in the following paragraphs, see the monograph of Tsiatis (2006) and the

master thesis of Vermeulen (2011) for in-depth explanations and proofs.
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U0 L1 A1 C1

L2 A2 C2 T2,0

(a)

U0 L1 A1 C1

L2 A2 C2

T1,0

(b)

Figure 1.9: Causal directed acyclic graph depicting association between exposure A and
survival time T in a G-estimation procedure under a Structural nested accelerated
failure time model: non-causal paths between (a) exposure A2 and counterfactual
outcome T2,0, and (b) exposure A1 and counterfactual outcome T1,0.
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Regular and asymptotically linear semiparametric estimators

Assuming complete data (no missingness) for the time being, we consider our data

(X, Y ) [with (U,A, L) = X] as realisations of a semiparametric statistical model

with joint density pX,Y (x, y;ψ, η), or

(X, Y ) ∼ pX,Y (x, y;ψ, η) (1.52)

where pX,Y (x, y;ψ, η) belongs to the class of densities P identified by the q-

dimensional parameter of interest ψ and nuisance parameter η belonging to infinite-

dimensional set H , as in

P = {pX,Y (x, y;ψ, η) : ψ ∈ Θ ⊂ Rq, η ∈ H} (1.53)

In the above, nuisance refers to our understanding that the estimation of parameter

η is merely a nuisance, ie. not the objective of the analysis.

For estimation of ψ, we will consider an Asymptotically linear estimator (ALE) ψ̂

for the true parameter ψ0; that is, an ALE estimator obeys

n1/2(ψ̂ − ψ0) = n−1/2
n∑
i=1

IF F (Xi, Yi;ψ
0) + op(1) (1.54)

with IF F the q-dimensional full-data influence function of the estimator ψ̂ for ψ0,

and having propertiesE{IF F (X, Y ;ψ0)} = 0q×1 andE{IF F (X, Y ;ψ0)IF F ′(X, Y ;ψ0)}
being finite and nonsingular. The function IF F (Xi, Yi) is referred to as the i-th

influence function or the influence function of the i-th observation. Also, op(1) is a

stochastic variable that converges to zero in probability as n goes to infinity.

An ALE has a unique influence function IF F and is Consistent and asymptotically

normal (CAN), as in

ψ̂
p−→ ψ0 (1.55)

n1/2(ψ̂ − ψ0)
d−→ N{0, E(IF F IF F ′)} (1.56)

with “
p−→” meaning convergence in probability, and “ d−→” convergence in distribution.
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(1.55) implies that an ALE is asymptotically normal with asymptotic variance equal

to the variance of its influence function. Finally, we impose suitable regularity

conditions for ψ̂ (Tsiatis et al., 2011)[Section 3.1], and therefore refer to these as a

Regular and asymptotically linear (RAL) estimator.

M-estimators are an example of RAL estimators. These are characterised by

m(X, Y ;ψ), a q-dimensional function of (X, Y ) andψwith propertiesE{m(X, Y ;ψ0)} =

0q×1 and with finite and nonsingular second moments. The m-estimator ψ̂n is then

defined as the solution to
∑n

i=1m(Xi, Yi;ψ) = 0.

Geometry of full-data influence functions

The influence functions for ψ0 can be presented as points (or vectors) in a Hilbert

space of mean-zero q-dimensional functionsHq. This is an infinite-dimensional

abstract geometric function space, with the properties of having an inner product

and norm defined as follows

< h1, h2 > = E(h′1h2) (1.57)

||h|| = < h, h >1/2 (1.58)

with h1, h2, h ∈ Hq. From the definition, the inner product corresponds to the

covariance of functions h1 and h2, therefore also called covariance inner product. Or-

thogonality between two influence functions (h1 ⊥ h2) is defined as< h1, h2 >= 0.

The norm ||h|| allows to define distance from the origin of the vectors inHq, and

corresponds to the variance of influence function h. By defining covariance and

variance in terms of geometric properties ofHq, our objective will be to find and

evaluate RAL estimators for ψ0 with minimal variance. This will be done by con-

structing the influence function for our estimator that corresponds to the point

closest to the origin ofHq, hereby relying on the correspondence between norm

(distance) and variance.

Le�ing θ = (ψ, η), and considering for the moment a finite r-dimensional

nuisance parameter η, with p = q + r, define the score vector for (X, Y ) ∼
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pX,Y (x, y; θ) as

Sθ(X, Y ; θ0) =
∂ log pX,Y (x, y; θ)

∂θ

∣∣∣∣
θ=θ0

(1.59)

or the p-dimensional vector of partial derivatives of the log-density with respect to

θ and evaluated at the true parameter value θ0. The finite-dimensional subspace

ofHq spanned by score vector Sθ(X, Y ; θ0) is called the tangent space J :

J = {Bq×pSθ(X, Y ; θ0) : Bq×p ∈ Rq×p} (1.60)

Sθ factorises into {S ′ψ(X, Y ; θ0), S
′
η(X, Y ; θ0)}′ with Sψ the q-dimensional vector

of partial derivatives of the log-density with respect to parameter of interest ψ and

Sη the r-dimensional vector of partial derivatives of the log-density with respect

to nuisance parameter η. Define the parametric nuisance tangent space Λ as the

finite-dimensional subspace ofHq spanned by Sη:

Λ = {Bq×rSη(X, Y ; θ0) : Bq×r ∈ Rq×r} (1.61)

and J = Jψ ⊕ Λ, with Jψ the tangent space of the parameter of interest ψ and

M ⊕N indicating the direct sum of subspaces M,N ⊂ Hq.

Now returning to the case of an infinite-dimensional parameter η, the semipara-

metric nuisance tangent space Λ becomes the mean-square closure of all nuisance

tangent spaces Λγ = {Bq×rSγ(X, Y ;ψ0, γ0) : Bq×r ∈ Rq×r} of all paramet-

ric submodels Pψ,γ ⊂ P , with P the class of densities defined by (1.52) and

Sγ(X, Y ;ψ0, γ0) the score vector for the finite r-dimensional nuisance parameter

γ of a parametric submodel Pψ,γ . That is, Λ ⊂ Hq is the space of all q-dimensional

functions h(X, Y ) ∈ Hq for which there exists a sequence {BjSγj(X, Y )}+∞j=1 such

that

||h(X)−BjSγj(X, Y )||2 → 0 as j →∞ (1.62)

for a sequence of parametric submodels Pψ,γj and Bj ∈ Rq×rj when γj ∈ Rrj .

Defining the semiparametric nuisance tangent space as above will be essential
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in finding the e�icient influence function. It can be shown that an influence function

IF F of a semiparametric RAL estimator ψ̂ has the following properties:

E{IF F (X, Y )S ′ψ(X, Y ;ψ0, η0)} = Iq×q (1.63)

Π{IF F (X, Y )|Λ} = 0, or IF F ⊥ Λ (1.64)

with Π[IF F (X, Y )|Λ] the orthogonal projection of the influence function vector

IF F onto the nuisance tangent space Λ. The e�icient influence function is then

found by considering the semiparametric e�icient score Sψ,e�(X, Y ;ψ0, η0) in (1.63),

given by

Sψ,e�(X, Y ;ψ0, η0) = Sψ(X, Y ;ψ0, η0)− Π[Sψ(X, Y ;ψ0, η0)|Λ] (1.65)

which, as shown in Figure 1.10, is the residual obtained by subtracting from the

score vector Sψ(X, Y ;ψ0, η0) its orthogonal projection onto the semiparametric

nuisance tangent space Π[Sψ(X, Y ;ψ0, η0)|Λ]. This will deliver the e�icient full-

data influence function IF F
e�(X, Y ;ψ0, η0), or the unique influence function within

Jψ ⊕ Λ with closest distance to the nuisance tangent space Λ, given by

IF F
e�(X, Y ;ψ0, η0) = E(Se�S

′
e�)
−1
Se�(X, Y ;ψ0, η0) (1.66)

Deriving an optimal estimator for the restricted moment model

We show how e�icient full-data influence function (1.66) leads to an estimator for

ψ. First, consider the Restricted moment model (RMM) defined by

E(Y |X) = µ(X;ψ), (1.67)

which models the conditional expectation of Y given X as a known function of

X and p-dimensional parameter ψ. Function (1.67), which can be rewri�en as

E{Y − µ(X,ψ)|X} = 0, formulates the sole restriction on the joint density of

X and Y . In what follows, we will study RMMs with µ(X, θ) = expit(ψ′X∗),
X∗ = (1, X)′ and binary Y , which then becomes a logistic regression model.
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Sψ

Π(Sψ|Λ)

Sψ,e� = Sψ − Π(Sψ|Λ)

Λ

Hq

Figure 1.10: Orthogonal projection of the score vector Sψ onto the semiparametric nui-
sance tangent space Λ and derivation of the semiparametric e�icient score Sψ,e�.

We consider joint densities for variables (Y,X) that can be wri�en as

pY X(y, x;ψ, η) = η1{y − µ(x;ψ), X}η2(x), (1.68)

with

η1{y − µ(x;ψ), X} = pY−µ|X{y − µ(x;ψ)|x} (1.69)

η2(x) = pX(x) (1.70)

or η1{y − µ(x;ψ), X} the conditional density of Y − µ(X;ψ) given X with re-

striction E(Y − µ(X;ψ)|X) = 0, and η2(x) the density of X . In the above, η1(.)

and η2(.) can be viewed as infinite-dimensional nuisance parameters.

By deriving the semiparametric nuisance tangent space Λ, and then using

criteria (1.63-1.63) for RAL full data influence functions for parameter ψ of RMM

(1.67), the class of RAL influence functions is found to be (Tsiatis et al., 2011)[Section

4.5] {
[E{A(X)D(X)}]−1A(X){Y − µ(X,ψ)}

}
(1.71)
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with A(X) an arbitrary (non-trivial) p-dimensional function of X and D(X) =

∂µ(X,ψ)/∂ψ. This leads to RAL m-estimator ψ̂n for ψ that solves estimating

equation

n∑
i=1

A(Xi){Yi − µ(Xi, ψ)} = 0 (1.72)

also known as Generalised estimating equations (GEE) (Liang and Zeger, 1986),

with ψ̂n a GEE-estimator. The e�icient influence function is found by deriving the

e�icient score, which becomes

Sψ,e�(Y,X) = D(X)′V (X)−1{Y − µ(X,ψ)} (1.73)

with V (X) = var(Y |X) the conditional variance of Y given X . The e�icient

influence function then becomes

IF F
e�(Y,X) = [E{D(X)′V (X)−1D(X)}]−1D(X)′V (X)−1{Y − µ(X,ψ)}

(1.74)

yielding an optimal estimator ψ̂n for ψ as the solution to estimating equation

n∑
i=1

D(Xi)
′V (Xi)

−1{Yi − µ(Xi, ψ)} = 0 (1.75)

Applying the above to a logistic regression model, under which D(X) =

X∗V (X) and V (X) = µ(X,ψ){1 − µ(X,ψ)}, we obtain the optimal estimat-

ing equation

n∑
i=1

X∗i {Yi − µ(Xi, ψ)} = 0 (1.76)

We now make the link to SNFTM (1.47) of Section 1.4.3. The G-estimation

procedure of the causal parameter of the SNFTM assesses conditional indepen-

dence under SRA (1.9) between gt{Tt,0(ψ)}, the p-dimensional function of the
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counterfactual survival time, and exposureAt under the pooled conditional logistic

regression model for the discrete-time hazard of exposure (1.51). We now consider

function

UT,F,snm(ψ) =
T∑
t=1

U F,snm
t (ψ) (1.77)

with

U F,snm
t (ψ) = gt{Tt,0(ψ)}{At − E(At|At−1, Lt;ψA)} (1.78)

The above function UT,F,snm(ψ), with dimension equal to that of ψ, is the part

within the summation of estimating equation (1.76), but applied to estimation of

parameterψAT of the gt{Tt,0(ψ)} vector in pooled logistic regression model (1.51) for

the conditional discrete-time hazard of exposure. Under SRA (1.9), the hypothesis

ψ = ψ0 will correspond to ψAT = 0 in (1.51). The estimating equation

U F,snm(ψ) =
n∑
i=1

UT,F,snm
i (ψ) = 0. (1.79)

will then deliver an asymptotically unbiased estimator ψ̂ of causal e�ect parameter

ψ0. The function U F,snm(ψ) = 0 can be viewed as an unstandardised score statistic

for the null hypothesis η = 0 in model (1.51). Because n−1/2U(ψ) is asymptotically

normally distributed with mean zero and variance given by Σ{UT,F,snm
i (ψ)}, the

variance-covariance matrix of UT,F,snm
i (ψ), optimisation of UT,snm(ψ) is usually

done by calculating the test statistic

S = n−1UF,snm(ψ)′Σ{UT,F,snm
i (ψ)}−1UF,snm(ψ) (1.80)

The point estimate ψ̂n of ψ0 is the value of ψ that gives S = 0. The score statistic

can be also used to obtain 95% confidence bounds for ψ̂n, by finding values around

ψ̂n that give S(ψ) = χ2
0.95(p), or the Chi-square statistic corresponding with

cumulative probability of 0.95 and p degrees of freedom. Alternatively, consider

following Taylor expansion of U(ψ̂n) ≡ UF,snm(ψ̂n) around ψ0:

0 = n−1/2U(ψ̂n) = n−1/2U(ψ0) + n−1
∂U(ψ0)

∂ψ
n1/2(ψ̂ − ψ0) + op(1) (1.81)
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which leads to the following version of equation (1.54) showing asymptotic linearity

of ψ̂:

n1/2(ψ̂n − ψ0) = −n1/2

{
∂U(ψ0)

∂ψ

}−1
U(ψ0) + op(1); (1.82)

and the following approximation for the asymptotic variance of ψ̂:

Σ(ψ̂n) = n

{
∂U(ψ̂n)

∂ψ

}−1′
Σ̂{Ui(ψ̂n)}

{
∂U(ψ̂n)

∂ψ

}−1
(1.83)

also called the sandwich variance (Robins, 1992; Tsiatis, 2006). In the above, we

assumed for the sake of exercise that the nuisance parameter ψA of the exposure

model (1.51) is known, ie. does not need to be estimated. We explain in Chapter 5

how we account for estimation of this parameter.

Geometry of observed-data influence functions

When data are subject to missingness, the objective of the analysis becomes to

estimate the causal e�ect parameter ψ0 in the scenario where no missing data

would occur. As mentioned above, the full data (C,X, Y ) contains the missingness

variable C that has value 1 when variable Y for this observation is missing and 0

otherwise. The density of the full data becomes

PC,X,Y (c, x, y;φ, ψ, η) = P (C = c|X, Y ;φ)PX,Y (x, y;ψ, η) (1.84)

with P (C = c|X, Y ;φ) the density of the missingness mechanism identified by

parameter vector φ.

The observed data is {C,X, (1 − C)Y }. To generalise the notation for the

missingness mechanism in the presence of longitudinal data, we define the new

variable C that either denotes the time-point t at which censoring of outcome

variable Y occurs, or has value∞ in case the outcome event Y = 1 is observed.

We then describe the observed data as combinations of variable C and GC(x, y),

the function (with realised value gc) that maps the full data into the observed data,
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or

{Ci, GCi(Xi, Yi)} i = 1, .., n (1.85)

which will give P (C|X, Y ) = P (C|X) under ICA (1.12) and will lead to vectors

{∞, (X, Y )} and {t, (X)} with t = 1, .., Tm. The observed data density can now

be obtained by

PC,GC(X,Y )(c, gc;φ, ψ, η) =

∫
y:Gc(x,y)=gc

P (C = c|x, y;φ)PX,Y (x, y;ψ, η)dy

=

∫
y:Gc(x,y)=gc

P (C = c|x;φ)PX,Y (x, y;ψ, η)dy

= P (C = c|x;φ)

∫
y:Gc(x,y)=gc

PX,Y (x, y;ψ, η)dy

(1.86)

Note that the model for the missingness mechanism P (C = c|X = x;φ) does

not depend on the data that gets mapped to being missing, and therefore can be

placed outside of the integral. Due to this, the log-density of the observed data

gets decomposed into

log P (C = c|X = x;φ) + log
∫
y:Gc(x,y)=gc

PX,Y (x, y;ψ, η)dy (1.87)

which implies that with missing data, the observed-data nuisance tangent space

spanned by the score vectors of the two nuisance parameters φ and η can be

decomposed into the direct sum Λ = Λφ⊕Λη , with Λφ and Λη the semiparametric

nuisance tangent spaces for parameters φ and η respectively, and with Λφ ⊥ Λη;

see Tsiatis et al. (2011)[Section 8.3] for proof.

When considering the geometry of full-data influence functions IF F (X, Y ;ψ0, η0)

for parameter ψ0 and deriving Λ⊥η , the orthogonal complement of the nuisance

tangent space for parameter η, we arrive at observed-data influence functions

IF obs of the form

I(C =∞)

P (C =∞|X, Y ;φ)
IF F (X, Y, ψ0, η0) + L2{C, GC(X, Y )} (1.88)
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with

Eφ[L2{C, GC(X, Y )}|X, Y ] = 0 (1.89)

The first part of influence function IF obs di�ers from a typical full-data influence

function IF F in that it only takes into account complete cases (having C = ∞),

which are inversely weighted by P (C =∞|X, Y ;φ), their conditional probability

of being observed. The second part of IF obs is L2{C, GC(X, Y )}, an arbitrary

q−dimensional function with specific properties of using observed data (therefore

from complete as well as censored cases), and having mean zero under the full

data distribution and the true model for censoring. Because the function L2

augments the first part of influence function IF obs with data from censored cases,

the space Λ2 of all functions L2 is called the “augmentation space”. Following from

these arguments, an estimator that is derived from influence function IF obs with

function L2 set to zero will be called an Inverse probability of censoring weighted

(IPCW) estimator, while an estimator using the two parts of IF obs will be called an

Augmented Inverse probability of censoring weighted (A-IPCW) estimator.

Further projecting influence function IF obs (1.88) onto Λ⊥φ , the orthogonal

complement of the nuisance tangent space for parameter φ, as in{
I(C =∞)

P (C =∞|X, Y ;φ)
IF F + L2

}
− Π

{
I(C =∞)

P (C =∞|X, Y ;φ)
IF F + L2

∣∣∣∣Λφ

}
(1.90)

and using that Λφ ⊂ Λ2, we obtain [see Theorem 10.1 of (Tsiatis, 2006) for details]{
I(C =∞)

P (C =∞|X, Y ;φ)
IF F

}
− Π

{
I(C =∞)

P (C =∞|X, Y ;φ)
IF F

∣∣∣∣Λ2

}
(1.91)

which is the orthogonal complement of the first part of complete-case influence

function (1.88) a�er projecting it onto augmentation space Λ2. Estimators derived

from influence function (1.91) have been shown to be optimal within the class of

semiparametric RAL observed-data estimators (1.88) under the model defined by

the restrictions of the joint density pX,Y (x, y;ψ, η) and censoring model P (C|X =
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x;φ) , where “optimal” refers to the corresponding estimator having smallest

asymptotic variance.

An IPCW G-estimator for the structural nested accelerated failure time
model

In the previous section, we created an estimator for the causal parameter ψ0 of a

SNFTM when no missingness of the outcome variable Y occurs. In the presence of

censoring of Y , we use the form of observed-data influence function (1.88) with

function L2 set to zero to create estimating function

UT,obs,snm(ψ) =
T∑
t=1

I(CT = 0)

W c,snm
t

U F,snm
t (ψ) (1.92)

with

W c,snm
t =

T∏
s=t

πcs(L,A;φ) (1.93)

and

πcs(L,A;φ) = P (Ct = 0|Ct−1 = 0, At, Lt;φ) (1.94)

in which U F,snm
t (ψ) is the full-data estimating function for causal parameters under

a SNFTM as defined in (1.78), CT = 0 and Ct = 0 indicates subjects being

uncensored at times T and t respectively, πcs(L,A;φ) is the conditional probability

of being uncensored at time t, and W c,snm
t the cumulative conditional probability

of remaining uncensored for the remainder of the subject’s survival time T . The

solution to estimating equation U obs,snm =
∑n

i=1 U
T,obs,snm
i (ψ) = 0 will deliver an

Inverse probability of censoring weighted (IPCW) G-estimator under a SNFTM

indexing causal parameter ψ0 .

Estimating equation (1.92) only uses data from complete cases and will be

therefore ine�icient. In Chapter 5 we will explore strategies on how to develop

an Augmented Inverse probability of censoring weighted (A-IPCW) G-estimator
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under a SNFTM that also uses data from censored cases.

An IPECWestimator for themarginal structural proportional hazardsmodel

An estimator for the causal parameter β of a MSPHM as estimated by an Inverse

probability of exposure and censoring weighted (IPECW) pooled logistic regression

model for the discrete-time hazard of the outcome, can be constructed by taking

as estimating function

UT,msm(β) =
T∑
t=1

∑
at

I(At = at)I(Ct = 0)

Wmsm
t

×(at, L0)
′{Yt − P (Yt|Yt−1 = Ct−1 = 0, at, L0; β)} (1.95)

and then solving

Umsm(β) =
n∑
i=1

UT,msm
i (β) = 0 (1.96)

for β. In (1.95), Wmsm
t is, as defined earlier in (1.41), the cumulative multiplied

conditional probabilities of the observed exposure regime A = a and of remaining

uncensored until time t.

From the above, we see that the results that lead to the derivation of semipara-

metric estimators for missing data can be used to construct estimators for average

causal e�ects. This is done by considering the potential outcome under a particular

exposure regime as an outcome that is subjected to missingness. The exposure

variable then acts as an indicator of missingness, using that for each subject the

observed value of exposure will mark the actually observed potential outcome.

This way, the Ignorable censoring assumption (ICA) (1.12) and the Sequential

randomisation assumption (SRA) (1.9) are actually analogues of a missing data

estimation problem, the former for identification of outcomes that are unobserved

due to censoring, the la�er for identification of unobserved potential outcomes.

The same analogy holds for the assumptions of Positivity of risk of remaining

uncensored (1.13) and of exposure risk (1.10). This way, replacing the censoring by
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the exposure indicator in equation (1.86) and using SRA will lead to an observed

data likelihood that forms the basis for G-computation algorithm (1.33). Likewise, a

similar weighted complete-case estimator as (1.88) can be developed by considering

a mapping from observed data into full data function spaces, with the la�er now

denoting the space of influence functions based on potential outcomes. This is

the basis for the Inverse probability of exposure and censoring weighted (IPECW)

estimator, defined as the solution to estimating equation (1.96), and on which we

relied in Section (1.4.2) to derive causal parameters under a MSPHM.
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CHAPTER 2

Infections acquired in intensive care units: results of the

national surveillance in Belgium, 1997-2010

This chapter is based on the following article: Mertens, K., Morales, I. and Catry, B.

(2013) ”Infections acquired in intensive care units: results of national surveillance

in Belgium, 1997-2010,” Journal of Hospital Infection, 84(2): 120-5.

Summary
This article provides the methodology and results from the Belgian surveillance

for infections acquired in intensive care units (ICU) for the period 1997-2010. Since

1997, ICUs within acute care hospitals are encouraged by federal law to participate

to national multicentric prospective observational surveillance. This allows acute

care hospitals to follow locally their infection incidence and enable for comparison

of incidence with national and European reference data. A protocol and so�ware

tool for data collection was developed, case definitions and methodology follows

those from the European center for disease prevention and control. For 2010, 18

hospitals contributed data on 59 observation quarters, 6 478 ICU patients and 52 593
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2
ICU patient days. The mean incidence for ICU-acquired pneumonia and intubation-

associated pneumonia (IAP) was 13 per 1000 patient days and 12 per 1000 intubation

days, respectively. The mean incidence for ICU-acquired, central vascular catheter-

associated (CAB), and central vascular catheter-associated primary bloodstream

infections (CAPB) were 3.2 per 1000 patient days, 2.6 per 1000 catheter days, and

3.2 per 1000 catheter days, respectively. During 1997-2010, stable trends of ICU-

acquired pneumonia and bloodstream infections were observed, together with

decreasing trends for IAP and CAB, and a stable trend for CAPB.

2.1 Introduction

The risk for acquiring Healthcare-associated infection (HAI) in Intensive care unit

(ICU) is higher than in other hospitals wards, due to the patient’s severe underlying

health conditions and increased exposure to medical interventions and invasive

devices (Gordts et al., 2010; Torres et al., 2009; Valles and Ferrer, 2009). The

association of infection with morbidity and mortality in ICU is also substantially

higher compared with other wards (Vrijens et al., 2012). Surveillance of HAI is

defined as the continuous and systematic collection, analysis and interpretation

of data on the occurrence of these infections, their risk factors and outcome

parameters, and is widely acknowledged as a valuable component in a strategy for

the prevention and control of this type of infection (Gastmeier et al., 2000a; Gaynes

et al., 2001; Haley et al., 1985). This article aims to provide the methodology and

output of the Belgian National surveillance of infections acquired in intensive care

units (NSIH-ICU) for the period 1997-2010.

2.2 Materials & Methods

2.2.1 Legal context

The NSIH-ICU protocol was developed in 1997 by the “National surveillance of

infections in hospitals (NSIH)” program of the Scientific institute of public health
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(IPH) in close collaboration with the Belgian Society of Internal Medicine, and

launched with a financial incentive to encourage participation. In 2004, the protocol

was modified according to the Hospitals in Europe link for infection control through

surveillance (HELICS) project (Suetens et al., 2007).

Since 2007, Belgian national surveillance of HAI is outlined in the law (Belgisch staatsblad,

2007) and includes, besides the surveillance of ICU-acquired infections, 7 other

HAI surveillance protocols. The objective of national surveillance is (1) to provide

the necessary standards, definitions and tools for the organisation of surveillance

and the follow-up of results within the healthcare se�ing (local objective), and

(2) to set-up a national database of surveillance data (national objective). This

enables participating hospitals or wards to compare their results with those from

the national population (benchmarking), and allows national stakeholders such

as the Belgian antibiotic policy coordination commi�ee (Goossens et al., 2008) to

monitor national trends.

2.2.2 Data collection

Collection of surveillance data on the occurrence of HAI is performed prospectively

and during a minimum observation period of 3 months. Followed infections are

ICU-acquired pneumonia, Bloodstream infection (BSI), urinary tract infection and

catheter-related infection. An infection is defined as ICU-acquired when occurring

a�er day 2 within the unit. Infections occurring a�er discharge from the ICU are

excluded, due to the time-consuming nature of organising such type of surveillance.

Device-associated infections are defined as having a relevant invasive device in the

two days preceding the onset of infection, with relevant device being endotracheal

intubation for pneumonia and Central vascular catheter (CVC) for BSI. For BSI,

the origin of the infection (unknown, catheter, secondary) is to be encoded as well,

thus allowing calculating the number of primary BSI (catheter or unknown origin).

Case definitions are those implemented in 2004 by the HELICS project as taken

over in 2007 by the European center of disease prevention and control (ECDC).

Infection data is further completed by denominators which can be collected in

two ways. In the light version of the protocol, aggregated denominators such as
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the number of patients admi�ed and patient days are specified directly, whereas in

the standard version they are calculated through data on each individual patient

staying in the ICU for more than two days (for whom risk factors and outcome

variables at admission, during hospital stay and at discharge, irrespective of devel-

oping an infection or not are recorded). All surveillance data entry is performed by

means of the locally installed NSIHwin so�ware, which is developed by the NSIH

program itself, regularly updated, and freely available to participants.

2.2.3 Output variables & analysis

Both (light and standard) versions of the protocol allow the calculation of the

cumulative incidence (number of newly infected patients over total patients) and

the incidence density (number of new infections per 1000 patient days) for each

infection type, as well as the incidence densities of intubation-associated pneu-

monia over intubation days, of Central vascular catheter-associated bloodstream

infections (CAB) over CVC days, and of CVC-associated primary BSI per 1000 CVC

days. The standard version of the protocol allows finer adjustment of infection

incidence for the case-mix of the ICU population case-mix and the degree of in-

vasive device use. Participating hospitals receive a confidential feedback report

shortly a�er sending their data to the NSIH program.

The indicators in this paper that we present on the incidence of infection and on

the mean patient length of stay and invasive device use, are aggregated nationally

and annually by means of the annual pooled database mean.

2.2.4 Cohort analysis

In order to analyse the evolution of particular indicators within a stable group

of hospitals, a cohort of hospitals that participated during at least half of all

surveillance periods was established. A trend analysis was done on the database

mean of each type of infection incidence density, and this from a logistic regression

model for the linear (on the logarithmic scale) trend of the daily odds of infection

on patient- or device day-discretised data, and having the year as a single ordinal
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predictor. To correct for the variability of infection incidence across hospitals,

separate models were fi�ed for the hospital mean, and using Generalised estimating

equations (GEE) (Liang and Zeger, 1986). Similar trend analyses were carried out

on the mean length of stay in the ICU using linear regression, and for the daily

odds of invasive device use (intubation and CVC) using logistic regression. Each

model’s coe�icient for the yearly trend was recalculated to represent the change

for the whole period (1997-2010).

All data are analysed by means of the statistical so�ware package STATA

v10 (STATA, 2007).

2.3 Results

A Total of 18 acute care hospitals participated to the NSIH-ICU surveillance in 2010,

referring to an observation period of 59 trimesters, 6 478 ICU-patients and 52 593

ICU-patient days, 12 792 intubation and 24 763 CVC days. Although participation

has steadily decreased since 1998, the number of surveillance periods illustrates

relative intense or continuous monitoring among participating units (Figure 2.1).

Note that participation denotes the number of hospitals, with several hospitals

participating with more than one ICU (data not shown).

Figure 2.2 shows the annual evolution of mean length of stay in the ICU (le�),

use of invasive intubation (middle) and use of CVC (right). The mean length of stay

has seen a substantial increase over the years: from 6.5 days in 1997 to 8.1 days

in 2010. A relative stable trend was seen for invasive intubation use, from 318 to

389 days per 1000 patient days between 1997 and 2010. For CVC use, a decreasing

trend from 742 to 615 CVC days per 1000 patient days was seen between 1997 and

2001, and a steady increase a�erwards until 751 CVC days per 1000 patient days

in 2010.

In 2010, the mean cumulative incidence of ICU-acquired pneumonia was 8.5%,

the mean incidence density was 13 per 1000 patient days and 12 intubation-

associated pneumonia per 1000 intubation days. The longterm evolution for pneu-

monia incidence (Figure 2.3) suggests a stable trend for ICU-acquired pneumonia
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Figure 2.1: Evolution of participation and number of observed patients and patient days
for the National surveillance of infections acquired in intensive care units (NSIH-ICU).

with incidences ranging between 7 and 15 per 1000 patient days. For intubation-

associated pneumonia incidence, a substantial decrease was seen from 27 (in 1997)

to 12 (in 2010) per 1000 intubation days.

The mean cumulative incidence of ICU-acquired BSI in 2010 was 2.5%, its mean

incidence density was 3.2 per 1000 patient days, 2.6 CVC-associated BSI per 1000

CVC days, and 2.3 CVC-associated primary BSI per 1000 CVC days. Figure 2.4

shows a stable long term evolution of ICU-acquired BSI in the range of 2 to 4

per 1000 patient days. The evolution of the incidence of catheter-associated BSI

suggests a decreasing trend from 4.7 (1997) to 2.6 (2010) per 1000 CVC days. A

lesser decreasing trend was seen among CVC-associated primary BSI, from 3.0

(1997) to 2.3 (2010) per 1000 CVC days.

For both intubation-associated pneumonia and catheter-associated BSI, a low

point in incidence (especially median) was reached directly a�er the introduction

of the new HELICS case definitions in 2004. During a transient period, missing data

were seen for the new variable ”invasive device use” upon which the definition of

intubation- or catheter association was based (data not shown), and which could
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Figure 2.2: Evolution of mean length of stay, use of invasive intubation, and use of central
vascular catheter (CVC) in intensive care units in Belgium, National surveillance of
infections acquired in intensive care units (NSIH-ICU).
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Figure 2.3: Evolution of incidence of intensive care unit acquired and invasive intubation-
associated pneumonia in Belgium, National surveillance of infections acquired in inten-
sive care units (NSIH-ICU).

explain this lowered incidence.

During 1997-2010, a total of 22 hospitals participated during at least 8 years.

Their types were similar to the national distribution with 85% general, 10% teaching,

and 5% university hospitals. This cohort contributed annually between 5 000 and 7

000 ICU admissions with at least 2 days of ICU stay and between 30 000 and 50

000 corresponding patient days in the ICU. On average, hospitals in this cohort

contributed data for at least 3 surveillance periods per year of participation. Table

2.1 shows the results of the trend analysis. The mean length of stay shows a steady

yearly increase, with a total increase of 1.8 days for the whole period. The use

of invasive intubation in the cohort showed a 9% decrease in odds, while CVC
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Figure 2.4: Evolution of incidence of intensive care unit acquired bloodstream infection,
central vascular catheter associated bloodstream infection, and central vascular catheter
associated primary bloodstream infection in Belgium, National surveillance of infections
acquired in intensive care units (NSIH-ICU).
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Indicator Pooled mean Me/OR (95% CI) Hospital mean Me/OR (95% CI)

Length of stay (mean

days)

1.8 (1.7 to 1.9)*** 1.8 (0.097 to 3.5)*

invasive device use (daily odds)

intubation 0.91 (0.89 to 0.93)*** 0.92 (0.60 to 1.4)

CVC 1.2 (1.2 to 1.2)*** 1.3 (0.52 to 3.0)

pneumonia (daily odds)

ICU-acquired 1.5 (1.4 to 1.7)*** 1.5 (0.57 to 4.2)

intubation-

associated

0.63 (0.55 to 0.71)*** 0.63 (0.34 to 1.2)

bloodstream infections (daily odds)

ICU-acquired 1.2 (1.0 to 1.4)* 1.2 (0.67 to 2.1)

CVC-associated 0.78 (0.64 to 0.95)* 0.78 (0.47 to 1.3)

CVC-associated pri-

mary

1.1 (0.91 to 1.4) 1.1 (0.76 to 1.7)

Table 2.1: Trends of incidence of hospital-acquired infections, device-associated
infections, mean length of stay and invasive device use in intensive care units in
Belgium, 1997-2010; Me/OR = Mean increase for the whole period for length of
stay in days, Odds for device use or infection ratio for all other indicators; 95% CI
= 95% confidence interval and type I error level (p-value) of null hypothesis test of
trend coe�icient; ICU = Intensive care unit; intubation = endotracheal intubation;
CVC = central vascular catheter; *p-value<.05, **p-value<.01, ***p-value<.001
represent significance level from Wald-test; Results derived from a cohort of 22
acute care hospitals that participated to the national surveillance of ICU-acquired
infections in Belgium.

use showed a 20% increase in odds for the whole period. The evolution of mean

infection rates of the cohort is largely in line with those of the total group of

participants, with a 50% increase from 1997 to 2010 for ICU-acquired pneumonia

and 30% increase for BSI, 37% decrease for intubation-associated pneumonia, 22%

for CVC-associated BSI, and a stable trend for CVC-associated primary BSI (10%

increase). These periodic trends were similar for the models for database mean and

hospital mean. However, because the cohort had substantial variability of rates

across hospitals, none of the periodic trends for the hospital mean (except mean

length of ICU stay) achieved statistical significance.
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2.4 Discussion

During the last 20 years many European countries have installed regional or

national surveillance of ICU-acquired infections (Agodi et al., 2010; Carlet et al.,

2009; Malacarne et al., 2008; van der Kooi et al., 2007; Zuschneid et al., 2007).

Most of these networks use a standardised protocol that was derived or adapted

from HELICS methodology, and because results are annually reported to ECDC,

their epidemiological reports allow valid comparisons between networks as well as

against a European reference. The incidence of pneumonia as estimated by the

Belgian NSIH-ICU surveillance is higher than the overall European estimates for

2009 with 7.1% ICU patients with pneumonia, 7.8 ICU-acquired pneumonia per

1000 patient days and 14.5 intubation-associated pneumonia per 1000 intubation

days (ECDC, 2011). Belgium has a relative low average length of ICU stay (in 2009:

7.8 days compared to 10.4 for Europe) as well as a low invasive intubation rate (37.4

per 100 patient days as compared to 54.9 for Europe).

The incidence of ICU-acquired pneumonia and BSI underwent a stable to light

increasing trend in the period 1997-2010, but at the same time the mean length of

stay of patients that were followed for this surveillance increased substantially. The

incidence of both intubation-associated pneumonia and CVC-associated BSI, o�en

the focus of targeted infection prevention programs (Bonten, 2011; Pronovost

et al., 2006), showed a decreasing trend over the years. For pneumonia this is

accompanied with a decrease in intubation use over the years, while for BSI an

increased use of catheterisation is seen. The incidence of CVC-associated primary

BSI - which excludes infections from secondary origin, and therefore focuses on

the (most) preventable fraction - showed a decreasing trend in the overall group of

participants, but this was not seen in the group of hospitals with most frequent

participation.

While interpreting these results, the following points need to be taken into

account. First, participation to the NSIH-ICU surveillance has decreased over

the years, and undoubtedly, this might influence the interpretation of national

incidences as data could have been contributed by a potentially selective subset of

hospitals. One reason for this declining participation is the increased number of
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hospital mergers which has lowered the number of eligible acute care hospitals

over the years. To illustrate this, at the beginning of the national surveillance in

1997, 170 hospitals were eligible for participation, but this was reduced to 116

hospitals in 2011. Simultaneously, since 1997, other surveillances have been added

to the list of national surveillances. Annual participation to the surveillances of

Meticillin-resistant Staphylococcus aureus and Clostridium di�icile became manda-

tory thereby prioritising these over other national programs such as the NSIH-ICU

surveillance. Other factors such as the availability of local systems and pressure

from consumer organisations to force public disclosure might also have resulted

in lower participation. This limited but steady number of participants should be

interpreted positively under the hypothesis that hospitals participating under the

actual optional regime are more motivated as compared to earlier times when this

surveillance was mandatory in certain regions of the country.

Second, the overall evolution of infection incidence among the overall group of

hospitals was confirmed in the cohort of hospitals that participated during half of

all surveillance periods. But, while such cohort analysis does not su�er from biases

due to hospitals with infrequent participation and contributing extreme incidence,

it remains driven by the limited number of hospitals that participated in recent

years.

Third, relevant percentiles (25th, 50th, 75th) of the annual national distribution

of hospital means for each indicator were not presented but showed substantial

variation of annual rates between hospitals. This is confirmed by the trend analysis

of the cohort data where none of the statistical significant trends of the pooled

national means were confirmed by the analysis of hospital means. Such variation

is also informative for the improvement that still can be achieved in the prevention

of hospital-acquired infections in a multicentric context.

Hospitals participate in the underlying surveillance project based on its main

objective: to decrease infection rates. However, looking at the trends presented

in this article, this objective is only partly fulfilled. When trying to evaluate the

added value of a national surveillance, the following points need to be made.

First, the evidence surrounding the hypothesis that ”surveillance reduces infection

rates” defines surveillance as the periodic monitoring accompanied by discussion

74



2

2.4. Discussion

and interpretation of its results. The national surveillance project in itself only

guarantees the first part of this process, because no information was collected on

how participants used the collected data internally. Second, improved case-finding

as well as variation in case mix might have influenced the observed trends. Third,

evaluation of the long term impact of a national surveillance program should not

only be based on the changed rates of its targeted infection types, but equally

on the impact of these infections on mortality and morbidity outcomes. Fourth,

analysing only the group of participating hospitals does not constitute a correct

impact assessment because it lacks a proper control group. None of the mentioned

points were the objective of this study.

In summary, acute care hospitals in Belgium are encouraged to participate to

national surveillance. Its standardised tools allow following locally the incidence

of ICU-acquired infections, and enable for comparison of hospital incidence with

national and European reference data. For the entire period 1997-2010 and the

total group of participants, we see stable trends for the incidence of ICU-acquired

infection and decreasing trends for the incidence of device-associated infection.
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CHAPTER 3

Marginal structural models to estimate the a�ributable

e�ect of ICU-acquired infections on mortality

This chapter is based on an unpublished article wri�en in collaboration with S.

Vansteelandt, I. Morales and B. Catry.

Summary
The assessment of the a�ributable e�ect of Intensive care unit (ICU) acquired

infection on mortality remains a controversial topic, this is partly assumed to be

due to the choice of statistical methodology. Also, the e�ect of infection early

versus late a�er its onset has never been estimated separately. We estimate these

e�ects using methods from the field of causal inference. Unbiased e�ect estimation

requires adjustment for baseline and time-varying risk factors of mortality and

infection and additionally requires accommodating informative censoring of the

survival time due to selective drop-out of patients. This is realised by fi�ing

Marginal structural proportional hazards models. Data on 16 366 patients was

derived from a national multicentric surveillance study (Belgium). Our analysis

Page 77



Chapter 3. Marginal structural models to estimate a�ributable mortality e�ects

3

yields adjusted hazard ratios of mortality of exposed versus unexposed patients

equal to 1.1 [95% Confidence interval (CI) 0.8 to 1.5] for pneumonia and 1.5 (95%

CI 0.9 to 2.6) for Bloodstream infection (BSI). Only the group of patients with

intermediate severity at admission (Simplified acute respiratory score II 20-39) had

increased a�ributable mortality for both pneumonia and BSI. The two types of

infection di�ered in terms of the variation of their post-infection risk for mortality.

For pneumonia, di�erent a�ributable mortality was seen early (protective) versus

late (harmful) a�er infection onset, a risk inversion that was not found for BSI.

3.1 Introduction

Despite the apparent negative e�ect on a patient’s health status, the assessment

of the a�ributable e�ect of Healthcare-associated infection (HAI) on mortality - i.e.

the mortality risk due to the presence of infection - remains a controversial topic,

with several studies describing estimates of the relative e�ect of infection on the risk

of mortality ranging from being neutral to extremely risk increasing (Bercault and

Boulain, 2001; Fagon et al., 1993; Girou et al., 1998; Heyland et al., 1999; Papazian

et al., 1996; Timsit et al., 1996). One possible factor explaining this controversy

is the failure to adjust (appropriately) for time-varying risk factors of infection,

which are indicative of the subject’s health status (such as severity scores) or the

therapeutic activity that the subject did undergo during that period (Carlet, 2001;

Carlet et al., 2001). Because patients who acquire infection generally have a poorer

health condition than patients who do not, the analysis should adjust for time-

varying risk factors associated with both infection-exposure and mortality to the

extent possible, in order to achieve comparable groups of exposed and unexposed

subjects. Failure to do so, for example by estimating a crude (unadjusted) e�ect

or by merely adjusting for confounding variables collected at admission to the

hospital, may yield biased e�ect estimates.

Adjustment for confounding commonly happens by stratification; that is, by

including confounders as predictors in a regression model for the association

between infection and mortality. In this article, confounding adjustment is instead
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realised via weighted proportional hazards regression. Specifically, we will fit a

Marginal structural proportional hazards model (MSPHM) (Hernàn et al., 2001;

Robins and Hernàn, 2009), which belongs to a class of causal models for analysing

the e�ect of time-varying exposures. This model will prevent two sources of bias

that previous studies for the a�ributable e�ect of infection on mortality relying

on stratification-based regression models su�er from and have thus far failed

to acknowledge: time-dependent confounding and selective drop-out which can

be explained by measured time-varying patient characteristics. Such standard

stratification-based approaches which adjust for time-dependent confounders

induce bias whenever, as is most likely the case in our se�ing, the considered

confounders (for example daily use of mechanical ventilation) in the regression

model are themselves a�ected by the exposure to infection. Technically, it can be

shown that, by using such models, one can unbiasedly estimate the adjusted e�ect

of the exposure at time t on the outcome at t, but not of the adjusted e�ect at

previous times because adjustment for time-dependent confounders at twill distort

the estimation of the exposure e�ect at previous times. This a�ributable lagged

e�ect of infection on mortality has hardly been studied until now but is of particular

interest as it gives further guidance on the clinical burden of infection (Muscedere

et al., 2010). For example, it could provide insight in the result of anti-infectious

treatment, as an outspoken harmful (beneficial) a�ributable e�ect of infection on

risk for mortality in the first few days a�er onset could signify the failure (success)

of a treatment.

Furthermore, standard proportional hazards regression approaches (which in-

clude baseline patient characteristics) also su�er from bias through selective

dropout because they e�ectively assume that discharge from the hospital (i.e.

censoring of the survival time), while possibly related to the baseline patient char-

acteristics included in the substantive model of interest, is not further related to the

actual survival time (Hernàn et al., 2004). This assumption of “Ignorable censoring

conditional on baseline characteristics” is clearly violated because patients are

discharged for reasons (prognostic factors) closely related to the endpoint under

study (mortality). Because the patients who drop out thus represent a selective

subset of the total group of patients in terms of prognostic factors arising before
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the time of discharge, the analysis additionally needs to adjust for these variables.

3.2 Materials and methods

3.2.1 Study population and data collection

Follow-up data was obtained for a group of 46 Intensive care units (ICUs) that

participated during a minimum three-month period to the National surveillance

of infections acquired in intensive care units (NSIH-ICU) (Mertens et al., 2013)

(Belgium) during the years 2002 and 2003. Besides data on occurring HAI, a

participating ICU also needed to collect follow-up data for all patients admi�ed

during the 3 month surveillance period. This includes intrinsic risk factors collected

at baseline as well as data on daily exposure to invasive devices and antimicrobial

treatment. HAIs were considered ICU-acquired if they occurred a�er the 2nd day

of stay in the ICU. The target population for follow-up was therefore all patients

with at least 3 ICU patient days. ICU follow-up was administratively censored

to 30 days, meaning that patients who stayed longer than 30 days in the ICU,

have a censored survival time of 30 days. Infected patients (cases) were those who

su�ered from one or more episodes of ICU-acquired pneumonia or Bloodstream

infection (BSI) during their ICU stay. Case definitions for pneumonia and BSI

followed those from the Hospitals in Europe link for infection control through

surveillance (HELICS) European standard protocol (Suetens et al., 2007).

3.2.2 Statistical analysis

In this article, MSPHMs (Hernàn et al., 2001) are models for the marginal e�ect of

an infection path (for example infection at day 5, or absence of infection through-

out the stay in the hospital) on the counterfactual hazard for mortality under this

infection path. The term ”Marginal” implies that the hazard for mortality is aggre-

gated over all levels of measured time-dependent confounders. The counterfactual

hazard for mortality under this infection path is defined as the mortality that
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a subject would experience when being (hypothetically) exposed to a particular

infection path, counterfactual to the one actually received. This model allows to

contrast for the same population the counterfactual hazards under di�erent infec-

tion paths (including the one under absence of infection), therefore its coe�icients

indexing infection-exposure have a causal interpretation. By using models for

counterfactual outcomes, we assume that such outcomes are defined and have

realistic interpretation (Hernàn, 2005). Formulating counterfactual outcomes is

not new in the literature on this subject (Fagon et al., 1993; Bekaert et al., 2009,

2011; Bonten et al., 2004; Fagon et al., 1996; Rello and Valles, 1998; Vansteelandt

et al., 2009), the rationale is that ICU-acquired infection is generally considered as

a preventable adverse event, and, as such, we consider counterfactual outcomes to

be generated under ”the set of interventions that would prevent infection from

taking place”. Specifically, in the context of time-varying confounders, all variables

considered to be part of such interventions should be le� out of the adjustment

process. The intrinsic baseline and extrinsic time-dependent covariates used to

adjust the infection-mortality association are listed in Table 3.1.

Our MSPHM is essentially a proportional hazards model for mortality involving

time-dependent infection status and baseline covariates, but no further time-

varying covariates. In the model fi�ing process, each patient day is upweighted

according to combined Inverse probability of exposure (IPE) and Inverse probability

of censoring (IPC) probabilities until that day. Exposure is here defined as exposure

to HAI, and censoring as discharge alive from ICU. This weighting procedure

estimates the counterfactual outcomes mentioned above (Robins and Hernàn,

2009; Hernàn and Robins, 2006), it therefore overcomes the need to adjust via

stratification and hence yields estimates that are not prone to the mentioned

biases of standard regression methods. Exposure weights are applied to adjust

for time-dependent confounders of the infection-mortality association, censoring

weights were used to adjust for selective drop-out of patients being discharged

alive before the administrative censoring date of 30 days. The procedure for the

construction of weights is described in Appendix 3.5.1; this involves uni- and

multivariate analysis to identify risk factors for onset of infection and censoring,

as well as using these models to predict daily risks of infection and censoring and

81



Chapter 3. Marginal structural models to estimate a�ributable mortality e�ects

3

Baseline indicator vari-

ables

gender, multiple trauma, acute coronary care

Baseline category vari-

ables

age (categories<40, 40-59, 60-69, 70-74,≥ 80), SAPS

II score* (categories <20 / 20-39 / 40-59 / ≥ 60), in-

fection at admission (categories none / lower respi-

ratory tract infection / bacteraemia / other / multi-

ple infection), type of admission (categories medical

/ scheduled surgery / unscheduled surgery), antibi-

otic utilisation in 48 before or a�er admission (cat-

egories none / prophylactic antibiotic / therapeutic

antibiotics / combination), prior surgery (categories

no surgery / elective surgery / urgent surgery)

Time-varying indicator

variables

mechanical ventilation, central vascular catheter,

presence of a naso or oro-intestinal tube, feeding

through a naso or oro-intestinal tube, parenteral

feeding, stoma feeding, antibiotic therapy, antibi-

otic profylaxis, oral intubation, nasal intubation, tra-

cheotomy intubation, surgery

Table 3.1: Baseline and time-varying covariates used to adjust
the a�ributable e�ect of ICU-acquired pneumonia and blood-
stream infection on mortality, using data from the National
surveillance Of ICU-acquired infections, Belgium, 2002-2003;
*SAPS = Simplified acute physiology score; ICU=Intensive
care unit.
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subsequent construction of weights.

MSPHMs for the e�ect of infection on mortality were fi�ed separately for

pneumonia and BSI. Four models were fi�ed for each type of infection, the first

indexed the e�ect as one parameter, the second stratified this e�ect for categories

of Simplified acute physiology score II (SAPSII) score (Le Gall et al., 1993), and the

third and fourth stratified the two previous ones for timing of death a�er infection

by adding separate parameters before and a�er the 5th day of infection. These

last two models therefore allowed to estimate a possible lag e�ect of infection

on mortality. To apply weighting of individual patient days, model construction

was based on a pooled logistic regression model that treated each patient day

in the ICU as a single observation (the same approach was used for the models

that generated the weights)(D’Agostino et al., 1990). All models were fi�ed using

Generalised estimating equations (GEE) (Liang and Zeger, 1986), requiring an

independent working correlation structure between repeated outcomes from the

same patient (Vansteelandt, 2007). Models were also stratified for a categorical

variable encoding the hospital or ICU that contributed data. All model construction

and fi�ing was done using STATA v10’s logistic command (STATA, 2007).

3.3 Results

For this study, 16 366 ICU admissions, contributing 108 328 ICU days of patients

staying more than 2 days in the ICU were available for analysis. The median

length of stay in ICU was 4 days, and for infected patients, the mean ICU stay

prior to the first infection was 6 days. Of the 960 (5.9%) patients with one or more

pneumonia-episodes, 277 (29%) died, compared to 1 524 deaths (9.9%) that occurred

in 15 406 (94%) pneumonia-free patients. Of all pneumonia episodes 689, (73.8%)

were associated with mechanical invasive ventilation. Of the 299 (1.8%) patients

with one or more BSI episodes, 83 (5%) died, as compared to 1 594 deaths (9.9%)

that occurred in 16 067 (98%) patients remaining BSI-free. Of all BSI episodes,

284 (95%) were associated with Central vascular catheter (CVC) use, while 195

(65%) were of primary (unknown or CVC) origin. Figure 3.1 shows data for the first
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Figure 3.1: Evolution of patients under follow-up, with ICU-acquired pneumonia, ICU-
acquired bloodstream infection and that died in the ICU during days 3-30; Percentages
or per mils are calculated on the total of 16 366 patients admi�ed to ICU. Under Follow-
up: % alive at the start of each day; Cumulative Death: ‰that died until particular day;
Cumulative pneumonia: ‰with pneumonia until that day; Cumulative bloodstream
infection: ‰of patients with bloodstream infection until that day.

30 days of ICU follow-up. Daily pneumonia, BSI and death rates were relatively

stable throughout follow-up. It was found that at day 5, already 60% of the initial

group had le� the ICU, and 85% at day 20. This is indicative for the huge level

of censoring taking place during the first days of ICU follow-up, and the need to

adjust for this.

Tables 3.2-3.6 show the results of the multivariate models for the hazard of pneu-

monia, BSI, and censoring, used for calculation of IPE and IPC weights. The models

for the hazard of pneumonia and BSI show that exposure to CVC, ventilation,

intubation and prophylactic antibiotic use was associated with an increased risk

for acquiring pneumonia, and that exposure to CVC, stoma, parenteral and tube

feeding, intubation, and prophylactic and therapeutic antibiotic use was associated
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with an increased risk for acquiring BSI. Besides the expected protective e�ect of

SAPSII score category, the model for ICU discharge alive (censoring) shows protec-

tive e�ects for virtually all invasive device procedures and types of antibiotic use.

This supports our consideration of time-varying exposure to therapeutic activity

as a proxy for a patient’s daily underlying health status, thus being indicative for

worse prognosis (lengthening ICU stay).

Inspection of IPE weights revealed that these remained relatively stable, having a

minimum-maximum range at 30 days of (0.1 to 9.5) with median 1.0 for pneumonia

and (0.17 to 11.6) with median 1.0 for BSI. However, a subset of patients with very

small predicted conditional probabilities of being discharged from the ICU yielded

unstable IPC weights with range (1e-11 to 1e+19) and median 0.94. As shown

in figure 3.2, the range of percentiles 1 to 99 of the combined IPE-IPC weights

(infection and exposure) distribution remained fairly stable (relative to the large

sample size) over the course of study lengths, having ranges (0.012 to 14.9) and

(0.015 to 14.5) at 30 days for pneumonia and BSI respectively. Combined IPE-IPC

weights were therefore truncated towards the above range, by se�ing the value of

weights greater (lower) than percentile 99 (1) to the value of percentiles 99 (1) (Cole

and Hernàn, 2008).

The MSPHMs for the a�ributable e�ect of infection on mortality were strat-

ified on baseline confounders “age category”, “SAPSII score category”, “type of

admission” and “antibiotic use at ICU admission”. The model for the e�ect of

pneumonia yielded a Hazard ratio (HR) of 1.1 [95% Confidence interval (CI) 0.76

to 1.5], while the model for the e�ect of BSI gave a HR 1.5 (95% CI 0.9 to 2.6)

(Table 3.7). Stratifying the infection e�ect for SAPSII categories (Table 3.7, model 2)

gave higher e�ects for the group of patients admi�ed with scores between 20-39

(intermediate category), and this for pneumonia (HR 2.3; 95% CI 1.4 to 3.8) and

BSI (HR 3.4; 95% CI 1.4 to 7.9).

When looking at a�ributable mortality at di�erent times since onset of infection

(Table 3.7, model 3), we see a protective e�ect in the first 4 days a�er onset of

pneumonia (0.59; 95% CI 0.3 to 1.1), and a stronger harmful e�ect from day 5 on

(1.5; 95% CI 0.93 to 2.3). Such contrast was not found for BSI (1.4; 95% CI 0.78 to

2.5 versus 1.7; 95% CI 0.8 to 3.6). Furthermore, the aforementioned elevated e�ects
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R
isk

factor
C

ategories
A

djusted
hazard

ratio
(95%

C
I)

Pneum
onia

B
loodstream

infection
D

ischarge
alive

from
IC

U

Sex
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0.94)**
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(0.89
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A
ge
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1.28)
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to
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60-69
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(0.42

to
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0.91
(0.82

to
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to
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to
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≥
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ofadm
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surgery
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.

0.96
(0.70
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surgery
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M
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to
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(1.00

to
1.21)*

Table
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ofm
odels

for
onset
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onia,blood-
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U

=Intensive
care
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used

in
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m
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.05,**=p-value<
.01,***p-value<

.001
representing

significance
levelfrom

W
ald-test.
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R
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factor
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hazard
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B
loodstream

infection
D
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IC
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(1.20

to
1.35)***
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0.58)***

Ever
1.43

(1.11
to

1.84)**
n/a

1.30
(1.11

to
1.53)***

D
ays
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Figure 3.2: Daily distribution of combined inverse probability of infection (modelled
separately for pneumonia and bloodstream infection) and censoring weight, through
natural logarithms of percentiles 0, 1, 5, 95, 99, and 100.
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Bloodstream infection Pneumonia

# (%) Hazard ratio (95% CI) # (%) Hazard ratio (95% CI)

Model 1: overall infection e�ect

ICU-acquired infection 299 (100.0) 1.6 (0.94 to 2.6) 934 (100.0) 1.1 (0.76 to 1.5)

Model 2: Infection x SAPS II score

<20 17 (5.7) 2.2 (0.24 to 20) 74 (7.9) 1.3 (0.14 to 11)

20-39 112 (37.5) 3.4 (1.4 to 7.9)** 417 (44.6) 2.3 (1.4 to 3.8)**

40-59 108 (36.1) 1.4 (0.63 to 3.0) 305 (32.7) 0.90 (0.53 to 1.5)

≥ 60 62 (20.7) 1.1 (0.64 to 2.0) 138 (14.8) 0.71 (0.40 to 1.3)

Model 3: Infection x timing of death a�er infection

Earlya 99 (33.1) 1.4 (0.78 to 2.5) 212 (22.7) 0.59 (0.32 to 1.1)

Latea 200 (66.9) 1.7 (0.80 to 3.6) 722 (77.3) 1.5 (0.93 to 2.3)

Model 4: Infection x SAPS II score x timing of death a�er infection

<20, Early 4 (1.3) 3.54 (0.37 to 33.83) 20 (2.1) 1.98 (0.21 to 18.37)

<20, Late 13 (4.3) (no observed deaths) 54 (5.8) 0.14 (0.02 to 1.16)

20-39, Early 37 (12.4) 1.40 (0.41 to 4.85) 109 (11.7) 0.80 (0.28 to 2.28)

20-39, Late 75 (25.1) 6.48 (2.14 to 19.59)** 308 (33.0) 3.94 (1.96 to 7.90)**

40-59, Early 33 (11.0) 1.13 (0.37 to 3.44) 63 (6.7) 0.48 (0.21 to 1.09)

40-59, Late 75 (25.1) 1.55 (0.61 to 3.93) 242 (25.9) 1.23 (0.61 to 2.46)

≥ 60, Early 25 (8.4) 1.78 (0.87 to 3.64) 20 (2.1) 0.58 (0.18 to 1.85)

≥ 60, Late 37 (12.4) 0.81 (0.41 to 1.58) 118 (12.6) 0.84 (0.45 to 1.58)

Table 3.7: A�ributable mortality e�ect Of ICU-acquired infection, using inverse
probability of exposure and censoring weighted proportional hazards mod-
els, National surveillance Of ICU-acquired infections, Belgium, 2002-2003;
ICU=Intensive care unit; CI=Confidence interval, # (%)=number (percentage of
total) of infections falling within the category; Early: occurring within the first
four days a�er onset of infection, Late: occurring a�er the fourth day a�er
onset of infection; SAPS=Simplified acute physiology score; *p-value<.05,
**p-value<.01, ***p-value<.001 represent significance level from Wald-test.

of pneumonia and BSI among patients with intermediate SAPSII scores were due

to deaths occurring later a�er infection onset (Table 3.7, model 4).

Based on calculated predictions from the MSPHM for the overall a�ributable

mortality e�ect, Figure 3.3 shows the estimated survival curves for the study

population in the hypothetical scenarios where all patients acquire infection at

day 3 in the ICU, as compared to when none of the patients acquires an infection.

For the model having a monotonous e�ect of infection, only the curves of patient

survival under exposure to BSI are clearly distinguishable and generally lower than

those of the patient population under absence of BSI. For the model including

lagged e�ects of infection, the survival curve for exposure to pneumonia crosses the
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Figure 3.3: Predicted survival curves for the patient population hypothetically acquiring
infection at day 3, and remaining infection-free; Le� = e�ect of bloodstream infection;
Right = e�ect of pneumonia; Upper = monotonous e�ect of infection from day 3; Lower
= di�erential infection e�ect for days 3/6 and days 7/max a�er onset of infection; NB =
nosocomial (ICU-acquired) bloodstream infection; NP = nosocomial pneumonia; ICU =
intensive care unit.

curve for absence of pneumonia, which is indicative for the shi� from protective

to harmful exposure e�ects around day 7 in the ICU.

Finally, Appendix 3.5.2 gives a description and results of a sensitivity analysis

in which the MSPHM is fi�ed repeatedly under varying administrative censoring

times.
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3.4 Discussion

This article describes the estimation of the a�ributable e�ect of ICU-acquired infec-

tion on the risk for mortality using Inverse probability of exposure and censoring

weighted (IPECW) estimation under a MSPHM (Hernàn et al., 2001). Our analysis

showed a neutral risk of mortality for ICU-acquired pneumonia, and a marginally

higher risk for mortality for ICU-acquired BSI. Our analysis also demonstrated

that pneumonia had a marginally higher e�ect on mortality a�er the fourth day of

infection that was in contrast to a protective e�ect during the first 4 days, which

is an inversion that was not seen for BSI. For both infection types, the group of

patients with intermediate SAPSII scores contributed the highest mortality e�ects,

both infection types consistently later a�er infection onset.

To our knowledge, the study presented here is among the few to analyse e�ects

of infections in a national multicentric se�ing, and also among the first to use

weighted adjustment for time-dependent confounding and informative censoring

explained by measured time-varying prognostic factors in the se�ing of ICU sur-

vival. The use of this method must be seen in light of recent calls (Lambert et al.,

2011; Muscedere, 2009; Timsit et al., 2011) for using estimation techniques that

can adequately deal with the methodological pitfalls when estimating a�ributable

outcome of infection. Adjustment was made by weighting because stratification

for so-called intermediate time-varying confounders that act both as causes and

e�ects of exposure to infection will induce non-causal associations between infec-

tion and mortality (Hernàn et al., 2001; Robins, 2000). Moreover, while risk ratio

estimates from stratified methods have interpretation conditional on distinct levels

of time-dependent and -independent confounders, the marginal structural model

yields a causal estimate of the marginal (over time-dependent confounders) risk

ratio, which is more relevant for public health purposes.

Our model’s neutral overall a�ributable e�ect of pneumonia on mortality, al-

though di�erently obtained and interpreted, is in line with reports using conven-

tional stratification-based methods but similarly relying on extensive adjustment

for time-independent and -dependent confounders (Heyland et al., 1999; Papazian

et al., 1996; Timsit et al., 1996; Kollef et al., 1995). It is also in line with results from
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randomised trials for the prevention of pneumonia (mostly ventilator-associated)

that demonstrated a decrease in infection incidence but without altering ICU mor-

tality (Muscedere et al., 2010). For BSI, a higher but still statistically non-significant

e�ect was found. Earlier reports on the e�ect of primary CVC-related BSIs found

mostly risk increasing but statistically insignificant e�ects individually (Digiovine

et al., 1999; Rello et al., 2000; Renaud and Brun-Buisson, 2001; Soufir et al., 1999),

which turned significant when aggregated into a meta-analysis (Siempos et al.,

2009). Of note is that a study by Renaud and Brun-Buisson (2001) showed a higher

a�ributable mortality e�ect for secondary BSI, which might explain the slightly

higher a�ributable mortality of our study (including primary and secondary BSI).

The higher a�ributable mortality among patients with intermediate SAPSII scores

was also previously reported, for both pneumonia and BSI (Bekaert et al., 2011;

Kim et al., 2005; Nguile-Makao et al., 2010).

Our results show that pneumonia and BSI behave di�erently in terms of the

variation of the post-infection a�ributable hazard for mortality, with the former

showing protective risk immediately and harmful risk only longer a�er onset,

but the la�er instead showing harmful e�ects both immediately and later a�er

onset. The phenomenon as observed for pneumonia of a progressively increased

risk for mortality once an infection is observed was recently also reported for

Ventilator-associated pneumonia (VAP) (Bekaert et al., 2011). It also explains some

of the more harmful a�ributable e�ect estimates for pneumonia in other reports

that used follow-up periods up to and above 100 days (Bercault and Boulain, 2001;

Nguile-Makao et al., 2010; Wolkewitz et al., 2009) as compared to the period of

30 days that we used here. Such studies with a higher length of follow-up will

not only observe more deaths in the total study population, but also progressively

more in later periods among infected patients if we extrapolate the increasingly

harmful mortality e�ect late a�er infection onset.

The following limitations have to be taken into account when interpreting this

study’s results: first, we had no info on the adequateness of the appropriate treat-

ment of the studied infections. This would be an added value, specifically when

studying a�ributable mortality e�ects early and late a�er infection onset. Second,

in relation to the previous argument, the design of a prospective surveillance study
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for HAI might in itself have contributed to a more neutral e�ect on mortality, due

to the fact that any infected patient under surveillance might benefit from the

increased a�ention towards the targeted types of infection. Third, time-dependent

confounders were limited to daily use of invasive devices and antimicrobial ther-

apy, no organ dysfunction score were used for adjustment but these might have

contributed to a finer adjustment. Finally, our analysis su�ered from the strong

association of invasive devices with probability of remaining in the ICU, leading to

highly variable and unstable IPC weights, and as a consequence wide confidence

intervals. Future research projects might investigate alternative methods for such

IPC weights, or techniques to make the analysis more optimal.

3.5 Appendix

3.5.1 Calculating the inverse probability weights

The MSPHM applies IPE weights to adjust for time-dependent confounders of the

infection-mortality association, and IPC weights to adjust for selective dropout of

patients being discharged alive before the administrative censoring date of 30 days.

Exposure weights are the inverse of a patient’s daily probability of having acquired

his or her observed infection-exposure until that day, conditional on confounder

history until then. These are derived by constructing a proportional hazards model

for the hazard of infection that includes the history of time-dependent and baseline

(time-independent) confounders for the infection-mortality association, and by

using the fi�ed model to calculate predictions of the conditional probability of

acquiring infection at each day. An IPE weight at day t is therefore the reciprocal

of the estimated risk of acquiring infection at that day (or staying free of infection,

depending on the observed infection-status) multiplied from day 1 to t. A numerator

is calculated to make the weights more stable, and was constructed similarly,

except that the regression model only used time-independent confounders. The

construction of IPC weights is similar to that of IPE weights, except that now

proportional hazard models for censoring (defined as discharged alive from the

ICU) were constructed and used for predictions. A IPC weight at each particular
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day is informally the reciprocal of a patient’s probability of remaining in the ICU

until that day, given his or her time-dependent and -independent history (including

information on the infection status) up to that day.

All proportional hazard models are based on a pooled logistic regression model

that treated each patient day in the ICU as a single observation (D’Agostino et al.,

1990). Separate models were created for pneumonia and BSI, these only incorporate

the 1st possible infection episode for each patient. All models were fi�ed using

GEE (Liang and Zeger, 1986), using an independent working correlation structure

between repeated outcomes from the same patient. Models were also stratified for

a categorical variable encoding the hospital or ICU that contributed data. All model

construction and fi�ing was done using STATA’s logistic (STATA, 2007) command.

Construction of the models for calculating the IPE and IPC weights starts with

identifying risk factors for infection, discharge alive from ICU and ICU-mortality,

and thus potential confounding factors for the infection-mortality and censoring-

mortality associations. Univariate models were therefore constructed for any of

the outcomes described above having any risk factor as a single predictor. Tables

3.8-3.12 show results from this analysis for time-independent factors (variables

collected at ICU admission) and time-dependent factors respectively. From Tables

3.10-3.12 we see that virtually all time-dependent invasive device exposures are

individually strongly predictive for staying in the ICU. Those risk factors having

an observed Wald test significance level of less than 0.05 were consequently used

in a stepwise backward removal procedure with significance level 0.1 in the models

for the prediction of inverse probability weights.

The constructed models for the hazard of pneumonia, BSI and discharge alive

from the ICU were used to calculate for each patient day the conditional prob-

ability of acquiring any of the above outcomes. The probabilities of acquiring

infection were converted towards the probability of the actual infection status

at each day, by subtracting the predicted probability from 1 in case of absence

of infection. Likewise, the conditional probability of remaining in the ICU was

obtained by subtracting the probabilities of discharge alive in the ICU from 1. The

estimated probabilities from day 1 to each particular day are multiplied to obtain

the probability of actual infection status and of remaining in the ICU up to each
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Chapter 3. Marginal structural models to estimate a�ributable mortality e�ects

3

R
isk

factor
Type

Patients
Patient

days
H

azard
ratio

(95%
C

I)

(%
)

(%
)
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onia

B
loodstream

infection
IC
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D

ischarge
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U
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4.81)***

4.36
(2.74
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)
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(4.32
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to
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(2.44

to
3.29)***

1.81
(1.39

to
2.36)***

1.88
(1.69
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(3.73

to
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to
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0.77
(0.76
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to
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Table
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and
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corresponding
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ratio=derived
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m
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indicated
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U

)having
the

corresponding
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I=C
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ays=type
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represent
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3
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3.5. Appendix

Figure 3.4: Hazard for mortality ratio of ICU-acquired pneumonia infected (a) and ICU-
acquired bloodstream infection infected (b) versus uninfected patients using a Marginal
structural proportional hazards model with varying administrative censoring times.

particular patient day. IPE and IPC were then created by inverting the conditional

probabilities of actual infection status and of remaining in the ICU up to each

day respectively. These were multiplied with each other to represent the daily

combined IPE-IPC weights. Finally, these were stabilised by division by combined

IPE-IPC weights derived from the same models for acquiring infection and being

discharged alive from the ICU but not containing time-dependent confounders as

predictors.

Because separate models were used for modelling the risk of acquiring pneumo-

nia and BSI, separate combined weights sets were obtained for these two infection

types.
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3.5.2 Sensitivity analysis

Because the MSPHM is fit on data where each patient-day is weighted for its

inverse probability of not being censored, or of staying alive in the ICU, it infers

the HAI-e�ect that would have been observed if the ICU population was not

discharged before the end of follow-up date. To investigate the robustness of the

model’s estimates to the follow-up period, we fi�ed the MSPHM repeatedly under

varying end of follow-up or administrative censoring times: for example, when

implementing an administrative censoring at 15 days, the same number of patients

will be used in the analysis but their ICU follow-up will be truncated to 15 days.

Figure 3.4 shows the e�ect of applying various administrative censoring times on

the results of the MSPHM for the e�ects of pneumonia and BSI on mortality. When

decreasing the study time from 30 to 5 days, the pneumonia e�ect remained more

or less neutral until day 15, around which the HR shi�s to protective values of 0.55

at times 7-10. The graph for BSI did not show this decline at lower follow-up times.

For the two infection types, this di�erent behavior of a�ributable mortality for

varying follow-up times was directly related to the di�erent a�ributable mortality

early and late a�er infection onset of infection (as reported in the main paper).

Pneumonia are protective for mortality early a�er onset, but have more harmful

a�ributable mortality late a�er onset, implying that the longer the follow-up time,

the more this “lag” e�ect of pneumonia can play a role. For BSI, no apparent

contrast was seen early and late a�er onset of infection. The fairly wide confidence

intervals (despite the large sample size) are due to the wide range of IPC-weights

that were used to correct this model, which was caused by the strong associations

between time-dependent confounders and the censoring event “discharge alive”.

104



4

CHAPTER 4

Marginal structural models for partial exposure regimes

This chapter is based on the following article: Vansteelandt, S., Mertens, K., Suetens,

C. and Goetghebeur, E. (2009) ”Marginal structural models for partial exposure

regimes,” Biostatistics, 10(1): 46-59.

Summary
Intensive care unit (ICU) patients are highly susceptible to Healthcare-associated

infection (HAI) due to their poor health and many invasive therapeutic treatments.

The e�ect on mortality of acquiring such infections is, however, poorly understood.

Our goal is to quantify this using data from the National surveillance of infections

acquired in intensive care units (NSIH-ICU) (Belgium). This is challenging because

of the presence of time-dependent confounders, such as mechanical ventilation,

which lie on the causal path from infection to mortality. Standard statistical

analyses may be severely misleading in such se�ings and have shown contradictory

results. Inverse probability weighting for marginal structural models may instead

be used, but is not directly applicable because these models parametrise the e�ect
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of acquiring infection on a given day in ICU, versus never acquiring infection in

ICU, and this is ill-defined when ICU discharge precedes that day. Additional

complications arise from informative censoring of the survival time by hospital

discharge, and from the instability of the inverse weighting estimation procedure.

We accommodate this by introducing a new class of marginal structural models

for so-called partial exposure regimes. These describe the e�ect on the hazard of

death of acquiring infection on a given day s, versus not acquiring infection up to

that day, had patients stayed in the ICU for at least s days.

4.1 Introduction

ICU patients are estimated to have a 5 to 10 times higher risk of acquiring nosoco-

mial, i.e. hospital-acquired, infections than patients in other hospital units, due

to their poor health and many invasive therapeutic treatments. These infections

are believed to account for 50% of all major complications of hospitalisation and

are considered to have a substantial impact on morbidity, mortality and medical

costs (Gaynes, 1997). In 1985, the Study on the E�icacy of Nosocomial Infection

Control (Haley et al., 1985) demonstrated that surveillance of nosocomial infections

can reduce infection rates by as much as 30%, provided that su�icient infection

control sta� and adequate surveillance are available. Since then, surveillance of

nosocomial infections has played a fundamental role in assessing and improving

the quality of medical care.

In 1995, the Scientific Institute of Public Health (Belgium) set up a national

surveillance network in ICUs in collaboration with the Belgian Society for Intensive

Care and Emergency Medicine (Suetens et al., 1999). The aim of this network is

twofold: to assist individual ICUs to obtain local incidence statistics for the main

nosocomial infections ICU-acquired pneumonia and Bloodstream infection (BSI);

and to o�er national statistics in parallel to guide the interpretation of each ICU’s

performance. Surveillance and the definition of infections that we will adopt follow

a standard protocol based on a Europe-wide consensus reached in the Hospitals in

Europe link for infection control through surveillance (HELICS) project (Suetens
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et al., 2003).

In this article, we will use data collected through the network to quantify the

e�ect of ICU-acquired pneumonia on mortality in ICU patients. This is a complex

problem for various reasons. First, the association between infection and mortality

is disturbed by time-dependent confounders. For instance, daily exposure to

invasive treatments such as mechanical ventilation or the presence of a central

vascular catheter increases the risk of infection, and the poor health conditions

leading to these treatments are also indicative of an increased mortality risk. These

confounders lie on the causal path from infection to mortality because infection

makes it more likely that the patient will receive invasive therapeutic treatments.

Standard adjustment approaches, such as time-dependent proportional hazards

regression, will then usually give biased results [see, for example, Andersen (1986);

Bryan et al. (2004); Kalbfleisch and Prentice (2002); Robins (1986, 1997, 2000);

Vansteelandt (2007)] Second, the censoring of the survival time upon hospital

discharge may be informative because the decision to discharge patients is closely

related to their health status, so that mortality rates may di�er substantially

between those who are discharged on a given day and those who are not.

The problem of estimating the mortality rate a�ributable to ICU-acquired

infection has received much a�ention in the intensive care literature [see e.g. Carlet

(2001); Vincent (2003); Schumacher et al. (2007)], as a reliable estimate is not only

of theoretical interest but also important for determinining the potential benefits

of new drugs. Common practice is to fit logistic regression models for mortality

in ICU, adjusting for pneumonia status upon ICU discharge, for length of stay in

ICU, and possibly for time-dependent variables measured prior to infection. An

alternative approach is to base inference on proportional hazards models for time to

death, adjusting for either infection status upon ICU discharge or time-dependent

infection status, and additionally for time-dependent variables measured prior

to infection. These analyses ignore the aforementioned problems and empirical

results are therefore highly controversial, with several studies reporting relative

risk estimates for mortality ranging from neutral to severely harmful. The present

study addresses the above problems by using Marginal structural models (Hernàn

et al., 2000; van der Laan and Robins, 2003; Bryan et al., 2004).
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We review the Belgian National Surveillance Study in Section 4.2 and Marginal

structural models in Section 4.3.2. Standard inference for such models cannot be

used for estimating the e�ect of ICU-acquired infection on death for the following

reasons. First, these models describe the hazard of death for ICU patients had

they acquired infection in the ICU at a given number of days since admission, but

this is ill-defined when ICU discharge comes earlier. Second, infection status and

confounders were only recorded until ICU discharge, whereas survival times were

recorded until hospital discharge to alleviate the problem of informative censoring.

Similar di�iculties arise in observational studies with a mortality endpoint where

exposures are incompletely measured due to loss to follow-up or end-of-study,

but survival times are assessed over a much longer time period (e.g. using death

registers).

To accommodate both problems, we propose a new class of Marginal structural

models in Section 4.3, which express the e�ect on the hazard of death of acquiring

infection on a given day s, versus not acquiring infection up to that day, had

patients stayed in the ICU for at least s days. We call such model in our class

a Marginal structural proportional hazards model for partial exposure regimes

(MSPHM-P), as each considered “exposure regime” specifies the “exposures” (i.e.

infections) for a given patient only up to the chosen time point s. This has the

added advantage of yielding more stable inferences since we merely aim to infer

the e�ect of avoiding infection during the first s days since admission, and not

during the entire ICU stay. It thus makes the new models useful even in se�ings

where standard Marginal structural models can be applied. We derive a class

of Consistent and asymptotically normal (CAN) estimators for the parameters

indexing our models and provide a reasonably e�icient estimator in that class. In

Section 4.4, we present results obtained for the surveillance data. In Section 4.5,

we discuss the usefulness of MSPHM-Ps in more general se�ings.
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4.2 National ICU surveillance study

All ICUs in Belgian hospitals were invited to participate in this surveillance study

on a voluntary basis. For all patients admi�ed to the ICU, data were recorded on

personal characteristics, reasons for ICU admission, baseline health status, and

daily indicators of received invasive treatments and acquired infections in the

ICU. ICU-acquired infections were defined as infections acquired by patients a�er

the second day of ICU stay, to exclude infections that were in incubation upon

enrollment in the ICU. The third day of stay in ICU will thus be the starting point

for our analysis, excluding patients who stayed less than 3 days. We will restrict

the analysis to surveillance data collected for the year 2002 in one of the largest

hospitals which has accurate daily measurements of received invasive treatments

and acquired infections. A total of 1072 ICU patients were analysed. Of the 100

(9.3%) patients who acquired ICU-acquired pneumonia in ICU and stayed more

than 2 days, 41 (41%) died in hospital, of whom 27 in ICU, as compared to 183

(18.8%) deaths among the 972 patients who remained free of pneumonia in ICU, of

whom 99 died in ICU. Among patients who stayed more than 2 days in ICU, the

median length of stay in ICU was 4 days (Interquartile range (IQR) 3, 95th percentile

13) for those without a history of ICU and 16 days (IQR 13, 95th percentile 54.5)

for the remaining patients.

A preliminary causal analysis (Mertens and Vansteelandt, 2012) using Marginal

structural proportional hazards models (MSPHMs) revealed highly unstable results

when survival times were censored upon ICU discharge, as a result of high censoring

rates. Using patient registers, the survival status of each patient was therefore

assessed upon hospital discharge.
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4.3 Marginal structuralmodels for partial exposure
regimes

4.3.1 Notation

Throughout, we use the following notation. For each patient, let At be a counting

process that indicates 1 for ICU-acquired pneumonia at or prior to time t and

0 otherwise, where A0 = 0 by definition (see Figure 4.1). Likewise, let Dt (Ct)

be a counting process that indicates 1 if ICU (hospital) discharge happened at

or prior to time t and 0 otherwise. Define L0 to be a vector of baseline variables

collected upon admission to the ICU. In our analyses, L0 consists of age, gender,

reason for ICU admission, acute coronary care, multiple trauma, presence and

type of infections upon ICU admission, prior surgery, baseline antibiotic use and

the Simplified acute physiology score II (SAPSII) score, a severity-of-illness score

based on a set of 15 clinical parameters predicting the mortality risk of a patient

admi�ed to the ICU (Le Gall et al., 1993). Further, for t > 0, define Lt to be a

vector of invasive therapeutic treatment indicators collected on day t, consisting

of indicators of exposure to mechanical ventilation, central vascular catheter,

parenteral feeding, presence and/or feeding through naso- or oro-intestinal tube,

tracheotomy intubation, nasal intubation, oral intubation, stoma feeding and

surgery. Discharge from the ICU defines the end of follow-up for all measured

variables, except survival time, so that At and Lt are observed for all t with Dt = 0,

but not otherwise. Survival time T is censored by discharge from the hospital. We

define K to be the end of follow-up time and, for any vector Z = (Z0, ..., ZK) and

t ≤ K , Zt = (Z0, ..., Zt). Throughout, we assume that infection and discharge on

day t can only be a�ected by time-dependent variables measured on previous days

(and thus not by those measured on the same day).

4.3.2 Marginal structural models

Time-dependent multi-state models for event history analysis (Andersen and Keid-

ing, 2002; Schumacher et al., 2007) may appear well-matched to the multi-state
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Figure 4.1: Multi-state model: directed arrows show the possible transitions from one
state to another.

nature (see Figure 4.1) of our problem. However, they are likely to yield biased

estimates of the e�ect of ICU-acquired infection on mortality, whether or not one

adjusts for the relevant past confounder history (Robins, 1997). For the unadjusted

analysis, this is so because these analyses ignore time-varying confounders like

mechanical ventilation, which increases the risk of infection and is also associ-

ated with death. For the adjusted analysis, this is so when these time-varying

confounders lie on the causal path from infection to mortality, because standard

regression adjustment for such post-infection measurements may introduce bias.

This problem of adjusting for internal (or endogenous) time-dependent covariates

has long been recognised in the survival literature (see e.g. Andersen (1986) and

the discussion in Kalbfleisch and Prentice (2002), but solutions to it have emerged

only recently. One such solution, which is becoming increasingly popular among

statisticians and epidemiologists, is to use MSPHM (Hernàn et al., 2000). We briefly

review these models in this section.

Let Ta express the counterfactual survival time (Rubin, 1978; Robins, 1986)
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which an ICU patient would, possibly contrary to fact, have had under a given

infection path a = (a1, a2, ..., aK) following which the patient is infected on day

t since ICU admission if at = 1 and uninfected if at = 0. Then a MSPHM is a

proportional hazards regression model for the counterfactual survival time Ta,

possibly conditional on baseline covariates V . It thus expresses how the hazard of

death would have been if all ICU patients had followed infection path a. A simple

example is

λa(t|V ) = λ0(t) exp (β1at + β′2V ) (4.1)

where λa(t|V ) is the hazard function that characterises the conditional survival

function of Ta, given V . It thus represents the hazard of death at time t among

patients with baseline covariates V , had they all followed infection path a. Further,

λ0(t) is an unknown baseline hazard of death at time t and β1, β2 are unknown

parameters. In model (4.1), exp(β1) expresses the causal rate ratio at time t due

to acquiring infection at time t. This represents the ratio of the mortality rate at

any time t had all patients with baseline covariates V acquired infection at time t

compared to the mortality rate at time t had these patients acquired no infection

up to time t. Further, λ0(t) expresses the hazard of death at time t for patients

with V = 0 had they followed an infection path in which they never acquired

infection in ICU. The model’s name “marginal” expresses that the model does not

involve time-dependent confounders. Adjustment for such confounders happens

by fi�ing the model to data from a pseudo-population in which there are no time-

varying confounders, but the target e�ect is the same. This pseudo-population is

constructed by reweighting subjects in the risk set at each time t by the reciprocal

of the product of the conditional probabilities of the observed infection status at

each time before time t, given the history of time-varying confounders at that time

[see expression (4.5) below] (Hernàn et al., 2000).

The considered MSPHM is not directly applicable in our study because the

exposure “ICU-acquired infection” (and, likewise, Ta) is ill-defined between ICU

discharge and death or censoring of the survival time. Since our goal is to esti-

mate the e�ect of “ICU-acquired” infection on mortality, it may seem natural to

define patients as uninfected when they were not infected upon ICU discharge.

However, this would make standard estimators for marginal structural models
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irregular (Robins, 2000) because there would be patients with certain prognostic

factors (namely, those who are discharged uninfected from ICU) who are pre-

cluded from becoming infected under this definition. This irregularity results

from failure of the implicit assumption of experimentation in the “assignment”

of infection (van der Laan and Robins, 2003), according to which, at each time

t = 1, ..., K , it must be true that

0 < P (At = 1|At−1, Lt−1, Dt, V ) < 1 with probability 1.

This assumption is needed to avoid inverse weighting by zero [see expression (4.5)

below].

Alternatively, one could consider the infection and ICU discharge status of

a patient as a joint exposure. Specifically, one could redefine an infection path

to be any path (d, a, as) in which a patient, while alive, will be discharged from

the ICU on day d and either acquire infection on a given earlier day s < d (if

a = 1) or stay uninfected during his/her stay in the ICU (if a = 0). The joint

causal e�ect of discharge and infection in the ICU on the hazard of death can be

expressed as a function of baseline covariates V through MSPHMs for multiple

interventions (Hernàn et al., 2001; Robins et al., 2003). The following is a simple

example of such a model:

λ(d,a,as)(t|V ) = λ0(t) exp[{β1 + β2(t− s)}aI(t ≥ s)

+{β3 + β4(t− d)}I(t ≥ d) + β′5V ] (4.2)

with d > s. Here, λ(d,a,as)(t|V ) is the hazard that characterises the conditional

survival function of the counterfactual survival time, given V , under infection

path (d, a, as), λ0(t) is an unknown baseline hazard of death at time t, and

β1, β2, β3, β4, β5 are unknown parameters. In particular, exp {β1 + β2(t− s)} is

the causal rate ratio at time t due to acquiring infection at time s, s ≤ t, s < d.

This represents the ratio of the mortality rate at any time t had all patients with

baseline covariates V acquired infection at time s compared to the mortality rate at

time t had these patients experienced the same discharge time, but no infection up

to time t. Note that this causal e�ect parameter has limited relevance from a public
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health perspective. First, it expresses the e�ect of acquiring pneumonia at a given

time on mortality in the hypothetical and unrealistic scenario where we would

keep the patients in the ICU until some given, later time. Second, by comparing the

same group of patients under two possible infection histories, the time of discharge

from the ICU being equal, exp {β1 + β2(t− s)} represents only the direct e�ect

of acquiring infection at time s on mortality at time t. As such, it does not capture

the indirect e�ect of infection on death that may arise when infection prolongs

the time of stay in the ICU, which may itself a�ect mortality risk. Furthermore,

preliminary analyses (not displayed) showed that estimates for the parameters

in the above model are highly unstable as a result of inverse weighting by small

probabilities in the estimation procedure. This is due to a lengthy follow-up for

a limited number of patients and because many time-dependent variables are

strongly predictive for ICU discharge.

4.3.3 Marginal structural models for partial infection paths

To accommodate the foregoing problems, we will infer mortality rates under infec-

tion paths (s, a) in which patients stay in the ICU for at least s days and acquire

infection (if a = 1) or not (if a = 0) on day s. Thus, under path (s, a) = (s, 0),

patients are uninfected in the ICU up to day s, their infection status being un-

specified therea�er; under path (s, a) = (s, 1), patients are uninfected in the ICU

up to day s and acquire infection on day s. By analysing mortality rates of ICU

patients under each such infection path, we will be able to answer causal questions

like “What would be the e�ect on the mortality rate of ICU patients of acquiring

infection at time s, versus not acquiring infection up to that time, had they stayed

in the ICU for at least s days?”. At the same time, we will be solving the problem

that the infection status is unknown or ill-defined a�er ICU discharge because we

only consider infection paths which specify the infection status of patients during

their stay in the ICU. As such, these infection paths generalise the deterministic

treatment regimes of Robins (1997) which specify the treatment at each time from

start until end of study.

For a given path (s, a), let T(s,a) be the random variable representing the sub-
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ject’s time from admission in the ICU to death had they experienced infection

path (s, a) rather than their own infection history, all other things being equal. We

can then express the causal e�ect of infection in the ICU on the hazard of death

through MSPHM:

λ(s,a)(t|V ) = λ0(t) exp {β1 min(t, s) + β2aI(t ≥ s) + β′3V } . (4.3)

Here, λ(s,a)(t|V ) is the hazard that characterises the conditional survival function,

given V , of the counterfactual survival time under infection path (s, a), λ0(t) is an

unknown baseline hazard of death at time t, and β1, β2, β3 are unknown parameters.

Note that λ0(t) = λ(0,0)(t|0) is the hazard of death at time t among patients with

V = 0 and is hence directly identifiable from the observed data distribution. In

addition, note that exp(β2) is the causal rate ratio at time t of acquiring infection

at any time s, s ≤ t. It represents the ratio of the mortality (hazard) rate at any

time t had all patients with baseline covariates V stayed in the ICU up to at least

time s and acquired infection at that time compared to the mortality (hazard)

rate at time t had these patients also stayed in the ICU up to at least time s but

acquired no infection up to that time. By specifying only whether infection comes

before discharge, exp(β2) represents the overall e�ect of acquiring infection at

time s on mortality at time t under model (4.3). We call (4.3) a Marginal structural

proportional hazards model for partial exposure regimes (MSPHM-P) to express

that it determines each exposure regime (i.e. each infection path) only for a limited

time period, contrary to the more standard MSPHMs of Section 4.3.2.

4.3.4 Inference

In this section, we develop inference for the parameters indexing MSPHM-Ps

under Sequential randomisation assumption (SRA). Specifically, we assume that

at each time t ≤ s, survivors with prognostic factors L̄t−1, Āt−1, Dt−1 = 0 and V

have the same hazard of infection and ICU discharge at time t regardless of their

counterfactual survival time T(s,a), for each infection path (s, a) that is compatible

with the observed history (Āt−1, Dt−1 = 0). That is, for each such path (s, a) and
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each t ≤ s,

(At, Dt)q T(s,a)|L̄t−1, Āt−1, Dt−1 = 0, T > t,

where U q V |W for random variables U, V,W indicates that U is conditionally

independent of V , given W . This assumption is reasonable when the physician’s

decision to discharge a patient from the ICU at time t is based solely on daily

patient characteristics which were recorded in L̄t−1, Āt−1 and V and, in addition,

all time-dependent confounders for the association between infection and death

are accounted for.

Even if all patients were observed until the study end or death, analysis tools for

MSPHMs (Hernàn et al., 2000) would not be directly applicable to fit model (4.3)

under these assumptions because each infection path is specified for only a limited

period of time. Below, we give a practical algorithm for obtaining a Consistent

and asymptotically normal (CAN) estimator for the parameter β = (β1, β2, β3)
′

indexing model (4.3) in the absence of unmeasured time-dependent confounders.

The motivation for this algorithm is given in the Appendix (Section 4.6), where the

resulting estimate is defined via weighted partial likelihood estimation.

First we identify, for each infection path (s, a), those patients whose observed

infection history is compatible with the path (s, a). For each time t, we thus

construct a vector of variables (St, A
∗
t ) which takes the value (s, a) for a given

patient at that time if that patient’s observed infection path up to time t could

have been obtained under the path (s, a). That is, for given s, (St, A
∗
t ) = (s, 1)

[or (St, A
∗
t ) = (s, 0)] for a given patient at time t if that patient was in the ICU at

time s ≤ t and acquired pneumonia at that time (or did not acquire pneumonia

up to and including that time). In contrast to inference for ordinary MSPHMs, the

data for a given patient at a given time may be compatible with multiple infection

paths and may thus carry information about more than one path. This is because

the considered paths are only partially specified. For instance, if a patient’s data

are compatible with infection path (s, 0) at time t, then they are compatible with

all infection paths (u, 0) for u < s, and may thus appear multiple times in the

database corresponding to di�erent values of St.

Next, for all infection paths (s, a) jointly, we fit a proportional hazards model
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using only the data compatible with the given path and weighting each observation

by the reciprocal probability of following that path to account for the selective na-

ture of our subsample. Specifically, we substitute (s, a) by (St, A
∗
t ) in the marginal

structural model (4.3) by fi�ing the time-dependent proportional hazards model

λ(t|St, A∗t , V ) = λ∗0(t) exp {β∗1 min(t, St) + β∗2A
∗
t + β∗′3 V } , (4.4)

and weight the contribution of a patient to the risk set at time t by the stabilised

weights

swi(t, St, Āt, D̄t, L̄t−1, V ) =
St∏
k=1

P (Ak|Ak−1 = Dk = 0, V )

P
(
Ak|Ak−1 = Dk = 0, L̄k−1, V

) (4.5)

× P (Dk = 0|Ak−1 = Dk−1 = 0, V )

P
(
Dk = 0|Ak−1 = Dk−1 = 0, L̄k−1, V

) .
These weights di�er from the usual stabilised weights for Marginal structural

models (Hernàn et al., 2000, 2001) in that they consider the joint treatment process

given by infection and discharge at each time and do this only up to the artificial

time St. Note that they involve the discharge process to account for the fact that,

at each time t, those subjects who are still in the ICU (i.e. those for whom we

have information on the infection history) may form a selective subset of the study

population. The impact of weighting is to eliminate time-varying confounders by

removing their association with exposure (At, Dt) at each time t, while leaving

the causal e�ect of interest unchanged. The numerator probabilities in (4.5) are

included for stabilisation of the weights and are allowed to be misspecified by the

fact that model (4.3) is postulated conditional on V .

To deal with censoring of the survival status due to hospital discharge, we

proceed under the additional assumption of Ignorable censoring assumption

(ICA) (van der Laan and Robins, 2003). For our data and study se�ing, this as-

sumption states that among subjects with a given observed past ĀtD , D̄t, L̄tD− , V ,

where tD = min(t,D − 1) and tD− = min(t,D) − 1, the censored and un-

censored subjects at time t have the same survival time distribution; that is,

C q T |ĀtD , D̄t, L̄tD− , V, T > t, C > t for each time t. At a given time t, this
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assumption could be reasonable for short-term survival rates because we have

available a large and detailed collection of prognostic factors for survival that also

predict time of discharge from the ICU. However, for given t, it is questionable

for the longer term because we lack data monitoring the health status of patients

a�er leaving the ICU. In our study, the median length of stay in hospital a�er ICU

discharge was 8 days (IQR 10, 5% percentile 0, 95% percentile 50).

We can correct the above analysis for ICA by further weighting each patient’s

contribution to the risk set at time t by the stabilised weights

swc(t, ĀtD , D̄t, C̄t−1, L̄tD) =
t∏

k=1

P
(
Ck = 0|ĀkD , D̄k, Ck−1 = 0, V

)
P
(
Ck = 0|ĀkD , D̄k, Ck−1 = 0, L̄kD− , V

) (4.6)

where the numerator and denominator probabilities equal 1 when Dk = 0. Here,

we implicitly assume that hospital discharge does not causally a�ect survival.

Under this assumption and provided that the measured time-dependent covariates

are su�icient to adjust for time-dependent confounding and censoring due to

hospital discharge, fi�ing model (4.4) and weighting each patient’s contribution

to the risk set at time t by the product of (4.5) and (4.6) produces a consistent

estimator for the causal rate ratio.

4.4 Data analysis

We first consider the unadjusted time-dependent proportional hazards model

λ(t|At) = λ0(t) exp (β1At)

To enhance comparability with later results, we fi�ed this model via unweighted

pooled logistic regression with regression splines for the time e�ect. The estimate

of the hazard ratio of death comparing patients who acquired infection prior to

time t and those who did not, was 1.89 [95% Confidence interval (CI) 1.32, 2.71].

When adding baseline covariates (SAPSII score and reasons for admission to the

ICU), the estimated hazard ratio was no longer significant and equaled 1.37 (95%
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CI 0.93, 2.04).

To adjust for time-dependent confounding, we extended our data set to include

St and A∗t for each patient at each time t. Next, we calculated stabilised weights

by means of 6 pooled logistic regression models for the numerator and denomi-

nator weights in (4.5) and (4.6). To avoid unstable weights, we included baseline

covariates (V ) in the numerator weights and then later also in the MSPHM-P.

Specifically, we considered type of admission allowing for e�ect modification by

acute coronary care and by multiple trauma, presence and type of infection and of

surgery at admission, SAPSII score and age (allowing for quadratic e�ects on both),

gender, antibiotic use during the first 48 hours of ICU stay, and baseline values for

all previously listed invasive therapeutic treatment indicators. Time-dependent

information on exposure to invasive treatments was summarised in terms of the

presence/absence of the treatment on each of the 2 previous days and by the

total number of previous days on invasive treatments. In addition, we allowed

for quadratic e�ects of the number of previous days on mechanical ventilation

additionally allowing for e�ect modification by antibiotic use during the first 48

hours of ICU stay, and on central vascular catheter. To build parsimonious models,

we used the following conservative approach. In the first stage, all main e�ects

were added and then sequentially removed if non-significant at the 10% level (ig-

noring correlations between outcomes from the same patient). In the second stage,

the suggested interaction terms and quadratic e�ects were added if significant

following the same criterion. Splines were used to model the time e�ect in all

models.

Using the estimated predicted values from these models we calculated the

probability of each patient having their observed infection status up to time t,

given baseline variables and then also given time-dependent variables L̄t−1. We

calculated similar estimates for the probability of ICU discharge and hospital

discharge, the la�er a�er also adjusting for the infection and ICU discharge history.

To avoid unstable weights, we considered only infection paths (s, a) with 3 ≤
s ≤ 11. This implies that the estimated e�ect of infection on the hazard of death

pertains only to infection paths where infection is acquired during the first 11 days

starting from day 3. Note however that we included all observed person-days in
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Figure 4.2: Boxplots of the natural logarithm of the stabilised weights in function of time
t (with whiskers extending to 2.5 times the interquartile range).

the analysis.

Figure 4.2 displays the distribution of the natural logarithm of the stabilised

weights as a function of time. The stabilised weights had a median and mean

of 0.81 and 0.93, an interquartile range and standard deviation of 0.48 and 1.94

and 1% and 99% percentiles of 0.048 and 3.89 (min. 0.0039, max. 123.48). Among

weights greater than 5, the 99th, 75th and 50th percentiles are 100.59, 11.70 and

8.69. Among weights smaller than 0.2, the 1st, 25th and 50th percentiles are 0.0066,

0.069 and 0.12.

Because standard so�ware for Proportional hazards regression does not allow

us to reweight the risk sets at each time, we fit the discrete-time analog of (4.4) via a

weighted pooled logistic regression model using Generalised estimating equations

(GEE), treating each patient-day as an observation and using regression splines to

fit the time e�ect (Hernàn et al., 2000). Unbiasedness of the estimating equations
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under this logistic regression model requires use of the independence working

correlation (Vansteelandt, 2007). Note that by using GEE to fit model (4.4) we

account for the potentially strong correlation arising in the augmented dataset.

This may contain the same observations multiple times corresponding to di�erent

values of St. Because the e�ect on the hazard of death at time t of keeping the

patient in the ICU up to time St was considered a nuisance, we modelled the e�ect

of St in model (4.4) using regression splines. Our causal estimate of the hazard

ratio for infection was 2.74 [95% conservative CI (1.48, 5.09)]. We conclude that

under any infection path in which patients stay in the ICU for at least a given

number of days s, the e�ect of acquiring infection on day s is to multiply the hazard

of death by 2.74. Confidence intervals were obtained using the robust standard

error. By not taking into account the estimation of the weights, this yields an

asymptotically conservative confidence interval for our causal parameters (Robins,

2000). Figure 4.3 shows estimated survival curves for the study population along

with 95% confidence intervals, and predicted survival curves in the hypothetical

scenario where all patients acquire infection at the third day of their stay in the ICU.

It illustrates the severe estimated impact of ICU-acquired infection on mortality.

To examine the stability of the results to extreme weights, we additionally

evaluated the e�ect of infection on mortality for infection paths with 3 ≤ s ≤
smax = 7, 8, 9 and 10. The weights are more stable for these analyses because

the product in (4.5) runs over a smaller number of time points. The results are

displayed in Table 4.1 and show that the e�ect size and significance stay the same

with increasing stability of the weights. Finally, we performed an ad-hoc procedure

whereby stabilised weights smaller than 0.2 or greater than 5 were truncated at 0.2

and 5, respectively. This yielded a hazard ratio of 2.50 [95% conservative CI (1.45,

4.31)], suggesting once more robustness to the extreme weights. Allowing for an

interaction between infection status and the number of days since acquiring the

infection revealed that, on the hazard scale, the e�ect of acquiring infection on a

given day s increases non-significantly by 2.8% (95% conservative CI (-1.2%, 6.7%),

P = 0.17) per day since acquiring infection. Likewise, there was no indication that

the e�ect of ICU-acquired infection on the hazard of death depends on the time at

which it was acquired (P = 0.29).
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Figure 4.3: Marginal survival curve (upper solid line) (directly estimated from the observed
data) with 95% confidence intervals (dashed) and predicted survival curve following
immediate infection (lower solid line) (based on the Marginal structural model) with
approximate 95% confidence intervals (do�ed). The la�er intervals acknowledge impre-
cision on the estimated causal e�ect, but ignore imprecision on the estimated survival
curve. Le�: from 3 to 140 days a�er ICU admission; Right: from 3 to 20 days a�er ICU
admission.
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smax 1% perc. 99% perc. min max HR 95% CI
7 0.065 3.50 0.0071 25.94 2.75 (1.48, 5.12)
8 0.064 3.49 0.0061 35.91 2.66 (1.43, 4.94)
9 0.060 3.51 0.0053 54.14 2.70 (1.46, 5.00)
10 0.054 3.72 0.0046 81.88 2.71 (1.47, 5.01)
11 0.048 3.89 0.0039 123.48 2.74 (1.48, 5.09)

Table 4.1: Distribution of the stabilised weights (1% and 99% percentiles, minimum and
maximum), glsplhr and 95% confidence intervals in Marginal structural models for
partial infection paths with 3 ≤ s ≤ smax.

4.5 Discussion

The e�ect on mortality of acquiring pneumonia in ICU continues to raise contro-

versy among clinicians because standard statistical analyses have shown contradic-

tory results. Because this is partly due to inappropriate adjustment for intermediate

time-varying confounders, we have proposed to use analyses of marginal struc-

tural models. These take into account the time order in which infection, mortality

data and time-dependent confounders were collected and correct appropriately

for time-dependent confounders that lie on the causal path from pneumonia to

mortality. Inference for such models was however not directly applicable to our

data for the following two reasons: (a) the infection status of patients was ill-

defined subsequent to ICU discharge, an event which lies on the causal path from

infection to mortality; (b) the usual weights in the weighted estimating equations

for standard MSPHMs were highly unstable because there was a lengthy follow-up

for several patients and because many collected time-dependent variables were

strongly predictive of ICU discharge.

To accommodate these problems we have proposed to model mortality rates

under “partially specified” infection paths. The resulting models solve the problem

mentioned in (a) without fixing the discharge time a�er the event of infection

and thus without fixing variables on the causal path from infection to mortality.

In addition, inference under these models tends to be more stable because each

infection path is specified only up to a given time s (rather than up to the study

end). As such, the weights in the inverse weighting procedure merely involve the
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first s time points and are thus less a�ected by lengthy follow-up with frequent

infection measurements. Alternatively, weight instability may be intercepted by

inferring only the e�ect of late infections, along the lines of Jo�e et al. (2004);

Petersen et al. (2007), or by using doubly-robust estimators which allow be�er for

truncating extreme weights (Yu and van der Laan, 2006). Finally, note that our

results directly accommodate situations where exposures are not collected up to

the time where outcomes are assessed. This may happen in se�ings where the

mortality status of patients is assessed at the time of data analysis, i.e. later than

end-of-follow-up, through death registers, or where each patient’s treatment or

treatment compliance is closely monitored for only a limited time period. By not

fixing treatment levels observed a�er this time period, the proposed models isolate

the overall e�ect of treatment over the given period on outcome and extrapolate

much less from the observed data than standard MSPHMs.

Alternatively, we could have chosen to assess the e�ect of avoiding infection

among patients who acquired infection on a given day. This e�ect estimand

has greater relevance since physicians are primarily interested in the e�ect of

preventing infection among the infected. Also, by restricting the focus to those who

acquired infection in the ICU, one avoids the di�iculty that the e�ect of acquiring

infection on a given day in ICU is ill-defined for those who get discharged before

that day. Structural nested accelerated failure time models (SNFTMs) (Robins,

1992, 1997; Keiding et al., 1999) can be used for modelling this e�ect estimand.

These are models for the e�ect of a change in infection status on survival time

among patients with a given history of measured time-dependent confounders and

infection. Because inference for these models is more complicated, does not allow

the use of standard so�ware, and typically su�ers more from censoring of the

survival time, we have chosen to adopt marginal structural models in this article

and plan to report on structural nested models elsewhere.

Finally, it remains to be seen how sensitive conclusions are to the untestable

assumptions that there are no unmeasured time-varying confounders for the

e�ect of infection on mortality (SRA) and that censoring is sequentially ignorable

(ICA). The former assumption implies that among patients with prognostic factors

L̄t−1, Āt−1, Dt−1 = 0, the causal e�ect of infection and ICU discharge is the same
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regardless of their infection and ICU discharge status at time t. This may not be

entirely realistic because we anticipate the causal e�ect of infection to be greater

among the infected and we may lack su�icient prognostic factors conditional on

which this is no longer so. ICA may also be questioned because the decision to

discharge patients from hospital is intimately connected with their health status,

about which no information was recorded a�er ICU discharge. In future work, we

plan to accommodate this by estimating the e�ect of acquiring infection in ICU on

“30-day ICU mortality”. This endpoint is uncensored and of even greater interest

to clinicians, because time to death in ICU patients can be greatly extended by

invasive therapeutic treatments.

4.6 Appendix

We will first clarify the relation between the infection paths (d, a, as) and (s, a).

Note that the infection path (d, a, as), (s < d) is defined by the infection path a =

(a1, ..., as−1, as, ..., aK) = (0, ..., 0, a, ..., a) following which a patient is infected

on a given day t since ICU admission if at = 1 and uninfected if at = 0, and

additionally by the discharge path d = (d1, ..., dd−1, dd, ..., dK) = (0, ..., 0, 1, ..., 1)

following which a patient is in the ICU on a given day t since ICU admission if

dt = 0 and has been discharged if dt = 1. The infection path (s, a) is defined

by the same infection path, but a discharge path d = (d1, ..., ds−1, ds, ..., dK) =

(0, ..., 0, Ds, ..., DK) which is only partially specified.

In the remainder of this Section, we will construct a class of unbiased estimating

functions for the parameters indexing MSPHM-Ps which contains (up to asymptotic

equivalence) all such unbiased estimating functions. For each patient in the study,

let D be the observed time from admission in the ICU to discharge from ICU. Note

that D can be recovered from the path {Dt, t = 0, ..., K} (up to the resolution

permi�ed by discrete time). Let us first assume there is no censoring due to hospital

discharge. Then we develop inference for β indexing modelM for the observed

data
(
T,D, ĀD−1, L̄D−1

)
defined by the law of the infection and discharge process

under SRA (i.e. the assumption of no unmeasured confounding for infection and

125



Chapter 4. Marginal structural models for partial exposure regimes

4

ICU discharge):

f(DD = 1|ĀD−1, D̄D−1 = 0, L̄D−1, V )

×
D−1∏
t=1

f(At, Dt = 0|Āt−1, D̄t−1 = 0, L̄t−1, V ) (4.7)

where f is an unknown probability function, and by a discrete-time marginal

multiplicative intensity model (Fahrmeir and Tutz, 1994), e.g.:

λ(s,a)(t|V ) = λ0(t) exp (β′W ) (4.8)

for t = 0, 1, 2, ..., a = 0, 1, s = 1, ..., K for a given integer constant K > 0, where

W = W (a, s, t, V ) is a known function of a, s, t and V . Note that model (4.3)

in the article is a special case of (4.8) with β = (β1, β2, β3)
′ and W (a, s, t, V ) =

{sI(t ≥ s), aI(t ≥ s), V }. When the hazard λ(s,a)(t|V ) is small at each time t,

this model can be approximated via the discrete-time marginal logistic regression

model:

log

{
λ(s,a)(t|V )

1− λ(s,a)(t|V )

}
= log{λ∗0(t)}+ β′W (4.9)

with regression splines to fit log{λ∗0(t)}, as used in the data analysis.

To determine an unbiased estimating functionU under modelM, letUt,(s,a){T(s,a), V ; β}
be an unbiased estimating function for β in the full data model defined by the

full data {T(s,a), V }, restriction (4.8) just for the given t and the given infection

path (s, a). Because (4.8) is a discrete-time multiplicative intensity model, such

estimating functions follow from standard results on such models. In particular, it

may be the discrete-time partial likelihood score, which for a given subject equals[
W (s, a, t, V )−

∑n
i=1W (s, a, t, Vi)I{Ti,(s,a) ≥ t} exp{β′W (s, a, t, Vi)}∑n

i=1 I{Ti,(s,a) ≥ t} exp{β′W (s, a, t, Vi)}

]
dN(t)

(4.10)

where Ti,(s,a) is the realisation of T(s,a) for the ith subject and where dN(t) indicates

1 if the counterfactual survival time T(s,a) ∈]t − 1, t] for the considered subject.

In the data analysis, Ut,(s,a){T(s,a), V ; β} is the score function for β in the logistic

regression model (4.9).
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Define

U =
K∑
t=1

t−1∑
s=1

1∑
a=0

I(As = a,As−1 = 0, Ds = 0)sws,a(Ls−1)Ut,(s,a){T(s,a), V ; β}

(4.11)

with

sws,a(Ls−1) =
P (As = a,Ds = 0|As−1 = Ds−1 = 0, V )

P (As = a,Ds = 0|As−1 = Ds−1 = 0, L̄s−1, V )

×
s−1∏
k=1

P (Ak = Dk = 0|Ak−1 = Dk−1 = 0, V )

P (Ak = Dk = 0|Ak−1 = Dk−1 = 0, L̄k−1, V )
(4.12)

Then U is an unbiased estimating function in modelM. Indeed, first note that U

is a function of the observed data because replacing T(s,a) by T yields the same full

data function under the Consistency assumption that we observe T(s,a) = T for

subjects with As = a,As−1 = 0, Ds = 0. Furthermore, for s < t− 1 and provided

that SRA holds,

E
[
I(As = a,As−1 = 0, Ds = 0)sws,a(Ls−1)Ut,(s,a){T(s,a), V ; β}

]
= E

[
E{I(As = a,Ds = 0)sws,a(Ls−1)|As−1 = Ds−1 = 0, L̄s−1, T(s,a)}

×I(As−1 = Ds−1 = 0)Ut,(s,a){T(s,a), V ; β}
]

= E
[
E{I(As = a,Ds = 0)sws,a(Ls−1)|As−1 = Ds−1 = 0, L̄s−1}

×I(As−1 = Ds−1 = 0)Ut,(s,a){T(s,a), V ; β}
]

= E [P (As = a,Ds = 0|As−1 = Ds−1 = 0, V )

×I(As−1 = Ds−1 = 0)sws−1,0(Ls−2)Ut,(s,a){T(s,a), V ; β}
]

= ...

= E
[
Ut,(s,a){T(s,a), V ; β}P (As = a,Ds = 0|As−1 = Ds−1 = 0, V )

×
s−1∏
k=1

P (Ak = Dk = 0|Ak−1 = Dk−1 = 0, V )

]
= 0 (4.13)

where the last equality is true because the estimating functionsUt,(s,a){T(s,a), V ; β}
are conditionally unbiased given V . We conclude that U is an unbiased estimating

function.
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Note that the estimating functions used in the article were obtained this way.

For instance, solving an estimating equation with estimating function U and

Ut,(s,a)
(
T(s,a), V ; β

)
as given in (4.10) is mathematically equivalent to fi�ing the

time-dependent, discrete-time multiplicative intensity model

λ(t|V ) = λ0(t) exp {β′W (A∗t , St, t, V )} , (4.14)

where λ0(t) is an unknown baseline hazard, where A∗t , St, t > 0 are defined as

in Section 3.4, and where the risk set at each time is weighted by the weights

(4.12). Note that (4.14) and (4.12) are obtained by substituting (s, a) by (St, A
∗
t ) in

the multiplicative intensity model (4.8) and the weights sws,a(Ls−1), respectively.

Similarly, as in the data analysis, the discrete-time marginal logistic regression

model (4.9) can be fi�ed upon substituting (s, a) by (St, A
∗
t ) and weighting the

corresponding subject’s contribution at time t by swSt,A∗t
(LSt−1).

Starting from the single unbiased estimating function for β in modelM that

we have now identified, we will construct a class of unbiased estimating functions

for β in modelM which contains (up to asymptotic equivalence) all such unbiased

estimating functions. Upon noting that SRA is equivalent to ICA, even when

the length D of the infection period is random, this construction follows from

standard results on the construction of CAN estimators for parameters indexing

a conditional mean model under ICA (Robins et al., 1999). Indeed, application

of Theorem 1.3 in van der Laan and Robins (2003) shows that, up to asymptotic

equivalence, all CAN estimators of β under modelM can be obtained by solving an

estimating equation based on estimating functions in the set {U}+ TSRA, where

U is an arbitrary unbiased estimating function for β under this model (as already

constructed) and where TSRA is the tangent space (Bickel et al., 1993) for the

infinite-dimensional parameters indexing the infection and discharge process (4.7),

which is assumed to satisfy SRA. A similar argument as in Theorem 1.2 (van der

Laan and Robins, 2003) shows that TSRA = TSRA,1 + TSRA,2 where

TSRA,1 =

[
D−1∑
s=1

Zs
(
Ās, D̄s, L̄s−1, V

)
−E{Zs

(
Ās, D̄s, L̄s−1, V

)
|Ās−1, D̄s−1, L̄s−1, V } : Zs arbitrary

]
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TSRA,2 =
[
Z(ĀD−1, D̄D, L̄D−1, V )

−E{Z(ĀD−1, D̄D, L̄D−1, V )|ĀD−1, D̄D−1, L̄D−1, V } : Z arbitrary
]

(4.15)

It further follows from Theorem 1.2 in van der Laan and Robins (2003) that for given

estimating function U , the choices Zs
(
Ās, D̄s, L̄s−1, V

)
= E

(
U |Ās, D̄s, L̄s−1, V

)
and Z

(
ĀD, D̄D+1, L̄D, V

)
= E

(
U |ĀD, D̄D+1, L̄D, V

)
are optimal in the sense

that they yield an e�icient estimator of β under modelM in the class of estimators

obtained by solving estimating equations in the class {U}+ TSRA for given U .

Finally, the above methods are easily adapted to handle ICA following the

lines of van der Laan and Robins (2003) and to account for estimation of the

parameters indexing the infection and discharge process (4.7). It also follows from

Theorem 2.4 in van der Laan and Robins (2003) that we obtain an asymptotically

conservative confidence interval for our causal parameters by not taking into

account estimation of the weights, provided that the unknown parameters in the

models for the weights are e�iciently estimated.

129





CHAPTER 5

Augmented and doubly-robust G-estimation under

Structural nested accelerated failure time models

This chapter is based on an article currently being prepared for submission, and

which is wri�en in collaboration with S. Vansteelandt.

Summary
Structural nested failure time models (SNFTMs) are models for the e�ect of a time-

dependent exposure on a survival outcome. They have been introduced along with

so-called G-estimation methods to provide valid adjustment for time-dependent

confounding induced by time-varying variables. Adjustment for informative cen-

soring in SNFTms is possible via inverse probability of censoring weighting (IPCW).

In the presence of considerable dropout, this can imply substantial information loss

and consequently imprecise e�ect estimates. In this article, we aim to increase the

e�iciency of IPCW G-estimators under a SNFTM by deriving an augmented esti-

mator that uses both censored and uncensored observations, and o�ers robustness

against misspecification of the model for the censoring process, provided that a
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model for a specific functional of the survival time and time-dependent covariates

is correctly specified. The empirical properties of the proposed estimators are

studied in a simulation experiment, and the estimators are used in the analysis of

surveillance data from the field of hospital epidemiology.

5.1 Introduction

Structural nested accelerated failure time models (SNFTMs) (Robins, 1992, 1998))

are models for the e�ect of a time-dependent exposure variable on a survival out-

come. G-estimation under such models can successfully adjust for time-dependent

confounding by time-varying variables satisfying the following three conditions:

being predictive for (i) outcome, (ii) exposure, and (iii) a�ected by previous expo-

sure (Robins, 1986). In particular, under the usual assumptions of correct model

specification and of no unmeasured confounding, G-estimation for SNFTMs yields

estimates for the causal e�ect of the considered time-dependent exposure variables

on the survival outcome on a relative risk scale. This is in contrast to standard

methods, for example Cox proportional hazards regression with time-dependent

predictors, which will typically yield biased estimates of the joint exposure e�ect on

the hazard of survival whether or not one adjusts for aforementioned time-varying

variables (Robins, 1992).

In the presence of censored survival times, G-estimation procedures can be

adjusted to prevent selection bias due to censoring or dropout being possibly

correlated with survival. This is possible using Inverse probability of censoring

(IPC) weights under the Ignorable censoring assumption (ICA) (Robins, 1998).

Using this procedure, the estimating equations that define the G-estimator for

each subject are weighted by the reciprocal of the cumulative probability of not

being censored throughout follow-up, and this using IPC weights that are derived

from subjects with observed and censored survival times. However, because the

G-estimation procedure relies only on subjects who have an observed survival

time, this analysis gives ine�icient estimates especially in datasets with high

rates of censoring. Moreover, when particular covariates are strongly associated
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with censoring (which leads to highly variable IPC weights), using the Inverse

probability of censoring weighted (IPCW) G-estimator will necessitate to make

a tradeo� between the bias due to incorporating subjects with extreme weights,

and the possibility of bias due to truncating these extreme weights towards less

influential values. Furthering ideas by Robins (2000), van der Laan and Robins (2003)

and Tsiatis (2006), we address these issues by proposing an Augmented Inverse

probability of censoring weighted (A-IPCW) G-estimator that is more e�icient and

also doubly-robust in the sense that it protects against misspecification of either

the model for the censoring event or a model for a functional of the survival time

and time-dependent covariates, but not necessarily both.

The above introduced methods will be used for the estimation of the a�ributable

e�ect on mortality of Healthcare-associated infection (HAI). We will use a SNFTM

to verify what would happen with the distribution of survival times of hospitalised

patients under a hypothetical intervention that would eliminate these infections.

This article is structured as follows. A�er a brief description of notation in

section 5.2, section 5.3 summarises concepts on SNFTMs, G-estimation of their

causal parameters, and correction for (non-)administrative censoring. Section

5.4 introduces the augmented estimator that o�ers doubly-robustness against

misspecification of the models for the drop-out process or the outcome. Sections

5.5 and 5.6 show a simulation experiment and an application, and are followed

by a discussion. The Appendix gives technical details on the derivation of the

augmented estimator and its robustness properties, explains the implementation

of estimation routines into statistical so�ware, and gives further details on the

simulation and application.

5.2 Notation, definitions and identifying assump-
tions

Data is assumed to have derived from a cohort with longitudinal follow-up at

discrete time points t = (0, 1, .., Tm), with Tm the fixed maximum follow-up

time. The time point t is used to index the following time-varying variables. In this
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Chapter, we let variableCt indicate whether a subject was under follow-up (Ct = 1)

or was lost from follow-up (Ct = 0) at or before time t. Let variable At indicate

if a subject was exposed (At = 1) or not (At = 0) at t. Lt is a multidimensional

vector of confounders and e�ect modifiers. Variable Yt indicates whether a subject

acquired the studied outcome (Yt = 1) or not (Yt = 0) by t, and will only be

observed at time points were Ct = 1. Variables (At, Ct, Yt) are assumed to have

absorbing state at (1, 0, 1). At t = 0, we define A0 = D0 = 0, C0 = 1, and L0 as

a vector of baseline variables. Let Vt = (Ct−1At, Ct−1Lt) be the set of observed

prognostic variables at time t. For any time-dependent variable (or combination

thereof) Zt, let Zt = (Z0, Z1, ..., Zt). We assume the following order of events at

each time point: Lt → At → (Ct, Yt).

Let the survival time T be the discrete time from study start at t = 0 until

the event of interest Yt = 1. T is only observed for subjects with Yt = 1 during

study follow-up. Survival time will be administratively censored at Tm for subjects

with YTm = 0. Let Tt,0 be the subject’s time until the event of interest that would

have occurred had he or she experienced the observed exposure history At−1 until

t− 1, but zero exposure from time t onwards (Rubin, 1974; Robins, 1998). This is a

counterfactual survival time because it is unobserved for subjects who were exposed.

We define the following assumptions under which the distribution of Tt,0 can be

identified. The Consistency assumption (Cole and Frangakis, 2009; Vanderweele,

2009) states that the counterfactual survival time Tt,0 at any t ≤ T equals the

observed survival time T for subjects who were unexposed through follow-up (ie.

with AT = 0). The Sequential randomisation assumption (SRA) (Rosenbaum and

Rubin, 1983; Robins et al., 1992) Tt,0 q At|At−1, Lt, T ≥ t states that at each time

t the counterfactual exposure-free survival time Tt,0 is independent of exposure

At, given the history At−1, Lt−1 of exposure and of measured confounders, among

subjects who are alive just prior to time t. For observational data, SRA is also

referred to as the ”assumption of no unmeasured confounding”. It states that

adjustment for the observed history (At−1, Lt) su�ices to identify the causal e�ect

of exposure At on survival. The Ignorable censoring assumption (ICA) (Robins, 1992;

Robins et al., 1994; Rubin, 1976) Tt,0 q Ct|At, Lt, Ct−1 = 1, Tt,0 ≥ t for each t >
0 states that the observed history (At, Lt) is su�icient to predict censoring at
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time t in the sense that censoring carries no residual information about survival,

conditional on the covariate history up to time t. Finally, we make the Positivity

assumption (Rosenbaum and Rubin, 1983) that P (Ct = 1|Ct−1 = 1, At, Lt, T ≥
t) > 0 for each t > 0 with probability 1.

5.3 Estimation of causal parameters under SNFTMs

5.3.1 Mapping of counterfactual survival times

A Structural accelerated failure time model (SFTM) (Cox and Oakes, 1984) postu-

lates that

T1,0
d
=

T∑
t=1

exp{γ(t, At, Lt;ψ0)} (5.1)

with γ() a known function of time, (At, Lt) and an unknown parameter vector

ψ0 of dimension p, satisfying γ() = 0 if ψ0 = 0 or AT = 0. The ” d
= ” stands for

equality in distribution. The parameter ψ0 encodes the causal e�ect of exposure

on survival time because it enables mapping the observed survival time T into

the counterfactual survival time T1,0 under the absence of exposure. For example,

taking γ(At, Lt;ψ0) = ψ0At, then ψ0 < 0, ψ0 > 0 and ψ0 = 0 will indicate a

beneficial, harmful and neutral e�ect of exposure respectively; the SFTM’s ψ0

coe�icient then parametrises the causal survival ratio (T/T0) on the log scale. The

causal null hypothesis H0 : T
d
=T1,0 can be studied by testing ψ0 = 0.

In what follows, we will use the more restrictive SNFTM (Robins, 1992), which

models, at each time t, the counterfactual survival time Tt,0 corresponding to

observed exposure history At−1 until t− 1, but zero exposure from time t onwards.

In particular, it postulates that for subjects who are alive at time t and have

covariate history (At, Lt),

Tt,0
d
= t− 1 +

T∑
u=t

exp{γ(Au, Lu;ψ0)} (5.2)

Estimating ψ0 in the the above SNFTM will enable us to answer the question ”For
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each remaining day under exposure, what would be the change in the remaining

time to outcome when removing this exposure?”.

5.3.2 The G-estimation procedure

Let Tt,0(ψ) be the counterfactual exposure-free survival time generated by SNFTM

(5.2), for a given candidate parameter ψ for the true but unknown ψ0. We as-

sume no censoring of survival time for the moment. The G-estimation procedure

introduced by Robins (1992) then proceeds by validating the chosen value ψ by

using Tt,0(ψ) as a substitute for Tt,0 and evaluating if it obeys SRA. Under this

assumption, counterfactuals are independent of actual exposure status at each

time conditionally on the exposure and covariate history. To assess this conditional

independence we will construct a model for exposure at each time t. With binary,

time-dependent and monotonous exposure, we will model the discrete-time hazard

of exposure using a pooled logistic regression model of the form

E(At|At−1 = Yt−1 = 0, Lt) = expit(αtLt) (5.3)

for t = 1, ..., Tm, with E(At|At−1 = Yt−1 = 0, Lt) the discrete-time hazard of

exposure at time t and expit(u) = expu/(1 + expu). The causal G-estimate ψ̂ of

ψ0 is then found as the value of ψ that gives an estimate of η equalling 0 in the

following pooled logistic regression model

E(At|At−1 = Y t−1 = 0t−1, Lt) = expit[α′Lt + η′gt{Tt,0(ψ), Lt}] (5.4)

for t = 1, ..., Tm, with gt() a known vector function of dimension p. G-estimation

may proceed via a grid-search, ie. defining a starting range of ψ values and

increment, and then scanning this range until acceptable values are found.

Estimates for ψ0 can alternatively be obtained by solving an estimating equation

U(ψ) =
∑

i

∑T
t=1 Uit(ψ) = 0 for ψ, with

Uit(ψ) = gt{Ti,(t,0)(ψ), Lit}{Ait − E(Ait|Ait−1 = Yit−1 = 0, Lit; α̂)}

×(1− Ait−1)(1− Yit−1) (5.5)
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which is the Score function for the coe�icient η in model (5.3). Because under

SRA, the hypothesis ψ = ψ0 corresponds to η = 0 in (5.4), we use predictions

of E(At|Ait−1 = Yit−1 = 0, Lt; α̂) under model (5.3), thus not depending on

Tt−1,0(ψ), in function (5.5). The function U(ψ) = 0 can be viewed as an unstan-

dardised score statistic for the null hypothesis η = 0 in model (5.4). Because

n−1/2U(ψ) is asymptotically normally distributed with mean zero and variance

given by Σ{Ui(ψ)}, the variance-covariance matrix of Ui(ψ) =
∑T

t=1 Uit(ψ), find-

ing the root of U(ψ) is usually done by minimising the test statistic S(ψ) =

n−1U(ψ)′Σ{Ui(ψ)}−1U(ψ) (Robins, 1992), with the point estimate ψ̂ of ψ0 being

the value of ψ that gives S(ψ) = 0.

5.3.3 Censoring of survival time

The above SNFTM and G-estimation procedure is only valid when the survival

times T of all individuals have been observed. In case of administrative censoring

however, which happens whenever T surpasses the end-of follow-up time Tm,

only X = min(T, Tm) will be observed. A�ention must be given not to use the

truncated survival time X to calculate Tt,0(ψ0) from SNFTM (5.2). Indeed, because

Tm is independent of exposure (through the definition of administrative censoring),

using the observed exposure history until Tm may result in values Tt,0(ψ0) that

depend on exposure history, thereby violating SRA with Tt,0(ψ0) in lieu of Tt,0. To

accommodate this, under the one-parameter SNFTM γ(At, Lt;ψ0) = ψ0At, the

following derivation is commonly considered when calculating the counterfactual

exposure-free administrative censoring time Tm(t,0)(ψ) for candidate ψ parameters

(Robins, 1992; Jo�e et al., 2012):

Tm(t,0)(ψ) = t− 1 + (Tm − t+ 1) exp{ψI(ψ < 0)} (5.6)

and

∆t,0(ψ) = I{Tt,0(ψ) < Tm(t,0)(ψ)} (5.7)

Xt,0(ψ) = min{Tt,0(ψ), Tm(t,0)(ψ)} (5.8)
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with ∆t,0(ψ)Xt,0(ψ) andXt,0(ψ) the re-censored counterfactual outcome indicator

and survival time respectively. At each t, Tm(t,0)(ψ) is the sum of the passed time t

and the remaining counterfactual exposure survival time (Tm−t) exp{ψI(ψ < 0)}
under the ”most harmful exposure” history, which is defined as the combination

of exposures that provides the biggest contraction of the remaining Tm − t days

until end-of-follow-up time Tm. In what follows, we replace gt{Tt,0(ψ), Lt} with

gt{Xt,0(ψ),∆t,0(ψ), Lt}.

Additionally, when subjects drop out before arriving at the end of follow-up

time Tm, their corresponding survival times T are unobserved as well, this time

due to non-administrative censoring. Incorporating data from subjects with non-

administrative censoring is particularly worrysome when the reason for drop-out

or censoring is linked to the unobserved survival time. Restricting the analysis to

cases who did not drop out, ie. had an observed survival time T ≤ Tm or who were

still under follow-up at Tm, may then induce selection bias in the estimates of ψ0.

Also, because exposure is only defined under follow-up, we append Ct−1 = 1 to

the conditioning events of the SRA and of the models for exposure (5.3) and (5.4).

Selection bias can be eliminated under ICA by solving the weighted complete-case

estimating equation

U(ψ) =
∑
i

CiTUi(ψ) =
∑
i

X∑
t=1

CiTUit(ψ)

W stab
it

= 0. (5.9)

for ψ, with Uit(ψ) now being

Uit(ψ) = gt{Xt,0(ψ),∆t,0(ψ), Lt}

×{Ait − E(Ait|Ait−1 = Yit−1 = 0, Cit−1 = 1, Lit; α̂)}

×(1− Ait−1)(1− Yit−1) (5.10)

and

W stab
it =

Xi∏
s=t

πs(V is;φ)

πs(Vi0;φ∗)
(5.11)

with

πs(V is;φ) = P (Cs = 1|Ys−1 = 0, Cs−1 = 1, V is) (5.12)
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in which P (Ct = 1|Yt−1 = 0, Ct−1 = 1, V t) is the conditional probability of

being censored at t conditional on being uncensored until then, modelled by

known functional πt(V t;φ) and unknown parameter vector φ. These probabilities

can be obtained by discrete-time logistic regression, for example πt(V t;φ) =

expit{φ′(1, Vt)}. We will call the solution to (5.9) the IPCW G-estimator. It only

takes into account the complete cases described above (having CiTm = 1), who

are inversely weighted by the cumulative conditional probability of remaining

uncensored from time t onwards, defined by the product of πs(V is;φ) in (5.12).

See Appendix 5.8.1 for a proof of the unbiasedness of estimating function (5.9).

The probabilities πs(Vi0;φ∗) are included in the denominator of W stab
it to make IPC

weights more stable, ie. less variable. They are obtained from a similar model as

(5.12).

5.3.4 Choices for gt()

Partial robustness against misspecification of the exposure model can be achieved

by defining

gt{Xt,0(ψ),∆t,0(ψ), Lt} = ∆t,0(ψ)− exp(β′Lt)

∫ Xt,0(ψ)

t

λ0,t(s)ds (5.13)

in estimating equation (5.9), with λ0,t(.) the unknown baseline hazard function and

β the unknown parameter vector obtained under the landmark Cox Regression

model

λt(s) = λ0,t(s) exp(β′Lt), s ≥ t (5.14)

for the hazard of Xt,0(ψ) amongst subjects with Xt,0(ψ) ≥ t. Because Xt,0(ψ)

and ∆t,0(ψ) can only be derived for subjects with observed or administratively

censored survival time, Cox model (5.14) is fi�ed using subject-times inversely

weighted for earlier derived cumulative censoring probabilities (5.11).

The martingale residual (5.13) (Therneau et al., 1990) contrasts the counterfac-

tual outcome indicator under SNFTM (5.2) with its conditional expectation obtained
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under model (5.14). Using such parametrisation for gt{Xt,0(ψ),∆t,0(ψ), Lt} has

the advantage of providing partial robustness against misspecifying the exposure

model, because an estimating function with mean zero at the true exposure e�ect

ψ0 is obtained when either the model for onset of exposure E(At|At−1 = Yt−1 =

0, Ct−1 = 1, Lt; α̂) or the model for the counterfactual hazard of Xt,0(ψ) condi-

tional on (Xt,0(ψ) ≥ t, At−1, Lt) is correctly specified, but not necessarily both.

Estimators that use (5.13) will be therefore called a Exposure risk doubly-robust

(EXPDR) G-estimators. Furthermore, because parametrisation (5.13) delivers a

conditional mean-zero choice for gt{Xt,0(ψ),∆t,0(ψ), Lt}, it can be shown that

it will improve e�iciency of the estimator based on estimating function (5.5), see

Vock et al. (2013, appendix B.5) for a proof of this in similar se�ings.

5.4 Augmented G-Estimation of ψ0

Estimates obtained by estimating function (5.9) are ine�icient as they ignore

observations from subjects who were non-administratively censored during the

study. Robins et al. (1994) and Scharfstein et al. (1999) introduced Augmented

Inverse probability of censoring weighted (A-IPCW) estimators specifically to

improve the e�iciency of IPCW estimators. We apply such augmentation to the

IPCW G-estimator that solves (5.9), resulting in the A-IPCW estimating function

of the form:

CTU(ψ) +
Tm∑
t=1

mt(V t; ξ)

πt(V t;φ)
{πt(V t;φ)− Ct}Ct−1 (5.15)

with CTU(ψ) defined as in (5.9) and

mt(V t; ξ) = E
{
CTmU(ψ)|V t, Ct−1 = 1

}
(5.16)

a model for the full data estimating function U(ψ), represented by known func-

tion mt() and unknown parameter vector ξ, for instance a linear model such as

mt(V t; ξ) = ξ′(1, V t).
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Equation (5.15) is derived from IPCW estimating function (5.9) with the objective

of obtaining an e�icient estimator for ψ0 within the class of estimators obtained

by augmenting the corresponding IPCW G-estimator with unbiased estimating

functions under the models for the censoring mechanism πt(V t;φ) (5.12), and

provided that the full data model (5.16) is correctly specified. For this derivation,

we relied on semiparametric theory concepts described elsewhere (van der Laan

and Robins, 2003; Tsiatis, 2006), see Appendix 5.8.2 for details and for a proof

of the unbiasedness of estimating equation (5.15). The corresponding A-IPCW

G-estimator moreover has the desirable property of being doubly-robust in the

sense that it is consistent and asymptotically normal if either one of the models

πt(V t;φ) ormt(V t; ξ) is correctly specified at each time t, but not necessarily both;

see Appendix 5.8.3 for a proof of this property.

As compared to the IPCW G-estimator, the A-IPCW G-estimator of (5.15) has

an augmentation term that also uses the partial information available from those

subjects who are non-administratively censored. At end of follow-up time Tm, the

mt(V t; ξ) term can be wri�en as

E{CTmU(ψ)|V Tm , CTm−1 = 1}

= E{CTmU(ψ)|V Tm , CTm = 1}πTm(V Tm ;φ)

+E{CTmU(ψ)|V Tm , CTm = 0}{1− πTm(V Tm ;φ)}

= E{U(ψ)|V Tm , CTm = 1}πTm(V Tm ;φ)

= E{πTm(V Tm ;φ)U(ψ)|V Tm , CTm = 1} (5.17)

which can be estimated under a model for πTm(V Tm ;φ)U(ψ) based on subjects

remaining uncensored at Tm, and subsequently used to make predictions for

subjects with CTm = 0 at time point Tm under ICA. This assumption is key to the

demonstration of doubly-robustness: πTm(V Tm ;φ) absorbs the inverse probability

weight at time Tm within the summation of U(ψ) in (5.9), thereby reconstructing

the full-data estimating function UTm(ψ) which is independent of CTm given the

past (V Tm , CTm). For ease of notation, let

E{πTm(V Tm ;φ)U(ψ)|V Tm , CTm = 1} ≡ Uw
Tm(ψ) (5.18)

141



Chapter 5. Augmented and doubly-robust G-estimation

5

E{πt(V t;φ)Uw
t+1(ψ)|V t, Ct = 1} ≡ Uw

t (ψ) (5.19)

with Uw
Tm

(ψ) and Uw
t being functions of V Tm and V t respectively. By using the

reasoning behind (5.17) at arbitrary t = Tm, ..., 1, we have that the mt(V t; ξ) term

can be wri�en as

E{CTmU(ψ)|V t, Ct−1 = 1} = E
[
E{CTmU(ψ)|V t+1, Ct, Ct−1 = 1}|V t, Ct−1 = 1

]
= E{πt(V t;φ)Uw

t+1(ψ)|V t, Ct = 1}

≡ Uw
t (ψ) (5.20)

Note that functions Uw
it (ψ), t = 1, ..., Tm, and thus the functions mt(V t; ξ), can be

calculated recursively using the conditional distribution of V t+1, given (V t, Ct−1 =

1). Just as with the construction of Uw
Tm

(ψ), at each t, the augmentation term in

(5.15) has the e�ect that all available information V t of subjects under follow-up

at that time (Ct = 1) is used, to model either E(Uw
t+1|..) if they survived t, or Uit

if not. The general e�ect of the term E{CTmU(ψ)|V t, Ct−1 = 1} is therefore that

the full data Ui =
∑

t Uit estimating equation is reconstructed for subjects with

non-administrative drop-out.

5.5 Simulation study

A simulation experiment was conducted to verify the empirical properties of the

aforementioned estimators. Samples were created using a previously proposed data

generating mechanism for a longitudinal study with dropout (Young et al., 2009).

For each subject, we generated T0 = −ln(1 − U)/λ with U ∼ U(0, 1) and λ =

exp(−4). For t = 1, .., 10, we generated (Lt, At, Ct) according toLt ∼ N [l0+l1(1−
U)+l2At−1, σ

2
t ],E(At|At−1, Lt) = expit(a0+a1t+a2Lt) andE(Ct|Ct−1, At, Lt) =

expit(c0 + c1t + c2Lt + c3At), with (l0, l1, l2, σt) = (0, 95, 5, 10), (a0, a1, a2) =

(−6, 0, .05), (c0, c1, c2) = (−1.5, 0,−.01,−.5). The observed survival time T is

next created by SNFTM (5.2) and the following algorithm at each t: (1) if T0 >∫ t
0

exp(ψ0At)dt then Yt = 0, (2) else if T0 ≤
∫ t
0

exp(ψAt)dt then Yt = 1, (3) if

Yt = 0, then create a new subject-time and repeat above procedure; if Yt = 1
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then T = t+ {T0−
∫ t
0

exp(ψAsds} exp(−ψAt), with ψ = (0,−.25, .25). A typical

scenario with null exposure e�ect will yield a sample with 65% of survival times

being unobserved due to non-administrative censoring, 65% of survival times of

complete cases being unobserved due to administrative censoring, and 44% and 20%

cumulative exposure rate in the complete cases and the total group respectively.

Simulated data are analysed under a SNFTM and using the IPCW, A-IPCW,

EXPDR-IPCW and EXPDR-A-IPCW G-estimators. Parameters of working models

were estimated using discrete-time pooled Logistic regression (D’Agostino et al.,

1990) for the models for exposure (5.3) and censoring (5.12), using Cox proportional

hazards regression for counterfactual hazard model (5.14), and using linear regres-

sion for full data model (5.16). The model for exposure was correctly specified and

used all subjects. The model for censoring was either correctly specified following

the aforementioned simulation scenario, or misspecified by only including Lt. The

model for the counterfactual hazard only included Lt, and only used subjects with

observed or administratively censored survival time, with each subject day IPC

weighted according to the weights as in (5.11). Full data model (5.16) was fi�ed

on each t and included At and Lt and their interactions as main e�ects. 95%

confidence bounds for ψ̂ are obtained via inversion of the score statistic, or the

values ψ around ψ̂ that give S(ψ) = χ2
0.95(p), the Chi-square statistic correspond-

ing with cumulative probability of 0.95 and p degrees of freedom. We accounted

for estimation of nuisance parameters of working models (if used) (5.3), (5.12)

and (5.14) but not of augmentation model (5.16). This was done by calculating

[Σ{Ui(ψ)}]−1 in the Score statistic based on estimating function (5.5) in which

gt{T0(ψ)} is replaced by a column vector of all scores of aforementioned models as

well as gt{T0(ψ)}, and then by calculating the score statistic for those columns of

(5.5) that correspond with parameter η in model (5.4), see Robins (1992) for details.

For A-IPCW G-estimators, this will give a conservative confidence interval under a

correctly specified model for censoring and a misspecified full data model (Tsiatis,

2006). Each simulation experiment involves 500 repetitions having 5000 subjects

each. Estimation algorithms were implemented in STATA and MATA, details of

which are given in Appendix 5.8.4.

Table 5.1 summarises the results. All estimators with correctly specified working
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models (first four lines of the table) yield median bias well within acceptable range

of empirical standard deviation. The IPCW estimator has a higher empirical

standard deviation than the A-IPCW estimator, with a reduction of up to 40%

when applying augmented estimation. Interestingly, augmented estimation leads

to a reduction in empirical variance for the IPCW estimator, but not so much for

the EXPDR estimator. As seen in lines 5 and 6 of the table’s results, the A-IPCW

estimator based on a misspecified working model for censoring yields empirical

e�ect sizes that remain unbiased, unlike the IPCW estimator. This demonstrates the

augmented estimator’s doubly-robustness property. Such misspecification did not

lead to an inflation of variance, with the empirical standard deviation remaining

largely unchanged as compared to the augmented estimator with correct IPC

weights.

In the last 4 lines of the table, results are shown from scenarios where IPC

weights are set to 1, thereby using the augmented estimators’ property of being

robust against misspecification of these weights. Under this scenario, unbiased-

ness of augmented estimators was only achieved under very specific forms of

the regression model for the full data, see Appendix 5.8.7 for details including

diagnostics that we used to evaluate model fit. Interestingly, the A-IPCW estimator

with weights set to 1 further improves in terms of empirical variance as compared

to the estimator with correctly specified weights. Also, the non-augmented EXPDR

estimator already partly adjusts for the bias due to se�ing censoring weights to 1.

Estimated confidence intervals of estimators with correctly specified working

models for censoring roughly achieve nominal coverage. Under IPC weights set

to 1, the A-IPCW estimator’s variance is estimated conservatively, this is due to

not taking into account estimation of full data model parameters for estimation of

the asymptotic variance. The EXPDR-A-IPCW estimator under IPC weights set

to 1 gives optimistically estimated variance, this is due to either aforementioned

reason or its small empirical bias.
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5.6 Application

Proposed estimators are used in the analysis of the a�ributable e�ect on mortality

of Healthcare-associated infection (HAI) (see Appendix 5.8.5 for background). We

use data from the Belgian National surveillance of infections acquired in intensive

care units (NSIH-ICU), a study that started in 1997 and is still ongoing. For this

article, data collected during period 2007-2012 is analysed, consisting of observa-

tions on 14 898 patients admi�ed to Intensive care unit (ICU). Using a maximum

follow-up time in ICU of Tm = 30 days, the data contains 107 570 person-days,

and is arranged so that there is one observation per person per day that he or she

remained in ICU. Keeping with the notation of this article, t will denote the day

since admission within ICU, At is exposure to Ventilator-associated pneumonia

(VAP) at or before day t, Lt is a rich set of variables collected at ICU admission and

at each t (listed in Appendix 5.8.5), Ct will denote ”remaining in the ICU through

day t”, and T indicates the survival time.

Working models for exposure, censoring and counterfactual hazard of out-

come were fi�ed as explained in the previous section. We only carried out a

model building procedure (using a stepwise selection algorithm) for the models

for exposure and censoring, based on available prognostic variables for mortality

and HAI. The baseline daily probability function in these models was approxi-

mated using a 2nd order polynomial. Full data model (5.16) at each t included

as main e�ects aggregated components of Vt, details of which are given in Ap-

pendix 5.8.7. For each estimator, two parametrisations of SNFTM (5.2) for the

e�ect of VAP on mortality are constructed: γ(At, Lt;ψ) = ψAt where exposure

is strictly monotonous and one parameter for the overall e�ect at all times is

estimated, and γ(At, Lt;ψ) = ψaI{cum(At) > d} + ψbI{cum(At) ≤ d}, (with

cum(At) =
∑t

s=1As) which encodes a separate exposure e�ect for the 1st d = 4 in-

fection days (parameterψb) versus later on (parameterψa). With a two-dimensional

causal parameter, gt(x) in estimating equation (5.5) becomes a two-dimensional

vector function, which we chose to be gt(x) = (x, x2). Calculation of the counter-
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factual administrative censoring time Tm(ψ) following (5.6) then goes as follows:

Tm(t,0)(ψ) = t− 1 + (Tm − t+ 1) exp{ψaI(ψa < 0)}I{cum(At) > d}

+(Tm − t+ 1) exp{ψbI(ψb < 0)}I{cum(At) ≤ d} (5.21)

Of 605 (4.1%) patients with one or more episodes of VAP, 151 (25%) died, com-

pared to 1 273 deaths (8.9%) that occurred in 14 293 (95.9%) VAP-free patients.

The group of complete cases, meaning those patients with either observed death

up to day 30 in the ICU or still alive and remaining in the ICU at that time, con-

tained 1 844 patients (12.4% of all patients) and corresponding 27 319 patient days

within the ICU. For these patients, 1 424 deaths and 306 episodes of VAP were

observed. Estimated daily conditional probabilities of remaining under follow-up

had a range of [0.22, 0.99] across all time points. Once stabilised by probabilities

πt(A0, L0;φ
∗), this range became [0.27, 1.7]. The cumulative stabilised conditional

censoring probabilities up to day 30 as defined by the inverse of (5.12) still suf-

fered from a minority of patient days with extremely low cumulative probabilities,

having a total min-max range of [1.41 × 10−6, 1786]. Due to this, we were not

able to reach converging optimisations for any of the studied estimators, and were

forced towards a sensitivity analysis in which IPC weights were truncated to either

[0.2 − 5], [0.1 − 10] and [1p − 99p] ranges (with the la�er the 1 to 99 percentile

range of weights, corresponding to value range [0.047−21.4]), as well as a scenario

with weights set to 1. IPC weight truncation followed the procedure described in

Appendix 5.8.6.

Results are summarised in Table 5.2, see also Appendix 5.8.8 for preliminary

gridsearches of one- and two-parameter G-estimators. Estimators with weights

not set to 1 and/or augmented estimators yield lightly protective or neutral one-

parameter estimates, for example the EXPDRA-IPCW estimator with weights set

to 1 that gives a log survival time ratio (lSR) of VAP-exposed versus -unexposed

patient days of −0.14 (95% CI −0.56, 0.16). When separated in e�ects until or

a�er day 4 a�er onset of infection, most estimators yield e�ect estimates early

a�er infection that are more protective than those late a�er onset, for example

the aforementioned estimator giving a lSR of −2 (95% CI −12,−0.15) early versus
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0.11 (95% CI −0.32, 0.63) later on. This is except for the A-IPCW estimator with

IPC weights set to 1, the results of which show that early infection e�ects are more

harmful than late a�er infection. However, results for this estimator and weight

se�ing should be taken with caution, because convergence was only obtained

by se�ing a lag e�ect on the variables encoding exposure in the full data model,

with lag size also influencing the one- and two-parameter estimates and their

precision (the table gives results using a lag of 4 days). In terms of e�iciency, we

see that full data augmentation brought by the A-IPCW estimator only improves

in the scenario where IPC weights are set to 1. Our results demonstrate this across

estimators, for example for the A-IPCW estimator with weights set to 1 having a

standard error of 0.08 as compared to the IPCW estimator with a standard error of

0.45, as well as within an estimator across truncation ranges, for example EXPDRA-

IPCW estimator with one-parameter standard error 0.1 under IPC weights set to 1

compared to 0.18 under weights truncated towards a [1p-99p] range. Of course, by

se�ing weights to 1, the doubly-robustness property of the augmented estimator

will be lost.

5.7 Discussion

The augmented G-estimators for the causal parameters of a SNFTM will be useful

when parameter estimates from a standard G-estimator are too variable due to

insu�icient observations with complete survival time (for example due to censor-

ing of the survival time). Furthermore, because standard G-estimators only use

data from subjects with observed survival time or that survived long enough to

be administratively censored, it can yield biased results in data with high rates

of non-administrative censoring. In such circumstances, the robustness against

misspecification of the model for IPC weights is certainly useful, and can provide

estimates di�erent from those of the standard G-estimator. Added advantage is

that the doubly-robustness o�ers protection for a ’deliberate’ misspecification of

the model for censoring weights such as truncation or se�ing these to 1.

Causal models such as the SNFTM have the property of enabling valid adjust-
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ment for time-dependent confounding in contrast to stratification-based methods

such as Logistic or Cox proportional hazards regression. Under the usual assump-

tions, both SNFTMs (used here) and Marginal structural proportional hazards

models (MSPHMs) (Robins, 2000; Hernàn et al., 2001) yield relative risk estimates

with causal interpretation. MSPHMs, while also applying IPC weighted estimation

to correct for dependent censoring, adjust for (time dependent) confounding of

the exposure-outcome association by separately calculated Inverse probability of

exposure (IPE) weights. The use of the SNFTM has the following advantages over

the MSPHM: (1) The MSPHM infers on exposure histories such as ”contrary to

what is observed, assign exposure regime a to all subjects” which may be unrealistic

when studying an exposure such as HAI. In contrast, the SNFTM restricts a�ention

to the subgroup of exposed subjects to calculate the exposure-free survival time.

By doing so, the SNFTM’s findings translate directly in an easy to use message

such as ”by preventing a patient from ge�ing infected, his or her survival time

will be increased or reduced by a factor X”. (2) By directly exploiting SRA in the

G-estimation procedure, the SNFTM avoids the need for IPE weights. These can

introduce bias in the MSPHM’s results when the models for exposure are wrongly

specified or when the fi�ed models yield extreme weights for particular subjects.

In spite of this, a disadvantage of SNFTMs relative to MSPHMs is that no standard

so�ware exists for routine use of the G-estimation procedure. When survival times

are subject to administrative censoring, back-calculation of counterfactuals in the

presence of re-censoring can also lead to non-smooth estimating functions (Jo�e

et al., 2012; Vock et al., 2013). On top of this, implementation of the augmenta-

tion term calls for the use of an estimating equation approach and corresponding

optimisation routines, which might be even more tedious to implement.

The protective to neutral relative risks that we found for the e�ect of infection

on mortality are unexpected from a clinical point of view. This can be explained by

insu�icient adjustment for prognostic factors of the mortality-censoring relation:

assuming that exposure is protective for censoring and harmful for mortality, and

assuming an unmeasured common prognostic factor U that a�ects censoring and

outcome in the same way as exposure (thereby violating ICA), then restricting the

analysis to subjects under follow-up will create a negative non-causal association
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between C and Y , and as a consequence a protective non-causal e�ect of A

on Y . Therefore, collecting extra prognostic factors for the mortality-censoring

relationship might be a valid future strategy. An alternative is to try to avoid IPC

weighting, and choose a competing risk approach, for example as done by Bekaert

et al. (2009) in a similar se�ing as this study but working under a MSPHM.

5.8 Appendix

5.8.1 Unbiasedness of the Complete-case IPCW estimator

We first demonstrate unbiasedness of (5.9) when using unstabilised weights, de-

fined as:

W unstab
it =

Xi∏
s=t

πs(V is;φ) (5.22)

by which we have:

E

{
CiT∏Xi

s=t πs(V is;φ)
Uit(ψ)

}

= E

{ Xi∏
s=t

I(Cis = 1)

πs(V is;φ)
Uit(ψ)

}

= E

[
E

{ Xi∏
s=t

I(Cis = 1)

πs(V is;φ)
Uit(ψ)

∣∣∣∣V iXi
, CiX−1 = 1

}]

= E

[
E(CiX = 1|V iXi

, CiX−1 = 1)

πXi
(V is;φ)

E

(∏Xi−1
s=t I(Cis = 1)∏Xi−1
s=t πs(V is;φ)

Uit(ψ)

∣∣∣∣V iXi
, CiX−1 = 1

)]

= E

{Xi−1∏
s=t

I(Cis = 1)

πs(V is;φ)
Uit(ψ)

}
= ..

= E
{
I(Cit−1 = 1)Uit(ψ)

}
= 0 (5.23)

151



Chapter 5. Augmented and doubly-robust G-estimation

5

with ICA being used in the third equality, and the last equality due toUit(ψ) defined

in (5.10) having mean zero given (V t, Ct−1 = 1), and showing unbiasedness of this

estimating function when applying unstabilised weights W unstab
it .

When using stabilised weights W stab
it instead, the above derivation becomes

E

{
CiTm

Xi∏
s=t

πs(Vi0)

πs(V is)
Uit(ψ)

}
= E

{
I(Cit−1 = 1)

Xi∏
s=t

πs(Vi0)Uit(ψ)

}
= 0 (5.24)

again because Uit(ψ) has mean zero given (V t, Ct−1 = 1), of which V0 is part.

Using derivation (5.24), it can be shown that stabilisation probabilities πs(V0) can

be extended to πt(V t), therefore including all available information up to time t.

However, such approach might be cumbersome, because it necessitates building of

separate models at each time point.

5.8.2 Derivation of the AIPCW estimator

We follow Tsiatis (2006) (Section 10.3, Theorem 10.4) for this derivation. A minimal

requirement for having an e�icient estimator is that (locally, under some model) its

influence function is orthogonal to the tangent space for the parameters indexing

the censoring model πt(V t;φ). This tangent space consists of all functions of the

form

ΛC =

[∑
t

dt(V t)
{
Ct − πt(V t;φ)

}
Ct−1

]
(5.25)

We thus seek to find functions d0t satisfying

0 = E
([
CTU(ψ) +

∑
t

d0t(V t){Ct − πt(V t;φ)}Ct−1
]

×
∑
t

dt(V t){Ct − πt(V t;φ)}Ct−1
)
for all dt (5.26)
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the right hand side part of which can be wri�en as

E
[
CTU(ψ)

∑
t

dt(V t){Ct − πt(V t;φ)}Ct−1
]

(5.27)

+ E
[∑

t

d0t(V t){Ct − πt(V t;φ)}Ct−1
∑
s

ds(V s){Cs − πt(V t;φ)}Cs−1
]

(5.28)

By looking at arbitrary ds(V s){Cs−πs(V s;φ)}Cs−1 within
∑

t dt(V t){Ct−πt(V t;φ)}Ct−1
and conditioning on (V s, Cs−1), (5.28) gives:

E
(
Cs−1E

[∑
t

d0t(V t){Ct − πt(V t;φ)}Ct−1ds(V s)(Cs − πs(V s;φ))
∣∣V s, Cs−1

])
(5.29)

First, note that

E

(
Cs−1E

[ s−1∑
t=1

d0t(V t){Ct − πt(V t;φ)}Ct−1ds(V s){Cs − πs(V s;φ)}
∣∣∣V s, Cs−1

])

= E
(
Cs−1

s−1∑
t=1

d0t(V t){1− πt(V t;φ)}Ct−1ds(V s)E
[
{Cs − πs(V s;φ)}

∣∣V s, Cs−1
])
(5.30)

which equals 0, due to E[{Cs − πs(V s;φ)}|V s, Cs−1 = 1] = 0.

Further,

E

(
Ct−1E

[ T∑
t=s+1

d0t(V t){Ct − πt(V t;φ)}ds(V s){Cs − πs(V s;φ)}Cs−1
∣∣∣V t, Ct−1

])

= E
(
Ct−1

T∑
t=s+1

ds(V s){1− πs(V s;φ)}Cs−1d0t(V t)E
[
{Ct − πt(V t;φ)}

∣∣V t, Ct−1
])
(5.31)

which equals 0, due to E[{Ct − πt(V t;φ)}|V t, Ct−1 = 1] = 0.
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Finally, the term in (5.29) corresponding to t = s is

E
(
Cs−1E

[
d0s(V s)ds(V s){Cs − πs(V s;φ)}2

∣∣V s, Cs−1
])

= E
(
Cs−1d0s(V s)ds(V s)E[{Cs − πs(V s;φ)}2|V s, Cs−1]

)
= E

[
d0s(V s)ds(V s)Cs−1var{Cs|V s, Cs−1}

]
= E

[
d0s(V s)ds(V s)Cs−1πs(V s;φ){1− πs(V s;φ)}

]
(5.32)

Similarly, (5.27) gives

E
(
Ct−1E

[
CTU(ψ)

∑
t

dt(V t){Ct − πt(V t;φ)}
∣∣V t, Ct−1

])
= E

[
Ct−1

∑
t

dt(V t){1− πt(V t;φ)}E{CTU(ψ)|V t, Ct−1}
]

(5.33)

Combined, we obtain that (5.26) equals

E
[∑

t

dt(V t){1− πt(V t;φ)}Ct−1E{CTU(ψ)|V t, Ct−1 = 1}

+
∑
t

d0t(V t)dt(V t)Ct−1πt(V t;φ){1− πt(V t;φ)}
]

= E
(∑

t

dt(V t){1− πt(V t;φ)}Ct−1

×
[
E{CTU(ψ)|V t, Ct−1 = 1}+ d0t(V t)πt(V t;φ)

])
(5.34)

This equals 0 whenever

E{CTU(ψ)|V t, Ct−1 = 1} = −d0t(V t)πt(V t;φ) (5.35)

or when

d0t(V t) = −E{CTU(ψ)|V t, Ct−1 = 1}
πt(V t;φ)

(5.36)
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yielding estimating function:

CTU(ψ) +
∑
t

E{CTU(ψ)|V t, Ct−1 = 1}
πt(V t;φ)

{πt(V t;φ)− Ct}Ct−1 (5.37)

5.8.3 Proof of doubly-robustness of the AIPCW estimator

Under the true censoring model πt(V t;φ), the estimating function for ψ is unbiased

due to E{CTU(ψ)} = 0 (see Appendix 5.8.1) and

E
{
πt(V t;φ)− Ct

∣∣V t, Ct−1 = 1
}

= 0, (5.38)

which also holds when πt(V t;φ) is stabilised by πt(V 0) as in (5.11). We now show

that they are also unbiased if the censoring model is misspecified, provided that

the model for the conditional distribution of Vt+1 given (V t, Ct−1 = 1) holds at

each time t. First, using

Uw∗
iTm(ψ) = E

{
π∗Tm(V iTm ;φ∗)Ui(ψ)

∣∣V iTm , CiTm = 1
}

(5.39)

Uw∗
it (ψ) = E

{
π∗t (V it;φ

∗)Uw∗
i,t+1(ψ)

∣∣V it, Cit = 1
}

(5.40)

with π∗t (V it;φ
∗) the misspecified censoring probabilities, and Uw∗

i,Tm
(ψ) and Uw∗

i,t (ψ)

the models using both the misspecified probabilities as well as the estimating

function U(ψ) that is weighted for the misspecified π∗t (V it;φ
∗).

The A-IPCW estimating function can be rewri�en as

E

[
CTmU(ψ) +

Tm−1∑
t=1

Uw∗
t (ψ)Ct−1

{
1− Ct

π∗t (V t;φ∗)

}
+CTm−1U

w∗
Tm(ψ)− CTm−1CTm

Uw∗
Tm

(ψ)

π∗Tm(V Tm ;φ∗)

]
(5.41)

= E

(
E

[
CTmU(ψ) + CTm−1U

w∗
Tm(ψ)− CTm−1CTm

Uw∗
Tm

(ψ)

π∗Tm(V Tm ;φ∗)

+
Tm−1∑
t=1

Uw∗
t (ψ)Ct−1

{
1− Ct

π∗t (V t;φ∗)

}∣∣∣∣V Tm , CTm−1

])
(5.42)
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= E

(
E

[
CTmU(ψ)− CTm

E{π∗Tm(V Tm ;φ∗)U(ψ)|V Tm , CTm = 1}
π∗Tm(V Tm ;φ∗)

∣∣∣∣V Tm , CTm−1

]

+CTm−1U
w∗
Tm(ψ) +

Tm−1∑
t=1

Uw∗
t (ψ)Ct−1

{
1− Ct

π∗t (V t;φ∗)

})
(5.43)

= E

(
E

[
CTmU(ψ)− E{CTmU(ψ)|V Tm , CTm = 1}

∣∣∣∣V Tm , CTm−1

]

+CTm−1U
w∗
Tm(ψ) +

Tm−1∑
t=1

Uw∗
t (ψ)Ct−1

{
1− Ct

π∗t (V t;φ∗)

})
(5.44)

= E

[
CTm−1U

w∗
Tm(ψ) +

Tm−1∑
t=1

Uw∗
t (ψ)Ct−1

{
1− Ct

π∗t (V t;φ∗)

}]
(5.45)

= E

[
CTm−1U

w∗
Tm(ψ) + CTm−2U

w∗
Tm−1(ψ)− CTm−2CTm−1

Uw∗
Tm−1(ψ)

π∗Tm−1(V Tm−1;φ
∗)

+
Tm−2∑
t=1

Uw∗
t (ψ)Ct−1

{
1− Ct

π∗t (V t;φ∗)

}]
(5.46)

= E

[
E

{
CTm−1U

w∗
Tm(ψ)− CTm−1

Uw∗
Tm−1(ψ)

π∗Tm−1(V Tm−1;φ
∗)

∣∣∣∣V Tm−1, CTm−2

}

+CTm−2U
w∗
Tm−1(ψ) +

Tm−2∑
t=1

Uw∗
t (ψ)Ct−1

{
1− Ct

π∗t (V t;φ∗)

}]
(5.47)

= E

(
E

[
CTm−1U

w∗
Tm(ψ)− E{CTm−1Uw∗

Tm(ψ)|V Tm−1, CTm−1}
∣∣∣∣V Tm−1, CTm−2

]

+CTm−2U
w∗
Tm−1(ψ) +

Tm−2∑
t=1

Uw∗
t (ψ)Ct−1

{
1− Ct

π∗t (V t;φ∗)

})
(5.48)

= E

[
CTm−2U

w∗
Tm−1(ψ) +

Tm−2∑
t=1

Uw∗
t (ψ)Ct−1

{
1− Ct

π∗t (V t;φ∗)

}]
(5.49)

= ..

= E
{
C0U

w∗
1 (ψ)

}
(5.50)

At time Tm, we use the fact that, under a correct model for the conditional distri-

bution ofV[Tm+1] given (V Tm , CTm−1 = 1), the termsCTmU(ψ) andCTmU
w∗
T (ψ)/π∗Tm(V Tm ;φ∗)

are equal and can be dropped (see line 5.45). At times t = 0, ..., Tm − 1, under a
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correct model for the conditional distribution of V[t+1] given (V t, Ct−1 = 1), the

terms CtUw∗
t+1(ψ) and CtU

w∗
t (ψ)/π∗t (V t;φ

∗) are equal and can be dropped (see

line 5.49 for t = Tm − 1). From times t = Tm − 1 until 1, we use ICA by le�ing

Uw∗
t+1(ψ) within CtUw∗

t+1(ψ) be extrapolated to all contributions with Ct = 1, as in

the first line of (5.48) for t = Tm − 1. The remaining term E{C0U
w∗
1 (ψ)} in (5.50)

is the average complete-case estimating function Ui(ψ) for which the misspecified

censoring weights are absorbed recursively at each t through multiplication with

π∗t (V t;φ
∗). This estimating equation uses all subjects (due to C0 = 1), which

makes it formally a full data estimating function that has mean zero.

5.8.4 Algorithm to construct the AIPCW estimator and im-
plementation of estimators in STATA/MATA

In practice, the augmented term of the estimator that solves (5.15) will be con-

structed as follows.

1. Fit model (5.12) for the censoring mechanism and calculate the censoring

probabilities πt(V t;φ). Note that these are also calculated to determine the

cumulative probabilities of remaining uncensored in the IPCW G-estimator

that solves (5.9).

2. Fit models for Uw
t defined by (5.18) and (5.19), recursively for times t =

Tm, .., 1, and starting with the U(ψ) contributions derived for survival times

T ≥ Tm. This can be done by linear regression models as shown in the main

paper. Under ICA at each time t, for both subgroups (Ct = 1, Ct−1 = 1) and

(Ct = 0, Ct−1 = 1), this model is then used to calculate predicted values

of Uw
t (ψ), which are subsequently used in a model for the prediction of

Uw
t−1(ψ).

3. Finally, solve the A-IPCW estimator for ψ using estimating equation (5.15).

To allow automatic and direct optimisation (as opposed to a manual and iterative

grid-search) of the G-estimate for ψ, we implemented above steps (2) and (3) into

STATA version 10’s matrix programming language MATA (StataCorp LP, College
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Station, TX, USA), resulting in the algorithm given below. Using known censoring

weights πt and exposure residuals A− P (At = 1|At−1, .) (estimated using regular

STATA), the algorithm is called upon in MATA for:

1. Construction of re-censored counterfactual survival times Xt,0(ψ) and sur-

vival indicator δ0(ψ) [using function gestXdtgp()],

2. Construction of IPCW (5.9), EXPDR-IPCW ( with gt{Xt,0(ψ)} based on 5.13),

A-IPCW and EXPDR-A-IPCW (5.15) estimating equations (using functions

gestUtgp1(),gestXtgpccdr1(),gestdda12d() andgestdda12-
ccdr1() respectively),

3. Nelder-Mead optimisation of the Score test statistic (see main paper section

5.3.2) towards a minimum, and

4. Estimation of 95% confidence limits and standard errors by gridsearch of

Score test statistic.

For EXPDR estimators, hazard functions are estimated by going back to STATA

within the MATA algorithm se�ing a particular ψ.

MATA functions rely on the following matrices (with n the number of subjects,

N the number of subjectdays): Y (n× Tm, outcome Y ), A (n× Tm, exposure A),

R [n × Tm, exposure residual from estimating equation (5.5)], CCUM [n × Tm,

IPC weights (5.11)], I (n× 1, complete-case indicator CTm), CT (n× Tm, CTmCt),

Xcensp (N × 1, scores for estimating the parameters of the censoring model),

Xexpp (N × 1, scores for estimating the parameters of the exposure model), CP
(n× Tm, 1− Ct with Ct = 1 recoded to missing, for use by augmentation model),

CPP (n× Tm, 1− Ct), L (nTm × ql, time-dependent confounders), L0 (nTm × ql0 ,

time-independent confounders), C (n × Tm, stabilised probability of remaining

under follow-up at day t).

∗ IPCW E s t i m a t i n g Equat ion and S c o r e S t a t i s t i c

c a p t u r e mata : mata drop g e s t X d t g p ( )

mata

r e a l m a t r i x g e s t X d t g p ( r e a l s ca la r q )
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{

i f (q<−13.3) q=−13.3

q11=q

e x t e r n a l Y , A , CT

r = . 0 0 0 1
c o l = c o l s ( Y )
row=rows ( Y )

m= J ( co l , co l , 1 )
for ( i = 1 ; i<=c o l ; i ++) {

for ( j = 1 ; j<=c o l ; j ++) {
i f ( i>j ) m[ i , j ]=0

}
}

n= J ( co l , co l , 1 )
for ( i = 1 ; i<=c o l ; i ++) {

for ( j = 1 ; j<=c o l ; j ++) {
i f ( i>=j ) n [ i , j ]=0

}
}

Aq=q11 ∗A
Ap=exp ( Aq )

At=Ap

Yp = Y : ∗ At
Ytgp = round ( e d i t v a l u e ( Yp , . , 0 ) ∗m’ , r )

q31=q11
i f ( q31>=0) q31 =0
Ctgp= J ( 1 , co l , 0 )
f o r ( j = 1 ; j<=c o l ; j ++) {

C t g p s i 1 = ( co l−j + 1 ) ∗ exp ( q31 )
i f ( Ctgps i1>=co l−j + 1 ) C t g p s i 1 = co l−j +1

Ctgp [ . , j ]= round ( Ctgps i1 , r )

}

P = Ytgp :<Ctgp
P0 = 1:−P
Xtgp = P0 : ∗ Ctgp + P : ∗ Ytgp

dtgp = P : ∗ CT

r e t u r n ( Xtgp , dtgp )

}

end

c a p t u r e mata : mata drop g e s t U t g p 1 a ( )

mata

159



Chapter 5. Augmented and doubly-robust G-estimation

5

r e a l m a t r i x g e s t U t g p 1 a ( r e a l s c a l a r q )
{

e x t e r n a l R

D = 1
X = g e s t X d t g p ( q ) [ , ( 1 : : 3 0 ) ]
U = D : ∗ X

Uts = U : ∗ R

r e t u r n ( Uts )

}

end

c a p t u r e mata : mata drop g e s t U t g p 1 ( )

mata

r e a l m a t r i x g e s t U t g p 1 ( r e a l s c a l a r q )
{

e x t e r n a l CCUM

D = 1
Xa = g e s t U t g p 1 a ( q )
U = D : ∗ Xa

Uts = CCUM: ∗U

r e t u r n ( Uts )

}

end

c a p t u r e mata : mata drop g e s t s s p ( )

mata

r e a l m a t r i x g e s t s s p ( r e a l s c a l a r q )
{

e x t e r n a l I

Uts1 = g e s t U t g p 1 ( q )
Uts1 = e d i t v a l u e ( Uts1 , . , 0 )
Uts1 =rowsum ( Uts1 )
Uts1 = e d i t v a l u e ( I : ∗ Uts1 , . , 0 )

r e t u r n ( Uts1 )

}

end

c a p t u r e mata : mata drop g e s t s p 5 ( )

mata
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r e a l s c a l a r g e s t s p 5 ( r e a l s c a l a r q )
{

e x t e r n a l Xcensp , Xexpp , Cx

i f ( Cx ==1) Up=Xcensp , Xexpp , g e s t s s p ( q )
i f ( Cx ==0) Up=Xexpp , g e s t s s p ( q )
X c o l s = c o l s ( Up )

n=rows ( Up )

Ups= colsum ( Up [ , X c o l s ] )

sigma =n ∗ v a r i a n c e ( Up )
i s i g m a = invsym ( sigma )

t =Ups ∗ i s i g m a [ Xco l s , X c o l s ] ∗ Ups ’

return ( t )

}

end

∗EXPDR−IPCW E s t i m a t i n g Equat ion and S c o r e S t a t i s t i c

c a p t u r e mata : mata drop g e s t X t g p c c d r 1 ( )

mata

r e a l m a t r i x g e s t X t g p c c d r 1 ( r e a l s ca la r q )
{

e x t e r n a l Y

s t a t a ( ” qu i : cap drop Xt ” )
s t a t a ( ” qu i : cap drop dt ” )

Xdt= g e s t X d t g p (q )
nvs =vec ( Xdt [ , ( 1 : : 3 0 ) ] ’ ) , vec ( Xdt [ , ( 3 1 : : 6 0 ) ] ’ )
Y t t =vec ( Y ’ )
nvss = s e l e c t ( nvs , Y t t [ , 1 ] : ˜ = 0 )

i d x = s t a d d v a r ( ( ” doub le ” , ” i n t ” ) , ( ” Xt ” , ” dt ” ) )
s t s t o r e ( . , idx , nvss )

s t a t a ( ” qu i : cap drop phcb ” )
s t a t a ( ” qu i : cap drop pxb ” )
s t a t a ( ” qu i : cap drop phc ” )
s t a t a ( ” qu i : cap drop c r e s ∗ ” )
s t a t a ( ” qu i : cap drop U t i ” )
s t a t a ( ” qu i : compress ” )
s t a t a ( ” qu i : s t s e t Xt i f cT==1&am==0 [pw= cw0cumit2 ] , f a i l u r e ( dt ==1) ” )
s t a t a ( ” qu i : s t c o x l 1 ∗ l 0 ∗ , b a s e c h a z a r d ( phcb ) e s r ( c r e s ∗ ) nohr ” )
s t a t a ( ” qu i : p r e d i c t pxb , xb ” )
s t a t a ( ” qu i : gen phc=phcb ∗ exp ( pxb ) ” )
s t a t a ( ” qu i : gen U t i = ( dt−phc ) ∗ cw0cumit2 ∗ r e s e ∗ cT ∗(1−am) ” )

s t a t a ( ” p r e s e r v e ” )
s t a t a ( ” s o r t c a s e day ” )
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s t a t a ( ” keep c a s e U t i c r e s ∗ ” )
s t a t a ( ” c o l l a p s e ( sum ) U t i c r e s ∗ , by ( c a s e ) ” )
s t a t a ( ” drop c a s e ” )
s t a t a ( ” o r d e r c r e s ∗ U t i ” )
s t a t a ( ” mata : Xcox= s t d a t a ( . , . ) ” )
s t a t a ( ” r e s t o r e ” )

s t d r o p v a r ( ( ” Xt ” , ” dt ” , ” phcb ” , ” pxb ” , ” phc ” ) )

e x t e r n a l Xcox

r e t u r n ( Xcox )

}

end

c a p t u r e mata : mata drop g e s t s p 5 c c d r 1 ( )

mata

r e a l s c a l a r g e s t s p 5 c c d r 1 ( r e a l s c a l a r q )
{

e x t e r n a l Xcensp , Xexpp

Up=Xcensp , Xexpp , g e s t X t g p c c d r 1 ( q )
X c o l = c o l s ( Up )

n=rows ( Up )
Ups= colsum ( Up )

sigma =n ∗ v a r i a n c e ( Up )
i s i g m a = invsym ( sigma )

t =Ups [ , X c o l ] ∗ i s i g m a [ Xcol , X c o l ] ∗ Ups [ , X c o l ] ’

return ( t )

}

end

∗AIPCW E s t i m a t i n g Equat ion and S c o r e S t a t i s t i c

mata : l =4

c a p t u r e mata : mata drop ges tdda12d ( )

mata

r e a l m a t r i x ges tdda12d ( r e a l r o w v e c t o r q )
{

e x t e r n a l CPP , CP , L , L0 , X , C , Y , Y2 , A , I , l

L f =L

c o l = c o l s ( Y )
row=rows ( Y )
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Cdr=CPP : / C
Cdr=1:−Cdr

R1=CPP : ˜ = .
R1= e d i t v a l u e ( R1 , 0 , . )

R2=CP
R2= e d i t v a l u e ( R2 , 0 , . )

Uts = e d i t v a l u e ( g e s t U t g p 1 (q ) , . , 0 )
Ut s r = Uts
for ( i = 1 ; i<=c o l ; i = i + 1 ) {

Uts r [ . , i ]= rowsum ( Uts [ . , ( 1 : : i ) ] )
}

Ars =A
for ( i = 1 ; i<=c o l ; i = i + 1 ) {

Ars [ . , i ]= rowsum ( A [ . , ( 1 : : i ) ] )
}

EUt= J ( row , co l , . )
EUt [ . , c o l ]= Uts r [ . , c o l ]

for ( i = c o l ; i >=3; i = i −1) {

U t i =EUt [ . , i ] : ∗ R2 [ . , i ] : ∗C [ . , i ]
U t i i = s e l e c t ( Ut i , U t i [ , 1 ] : ˜ = . )

At=A [ . , i ]
A r s t = Ars [ . , i ]
L 0 i = s e l e c t ( L0 [ , ( 1 : : 2 ) ] , X [ . , 2 ] : = = i )
AL0i =At : ∗ L 0 i
L f i = s e l e c t ( Lf , X [ . , 2 ] : = = i )
Yt =Y2 [ . , i ]
i f ( i>l ) {

A l t =A [ . , i−l ]
A r s l t = Ars [ . , i−l ]

}

L 0 i a = L 0 i : ∗ R2 [ . , i ]
Y i = Yt : ∗ R2 [ . , i ]
A l i = A l t : ∗ R2 [ . , i ]
A r s l i = A r s l t : ∗ R2 [ . , i ]
L f i a = L f i : ∗ R2 [ . , i ]

L 0 i i = s e l e c t ( L0 ia , L 0 i a [ , 1 ] : ˜ = . )
Y i i = s e l e c t ( Yi , Y i [ , 1 ] : ˜ = . )
L f i i = s e l e c t ( L f i a , L f i a [ , 1 ] : ˜ = . )
A l i i = s e l e c t ( A l i , A l i [ , 1 ] : ˜ = . )
A r s l i i = s e l e c t ( A r s l i , A r s l i [ , 1 ] : ˜ = . )

i f ( i>l ) {
X i i = A l i i , A r s l i i , L 0 i i , L f i i , J ( rows ( U t i i ) , 1 , 1 )
X i = ( A l t , A r s l t , L0 i , L f i ) : ∗ R1 [ . , i ] , J ( rows ( U t i ) , 1 , 1 )

}
e l se {

X i i = L 0 i i , L f i i , J ( rows ( U t i i ) , 1 , 1 )
X i = ( L0 i , L f i ) : ∗ R1 [ . , i ] , J ( rows ( U t i ) , 1 , 1 )

}

b= invsym ( X i i ’ ∗ X i i ) ∗ X i i ’ ∗ U t i i
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EUt [ . , i ]= X i ∗ b

i f ( i >3) {
EUtim=Y2 [ , i −1 ] : ∗ e d i t v a l u e ( Uts r [ , i − 1 ] , . , 0 ) + (1 :−Y2 [ , i −1]) : ∗ e d i t v a l u e ( EUt [ , i

] , . , 0 )
EUt [ , i −1]=EUtim

}

}

Utdr = e d i t v a l u e ( EUt : ∗ Cdr , . , 0 )

Uts = I : ∗ Uts
Uts = e d i t v a l u e ( Uts , . , 0 )

U= Uts : + Utdr
Up=rowsum (U)

return ( Up )

}

end

c a p t u r e mata : mata drop ges tdp5 ( )

mata

r e a l s ca la r ges tdp5 ( r e a l s ca la r q )
{

e x t e r n a l R , Xcensp , Xexpp , Cx

i f ( Cx ==1) Ud p=Xcensp , Xexpp , ges tdda12d (q )
i f ( Cx ==0) Ud p=Xexpp , ges tdda12d (q )

X c o l s = c o l s ( Ud p )

n1=rows ( Ud p )

U= colsum ( Ud p )

sigma =n1 ∗ v a r i a n c e ( Ud p )
i s i g m a = invsym ( sigma )

t =U[ , X c o l s ] ∗ i s i g m a [ Xco l s , X c o l s ] ∗U[ , X c o l s ] ’

r e t u r n ( t )

}

end

∗EXPDR−AIPCw E s t i m a t i n g Equat ion and S c o r e S t a t i s t i c

c a p t u r e mata : mata drop g e s t d d a 1 2 c c d r 1 ( )

mata

r e a l m a t r i x g e s t d d a 1 2 c c d r 1 ( r e a l r o w v e c t o r q )
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{

e x t e r n a l CPP , CP , L , L0 , X , C , Y , Y2 , A , I

L f = s q r t ( L )

c o l = c o l s ( Y )
row=rows ( Y )

Cdr=CPP : / C
Cdr=1:−Cdr

R1=CPP : ˜ = .
R1= e d i t v a l u e ( R1 , 0 , . )

R2=CP
R2= e d i t v a l u e ( R2 , 0 , . )

Uts0 = g e s t X t g p c c d r 1 ( q )
Uts0c = c o l s ( Uts0 )

Uts = e d i t v a l u e ( Uts0 [ , Uts0c ] , . , 0 )
Ut s r = Uts

Ars =A
f o r ( i = 1 ; i<=c o l ; i = i + 1 ) {

Ars [ . , i ]= rowsum ( A [ . , ( 1 : : i ) ] )
}

EUt= J ( row , co l , . )
EUtR=EUt
EUt [ . , c o l ]= Uts r

f o r ( i = c o l ; i >=3; i = i −1) {

U t i =EUt [ . , i ] : ∗ R2 [ . , i ] : ∗C [ . , i ]
U t i i = s e l e c t ( Uti , U t i [ , 1 ] : ˜ = . )

At=A [ . , i ]
L i = s e l e c t ( L , X [ . , 2 ] : = = i )
L f i = s e l e c t ( Lf , X [ . , 2 ] : = = i )
A L f i =At : ∗ L f i
A L L f i =At : ∗ L f i : ∗ L f i
ALLLf i =At : ∗ L f i : ∗ L f i : ∗ L f i
L 0 i = s e l e c t ( L0 , X [ . , 2 ] : = = i )
AL0i =At : ∗ L 0 i

Ai =At : ∗ R2 [ . , i ]
L 0 i a = L 0 i : ∗ R2 [ . , i ]
AL0ia = AL0i : ∗ R2 [ . , i ]
A L f i a = A L f i : ∗ R2 [ . , i ]
A L L f i a = A L L f i : ∗ R2 [ . , i ]
ALLLf ia = ALLLf i : ∗ R2 [ . , i ]

A i i = s e l e c t ( Ai , Ai [ , 1 ] : ˜ = . )
L 0 i i = s e l e c t ( L0 ia , L 0 i a [ , 1 ] : ˜ = . )
A L 0 i i = s e l e c t ( AL0ia , AL0ia [ , 1 ] : ˜ = . )
A L f i i = s e l e c t ( ALf ia , A L f i a [ , 1 ] : ˜ = . )
A L L f i i = s e l e c t ( ALLf ia , A L L f i a [ , 1 ] : ˜ = . )
A L L L f i i = s e l e c t ( ALLLf ia , ALLLf ia [ , 1 ] : ˜ = . )
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X i i = A i i , A L f i i , A L L f i i , AL0 i i , J ( rows ( A i i ) , 1 , 1 )
X i = ( At , ALf i , ALLf i , AL0i ) : ∗ R1 [ . , i ]
X i = Xi , J ( rows ( U t i ) , 1 , 1 )

b= invsym ( X i i ’ ∗ X i i ) ∗ X i i ’ ∗ U t i i

EUt [ . , i ]= X i ∗ b

i f ( i >3) {
EUtim=Y2 [ , i −1 ] : ∗ Uts r + (1 :−Y2 [ , i −1]) : ∗ e d i t v a l u e ( EUt [ , i ] , . , 0 )
EUt [ , i −1]=EUtim

}

}

Utdr = e d i t v a l u e ( EUt : ∗ Cdr , . , 0 )

Uts = I : ∗ Uts
Uts = e d i t v a l u e ( Uts , . , 0 )

U= Uts : + Utdr
Up=rowsum (U)

r e t u r n ( Uts0 [ , ( 1 : : Uts0c−1) ] , Up )

}

end

c a p t u r e mata : mata drop g e s t d p 5 c c d r 1 ( )

mata

r e a l s c a l a r g e s t d p 5 c c d r 1 ( r e a l s c a l a r q )
{

e x t e r n a l Xcensp , Xexpp , Cx

i f ( Cx ==1) Ud p=Xcensp , Xexpp , g e s t d d a 1 2 c c d r 1 ( q )
i f ( Cx ==0) Ud p=Xexpp , g e s t d d a 1 2 c c d r 1 ( q )

X c o l s = c o l s ( Ud p )
Ud p=Ud p [ , X c o l s ]
X c o l s = c o l s ( Ud p )

n1=rows ( Ud p )

U= colsum ( Ud p )

sigma =n1 ∗ v a r i a n c e ( Ud p )
i s i g m a = invsym ( sigma )

t =U[ , X c o l s ] ∗ i s i g m a [ Xco l s , X c o l s ] ∗U[ , X c o l s ] ’

return ( t )

}

end

∗ o p t i m i s a t i o n o f s c o r e s t a t i s t i c
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∗− s c o r e s t a t i s t i c f u n c t i o n g e s t s e s t ( )
∗− Nelder Mead s t a r t i n g v a l u e r s 1 s and s t e p s i z e r s 1 d

cap mata : mata drop s i ( )

mata

v o i d s i ( todo , x , y , g , H)
{

y= g e s t s e s t ( x )
}

end

c a p t u r e mata : mata drop opt nm ( )

mata

r e a l m a t r i x opt nm ( r e a l r o w v e c t o r q )
{

S= o p t i m i z e i n i t ( )
o p t i m i z e i n i t w h i c h ( S , ” min ” )
o p t i m i z e i n i t e v a l u a t o r ( S , & s i ( ) )
o p t i m i z e i n i t e v a l u a t o r t y p e ( S , ” d0 ” )
o p t i m i z e i n i t t e c h n i q u e ( S , ”nm” )

o p t i m i z e i n i t p a r a m s ( S , q [ 1 ] )
o p t i m i z e i n i t n m s i m p l e x d e l t a s ( S , q [ 2 ] )

o p t i m i z e i n i t t r a c e l e v e l ( S , ” t o l e r a n c e ” )

o p t i m i z e i n i t c o n v p t o l ( S , . 0 0 0 1 )

o p t i m i z e i n i t c o n v m a x i t e r ( S , 5 0 )

r s = o p t i m i z e ( S )

return ( r s )

}

end

no i : mata

r s = r s 1 s
rd = r s 1 d
r s d = r s 1 s + r s 1 d

f 0 = g e s t s e s t ( r s )
f0m= g e s t s e s t ( r s d )

i f ( f0 <100) {

while ( m r e l d i f ( f0m , f 0 ) > . 001) {

rs , f0 , f0m , m r e l d i f ( f0m , f 0 ) , rd

f0m= f 0
rsm= r s
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r s = round ( opt nm ( ( rs , rd ) ) , . 0 0 1 )
f 0 = g e s t s e s t ( r s )

rd = round ( abs ( ( rsm:− r s ) / 2 ) , . 0 0 1 )

i f ( rd < . 0 02 ) rd = 0 . 0 0 2
i f ( rd>r s 1 d ) rd = r s 1 d

/ / i f ( f0 <1) nm d = ( . 5 , . 0 1 )

}
rs , f 0

}
e l se {

r s = .

}

end

∗ v a r i a n c e c a l c u l a t i o n
∗− g e n e r i c s c o r e s t a t i s t i c f u n c t i o n g e s t s e s t ( )

mata

r s 1 5 = .
r s 1 9 5 = .
r s 1 e = .

r s 2 5 =−1
r s 2 9 5 =−1
r s 2 e =−1

s = . 0 0 0 0 1

i f ( r s 1 ˜ = . ) {

f 0 = round ( g e s t s e s t ( r s 1 ) , s )
f 0 1 = round ( g e s t s e s t ( r s 1 + 0 . 5 ) , s )
i n c b = round ( ( f01−f 0 ) / . 5 , s )

i n c b

}

p t o l =10 e−4
p=1
c h i s q = round ( i n v c h i 2 ( p , . 9 5 ) , . 0 1 )

c h i s q

i f ( f0<=c h i s q ) {

c i r o w s =800
i n c b = round ( ( ( ch i sq−f 0 ) / i n c b ) / 4 , s )

i n c b

mu= J ( c i rows , 5 , . )
su= round ( r s1 , s )
f = f 0
nc =0
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i n c = i n c b
i f ( abs ( su )<=i n c ) i n c = 1 . 1 ∗ abs ( su )
j =1
mu[ j , 1 ] = round ( su , s )
mu[ j , 2 ] = round ( f , s )
mu[ j , 3 ] = m r e l d i f ( f , c h i s q )
mu[ j , 5 ] = round ( inc , s )
mu[ j , 4 ] = round ( i n c ∗ m r e l d i f ( f , c h i s q ) , s )
while (mu[ j ,2]<= c h i s q & mu[ j ,3]> p t o l & j<c i r o w s & nc ==0) {

j = j +1

mu[ j , 1 ] = round (mu[ j −1 ,1]+mu[ j −1 ,4 ] , s )
mu[ j , 2 ] = round ( g e s t s e s t (mu[ j , 1 ] ) , s )
mu[ j , 3 ] = m r e l d i f (mu[ j , 2 ] , c h i s q )
i f ( j >=5) {

i f (mu[ j , 3 ] / mu[ j −4 ,3]>=.9) i n c = 1 . 1 ∗ i n c
i f (mu[ j , 3 ] / mu[ j −4 ,3]<=.1) i n c = . 9 ∗ i n c

}
mu[ j , 5 ] = round ( inc , s )
mu[ j , 4 ] = round ( i n c ∗mu[ j , 3 ] , s )
ru =mu[ j , 1 ]

i f ( j >=50) {
i f (mu[ j , 2 ] = =mu[ j −49 , 2 ] ) nc =1

}
mu[ j , ]

}
mu [ ( 1 : : j ) , . ]

i f ( j<c i r o w s&nc ==0) r s 1 9 5 = ru

ml= J ( c i rows , 5 , . )
s l = round ( r s1 , s )
f = f 0
nc =0

i n c = round ( incb , s )
i f ( abs ( su )<=i n c ) i n c = 1 . 1 ∗ abs ( su )
j =1
ml [ j , 1 ] = round ( s l , s )
ml [ j , 2 ] = round ( f , s )
ml [ j , 3 ] = m r e l d i f ( f , c h i s q )
ml [ j , 5 ] = round ( inc , s )
ml [ j , 4 ] = i n c ∗ m r e l d i f ( f , c h i s q )
while ( ml [ j ,2]<= c h i s q & ml [ j ,3]> p t o l & j<c i r o w s & nc ==0) {

j = j +1

ml [ j , 1 ] = round ( ml [ j −1,1]−ml [ j −1 ,4 ] , s )
ml [ j , 2 ] = round ( g e s t s e s t ( ml [ j , 1 ] ) , s )
ml [ j , 3 ] = m r e l d i f ( ml [ j , 2 ] , c h i s q )
i f ( j >=5) {

i f ( ml [ j , 3 ] / ml [ j −4 ,3]>=.9) i n c = 1 . 1 ∗ i n c
i f ( ml [ j , 3 ] / ml [ j −4 ,3]<=.1) i n c = . 9 ∗ i n c

}
ml [ j , 5 ] = round ( inc , s )
ml [ j , 4 ] = round ( i n c ∗ml [ j , 3 ] , s )

r l =ml [ j , 1 ]
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i f ( j >=50) {
i f ( ml [ j , 2 ] = = ml [ j −49 , 2 ] ) nc =1

}
ml [ j , ]

}
ml [ ( 1 : : j ) , . ]

i f ( j<c i r o w s&nc ==0) r s 1 5 = r l

r s 1 e = ( r s 1 9 5 − r s 1 5 ) / ( 2 ∗ 1 . 9 6 )

}

end

5.8.5 A�ributable e�ect of Healthcare-associated infection
on mortality

Although the estimation of this e�ect has been looked at in many studies and

research articles, the results remain controversial with for example relative risk

estimates for the mortality e�ect of pneumonia acquired in the ICU - a common

type of HAI - ranging from being harmful to neutral. This has raised the long-

standing research question whether patients in the ICU tend to die ”from” or

”with” infection (Carlet, 2001), the former statement implying that infection indeed

causally a�ects survival, the la�er that it is merely an e�ect of other events that

eventually lead to death. Research for a precise and well-defined a�ributable e�ect

of infection on mortality and into a correct method for its estimation is needed

because it provides healthcare professionals with the exact information on the

costs (both in terms of mortality as morbidity) that arise when a patient acquires a

HAI, and because it provides input (in terms of results to be expected) for hospitals

wanting to implement infection control strategies for the prevention of HAI (Frank,

2007).

Exposure to infection being non-randomised and time-dependent implies that

the analysis for the a�ributable e�ect must adjust for time-dependent confounders

of the exposure-mortality relationship. This is challenging, both in terms of finding

a methodology that gives interpretable e�ect estimates and in obtaining data

containing information to enable su�icient adjustment. As mentioned above,

standard stratification-based methods, such as the adjusted Cox proportional
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hazards model, are known to give biased e�ects when these are stratified for

time-dependent confounders that act as cause and e�ect of exposure at di�erent

time points. Such models are therefore particularly problematic when aiming to

estimate lagged e�ects of exposure to infection on mortality, such as the e�ect on

mortality at time t of onset of infection up to (at least) d days previously, and this

with the aim to get insight in the burden of infection immediately or late a�er its

onset.

In terms of finding valid data to estimate the a�ributable e�ect of infection,

ongoing interest in the prevention of ICU-acquired infection has lead to many

patient-based surveillance studies in which besides baseline information collected

at the patient’s admission to the ICU also daily information on clinical exposures

and outcomes has become available. Because these daily measured variables can be

considered as proxy information for the patient’s daily changing health status, they

are candidates for adjusting the crude e�ect of infection on mortality. However,

when relying on ICU surveillance studies for studying a patient’s survival, a further

challenge is that only data on a patient’s follow-up within the ICU are available.

This implies that survival times of patients that recovered and were at some point

discharged from the ICU will be unobserved or censored. This type of censoring

is typically non-administrative because for each ICU patient it may happen at a

di�erent time-point, and dependent on his or her health status at that time-point.

The consequence is also that only a minority of patients that died in the ICU will

have an actually observed survival time. Typical ICU follow-up data of survival will

also include administrative censoring at a time-point Tm, a�er which the remaining

subjects of the original cohort are too low-numbered and specific to justify further

follow-up.

The “NSIH-ICU” follows the “Hospitals in Europe link for infection control

through surveillance (HELICS)” protocol which is the common standard for Euro-

pean networks wanting to conduct surveillance of ICU-acquired infections (Suetens

et al., 2007; Mertens et al., 2013). ICUs participating in national surveillance need to

collect data on the occurrence of ICU-acquired infections for all patients admi�ed

to the ICU during 3 consecutive months. Besides this, specific follow-up data on

each patient’s daily exposure to a set of clinical exposure variables needs to be
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Baseline Daily-varying

gender mechanical ventilation

multiple trauma central vascular catheter

acute coronary care presence of naso or oro-intestinal tube

age feeding through a naso or oro-intestinal tube

SAPS II score parenteral feeding

prior surgery stoma feeding

type of admission nasal/oral intubation

AB use in 48h before or a�er admission tracheotomy intubation

Table 5.3: Lt variables available for adjusting the a�ributable
e�ect of ICU-acquired infection on mortality; Age categories
< 40, 40 − 59, 60 − 69, 70 − 74,≥ 80; SAPS=Simplified acute
physiology, categories < 20, 20 − 39, 40 − 59,≥ 60; Type of
admission categories Medical/ Scheduled surgery/ Unscheduled
surgery; AB use=Antibiotic, categories None/ Prophylactic/ Ther-
apeutic/ Combination; Surgery categories None/ Elective/ Urgent.

collected; see Table 5.3 for a description of all collected variables.

5.8.6 Procedure for weight truncation

To prevent extreme weights, IPC weights were truncated in the following way.

Going backwards from the last day to the first, we will truncate these probabilities

to fit within the range [1/wtrunc, wtrunc], that is, whenever
∏t

T πs(V s)/πs(V 0) ex-

ceeds wtrunc or is lower than 1/wtrunc, we will put πt(V t) = πt(V 0) at days 1, .., t,

which will stabilise the calculation of (5.11) at these time points. If necessary,

this procedure will truncate for each subject his or her πt(V t) and corresponding

πt(V t) = πt(V 0) values during the first few days of follow-up. The truncated

probabilities will a�ect the A-IPCW estimator both through IPC weights Wt in

the term for complete cases as well as through the censoring probabilities πt(V t)

in the augmentation term for all subjects. The set of weight truncation ranges

[1/wtrunc, wtrunc]. wtrunc was chosen to be (5, 10, 21.4), the first two values arbitrarily,

while the last value corresponded to a truncation of inverse cumulative stabilised

conditional censoring probabilities outside the 99 percentiles range (discussed in

main paper).
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5.8.7 Full data modelling

To facilitate the full data modelling process of the Simulation study, we constructed

residual plots for each of the Tm = 10 time-points at which a full data model

(5.16) was estimated. Construction of these plots proved to be useful specifically

under the simulation scenarios with IPC weights set to 1, with unbiasedness

of augmented estimators A-IPCW and EXPDR-A-IPCW thus completely relying

on correct specification of the full data model. Plots were constructed for the

converging value of ψ, and showed for a particular full data model the residual

versus the fi�ed value. Observations where plo�ed according to exposure status

at t (the time at which the model was constructed) and/or at T (the time of the

subject’s outcome or administrative censoring). Figures 5.1-5.4 show these plots for

A-IPCW and EXPDR-A-IPCW estimators, each figure starting with full data model

at Tm = 10. For both A-IPCW and EXPDR-A-IPCW estimators under the scenario

where IPC weights were set to 1, we compare the residual plots generated under a

“general” full data model with main e�ects (A,L,AL) that yielded an empirically

biased estimator with those generated under a “specific” full data model giving

unbiased (or least-biased) empirical estimators. Plots are those of the first run of a

simulation, with a true exposure e�ect ψ0 = −0.25.

For both estimators A-IPCW and EXPDR-A-IPCW, the plots were useful in

detecting non-linearities in the residuals generated by a “general” full data model

at time t = 10 with main e�ects (A,L,AL), see plots at “day 10” of Figures

5.1 and 5.3. This was resolved by constructing a full data model based on poly-

nomial main e�ects of the confounder L, therefore resulting in main e�ects

(L,LL,LLL,A, LA,LLA) and (A,LA,LLA,LLLA) for A-IPCW and EXPDR-

A-IPCW estimators, respectively (see plots at “day 10” of Figures 5.2 and 5.4).

Allowing for nonlinearities in the full data model also has the e�ect of making

the range of residuals more compact, as seen when going from a min-max range

[−2.1, 0.7] in the first plot of Figure 5.1 to range [−0.5, 0.2] in the first plot of

Figure 5.2. Such compacter range of residuals might explain why A-IPCW and

EXPDR-A-IPCW estimators under IPC weights set to 1, besides being unbiased,

also have lowest empirical variance.
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Even under a full data model that gives unbiased empirical results for the

estimator, we see regions with outlying observations in the residual plots, indicating

that lack of fit of a full data model does not necessarily a�ect the unbiasedness

of an estimator. This can be seen in the plots at day 1 of Figures 5.2 and 5.4,

in which we see outlying regions of observations for both A = 0 and A = 1,

with a clearly defined region for observations having (At = 0, AT = 1), marking

those observations that are unexposed at t but gaining exposure later on. Using

information beyond time t in a full data regression model at time t would violate

ICA, the question therefore remains whether it is possible at all to find full data

models that can handle such outlying residuals, and if so, how this would a�ect

the estimator’s empirical properties (bias as well as variance).

The EXPDR-A-IPCW estimator only gave unbiased results under a full data

model with prognostic variable L strictly entering the model through interactions

with A. A hypothesis for this is that the EXPDR-A-IPCW estimator is based on

functional g{T0(ψ)} that uses a proportional hazards regression model having L

as main e�ect, and therefore can be considered as already partly adjusting for L,

but this needs to be investigated.

Figures 5.5 and 5.6 show similar residual plots for full data models used for the

Application’s A-IPCW and EXPDR-A-IPCW estimators, respectively. Also here,

we give results for the full data models constructed when IPC weights were set

to 1, and this from day 30 to day 3 (augmentation stops at day 3 because no

loss to follow-up occurs during the first 2 days), and using 3−day intervals. For

the A-IPCW estimator, despite absence of nonlinearities in the residual plot at

day 30, outlying residuals for observations under exposure are visible at all days

until day 6. These are due to the lag-e�ect (4 days) being set on the variables

encoding exposure status in the full data models, and which were omi�ed from the

models for days 6− 3. The last residual plot (at day 3) for this estimator shows a

small group of observations under absence of exposure where residuals are linearly

related to predictions, which indicating lack of fit for these observations. Such

problems were not seen for the EXPDR-A-IPCW estimator, despite the di�iculty of

this estimator’s full data model to adequately model observations under absence

of exposure.
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Figure 5.1: Simulation: plot of residual versus predictions for the full data regression
model as used by the AIPCW estimator with censoring weights set to 1, example of
one simulation repetition, full data model main e�ects (L,A,LA).
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Figure 5.2: Simulation: plot of residual versus predictions for the full data regression
model as used by the AIPCW estimator with censoring weights set to 1, example of
one simulation repetition, full data model main e�ects (L,LL,LLL,A,LA,LLA).
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Figure 5.3: Simulation: plot of residual versus predictions for the full data regression
model as used by the EXPDR-AIPCW estimator with censoring weights set to 1, example
of one simulation repetition, full data model main e�ects (L,A,LA).
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Figure 5.4: Simulation: plot of residual versus predictions for the full data regression
model as used by the EXPDR-AIPCW estimator with censoring weights set to 1, example
of one simulation repetition, full data model main e�ects (A,LA,LLA,LLLA).

178



5

5.8. Appendix

Figure 5.5: Application: plot of residual versus predictions for the full data regression
model as used by the AIPCw estimator with censoring weights set to 1 and with full
data model main e�ects (A,A,L, L0).
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Figure 5.6: Application: plot of residual versus predictions for the full data regression
model as used by the EXPDR-AIPCW estimator with censoring weights set to 1 and
with full data model main e�ects (A,LA,LLA,L0A).
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5.8.8 Application: preliminary gridsearches for one- and two-
parameter estimators

Figures 5.7-5.14 show results of preliminary gridsearches that were obtained during

optimisation of the Application’s one- and two-parameter IPCW, EXPDR-IPCW,

A-IPCW, and EXPDR-A-IPCW estimators, and this for all studied truncation sce-

narios. Roots of these gridsearches were subsequently used as starting values in a

Nelder-Mead optimisation for each estimator, using half the gridsearch stepsize as

optimisation stepsize.
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Figure 5.7: plot of Score statistic S versus candidate ψ values for the overall e�ect of
Ventilator-associated pneumonia on mortality, IPC weight truncation [1]; IPC=Inverse
probability of censoring.
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Figure 5.8: plot of Score statistic S versus candidate ψ values for the overall ef-
fect of Ventilator-associated pneumonia on mortality, IPC weight truncation [.2-5];
IPC=Inverse probability of censoring.

183



Chapter 5. Augmented and doubly-robust G-estimation

5

Figure 5.9: plot of Score statistic S versus candidate ψ values for the overall ef-
fect of Ventilator-associated pneumonia on mortality, IPC weight truncation [.1-10];
IPC=Inverse probability of censoring.
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Figure 5.10: plot of Score statistic S versus candidate ψ values for the overall e�ect
of Ventilator-associated pneumonia on mortality, IPC weight truncation [1p-99p];
IPC=Inverse probability of censoring.
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Figure 5.11: Contour plot of Score statistic S versus candidate ψ1 and ψ2 values for
the joint e�ect of Ventilator-associated pneumonia (days 1-4 versus a�er 4th day of
infection), IPC weight truncation [1]; IPC=Inverse probability of censoring.
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Figure 5.12: Contour plot of Score statistic S versus candidate ψ1 and ψ2 values for
the joint e�ect of Ventilator-associated pneumonia (days 1-4 versus a�er 4th day of
infection), IPC weight truncation [.2-5]; IPC=Inverse probability of censoring.
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Figure 5.13: Contour plot of Score statistic S versus candidate ψ1 and ψ2 values for
the joint e�ect of Ventilator-associated pneumonia (days 1-4 versus a�er 4th day of
infection), IPC weight truncation [.1-10]; IPC=Inverse probability of censoring.
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Figure 5.14: Contour plot of Score statistic S versus candidate ψ1 and ψ2 values for
the joint e�ect of Ventilator-associated pneumonia (days 1-4 versus a�er 4th day of
infection), IPC weight truncation 1-99 percentiles; IPC=Inverse probability of censoring.
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CHAPTER 6

Concluding remarks

6.1 Summary of results

We used data from the National surveillance of infections acquired in intensive

care units (NSIH-ICU) (see Chapter 2) to estimate the a�ributable mortality of

Healthcare-associated infection (HAI). Particularly in the intensive care literature,

the analysis of this e�ect gives controversial results. This controversy was con-

firmed when using standard stratification-based methods for confounder adjust-

ment (such as cross-sectional logistic regression or time-dependent proportional

hazards regression) to estimate this e�ect, with estimated a�ributable mortality

e�ects that ranged from being protective to risk increasing depending on the

statistical method that was applied on the same data.

A major problem with standard methods is their di�iculty on how to adjust

properly for confounding of the relation between the time-dependent variable

“exposure to HAI” and the outcome variable “mortality”. This is particularly chal-

lenging in the presence of time-dependent prognostic variables that act as cause
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and e�ect of exposure at di�erent time points. In the Introduction (Chapter 1),

we give an overview of the key facts that show why standard stratification-based

methods may give a biased estimate of the joint or aggregate causal a�ributable

mortality e�ect whether or not regression adjustment is made for such variables,

and this due to time-dependent confounding of the exposure-outcome relationship.

Another problem is the di�iculty of how to account for subjects that drop out of

the study before the end of follow-up time. In our study, this comes in the form of

Intensive care unit (ICU) patients that are being discharged alive from the unit,

and therefore have a survival time outcome that is unobserved or censored. When

the reason for such drop-out is linked to prognostic factors that also a�ect survival

time, this will lead to selection bias. We then showed how estimators from causal

inference, such as Inverse probability weighting under Marginal structural models

and G-estimation under Structural nested models, can avoid the aforementioned

issues and deliver estimates with causal interpretation.

In a first stage, we opted for the use of Inverse probability of exposure and

censoring weighted (IPECW) estimation under a Marginal structural proportional

hazards model (MSPHM) (Chapter 3). However, the strong association of certain

prognostic factors with censoring coupled with the multitude of time-points lead

to very low estimates of the cumulative probability of remaining under follow-

up, resulting in extremely high Inverse probability of censoring (IPC) weights for

certain patients. Truncation of these weights was thus needed, with the resulting

causal e�ect estimate being possibly biased.

To resolve this, we developed two estimators of joint causal e�ects that allow

for less dependence on (extreme) IPC weights. In the first, IPECW estimation

under a Marginal structural proportional hazards model for partial exposure regimes

(MSPHM-P) (Chapter 4), we analysed a�ributable mortality at discharge from the

hospital, which is a less sensitive study outcome compared to mortality at discharge

from the unit. We also used a regime defined by “being exposed to infection while

remaining in the unit” that involves multiplication of inverse probability weights

over less subject days, and therefore poses a smaller risk of these weights becoming

too influential.

The second estimator that we proposed, Augmented Inverse probability of cen-

192



6

6.1. Summary of results

soring weighted (A-IPCW) G-estimation under Structural nested accelerated failure

time model (SNFTM) (Chapter 5) avoids the use of inverse probability of exposure

weights, and also yields estimates of the a�ributable e�ect that remain unbiased

under misspecification of either the model for the censoring mechanism or either

a model for the full data. This last property of doubly-robustness then allows to

ignore IPC weighting completely, for example by se�ing IPC weights to 1 for all

patients. Of equal importance is that the A-IPCW G-estimator provides improved

e�iciency compared to the standard Inverse probability of censoring weighted

(IPCW) G-estimator, and this because it is able to use data from all patients instead

of only those with observed or administratively censored survival time.

The proposed estimators are used in the analysis of the a�ributable e�ect on

mortality of three types of ICU-acquired infections: ICU-acquired pneumonia,

Ventilator-associated pneumonia (VAP), and Bloodstream infection (BSI), using

historical multicentric data from the NSIH-ICU program (Chapters 3,4,5).

The proposed estimators are certainly worthwhile in their features of providing

e�ect estimates with causal interpretation (IPECW, IPCW and A-IPCW estimators)

and with the property of being doubly-robust and/or having improved e�iciency

(A-IPCW G-estimator under a SNFTM); however their application to the case study

at hand did not entirely resolve the issues surrounding extreme IPC weights. For

estimation under a MSPHM-P, the combined inverse probabilities for exposure and

for remaining uncensored still lead to influential values to such extent that only

regimes up to a certain time-point could be studied. For the A-IPCW G-estimator,

full data modelling became increasingly di�icult when IPC weights were set to 1.

In the next Section, we explain how censored data can lead to both extreme IPC

weights as well as di�iculties in full data modelling. Therefore, the research for

this problem does not stop here, and in what follows we give an overview of topics

that we think warrant further investigation.
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6.2 Further research

6.2.1 Inverse weighting versus augmentation to adjust for
non-ignorable censoring

As previously mentioned, for IPCW estimators under both the MSPHM and the

SNFTM, the estimated IPC weights had to be truncated in order for these estima-

tors to converge. The group of subjects with extreme weights was more restricted

when estimating under a SNFTM as compared to a MSPHM, because the standard

G-estimator only uses observations from subjects with observed survival time or

complete follow-up, which is a very selective group of subjects within the complete

group. This has lead us to propose an A-IPCW G-estimator for the parameters

of a SNFTM, which guarantees unbiased estimation of these parameters that is

doubly-robust against misspecification of either a model for censoring or a model

for the full data. We hereby followed Tan (2007)’s reasoning that the logical way

in which Inverse probability weighted (IPW) estimators are further improved is

by reducing the bias and/or variance of the estimates of their parameters. While

our study is novel in that we connected G-estimation with augmented estimation,

recent literature on doubly-robust estimation has shown that further improve-

ments in e�iciency are still possible. Indeed, while doubly-robust IPW estimators

may behave well under correct specification of both working models, they lose

this property when at least one of these models is misspecified (Kang and Schafer,

2007). Vansteelandt (2012) showed that the standard IPW estimator can be very

sensitive towards misspecification of the propensity scores model in regions of

prognostic factors L with very low overlap of the variable for which confounding

with the outcome is to be resolved (in our case censoring), meaning those subjects

or their time-point contributions with propensity score close to 0 or 1, and that

such bias will be hardly resolved in a doubly-robust IPW estimator with minor mis-

specification of the outcome regression model. Vansteelandt and Jo�e (2014) also

demonstrated that such “extreme” propensity scores will lead to inflated variance

of both the standard and the doubly-robust IPW estimator, and therefore to impre-

cise estimates. With these issues in mind, recent years have seen new versions of
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doubly-robust IPW estimators with the specific objective of minimising bias and/or

variance when one or both working models have been misspecified (Bang and

Robins, 2005; Robins et al., 2007; Tan, 2007, 2008; Cao et al., 2009; Tsiatis et al., 2011;

van der Laan and Rose, 2011; Rotnitzky et al., 2012; Vermeulen and Vansteelandt,

2014). The simulation experiments of these studies specifically demonstrate good

behavior in the presence of extreme and influential inverse probability weights. As

many estimators proposed in this study rely on IPW, with those of Chapters 3 and

5 specifically relying on truncated IPC weights, which can be seen as deliberate

misspecification of the propensity score model, these estimators are therefore

victim to the issues mentioned above. A future strategy is therefore to verify

what recent techniques for doubly-robust IPW estimators could o�er to data with

extreme IPC weights under many time-points (such as ours).

Next to the development of the A-IPCW G-estimator, we elaborated on other

strategies to cope with extreme IPC weights in Chapter 5 on SNFTMs. One strategy

builds on the observation that the A-IPCW G-estimator yields its best results in

terms of precision when IPC weights were set to 1, and this both in the simulation

study as the application. Furthermore, the simulation study showed that this low

precision could be accompanied with unbiasedness of the causal e�ect through

careful construction of the full data model. In the context of our case study where

we were forced to truncate (and deliberately misspecify) IPC weights in order for

the G-estimation to converge, a valid approach might therefore be to abandon

IPC weighting and direct all a�ention to full data modelling. Because the IPECW

estimator under a MSPHM used in Chapter 3 also relied on (truncated) IPC weights

and equally su�ered from inflated variance, it would be worthwhile to develop an

A-IPCW estimator under a MSPHM that would allow se�ing IPC weights to 1 in

the same way as for the A-IPCW G-estimator. The augmentation algorithm under a

MSPHM will likely di�er from the one used under the SNFTM, unless the MSPHM’s

estimating equation is restricted to subjects with observed or administratively

censored survival time.

Continuing with the scenario where IPC weights were set to 1, we experienced

in our case study many problems in achieving convergence of particular versions

of the A-IPCW G-estimator. This was due to strong correlation of the exposure

195



Chapter 6. Concluding remarks

6

event with the outcome in the group of subjects with observed outcome. Let us

hypothesise that, at a particular study time-point t, very limited overlap exists in the

joint distribution of (Lt,At) between censored and uncensored subjects. In an IPCW

estimator, this can lead to Ct = 1 (censoring) being set almost deterministically

for particular strata formed by (Lt,At). This will result in very low probabilities

for non-censoring and in extreme weights, to an extent that these need to be

truncated in order to achieve convergence of the estimator. Therefore, for the

IPCW estimator, the issue will be non-positivity of the conditional probability of

remaining uncensored. In a full data augmentation procedure, due to particular

strata containing li�le info on censoring at t, it might be di�icult to correctly

postulate a model for the mean full data outcome for non-censored subject days,

which results in lack of fit and high residuals for these subject-days. The inverse is

possible as well, with a good fi�ing full data model for non-censored subject days

that however gives bad predictions for censored subject days. Such problems can

then be exacerbated during augmentation over censored subjects and recursively

over all time-points. The result of this is an estimating function with high variance

of individual contributions and/or di�iculties to reach a meaningful minimum for its

average. Therefore, for the augmented estimator, the issue will be extrapolation, or

the full data model needing to extrapolate its predictions over particular covariate

regions made up by the distribution of (Lt,At) with very low overlap between

Ct = 0 and Ct = 1. In this light, the problems with the A-IPCW G-estimator

under IPC weights set to 1 might seem expected, especially because we performed

augmentation on the same data that lead to extreme IPC weights in the first place.

A future research strategy would be to investigate the possible common reasons

for non-positivity and extrapolation, as well as remedies for these issues. In the

se�ing of inverse probability of exposure weighting, Kurth et al. (2005); Crump et al.

(2009) suggest to remove from the analysis those subjects with low propensity of

exposure, the rationale being that these represent a particular subgroup of patients

for which it is unrealistic (based on subject ma�er) to formulate a counterfactual

or population outcome. However, applying such reasoning to subgroups with

high propensity for being censored will be problematic if the factors that lead to

such high propensity are not clearly defined. Furthermore, when A and L are
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time-dependent, it will be equally problematic to base exclusions of observations

on strata formed by (At, Lt). To illustrate this, consider again causal Directed

acyclic graph (DAG) 1.7 of Chapter 1 that represents the data a�er applying IPECW.

Now consider the situation where we remove from the data particular strata of

L2 and A2 due to these giving extreme IPC weights. Stratification on L2 will then

generate time-dependent confounding and bias of the causal e�ect of A1 on Y2,

while stratification on A2 might lead to impossible estimation of the e�ect of A2

on Y2. For these reasons, removing particular strata can only proceed if it strictly

relies on baseline variables. One practical solution to resolve non-positivity would

be to lower the study follow-up period Tm, as we did in Chapter 3 where we applied

MSPHMs.

It is important to note that the censoring event in our study marks the time-

point when a patient is discharged alive from the ICU. The link with a subject’s

underlying health status is therefore clearly established, to the extent that Ct = 1

marks the time-point where the patient is no longer in need of intensive care. This

way, it is not di�icult to think of possible reasons for violation of positivity and

the corresponding need for extrapolation, for example by imagining that healthy

patients would be discharged while unhealthy patients need to remain in the ICU.

The IPCW and A-IPCW estimators work under the Ignorable censoring assumption

(ICA), meaning that (Lt,At), the measured covariate history up to t, is su�icient to

predict censoring at t, without residual association with future survival. The e�ect

of a violation of this assumption due to omi�ing a particular prognostic factor can

be studied as follows (Vanderweele et al., 2008). Let exposure A have a protective

e�ect on censoring C (A = 1 leads to C = 0) and a harmful e�ect on outcome Y

(A = 1 leads to Y = 1). Let ICA be violated by an unknown common prognostic

factor U that causes censoring and outcome in the same way as exposure (U = 1

leads to C = 0 and to Y = 1). Restricting the analysis to subjects under follow-up

(C = 0) will then create a non-causal association between A and U because in

this subgroup A = 0 (U = 0) will be associated with U = 1 (A = 1), therefore

creating a negative relationship between A and U and as consequence a protective

e�ect of A on Y . The common cause U of C and Y can be seen as C being

negatively associated with Y , collider-stratification on C therefore creates the
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path A → U → Y , with negative e�ect on the first and a positive e�ect on the

second arrow. Applying this reasoning to our case study, the protective causal

e�ects of HAI on mortality we have found can be seen in light of such violation

of ICA. It is therefore a valid strategy to obtain supplementary measurements on

time-dependent prognostic factors to bring more predictive power in censoring

risk. If these factors have overlapping distributions over censored and uncensored

subjects, this might resolve the issues with respect to non-positivity as well.

6.2.2 Avoiding the ignorable censoring assumption

Given the comments of the previous Section, a valid strategy would be to investigate

methods for causal e�ect estimation that avoid ICA. The use of models for the

subdistribution hazard (Fine and Gray, 1999; Beyersmann and Schumacher, 2008)

falls in such strategy. In this so-called “competing risk” approach, the survival time

T now signifies the time-point t at which a subject experiences either the outcome

event (Yt = 1) or the censoring event (Ct = 1), these two now being called

competing events because they compete for first occurrence within each subject.

Using this approach and keeping with a discrete-time setup, the cause-specific

hazard of the outcome event Y is defined as:

λcs
Y (t) = P (Yt = 1|Yt−1 = 0 and Ct−1 = 0) (6.1)

while the subdistribution hazard of the outcome event Y is of the form:

λsd
Y (t) = P (Yt = 1|Yt−1 = 0 or Ct−1 = 1) (6.2)

Because the subdistribution hazard λsd
Y (t) conditions on (Yt−1 = 0 or Ct−1 = 1),

it will keep subjects in the risk set a�er censoring, without any possibility of ex-

periencing the outcome event, and unlike the cause-specific hazard λcs
Y (t) that

uses as risk set those subjects under actual follow-up (Yt−1 = 0 and Ct−1 = 0).

Competing risk methods avoid the need for ICA: censored subjects remain in the

risk set, they do not experience the outcome event, so no assumptions are stated

with respect to the risk for outcome relative to subjects that were not censored.

198



6

6.2. Further research

As a consequence, there will be no need to make use of IPC weighting or full data

augmentation to adjust for non-ignorable censoring. A competing risk analysis

is therefore less ambitious in the results that it delivers, by strictly focusing on

the outcome event at a patient’s end of follow-up, which might be due to censor-

ing. This is in relative contrast to an IPCW or A-IPCW estimator, which tries to

reconstruct or create an ICU population not being discharged alive. Models for the

subdistribution hazard have seen frequent use in studies of a�ributable mortality

of HAI (Wolkewitz et al., 2009). They su�er from the same problems as standard

stratification-based regression methods however, by not taking into account time-

dependent confounding by prognostic variables a�ected by exposure, and as such

their parameters have no causal interpretation. Bekaert et al. (2009) developed and

applied a subdistribution hazard model for counterfactual outcomes, while Naimi

and Tchetgen Tchetgen (2015) proposed the use of subdistribution hazard models

within the parametric G-formula, both with the objective of obtaining estimators

with causal interpretation.

A strategy that avoids any adjustment for non-ignorable censoring would consist

in following all subjects until their length of follow-up reaches the administrative

censoring time. In the context of our study, this would mean that data has to be

collected on subjects a�er these were discharged alive from the ICU. However,

many issues will arise when doing so; first, while the actual surveillance study is

straightforward in its practical organisation by only demanding e�orts from ICU

sta�, this will most certainly involve other partners when patients are followed

a�er discharge from the unit. Second, the fact that censoring will be limited

to a fixed end of follow-up date will not avoid the need for adjustment of the

crude mortality e�ect of infection for time-dependent prognostic factors. These

factors will likely di�er when a patient is followed inside versus outside the ICU, the

method therefore will need to take into account these di�erent environments during

which adjustment needs to take place. A possibility is to ignore any adjustment

post ICU-discharge, similar to what we did in Chapter 4 were we analysed hospital

a�ributable mortality e�ects.
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6.2.3 G-Estimationunder a structural nested failure timemodel

Because a SNFTM directly models the survival time, the administrative censoring

time will need to be recalculated for each candidate value of the causal parameter

in the G-estimation procedure, leading to possible administrative re-censoring of

the counterfactual survival time. This can lead to information loss for the di�erent

candidate parameters, due to mapping observed survival times into administra-

tively re-censored counterfactual survival times. As a consequence, irreguralities

will be created in the estimating function for ψ, a phenomenon which is actually

cited as one of the main issues preventing the adaptation of SNFTMs on a larger

scale (Jo�e et al., 2012). Structural nested cumulative hazard models (Young et al.,

2009; Martinussen et al., 2011; Piccio�o et al., 2012) o�er a solution for this prob-

lem, in that they avoid re-censoring by modelling the failure indicator at each

time-point. However, these are not without problems either, such as the risk of the

counterfactual outcome exceeding the logical boundaries of the binary outcome.

In Chapter 5, we proposed an Exposure risk doubly-robust (EXPDR)-IPCW G-

estimator, that o�ers robustness against misspecification of the model for expo-

sure, but that also yielded be�er e�iciency as compared to the standard IPCW

G-estimator. In future research, one could focus fully on the properties of this

particular estimator, and its added value relative to the standard (non robust)

G-estimator that uses gt{Xt,0(ψ),∆t,0(ψ), Lt} = ∆t,0(ψ) (the counterfactual ad-

ministrative re-censoring indicator). This last estimator is unstudied as well, as

our standard G-estimator was based on Xt,0(ψ), the counterfactual administrative

re-censored survival time. For the EXPDR G-estimator, it would also be interesting

to study the feasibility of obtaining a correctly specified proportional hazards

model for ∆t,0(ψ), particularly in scenarios where the model for the onset of expo-

sure is misspecified. Additionally, we can study a direct analogue of our proposed

EXPDR G-estimator for the standard G-estimator based on Xt,0(ψ), for example

by le�ing gt{Xt,0(ψ),∆t,0(ψ), Lt} = Xt,0(ψ) − E[Xt,0(ψ)|Lt, Yt−1 = CT = 0],

with E[Xt,0(ψ)|Lt, Yt−1 = CT = 0] postulating a linear regression model for the

re-censored counterfactual survival time. We expect this last estimator to bring

improvements in speed, which is particularly a problem of the actual EXPDR G-
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estimator as it includes the estimation of a hazard model within the G-estimation

procedure.

Speed is particularly an issue with our proposed A-IPCW and/or EXPDR G-

estimators, because these incorporate the estimation of the parameters of at least

one working model within the G-estimation procedure. It would be interesting

to verify the properties of these estimators under naive versions of estimated

working models, for example for a fixed value of the candidate causal parameter ψ.

While this approach would lose the property of doubly-robustness, it may keep

the improvements in e�iciency as compared to the standard IPCW G-estimator.

6.2.4 Avoiding the sequential randomisation assumption

The imbalances of exposed and unexposed patient groups with respect to prog-

nostic variables and the need to rely on the Sequential randomisation assumption

(SRA) can be avoided when choosing randomised experiments as (alternative)

study type. Such experiments study groups of patients that are randomised for

particular intervention strategies for the prevention of HAI. Their primary outcome

is mostly onset of infection, but other outcomes such as mortality are considered

as well. A randomised experiment will o�er more realistic estimates of the e�ect

of prevention strategies on the reduction of infection incidence and its e�ect on

mortality and morbidity, as compared to observational surveillance studies where

mortality e�ects are estimated by comparing groups of patients with and with-

out infection, therefore (unrealistically) hypothesising about all infections being

prevented (Klompas, 2010; Umscheid et al., 2011). However, the drawback of such

experiments is that, while designed properly for (already low) anticipated incidence

rates for particular types of infection, designing these studies for detecting di�er-

ences in (the even lower) a�ributable mortality will lead to infeasibly high numbers

of patients to randomise. This renders the estimation of the a�ributable mortality

e�ect of preventive measures of HAI by means of randomised experiments only

practical when done by meta-analysis (Melsen et al., 2013). Also, the calculated

a�ributable mortality needs to be interpreted in light of the actual intervention(s)

that were studied, making it di�icult to extrapolate findings of such studies for
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policy measures.

Data from randomised experiments can be used for the estimation of the at-

tributable mortality of infection, however such analysis will equally su�er from

imbalances with respect to prognostic variables. In this case this is due to infection

status being collected post-randomisation and therefore associated with outcome

through common unmeasured prognostic variables. In such study design, and

under the assumption that the intervention will only a�ect the outcome through

infection, a technique such as Instrumental variable analysis (Greenland, 2000) is

needed. However, such analysis estimates the e�ect of exposure by verifying how

the risk of outcome changes when exposure would be avoided, therefore su�ering

from the similar drawback of using a counterfactual mortality outcome where all

infections are prevented.

6.2.5 Variance estimation

This work mainly focused on unbiased estimators for the joint causal e�ect of

time-dependent exposures, and by doing so neglected somewhat the issues on how

to estimate the variance or confidence interval of the proposed estimators. This is

however important, because even an estimator with the promise of being unbiased

will be of limited use when the estimate of its confidence interval is too high. The

estimators that we used rely on the estimation of nuisance parameters indexing

working models for inverse probability of censoring and/or exposure weights (for

IPECW and IPCW estimators), and a working model for the full data (A-IPCW G-

estimator). Estimation of the variance of the causal parameter of these estimators

will need to account for the uncertainty of nuisance parameters, failure to do so will

lead to a conservative estimate of the asymptotic variance (van der Laan and Robins,

2003; Tsiatis, 2006). Furthermore, in the case of an IPCW estimator for causal

parameter ψ that is doubly-robust under either a working model for IPC weights

indexed by φ or a full data model indexed by ξ (such as the A-IPCW G-estimator),

correct estimation of ξ (φ) will yield an estimator of the asymptotic variance of ψ̂

that does not depend on the estimation of φ (ξ) being accounted for (Tsiatis, 2006;

Vermeulen and Vansteelandt, 2014). In Chapter 5 on SNFTMs, we accounted for
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estimation of all nuisance parameters except for those of the full data model. In a

next step, it would be interesting to implement this, together with verifying whether

the aforementioned property of the estimated asymptotic variance being insensitive

towards accounting for estimation of nuisance parameters is also feasible for the

EXPDR G-estimator that we proposed.

In Chapter 5, we accounted for estimation of nuisance parameters by sup-

plementing the estimating function for the causal parameter with those of the

nuisance parameters, and then obtaining a 95% Confidence interval (CI) by inver-

sion of the score test. An alternative is an estimator of the asymptotic variance

based on the sandwich method [see equation (1.83) in Chapter 1], but this has

the additional di�iculty that the matrix of partial derivatives of the estimating

function with respect to the estimated parameters needs to be obtained, either

analytically or numerically. The bootstrap procedure (Wasserman, 2004) is also

an alternative, but can be tedious if it needs to include estimation of all working

models.

6.2.6 Di�erences in e�ect estimates

Our study presents estimates for the causal e�ect of HAI on mortality using esti-

mators under three models: a MSPHM, a MSPHM-P, and a SNFTM. These three

models all give di�erent results for this e�ect, we discuss briefly the possible rea-

sons for this. First, MSPHMs and SNFTMs produce parameter contrasts between

di�erent types of counterfactual outcomes, and therefore lead to di�erent interpre-

tations. The SNFTM maps at each time-point the observed into the exposure-free

survival time within subgroups formed by exposure At and prognostic factors

Lt, therefore producing conditional contrasts. The MSPHM on the other hand,

produces parameter estimates of population contrasts that are unconditional or

strictly conditional on baseline variables, meaning that it calculates the hazard

for the entire population being exposed, even when this would be unrealistic in

practice. Due to the di�erent e�ect types and to the non-collapsibility of condi-

tional e�ects in nonlinear models (Hernàn et al., 2011), it is problematic to directly

compare estimates from SNFTM and MSPHM modelling approaches on the same
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data. The following approaches might enhance comparability. One can compare

the predicted counterfactuals of both models that do have realistic interpretation,

in our case this would be the survival times under absence of exposure. Related to

this, is Chevrier et al. (2012)’s approach to fit a proportional hazard model on the

counterfactuals produced by the SNFTM, to obtain causal parameter estimates

in the form of hazard ratios. In the context of a point treatment study, Sato and

Matsuyama (2003) explain a modification of the inverse probability weights under

a marginal structural model that leads to conditional (instead of population) esti-

mates. Hernàn et al. (2005) describe a way to convert the causal survival time ratio

as estimated by a SNFTM into a causal hazard ratio. Also, Robins et al. (1994) de-

scribe an approach to derive population contrasts from SNFTMs using a technique

called “blipping up”, which was recently adopted by Piccio�o et al. (2012) under a

Structural nested cumulative failure time model.

Next to this, we list other reasons that help explain the found di�erences in

e�ect estimates. The studies on MSPHMs and MSPHM-Ps looked at the e�ect of

ICU-acquired pneumonia, while the study using SNFTMs looked at the e�ect of

Ventilator-associated pneumonia, which is a subgroup of the former group. We

studied ICU mortality as outcome in the studies on MSPHMs and SNFTMs, while

this was hospital mortality in the study on MSPHM-P. Also, di�erent datasets

were used, with national multicentric data used for the MSPHMs and SNFTMs

(however from di�erent time-periods), while data from one center was used for the

MSPHM-P. Estimation under all three models su�ered from extreme IPC weights,

but we handled this issue in di�erent ways in the three studies. For the study on

the MSPHM, we truncated weights starting at the subject day that these exceeded

a certain value, a strategy which was also followed in the study using a SNFTMs

but repeated for a number of truncation ranges. This study also presented an

analysis that allowed IPC weights being set to 1. On the other hand, the study on

the MSPHM-P avoided extreme IPC weights by limiting the number of days within

its exposure regimes. Our hypothesis is that this last analysis feature might have

the most impact on the di�erences between the results of the three studies, more

specifically on the reason why the study using the MSPHM-P presents a harmful

e�ect while the other two present slightly protective towards neutral e�ects. The
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studies using the MSPHMs and the SNFTMs also demonstrate a harmful e�ect of

infection on mortality late a�er infection onset, which is in agreement with the

harmful e�ect found by the MSPHM-Ps if we would assume that this estimate is

driven by mortality occurring late a�er infection onset.

6.2.7 Interpreting and using e�ect estimates

Given the protective and neutral a�ributable mortality e�ects that we found for

ICU-acquired pneumonia and/or VAP, it would be problematic to conclude that

prevention for these types of HAI is not needed any more. Next to investigating the

e�ects of infection on morbidity outcomes (see the next section), these results also

call for verifying whether the case definition of the studied infection type is su�i-

ciently specific. It is worth noting for example that the majority of ICU-acquired

pneumonia (and therefore also of VAP that are declared in the NSIH-ICU program

are diagnosed using so-called “semi-or non-quantitative” techniques, which are

know to be much less specific than quantitative techniques for pneumonia detec-

tion (Fagon et al., 1993; Chastre et al., 2003). A future strategy might therefore exist

in defining subgroups of infection (based on diagnostic strategy for example) that

give higher risks for mortality, and investigate the a�ributable mortality for these

specific subgroups. Such knowledge can then form a basis for possible fine-tuning

of case definitions used for standardised surveillance.

6.2.8 Analysing morbidity

While this study focused on estimators for the a�ributable e�ect of HAI on mor-

tality, it would also be of interest to look at e�ects on morbidity parameters, such

as Length of stay (LOS) within the unit or hospital, or use of medical treatment.

Consider the estimation of the a�ributable e�ect of HAI on morbidity outcome

“discharge alive from the ICU”. Such analysis will aim to estimate the extra LOS that

HAI-patients need to recover from HAI, as compared to uninfected patients. To esti-

mate this e�ect, we will need to adjust carefully for all available time-independent

and -dependent confounders for the HAI-LOS association, and secondly we need
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U0 L A D Y

Figure 6.1: Causal directed acyclic graph depicting non-causal association between expo-
sure (A) and the morbidity outcome (Y ) through the mortality event (D).

to separate the e�ect on mortality from the one on discharge alive from the ICU.

Analysing time to discharge from the ICU, and using LOS of both survivors as

well as non-survivors to do so, will be problematic. This is because LOS can be

the result of di�erent pathways that patients can follow in response to HAI, for

example with infection leading to death (discharge alive) being due to absence

(presence) of appropriate treatment. This means that the analysis will be chal-

lenged by mortality acting as a competing event for the morbidity outcome, in the

remaining paragraphs we demonstrate this further and outline eventual estimation

strategies.

As an example, we consider a study with a single time point Tm = 1. We

assume the causal DAG of Figure 6.1, with variables U0, A, L as explained before,

and variables D and Y now representing the mortality and morbidity (for example

“discharge alive from the unit”) events respectively. Causal DAG (6.1) shows a

“survivors-only” analysis in which D is surrounded by a box, indicating that the

analysis selects on observations with D = 0. In such analysis, non-causal paths

A→ D ← L→ Y andA→ D ← L← U → Y will be opened through collider-

stratification on D. Stratification on variable L to block these paths then leads to a

stratified model for the risk of morbidity Y , for example P (Y = 1|a, L,D = 0; βm)

indexed by unknown parameter βm. Now consider the counterfactual outcomes

Ya and Da, or the outcomes that would be observed if exposure level A = a would

be assigned instead of the observed exposure level. Note that we do not consider

the counterfactual Y(a,d=0), or the morbidity outcome when assigning exposure

level A = a and when keeping the subject alive (d = 0), because we consider the

event D to be non-intervenable. By this, for the two outcomes Y and D combined,
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6.2. Further research

define the set of counterfactual outcomes (Ya, Y1−a, Da, D1−a).

Using the aforementioned stratified model for the risk of morbidity outcome

Y , we a�empt to formulate a causal contrast that compares the risk of morbidity

across exposed and unexposed subjects as follows:

P (Y = 1|A = 1, L,D = 0; βm)

P (Y = 1|A = 0, L,D = 0; βm)
=

P (Y1 = 1|A = 1, L,D1 = 0; βm)

P (Y0 = 1|A = 0, L,D0 = 0; βm)

=
P (Y1 = 1|L,D1 = 0; βm)

P (Y0 = 1|L,D0 = 0; βm)
(6.3)

in which the first equality is due to the consistency assumption, and the second

due to SRA (modified to include conditioning on Da = 0). Contrast (6.3) cannot be

considered as a causal contrast. This is because the numerator and denominator

of (6.3) are defined within di�erent subgroups, being based on D1 = 0 and D0 = 0

respectively. To resolve this, we might be tempted to rely on ICA and remove

the conditioning statement D = 0 from the expectations in contrast (6.3), as we

did previously in the context of censoring due to discharge alive from the ICU.

However, a typical censoring event leads to an unobserved outcome, while under a

“dropout due to death” scheme, the outcome event is simply undefined. Use of ICA

will be therefore invalid.

The morbidity event being undefined in a subject that drops out due to death is

also the reason why contrast (6.3) is non-causal. To see this, in the numerator of this

contrast, the subgroup D1 = 0 will be a mixture of subjects having (D0 = 0, D1 =

0) and subjects having (D0 = 1, D1 = 0), or those subjects that will survive no

ma�er what exposure level [hence called “always survivors (as)”] and those that

will only survive when being unexposed (or where exposure protects against death)

respectively. The denominator of (6.3) uses subgroup D0 = 0, which is a mixture of

subjects having (D0 = 0, D0 = 0) and subjects having (D0 = 0, D1 = 1), or the

same “as” group as used for the numerator but now complemented with subjects

that only survive when being exposed (or where exposure leads to death). We see

now that the expectations in the numerator and denominator of contrast (6.3) both

condition on subgroup “as”, but that they di�er in terms of their complementing

subgroups. It is clear that a comparison of the risk of morbidity between groups
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(D0 = 1, D1 = 0) and (D0 = 0, D1 = 1) is non-causal, because a subject of the

former group can never be part of the la�er group. Also, within each one of these

subgroups, it will be impossible to validly compare the risk of morbidity, because

it will be undefined due to death in one of the contrast’s studied exposure levels.

Subgroups defined by counterfactual mortality outcomes under possible levels of

exposure are called Principal strata. Following the above arguments, we will a�empt

to restrict the estimation of the causal contrast towards subgroup “as”, which is

called Principal stratification (Robins, 1986, Section 12.2; Frangakis and Rubin, 2002).

Because we cannot identify from the observed data which subjects belong to this

principal stratum, identifying assumptions will need to be formulated that allow

calculating the causal contrast within this subgroup. Following this, and using a

longitudinal study design, (Tchetgen Tchetgen, 2014) recently introduced Survivor

Marginal structural models, which are described to estimate causal contrasts in

individuals that would survive any exposure regime.

6.3 Final conclusion

When searching methods for the statistical estimation of the a�ributable e�ect

of HAI on mortality, one needs to avoid (1) the time-dependent confounding by

prognostic factors for mortality that can act as cause and e�ect of infection, and

(2) the selection bias due to non-ignorable censoring and caused by only analysing

data from subjects under follow-up within the ICU or hospital. Estimators from

causal inference are able to correct for these issues. However, these are known

to struggle with strong associations between the censoring event and particular

time-dependent factors, including exposure to HAI. We proposed novel estimators

of joint causal e�ects that (1) allow to use exposure regimes and study endpoints

that are less sensitive towards non-ignorable censoring, and (2) provide robustness

of the causal estimand towards misspecification of the model for censoring.
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Cole, S. R. and Hernàn, M. A. (2008). Constructing inverse probability weights for

marginal structural models. American Journal of Epidemiology, 168(6):656–664.

Colpaert, K., Vanbelleghem, S., Danneels, C., Benoit, D., Steurbaut, K., Van Hoecke,

S., De Turck, F., and Decruyenaere, J. (2010). Has information technology finally

been adopted in Flemish intensive care units? BMC Medical Informatics and

Decision Making, 10:62.

Cox, D. R. and Oakes, D. (1984). Analysis of survival data. Chapman and Hall,

London.

Crump, R. K., Hotz, V. J., Imbens, G. W., and Mitnik, O. A. (2009). Dealing with

limited overlap in estimation of average treatment e�ects. Biometrika, 96(1):187–

199.

D’Agostino, R. B., Lee, M. L., Belanger, A. J., Cupples, L. A., Anderson, K., and

Kannel, W. B. (1990). Relation of pooled logistic regression to time dependent

Cox regression analysis: the Framingham heart study. Statistics in Medicine,

9(12):1501–1515.

Daniel, R. M., Cousens, S. N., Stavola, B. L. D., Kenward, M. G., and Sterne, J. A.

(2013). Methods for dealing with time-dependent confounding. Statistics in

Medicine, 32(9):1584–1618.

Daniel, R. M., Kenward, M. G., Cousens, S. N., and Stavola, B. L. D. (2012). Using

causal diagrams to guide analysis in missing data problems. Statistical Methods

in Medical Research, 21(3):243–256.

Digiovine, B., Chenoweth, C., Wa�s, C., and Higgins, M. (1999). The a�ributable

mortality and costs of primary nosocomial bloodstream infections in the in-

tensive care unit. American Journal of Respiratory and Critical Care Medicine,

160(3):976–981.

212



7

ECDC (2011). Annual epidemiological report 2011. reporting on 2009 surveillance

data and 2010 epidemic intelligence data. Report.

ECDC (2013). Point prevalence survey of healthcare-associated infections and

antimicrobial use in European acute care hospitals, 2011-2012. Report.

Fagon, J. Y., Chastre, J., Hance, A. J., Montravers, P., Novara, A., and Gibert, C.

(1993). Nosocomial pneumonia in ventilated patients: a cohort study evaluating

a�ributable mortality and hospital stay. American Journal of Medicine, 94(3):281–

288.

Fagon, J. Y., Chastre, J., Vuagnat, A., Trouillet, J. L., Novara, A., and Gibert, C. (1996).

Nosocomial pneumonia and mortality among patients in intensive care units.

Journal of the American Medical Association, 275(11):866–869.

Fahrmeir, L. and Tutz, G. (1994). Multivariate statistical modelling based on General-

ized linear models. Springer-Verlag: New-York.

Fine, J. and Gray, R. (1999). A proportional hazards model for the subdistribution of

a competing risk. Journal of the American Statistical Association, 94(446):496–509.

Frangakis, C. E. and Rubin, D. B. (2002). Principal stratification in causal inference.

Biometrics, 58(1):21–29.

Frank, U. (2007). The BURDEN project–assessing the burden of resistance and

disease in Europe. Eurosurveillance, 12(1):E070111.

Freeman, R., Moore, L. S., Garcia, A. L., Charle�, A., and Holmes, A. (2013). Advances

in electronic surveillance for healthcare-associated infections in the 21st century:

a systematic review. Journal of Hospital Infection, 84(2):106–119.

Gastmeier, P., Sohr, D., Ge�ers, C., Nassauer, A., Daschner, F., and Ruden, H.

(2000a). Are nosocomial infection rates in intensive care units useful benchmark

parameters? Infection, 28(6):346–350.

Gastmeier, P., Sohr, D., Just, H. M., Nassauer, A., Daschner, F., and Ruden, H.

(2000b). How to survey nosocomial infections. Infection Control and Hospital

Epidemiology, 21(6):366–370.

213



Chapter 7. Bibliography

7

Gaynes, R. (1997). Surveillance of nosocomial infections: a fundamental ingredient

for quality. Infection Control and Hospital Epidemiology, 18(7):475–478.

Gaynes, R., Richards, C., Edwards, J., Emori, T. G., Horan, T., Alonso-Echanove, J.,

Fridkin, S., Lawton, R., Peavy, G., and Tolson, J. (2001). Feeding back surveil-

lance data to prevent hospital-acquired infections. Emerging Infectious Diseases,

7(2):295–298.

Girou, E., Stephan, F., Novara, A., Safar, M., and Fagon, J. Y. (1998). Risk factors and

outcome of nosocomial infections: results of a matched case-control study of

ICU patients. American Journal of Respiratory and Critical Care Medicine, 157(4

Pt 1):1151–1158.

Goossens, H., Coenen, S., Costers, M., De Corte, S., De Su�er, A., Gordts, B.,

Laurier, L., and Struelens, M. (2008). Achievements of the Belgian antibiotic

policy coordination commi�ee (BAPCOC). Eurosurveillance, 13(46):10–13.

Gordts, B., Vrijens, F., Hulstaert, F., Devriese, S., and Van de Sande, S. (2010). The

2007 Belgian national prevalence survey for hospital-acquired infections. Journal

of Hospital Infection, 75(3):163–167.

Greenland, S. (2000). An introduction to instrumental variables for epidemiologists.

International Journal of Epidemiology, 29(4):722–729.

Haight, T., Tager, I., Sternfeld, B., Satariano, W., and van der Laan, M. (2005). E�ects

of body composition and leisure-time physical activity on transitions in physical

functioning in the elderly. American Journal of Epidemiology, 162(7):607–617.

Haley, R. W., Culver, D. H., White, J. W., Morgan, W. M., Emori, T. G., Munn, V. P.,

and Hooton, T. M. (1985). The e�icacy of infection surveillance and control

programs in preventing nosocomial infections in US hospitals. American Journal

of Epidemiology, 121(2):182–205.
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Hernàn, M. A. (2010). The hazards of hazard ratios. Epidemiology, 21(1):13–15.
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