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1

Introduction

1.1 Motivation

Image processing has become especially important in recent years. The irruption

of smartphones and a massive use of social networks have increased the use of

images, and thus their needs and applications. Moreover, improvements in tech-

nology and acquisition have also increased the use of other image types, such as

magnetic resonance images, ultrasounds, computer tomography, among others.

Despite of technological improvements, images still suffer from a wide range

of degradations and artifacts that are unavoidable. These are mainly due to

acquisition, processing or transmission, such as noise, interferences, motion blur,

misfocus, or lens distortions. These degradations usually decrease the perceptual

fidelity of the image, and also decrease the performance of the task for which it was

created, what negatively influences in an adequate interpretation and analysis of

the data, as well as other post-processing computations (e.g. image registration,

segmentation). It comes therefore as no surprise that two of the most common

signal processing tasks are image enhancement and image restoration, which are

almost present in any image application.

Image restoration aims to estimate the uncorrupted image from a degraded

one, what is usually achieved by modeling the system that degrades the image,

and the subsequent application of a reverse procedure. Unlike image enhancement

that improves the visual appearance of an image, or transforms it in a way that

facilitates computerized analysis for a specific application.

Unfortunately for restoration methods, the degradation system is not always

1



1. Introduction 2

possible to model, either because the information cannot be retrieved from the

degraded image, or because the knowledge about the problem is limited and

imprecise, what means that some of the parameters cannot be estimated. As a

result, it may contribute in a wrong result of some restoration methods, or even

be impossible to apply them.

Therefore, we propose to define a framework to deal with situations, where

due to the lack of information, these restoration methods cannot be applied.

For it, the missing information in the restoration method is substituted by a

decision-making process. I.e., we model the degradation system using a consensus

methodology, in such way that we use a set of possible solutions to select one, or

a combination of them, as the solution that minimizes some error measure, and

thus better approaches the degradation system.

Within decision-making methodologies, we focus on penalty-based decision

making to conform the framework as it presents a good compromise when the

best solution is not known a priori, several solutions can contribute positively in

a better one, and the set of solutions is from a diverse nature. Moreover, this is

carried out on a fuzzy environment, what means that the set of input solutions

are fuzzy. Fuzzy sets add the ability to model and reason with uncertainty,

providing greater flexibility to represent the uncertainty resulting from the lack

of knowledge. However, unlike fuzzy restoration methods that usually use a

single method to model the uncertainty of the entire problem, and fuzzy fusion

methods that usually use a single criterion to aggregate the set of input solutions.

Penalty-based decision making allows to use different restoration methods, as well

as fusing a set of solutions using different actions according to the desirability in

the problem. That in some cases cannot be done by using a single fusion criterion,

and a single fuzzy restoration method.

As there exist too many degradations that may affect an image, we focus on

image restoration methods contaminated by noise. Concretely, on those methods

that model the noise distribution of an image from a set of parameters. Such

that we apply consensus methodology on those approaches that fail when some

of these parameters are not properly estimated, or the noise type does not fit the

noise distribution for which the method was developed. However, this method-

ology is interesting for its adaptability to a wide range of problems in image

processing, both in image restoration and other fields as segmentation and image

reduction, but not only. Moreover, as it also allows to use different methods as
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input solutions, we can work with scenarios where we do not know beforehand

which method is better to use.

Some areas of application

The proposed consensus framework have different applications. Some of these

applications are introduced in this thesis for noise reduction. Specifically:

• There exist many noise reduction methods for a specific noise distribu-

tion [4, 13, 20, 58, 67, 77, 89, 90, 95, 114], however all of them fail in their

performance with images owning a noise distribution for which these al-

gorithms are not optimal; or when exist a mismatch in the assumed noise

model. It would be desirable to have a blind noise suppression algorithm

being able to deal with various noise distributions, or combinations of them.

However this is a complex issue due to the different nature of the images,

in other words, different images may get affected by different noise sources.

Therefore, a blind noise reduction method could be defined with the help

of the proposed methodology, in such way that a consensus solution can

be reached starting with a set of various restoration methods for different

noise distributions.

• Those techniques that demand large amount of data, in order to reduce

the acquisition time, also reduce the temporal averaging; as a consequence,

the noise is increased and may not strictly follow the initial degradation

model. One consequence is the spatially-dependent variance of the noise,

as in the case of images that uses sensitiviy encoding (SENSE) as a re-

construction method [5, 8, 53, 85]. What it may cause the impossibility

of using stationary noise reduction methods. Thus, using the proposed

framework and a restoration method for stationary noise, the uncertainty

of spatially-dependent noise can be addressed.

1.2 Objectives

The main objective of this thesis is providing a framework (or methodology) to

work with missing information in image restoration. Such that those noise reduc-

tion methods that originally cannot be applied because of a slight misfit in the
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data, or any uncertainty in the input parameters, can be adapted using it. For

it, the following sub-objectives are extracted:

1. Study of the applicability of decision making in the field of image

processing, in particular in image noise reduction. Decision mak-

ing has been already used in different areas, such as operational research,

artificial intelligence or management, as well as in other applications of

image processing. We especially focus on penalty-based decision making

methodologies and their fields of application within image processing.

2. Definition of a theoretical framework based on penalty functions

to work with missing information in image restoration methods.

This framework should also incorporate the possibility of applying on ma-

trices (images), subsets of these matrices (pixel regions), or matrix elements

(pixels). What it allows to use different decision criteria depending on the

region, where these regions can be of any shape, and share any character-

istic. For it, the use of penalty functions over cartesian product of lattices

is studied. Furthermore, the definition of penalty functions makes it easily

adaptable to a wide range of problems while some conditions are fulfilled.

3. Applicability of the penalty-based decision making framework

(consensus methodology) to real problems in noise reduction. For

it, various noisy scenarios are studied, where a new method, or a modifi-

cation of an existing one, is carried out to deal with missing information.

We intend to show that using this framework when missing information

exists, it can obtain similar results to the case in which this uncertainty is

nonexistent. Then, the next objectives are carried out for each approach:

(a) Selection of the working scenario in image restoration and the method

to adapt using consensus methodology. Usually, a noise restoration

method that presents some limitations when there exists some lack of

information.

(b) Definition of the new method based on the consensus framework to deal

with the uncertainty. As well as the definition of the required functions

and parameters for the consensus methodology.

(c) Validation of the proposed method with synthetic and real images. The

method is compared with the original image when it is available. In
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those cases where the degradation model can be recovered, the con-

sensus performance is compared to the original method. Moreover, for

those other cases where it can also be compared with existing meth-

ods, a representative selection from the State of the art is carried out,

proving that the proposed method can obtain similar or better results

than existing methods.

1.3 Thesis structure

The thesis is divided in 8 chapters grouped in parts, and an appendix. The

content of them is indicated below:

• Chapter 1 corresponds to this introduction.

• Part I gives an overview of all the necessary materials used in this thesis.

– Chapter 2 provides an introduction to image processing methods fo-

cused on image restoration, as well as the noise distributions that

usually affect images. To conclude, the similarity measures used to

evaluate the performance of the presented approaches on Part III are

introduced.

– Chapter 3 presents an introduction to fuzzy logic and fuzzy set theory.

It begins with the definition of fuzzy sets, and some basic concepts and

their operations. Followed by the introduction to fuzzy logic, to finish

with the definition of L-Fuzzy sets. L-Fuzzy sets and lattice theory

are the basis of the proposed consensus decision-making methodology.

• Part II: Chapter 4 shows the relationship that exists between fuzzy decision-

making and image processing. Then, the necessary tools to define penalty-

based decision making are introduced, a concrete approach of fuzzy decision-

making. Among these tools highlights the family of aggregation functions

used in the aggregation phase, and the definition of penalty functions over

cartesian product of lattices for the exploitation phase. Finally, a complete

overview of the proposed consensus methodology is shown.

• Part III introduces in more detail various applications for image noise re-

duction with consensus methodology. Namely,
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– In Chapter 5, a first approach shows that consensus is a powerful

tool for noise reduction with undetermined noise distribution, because

the noise is not known, the noise model does not follow the initial

assumptions, or the image contains different noise sources that cannot

be properly modeled. The solution is obtained through penalty-based

decision making using a set of filtered images, where these images are

previously filtered by different filters optimized for a specific noise.

– In Chapter 6, a new approach is presented to deal with non-stationary

Gaussian noise. We show the goodness of consensus offering the chance

to use parametric restoration methods when any of the parameters

cannot be properly estimated or the data do not strictly fit the un-

derlying model. In the case of the chosen filter linear minimum mean

square error (LMMSE), the confidence measure is estimated through

a consensus methodology applied over a set of matrices obtained using

different parameter configurations. This consensus estimation allows

to calculate the noise pattern that disturbs the original image, to finally

obtain similar filtered results to the case in which all the parameters

are accurately known before.

– In Chapter 7, a last approach is proposed for spatial non-stationary

noise in MRI. A clear example of this kind of noise can be found in

parallel MRI acquisitions that uses Sensitiviy Encoding (SENSE) as

a reconstruction process, but not only. We adapt the LMMSE es-

timator optimized for stationary Rician noise to the case of spatial

non-stationary Rician noise through penalty-based decision making. In

this case, the calculus of the confidence matrix used by the LMMSE

estimator is carried out by a consensus decision process. The per-

formance of the new proposed filter shows similar behaviour to the

optimal case assuming a noise pattern perfectly known.

• Part IV exposes in Chapter 8 the discussion and general conclusions of this

research, as well as possible future research lines. This chapter also includes

the list of publications derived from this work, showing that penalty-based

decision making is an option for blind restoration of images.

• Appendix A collects the probability distributions and their moments used

for the Chapters 6 and 7.
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2

Introduction to image restoration

Today, images are almost everywhere in our daily life. Hundreds of applications

where we use them: in our mobiles, newspapers, internet, camera surveillance

and so on. There is almost no area where images are not present. Interestingly,

despite this there is not a universally accepted image processing definition ac-

cepted among authors. So we decided to use a widely accepted one: any form

of signal processing for which the input is an image, such as a photograph or

video frame; the output of image processing may be either an image or a set of

characteristics or parameters related to the image [45].

Several processes can be applied to images. We can categorize them into

three types: low-, mid-, and high-level processes [45]. Low-level processes involve

primitive operations such as image pre-processing to reduce noise, contrast en-

hancement, and image sharpening. A low-level process is characterized by the fact

that both its inputs and outputs are images. Mid-level processing on images in-

volves tasks such as segmentation (partitioning an image into regions or objects),

description of those objects to reduce them to a form suitable for computer pro-

cessing, and classification (recognition) of individual objects. A mid-level process

is characterized by the fact that its inputs generally are images, but its outputs

are features extracted from those images (e.g., edges, contours, and the identity

of individual objects). Finally, higher-level processing involves “making sense”

of a set of recognized objects (e.g. a hand taking an object, the position of a

table...), and performing the cognitive functions normally associated with vision.

We should keep in mind that vision is the most advanced of our senses, so

it is not surprising that images play one of the more important roles in human

perception. However, unlike humans, who are limited to the visual band of the

8
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Figure 2.1: Electromagnetic spectrum. Courtesy image by Philip Ronan, under
Creative Commons license.

electromagnetic (EM) spectrum, imaging machines cover almost the entire EM

spectrum (see Figure 2.1), ranging from γ-rays (highest energy) to radio waves

(lowest energy). They can operate on images generated by sources that humans

are not accustomed to associate with images. These include ultrasound and

electron microscopy. Thus, digital image processing encompasses a wide and

varied field of applications.

Therefore, there are numerous ways to acquire images, but our objective in all

is the same: to generate images from sensed data. The output of most sensors is a

continuous voltage waveform whose amplitude and spatial behaviour are related

to the physical phenomenon being sensed. To create an image we need to convert

the continuous sensed data into digital form.

2.1 Image categorization according to its

source

One of the simple ways to categorize the vast amount of image processing appli-

cations is by its source (e.g., visual, X-ray, radio waves, and so on). The electro-

magnetic energy spectrum is the principal energy source for images, although it

is not the only one. Other important sources of energy include acoustic, ultra-
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sonic, and electronic (in the form of electron beams used in electron microscopy).

Therefore, we introduce the source imaging categories that are relevant in this

text, explaining how these are generated and the areas in which they are applied.1

The most used images based on radiation are from the visible spectrum, that is

the portion of the EM spectrum that is visible to the human eye (see Figure 2.1).

A typical human eye will respond to wavelengths from about 430 to 790 nm [45].

In terms of frequency, this corresponds to a band in the vicinity of 380-700 THz.

The infrared band lies just out of the human vision, distinguishing between near-,

mid- and far-infrared. Sometimes near-infrared, also based on light reflection, is

used in conjunction with visual imaging. The images from the visible spectrum

are mainly built with sensors sensible to visible light that convert the electromag-

netic signal into a digital value, for instance, one of the most known sensors are

the charged-coupled device (CCD) used in photo and video cameras, although

they are not the only ones. Hence it is not surprising that visible imaging is the

most familiar and the most used by far to all the others in terms of application.

Examples of its application are optical character recognition (OCR), where im-

ages of typewritten or printed text can be automatically converted into text; or

factory quality control, where images can be used to check the liquid level from a

bottle, up to check if the components of an assembled object are correctly placed.

Other source imaging is X-rays, that is one of the oldest sources of EM ra-

diation used for imaging. The best known use of X-rays is medical diagnostics,

but they also are used extensively in industry and other areas, like astronomy.

X-rays for medical and industrial imaging are generated using an X-ray tube,

which is a vacuum tube with a cathode and anode. The cathode is heated, using

free electrons to be released. These electrons flow at high speed to the positively

charged anode. When the electrons strike a nucleus, energy is released in the

form of X-ray radiation. The energy (penetrating power) of X-rays is controlled

by a voltage applied across the node, and by a current applied to the filament in

the cathode. Computerized axial tomography (CAT) is another important use of

X-rays in medical imaging. CAT is a process in which a ring of detectors encircles

an object (or patient) and an X-rays source, concentric with the detector ring,

rotates about the object. The X-rays pass through the object and are collected

at the opposite end by the corresponding detectors in the ring. As the source

1As it is not the main purpose of this work to explain all types of image applications, we refer
the interested reader for a more extensive study to the Chapters 1 and 2 from R.C. González
and R.E. Woods [45].
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rotates, this procedure is repeated. Tomography consists of algorithms that use

the sensed data to build an image that represents a “slice” through the object.

Motion of the object in a direction perpendicular to the ring of detectors produces

a set of such slices, which constitute a three-dimensional (3-D) rendition of the

inside of the object. In industrial processes, techniques similar to the ones just

discussed, but generally involving higher-energy X-rays, are applicable.

At the other end of the spectrum (γ-rays), the main applications of imaging in

the radio band are in medicine and astronomy. In medicine, radio waves are used

in magnetic resonance imaging (MRI), also known as nuclear magnetic resonance

imaging (NMRI) and magnetic resonance tomography (MRT). MRI is a medical

imaging technique used in radiology to investigate the anatomy and function of

the body in both health and disease, where some of the main advantages of this

technique is that it allows us to diagnose on in vivo tissue, and unlike X-ray and

CAT, MRI presents no known biological hazards. This technique places a patient

in a powerful magnet, such as an MRI scanner, and passes radio waves through

his or her body in short pulses. Then the water molecules in the body, which

have small particles called protons, work like tiny magnets that are very sensitive

to magnetic fields. Then the protons in the body line up in the same direction

due to the magnetic field, in the same way that a magnet can pull the needle

of a compass. Short bursts of radio waves are then sent to certain areas of the

body, knocking the protons out of alignment. When the radio waves are turned

off, the protons realign and in doing so send out radio signals, which are picked

up by receivers. These signals provide information about the exact location of

the protons in the body. They also help to distinguish between the various types

of tissue in the body, because the protons in different types of tissue realign at

different speeds and produce distinct signals. The time taken for the protons to

fully relax is measured in two ways. The first is the time taken for the magnetic

vector to return to its resting state and the second is the time needed for the axial

spin to return to its resting state. The first is called T1 relaxation, the second

is called T2 relaxation. In the same way that millions of pixels on a computer

screen can create complex pictures, the signals from the millions of protons in the

body are combined to create a detailed 3-D volumen of the inside of the body,

being able to produce images in any plane.

Although imaging in the electromagnetic spectrum is dominant by far, there

are a number of other imaging modalities that also are important. Imaging
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using “sound” finds application in geological exploration, industry and medicine.

Geological applications use sound in the low end of the sound spectrum (hundreds

of Hz) while imaging in other areas use ultrasound (millions of Hz). The most

important commercial applications of image processing in geology are in mineral

and oil exploration. Nonetheless, ultrasound imaging finds its best applications in

medicine, especially in obstetrics, where unborn babies are imaged to determine

the health or their development. Ultrasound images are generated using the

following basic procedure:

1. The ultrasound system (a computer, ultrasound probe consisting of a source

and receiver, and a display) transmits high-frequency (1 to 5 MHz) sound

pulses into the body.

2. The sound waves travel into the body and hit a boundary between tissues

(e.g., between fluid and soft tissue, soft tissue and bone). Some of the

sound waves are reflected back to the probe, while some travel on further

until they reach another boundary and get reflected.

3. The reflected waves are picked up by the probe and related to the computer.

4. The machine calculates the distance from the probe to the tissue or organ

boundaries using the speed of sound in tissue (1540 m/s) and the time of

each echo’s return.

5. The system displays the distances and intensities of the echoes on the screen,

forming a two-dimensional image.

In a typical ultrasound image, millions of pulses and echoes are sent and

received each second. Furthermore, the probe can be moved along the surface of

the body and angled to obtain various views.

2.2 Image representation: spatial and

frequency domain

Images that are seen in nature are analog, which means they are continuous

signals in the space/time domain. Therefore, an image can be depicted as a

two-dimensional function f(x, y), where x and y are spatial coordinates, and the
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value of f in any point (x, y) is proportional to the brightness of the image at

that point, and of course, can take any possible value.

However, digital image processing needs that the image f(x, y) is digitized in

order to be understood by a computer. Then, this new image can be represented

as a two-dimensional signal with discrete space coordinates that take values from

a discrete set of values. These coordinates are not necessarily the values of the

physical coordinates when the image was sampled.

Therefore, a digital image, assuming that it is a monochrome (or greyscale)

image, can be seen as a matrix whose row and column indices identify a point in

the image, and the value of the corresponding element of the matrix indicates the

grey level or intensity in that point. This is what is known as pixel, abbreviation

of picture elements. In Figure 2.2 is shown one possible representation of a digital

image.

x

y

Image f(x,y)

(0,0)

(x,y)

Figure 2.2: Digital image.

We represent an N ×M image as

f =


f(0, 0) f(0, 1) · · · f(0,M − 1)

f(1, 0) f(1, 1) · · · f(1,M − 1)
...

...
...

f(N − 1, 0) f(N − 1, 1) · · · f(N − 1,M − 1)

 (2.1)

Putting ai,j = f(i, j) we get a matrix representation:

A =


a0,0 a0,1 · · · a0,M−1

a1,0 a1,1 · · · a1,M−1

...
...

...

aN−1,0 aN−1,1 · · · aN−1,M−1

 (2.2)
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An image can also be represented as a vector, v. For instance, a column vector

of size NM × 1 is formed by letting the first N elements of v be the first column

of A, the next N elements be the second column, and so on. Alternatively, we

can use the rows instead of the columns of A to form such a vector.

On the other hand, we can observe that the origin of a digital image is at

the top left, with the positive x-axis increasing downward and the positive y-axis

increasing to the right. This is due to a conventional representation based on the

fact that many image displays (e.g., TV) sweep an image starting at the top left

and moving to the right one row at a time.

In case the image is a colour image, the information in each coordinate (x, y)

is coded according to the colour space that it is used, creating a multichannel

image. These colour spaces provide a method for representing, organizing and

manipulating colours. Most of these models are based on the combination of

three primary colours to obtain any colour of nature.

The most known colour spaces are RGB, CMYK, HSB, Lab, YCbCr, which

differ in the construction of chromatic circles that uses each one. For exam-

ple, the HSB is based on hue-saturation-brightness, the CMYK uses subtractive

colour mixing Cyan-Magenta-Yellow-Black, or RGB is based on additive mixture

of primary light red, green and blue.

So far, a digital image is introduced as a matrix, whose pixels represent a

proportional value of the intensity in the image, what is considered as spatial

domain.

Nonetheless, the same image can be considered as a non-periodic function,

and be defined in another two-dimensional space whose edges are determined for

the amplitude and the frequency for each direction in the image [45]. This is

known as the frequency domain.

Like one-dimensional signal processing, that transforms the spatial domain

into the frequency domain, the two-dimensional version of the Fourier transform

is used in 2-D. Furthermore, it has the same properties as its homologue in 1-D.

Then, in digital imaging the Discrete Fourier Transform (DFT) is used, whose

expression is shown in Eq. (2.3):

F (u, v) =
N−1∑
x=0

M−1∑
y=0

f(x, y) · e−j2π(ux/N+vy/M), (2.3)

where f(x, y) is a digital image of size N × M . As in the 1-D case, Eq. (2.3)
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must be evaluated for values of the discrete variables u and v in the ranges

u = 0, 1, . . . , N − 1 and v = 0, 1, . . . ,M − 1.

Given the transform F (u, v), we can obtain f(x, y) by using the inverse dis-

crete Fourier Transform (IDFT):

f(x, y) =
1

NM

N−1∑
u=0

M−1∑
v=0

F (u, v) · ej2π(ux/N+vy/M), (2.4)

for x = 0, 1, . . . , N − 1 and y = 0, 1, . . .M − 1. Eq. (2.3) and Eq. (2.4) constitute

the 2-D discrete Fourier transform pair.

As occurs in the time domain, rapid variations in the amplitude is equal to high

values in the high frequency components, and on the contrary, slow variations in

the amplitude correspond to low frequency components. In the 2-D case it is easy

to associate spatial frequencies with the variation patterns of the image intensity.

For instance, low frequencies correspond to homogenous areas of the image,

in other words values that vary slowly, as it is shown in Figure 2.3, that shows

the peppers image and its Fourier spectrum. This image mainly has homogeneous

regions separated by abrupt intensity changes. Smooth areas contribute to the

low frequency component values, which causes high values in the central area of

the DFT. Specifically, the central point with u = v = 0 is what is known as the

DC component of the image, and corresponds to the average grey value.

(a) Peppers image (b) Fourier spectrum of (a)

Figure 2.3: Fourier spectrum of an homogeneous image.

On the other hand, fast variations of the intensity due to the borders and

noise correspond to the values of the high frequencies. Figure 2.4 shows a braided

wicker image that presents a repetitive pattern in the DFT spectrum. Clearly
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this series of peaks are because of the harmonics of the image, present in the

periodic structure of the signal.

(a) Wicker image (b) Fourier spectrum of (a)

Figure 2.4: Fourier spectrum of a textured image.

2.3 Image restoration

Digital images captured by photo and video cameras, including high quality ones,

are usually degraded by a certain amount of noise and blur.

Noise occurs on images for multiple reasons, meaning that noise is due to

stochastic variations in contrast to deterministic variations caused by, among

other reasons, blur or lack of contrast. This noise is mainly introduced during

the image capturing (sensors, amplifiers), the transmission or the recording [45,

104], although in some modalities can be also introduced by their reconstruction

algorithm or by the subject to be imaged, as for instance magnetic resonance

imaging (MRI) or computer tomography (CT). This noise can e.g. be caused

by dust sitting on the lens, by a dissipation in the electronic components or by

electromagnetic distortions during transmission.

Blurring is a form of bandwidth reduction of an ideal image owing to the

imperfect image formation process. The most common causes of blur [18, 45] are

due to an optical system that is out of focus, to the atmospheric turbulence and

to the relative motion between the camera and the original scene. These blurs are

not limited to optical images, for instance, the scattered X-rays radiation produces

blurring and loss of contrast in radiographs; or the electron micrographs may be

damaged by the spherical aberrations of electron lenses.
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In addition to these blurring effects, digital imaging techniques need to deal

with the noise present in the images, which occasionally can lead to a bad perfor-

mance since they affect image quality, what negatively influences in an adequate

interpretation and analysis of the data, as well as other post-processing compu-

tations (e.g. image registration, segmentation). There are two solutions for this

problem. A first approach is to make the methods more robust against noise; a

second solution is to apply noise suppression (colloquially known as denoising)

as a pre-processing step. In both solutions, an accurate noise model is necessary:

the more pre-knowledge about the noise is gotten, a better technique will be built,

leading to a better performance [51].

Then, restoration aims to estimate the uncorrupted image from a blurred and

noisy one. This is achieved by modeling the system that degrades the image, and

the subsequent application of a reverse procedure. Unlike image enhancement,

which are based on human subjective preferences, producing more pleasing results

to an observer. Image restoration is objective, in the sense that tends to be based

on mathematical or probabilistic models of image degradation.

In the field of image restoration, sometimes referred to as image deblurring

or image deconvolution, it is assumed that the characteristics of the degradation

system are known a priori; however, in real situations may not be so, i.e., the

required information to model the system can not be obtained directly from the

image formation process. So in these cases, blur identification is necessary to

estimate the properties of the system from the observed degraded image itself,

prior to the restoration process. The combination of the blur identification and

the restoration process is often referred to as blind image deconvolution [66, 87].

Assuming image restoration methods are linear and spatially invariant sys-

tems [68]. The restoration process can be carried out by means of a linear filter

of which the convolution kernel or the point-spread function (PSF) is spatially

invariant, i.e., is constant throughout the image. These modeling assumptions

can be mathematically formulated as follows. If we denote by f(x, y) the desired

ideal spatially discrete image that does not contain any blur or noise, then the

recorded image g(x, y) is modeled as in the Eq. (2.5) (see also Figure 2.5(a)):
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g(x, y) = h(x, y) ∗ f(x, y) + w(x, y)

=
N−1∑
k1=0

M−1∑
k2=0

h(k1, k2)f(x− k1, y − k2) + w(x, y).
(2.5)

Here w(x, y) is the noise that corrupts the blurred image. Clearly the objective

of image restoration is to make an estimate f(x, y) of the ideal image, given only

the degraded image g(x, y), the blurring function h(x, y), and some information

about the statistical properties of the ideal image and the noise.

f(x, y)
Convolve with

w(x, y)

g(x, y)

h(x, y) +

(a)

F (u, v) Multiply with

W (u, v)

G(u, v)

H(u, v) +

(b)

Figure 2.5: Image formation: (a) in the spatial domain; (b) in the frequency
domain.

An alternative way of describing Eq.(2.5) is through its spectral equivalence.

By applying discrete Fourier transforms to Eq. (2.5), we obtain the following

representation (see also Figure 2.5(b)):

G(u, v) = H(u, v) · F (u, v) + W (u, v), (2.6)

where (u, v) are the spatial frequency coordinates and capitals represent Fourier

transforms. Either Eq. (2.5) or Eq. (2.6) can be used for developing restoration

algorithms. In practice the spectral representation is more often used since it

leads to efficient implementations of restoration filters in the (discrete) Fourier
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domain.

In Eqs. (2.5) and (2.6), the noise w(x, y) is modeled as an additive term.

Typically the noise is considered to have a zero-mean and to be white, i.e., spa-

tially uncorrelated. In statistical terms this can be expressed as in Eq. (2.7) and

Eq. (2.8):

E{w(x, y)} ≈
1

NM

N−1∑
k1=0

M−1∑
k2=0

w(x, y) = 0, (2.7)

Rw(k1, k2) = E{w(x, y)w(x− k1, y − k2)}

≈
1

NM

N−1∑
x=0

M−1∑
y=0

w(x, y)w(x− k1, y − k2) =

σ2
w, if k1 = k2 = 0,

0, else.

(2.8)

Here σ2
w is the variance or power of the noise, E{·} refers to the expected value

operator, and Rw the autocorrelation. Sometimes the noise is assumed to have a

Gaussian probability density function, but not only. As there exist several noise

sources and probability density distributions that affect images.

In general the noise w(x, y) may not be independent of the ideal image f(x, y).

This may happen for instance if the image formation process contains nonlinear

components, or if the noise is multiplicative instead of additive. Unfortunately,

this dependency is often difficult to model or to estimate. Therefore, noise and

ideal image are usually assumed to be orthogonal, which is (in this case) equivalent

to being uncorrelated because the noise has zero-mean. Expressed in statistical

terms, the following condition holds:

Rw(k1, k2) = E{w(x, y)w(x− k1, y − k2)}

≈
1

NM

N−1∑
x=0

M−1∑
y=0

w(x, y)w(x− k1, y − k2) = 0.
(2.9)

The models from Eqs. (2.5) and (2.6) form the foundations for the class of lin-

ear spatially invariant image restoration and accompanying blur identification al-

gorithms. In particular these models apply to monochromatic images. For colour

images, one approach is to extend Eqs. (2.5) and (2.6) to incorporate multiple

colour components. In many practical cases of interest this is indeed the proper

way of modeling the problem of colour image restoration since the degradations of

the different colour components (such as the tri-stimulus signals red-green-blue,
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luminance-hue-saturation, or luminance-chrominance) are not independent. This

leads to a class of algorithms known as “multichannel filters” [9, 29, 42].

Below, in Section 2.3.1 several restoration methods are introduced. These

can be grouped in: inverse filter, least square filter, as the Wiener, and itera-

tive restoration filters. Followed by Section 2.3.2 that introduces different noise

models.

2.3.1 Image restoration algorithms

As already mentioned above, image restoration methods pretend to estimate the

ideal image without imperfections f̂(x, y) from the degraded image g(x, y) [68].

For it is assumed that the point-spread function (PSF) is known a priori, and

therefore once the restoration filter, denoted by h(x, y), has been designed, the

restored image is given by the Eq. (2.10):

f̂(x, y) = h(x, y) ∗ g(x, y)

=
N−1∑
k1=0

M−1∑
k2=0

h(k1, k2)g(x− k1, y − k2),
(2.10)

or in the spectral domain as in Eq. (2.11):

F̂ (u, v) = H(u, v) ·G(u, v). (2.11)

Furthermore, there exist techniques that use information from multiple blurred

images to reconstruct the original image [2, 38, 81, 103], however this section is fo-

cused on algorithms that need only one degraded image and some prior knowledge

that characterizes the PSF. Therefore, the objective of the following algorithms is

to design the filter h(x, y) in the spatial domain, or H(u, v) in its spectral version.

Inverse filter

An inverse filter is a linear filter whose PSF hinv is the inverse of the blurring

function h, and therefore it satisfies:

hinv(x, y) ∗ h(x, y) =
N−1∑
k1=0

M−1∑
k2=0

hinv(k1, k2)h(x− k1, y − k2) = δ(x, y). (2.12)
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When formulated as in Eq. (2.12), inverse filters seem difficult to design.

However, the spectral counterpart of Eq. (2.13) immediately shows the solution

to this design problem:

Hinv(u, v) ·H(u, v) = 1 ⇒ Hinv(u, v) =
1

H(u, v)
. (2.13)

So the reconstruction has an advantage in the spectral domain, being sufficient

to replace (2.13) into (2.11).

F̂inv(u, v) = Hinv(u, v) ·G(u, v) =
1

H(u, v)
(H(u, v) · F (u, v) + W (u, v))

= F (u, v) +
W (u, v)

H(u, v)
.

(2.14)

If the noise is absent, the second term
(

W (u,v)
H(u,v)

)
disappears in Eq. (2.14), so

that the restored image is identical to the ideal image. The main advantage of

this filter is its simplicity because it just needs a priori knowledge of the PSF.

Although there also exist drawbacks [45], namely:

• The inverse filter may not exist because H(u, v) is zero at selected frequen-

cies (u, v), as happens with the blur models linear motion and out-of-focus.

This drawback can be minimized to some extent by removing points that

cause instability in the system using the filter known as pseudo-inverse.

This is possible because the zeros are located at few points in the plane

(u, v), and therefore can be easily removed from the calculation in Eq. (2.14)

without affecting the end result.

• As noise exists, H(u, v) would not be zero but it would have small values.

So the term W (u,v)
H(u,v)

may dominate the estimation of F̂inv(u, v), amplifying

the noise and spoiling the end result. One possible solution is to limit the

filter to a frequency range closeby the origin, reducing the possibility to find

values close to zero.2

2In literature, this effect is commonly referred to as the ill-conditionedness or ill-posedness
of the restoration problem.
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Least-square filters

To overcome the noise sensitivity of the inverse filter, a number of restoration

filters have been developed that are collectively called least-squares filters [45, 68].

The best known are the Wiener filter and the constrained least-squares filter,

although both reach a similar solution, the theoretical basis that lies behind is

very different.

Wiener filter assumes that the degradation function and the noise are ran-

dom variables, with the aim to find an estimation of f̂ that minimizes the mean

square error between the ideal and the restored image.

error = E{(f 2 − f̂ 2)}. (2.15)

Whereas the noise and the image are uncorrelated, the minimum of the error

function given in Eq. (2.15), is obtained with the (2.16) presented in the frequency

domain [45, 68, 69].

F̂ (u, v) =

[
H∗(u, v)Sf (u, v)

Sf (u, v)|H(u, v)|2 + Sη(u, v)

]
G(u, v)

=

[
H∗(u, v)

|H(u, v)|2 + Sη(u, v)/Sf (u, v)

]
G(u, v)

=

[
1

H(u, v)

|H(u, v)|2

|H(u, v)|2 + Sη(u, v)/Sf (u, v)

]
G(u, v),

(2.16)

where:

• H(u, v) ≡ PSF.

• H∗(u, v) ≡ Complex conjugate of H(u, v).

• |H(u, v)|2 ≡ H∗(u, v)H(u, v).

• Sf (u, v) ≡ Power spectrum of the ideal image (|F (u, v)|2).

• Sη(u, v) ≡ Power spectrum of the noise (|W (u, v)|2).

The output of Eq. (2.16) is known as the Wiener filter in honor to N. Wiener,

who was the first to propose this approach in 1942. In [45] can be found a more

detailed explanation of this filter, also known as minimum mean square error

filter.
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The problem of spectral zeros in the PSF is avoided for the Wiener filter, as it

is unlikely that the denominator is zero for a given value of the frequencies u and

v. According to the term Sη(u, v)/Sf (u, v), the filter is equivalent to the pseudo-

inverse filter when the power spectrum of the noise is low, i.e., Hwiener =
1

H
if

H 6= 0, and 0 otherwise. On the other hand, if this is a high value, it behaves as

a lowpass filter that eliminates noise.

On the downside, there is the need to estimate the amount of noise and to

previously know the power spectrum of the ideal image. While the noise can be

modeled as white Gaussian noise, and thus the estimation of |W (u, v)|2 can be

simplified to a constant. It still remains the problem that ideal image, in most

practical cases, is unknown. This is why the approximation shown in Eq. (2.17)

is usually used, where K is an adjustable parameter which is used to avoid having

to know Sf (u, v).

F̂ (u, v) =

[
1

H(u, v)

|H(u, v)|2

|H(u, v)|2 + K

]
G(u, v). (2.17)

Another possibility is to replace Sf (u, v) by an estimation of the power spec-

trum of the blurred image and compensate for the variance of the noise, as follows

in Eq. (2.18).

Sf (u, v) ≈ Sg(u, v) − σ2
w ≈ 1

NM
G∗(u, v)G(u, v) − σ2

w. (2.18)

Finally, a statistical model can be also used to the ideal image. Often, these

models have parameters that can be tuned to the actual image being used. A

widely used model (not only popular in image restoration but also in image

compression) is the following 2-D causal autoregressive model [15, 16, 101]:

f(x, y) = a0,1f(x, y − 1) + a1,1f(x− 1, y − 1) + a1,0f(x− 1, y) + σ2
w. (2.19)

In this model, the intensities at the spatial location (x, y) are described as the

sum of weighted intensities at the neighbouring spatial locations and a small

unpredictable component, which is often modeled as white noise with variance

σ2
w. Once the model parameters are chosen, the power spectrum can be calculated

as:

Sf (u, v) =
σ2
w

|a0,1e−ju + a1,1e−ju−jv + a1,0e−jv|2
. (2.20)
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Constrained least-squares filter is another approach for overcoming

some of the difficulties of the inverse filter (excessive noise amplification) and

of the Wiener filter (estimation of the power spectrum of the ideal image), while

still retaining the simplicity of a spatially invariant linear filter.

It remains essential to know the degradation function PSF, in addition to the

mean and variance of the noise. Parameters that can be easily estimated from

the degraded image [6], what presents a great advantage for this technique.

If the restoration is a good one, the blurred version of the restored image

should be approximately equal to the recorded distorted image, except for a

certain amount of noise (2.21):

g(x, y) = f(x, y) ∗ hPSF(x, y) + w(x, y),

f̂(x, y) = g(x, y) ∗ h(x, y),

g(x, y) ≈ f̂(x, y) ∗ hPSF(x, y).

(2.21)

Therefore, it stands to reason that equality of Eq. (2.22) is satisfied.

‖g(x, y) − f̂(x, y) ∗ hPSF(x, y)‖2 ≈ σ2
w. (2.22)

The aim of this technique is to find the optimal solution that gives the smallest

possible value of σ2
w, thereby minimizing Eq. (2.22). Considering the fact that the

inverse filter tends to amplify the noise, a criterion is to select the solution that is

as “smooth” as possible. It is therefore often used a high pass filter C(x, y), such

as the Laplacian, so it obtains information about the high frequency content of

the restored image, i.e., the noise.

So what we pretend is to find the minimum of the function C [45] defined as:

C =
N−1∑
x=0

M−1∑
y=0

[∇2f(x, y)]2, (2.23)

subject to the constraint:

‖G−HF̂‖2 ≈ ‖η‖2. (2.24)

The solution in the spectral domain to this problem is given by Eq. (2.25)
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[45, 68].

F̂ (u, v) =

[
|H(u, v)|∗

|H(u, v)|2 + α|C(u, v)|2

]
G(u, v), (2.25)

where α is the parameter that must be tuned so that the constraint in Eq. (2.24)

is satisfied, and C(u, v) is the Fourier transform of the Laplacian mask operator

in Eq. (2.26).

c(x, y) =

 0 1 0

1 −4 1

1 1 0

 . (2.26)

As was previously introduced, the great similarity between the Eqs. (2.25)

and (2.17) is obvious.3

Iterative restoration filters

The filters formulated in the previous sections are usually implemented in the

frequency domain using Eq. (2.11), since that way the direct convolution with

the 2-D PSF h(x, y) can be avoided. However, there are situations in which spatial

domain convolutions are preferred over the spectral domain implementation, such

as when the size of the images is excessively large.

It has been shown in numerous articles [1, 16, 27, 40, 61, 70, 86, 109, 113] that

iterative processes can be particularly effective in several situations, such as those

in which prior knowledge of the image is available in the form of restrictions; the

blur function is roughly estimated; and the degree of noise removal depends on

local image information or noise functions spatially variants.

Unlike methods discussed so far, iterative methods previously assume an initial

ideal image and a known model of PSF, and at each iteration, the image and blur

parameters are reestimated for its use in the next iteration.

The basic form of iterative restoration filters is the one that iteratively ap-

proaches the solution of the inverse filter, and is given by the following spatial

domain iteration:

f̂i+1(x, y) = f̂i(x, y) − β(g(x, y) − h(x, y) ∗ f̂i(x, y)). (2.27)

Here f̂i(x, y) is the restoration result after i iterations. Moreover, it is noticed

3In chapter 5 from R.C. González and R.E. Woods [45] can be found a more detailed de-
scription of this filter.
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that if the number of iterations becomes very large, the f̂i(x, y) approaches the

solution of the inverse filter:

lim
i→∞

f̂i(x, y) = hinv(x, y) ∗ g(x, y). (2.28)

Among the many advantages that these methods have, can be highlighted the

followings:

• No requirement of the convolution of images with 2-D PSFs containing

many coefficients. The only convolution is that of the restored image with

the PSF of the blur, which has relatively few coefficients.

• No Fourier transform is required, making applicable to images of arbitrary

size.

• No excess noise amplified as happens with the inverse filter, because the

iteration can be terminated whenever an acceptable restoration result has

been achieved.

• The basic form can be extended to include all type of a priori knowledge,

in such a way that all the knowledge is formulated in the form of projective

operations on the image.

• Easily extended for spatially variant restoration, i.e., restoration where ei-

ther PSF of the blur or the model of the ideal image vary locally.

On the negative side, a very significant disadvantage of iterative schemes is

a slow convergence. Per iteration, the restored image f̂i+1(x, y) changes only a

little. Therefore, many iteration steps are required before an acceptable point of

termination of the iteration is reached. The reason is that the above iteration is

essentially a steepest descent optimization algorithm, which is known to be slow

in convergence. However, it is possible to reformulate the iterations in the form

of, for instance, a conjugate gradient algorithm, which exhibits a much higher

convergence rate; or into a primal or dual formulation based on an alternating

direction method of multipliers (ADMM), that appear to be more efficient because

of the dual formulation.4

4A more detailed explanation of these algorithms can be viewed in [1, 16, 27, 40, 61, 70, 113].
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2.3.2 Image noise models

Images are known to suffer from a wide range of degradations and artifacts due

to acquisition, processing or transmission, such as noise and interferences. That

is, each element involved in the pipeline used to obtain the final (reconstructed)

image (sensors, lens, A/D converter, enhancement algorithm, reconstruction al-

gorithm...), influences the noise characteristics. For example, CCD sensors of

digital photo and video cameras, are photon count devices, i.e. count photons

to produce electrons, commonly known as photoelectrons. As the number of

counted photons is a random amount, images often tend to suffer “photon count-

ing noise”, especially in low light conditions. So this noise is often modeled as a

Poisson distribution, although under certain conditions can be modeled as Gaus-

sian noise. Other many images are corrupted by impulse noise, also known as

salt-and-pepper noise, because they are transmited by noisy digital channels. Its

effect is similar to sprinkle black and white dots in the image. Although only few

pixels are noisy, these are very harmful visually. Other known degradations are

the one found in the grain of photographic films, that sometimes is modeled as

Gaussian, and others as Poisson noise; and the quantization noise that is inherent

in the amplitude quantization process that occurs in the analog-digital converter.

Different classifications are found in literature. One of these classifies the

noise models in three main categories, namely impulse noise, additive noise and

multiplicative noise. In addition to other specific noise probability density func-

tions that commonly affect images, such as Gaussian (a type of additive noise),

Poisson and Rice. Moreover, noise models can also present other characteristics,

as the stationarity in the noise process. I.e, if the noise is stationary, the noise

statistics (such as the variance) are invariant to the position in the image. While

for the non-stationary noise, the noise characteristics depend on the position in

the image.

In the remainder of this section, the previously mentioned noise models and

their characteristics are introduced. As well as the common situations that pro-

duce such degradations. Finally, it explains what the non-stationary noise con-

sists.
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Impulse noise

Impulse noise is found in situations where quick transients, such as faulty switch-

ing, take place during imaging. It is characterized by the fact that only part of

the image pixels are affected, while the others remain unchanged. Furthermore, a

changed grey value of a noisy pixel, is not related to the original noise free value.

Two types of impulse noise can be found in literature:

• Fixed (valued) impulse noise: the grey level of a corrupted pixel is always

replaced by one of k fixed grey values n1, . . . , nk:

g(x, y) =



n1, with probability pr1,

n2, with probability pr2,

. . .

nk, with probability prk,

f(x, y), with probability 1 −
k∑

i=1

pri,

where g is the resultant noisy image and f is the noise free image.

A well-known example of this type of noise is salt-and-pepper noise, where

there are only two noise values n1 and n2, given by the minimum and max-

imum allowed grey level (i.e., n1 = 0 (black) and n2 = 2m − 1 (white) if we

work with integer grey values stored by m bits). As an example, in Fig-

ure 2.6(a) is given the popular picture from Lena adding salt-and-pepper

noise with the probability pr1 = pr2 = 10%.

• Random (valued) impulse noise: contrary to the fixed valued impulse noise

case, the grey level of an affected pixel is now replaced by a random grey

value instead of one of a few fixed values:

g(x, y) =

f(x, y), with probability 1 − pr,

η(x, y), with probability pr,

where g is the resultant noisy image, f is the noise free image; and pr ∈ [0, 1]

denotes the probability that a grey value is corrupted and replaced by a

random grey value η(x, y) coming from a given distribution.
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(a) Salt-and-pepper noise (pr = 0.1) (b) Gaussian noise (σ = 0.1)

Figure 2.6: Lena picture with impulse and additive noise.

Additive noise

In the case of additive noise, a random noise value is added to the grey value of

each pixel:

g(x, y) = f(x, y) + η(x, y),

where g is the resultant noisy image, f is the noise free image; and η(x, y) is a

random noise value coming from a given distribution. A case of additive noise

extensively studied is the Gaussian noise [20, 90, 114].

Gaussian distribution or normal distribution arises in an image due to

factors such as electronic circuit noise and sensor noise due to poor illumination

and for high temperature. It is considered the most prominent and most studied

probability distribution in statistics. Let g(x;µ, σ) denote a pixel intensity of an

observed image, and x ∈ f indicates the corresponding pixel intensity of the noise

free image, where µ and σ respectively denote the mean and standard deviation

of the noise.

g(x;µ, σ) =
1

σ
√

2π
exp−1

2
(
x− µ

σ
)2.
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Additive white Gaussian noise (AWGN) has generally been found to be a

reasonable model for noise originating from electronic amplifiers. As an example,

in Figure 2.6(b) is shown the Lena image with Gaussian noise, where µ = 0 and

σ = 0.1.

Multiplicative noise

If an image is corrupted with multiplicative noise, then to each grey value, a noise

value is added that is a random multiple of the original grey value:

g(x, y) = f(x, y) + η(x, y) · f(x, y),

where η(x, y) is a random noise value coming from a given distribution. For

example speckle noise, that e.g. occurs in satellite images (SAR images), medical

images (ultrasound images) and in television environments, is usually modeled

this way with qU(x; σ) coming from a uniform distribution, given by:

qU(x; σ) =

 1
2σ

√
3
, |x| ≤

√
3σ,

0, else,

for x ∈ R where σ denotes the standard deviation of the noise. The higher this

standard deviation, the higher the noise level. As an example, in Figure 2.7

is shown a Synthetic Aperture Radar, known as SAR images, from the city of

Munich in 1994, courtesy of NASA.

Poisson noise density function

Poisson density function is used in any field related to counting. Can be e.g.

in astronomy, photons arriving at a telescope; in biology, the number of muta-

tions on a given strand of DNA; in computed tomography, photons arriving to

the X-ray detector. According to the quantum mechanics, the measurement of

light intensity can be interpreted as a spatio-temporal integration, for which the

total number of photons emitted by the source in the considered spatio-temporal

interval is often assumed to be a Poisson distribution.

Let x ∈ f , the corresponding pixel intensity of the noise free image, λ is the

expected number of occurrences in a given interval, and g is the resultant noisy

image:
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Figure 2.7: SAR image from Munich, Germany (April 18, 1994).

(a) CT brain (b) MRI brain (σ = 0.15)

Figure 2.8: Poisson and Rice noise image examples.

g(x, λ) = e−λλ
x

x!
.

Poisson noise is unbiased: it does not alter the intensity mean. Also, it has

a variance that increases linearly with the original intensity x. As an example,

in Figure 2.8(a) is shown a CT brain image provided by the Uppsala University

Hospital. It can be seen how it is affected by Poisson noise.



2. Introduction to image restoration 32

Rice noise density function

Rice, or Rician distribution, is the probability density function formed by taking

the absolute value of a complex Gaussian with nonzero mean. This distribution,

known as Rice distribution, is defined as:

g(x|ν, σ) =
x

σ2
exp

(
−(x2 + ν2)

2σ2

)
I0

(xν
σ2

)
, (2.29)

where σ is the standard deviation of Gaussian distribution in the complex domain

(considered equal in real and imaginary image), ν is the amplitude of the signal

without noise, x is the value in the image and I0 is the modified Bessel function

of order zero.
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Figure 2.9: Probability density function in a Rice distribution, depending on the
amplitude ν.

In contrast to Poisson noise processes, Rice noise processes do alter the inten-

sity mean. Furthermore, it is dependant on the amplitude of the signal ν. When

the signal is zero (ν = 0), the Rice distribution becomes a Rayleigh distribution:

g(x|σ) =
x

σ2
exp

(
−x2

2σ2

)
, x ≥ 0. (2.30)

While if ν is big enough (i.e. ν ≥ 3) the distribution can be approximated with

a Gaussian distribution (Eq. (2.31)).
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g(x|ν, σ) =
1

2πσ2
exp

(
−(x2 −

√
ν2 + σ2)2

2σ2

)
. (2.31)

A graphical interpretation of the probability density function is shown in

Figure 2.9 for a given σ = 1, where we can observe for this case the distribution

behaviours we just mentioned.

Rice noise is one of the probability density functions that characterizes mag-

netic resonance imaging (MRI) [55, 57]. Concretely, MRIs that consist of an

array of complex numbers in the K-space domain. This data is transformed with

a 2D Fourier transform, where two resulting images can be displayed, specifi-

cally real and imaginary images. Additionally a magnitude image can be formed,

called magnetic resonance magnitude image (MR magnitude image), by taking

the square root of the sum of the squares of the real and imaginary images on a

pixel-by-pixel basis [13]. The noise in each signal is assumed to have a Gaussian

distribution with zero mean, and each channel of the complex image is assumed

to be contaminated with white noise. The real and the imaginary images are

reconstructed from the acquired data by the complex Fourier transform, which

preserves the Gaussian characteristics of the noise. Furthermore, the variance of

the noise is uniform over the whole field of view and, due to the Fourier transform,

the noise in the corresponding real and imaginary voxels can be assumed uncor-

related. As an example, a T2 MRI image of a synthetic brain, generated from

BrainWeb data set [31] with Rician noise of σ = 0.15 can be seen in Figure 2.8(b).

From stationary noise to non-stationary noise

In practice, there are many situations where the noise distribution depends on

the position in the image (non-stationary noise). This can be both due to the

acquisition device itself (e.g. interference from other devices), or by various post-

processing steps (e.g. locally adaptive filtering, reconstruction algorithm). An

example of an image with artifically generated non-stationary noise is given in

Figure 2.10. In this example, the noise variance varies with the position in the

image, but does not depend on the underlying image. It means that σ2 becomes

dependent on the position x: σ2(x).

In general, the estimation of non-stationary noise is an issue that presents

serious difficulties because it usually requires too many parameters. Moreover,

it also needs some prior information that is not always available. Therefore in
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Figure 2.10: Example of an image with artificially generated non-stationary noise.

cases we must deal with variant noise, we will introduce a model that allows us

to simplify the whole process without loss of generality.

2.4 Image quality assessment measures

Images can suffer distortion due to several sources, from the acquisition process

itself to compression, transmission through noisy channels and others. On the

other hand, images can also undergo quality improvement processes, like enhance-

ment or restoration techniques. In each case it is useful to quantify the quality of

the resulting image.

An ideal quality assessment method should be able to cope and to quantify

any kind of distortion. However this may be quite a hard task and probably

application dependent, since the importance of a specific type of degradation is

different depending on the purpose of the image, i.e., a particular noise level may

be acceptable in home pictures but may lead to poor results in a segmentation

application; some blur of the edges may lead to a critical information lost in

MRI whereas the same process may even be able to ease the interpretation of

an ultrasound image. Then, it follows that different indexes take into account

different features of the image to assess its quality. It is important to know the

behaviour of a particular index with different distortions in order to properly

understand the results. So the different assessment measures must be seen as
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companions rather than competitors.

Full-reference methods for quality assessment are those in which a signal is

compared to a ground truth image, i.e. a golden standard. Many are the quality

measures presented along the years [7, 32, 34, 39, 94]. However, within these

methods, the most frequently used are those error based methods, as the mean

square error (MSE), and variations as the peak signal to noise ratio (PSNR).

However, these measures are not bounded; a higher MSE represents worst qual-

ity, although a higher PSNR means better quality. Although they give a measure

of pixelwise similarity between the images, they do not explicitly take into ac-

count any structural information in the images or any sort of subjective measure.

Despite they are simple to calculate and have clear physical meaning, their limi-

tations have been widely reported in the literature [43, 94, 108].

On the other side, there are methods for quality assessment that rely on the

analysis of the structural information in the image. These methods have proved

being of great interest for very different kinds of images, ranging from natural

scenes to medical scenarios. A full-reference quality assessment method based on

the structural similarity of two images is the so-called structural similarity (SSIM)

index. As of today, it has proved to be versatile and robust in many different

environments [91]. However, it has a bias considering some degradation more

important than others [3, 7]. For instance, blur is minimally taken as degradation,

although for medical images it may constitute an important structural change.

Unlike the SSIM index that hardly interprets blurring like a distortion, quality

index based on local variance (QILV) gives a high penalty to it. QILV is based on

the assumption that a great amount of the structural information of an image is

encoded in the distribution of its local variance. Both indexes are bounded; the

closer to one, the better the image.

2.4.1 Mean square error (MSE)

The mean square error (MSE) [39, 100] is the most used criterion to evaluate

the performance of an estimator. It gives a measure of how pixelwise similar two

images are. It is also useful to relay the concepts of bias, precision, and accuracy

in the statistical estimation. Though, it does not take into account any structural

information of the image.

The MSE of two images f and g is defined as
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MSE(f, g) =
1

NM

N−1∑
x=0

M−1∑
y=0

(f(x, y) − g(x, y))2. (2.32)

Taking N and M as the height and width of the image, respectively; and f(x, y)

the pixel value in the position (x, y) in the image f .

2.4.2 Peak signal-to-noise ratio (PSNR)

The peak signal-to-noise ratio (PSNR) [54], is the ratio between the maximum

possible power of a signal and the power of corrupting noise that affects the fidelity

of its representation. Because many signals have a very wide dynamic range,

PSNR is usually expressed in terms of the logarithmic decibel scale. Although it

is easy to calculate, it does not always match ideally with the visual assessment, as

in some specific situations it can give a wrong impression of the image quality [43].

The PSNR of two images f and g is calculated as:

PSNR(f, g) = 20 · log10

 maxx,y{f(x, y)}√
1

NM

N−1∑
x=0

M−1∑
y=0

(f(x, y) − g(x, y))2

 , (2.33)

where N and M the height and width of the image, maxx,y{f(x, y)} is the highest

possible intensity value (e.g., in the case of an 8 bit image is 255), and f(x, y)

the pixel value in the position (x, y) in the image f .

It should be noted that PSNR can be expressed in terms of the MSE as follows:

PSNR(f, g) = 20 · log10

(
maxx,y{f(x, y)}√

MSE

)
= 10 · log10

(
maxx,y{f 2(x, y)}

MSE

)
. (2.34)

2.4.3 Mean structural similarity index (SSIM)

Based on the assumption that human visual perception is highly adapted for

extracting structural information, Z. Wang et al. [108] proposed an approach fo-
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cused in the structural information of an image as those attributes that represent

the structure of objects in the scene, independent of the average luminance and

contrast. The system separates the task of similarity measurement into three

comparisons: luminance, contrast and structure.

1. Luminance comparison:

l(fx, gx) =
2µfxµgx + C1

µ2
fx

+ µ2
gx + C1

, (2.35)

with µfx and µgx the local means of the x-th local window at image f and

g, respectively, and C1 a constant.

2. Contrast comparison:

c(fx, gx) =
2σfxσgx + C2

σ2
fx

+ σ2
gx + C2

, (2.36)

with σfx and σgx the local standard deviations of the x-th local window at

image f and g, respectively, and C2 a constant.

3. Structure comparison:

s(fx, gx) =
σfgx + C3

σfxσgx + C3

, (2.37)

with σfgx the local covariance of the x-th local window between the images

f and g, and C3 a constant.

The local ssim-index then is defined as

ssim(fx, gx) = [l(fx, gx)]α · [c(fx, gx)]β · [s(fx, gx)]γ, (2.38)

with α, β and γ weights in the interval [0, 1]. The overall value is obtained using

the mean structural similarity index (SSIM):5

SSIM(f, g) =
1

M

M∑
x=1

ssim(fx, gx), (2.39)

5Also found in the literature in its abbreviation as MSSIM.
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where f and g are the reference and the distorted image, respectively; fx and gx

are the image contents at the x-th local window; and M is the number of local

windows in the image.

2.4.4 Quality index based on local variance (QILV)

Quality index based on local variance (QILV) [3] is based on the assumption

that a great amount of the structural information of an image is coded in its

local variance distribution. Although the local variance itself has been taken into

account in SSIM, its statistics, however, have been widely ignored. On the other

hand, QILV is not so affected by noise, and should be decreasing with respect to

an increasing noise level.

The QILV between two images f and g is defined as:

QILV(f, g) =
2µVf

µVg

µ2
Vf

+ µ2
Vg

·
2σVf

σVg

σ2
Vf

+ σ2
Vg

·
σVfVg

σVf
σVg

, (2.40)

where

µVf
=

1

NM

N∑
x=1

M∑
y=1

Var(f(x, y)), (2.41)

σVf
=

(
1

NM − 1

N∑
x=1

M∑
y=1

(Var(f(x, y)) − µVf
)2

)1/2

, (2.42)

σVfVg =
1

NM − 1

N∑
x=1

M∑
y=1

(Var(f(x, y)) − µVf
)(Var(g(x, y)) − µVg), (2.43)

and N and M are the height and width of the images. Var(·) is the variance.

The first term in Eq. (2.40) carries out a comparison between the means of the

local variances of both images. The second one, compares the standard deviation

of the local variances. This term is related with the blur and the sharpness of

the image. The third term is the one to introduce cross information in the two

images. To avoid computational problems with small values, some constants may

be added to every term in Eq. (2.40).

Note that although there is a purposedly great similarity between Eq. (2.40)

and the SSIM index in Eq. (2.38), the latter relies on the means of the local

statistics of the images, the former deals with the (global) statistics of the local
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(a) (b) (c) (d) (e)

Figure 2.11: Synthetic experiment: Black square (256 grey levels). (a) Original
Image; (b) Blurred image using a square 5 × 5 window; (c) Blurred Image using
a square 21 × 21 window; (d) Image with additive Gaussian noise with 0 mean
and σ = 5; (e) Image plus constant 10.

variances of the images.

In order to make the index more sensible to certain kind of degradations, each

of the three components may be weighted by a different positive exponent σ, β

and γ:

QILV(f, g) =
[ 2µVf

µVg

µ2
Vf

+ µ2
Vg

]α
·
[ 2σVf

σVg

σ2
Vf

+ σ2
Vg

]β
·
[ σVfVg

σVf
σVg

]γ
. (2.44)

2.4.5 Measuring similarity across distortion types

Due to the great variety of possible degradations one may think of situations in

which the information provided by a specific measure does not match a subjective

quality judgement. Methods may have a bias towards the image statistics of the

structural measure on which the design is grounded. Therefore, it is important

to know the behaviour of a particular measure with different distortions in order

to properly understand the results.

Many studies exist where the behaviour of quality measures with respect to

various sources of degradation is analized [3, 7, 94, 108]. As an example, consider

the synthetic image in Fig. 2.11(a), degraded from different sources:

• The image is blurred via convolution with a 5×5 averaging kernel, Fig. 2.11(b).

• The image is blurred via convolution with a 21 × 21 averaging kernel,

Fig. 2.11(c).

• The image is corrupted by Gaussian noise with 0 mean and σ = 5, Fig. 2.11(d).

• Finally, a constant (10) is added to the image, Fig. 2.11(e).
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Distorsion MSE PSNR SSIM QILV
Blur 5 × 5 160.04 26.09 0.96 0.42
Blur 21 × 21 692.49 19.73 0.87 0.01
White Noise 943.09 18.39 0.63 0.92
Constant 100 28.13 0.86 1.00

Table 2.1: Quality assessment using different measures for the black square ex-
periment in Fig. 2.11.

The quality of the degraded images is assessed using different methods: MSE,

PSNR, SSIM and QILV. Results are on Table 2.1.

From this particular example we can observe that Error-based methods, MSE

and PSNR, give measures that are not totally consistent with respect to the differ-

ent degradations (e.g., blur), although they give a general quality assessment. On

the other hand, SSIM is bounded and takes into account structural information.

However, this index considers some sources of degradation more important than

others, i.e., there exists a bias towards some features of the image. For instance,

blur is taken as a minimal degradation, although for many applications it may

constitute an important structural loss; on the other hand, white noise is seen as

a substantial degrading effect although, as a matter of fact, noisy structures may

be clearer to the human eye than the blurred ones (when, for instance, identi-

fying organs in ultrasound images). Finally, QILV seems to be a good bounded

measure that reduces the bias introduced by blurring and noise, where blur is

highly penalized.

In conclusion, to properly test restoration or enhancement methods, several

quality indexes should be used complementarily, in such a way that they consider

different sources of degradation, such as structural information, blur and noise.

For instance, the goodness of a filtering method lays not only in its ability to

remove the noise, but also in the preservation of edges within the image.
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Introduction to fuzzy logic and

fuzzy set theory

Set theory, along with mathematical logic, is one of the axiomatic foundations

of classical mathematics. We are used to dealing with so-called “crisp” sets,

whose membership only can be true or false in the sense of bi-valued logic, with 1

typically indicating true and 0 indicating false. However, in real life situations, an

object often satisfies a property to some degree, i.e., it does not completely satisfy

the property, but also does not completely not satisfy the property. For instance,

a “tall” person may be someone over 1.90m high. A person 2m high is considered

tall. This person is taller than a person 1.89m, but we cannot say the person

1.89m is not tall at all. As it is the case for crisp sets. Therefore, fuzzy sets allow

to define membership functions between 0 and 1. They provide a framework for

incorporating human knowledge in the solution of problems whose formulation is

based on imprecise concepts. Based on this principle, fuzzy sets have been also

applied to image processing. Intensity transformations and spatial filtering are

the two most frequent areas in which fuzzy techniques for image processing are

applied.

3.1 Fuzzy sets

As noted, the origin of fuzzy logic is the notion of fuzzy set. Before addressing the

study of the theory of fuzzy sets, some of the basic concepts of ordinary (crisp)

set theory, are reviewed in order to achieve a better understanding of both.

41
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3.1.1 Review of ordinary (crisp) set theory

Definitions, terminology and notation

The starting point of set theory are the concepts of element and set. A set is

usually defined as a collection of elements. Typically the elements that conform

a set have some property in common that makes them capable of belonging to

the set, but this requirement is merely anecdotic. The set is usually represented

by a capital letter, type A, B, C, . . . ; and the elements thereof are represented

by a lowercase letter (a, b, c , . . . ).

A membership relation is defined on the sets, which is denoted by the sym-

bol ∈. So, if the element a belongs to the set A, this fact is formalized by the

expression

a ∈ A.

In case b does not belong to A it is expressed as

b /∈ A.

Regarding the way of description of the set, this can be done in enumerative

way, A = {a1, a2, . . . , an}, or by the formation rule to which makes reference,

for instance, A = ‘the ten first natural numbers’. Such definition, as it can be

expected, is equivalent to write it in enumerative way A = {1, 2, 3, . . . , 10}.

The cardinal of a set is defined as the number of elements that are part of

the set. If that is a finite cardinal number, the set is called finite. Otherwise,

the set is infinite. Within the latter, must be distinguished the set of countable

cardinal, which will be those whose elements can be within a 1:1 correspondence

with integer numbers (for example, the set of even numbers); on the other hand,

we find the set of uncountable cardinal, like for instance, the set of real numbers

between two numbers a and b.

The inclusion or containment is extracted from the membership relationship;

a set B is said to be “contained” in a set A when all elements from B are in A.

If such is the case, we can express in abbreviated form B ⊆ A, or either that

A ⊇ B. If it is verified that B ⊆ A and A ⊆ B simultaneously, then the two sets

are equal.

Two sets are said to be disjoint if they have no elements in common. These

sets are called also mutually exclusive.
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Given a problem, the universal set, denoted by U , is the set of all the elements

of the problem. In a complementary way, the empty set, denoted by ∅, is a set

without any element. Naturally, the sets U and ∅ are mutually exclusive.

Let U be a universe which any set A is a subset, i.e.:

A ⊆ U, ∀A.

In ordinary (crisp) set theory any element x belonging to U belongs or does not

belong to the subset A, in a clear and unequivocal manner, without other options

apart from these two.

The membership or not of an arbitrary element x in a subset A is given in

most cases by verifying whether or not a predicate that characterizes A and leads

to a bipartition of the universe of discourse U .

For instance, let U be the universe that consists of all the rivers in the world.

The set A is defined as that which consists of all elements of U that verified the

predicate “x flows in Europe”. To cite a few examples:

“The Rhine” ∈ A

“The Nile” 6∈ A

“The Ebro” ∈ A

“The Guadalquivir” ∈ A

It should be noted that it has been possible to provide a definition of the set A

because its corresponding predicate allows the bipartitioning of the universe U .

Characteristic function

The concept of belonging or not of an element in a set A can be expressed nu-

merically by a characteristic function.1 This function assigns to each element x

of the universe a binary value (1 or 0) depending if x belongs or not to the set

A [60, 65].

ϕA : U −→ {0, 1}, ϕA(x) =

{
1, if x ∈ A,

0, if x 6∈ A.
(3.1)

1Some authors also called membership function. In this text we have chosen to use charac-
teristic function for ordinary set theory and membership function for fuzzy set theory.
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Any set A ⊆ U can be defined by the pairs forming each element x of the universe

and its characteristic function, expressed as follows:

A = {(x, ϕA(x)) | x ∈ U}. (3.2)

For instance, the set A = {3, 4, 5, 6, 7, 8, 9, 10} is represented by its characteristic

function:

ϕA(x) =

{
1, if x ∈ {3, 4, 5, 6, 7, 8, 9, 10},
0, in other case.

Basic operations on sets

Given any two sets A and B included in U it is possible to define a set of basic

operations between them, as the complement, intersection and union [65, 107].

Definition 3.1.1 (Complement). The complement of A is denoted by A, and

consists of all the elements of U that do not belong to A (unary operator).

x ∈ A if x 6∈ A.

Its characteristic function is:

ϕA(x) = 1 − ϕA(x). (3.3)

Definition 3.1.2 (Intersection). The intersection is denoted by A ∩ B and it

is defined as the set formed by those elements of U that belong to A and B

simultaneously:

x ∈ A ∩B if x ∈ A and x ∈ B.

The corresponding characteristic function is

ϕA∩B(x) = min(ϕA(x), ϕB(x)). (3.4)

Definition 3.1.3 (Union). The union is the set formed by those elements that

belong to A, or belong to B, or both simultaneously. It is denoted by A∪B and

its characteristic function is:

ϕA∪B(x) = max(ϕA(x), ϕB(x)). (3.5)
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Fundamental properties of ordinary sets operations

The operations between crisp sets have certain laws and properties:

1. Commutativity

A ∪B = B ∪ A

A ∩B = B ∩ A
(3.6)

2. Associativity

(A ∪B) ∪ C = A ∪ (B ∪ C)

(A ∩B) ∩ C = A ∩ (B ∩ C)
(3.7)

3. Idempotence

A ∪ A = A

A ∩ A = A
(3.8)

4. Absorption

(A ∪B) ∩ A = A

(A ∩B) ∪ A = A
(3.9)

5. Distributivity

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
(3.10)

6. Absorption by U and ∅
A ∪ U = U

A ∩ ∅ = ∅
(3.11)

7. Identity

A ∪ ∅ = A

A ∩ U = A
(3.12)

8. Involution

A = A (3.13)

9. De Morgan’s laws

A ∪B = A ∩B

A ∩B = A ∪B
(3.14)

10. Law of contradiction

A ∩ A = ∅ (3.15)
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11. Law of excluded middle

A ∪ A = U (3.16)

3.1.2 Extension to fuzzy sets

L.A. Zadeh introduced the concept of a fuzzy set [115] by extending the char-

acteristic functions to membership functions and in this way allowing a gradual

transition between satisfying a property (belonging to a set) or not. Giving the

possibility that an element may have a membership degree between 0 and 1.

The more an object belongs to a set (e.g., the taller a person), the higher its

membership degree.

Then, while in ordinary (crisp) set theory a set A in a universe U divides

the universe into two parts: the elements that belong to A (and thus satisfy a

given defining property), and the elements that do not belong to A. On the other

hand, in fuzzy set theory, a fuzzy set A in U is characterized by a membership

function, µA, that associates with each element of U a real number in the interval

[0, 1] [62, 65, 107]. The value of µA(x) represents the grade of membership of x

in A. The nearer the value of µA(x) is to unity, the higher the membership grade

of x in A, and conversely when the value of µA(x) is closer to zero. The concept

“belongs to”, so familiar in ordinary sets, does not have the same meaning in

fuzzy set theory. With ordinary sets, we say that an element either belongs or

does not belong to a set. With fuzzy sets, we say that all x for which µA(x) = 1

are full members of the set, all x for which µA(x) = 0 are not members of the set,

and all x for which µA(x) is between 0 and 1 have partial membership in the set.

Using mathematical notation a fuzzy set A is defined as:

A = {(x, µA(x))|x ∈ U}. (3.17)

Membership function

The characteristic function is replaced by a membership function that is defined

as:
µA : U → [0, 1],

x → µA(x),
(3.18)

in such a way that µA(x) is the membership degree of an element x ∈ U into

the fuzzy set A. If µA(x) = 0 the element x does not belong to the set, and if
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µA(x) = 1, x is a full member of the set.

We observe that crisp sets are a special case of fuzzy sets. This situation arises

when µA(x) can have only two values, say 0 and 1, the membership function

reduces to the characteristic function of a crisp set A.

The shape of the membership function has a certain subjective component,

opposite to the rigid (objective) form of the characteristic functions from ordinary

set theory. Depending on the application of the set or the concepts represented by

them, these functions can acquire different shapes, and often can be selected with

a large degree of freedom by the “designer”, which in practise can be understood

as the possibility of including some expertise.

Although functions may have any shape, the literature tends to work with

standard membership shapes [97] (Figure 3.1):

1. Gaussian functions or with S-shape (Figure 3.1(a)). They use the formula

µ(x) =
1

d
√

2π
exp

(
(x−m)2

2d2

)
, (3.19)

with parameters m and d that allow to model “modifications”, as for in-

stance “very small”. Although these are complex to calculate.

2. Triangular and trapezoidal functions [56]. They are defined according to the

number of vertices. ∆(a, b, c) for the triangular functions (Figure 3.1(b))

and T (a, b, c, d) for the trapezoidal functions (Figure 3.1(c)). These are

simple to handle in numerical algorithms.

(a) Gaussian

a b c

(b) Triangular

a b c d

(c) Trapezoidal

Figure 3.1: Typical membership shapes.

X-J. Zeng and G. Singh Madan [117] defines a model of membership function

which represents the main classes, the pseudo trapezoid-shaped function.
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Definition 3.1.4 (Pseudo trapezoid-shaped (PTS)). z The pseudo trapezoid-

shaped function is a continuous function given by

A(x; a, b, c, d, h) =


I(x), x ∈ [a, b),

h, x ∈ [b, c],

D(x), x ∈ (c, d],

0, x ∈ U − [a, d] = {x|x ∈ U, x /∈ [a, d]},

(3.20)

where a ≤ b ≤ c ≤ d, a < d, I(x) ≥ 0 is a strictly increasing monotonic function

on [a, b) and D(x) ≥ 0 is a strictly monotonically decreasing function on (c, d]

(Figure 3.2). When the membership function of a fuzzy set A is a PTS function,

it is called PTS membership function and is denoted as A(x) = A(x; a, b, c, d, h).

When the fuzzy set is normalized (i.e., h = 1), its membership function is simply

denoted by A(x) = A(x; a, b, c, d).

a b c d

Figure 3.2: Pseudo trapezoid-shaped function (PTS).

According to the Definition 3.1.4, trapezoidal functions are a special case of

PTS functions when b < c and

I(x) =
x− a

b− a
, D(x) =

x− d

c− d
, (3.21)

and the triangular functions are the special case when b = c and

I(x) =
x− a

b− a
=

x− a

c− a
, D(x) =

x− d

c− d
=

x− d

b− d
. (3.22)

As an example, in Figure 3.3 is shown some fuzzy sets defined in the universe

age. The fuzzy set “young” represents the membership degree regarding the

youth parameter that would have each age. In other words, the set expresses

the degree to which each element would be characterized as “young”. A fuzzy

set could be considered as a possibility distribution, that it is different than a

probability distribution [36].
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Figure 3.3: Example of fuzzy sets.

It can be seen in Figure 3.3 that fuzzy sets overlap, then an element x, as

for instance x = 29, may have different membership degree in two fuzzy sets:

“young” and “mature”, indicating that it owns qualities associated with both

fuzzy sets.

For practical reasons, it is often assumed that the unverse U is finite, i.e.

S = {x1, · · · , xn}, and the pair {(µA(x), x)} is denoted as µA(x)/x, and each

pair µA(x)/x is called fuzzy singleton [60, 65, 107]. Then, the fuzzy set A can be

rewritten as

A = {(µA(x), x)} = {µA(x)/x} =

= µA(x1)/x1 + · · · + µA(xn)/xn =
∑n

i=1 µA(xi)/xi,
(3.23)

where + and
∑

must be understood in the sense union. By convention, the pairs

µA(x)/x with µA(x) = 0 are omitted.

3.1.3 Basic definitions on fuzzy sets

Here are some basic definitions useful to handle fuzzy sets [60, 62, 65, 107]. As

for instance, the support of the fuzzy set, that are the elements of the universe

whose membership is larger than zero. As well the kernel is determined by all

the elements that have the membership degree equal to 1. Here, we define some

of the most relevant.2

Definition 3.1.5 (Empty set). A fuzzy set A is empty, and written A = ∅, if

2It is considered that U ⊂ R is the universe of all fuzzy sets.
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and only if

µA(x) = 0, ∀x ∈ U.

Definition 3.1.6 (Equality). Two fuzzy sets A and B defined on the same uni-

verse U are equal, and written A = B, if and only if

µA(x) = µB(x), ∀x ∈ U.

Definition 3.1.7 (Support). The support supp(A) is defined as

supp(A) = {x ∈ U | µA(x) > 0}.

Definition 3.1.8 (Kernel). The kernel or core ker(A) is defined as

ker(A) = {x ∈ U | µA(x) = 1}.

Definition 3.1.9 (Normalized). A is called normalized if

(∃x ∈ U)(µA(x) = 1).

Definition 3.1.10 (Pseudo-normalized). A is called pseudo-normalized if

sup
x∈U

µA(x) = 1.

Definition 3.1.11 (Height). The height h(A) is defined as

h(A) = sup
x∈U

µA(x).

Definition 3.1.12 (Plinth). The plinth plt(A) is defined as

plt(A) = inf
x∈U

µA(x).

Definition 3.1.13 (Convexity). A fuzzy set A is convex if and only if for any

x1, x2 ∈ U and any λ ∈ [0, 1],

µA(λx1 + (1 − λ)x2) ≥ min{µA(x1), µA(x2)}.

As in the case of ordinary sets, the notion of containment plays a central role
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in the case of fuzzy sets [115]. This notion is defined as follows in Definition 3.1.14

Definition 3.1.14 (Containment). A is contained in B (or, equivalently, A is a

subset of B, or A is smaller than or equal to B) on the universe U if and only if

A ⊆ B ⇔ µA(x) ≤ µB(x), ∀x ∈ U.

3.1.4 Basic operations on fuzzy sets

In order to manipulate fuzzy sets, several operations can be defined. The usual set

operations defined on crisp sets (union, intersection and complement) can been

extended to deal with fuzzy sets in different ways [65, 107, 115]. We first present

these definitions which are obvious extensions of the corresponding definitions for

ordinary sets (Figure 3.4).

Definition 3.1.15 (Union). A union of two fuzzy sets A,B with respective mem-

bership functions µA and µB is characterized by the membership function:

µA∪B(x) = max{µA(x), µB(x)} = µA(x) ∨ µB(x), ∀x ∈ U.

Definition 3.1.16 (Intersection). An intersection of two fuzzy sets A,B with

respective membership functions µA and µB is characterized by the membership

function:

µA∩B(x) = min{µA(x), µB(x)} = µA(x) ∧ µB(x), ∀x ∈ U.

Note that ∪ and ∩ have the associativity property that is, A ∪ (B ∪ C) =

(A ∪B) ∪ C, and A ∩ (B ∩ C) = (A ∩B) ∩ C, respectively.

Definition 3.1.17 (Complement). A complement of a fuzzy set A is defined as

µ¬A(x) = 1 − µA(x).

However, unlike what happens with crisp sets, this is not the only possible

way to define these operations; different functions may be suitable to represent

them in different contexts. Therefore, not only the membership functions of fuzzy

sets will be dependent on the context but also the operations on these sets [65].
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A B

(a) Union

A B

(b) Intersection

A

A

(c) Complement

Figure 3.4: Basic operations on fuzzy sets. Standard definition.

Fuzzy complement

Given a fuzzy set A ⊂ U , its complement is defined as the fuzzy set A whose

membership function is given by the expression:

µA(x) = C(µA(x)), ∀x ∈ U, (3.24)

where C is a function from [0, 1] to [0, 1] that must fulfill the following properties:

1. Boundary conditions: C(0) = 1, C(1) = 0.

2. Monotonicity: for all a, b ∈ [0, 1], if a ≤ b, then C(a) ≥ C(b).

In most cases, it is desirable to consider some additional requirements for

these functions:

3. C is a continuous function.

4. C is involutive, what means that C(C(a)) = a, ∀a ∈ [0, 1].

There are many functions that fulfill the above described properties, and

therefore they can be used to represent blur complement. Some of them are:

C(x) = 1 − x, Standard negation.

C(x) = 1−x
1−λx

λ ∈ (0,∞), Sugeno negation.

C(x) = (1 − xw)1/w w ∈ (0,∞), Yager negation.

Fuzzy intersection: t-norm

Given two fuzzy sets A and B, defined on the same universe U , their intersection is

defined as a fuzzy set A∩B whose membership function is given by the expression:

µA∩B(x) = T (µA(x), µB(x)), ∀x ∈ U, (3.25)
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where the function T is a triangular norm or t-norm [65]. A t-norm is a mapping

T : [0, 1] × [0, 1] → [0, 1] that verifies the following properties:

1. Commutativity: T (x, y) = T (y, x), ∀x, y ∈ [0, 1].

2. Associativity: T (T (x, y), z) = T (x, T (y, z)), ∀x, y, z ∈ [0, 1].

3. Monotonicity:

if (x ≤ y) and (w ≤ z) then T (x,w) ≤ T (y, z), ∀x, y, w, z ∈ [0, 1].

4. Absorption: T (x, 0) = 0, ∀x ∈ [0, 1].

5. Identity: T (x, 1) = x, ∀x ∈ [0, 1].

There are many functions that meet these properties and thus can be used to

represent the intersection of fuzzy sets. Some of them are:

T (x, y) = min(x, y), Minimum t-norm (or Gödel t-norm).

T (x, y) = max(0, x + y − 1),  Lukasiewicz t-norm.

T (x, y) = x · y, Product t-norm.

T (x, y) =


b, if a = 1,

a, if b = 1,

0, otherwise.

Drastic t-norm.

Sometimes it is necessary to restrict the possible t-norms considering three

additional requirements [65]:

1. Continuity: T is a continuous function.

2. Subidempotency: T (x, x) < x, ∀x ∈]0, 1[.

3. Strict monotonicity: a1 < a2 and b1 < b2 implies T (a1, b1) < T (a2, b2).

The axiom of continuity prevents a situation in which a small change in the

degree of membership in the fuzzy set A or B produces a large change (discontin-

uous) in the degree of membership in A ∩ B. The subidempotency is taken into

account when the degrees of membership in A and B for some x have the same

value. This axiom expresses the requirement that the degree of membership in

A∩B in this case does not exceed this value. The third requirement is a stronger

condition on monotonicity.
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Fuzzy union: t-conorm

Given two fuzzy sets A and B defined on the same universe U , their union is

defined as a fuzzy set A∪B whose membership function is given by the expression:

µA∪B(x) = S(µA(x), µB(x)), ∀x ∈ U, (3.26)

where the function S is a triangular conorm, also called t-conorm or s-norm. This

is a mapping S : [0, 1] × [0, 1] −→ [0, 1] that satisfies the following requirements:

1. Conmutativity: S(x, y) = S(y, x), ∀x, y ∈ [0, 1].

2. Associativity: S(x, S(y, z)) = S(S(x, y), z), ∀x, y, z ∈ [0, 1].

3. Monotonicity: if (x ≤ y) and (w ≤ z) then S(x,w) ≤ S(y, z), ∀x, y, w, z ∈
[0, 1].

4. Absorption: S(x, 1) = 1, ∀x ∈ [0, 1].

5. Identity: S(x, 0) = x, ∀x ∈ [0, 1].

As in the previous case for the t-norm, there exist a large number of func-

tions that satisfy these properties and can be used to represent the union. Some

examples are:

S(x, y) = max(x, y), Maximum t-conorm.

S(x, y) = min(1, x + y), Bounded sum.

S(x, y) = x + y − x · y, Probabilistic sum.

S(x, y) =


y, if x = 0,

x, if y = 0,

1, otherwise.

Drastic t-conorm.

Sometimes it is necessary to restrict the possible t-conorms considering three

additional requirements [65], which take into account special cases, as was done

for the t-norm:

1. Continuity: S is a continuous function.

2. Superidempotency: S(x, x) > x, ∀x ∈]0, 1[.

3. Strict monotonicity: a1 < a2 and b1 < b2 implies S(a1, b1) < S(a2, b2).
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Relationship between fuzzy operations

From the general properties of t-norms and t-conorms it is easy to deduce that

these functions are bounded by the minimum and maximum functions:

T (x, y) ≤ min(x, y) ∀x, y ∈ [0, 1],

S(x, y) ≥ max(x, y) ∀x, y ∈ [0, 1].

A particular choice of the operators union, intersection and complement can

verify the generalized Morgan’s laws:

C(T (x, y)) = S(C(x), C(y)),

C(S(x, y)) = T (C(x), C(y)).

In this case we say that the t-norm and t-conorm are dual with respect to the

fuzzy complement. In general, given a complement function, you can associate

a t-norm for each s-norm (and vice versa). For example, using the negation as

a complement function, the pairs minimum-maximum and product-probabilistic

sum verify the generalized Morgan’s law.

Not all t-norms and t-conorms will be dual, nor will be mutually distributive

functions. According to [65]:

1. The operators min and max are dual with respect to the fuzzy complement

C.

2. The minimum and maximum operators also verify the distributivity prop-

erty:

min(x,max(y, z)) = max(min(x, y),min(x, z)),

max(x,min(y, z)) = min(max(x, y),max(x, z)).

3. Given a t-norm T and an involutive fuzzy complement C, the binary oper-

ation S on [0, 1] defined by

S(a, b) = C(T (C(a), C(b)),

∀a, b ∈ [0, 1], is a dual t-conorm w.r.t. C.

4. Given a t-conorm S and an involutive fuzzy complement C, the binary
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operation T on [0, 1] defined by

T (a, b) = C(S(C(a), C(b)),

∀a, b ∈ [0, 1], is a dual t-norm w.r.t. C.

5. Let T and S be dual operators that satisfy the complementary laws w.r.t.

C, i.e.

S(x,C(x)) = U,

T (x,C(x)) = ∅.

Then T and S do not satisfy the distributivity property.

3.1.5 Properties of fuzzy sets

The laws and properties, as has been seen, that are fulfilled by crisp sets, are not

always met in the case of fuzzy sets. Then, we analyze what laws and properties

are verified by fuzzy sets, and which are not:

1. Commutativity: is always verified, because the t-norms and t-conorms are

commutative by definition.

2. Associativity: is also verified since the t-norms and t-conorms are also as-

sociative.

3. Idempotency: is met if the minimum and maximum are chosen as operators

for the intersection and union respectively. But if for example the product

t-norm and the probabilistic sum are chosen then it is not met.

4. Absorption: is also met if the pair minimum-maximum is chosen. With

other norms, it does not necessarily happens the same.

5. Distributivity: also holds for the minimum and maximum, but not neces-

sarily for other norms.

6. Absorption and identity: is always met because the last property of t-norms

and t-conorms.
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7. Involution of the complement: is verified if it is defined µA(x) = 1 − µA(x),

and then:

µ
A

(x) = 1 − µA(x) = 1 − (1 − µA(x)) = µA(x). (3.27)

8. De Morgan’s laws: is effectively enforced if the t-norm and s-norm chosen

are derived one from the other. I.e.: T (x, y) = 1 − S(1 − x, 1 − y).

9. Complementary laws: generally is not met. It is perhaps the most obvious

consequence of introducing the concept of fuzziness in the sets.

It can be easily verified that if the sets are crisp sets (membership function

restricted to 0 or 1) the differences between the several norms disappear, becoming

the classic intersection and union operators.

Some authors in fuzzy set theory attribute to it the fact that there is ar-

bitrariness in the choice of the operators union and intersection. Despite this,

that seems a drawback, it can be on the other hand an advantage, because it

allows great flexibility to address different problems involving “vague” concepts.

If certain properties of crisp set must be fulfilled, a t-norm and t-conorm must be

chosen that allow it. This choice will result in one or another type of fuzzy logic.

3.1.6 The extension principle

Permits a generalization of conventional operators, providing a mechanism for

calculating fuzzy sets obtained by a “crisp” transformation (not fuzzy) of a certain

number (N) of fuzzy sets. The extension principle states that the image of fuzzy

set X under the mapping f can be expressed as a fuzzy set Y [107]. Specifically,

if X1, X2, . . ., Xn are fuzzy sets with membership functions µ1(x1), µ2(x2), . . . ,

µN(xN), the new fuzzy set Y = f (X1, X2, . . . , XN) is the function of belonging:

µ(y) = max
x=f (−1)(y)

[
N

min
i=1

µi(xi)

]
(3.28)

3.1.7 α-cuts: from fuzzy sets to crisp sets

There exists a direct way to pass from fuzzy sets to crisp sets, through so-called

α-cuts [65].
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Definition 3.1.18 (weak α-cut). Let the fuzzy set A ∈ U , and let α ∈ (0, 1].

The weak α-cut Aα is defined as

Aα = {u ∈ U | µA(u) ≥ α}.

Remark that the choice α = 0 would not yield new information (because it

would result in the universe U). Further, in a lot of properties this special case

would need to be excluded. Therefore, this case is usually excluded from the

definition.

Definition 3.1.19 (strong α-cut). Let the fuzzy set A ∈ U , and let α ∈ [0, 1[.

The strong α-cut Aα+ is defined as

Aα+ = {u ∈ U | µA(u) > α}.

Remark that the choice α = 1 would not yield new information (because it

would result in the empty set ∅). Further, in a lot of properties this special case

would need to be excluded. Therefore, this case is usually excluded from the

definition.

Then, given a α ∈]0, 1] and a fuzzy set A, it is defined the α-cut of A as the

set Aα, whose characteristic function is defined as:

ϕAα(x) =

{
1, if µA(x) ≥ α,

0, otherwise.
(3.29)

Definitely, the weak α-cut is formed by those elements whose membership

functions equals or exceeds the threshold α. In the case of the strong α-cut, is

formed by those elements whose membership functions exceeds the threshold α:

ϕAα(x) =

{
1, if µA(x) > α,

0, otherwise.
(3.30)

Any fuzzy set A can be represented by the union of its α-cuts as follows:

µA(x) = max
α∈]0,1]

[α · ϕAα(x)] (3.31)

The α-cuts are particularly useful in the study of properties such as reflexivity,

symmetry and transitivity.
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3.2 Fuzzy logic

The fuzzy set theory can be used to represent linguistic expressions that are used

to describe sets or algorithms. Fuzzy sets can express the vagueness of words

and sentences commonly accepted as “red flower” or “slight change”. The human

ability to communicate by vague or uncertain definitions is an important attribute

of intelligence.

3.2.1 Linguistic variables

A linguistic variable is a variable whose values are words or sentences that fall in

a default language. Each of these words or terms is known as linguistic label and

is represented by a fuzzy set defined on the universe of the variable. For instance,

the body temperature can be classified as low, normal, high or too high. Each of

these terms is a linguistic label that can be defined as a fuzzy set. The sets that

conform the variable are shown in Figure 3.5.
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Figure 3.5: Definition of the linguistic variable body temperature.

3.2.2 Fuzzy relations: logical operators

As discussed in the previous Section 3.1.4, the operators union, intersection and

complement are calculated all in the same universe. However, the cartesian prod-

uct allows products from more than one universe.
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Cartesian product

Let U and V be two universes. A fuzzy relation R between U and V is defined

as a fuzzy set whose universe is the cartesian product U × V . I.e.:

R = {((x, y), µR(x, y)) / (x, y) ∈ U × V },
µR : U × V −→ [0, 1].

(3.32)

If A1 ⊆ U and A2 ⊆ V , and if the cartesian product of A1 and A2 is defined

as:

µA1×A2(x, y) = min(µA1(x), µA2(y)), (3.33)

then, this function would be represented as shown in Figure 3.6.

A2

A1
V

U A1 × A2

Figure 3.6: Cartesian product of two fuzzy sets A1 and A2.

For instance, if U = V = R, the following fuzzy relation can be defined which

expresses how similar are two real numbers x and y:

R = {((x, y), µR(x, y))|(x, y) ∈ R2}. (3.34)

µR(x, y) =

{
(1 + (x− y)4)−1, if |x− y| ≤ 5,

0, otherwise.
(3.35)

However, the main utility of fuzzy relations is the ability to act as logical connec-

tives.
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Logical connective “AND”

If we have two fuzzy sets A ⊆ U and B ⊆ V , and a pair (x, y) ∈ U ×V , the AND

connective which indicates the extent to x ∈ A and y ∈ B can be deployed by

the following fuzzy relation:

µAND(x, y) = min(µA(x), µB(y)). (3.36)

One can see that this concept is very similar to the intersection of fuzzy sets.

Not exactly the same, since the intersection operation is defined for sets in the

same universe. However, precisely because of this similarity, it is common to

define “AND” by means of any t-norm, and not just by using the minimum.

Logical connective “OR”

The “OR” connective, that gives an idea of the extent that x ∈ A or y ∈ B, is

usually defined as the relation:

µOR(x, y) = max(µA(x), µB(y)), (3.37)

or by any other t-conorm.

Logical implication “IF-THEN”

In fuzzy logic there are many ways in which implication can be defined; different

implication functions can be used based on t-norms and t-conorms. Following

are introduced the more common fuzzy implications, of which the Mandani im-

plication (minimum) and Larsen (product) are the easier to implement.
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µM(x, y) = min(µA(x), µB(y)), Mamdani.

µP (x, y) = µA(x) · µB(y), Larsen.

µR(x, y) = 1 − µA(x) + µA(x) · µB(y), Reichenbach.

µL(x, y) = min(1 − µA(x) + µB(y), 1),  Lukasiewicz.

µW (x, y) = max(1 − µA(x),min(µA(x), µB(y)), Willmott.

µKD(x, y) = max(1 − µA(x), µB(y)), Kleene-Dienes.

µRG(x, y) =

{
1, ∀(x, y) µA(x) ≤ µB(y),

0, ∀(x, y) µA(x) > µB(y).
Reschner-Gaines.

µG(x, y) =

{
1, ∀(x, y) µA(x) ≤ µB(y),

µB(y), ∀(x, y) µA(x) > µB(y).
Brouwer-Godel.

µRG(x, y) =

{
min(µA(x)/µB(y), 1), ∀(x, y) µB(y) 6= 0,

1, ∀(x, y) µA(x) = 0.
Goguen.

When µA and µB only take the values 0 and 1, the above definitions are

consistent with the implication of classical logic (where 0 the value of falsehood

and 1 to truth), except the implications µM and µP , which therefore are not real

extensions of the binary implication.

3.3 L-fuzzy sets

In some cases, the unit interval does not suffice as an evaluation space. Therefore,

J.A. Goguen generalized the fuzzy sets introduced by Zadeh to L-fuzzy sets [37,

44] where it is assumed a set, denoted as L, of degrees of membership. Then,

in order to make sense to ask what the maximum and minimum values of an

L-fuzzy set are, it needs some kind of ordering. Therefore, L must be, in general,

a lattice.

3.3.1 Lattice theory

A lattice is a partially ordered set in which every two elements have a supremum

(also called a least upper bound) and an infimum (also called a greatest lower

bound). An example is given by the natural numbers, partially ordered by divis-

ibility, for which the supremum is the least common multiple and the infimum

is the greatest common divisor. Therefore, to give the definition of a complete
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lattice [17], we have to start from that of a partially ordered set.

Definition 3.3.1 (Poset). A partially ordered set (poset) is couple (P,≤P ), where

P is a non-empty set and ≤P is a binary relation on P that satisfies:

• (∀x ∈ P )(x ≤P x) (reflexivity).

• (∀(x, y) ∈ P 2)(x ≤P y and y ≤P x ⇒ x = y) (anti-symmetry).

• (∀(x, y, z) ∈ P 3)(x ≤P y and y ≤P z ⇒ x ≤P z) (transitivity).

If further also each two elements in the partially ordered set (P,≤P ) are compa-

rable (i.e., (∀(x, y) ∈ P 2)(x ≤P y or y ≤P x)), then (P,≤P ) is called a totally

ordered set or chain. The length of a chain is given by the cardinality of the chain

minus one.

Some important concepts that are defined in a poset are the following:

Definition 3.3.2. Let (P,≤P ) be a poset, A ⊆ P and b ∈ P .

• b is an upper bound of A ⇔ (∀a ∈ A)(a ≤P b),

• b is a lower bound of A ⇔ (∀a ∈ A)(b ≤P a),

• A is bounded above in (P,≤P ) ⇔ (∃b ∈ P ) (b is an upper bound of A),

• A is bounded below in (P,≤P ) ⇔ (∃b ∈ P ) (b is a lower bound of A),

• A is bounded in (P,≤P ) ⇔ A is bounded above and A is bounded below,

• b is the greatest element of A ⇔ b ∈ A and b is an upper bound of A,

• b is the least element of A ⇔ b ∈ A and b is a lower bound of A,

• b is the supremum of A(b = supA) ⇔ b is the least upper bound of A,

• b is the infimum of A(b = inf A) ⇔ b is the greatest lower bound of A.

By the help of those concepts, the definition of a complete lattice can be given.

Definition 3.3.3 (Lattice). A poset (P,≤P ) is called a lattice if every doubleton

in P has a supremum and infimum.

Definition 3.3.4 (Complete lattice). A lattice (L,≤L) is called complete if every

non-empty subset of L has a supremum and infimum.
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Definition 3.3.5 (Bounded lattice). A bounded lattice is a lattice (L,≤L) that

additionally has a greatest element 1 and a least element 0, which satisfy

0 ≤ x ≤ 1, ∀x ∈ L.

Remark that ([0, 1],≤) forms a complete lattice and that fuzzy sets as intro-

duced by Zadeh are a special case of L-fuzzy sets.

3.3.2 Membership function

For a complete lattice L = (L,≤L), an L-fuzzy set A in a universe U is charac-

terised by its membership function χA:

χA : U → L,

x → χA(x),
(3.38)

in such a way that χA(x) is the membership degree of an element x ∈ U in the

L-fuzzy set A. The higher this degree (w.r.t. ≤L), the more the element belongs

to the set.

Remark that ([0, 1],≤) forms a complete lattice and the fuzzy sets as intro-

duced by Zadeh are a special case of L-fuzzy sets.

3.3.3 Cartesian product of lattices

Given a lattice L = {L,≤,∨,∧}, which is a poset with the partial ordering ≤ in L

and operations ∨ and ∧ which satisfy the properties of absorption, idempotency,

commutativity, and associativity. That is, a poset such that any two elements a,

b have an unique minimal upper bound a∨ b and an unique maximal lower bound

a ∧ b in L. The cartesian product of lattices can be defined as follows:

Proposition 3.3.1. [24] Let L1 = {L1,≤1,∨1,∧1} and L2 = {L2,≤2,∨2,∧2} be

two lattices. The cartesian product L1 ×L2 = {L1 ×L2,≤,∨,∧} with ≤ defined

componentwise by

(x1, x2) ≤ (y1, y2) if and only if x1 ≤1 y1 and x2 ≤2 y2

and

∨((x1, x2), (y1, y2)) = (∨1(x1, y1),∨2(x2, y2)),
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∧((x1, x2), (y1, y2)) = (∧1(x1, y1),∧2(x2, y2))

is a lattice.

3.3.4 L-Fuzzy logical operators

Definitions

The fuzzy logical operators on [0, 1] can be extended to operators on L = (L,≤L)

as follows.

Definition 3.3.6 (Negator).

• A negator N on L is a decreasing L−L mapping (w.r.t. ≤L) that satisfies

N (0L) = 1L and N (1L) = 0L.

• A negator N is an involutive negator on L if (∀x ∈ L)(N (N (x)) = x).

Definition 3.3.7 (Conjunctor).

• A conjunctor C on L is an increasing L2 − L mapping (w.r.t. ≤L) that

satisfies C(0L, 0L) = C(0L, 1L) = C(1L, 0L) = 0L and C(1L, 1L) = 1L.

• A conjunctor C is a semi-norm on L if it satisfies (∀x ∈ L)(C(1L, x) =

C(x, 1L) = x).

• A semi-norm C is a t-norm on L if it is commutative and associative.

Definition 3.3.8 (Disjunctor).

• A disjunctor D on L is an inreasing L2 − L mapping (w.r.t. ≤L) that

satisfies D(1L, 1L) = D(0L, 1L) = D(1L, 0L) = 1L and D(0L, 0L) = 0L.

• A disjunctor D is a semi-conorm on L if it satisfies (∀x ∈ L)(D(0L, x) =

D(x, 0L) = x).

• A semi-conorm D is a t-conorm on L if it is commutative and associative.

Definition 3.3.9 (Implicator).

• An implicator I on L is a hybrid monotonic L2 − L mapping (i.e., de-

creasing in the first argument (w.r.t. ≤L) and increasing in the second

argument (w.r.t. ≤L)) that satisfies I(0L, 0L) = I(0L, 1L) = I(1L, 1L) =

1L and I(1L, 0L) = 0L. Every implicator I induces a negator NI(x) =

I(x, 0L),∀x ∈ L.
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• An implicator I is a border implicator on L if it satisfies (∀x ∈ L)(I(1L, x) =

x).

• A border implicator I is a model implicator on L if it is contrapositive

w.r.t. its induced negator, i.e., (∀(x, y) ∈ L2)(I(x, y) = I(NI(y),NI(x))),

and if it fulfills the exchange principle, i.e., (∀(x, y, z) ∈ L3)(I(x, I(y, z)) =

I(y, I(x, z))).

In the above definition, it is already mentioned that every implicator I on

L induces a negator NI on L given by NI(x) = I(x, 0L), ∀x ∈ L. Further, also

conjunctors and implicators can be induced by other logical operators.

Let N and C be respectively a negator and a conjunctor on L. Then the

operator DCN given by

DCN (x, y) = N (C(N (x),N (y))),∀(x, y) ∈ L2,

is a disjunctor on L. Analogously, if N and D are respectively a negator and a

disjunctor on L, then the operator CDN given by

CDN (x, y) = N (D(N (x),N (y))), ∀(x, y) ∈ L2,

is a disjunctor on L. If N is an involutive negator, then a conjunctor C and

a disjunctor D are called dual with respect to N if and only if C = CD,N and

D = DC,N .

Let N and I be respectively a negator and an implicator on L. Then the

operator CIN given by

CIN (x, y) = N (I(x,N (y))),∀(x, y) ∈ L2,

is a conjunctor on L and it is called the conjunctor induced by I and N .

Let N and C be respectively a negator and a conjunctor on L. Then the

operator ICN given by

ICN (x, y) = N (C(x,N (y))), ∀(x, y) ∈ L2,

is an implicator on L and it is called the implicator induced by C and N .

Let N and D be respectively a negator and a disjunctor on L. Then the
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operator IDN given by

IDN (x, y) = N (D(N (x), y)), ∀(x, y) ∈ L2,

is an implicator on L and it is called the implicator induced by D and N .

Let C be a conjunctor on L that satisfies (∀x ∈ L)(C(1L, x) = 0L ⇒ x = 0L).

Then the operator IC given by

IC(x, y) = sup{z ∈ L | C(x, z) ≤L y}, ∀(x, y) ∈ L2,

is an implicator on L and it is called the residual implicator of C [37].

Further, the order relation ≤L on the lattice L can be extended to the logical

operators as follows:

Definition 3.3.10 (Ordering of L-fuzzy logical operators).

• Let N1 and N2 be two negators on L, then

N1 ≤L N2 ⇔ (∀x ∈ L)(N1(x) ≤L N2(x)).

• Let C1 and C2 be two conjunctors on L, then

C1 ≤L C2 ⇔ (∀(x, y) ∈ L2)(C1(x, y) ≤L C2(x, y)).

• Let D1 and D2 be two disjunctors on L, then

D1 ≤L D2 ⇔ (∀(x, y) ∈ L2)(D1(x, y) ≤L D2(x, y)).

• Let I1 and I2 be two implicators on L, then

I1 ≤L I2 ⇔ (∀(x, y) ∈ L2)(I1(x, y) ≤L I2(x, y)).

3.3.5 L-Fuzzy set operations

Complement, intersection and union of L-fuzzy sets

The L-fuzzy logical operators can be used to define the complement, intersection

and union of L-fuzzy sets:
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Definition 3.3.11 (N -complement). Let A be an L-fuzzy set in the universe U .

If N is a negator on L, then the N -complement coN (A) of A is defined as the

L-fuzzy set in U given by:

(coN (A))(x) = N (A(x)), ∀x ∈ U.

Definition 3.3.12 (C-intersection). Let A and B be two L-fuzzy sets in the

universe U . If C is a conjunctor on L, then the C-intersection A∩C B of A and B

is defined as the L-fuzzy set in U given by:

(A ∩C B)(x) = C(A(x), B(x)), ∀x ∈ U.

Definition 3.3.13 (D-union). Let A and B be two L-fuzzy sets in the universe

U . If D is a disjunctor on L, then the D-union A ∪D B of A and B is defined as

the L-fuzzy set in U given by:

(A ∪D B)(x) = D(A(x), B(x)), ∀x ∈ U.

If C (respectively D) is the infimum operator (respectively the supremum op-

erator), then the intersection (respectively union) is called the Zadeh-intersection

(respectively Zadeh-union) and the notation ∩C is simplified to ∩ (respectively

∪D is simplified to ∪).

If C and D are commutative and associative (in particular if they are a t-norm

and a t-conorm), then the above definitions can be extended to the intersection

and union of an arbitrary finite family of L-fuzzy sets. If further the conjunctor

C and the disjunctor D can also be extended to an infinite number of arguments,

then also an extension to infinite families is possible. For the Zadeh-intersection

and Zadeh-union and an arbitrary (infinite) family (Aj)j∈J of L-fuzzy sets in U ,

this becomes:

(∩j∈JAJ)(x) = inf
j∈J

Aj(x), ∀x ∈ U,

(∪j∈JAJ)(x) = sup
j∈J

Aj(x), ∀x ∈ U.
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Containment of L-fuzzy sets

Containment of L-fuzzy sets is defined as follows:

Definition 3.3.14 (Containment). Let A and B be two L-fuzzy sets in the

universe U , then

A ⊆ B ⇔ (∀x ∈ U)(A(x) ≤L B(x)).
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Proposed methodology
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4

Consensus decision-making for

image restoration

Aggregation of several input values into a single output value is an indispensable

tool in many disciplines and applications such as decision making. Specifically,

penalty-based decision making is a strategy mainly used when the best solution

among the availables is not known in advance, in such a way that we choose the

solution that produces less error among the available solutions. In other words, it

is a consensus methodology that obtains a global solution that combines the single

inputs, instead of using one of them as solution for the whole process [24–26]. This

philosophy has no information about whether all the inputs are representative or

just some of them. This is our motivation to use a set of aggregation functions

that previously merges the input candidates. We start from a set of aggregation

functions and select, by means of consensus done through penalty functions, the

most suitable aggregation function in order to aggregate the individual preferences

for each of the elements. The whole consensus strategy consists of two phases:

an aggregation phase and an exploitation phase.

For the aggregation phase the input candidates are merged using averaging

aggregation functions. Specifically, we choose the family of parameterized av-

eraging aggregation functions formed by the ordered weighted averaging (OWA)

operators since they offer more flexibility when combining weighted information.

Moreover, the OWA aggregated value is often interpreted as some sort of repre-

sentative, or consensus value of the inputs. Nonetheless, the possible operators

to consider are unmanageable and we are not aware of the best candidate, so we

can only assume a subset of operators based on our experience. In other words,

71
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the choice of the different sets of q aggregation functions to be used will depend

on the specific problem under consideration.

Then in the exploitation phase, we transform the set of aggregated outputs

in only one that represents the largest number of inputs. For this purpose, a

penalty function is used to select the aggregation value that minimizes the penalty

with respect to the inputs and is given as a solution. We must also consider that

using penalty functions, if we take all the q aggregation functions as equal then

we recover the classical methods for the aggregation phase.

Hence the consensus methodology can be seen as a framework applied on

different situations depending on the problem we are dealing with. In image

restoration, we start from an input set consisting of a set of matrices (images)

where their membership functions are usually an intensity degree or a confidence

value. Then, we work with these images to finally get a single image that reaches

the consensus. We focus on the study of penalty-based decision making over carte-

sian product of lattices, a methodology within fuzzy decision-making. The use of

cartesian product of lattices allows to define penalty functions over a lattice or to

smaller chains of this lattice, i.e., consensus methodology can be applied over the

entire set of matrices (images) or over small sets of these matrices (pixel regions)

without distinction. However, to be able to consider all possible alternatives for

each element (pixel) using penalty functions by regions, an intermediate phase

is needed to add into the consensus process. In such a way that penalty-based

decision making over cartesian product of lattices is as follows: aggregation, com-

bination, and exploitation phase. Where in the combination phase all possible

alternatives for each element are generated. Note that if the chain size is simpli-

fied to one element, we recover the method applied element by element, so the

combination phase is not required.

So far an overview of the methodology phases has been given. However, vari-

ous definitions are necessary to define them. Thus the remaining of this chapter

is organized as follows: Section 4.1 provides an introduction of the influence of

fuzzy decision-making in image processing. Followed by Section 4.2 that intro-

duces multifuzzy sets, a representation method of the set of images. Then, the

idempotent aggregation functions are in Section 4.3, that presents the idempotent

functions, a construction method and their properties. Section 4.4 introduces the

averaging functions, a family of idempotent aggregation functions, and a specific

case: the OWA operators. They are the functions we use in the aggregation
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phase, in such way that they convert the multifuzzy set of images into a single

image. Then, for the exploitation phase, Section 4.5 explains the penalty func-

tions. Followed by an extension of the penalty functions over cartesian product of

lattices in Section 4.6. To conclude, a detailed description of the proposed method

is given in Section 4.7.

4.1 Background: fuzzy decision-making in

image processing

Fuzzy set theory has already been widely used in image processing to model

uncertainty, being used with success in segmentation [21, 22, 74], compression and

decompression [73, 84], image clustering [14], and definitely noise reduction [28,

78, 98, 106], among other applications.

However, there are situations where the use only of a single fuzzy technique

is not enough to model the uncertainty of the entire problem, so that the use

of a set of fuzzy alternatives to build a solution can help to solve the problem,

and thus better model the uncertainty. A simple solution is to use some fusion

operator that aggregates the individual techniques. For instance, an aggregation

operator [11, 65] can provide an appropriate solution as already shown with other

techniques in image processing [82, 83]. Nonetheless, it is obvious that using

different techniques we can accomplish different actions according to the desir-

ability in the problem, that in many cases, cannot be done by using a single fusion

criterion. Therefore, decision making can be used to address this issue.

The study of decision making is necessary and very important not only in

decision theory but also in areas such as operational research, management, sci-

ence, politics, social psychology, artificial intelligence, etc. By decision making in

a fuzzy environment is meant a decision process in which the goals and/or the

constraints constitute classes of alternatives that are fuzzy [30, 63, 64]. In other

words, fuzzy goals and fuzzy constraints are defined precisely as fuzzy sets in the

space of alternatives. Before achieving the decision, a decision-making method

mainly follows two steps: aggregation and exploitation. The aggregation phase

defines a collective relation between the alternatives indicating the preference be-

tween them. Besides the exploitation phase transforms the collective preferences

into a global ranking. This can be done in different ways, the most common one
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being the use of a ranking method to obtain a score function.

Due to the flexibility presented in the aggregation and exploitation phase

definition, fuzzy decision-making can be easily adapted in accordance to the ne-

cessities of the problem. In this way, some methods are already presented in image

segmentation [59, 79] and image reduction [12] using fuzzy decision-making. For

instance, the colour segmentation method proposed in [79] uses a decision model

based on the linguistic fuzzy representation of 2-tuples. It obtains a segmentation

transforming the colour space for the original image into a new space, and taking

into account the preference degree provided by a set of experts in the assignment

of each pixel to one object or another in the image. In the aggregation phase,

fuzzy linguistic quantifiers aggregate the preference values associated with a pixel

and with its neighbouring ones. Then, the exploitation phase classifies each pixel

creating the segmented image by assigning the object label that presents the

highest membership value. They also consider the possibility to choose the set

of experts, what adds a great value to their method. In this sense, the choice

of experts which is best suited for a given application can improve the global

results. The other segmentation method proposed in [59] obtains the threshold

for segmenting the white and grey matter for magnetic resonance imaging (MRI)

using grouping functions through a decision-making process. In the aggregation

phase, it chooses a set of grouping functions that are aggregated by a convex

combination of several of them, in such a way that avoids the selection of a

suitable grouping function for each image. Then, in the exploitation phase, the

threshold is obtained as the one that presents the maximum sum of grouping. On

the other side, three algorithms for colour image reduction based on minimizing

penalty functions has been presented in [12], showing that the obtained reduced

image is even robust to impulse noise. For the aggregation phase, they use a

set of aggregation functions that aggregates blocks of neighbour pixels. After,

in the exploitation phase, the solution for each block is taken as the aggregation

function that presents the minimum penalty with respect to the original pixels.

Concretely, fuzzy decision-making based on penalty functions has been previously

studied [23–26], although not yet been used in image restoration.
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4.2 Multifuzzy sets

Multifuzzy sets, also known as fuzzy multisets, are a great tool to handle uncer-

tainty by allowing several membership values. They are a natural generalization

of the (crisp) multisets, that have been sometimes called bags [76]. Therefore,

we will use multifuzzy sets to represent a set of elements in a cartesian product.

In this thesis we use them to represent image elements where their membership

function is usually an intensity or a confidence degree.

Definition 4.2.1. [10, 110] A multifuzzy set of dimension n ≥ 2 over a finite

universe U is defined by a mapping

A : U → [0, 1]n,

given by

A(u) = (A1(u), . . . , An(u)),

where each of the Aj for j = 1, . . . , n is a fuzzy set Aj : U → [0, 1].

Notice that the previous definition is equivalent to the following. Take a

family of n ≥ 2 fuzzy sets Q1, . . . , Qn on the same referential set U . Then an

n-dimensional multifuzzy set on U is just the ordered combination of these n

fuzzy sets as follows:

A = {(u,A(u))|u ∈ U} given by A(u) = (Q1(u), . . . , Qn(u)).

In this sense, the space of all multifuzzy sets inherits the order from the usual

fuzzy sets, which endows it with a partial, bounded order.

In this thesis, we deal with two finite referential sets X = {0, 1, . . . , N − 1}
and Y = {0, 1, . . . ,M − 1}, where N and M are the number of rows and columns

of the image, respectively. We consider multifuzzy sets defined on the cartesian

product X × Y .

Notice that an n-dimensional multifuzzy set can also be understood as a type

n fuzzy set, as well as an L-fuzzy set with L = [0, 1]n.

Example 4.2.1. Being U = X × Y , where X = {0, 1, 2} and Y = {0, 1, 2, 3}.

Then, the multifuzzy set A (Figure 4.1) is defined as:
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0.9 0.8 0.7 0.8
0.9 0.6 0.7 0.8
0.5 0.4 0.3 0.3

(a) A1

0.8 0.7 0.8 0.8
0.1 0.9 0.9 0.9
0.3 0.2 0.2 0.1

(b) A2

1.0 1.0 0.9 0.8
0.8 0.9 0.9 0.7
0.6 0.6 0.4 0.3

(c) A3

Figure 4.1: Multifuzzy set A = (A1, A2, A3).

0.3 0.2 0.6
0.1 1.0 0.2
0.2 0.4 0.5

(a) B1

0.2 0.3 0.4
1.0 1.0 0.6
0.7 1.0 0.8

(b) B2

0.2 0.2 0.3
0.6 0.4 0.5
0.7 0.8 0.9

(c) B3

0.1 0.1 0.3
0.4 0.6 0.8
0.0 1.0 0.8

(d) B4

Figure 4.2: Multifuzzy set B = (B1, B2, B3, B4).

A = (A(0, 0), A(0, 1), A(0, 2), A(0, 3),

A(1, 0), A(1, 1), A(1, 2), A(1, 3),

A(2, 0), A(2, 1), A(2, 2), A(2, 3))

where

A(0, 0) = (A1(0, 0), A2(0, 0), A3(0, 0)) = (0.9, 0.8, 1.0)

A(0, 1) = (A1(0, 1), A2(0, 1), A3(0, 1)) = (0.8, 0.7, 1.0)

A(0, 2) = (A1(0, 2), A2(0, 2), A3(0, 2)) = (0.7, 0.8, 0.9)

A(0, 3) = (A1(0, 3), A2(0, 3), A3(0, 3)) = (0.8, 0.8, 0.8)

A(1, 0) = (A1(1, 0), A2(1, 0), A3(1, 0)) = (0.9, 0.1, 0.8)

A(1, 1) = (A1(1, 1), A2(1, 1), A3(1, 1)) = (0.6, 0.9, 0.9)

A(1, 2) = (A1(1, 2), A2(1, 2), A3(1, 2)) = (0.7, 0.9, 0.9)

A(1, 3) = (A1(1, 3), A2(1, 3), A3(1, 3)) = (0.8, 0.9, 0.7)
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A(2, 0) = (A1(2, 0), A2(2, 0), A3(2, 0)) = (0.5, 0.3, 0.6)

A(2, 1) = (A1(2, 1), A2(2, 1), A3(2, 1)) = (0.4, 0.2, 0.6)

A(2, 2) = (A1(2, 2), A2(2, 2), A3(2, 2)) = (0.3, 0.2, 0.4)

A(2, 3) = (A1(2, 3), A2(2, 3), A3(2, 3)) = (0.3, 0.1, 0.3)

Example 4.2.2. Being U = X × Y , where X = {0, 1, 2} and Y = {0, 1, 2}.

Then, the multifuzzy set B (Figure 4.2) is defined as:

B = (B(0, 0), B(0, 1), B(0, 2),

B(1, 0), B(1, 1), B(1, 2),

B(2, 0), B(2, 1), B(2, 2))

where

B(0, 0) = (B1(0, 0), B2(0, 0), B3(0, 0), B4(0, 0)) = (0.3, 0.2, 0.2, 0.1)

B(0, 1) = (B1(0, 1), B2(0, 1), B3(0, 1), B4(0, 1)) = (0.2, 0.3, 0.2, 0.1)

B(0, 2) = (B1(0, 2), B2(0, 2), B3(0, 2), B4(0, 2)) = (0.6, 0.4, 0.3, 0.3)

B(1, 0) = (B1(1, 0), B2(1, 0), B3(1, 0), B4(1, 0)) = (0.1, 1.0, 0.6, 0.4)

B(1, 1) = (B1(1, 1), B2(1, 1), B3(1, 1), B4(1, 1)) = (1.0, 1.0, 0.4, 0.6)

B(1, 2) = (B1(1, 2), B2(1, 2), B3(1, 2), B4(1, 2)) = (0.2, 0.6, 0.5, 0.8)

B(2, 0) = (B1(2, 0), B2(2, 0), B3(2, 0), B4(2, 0)) = (0.2, 0.7, 0.7, 0.0)

B(2, 1) = (B1(2, 1), B2(2, 1), B3(2, 1), B4(2, 1)) = (0.4, 1.0, 0.8, 1.0)

B(2, 2) = (B1(2, 2), B2(2, 2), B3(2, 2), B4(2, 2)) = (0.5, 0.8, 0.9, 0.8)
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4.3 Idempotent functions

A crucial step in the aggregation phase of the consensus methodology is how to

recover a single fuzzy set from a multifuzzy set. Therefore, we need functions

that take a set of inputs and obtain one single value satisfying one condition: if

all the input values are the same, the value remains the same. For this reason we

decide to use idempotent functions.

Definition 4.3.1. An n-dimensional idempotent function is a mapping

γ : [0, 1]n → [0, 1] such that

γ(x, . . . , x) = x,

for every x ∈ [0, 1].

Example 4.3.1. Some of the idempotent functions are:

1. The mode, that is the value that occurs most frequently in a data set or a

probability distribution.

2. Smallest idempotent function

γsmallest(x1, . . . , xn) =

0, if ∃i, j ∈ {1, . . . , n} such that xi 6= xj,

x1, in other case.

3. Largest idempotent function

γlargest(x1, . . . , xn) =

1, if ∃i, j ∈ {1, . . . , n} such that xi 6= xj,

x1, in other case.

Remark 4.3.1. Notice, that neither of the functions from Example (4.3.1) is

monotone.

Example 4.3.2. The mode (γmode) is an example of an idempotent function

which is not monotone increasing. In Figure 4.4(a) can be seen the results for

γmode(C) in case repeated elements exist, as in the matrices C (Figure 4.3). Oth-

erwise, it could be applied, for instance, an adaptation of the mode as it is defined

below:
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0.2 0.4 0.5
0.8 0.1 0.7
0.1 0.4 0.2

(a) C1

0.2 0.4 0.7
0.9 0.4 0.6
0.9 0.4 0.2

(b) C2

0.3 0.4 0.5
0.9 0.4 0.7
0.9 0.5 0.2

(c) C3

Figure 4.3: Multifuzzy set C = (C1, C2, C3).

0.2 0.4 0.5
0.9 0.4 0.7
0.9 0.4 0.2
(a) γmode(C)

0.8 0.7 0.7 0.8
0.1 0.9 0.9 0.7
0.3 0.2 0.2 0.3

(b) γad mode(A)

Figure 4.4: Results mode examples.

γad mode(x1, . . . , xn) =

mode(x1, . . . , xn), if ∃i, j ∈ {1, . . . , n} such that xi = xj,

min(x1, . . . , xn), in other case.

(4.1)

Figure 4.4(b) shows an example of the calculus with the adapted mode (Ex. (4.1))

with the matrices A from the previous section (Figure 4.1).

4.3.1 Construction of idempotent functions

In Proposition 4.3.1 we present a method for constructing idempotent functions.

Proposition 4.3.1. The mapping γ : [0, 1]n → [0, 1] is an n-dimensional idem-

potent function if and only if there exist f, g : [0, 1]n → [0, 1] such that

(i) g(x, . . . , x) 6= 0 for every x ∈ [0, 1[;

(ii) f(x, . . . , x) = x
1−x

g(x, . . . , x) for x ∈ [0, 1[, f(1, . . . , 1) = 1 and

g(1, . . . , 1) = 0;

(iii) γ(x1, . . . , xn) = f(x1,...,xn)
f(x1,...,xn)+g(x1,...,xn)

.

Proof. Assume that γ is an n-dimensional idempotent function. Take f = γ and

g = 1 − γ. Then

(i) g(x, . . . , x) = 1 − γ(x, . . . , x) = 1 − x 6= 0 for every x ∈ [0, 1[;
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(ii) x
1−x

g(x, . . . , x) = x
1−x

(1 − x) = x = γ(x, . . . , x) = f(x, . . . , x) and

f(1, . . . , 1) = γ(1, . . . , 1) = 1 and g(1, . . . , 1) = 0;

(iii) f(x1,...,xn)
f(x1,...,xn)+g(x1,...,xn)

= γ(x1, . . . , xn).

To see the converse, we only need to check the idempotency. But if γ is defined

as in the statement of the proposition, we have that γ(x, . . . , x) = f(x,...,x)
f(x,...,x)+g(x,...,x)

=
x

1−x
g(x,...,x)

x
1−x

g(x,...,x)+g(x,...,x)
which is equal to x for every x ∈ [0, 1[. Finally, if x = 1 then

clearly γ(1, . . . , 1) = 1. �

Remark 4.3.2. The following is an example of an idempotent function built by

means of Proposition 4.3.1.

γ(x1, . . . , xp) =
f(x1, . . . , xp)

f(x1, . . . , xp) + max(1 − x1, . . . , 1 − xp)

Here we have that f(x, . . . , x) = x and g(x, . . . , x) = 1 − x.

Example 4.3.3.

• Taking

f(x1, . . . , xn) =
1

n

n∑
i=1

xi and g(x1, . . . , xn) =
1

n

n∑
i=1

(1 − xi),

we obtain as idempotent function the arithmetic mean (γmean(x)) shown in

Eq. (4.2):

γmean(x1, . . . , xn) =
1

n

n∑
i=1

xi. (4.2)

• Taking

f(x1, . . . , xn) = n
√
x1 · x2 · . . . · xn and g(x1, . . . , xn) = max(1−x1, . . . , 1−xn),

we get as idempotent function the γroot(x) shown in Eq. (4.3):

γroot(x1, . . . , xn) =
n
√
x1 · x2 · . . . · xn

n
√
x1 · x2 · . . . · xn + max(1 − x1, . . . , 1 − xn)

(4.3)



4. Consensus decision-making for image restoration 81

Example 4.3.4. Using the matrices A from Figure 4.1, and the aggregation

function γroot(x) from Eq. (4.3) , we can calculate γroot(A) as

γroot (A1(0, 0), A2(0, 0), A3(0, 0)) = 0.8176

γroot (A1(0, 1), A2(0, 1), A3(0, 1)) = 0.7332

γroot (A1(0, 2), A2(0, 2), A3(0, 2)) = 0.7262

γroot (A1(0, 3), A2(0, 3), A3(0, 3)) = 0.8000

γroot (A1(1, 0), A2(1, 0), A3(1, 0)) = 0.3161

γroot (A1(1, 1), A2(1, 1), A3(1, 1)) = 0.6628

γroot (A1(1, 2), A2(1, 2), A3(1, 2)) = 0.7340

γroot (A1(1, 3), A2(1, 3), A3(1, 3)) = 0.7262

γroot (A1(2, 0), A2(2, 0), A3(2, 0)) = 0.3903

γroot (A1(2, 1), A2(2, 1), A3(2, 1)) = 0.3124

γroot (A1(2, 2), A2(2, 2), A3(2, 2)) = 0.2650

γroot (A1(2, 3), A2(2, 3), A3(2, 3)) = 0.1877

For the case of B from Figure 4.2, we can calculate γroot(B) as

γroot (B1(0, 0), B2(0, 0), B3(0, 0), B4(0, 0)) = 0.1714

γroot (B1(0, 1), B2(0, 1), B3(0, 1), B4(0, 1)) = 0.1714

γroot (B1(0, 2), B2(0, 2), B3(0, 2), B4(0, 2)) = 0.3539
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γroot (B1(1, 0), B2(1, 0), B3(1, 0), B4(1, 0)) = 0.3043

γroot (B1(1, 1), B2(1, 1), B3(1, 1), B4(1, 1)) = 0.5384

γroot (B1(1, 2), B2(1, 2), B3(1, 2), B4(1, 2)) = 0.3691

γroot (B1(2, 0), B2(2, 0), B3(2, 0), B4(2, 0)) = 0.0000

γroot (B1(2, 1), B2(2, 1), B3(2, 1), B4(2, 1)) = 0.5563

γroot (B1(2, 2), B2(2, 2), B3(2, 2), B4(2, 2)) = 0.5943

Notice that the definition of an idempotent function is a very general one. In

fact, we have directly the following construction result, that allows us to obtain

a kind of inductive process.

Proposition 4.3.2. Let f : [0, 1]n−1 → [0, 1] be an (n− 1)-dimensional idempo-

tent function. Then the mapping:

γ(x1, . . . , xn) =
√

xn · f(x1, . . . , xn−1),

is an n-dimensional idempotent function.

Proof. Straightforward. �

Regarding the structure of the space of n-dimensional idempotent functions,

we also have the following.

Proposition 4.3.3. Let γ1, γ2 : [0, 1]n → [0, 1] be two n-dimensional idempotent

functions. Then:

1. 1
2
(γ1 + γ2) is also an n-dimensional idempotent function;

2.
√
γ1γ2 is also an n-dimensional idempotent function.

Proof. Straightforward. �

It is known that a [0, 1]-automorphism ϕ is a continuous and strictly increasing

function, such that ϕ(0) = 0 and ϕ(1) = 1. We can use this concept to build

n-dimensional idempotent functions.
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Theorem 4.3.1. [80] Let γ1, γ2 : [0, 1]n → [0, 1] be two n-dimensional idempotent

functions. Let F : [0, 1]2 → [0, 1] be a mapping such that d(x) = F (x, x) is an

automorphism of [0, 1]. Then the mapping:

γ = d−1(F (γ1, γ2)),

is also an n-dimensional idempotent function.

Proof.

γ(x, . . . , x) = d−1(F (γ1(x, . . . , x), γ2(x, . . . , x))) = d−1(F (x, x)) = x. �

4.3.2 Some interesting properties

Homogeneity, shift-invariance and migrativity are properties quite used in image

processing. In fact, it is desirable that these properties are satisfied.

Definition 4.3.2. A mapping f : [0, 1]n → [0, 1] is called homogeneous of order

k ≥ 0 if for every x1, . . . , xn, α ∈ [0, 1] the identity

f(αx1, . . . , αxn) = αkf(x1, . . . , xn)

holds.

Example 4.3.5. The mapping f : [0, 1]2 → [0, 1], defined by f(x1, x2) = max(x1, x2)

is homogeneous of order 1.

f(αx1, αx2) = max(αx1, αx2) = α · max(x1, x2).

Proposition 4.3.4. Every homogeneous idempotent operator is homogeneous of

order 1.

Proof. Straightforward. �
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Corollary 4.3.1. There are no idempotent operators homogeneous of order

k 6= 1.

Definition 4.3.3. A mapping f : [0, 1]n → [0, 1] is called shift-invariant if for

every x1, . . . , xn ∈ [0, 1] and for every λ ∈ [−1, 1] such that

x1 + λ, . . . , xn + λ ∈ [0, 1] the identity

f(x1 + λ, . . . , xn + λ) = f(x1, . . . , xn) + λ

holds.

Proposition 4.3.5. An idempotent operator γ is shift-invariant over the diago-

nal; that is, γ(x + λ, . . . , x + λ) = γ(x, . . . , x) + λ, for every λ ∈ [0, 1].

Proof. Straightforward. �

Definition 4.3.4. A mapping f : [0, 1]n → [0, 1] is called migrative if for every

x1, . . . , xn, α ∈ [0, 1] the identity

f(x1, . . . , αxi, . . . , xj, . . . , xn) = f(x1, . . . , xi, . . . , αxj, . . . , xn)

holds for every i, j ∈ {1, . . . , n}.

Example 4.3.6. The mapping f : [0, 1]2 → [0, 1], defined by f(x1, x2) = x1 · x2,

is migrative.

f(αx1, x2) = αx1 · x2 = x1 · αx2 = f(x1, αx2).

An idempotent operator is not necessarily migrative, homogeneous and shift-

invariant. We have the following result.

Proposition 4.3.6. Let γ be an idempotent migrative operator. Then

γ(x, 0, . . . , 0) = 0 for every x ∈ [0, 1].

Proof. Just observe that γ(x, 0, . . . , 0) = γ(x, 0 · 0, . . . , 0) = γ(0, 0, . . . , 0) = 0

from the migrativity with α = 0 and the homogeneity. �

Proposition 4.3.7. Let γ be an idempotent migrative operator. Then

γ(xn, 1, . . . , 1) = x for every x ∈ [0, 1].
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Proof.
γ(xn, 1, . . . , 1) = γ(x · xn−1, 1, . . . , 1︸ ︷︷ ︸

n−1

) =

γ(xn−1, x · 1︸︷︷︸
x

, 1, . . . , 1) = γ(x · xn−2, x, 1, . . . , 1︸ ︷︷ ︸
n−2

) =

γ(xn−2, x, x · 1︸︷︷︸
x

, 1, . . . , 1) = γ(xn−2, x, x, 1 . . . , 1︸ ︷︷ ︸
n−3

) =

γ(x, x, . . . , x) = x. �

4.4 Idempotent aggregation functions:

averaging functions

We have studied the use of idempotent functions in order to transform a multi-

fuzzy set into a fuzzy set in Section 4.3. Now we study monotonic non-decreasing

idempotent functions, that are a special case of aggregation functions called av-

eraging functions. With these functions we have not only idempotence, but also

the value of the function will be bounded by the minimum and maximum of the

input arguments.

Definition 4.4.1. An aggregation function of dimension n (n-ary aggregation

function) is a non-decreasing mapping f : [0, 1]n → [0, 1] such that

f(0, . . . , 0) = 0 and f(1, . . . , 1) = 1.

Remark 4.4.1. Consider any averaging aggregation function M . Then, since an

averaging aggregation function is idempotent, it follows that M is an idempotent

function.

Remark 4.4.2. The mode, the smallest and largest idempotent functions are

not an aggregation function because they are not monotone. However, they are

idempotent.

Remark 4.4.3. An idempotent aggregation function, is known as an idempotent

averaging aggregation function.

Definition 4.4.2. An aggregation function f : [0, 1]n → [0, 1] is called averaging
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or a mean aggregation function if

min(x1, . . . , xn) ≤ f(x1, . . . , xn) ≤ max(x1, . . . , xn).

Proposition 4.4.1. [41] Idempotent monotonic non-decreasing functions and

idempotent averaging functions are the same.

Example 4.4.1. Some examples of the averaging aggregation functions are:

1. The arithmetic mean (introduced in Eq. (4.2)).

2. The median operator.

γmed(x1, . . . , xn) =

1
2
(xk + xk+1), if n = 2k,

xk, if n = 2k − 1.
(4.4)

3. The min operator.

γmin(x1, . . . , xn) = min(x1, ..., xn). (4.5)

4. The max operator.

γmax(x1, . . . , xn) = max(x1, ..., xn). (4.6)

Example 4.4.2. Using the matrices B from Figure 4.2, and the aggregation

function γmean(x) from Eq. (4.2), we can calculate γmean(B) as

γmean (B1(0, 0), B2(0, 0), B3(0, 0), B4(0, 0)) = 0.2

γmean (B1(0, 1), B2(0, 1), B3(0, 1), B4(0, 1)) = 0.2

γmean (B1(0, 2), B2(0, 2), B3(0, 2), B4(0, 2)) = 0.4

γmean (B1(1, 0), B2(1, 0), B3(1, 0), B4(1, 0)) = 0.525

γmean (B1(1, 1), B2(1, 1), B3(1, 1), B4(1, 1)) = 0.750

γmean (B1(1, 2), B2(1, 2), B3(1, 2), B4(1, 2)) = 0.525
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γmean (B1(2, 0), B2(2, 0), B3(2, 0), B4(2, 0)) = 0.40

γmean (B1(2, 1), B2(2, 1), B3(2, 1), B4(2, 1)) = 0.80

γmean (B1(2, 2), B2(2, 2), B3(2, 2), B4(2, 2)) = 0.75

For the case of γmean(A) from Figure 4.1, results are shown in Figure 4.5(a).

Based on the same matrices A, and the aggregation function γmed(x) from

Eq. (4.4). The results for aggregation function γmed(A) are

γmed (A1(0, 0), A2(0, 0), A3(0, 0)) = 0.9

γmed (A1(0, 1), A2(0, 1), A3(0, 1)) = 0.8

γmed (A1(0, 2), A2(0, 2), A3(0, 2)) = 0.8

γmed (A1(0, 3), A2(0, 3), A3(0, 3)) = 0.8

γmed (A1(1, 0), A2(1, 0), A3(1, 0)) = 0.8

γmed (A1(1, 1), A2(1, 1), A3(1, 1)) = 0.9

γmed (A1(1, 2), A2(1, 2), A3(1, 2)) = 0.9

γmed (A1(1, 3), A2(1, 3), A3(1, 3)) = 0.8

γmed (A1(2, 0), A2(2, 0), A3(2, 0)) = 0.5

γmed (A1(2, 1), A2(2, 1), A3(2, 1)) = 0.4

γmed (A1(2, 2), A2(2, 2), A3(2, 2)) = 0.3

γmed (A1(2, 3), A2(2, 3), A3(2, 3)) = 0.3

In the case of matrices B (Figure 4.2). The results for the aggregation function

γmed(B) are
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0.9 0.83 0.8 0.8
0.6 0.8 0.83 0.8
0.46 0.4 0.3 0.23

(a) γmean(A)

0.8 0.7 0.7 0.8
0.1 0.6 0.7 0.7
0.3 0.2 0.2 0.1

(b) γmin(A)

1.0 1.0 0.9 0.8
0.9 0.9 0.9 0.9
0.6 0.6 0.4 0.3

(c) γmax(A)

Figure 4.5: Mapping matrices of the aggregation functions.

γmed (B1(0, 0), B2(0, 0), B3(0, 0), B4(0, 0)) = 0.20

γmed (B1(0, 1), B2(0, 1), B3(0, 1), B4(0, 1)) = 0.20

γmed (B1(0, 2), B2(0, 2), B3(0, 2), B4(0, 2)) = 0.35

γmed (B1(1, 0), B2(1, 0), B3(1, 0), B4(1, 0)) = 0.50

γmed (B1(1, 1), B2(1, 1), B3(1, 1), B4(1, 1)) = 0.80

γmed (B1(1, 2), B2(1, 2), B3(1, 2), B4(1, 2)) = 0.55

γmed (B1(2, 0), B2(2, 0), B3(2, 0), B4(2, 0)) = 0.45

γmed (B1(2, 1), B2(2, 1), B3(2, 1), B4(2, 1)) = 0.90

γmed (B1(2, 2), B2(2, 2), B3(2, 2), B4(2, 2)) = 0.80

Using the aggregation function from Eq. (4.5). We obtain γmin(A) as shown

in Figure 4.5(b).

The results for γmax(A) using the Eq. (4.6) are shown in Figure 4.5(c).

Example 4.4.3. Aggregation functions can be also applied on images. Fig-

ure 4.7 shows the result for the aggregation function γmean(x), γmin(x) and γmax(x)

applied to the images from Figure 4.6. These images form a multifuzzy set.

From an image which is taken as a referential image (Figure 4.6(a)), with nor-

mal brightness, and two other images with altered brightness: one sums up 70

points of intensity (Figure 4.6(c)); and the other subtracting 70 points of in-

tensity (Figure 4.6(b)). Bounded by the image range [0, 255]. Interpreting the
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results, γmin(x) (Figure 4.7(b)) matches with the darker image, as the aggrega-

tion takes the minimum intensity values from the multifuzzy set. In the case of

γmax(x) (Figure 4.7(c)) the brighter image is taken, because it takes the max-

imum intensity values from the multifuzzy set. For γmean(x) (Figure 4.7(a))

it is easy to deduce that for any pixel the result will be the mean, due to

A(xi) = xi+(xi+70)+(xi−70)
3

= xi.

(a) Original image (b) Original image -70 (c) Original image +70

Figure 4.6: Images taking part of the fuzzy sets. Used as example images for the
aggregation functions.

(a) γmean (b) γmin (c) γmax

Figure 4.7: Aggregation results for the images of Figure 4.6.
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4.4.1 Specific case: OWA operators and fuzzy

quantifiers

The ordered weighted averaging operators [111, 112], commonly called OWA oper-

ators, are a parameterized family of idempotent averaging aggregation functions.

These are different from the classical weighted average in that coefficients are

not associated directly with a particular attribute but rather to an ordered posi-

tion. Moreover, OWA operators fill the gap between the operators min and max,

where the min, max, arithmetic mean or median are particular cases of this fam-

ily. Furthermore, they can capture aggregations which emulate things like ‘most’,

‘many’, etc. Thus we see that these OWA operators provide an interesting class

of operators.

Definition 4.4.3. [111] A mapping F : [0, 1]n → [0, 1] is called an OWA operator

of dimension n if there exists a weighting vector W , W = (w1, . . . , wn) ∈ [0, 1]n

with
n∑

i=1

wi = 1 and such that F (a1, . . . , an) =
n∑

j=1

wjbj with bj the j-th largest of

the ai.

A fundamental aspect of this operation is the re-ordering step, in particular

an aggregate ai is not associated with a particular weight wi but rather a weight

is associated with a particular ordered position of aggregate. The use of an “or-

dered” weighted average allows to satisfy the condition of symmetry (generalized

commutativity).

Example 4.4.4. Assume F is an OWA operator of dimension n = 4 with

weighting vector W = (0.2, 0.1, 0.6, 0.1)T and A = [0, 1, 0.1, 0.2]. Then to

calculate F (A) we have that the corresponding ordered argument vector B =

[1, 0.2, 0.1, 0]. Therefore, F (A) = F (B) = (0.2)(1) + (0.1)(0.2) + (0.6)(0.1) +

(0.1)(0) = 0.28.

A natural question in the definition of the OWA operators is how to obtain

the associated weighting vector. It is noted that different OWA operators are dis-

tinguished by their weighting function. Furthermore, in [111] R.R. Yager showed

three important special cases of OWA operators:

• F ∗ : In this case W = W ∗ = (1, 0, . . . , 0)T .

• F∗ : In this case W = W∗ = (0, 0, . . . , 1)T .
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• Fave : In this case W = Wave = (1/n, 1/n, . . . , 1/n)T .

It can easily seen that

• F ∗(a1, . . . , an) = maxi(ai).

• F∗(a1, . . . , an) = mini(ai).

• Fave(a1, . . . , an) = 1
n

∑
i

ai.

There exist at least two ways that can be used to obtain the value of the wi’s.

The first approach consists on using some kind of learning mechanism in such

a way that the weights are learnt from observations. In this approach we use

some sample data, arguments and associated aggregated values and try to fit the

weights to this collection of sample data. The process usually involves the use

of some kind of regression model. On the other side, a second approach tries to

provide some semantics or meaning to the wi’s. Then based upon these semantics

we can get directly the values of the wi’s. This approach also will provide some

further insight into the meaning of the OWA operators [111, 112].

Our idea is to be able to calculate the weights for the aggregation operators

using linguistic quantifiers, e.g., about 5, almost all, a few, many, most, as many as

possible, nearly half, least half. The concept of a fuzzy quantifier was introduced

by L.A. Zadeh [116], offering a more flexible tool for knowledge representation.

Zadeh also suggested that the semantics of a fuzzy quantifier can be captured

by using fuzzy sets for its representation. Two types of fuzzy quantifiers are dis-

tinguished, absolute and proportional or relative. Absolute quantifiers are those

used to represent amounts that are absolute in nature, such as about 2 or more

than 5. While proportional quantifiers, such as most, at least half, can be repre-

sented by fuzzy sets of the unit interval. For any r ∈ [0, 1], Q(r) indicates the

degree to which the proportion r is compatible with the meaning of the quanti-

fier it represents. In other words, an absolute quantifier can be represented by

a fuzzy subset Q : R+ → [0, 1] that satisfies Q(0) = 0, and ∃k ∈ R+ such that

Q(k) = 1. While a proportional quantifier Q : [0, 1] → [0, 1], satisfies Q(0) = 0,

and ∃r ∈ [0, 1] such that Q(r) = 1.

Proportional fuzzy quantifiers are usually of one of three types: increasing,

decreasing and unimodal. For instance, some increasing quantifiers are ‘at least

half’, ‘as many as possible’ and ‘most of them’. Decreasing quantifiers are ‘few of

them’ and ‘as much k’. R.R. Yager [111] suggested an interesting way to compute
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the weights of the OWA aggregation operator using fuzzy quantifiers, which, in

the case of an increasing quantifier Q, is given by the expression:

Q(r) =


0, if r < a,

r−a
b−a

, if a ≤ r ≤ b,

1, if r > b.

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
. (4.7)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) at least half

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) as many as possible

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) most of them

Figure 4.8: Proportional increasing quantifiers used to construct OWA operators.

Example 4.4.5. In Figure 4.8 are shown examples of the proportional increasing

quantifiers, ‘at least half’, ‘as many as possible’ and ‘most of them’, where the

parameters (a, b) are (0, 0.5), (0.5, 1) and (0.3, 0.8), respectively.

Then, we assume an OWA operator of dimension n = 4, where the weights

are computed using the increasing quantifier Q from Eq. (4.7) for the different

proportional quantifiers introduced in Figure 4.8:

• at least the half

w1 = Q
(
1
4

)
−Q(0) = 0.25

0.5
− 0 = 0.5,

w2 = Q
(
1
2

)
−Q

(
1
4

)
= 0.5

0.5
− 0.5 = 0.5,

w3 = Q
(
3
4

)
−Q

(
1
2

)
= 1 − 1 = 0,

w4 = Q(1) −Q
(
3
4

)
= 0,

Then, Wleast = (0.5, 0.5, 0, 0)T .

• as many as possible

w1 = Q
(
1
4

)
−Q(0) = 0 − 0 = 0,

w2 = Q
(
1
2

)
−Q

(
1
4

)
= 0,

w3 = Q
(
3
4

)
−Q

(
1
2

)
= 0.75−0.5

0.5
− 0 = 0.5,
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w4 = Q(1) −Q
(
3
4

)
= 0.5,

Then, Wmany = (0, 0, 0.5, 0.5)T .

• most of them

w1 = Q
(
1
4

)
−Q(0) = 0 − 0 = 0,

w2 = Q
(
1
2

)
−Q

(
1
4

)
= 0.5−0.3

0.5
− 0 = 0.4,

w3 = Q
(
3
4

)
−Q

(
1
2

)
= 0.75−0.3

0.5
− 0.4 = 0.9 − 0.4 = 0.5,

w4 = Q(1) −Q
(
3
4

)
= 1 − 0.9 = 0.1,

Then, Wmost = (0, 0.4, 0.5, 0.1)T .

The OWA operators can also be studied by their properties. Thus Yager

defined two important measures associated with an OWA operator: Disp(F )

(Definition 4.4.4) and orness(F ) (Definition 4.4.5). The dispersion (or entropy)

measures the degree to which we use all the aggregates equally. While orness

measures its behaviour or optimism. An OWA operator F with much of the

weights near the top will be an ‘orlike’ operator, orness(F ) ≥ 0.5. At the other

extreme, when the weights are non-zero near the bottom the OWA operator F

will be ‘andlike’, orness(F ) ≤ 0.5.

Definition 4.4.4. [111] Let F be an OWA operator and W its weighting vector.

The dispersion measure of F is defined as

Disp(F ) =
n∑

i=1

wi log(wi).

Definition 4.4.5. [111] Let F be an OWA operator and W its weighting vector.

The orness measure of F is defined as

orness(F ) =
1

(n− 1)

n∑
i=1

(n− i)wi.

Example 4.4.6. We use the OWA operators represented in Figure 4.8 with

dimension n = 4. The corresponding weights are Wleast = (0.5, 0.5, 0, 0)T ,

Wmany = (0, 0, 0.5, 0.5)T and Wmost = (0, 0.4, 0.5, 0.1)T . It can be seen that

the OWA ‘at least half’ is an ‘orlike’ operator with an orness(Fleast) = 0.833 and

Disp(Fleast) = 0.6931. OWA ‘most of them’, presents an ‘andlike’ behaviour with

an orness(Fmost) = 0.1667 and Disp(Fmost) = 0.693. It shares the same dispersion

as OWA ‘at least half’ because they aggregate with the same degree, although as

we can observe the weights are distributed differently. In our last case, for OWA
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‘as many as possible’, the orness(Fmany) = 0.433, treated as ‘andlike’ operator.

Its dispersion is Disp(Fmany) = 0.9433, considering almost all the weights.

4.5 Penalty functions

For the exploitation phase, the concept of a penalty function P , as shown schemat-

ically in Figure 4.9, allows us to measure the disagreement or dissimilarity between

n candidates, {x1, . . . , xn}, and an output y.

P

y

x1

x2

xn

b

b

b

Figure 4.9: Schematic representation of a penalty function P .

Then, we rely on P to define the penalty-based function as is introduced in

Definition 4.5.1 for a set of q functions in order to measure the disagreement with

respect all the inputs, {x1, . . . , xn}, that in our case is a multifuzzy set. In other

words, we choose the function f using a consensus procedure based on testing

several functions until we find the one providing the least dissimilar result with

respect to the values of the inputs. The motivation to use this concept is because

we do not know beforehand which function is better to use, so our aim is to find

the one that minimizes the overall error with respect to the inputs. Obviously,

the result provided by the penalty function depends on the set of q aggregation

functions that we use in each case.

Definition 4.5.1. [24–26] A penalty function is a mapping P : [0, 1]n+1 → [0,∞)

such that:

1. P (x1, . . . , xn; y) ≥ 0 for all x1, . . . , xn ∈ [0, 1], y ∈ [0, 1];

2. P (x1, . . . , xn; y) = 0 if xi = y for all i = {1, . . . , n};

3. P (x1, . . . , xn; y) is quasi-convex in y for any x; that is P (x, λ · y1 + (1− λ) ·
y2) ≤ max(P (x, y1), P (x, y2)) for any λ, y1, y2 ∈ [0, 1].
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Let P be a penalty function. We call penalty-based function the mapping:

f(x) = arg min
y

P (x, y), where y ∈ {y1, ..., yq}. (4.8)

If there exists only one point y in which P (x, ·) has a minimum, then f(x) =

y. Whereas if P (x, ·) has more than one minimum point, then from the quasi-

convexity it follows that P (x, ·) attains its minimum on the whole interval of [a, b]

and we define f(x) = a+b
2

. The quasi-convexity enforces that one and only one

of these two possibilities happens. So, the minimum always exists, and either it

is at a single point or at a whole interval.

In other words, if some input xi 6= y, then we impose a ‘penalty’ for this

disagreement. The larger the disagreement, the larger (in general) is the imposed

penalty (Definition 4.5.1.(1)). But, if all the inputs are the same x1 = . . . = xn,

then the output is y and the penalty is zero, where we have unanimous vote and

no penalization (Definition 4.5.1.(2)). Moreover, quasi-convexity ensures that the

set of minima is non-empty and in fact it is either a single point or an interval

(Definition 4.5.1.(3)).

Example 4.5.1. For instance a penalty function is as follows

P (x1, . . . , xn; y) =

(
n∑

p=1

|xp − y|

)2

. (4.9)

We prove that the function P (x1, . . . , xn; y) from Eq. (4.9) fulfills the three

conditions previously exposed on Definition 4.5.1.

1) Straightforward. Because x2 ≥ 0.

2) Straightforward. Taking P (y, . . . , y; y) = 0.

3) To prove the quasi-convexity we apply two properties for convex func-

tions [19].

(a) The sum of two convex functions is a convex function. Then we know

that a function f is convex if, for any two points y1, y2 in its domain

and for any λ ∈ [0, 1], the following is true f(λy1 + (1 − λ)y2) ≤
λf(y1) + (1 − λ)f(y2). Therefore if f and h are both convex then we

know (f+h)(λy1+(1−λ)y2) = f(λy1+(1−λ)y2)+h(λy1+(1−λ)y2) ≤
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λf(y1) + (1 − λ)f(y2) + λh(y1) + (1 − λ)h(y2) = λ(f + h)(y1) + (1 −
λ)(f + h)(y2). So, f + h is also convex.

(b) If f is convex and non-decreasing and h is a convex, then the compo-

sition h ◦ f is also convex. Then, by convexity of h:

h(λx + (1 − λ)y) ≤ λh(x) + (1 − λ)h(y).

So, using the fact that f is non-decreasing:

f(h(λx + (1 − λ)y)) ≤ f(λh(x) + (1 − λ)h(y)).

Therefore, again by convexity:

f(h(λx + (1 − λ)y)) ≤ λf(h(x)) + (1 − λ)f(h(y)).

This reasoning can be used inductively in order to prove the result

that fn ◦ fn−1 · · · ◦ f1 ◦ h is convex under the stated hypothesis. And

the composition will be non-decreasing if h is non-decreasing.

The quasi-convexity is simple to prove using (a) and (b). We take a fixed

z, fz(y) = |z − y|. Then using (a) for each fixed x = (x1, . . . , xn) it follows

that g(x1, . . . , xn, y) := fx1(y) + · · · + fxp(y) is convex. Now, we apply (b) to

the function h(x) : R → R given by h(x) = x2 and to g, from what follows that

h ◦ g is convex, but h ◦ g = P (x1, . . . , xn; y), i.e., P is convex and hence also

quasi-convex. �

Theorem 4.5.1. [25] Any averaging aggregation function can be represented as

a penalty-based function in the sense of Definition 4.5.1.

Example 4.5.2. There are several well-known aggregation functions that can be

presented as a penalty aggregation function. In [25] are presented some of the

followings. For it, we take the weighted vector w where
∑
i

wi = 1.

1. The weighted arithmetic mean:

P (x, y) =
n∑

i=1

wi(xi − y)2. (4.10)
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2. The weighted median:

P (x, y) =
n∑

i=1

wi|xi − y|. (4.11)

3. The weighted quasi-arithmetic mean with the generator h:

P (x, y) =
n∑

i=1

wi (h(xi) − h(y))2 . (4.12)

4. The generalized OWA:

P (x, y) =
n∑

i=1

wi(x(i) − y), (4.13)

where x(i) is the i -th largest component of x.

These and other well-known penalty-based aggregation functions are discussed

in further details in [25].

Example 4.5.3. Suppose we want to get the best aggregation function among

3 possible ones using a penalty-based function for the input x = {0.7, 0.2, 0.5}.

The selected aggregation functions are γ1(x) = 1
n

n∑
k=1

xk, γ2(x) = min(x) and

γ3(x) = max(x). Then, the selected penalty function P (x; y) is the function

introduced in Eq. (4.9).

First of all, we calculate the outputs for the different aggregation functions

using the input set x:

γ1(x) = 0.7+0.2+0.5
3

= 0.4667,

γ2(x) = min(0.7, 0.2, 0.5) = 0.2,

γ3(x) = max(0.7, 0.2, 0.5) = 0.7.

Then, we can compute the different penalties for the different aggregation

functions as

P (x; γ1(x)) = (0.7 − 0.4667)2 + (0.2 − 0.4667)2 + (0.5 − 0.4667)2 = 0.1267,

P (x; γ2(x)) = (0.7 − 0.2)2 + (0.2 − 0.2)2 + (0.5 − 0.2)2 = 0.34,

P (x; γ3(x)) = (0.7 − 0.5)2 + (0.2 − 0.5)2 + (0.5 − 0.5)2 = 0.13.
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Finally, f(x) can be obtained using Eq. (4.8) and γ = {γ1(x), γ2(x), γ3(x)} as

f(x) = arg min
γ

(P (x, γ)) = arg min
(
P (x, γ1(x)), P (x, γ2(x)), P (x, γ3(x))

)
= 0.4667.

The solution aggregation function has been γ1 because it presents the mini-

mum penalty.

We have shown that penalty functions can be applied with an input set x and

an output y. However, y can be also a vector of elements instead of an element,

namely y = {y1, . . . , yq}. Therefore, the penalty-based function receives a set

such as γ = {γ1(x), . . . , γq(x)}, given by γj(x) ∈ {yj1, . . . , yjq}.

Example 4.5.4. We take the best aggregation function among 3 possible ones

using a penalty-based function for the input A = (A1, A2, A3) shown in Figure 4.1.

The selected aggregation functions are γ1(x) = 1
n

n∑
k=1

xk, γ2(x) = min(x) and

γ3(x) = max(x). The results for the different aggregation functions are shown in

Figure 4.5 for the input multifuzzy set A. Then, the penalty function P (x; y) is

the function introduced in Eq. (4.9).

We calculate the different penalties for the different aggregation functions as
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P (x; γ1(x)) = (|0.9 − 0.9| + |0.8 − 0.9| + |1.0 − 0.9|)2

+ (|0.8 − 0.83| + |0.7 − 0.83| + |1.0 − 0.83|)2

+ (|0.7 − 0.8| + |0.8 − 0.8| + |0.9 − 0.8|)2

+ (|0.8 − 0.8| + |0.8 − 0.8| + |0.8 − 0.8|)2

+ (|0.9 − 0.6| + |0.1 − 0.6| + |0.8 − 0.6|)2

+ (|0.6 − 0.8| + |0.9 − 0.8| + |0.9 − 0.8|)2

+ (|0.7 − 0.83| + |0.9 − 0.83| + |0.9 − 0.83|)2

+ (|0.8 − 0.8| + |0.9 − 0.8| + |0.7 − 0.8|)2

+ (|0.5 − 0.46| + |0.3 − 0.46| + |0.6 − 0.46|)2

+ (|0.4 − 0.4| + |0.2 − 0.4| + |0.6 − 0.4|)2

+ (|0.3 − 0.3| + |0.2 − 0.3| + |0.4 − 0.3|)2

+ (|0.3 − 0.23| + |0.1 − 0.23| + |0.3 − 0.23|)2

= 1.8503,

P (x; γ2(x)) = 4.06,

P (x; γ3(x)) = 2.11.

Finally, f(x) can be obtained using γ = {γ1(x), γ2(x), γ3(x)} as

f(x) = arg min
γ

(P (x, γ)) = arg min
(
P (x, γ1(x)), P (x, γ2(x)), P (x, γ3(x))

)
=

=

 0.9 0.83 0.8 0.8

0.6 0.8 0.83 0.8

0.46 0.4 0.3 0.23


The taken solution is γ1 because it presents the minimum penalty. It corresponds

to the arithmetic mean of the input set A.
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4.6 Penalty functions over a cartesian

product of lattices

Cartesian product of lattices, introduced in Section 3.3, allows us to extend

penalty-based functions, introduced in Section 4.5, over a lattice or to smaller

chains of this lattice. Therefore, as we use multifuzzy sets, it can also be un-

derstood as a L-Fuzzy set, that is a lattice. In this way, we can apply penalty

functions with all guarantee over subsets. In other words, when working with im-

ages, the use of cartesian product of lattices gives the possibility to use penalty

functions over subsets of pixel regions. Moreover, this property introduces flexi-

bility from the computational point of view. As we already mentioned, the input

set x and the output set y can contain as many elements as we need, increasing

the computational cost. However, nowadays computers could present computa-

tional time constraints or lack of memory to deal with these vast sets. Thereby

the theory behind a cartesian product of lattices allows us to deal with these

sets in a smarter way. The goal of this section is to define the penalty functions

over a product of lattices and to propose some construction method such that al-

ways the convexity property holds. We propose a construction method of penalty

functions over cartesian product of lattices.

4.6.1 Building method of penalty functions

Using the definition of a cartesian product of lattices in Theorem 4.6.1, we present

a building method of penalty functions over it, such that it assures the accom-

plishment of the previous exposed properties in Definition 4.5.1, specially the

convexity property.

Theorem 4.6.1. [24] Let F(U) be the set of all fuzzy sets defined on the finite

referential and non-empty set U = {u1, . . . , un} (#U = n). Let denote by Byq

the fuzzy set over U such that all its membership values are equal to yq ∈ [0, 1];

that is, Byq(ui) = yq for all ui ∈ U . Let Y = (y1, . . . , ym) ∈ [0, 1]m and BY =

(By1, . . . , Bym) ∈ F(U)m. Let C∗ be a chain, that is a linear lattice, whose

elements belong to [0, 1] and let L∗
m be the cartesian product L∗

m = C∗×· · ·×C∗.

Let Ki : R → R+ be convex functions with a unique minimum at Ki(0) = 0,
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(i = 1, . . . ,m), and take the taxi-distance between fuzzy sets in U defined as

D(A,B) =
n∑

i=1

|A(ui) −B(ui)|. (4.14)

Then the mapping P∇ : F(U)m × L∗
m → R+ given by

P∇(A, Y ) =
m∑
q=1

Kq

(
D(Aq, Byq)

)
=

m∑
q=1

Kq

(
n∑

p=1

|Aq(up) − yq|

)
, (4.15)

satisfies

1. P∇(A, Y ) = 0 if and only if Aq = yq for every q = 1, . . . ,m;

2. P∇(A, Y ) is convex in yq for every q = 1, . . . ,m.

Example 4.6.1.

• From the hypothesis in Theorem 4.6.1 we take as convex functions with

unique minimum at zero the following: Kq(x) = x2 for all q ∈ {1, . . . ,m},

then

P∇(A, Y ) =
m∑
q=1

(
n∑

p=1

|Aq(up) − yq|

)2

. (4.16)

• If Kq(x) = x for all q ∈ {1, . . . ,m}, then

P∇(A, Y ) =
m∑
q=1

n∑
p=1

|Aq(up) − yq|. (4.17)

Theorem 4.6.2. [24] In the setting of Theorem 4.6.1, the mapping

F (A) = µ(arg min
Y

P∇(A, Y )) where Y ∈ {y1, ..., ym}, (4.18)

where µ is the rounding to the smallest closest element, is an averaging aggrega-

tion function.

Proof. Just observe that

arg min
(y1,...ym)

P∇(A, (y1, . . . , ym)) = arg min
(y1,...ym)

m∑
q=1

Kq

( n∑
p=1

|Aq(up) − yq|
)

=
m∑
q=1

arg min
y

Kq

( n∑
p=1

|Aq(up) − yq|
)
,
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so it is enough to consider each of the quantities

arg min
y

Kq

( n∑
p=1

|Aq(up) − yq|
)
,

but each of these functions is an aggregation function and since Kq is convex, the

result follows. �

Example 4.6.2. We want to get the best aggregation function among 3 possible

ones using a penalty-based function over a cartesian product of lattices for the

input A = (A1, A2, A3) shown in Figure 4.1. The selected aggregation functions

are γ1(x) = 1
n

n∑
k=1

xk, γ2(x) = min(x) and γ3(x) = max(x). The results for the

different aggregation functions are shown in Figure 4.5 for the input multifuzzy

set A. Then, the selected penalty function P∇(A;Y ) is the function introduced

in Ex. (4.16).

The multifuzzy set A can be understood as a lattice because each element

of the matrix occupies a position in the cartesian product and intrinsically, it is

an ordered set. Besides, we build three chains with 4 elements each in such

a way that U = {U1, U2, U3}, where U1 = {(0, 0), (0, 1), (0, 2), (0, 3)}, U2 =

{(1, 0), (1, 1), (1, 2), (1, 3)}, and U3 = {(2, 0), (2, 1), (2, 2), (2, 3)}. Then, we can

compute the different penalties for the different aggregation functions with the

different chains A(U):

P∇(A(U1); γ1(A(U1))) = (|0.9 − 0.9| + |0.8 − 0.9| + |1.0 − 0.9|)2

+ (|0.8 − 0.83| + |0.7 − 0.83| + |1.0 − 0.83|)2

+ (|0.7 − 0.8| + |0.8 − 0.8| + |0.9 − 0.8|)2

+ (|0.8 − 0.8| + |0.8 − 0.8| + |0.8 − 0.8|)2

= 0.1889,

P∇(A(U2); γ1(A(U2))) = 1.2729,

P∇(A(U3); γ1(A(U3))) = 0.3885.
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P∇(A(U1); γ2(A(U1))) = (|0.9 − 0.8| + |0.8 − 0.8| + |1.0 − 0.8|)2

+ (|0.8 − 0.7| + |0.7 − 0.7| + |1.0 − 0.7|)2

+ (|0.7 − 0.7| + |0.8 − 0.7| + |0.9 − 0.7|)2

+ (|0.8 − 0.8| + |0.8 − 0.8| + |0.8 − 0.8|)2

= 0.34,

P∇(A(U2); γ2(A(U2))) = 2.86,

P∇(A(U3); γ2(A(U3))) = 0.86.

P∇(A(U1); γ3(A(U1))) = (|0.9 − 1.0| + |0.8 − 1.0| + |1.0 − 1.0|)2

+ (|0.8 − 1.0| + |0.7 − 1.0| + |1.0 − 1.0|)2

+ (|0.7 − 0.9| + |0.8 − 0.9| + |0.9 − 0.9|)2

+ (|0.8 − 0.8| + |0.8 − 0.8| + |0.8 − 0.8|)2

= 0.43,

P∇(A(U2); γ3(A(U2))) = 1.03,

P∇(A(U3); γ3(A(U3))) = 0.65.

Finally, F (A) can be obtained using Ex. (4.18) and γ = {γ1(A), γ2(A), γ3(A)}
as

F (A) = (µ(arg min
γ

P∇(A(U1), γ(U1))),

µ(arg min
γ

P∇(A(U2), γ(U2))),

µ(arg min
γ

P∇(A(U3), γ(U3))))

=

 0.9 0.83 0.8 0.8

0.9 0.9 0.9 0.9

0.46 0.4 0.3 0.23


γ1(U1), γ3(U2) and γ1(U3) have been selected to get the solution F (A).

We notice that using cartesian product of lattices the results may differ from

the solution to the entire lattice, or also between different chain lengths. It is

shown in Example 4.6.2, how the second row of the matrix differs with respect

to the solution exposed in Example 4.5.4 for the same input data. Thereby
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cartesian product of lattices shows a more flexible paradigm and gives the base of

consensus. Our idea is to optimize the set to an element level, although it is not

the only way. In other words, it allows us to obtain better solutions locally that

results in an improvement of the global results. This concept is further detailed

in Section 4.7.

4.7 Proposed method: Consensus

methodology based on penalty

functions

We have introduced all the necessary tools to build a penalty-based decision mak-

ing method. However, we have not given yet a full view of it. In this section we

explain the goodness and drawbacks of this strategy, as well as we explain the

proposed method step by step.

The idea of consensus is based on obtaining the best solution with respect to

an input set [24, 26]. However as we have previously defined the input set (a set

of images), the set of possible solutions in the aggregation phase is limited to the

number of selected aggregation functions, and one is given as the solution for the

entire set in the exploitation phase. This alternative limits the result to a global

minimum, when we could select the best aggregation function for each element.

Even, in case we use penalty functions over a cartesian product of lattices (see

Section 4.6), we limit the solution to the chosen chain size. Thus, we consider

a new set that takes all possible permutations of the possible solutions, allowing

to obtain better results to a local level and increasing consequently the global

quality of the final result. This is our motivation to use consensus, and define the

strategy in three phases as follows:

1. An aggregation phase, that puts in value all the input set to obtain a set of

possible outputs.

2. A combination phase, that generates all the possible solutions from the set

of aggregated outputs.

3. An exploitation phase, that selects the combined set that presents the min-

imum penalty among all the possibilities.
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Figure 4.10: Representation of a stack of n images of size N ×M .

P
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σ1(0, 0), Yσ2(0, 1), . . . , Yσ(N×M)

(N − 1,M − 1))
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Figure 4.11: Schematic representation of a penalty function that receives a mul-
tifuzzy set as input. A represents the set of original inputs (images), and Y is
one of the possible combination of the aggregation functions, where σ is the set
of arrangements with repetition of q aggregation functions taken in groups of
N ×M .

We can observe that the results are directly affected by the selected aggrega-

tion function set and the penalty function. Thus we base the election of them on

our experience in the current problem. Moreover, the size set of the aggregation

functions also increases the calculus cost with the increment on the number of

aggregation functions, that increases the operations in the combination phase and

the number of comparisons in the exploitation phase. From the computational

point of view, this issue has to be taken into account to find a compromise.

A complete overview of the algorithm is given to reach a consensus from a

collection of matrices (images). It consists of 5 main steps: (1) and (2) step

correspond to the aggregation phase; (3) step is the combination phase; and (4)

and (5) step that are part of the exploitation phase.

1. Building the multifuzzy set A from the input matrices.

We start from a set like the one shown in Figure 4.10. Then, we build

a multifuzzy set A as follows A(i, j) = {A1(i, j), . . . , An(i, j)} where i ∈
{0, . . . , N − 1}, j ∈ {0, . . . ,M − 1} and n is the number of matrices of

dimension N ×M . (Multifuzzy sets are introduced in Section 4.2).

2. Selection of q aggregation functions (γ1, . . . , γq) and calculus of the aggre-
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gated values with the inputs.

We calculate the set γ(A) = {γ1(A), . . . , γq(A)}, where each element

γk(A(i, j)) = γk
(
A1(i, j), . . . , An(i, j)

)
. (Averaging aggregation functions,

and specifically OWA operators are introduced in Section 4.4, and Sec-

tion 4.4.1 respectively).

3. Combination of the aggregated elements γ(A).

We build a new set Y conformed by all the possible variations, i.e. Y =

{Y1, Y2, . . . , YQ}, where Q = qN×M , each element Yk =
(
Ykσ1 , . . . , Ykσ(N×M)

)
.

So, Yσw(i, j) is the value for the element (i, j) in the matrix σw ∈ {γ1(A), . . . ,

γq(A)}, where w ∈ {1, 2, . . . , N ×M}. For instance, Y is composed of ele-

ments like the following:

Y1 =
(
Y1γ1(0, 0), . . . , Y1γ1(N − 1,M − 2), Y1γ1(N − 1,M − 1)

)
,

Y2 =
(
Y2γ1(0, 0), . . . , Y2γ1(N − 1,M − 2), Y2γ2(N − 1,M − 1)

)
,

. . .

YQ =
(
YQγq(0, 0), . . . , YQγq(N − 1,M − 2), YQγq(N − 1,M − 1)

)
.

4. Estimation of the penalties for each of the permutations in Y .

We select a penalty function P that fulfills the Definition 4.5.1 to apply

to the collection of permutations. In a similar way as in the Figure 4.11.

Then, we obtain a collection of penalties as follows P
(
(A1, . . . , An);Y1

)
,

P
(
(A1, . . . , An);Y2

)
, . . . , P

(
(A1, . . . , An);YQ

)
.

5. Recovering the best candidate through the penalty-based function.

We are ready to apply f(A) from Eq. (4.8) to the penalties to get the solu-

tion. It is the consensus set
(
Yσ1(0, 0), Yσ2(0, 1), . . . , Yσ(N×M)

(N−1,M − 1)
)

that is minimum. (Penalty functions and penalty-based functions are ex-

plained in Section 4.5).

We introduce a global vision of consensus decision-making based on penalty

functions for a multifuzzy set A. We know from Theorem 4.6.1 that we can

apply penalty functions over small chains of the multifuzzy set, and therefore

consensus decision-making can also be used. It is translated to the possibility to

work with regions of matrices (images). In this way, we have the possibility to

give a different treatment to each region. In our case, as we use all the variations
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of the output set, the use of different chains length is interchangeably. Note that

using a chain size of one element, we recover the consensus approach element by

element.

Therefore, the proposed framework is a useful methodology where a possible

choice of an operator is needed and its choice can influence the result. For in-

stance, it could also be applied in the context of relational calculus, preference

structures and reliability theory.

Example 4.7.1. We want to get the best aggregation function among 3 pos-

sible ones using the proposed consensus decision-making methodology. For it,

we use a penalty-based function over a cartesian product of lattices for the input

A = (A1, A2, A3) shown in Figure 4.1. The selected aggregation functions are

γ1(x) = 1
n

n∑
k=1

xk, γ2(x) = min(x) and γ3(x) = max(x). The results for the dif-

ferent aggregation functions are shown in Figure 4.5 for the input multifuzzy set

A. Then, the selected penalty function P∇(A;Y ) is the function introduced in

Ex. (4.16).

Before we compute the different penalties for the different aggregation func-

tions, we need to create a new set Y that calculates all the variations of the

aggregated values, as we introduced in the combination phase of the algorithm.

Then, this set Y may look as follows

Y1 =
(
Y1γ1(0, 0), Y1γ1(0, 1), . . . , Y1γ1(3, 3), Y1γ1(3, 4)

)
,

Y2 =
(
Y2γ1(0, 0), Y2γ1(0, 1), . . . , Y2γ1(3, 3), Y2γ2(3, 4)

)
,

Y3 =
(
Y3γ1(0, 0), Y3γ1(0, 1), . . . , Y3γ1(3, 3), Y3γ3(3, 4)

)
,

Y4 =
(
Y4γ1(0, 0), Y4γ1(0, 1), . . . , Y4γ2(3, 3), Y4γ1(3, 4)

)
,

Y5 =
(
Y5γ1(0, 0), Y5γ1(0, 1), . . . , Y5γ2(3, 3), Y5γ2(3, 4)

)
,

· · ·

Y312 =
(
Y312γ3(0, 0), Y312γ3(0, 1), . . . , Y312γ3(3, 3), Y312γ3(3, 4)

)
.

As we are using a multifuzzy set that is a lattice, we can use different chain

sizes over it, what can reduce the number of operations. Although as we already

noticed, in this case the chain length is irrelevant for the final result. Then, we

calculate the penalty for the elements in Y in similar way as in the example 4.6.2

with the chosen chain size. To finally reach the consensus matrix by the penalty-

based function F (A) with
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F (A) =

 0.9 0.83 0.8 0.8

0.9 0.9 0.9 0.8

0.46 0.4 0.3 0.3

 ,

where the aggregation function chosen for each position is as followsγ1 γ1 γ1 γ1

γ3 γ3 γ3 γ2

γ1 γ1 γ1 γ3

 .

Proving that introducing the combination phase in the consensus algorithm we

can obtain better results locally and regardless of the chain size.
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5

A consensus approach for image

restoration with unknown noise

model

In order to find an ideal image noise reduction algorithm, as introduced in Sec-

tion 2.3, researchers have proposed hundreds of them. The most popular noise

assumption is the additive Gaussian noise [20, 90, 114]. However a Gaussian

noise assumption is too simplistic for most applications, specifically for medical

and astronomical images [77]. In the particular case of medical images, in com-

puter tomography (CT) the decay of the signal is better modeled with a Poisson

distribution [58, 67, 99]. Other medical images, as single-photon emission com-

puted tomography (SPECT) or positron emission tomography (PET), can also

be well modeled with a Poisson distribution [89, 95]. In the case of magnetic

resonance imaging (MRI), a Rice distribution better models the abnormalities in

the image for a single-coil acquisition [4, 13].

Despite different approaches exist in order to reduce noise, all of them suffer a

significant degradation in their performance with images owning a noise distribu-

tion for which these algorithms are not optimal; or when exist small deviations of

the assumed noise model. It would be desirable to have a robust noise reduction

algorithm being able to deal with different noise distributions, as well as combi-

nations of them (various noise distributions are the introduced in Section 2.3.2).

However this is a complex issue due that we rarely know the noise distribution

exactly, at least some of its parameters cannot be always estimated correctly, or

there is mixture of various noise types, and their relative contributions may not

110
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always be clear or may be changing in some unpredictable way. Therefore, we pro-

pose to transform this blind noise reduction problem into a fuzzy decision-making

process. For it, this approach is focused on the fusion of a set of filtered images,

through a multifuzzy set, previously filtered from a noisy image with unknown

noise distribution. We select methods existing in the literature that are opti-

mal for a concrete noise. In particular, methods for impulse, Poisson, Gaussian

and Rician noise are applied. Then, the fusion is carried out using the proposed

consensus methodology via penalty functions on a cartesian product of lattices,

where the penalty function chooses the value that minimizes the error for each

pixel in accordance to different possibilities. This set of possibilities is formed

by different OWA operators built from fuzzy linguistic quantifiers, since we can

use language expressions as ‘at least half’, ‘most of them’ to define the weights.

Moreover, fuzzy quantifiers provide a more flexible knowledge representation than

classical logic, that it is restricted to the use of only two quantifiers, there exists

and for all [30]. Our aim is to obtain consistent and stable results, regardless

of the image nature (e.g. CT, MRI, digital image) and the noise characteristics

under the image.

In the remainder of this chapter we explain how to transform this blind noise

reduction problem into our consensus decision-making methodology as introduced

in Chapter 4. First, we need to define the input set of our decision-making

problem. For it we select different methods for different noise models that are

introduced in Section 5.1. Once the input set is defined, we can present the pro-

posed approach based on penalty-based decision making in Section 5.2. Followed

by the results exposed in Section 5.3 where we compare our method with the

noise reduction methods used to generate the input set, and the conclusions in

Section 5.4.

5.1 Background: noise reduction methods

We select different estimators with the aim to generate the input set of our

consensus methodology, in addition to using them to compare their performance

with our approach. They cover different approaches to the image noise reduction

problem, as well as they perform better for a specific noise distribution, in concrete

for impulse, Gaussian, Rician and Poisson noise. Let’s give an overview of the

methods characteristics.
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5.1.1 Impulse noise reduction method

The DBAIN method proposed by K.S. Srinivasan and D. Ebenezer [96] tackles the

problem of impulse noise. The algorithm, in a first step detects if a processed pixel

is noisy or noise-free depending on its occurrence in a corresponding window. If

the pixel is determinated as corrupted, then the pixel is replaced by the median

value of the window. Although, in case the median is considered corrupted,

instead of the median, it is replaced by the value of neighbourhood pixels. This

method does not require any parameter for its performance.

5.1.2 Gaussian noise reduction method

Additive white Gaussian noise (AWGN) has generally been found to be a rea-

sonable model for noise originating from electronic amplifiers. The considered

method to deal with white Gaussian noise has been the approach proposed by

B. Goossens et al. [52]. This estimator is based on the non-local mean (NLM)

estimator proposed by A. Buades et al. [20]. This version of NLM improves the

original version, dealing with noise in non-repetitive areas with a post-processing

step and presenting a new acceleration technique that computes the Euclidean

distance by a recursive moving average filter. Moreover, they introduce an ex-

tension that can deal with correlated noise. However, its performance depends

on a previous configuration. The standard deviation estimation, the searching

window or the block size need to be defined previously. We use the configuration

from the original paper for our experiments, specifically a block size of 11 × 11,

and a searching window of 7 × 7.

5.1.3 Rician noise reduction method

The approach used to estimate Rician noise, the probability density function that

mainly characterizes MRI in single-coil systems [5, 13, 55, 57], is proposed by S.

Aja-Fernández et al. [4]. This estimator adapts the linear minimum mean square

error (LMMSE) to Rician contaminated images. Moreover, noise estimation can

be automatically calculated based on local statistics. Although the version used

in our experiments is the approach in which the standard deviation is given as

an input. The size of the square window used for the local estimation was 5 × 5.
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5.1.4 Poisson noise reduction method

An extension of the NLM is proposed for images damaged by Poisson noise. C.A.

Deledalle et al. [33] proposed to adapt the similarity criteria of NLM algorithm to

Poisson distribution data. For this method, a previous configuration is required.

For our experiments, the used parameters are those suggested in the original

article, as the algorithm is tuned to obtain good results. Namely, a block size of

7 × 7, and a searching window of 21 × 21.

5.2 Proposed method: consensus for

unknown noise reduction

We propose an approach based on penalty-based decision making that allows to

remove noise from an image without any previous knowledge of the noise model.

For it, we make use of the consensus methodology introduced in Chapter 4.

This approach consists of four phases: preliminary, aggregation, combination

and exploitation phase.

For a better understanding of the proposed approach a schema is shown in

Figure 5.1. In the preliminary phase we start from a noisy image IN . Then we

apply four different methods optimized for a specific noise distribution to obtain

several filtered images. With these new images, that in the case of our schema

are (FI1, F I2, F I3, F I4), we build a multifuzzy set (introduced in Section 4.2).

So each pixel (i, j) is represented by four values (each value corresponds to pixel

(i, j) of each filtered image). In the aggregation phase we use three different

OWA operators to build three fuzzy sets from the multifuzzy set. In particu-

lar, we use the OWA operators ‘at least half’, ‘most of them’ and ‘as many as

possible’, constructed from fuzzy quantifiers. (These operators are explained in

more detail in Section 4.4.1). Then we apply these OWA operators to obtain

(IOWAleast
, IOWAmost , IOWAmany). In the combination phase, we obtain a new set

with all the possibilities for each pixel. Finally, in the exploitation phase, we take

the best aggregated value for each pixel among the three availables. For that we

use a penalty function that takes the value that minimizes the error with respect

to the filtered images (FI1, F I2, F I3, F I4), and thus, the best fused image is ob-

tained, Iresult. (Penalty functions and penalty functions over cartesian product of
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Figure 5.1: Schema consensus algorithm for unknown noise reduction.

lattices are explained in more detail in Section 4.5 and 4.6 respectively.)

Although we have exposed an approach that consists of the use of four methods

and three aggregation functions. This approach can be extended to any number

of methods and aggregation functions. In this manner, the consensus algorithm is

defined as follows for p filters and q aggregation functions for images of dimension

N ×M :

1. In the preliminary phase, for each pixel (i, j) a multifuzzy set A(i, j) =

{A1(i, j), . . . , Ap(i, j)} is obtained from the p filtering methods, where i ∈
{0, . . . , N − 1} and j ∈ {0, . . . ,M − 1}.

2. In the aggregation phase, we apply q different aggregation functions to

A(i, j), i.e. we get γ1(A(i, j)), . . . , γq(A(i, j)) where γk is any idempotent

aggregation function, γk(A(i, j)) = γk
(
A1(i, j), . . . , Ap(i, j)

)
.

3. In the combination phase, with the obtained images γ1(A), . . . , γq(A), we

build a new set conformed by all the possible variations, Y .

4. In the exploitation phase, we take the element from Y that minimizes the

penalty with respect to the multifuzzy set A using the penalty-based func-

tion f(A). So, Yσk
(i, j) is the value for the pixel (i, j) in the image σk ∈

{γ1(A(i, j)), . . . , γq(A(i, j))}, selected for the element k ∈ {1, 2, . . . , N×M}.

The consensus image is the
(
Yσ1(0, 0), Yσ2(0, 1), . . . , Yσ(N×M)

(N − 1,M − 1)
)

that is minimum.

It can be deduced that the performance of this approach depends on the

considered penalty function, as well as the selected aggregation functions.
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5.3 Experiments and discussion

Different experiments are carried out to illustrate the behaviour of the consensus

approach proposed in Section 5.2 facing the blind noise reduction task. That

is why in this section we first introduce the used databases and the similarity

measures. Followed by different experiments where the databases have been con-

taminated with different noise models, and combinations of them, to prove the

effectiveness and robustness of consensus.

5.3.1 Materials and methods

To be able to compare the results to a ground truth, we work with images with

256 grey levels artificially corrupted with noise. Two databases are used: Live

Image Quality Assessment Database (Live) [92] and a magnitude MR T1 volu-

men originally noise-free from the BrainWeb data set (brainWeb) [31]. The first

database is corrupted with different noise distributions, as Gaussian and Poisson

noise, while the second one is corrupted with Rician noise. (Noise density func-

tions previously introduced in Section 2.3.2). In both cases, the noisy images are

processed using the different noise reduction methods introduced in Section 5.1.

For consensus methodology, the same parameters are used in all experiments. The

aggregation functions used to reach a consensus are the OWA operators: ‘at least

half’, ‘as many as possible’ and ‘most of them’. (These operators are explained in

more detail in Section 4.4.1). Namely, the OWA weights calculated for 4 elements

are wleast = {0.5, 0.5, 0, 0}, wmany = {0, 0, 0.5, 0.5}, and wmost = {0, 0.4, 0.5, 0.1},

respectively. Finally, the based-penalty function (Eq. (4.18)) is applied over a

cartesian product of lattices in groups of four neighbour pixels using the penalty

function from Eq. (4.16). This equation is attached below for simplicity:

P∇(A, Y ) =
m∑
q=1

(
n∑

p=1

|Aq(up) − yq|

)2

.

To quantify the restoration performance of different methods, we use different

similarity measures. Specifically the ones presented in Section 2.4. The PSNR is

calculated. This is not bounded, a higher PSNR means better quality. However

it is not very well matched to perceived structural information. This is our

motivation to use also other quality indexes. In addition, the SSIM and the QILV
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are used. Both give a measure of the structural similarity between the ground

truth and the estimated images. Nonetheless, the former is more sensitive to the

level of noise in the image and the latter to any possible blurring of the edges.

This way we are able to assess the noise cleaning and border preserving capability

of the different schemes. Both indexes are bounded; the closer to one, the better

the image.

5.3.2 Experiments with images contaminated with

Gaussian noise

A first experiment was accomplished with the 18 images from Live database

corrupted with Gaussian noise. Table 5.1 contains the averages and the standard

deviations achieved for this experiment. The Gaussian noise reduction method

obtains the best results in average as expected, except for the QILV measure.

However the difference between the best QILV result and the one obtained for

the Gaussian method is negligible. Furthermore, the reached consensus is just

behind the best, as the second better approach. We should note that the noise

distribution is supposed unknown. We can also observe that if we would have not

applied consensus, we could have obtained worse results. For instance, in case

we would have just decided to use a single aggregation function and we chose it

wrongly, as we do not know beforehand what aggregation function is better to

use. However, for this experiment the results for the operator ‘most of them’ are

similar to the proposed approach, due that this operator is chosen for consensus

the 84% of the times. While ‘at least half’ is chosen the 9%, and ‘as many as

possible’ the 7%.

In a second experiment we want to analyze how the noise level affects the

consensus performance. For it, we executed several times the same database

(Live) contaminated with various sigma values for Gaussian noise, from low to a

high noise level. Figure 5.2 presents the graphs for the different quality measures.

The image quality is affected as the noise level increases, although not all the

measures and methods are affected in the same way. For example, the Rician

method preserves its performance for SSIM as the noise amount increases due to

its conservative behaviour around the borders; or the Poisson method worsens

its achievement with the noise increasing. However, the consensus performance

keeps as one of the three better approaches. The noise level affects its performance
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Gaussian noise (σ = 20)

Method
PSNR SSIM QILV

mean std mean std mean std

Noisy 22.309 0.289 0.427 0.115 0.703 0.163
Impulse 22.218 0.263 0.432 0.114 0.711 0.165
Poisson 25.459 0.926 0.584 0.100 0.903 0.085
Gaussian 29.818 2.323 0.840 0.054 0.939 0.044
Rician 27.464 1.434 0.744 0.034 0.952 0.032

OWAleast 25.730 0.708 0.640 0.084 0.947 0.044
OWAmany 25.842 0.751 0.647 0.065 0.953 0.037
OWAmost 27.542 1.075 0.700 0.059 0.965 0.021

Consensus 27.548 1.081 0.700 0.061 0.965 0.022

Table 5.1: Results for the Live database [92], that contains 18 images 512x512
contaminated with Gaussian noise with σ = 20.

because it is affected by the errors of the used filtered and aggregated images that

are also altered by noise. However, the proposed approach still shows a good

compromise.

5.3.3 Experiments with images contaminated with

Poisson noise

Consensus is an approach that can be used under different noise models with-

out previous information. Then, in a new experiment we contaminated the same

database (Live) with Poisson noise. We can recognize a coherent and consistent

behaviour in Table 5.2, also in line with the previous experiments. The reached

consensus obtains almost the same results as for the Poisson method, a PSNR

and a SSIM in average close to the best achievement by the Poisson method. Fur-

thermore, we can see that consensus obtains better results than any of the single

aggregation functions. This is due to the cooperation of the different aggregation

functions in the solution, where ‘at least half’ is chosen 18%, ‘as many as possible’

the 8% and ‘most of them’ the 74%. As we already mentioned in Section 4.7,

thanks to the reached consensus locally, the global result also improves.
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Figure 5.2: Performance of the different used noise reduction methods, the OWA
operators and the reached consensus for different executions with various sigmas
(σi = {5, 10, 15, 20, 25, 30}). It represents the mean values for the 18 images
contained in the Live database [92]. By order, from left to right, and from up to
down: PSNR, SSIM and QILV.

5.3.4 Experiments with images contaminated with

Rician noise

Another experiment was performed with a different noise model, the Rician dis-

tribution. For this experiment an MRI volumen from brainWeb data set has been

used. The volumen contains 181 images free of noise that were contaminated with

Rician noise. To avoid any bias in the results due to the background, the quality

measures are only applied to those areas of the image that are relevant, in other

words, inside of the skull. Tables 5.3 and 5.4 show once again that consensus is

one of the better approaches, just behind the best ones for a specific noise dis-

tribution. We can also observe that the Rician method performs worse than the
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Poisson noise

Method
PSNR SSIM QILV

mean std mean std mean std

Noisy 27.665 0.424 0.666 0.099 0.926 0.068
Impulse 27.246 0.830 0.669 0.098 0.928 0.066
Poisson 32.007 2.722 0.896 0.031 0.965 0.022
Gaussian 30.005 2.540 0.820 0.076 0.871 0.100
Rician 28.101 2.275 0.792 0.069 0.879 0.091

OWAleast 28.983 0.946 0.790 0.052 0.982 0.010
OWAmany 28.884 0.992 0.769 0.052 0.974 0.015
OWAmost 30.919 0.953 0.804 0.046 0.986 0.008

Consensus 31.911 2.180 0.878 0.032 0.937 0.046

Table 5.2: Results for the Live database [92], which contains 18 images 512x512
contaminated with Poisson noise.

Rician noise (σ = 10)

Method
PSNR SSIM QILV

mean std mean std mean std

Noisy 30.803 1.951 0.871 0.043 0.970 0.056
Impulse 30.803 1.959 0.872 0.043 0.972 0.053
Poisson 35.395 2.089 0.960 0.015 0.991 0.008
Gaussian 36.966 2.900 0.970 0.013 0.994 0.004
Rician 33.446 2.370 0.942 0.019 0.994 0.004

OWAleast 32.503 1.952 0.920 0.026 0.990 0.022
OWAmany 33.139 2.179 0.924 0.027 0.993 0.010
OWAmost 33.742 2.008 0.927 0.024 0.992 0.016

Consensus 34.980 2.342 0.957 0.014 0.995 0.003

Table 5.3: Results for the MRI volumen, which contains 181 MR images contam-
inated with Rician noise with σ = 10.

Gaussian method. This is due to the conservative nature of the Rician method,

that in case the data does not fit the model the method prefers to preserve the

original data. While the Gaussian method applies a non-local averaging, which is

a powerful and computationally expensive concept that is translated in a higher

noise removing. Moreover, when the noise level increases (Table 5.4) the con-

sensus works similarly to the previous case, where achievement gets affected by

noise. It is natural since consensus looks for a cooperation between images, that

also get affected by noise. In this experiment, the different aggregations (‘least’,

‘many’, and ‘most’) have provided on average 12%, 15% and 73% respectively to

the consensus solution.
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Rician noise (σ = 20)

Method
PSNR SSIM QILV

mean std mean std mean std

Noisy 24.866 1.986 0.720 0.089 0.826 0.154
Impulse 24.905 2.005 0.720 0.100 0.835 0.150
Poisson 27.836 1.915 0.808 0.061 0.940 0.114
Gaussian 32.629 2.483 0.927 0.030 0.970 0.021
Rician 29.310 2.156 0.873 0.040 0.973 0.032

OWAleast 27.578 1.864 0.825 0.055 0.959 0.084
OWAmany 29.012 2.318 0.854 0.052 0.977 0.029
OWAmost 29.853 2.170 0.865 0.032 0.978 0.032

Consensus 29.764 2.151 0.863 0.045 0.977 0.035

Table 5.4: Results for the MRI volumen, which contains 181 MR images contam-
inated with Rician noise with σ = 20.

5.3.5 Experiments with images contaminated with

folded normal noise

For this experiment we use the images from Live database contaminated with a

noise distribution which is not considered as an input of the consensus method.

We consider a folded normal distribution that is calculated as the absolute value

of a Gaussian distribution, i.e., given a normally distributed random variable X

with mean µ and variance σ2, the random variable Y = |X| has a folded normal

distribution. Tables 5.5 and 5.6 show that the proposed approach obtains a good

performance in general, improving the performance of the single methods. In

addition, it is interesting to observe how in this particular experiment the use

of the single OWA operator ‘as many as possible’ obtains a better overall result

than the proposed approach. This is due that for the consensus solution ‘most of

them’ is chosen the 56%, ‘at least half’ the 29%, and ‘as many as possible’ the

15%.

5.3.6 Experiments with images contaminated with

Poisson-Gaussian noise

So far we have assumed that noise comes from a single noise distribution. How-

ever, there are situations in which various distributions of noise can coexist in a

single image. This is the case of many digital imaging devices that can be mod-
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Folded normal noise (σ = 10)

Method
PSNR SSIM QILV

mean std mean std mean std

Noisy 28.340 0.579 0.832 0.066 0.980 0.014
Impulse 27.711 0.754 0.831 0.065 0.983 0.014
Poisson 28.121 1.115 0.892 0.031 0.950 0.029
Gaussian 28.810 0.518 0.913 0.025 0.977 0.018
Rician 29.404 0.783 0.907 0.025 0.978 0.021

OWAleast 26.992 0.631 0.909 0.016 0.983 0.011
OWAmany 31.007 0.771 0.932 0.014 0.975 0.019
OWAmost 29.678 0.589 0.928 0.018 0.980 0.015

Consensus 29.343 0.549 0.920 0.020 0.981 0.015

Table 5.5: Results for the Live database [92], which contains 18 images 512x512
contaminated with folded normal noise with σ = 10.

Folded normal noise (σ = 25)

Method
PSNR SSIM QILV

mean std mean std mean std

Noisy 20.501 0.677 0.544 0.133 0.834 0.128
Impulse 20.412 0.595 0.544 0.130 0.830 0.123
Poisson 21.553 0.679 0.762 0.044 0.963 0.027
Gaussian 21.433 0.731 0.763 0.092 0.780 0.138
Rician 22.998 1.010 0.756 0.071 0.794 0.130

OWAleast 19.886 0.663 0.691 0.062 0.927 0.050
OWAmany 24.431 0.737 0.810 0.029 0.906 0.064
OWAmost 22.653 0.698 0.806 0.032 0.907 0.064

Consensus 22.550 0.692 0.799 0.033 0.910 0.062

Table 5.6: Results for the Live database [92], which contains 18 images 512x512
contaminated with folded normal noise with σ = 25.

elled as Poisson-Gaussian noise, where the Poisson component accounts for the

signal-dependent uncertainty inherent to photon accumulation, and the Gaus-

sian component accounts for the other signal-indepedent noise sources, such as

thermal noise. Tables 5.7 and 5.8 show the results for our consensus methodol-

ogy using Live database contaminated with Poisson-Gaussian noise, where two

different standard deviations are used for the Gaussian distribution. We can

observe that the proposed method is robust to the mismatch with the assumed

noise model, as it obtains a good overall performance among the better ones.

However, Table 5.8 also shows that consensus performance gets affected as the

noise increases, affecting further the structural information as the SSIM measure

shows. Moreover, the impact of the aggregation functions is not so relevant in
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Poisson-Gaussian noise (σ = 15)

Method
PSNR SSIM QILV

mean std mean std mean std

Noisy 22.974 0.157 0.457 0.116 0.743 0.154
Impulse 22.849 0.266 0.461 0.114 0.750 0.155
Poisson 26.300 0.992 0.625 0.096 0.930 0.054
Gaussian 28.604 1.486 0.782 0.033 0.973 0.012
Rician 27.064 1.047 0.697 0.051 0.962 0.024

OWAleast 25.999 0.648 0.638 0.089 0.935 0.055
OWAmany 26.002 0.642 0.634 0.073 0.939 0.052
OWAmost 27.083 0.826 0.674 0.072 0.954 0.037

Consensus 27.107 0.846 0.676 0.073 0.955 0.037

Table 5.7: Results for the Live database [92], which contains 18 images 512x512
contaminated with a Poisson-Gaussian noise, where σ = 15 for the Gaussian
distribution.

Poisson-Gaussian noise (σ = 20)

Method
PSNR SSIM QILV

mean std mean std mean std

Noisy 21.207 0.175 0.384 0.111 0.630 0.171
Impulse 21.161 0.187 0.389 0.110 0.639 0.173
Poisson 24.117 0.661 0.509 0.105 0.849 0.120
Gaussian 28.467 2.038 0.798 0.041 0.958 0.022
Rician 26.100 1.145 0.667 0.047 0.948 0.026

OWAleast 24.529 0.594 0.572 0.096 0.904 0.080
OWAmany 24.495 0.609 0.571 0.077 0.912 0.074
OWAmost 25.885 0.809 0.614 0.078 0.933 0.055

Consensus 25.876 0.808 0.614 0.080 0.932 0.056

Table 5.8: Results for the Live database [92], which contains 18 images 512x512
contaminated with a Poisson-Gaussian noise, where σ = 20 for the Gaussian
distribution.

the solution (‘at least half’ 11%, ‘as many as possible’ 9%, ‘most of them’ 80%).

Therefore, it could be interesting to study a new framework configuration for

consensus, where the input set and the aggregation functions may be tuned for

this specific noise model.

5.3.7 Quality visual inspection

We carried out several experiments to verify the quantitative performance of the

proposed consensus method, however visual quality is also important. Therefore,

we proceed to inspect the images from Figures 5.3 to 5.7. We can see how the
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reached consensus from the different images contaminated with different noise

models (Gaussian, Poisson and Rician noise) exhibit better visual quality than

any of the single methods. For instance, the Gaussian filtered images show over-

filtering and loss of details in textured areas. In Figure 5.3(c) the area in the nose

is over-filtered and the areas closeby have lost details in the texture. A similar

situation occurs in Figure 5.4(c) where the image is in general over-filtered. For

Figure 5.5(c) the general quality looks pleasant, although the face area is blurred,

as well as some areas have lost the textures. The Gaussian filtered image in the

MRI approach, Figure 5.6(c), presents a good quality. Nonetheless, the zoomed

image, Figure 5.7(c), shows ringing artifacts close to the edges. A similar out-

come is gotten for the Poisson method in the Rician case, Figure 5.6(e), that

also shows ringing artifacts. On the contrary, the Poisson method achieves the

best result for the Poisson approach, Figure 5.5(e), and comparable to the con-

sensus image, Figure 5.5(f), as discussed for the results in Table 5.2. On the

other hand, if we compare the remaining filtered images to the original ones,

they are noisier than the reached consensus. The impulse filtered images, Fig-

ures 5.3(b), 5.4(b), 5.5(b) and 5.6(b), are not an alternative. Neither the Poisson

method for the Gaussian problems, Figures 5.3(e) and 5.4(e). Finally, in the

case of the Rician filtered images, they usually keep some noise. Although the

effect could be visually pleasant for some approaches, as the Gaussian and Rician

approach, Figures 5.3(d), 5.4(d) and 5.6(d).

On the other side, Figure 5.8 shows the results for an image contaminated

with folded normal noise, that is a noise distribution not considered as an input

of the consensus method. In this case, we can observe that the Gaussian method

in Figure 5.8(c) over-filters some areas loosing details, such as in the grass-field.

While the Rician method in Figure 5.8(d) presents a patch effect on the sky.

However, consensus seems to overcome these results, as shown in Figure 5.8(f).

Finally, Figure 5.9 presents an image contaminated with Poisson-Gaussian

noise. In the enlarged region we can see how the consensus method, Figure 5.9(f),

keeps some details that the Gaussian method removes, such as the water texture

(Figure 5.9(c)). The Poisson approach, in Figure 5.9(e), does not remove the

Gaussian noise, while the Rician method in Figure 5.9(d) presents a block pattern

in the water. Although consensus is still affected by noise, it seems to find a

compromise with the visual quality.
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5.3.8 Discussion

In summary, one can see that consensus methodology does not always get the

best results, however it is a robust method that finds a cooperation between the

considered methods. It generally obtains a good performance, and assures a result

better than the worst of the individual solutions. Therefore, consensus is a good

approach in situations where we do not know the noise distribution exactly; or

when there is a mixture of various noise types. The main gains of this approach

is the flexibility provided for an unknown noise model, where we can use several

methods randomly, and the presented methodology finds a compromise respect

to them. Quantitative and qualitative results already prove it.

5.4 Conclusions

In image noise reduction it is important to tune the method to the actual noise

statistics, and the proposed consensus decision-making framework achieves this

in an alternative way, by aggregating different filters. Results show that this

methodology can be used for noise reduction with unknown noise distribution,

because the noise is not known, the noise model does not follow the initial assump-

tions, or the image contains a mixture of different noise sources where their rela-

tive contributions may not be properly estimated. Therefore, consensus method-

ology is a good alternative in situations where we do not know beforehand the

best filter to apply, or when a combination of different filters performs better than

any single filter. Consensus is a robust and stable approach, although it must

be contemplated that consensus computational time is dependent on the number

of aggregation functions considered. For instance, if the number of used aggre-

gation functions increases, the computational cost also increases. Additionally,

the results tend to the mean when the number of idempotent functions increases.

The challenge is to find a compromise on the number of aggregation functions to

obtain a good performance. Furthermore, the used penalty function also affects

the final results. Nonetheless, instead of considering it as a drawback, it can be

seen as an advantage that brings flexibility to the system. Therefore, the system

can be considered as a framework. Further research in the input set, aggregation

functions and penalty function selection can be done.
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(a) Original (b) Impulse (PSNR = 21.821)

(c) Gaussian (PSNR = 26.899) (d) Rician (PSNR = 25.521)

(e) Poisson (PSNR = 24.22) (f) Consensus (PSNR = 25.924)

Figure 5.3: Noise reduction results for a Gaussian noisy image contaminated with
σ = 20 using different noise reduction methods (Impulse, Gaussian, Rician and
Poisson) and the reached consensus image.
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(a) Original (b) Impulse (PSNR = 18.851)

(c) Gaussian (PSNR = 23.62) (d) Rician (PSNR = 22.591)

(e) Poisson (PSNR = 20.313) (f) Consensus (PSNR = 22.612)

Figure 5.4: Noise reduction results for a Gaussian noisy image contaminated with
σ = 30 using different noise reduction methods (Impulse, Gaussian, Rician and
Poisson) and the reached consensus image.
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(a) Original (b) Impulse (PSNR = 27.555)

(c) Gaussian (PSNR = 31.799) (d) Rician (PSNR = 27.821)

(e) Poisson (PSNR = 33.793) (f) Consensus (PSNR = 32.699)

Figure 5.5: Noise reduction results for a Poisson noisy image using different
noise reduction methods (Impulse, Gaussian, Rician and Poisson) and the reached
consensus image.
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(a) Original (b) Impulse (PSNR = 33.15) (c) Gaussian (PSNR = 39.47)

(d) Rician (PSNR = 35.26) (e) Poisson (PSNR = 37.94) (f) Consensus (PSNR=37.09)

Figure 5.6: Noise reduction results for a Rician noisy image contaminated with
σ = 10 using different noise reduction methods (Impulse, Gaussian, Rician and
Poisson) and the reached consensus image.

(a) Original (b) Noisy (c) Gaussian (d) Rician (e) Consensus

Figure 5.7: Region extracted from two MR brain images contaminated with Ri-
cian noise. The first row is the image contaminated with σ = 10; the second row
with σ = 20.
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(a) Original (b) Impulse (PSNR = 20.219)

(c) Gaussian (PSNR = 21.596) (d) Rician (PSNR = 23.377)

(e) Poisson (PSNR = 21.49) (f) Consensus (PSNR = 22.565)

Figure 5.8: Noise reduction results for a folded normal noisy image contaminated
with σ = 25 using different noise reduction methods (Impulse, Gaussian, Rician
and Poisson) and the reached consensus image.
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(a) Original (b) Impulse (PSNR = 23.068)

(c) Gaussian (PSNR = 27.742) (d) Rician (PSNR = 26.638)

(e) Poisson (PSNR = 25.811) (f) Consensus (PSNR = 26.671)

Figure 5.9: Noise reduction results for a Poisson-Gaussian noisy image, contam-
inated with σ = 15 for the Gaussian distribution, using different noise reduction
methods (Impulse, Gaussian, Rician and Poisson) and the reached consensus im-
age. Extracted region of the original image.



6

A consensus approach for

non-stationary Gaussian noise

filtering

Images are known to suffer from a wide range of degradations and artifacts due to

acquisition, processing or transmission, such as noise, interferences, motion blur,

misfocus, or lens distortions. Restoration techniques as introduced in Section 2.3,

aim to estimate the original image by using a degradation model. Based on

specific degradation models, many restoration algorithms have been proposed in

the literature. Most of these techniques are parametric, i.e. they rely on the

estimation of certain features of the degradation model such as the variance of

noise or the direction of the motion blur.

Yet, there are situations in which either the needed information is not avail-

able, or it does not strictly follow the degradation model. Examples of this are the

uncontrollable influence of different sources of degradation, noise with spatially-

dependent variance, or the impossibility of estimating the direction of complex

motion of the camera.

In this approach we propose a method for parametric restoration of images

that copes with situations in which some information is missing, underlying pa-

rameters cannot be calculated or it does not exactly follow the initial assumptions.

It is based on a consensus decision-making process among different realizations

of the same algorithm. The method is designed to be able to cope with situations

with uncertain input data. It allows us to introduce a range of input values and

a reasoning strategy to produce a solution by consensus among different realiza-

131
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tions.

The method is here applied in a simple but frequent situation where images

are corrupted by additive Gaussian noise, but considering that the noise is non-

stationary, i.e. the variance is spatially variant within the image. As a restoration

algorithm, we considered the well-known Wiener filter [69] in its simplest version

where no blurring is present. This filter needs an estimate of the variance of noise,

σ2. However, in our current case, the variance becomes a function of the position,

σ2(x). We assume that we are not able to estimate the variability pattern that

produces such a noise, so the Wiener filter is unable to estimate σ2(x) properly.

The agreed output of the restoration is obtained by combining the Wiener

filter with a set of aggregation functions and a penalty function. The exploita-

tion step selects an aggregation function that joins the information from different

realizations of the filter with different input parameters (window size and noise

variance). Then, the resulting agreed output takes the advantage of all the re-

alizations to obtain a consistent spatially variant behaviour which benefits the

restoration. The experiments showed better results than those obtained with the

Wiener.

The remaining of the chapter is organised as follows. Section 6.1 explains the

Wiener filter. The proposed method is presented in Section 6.2 where we make use

of the consensus decision-making methodology introduced in Chapter 4. Followed

by the experiments and results in Section 6.3. Finally, the Section 6.4 exposes

the conclusion.

6.1 Background: the Wiener filter

The Wiener filter, as previously introduced in Section 2.3.1, is a parametric noise

filter that performs uniform filtering of the image with no distinction for changes

between textured and homogeneous regions, which sometimes results in an unac-

ceptable blurring.

In the case under study, where no blur is present in the image and it just

suffers degradations by noise. The Wiener filter can be simplified to its simplest

version as the linear minimum mean square error (LMMSE) estimation of the

original image I0(x), from a noisy one IN(x), when the former is corrupted with

additive Gaussian noise:
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IF (x) = 〈IN(x)〉x + K(x) · (IN(x) − 〈IN(x)〉x) , (6.1)

where IF (x) is the estimate of I0(x); 〈IN(x)〉x is the local average of IN(x) in a

neighbourhood Ws around x and

K(x) =
Var{IN(x)} − σ2

Var{IN(x)}
, (6.2)

being Var{IN(x)} the sample local variance of IN(x):

Var{IN(x)} = 〈I2N(x)〉x − 〈IN(x)〉2x . (6.3)

This function K(x) can be seen as a confidence measure of how the data fit

the proposed model. In those areas where K(x) → 1, the output of the filter

IF (x) → IN(x), i.e., there is no fitting and the output is the input data. This

usually happens around the edges of the image. In homogeneous areas, K(x) → 0

and therefore the output is a smoothed version of the input, IF (x) → 〈IN(x)〉x.

6.2 Proposed method: a consensus

Wiener

In this approach, we assume that an original image, I0(x), is corrupted with

non-stationary Gaussian noise with zero mean and x-dependent variance σ2(x):

IN(x) = I0(x) + N(x; 0, σ2(x)), (6.4)

and we also assume our incapability to estimate the variation pattern of σ2(x)

across the image. Thus, it is not possible to provide a proper estimate of K(x)

in Eq. (6.2).

The proposed method estimates K(x) via a consensus procedure where mul-

tiple input choices are considered. It is based on the methodology exposed in

Section 4.7. K(x) is here interpreted as the confidence of a certain pixel to trust

data or the model. Different input parameters will produce different K(x) values

for each pixel, and therefore a procedure to select a global final value is needed.

We propose to reach a consensus from the combination of different realizations for

different σ input values and different size of the neighbourhood as it is shown in
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Figure 6.1. The consensus strategy is applied to a pixel level, in such a way that

the combination phase is not required. Therefore, the consensus noise restoration

method is achieved in four phases: the preliminary phase, that calculates the in-

put set of the decision method; the aggregation phase, that transforms the input

set with a set of aggregations functions, the exploitation phase, where a penalty

function is used to obtain the consensus, and the estimation phase, where the

final image is obtained with the output of the decision schema. The complete

method to restore an image IN works in the following way:

1. Previously, in a preliminary phase, a set of confidence matrices {Ki}ni=1,

that conforms the input set of consensus, is calculated by using Eq. (6.2)

for different configurations of the variance (σ2
i ) and neighbourhoods (Wsi).

The set of variances configuration can be obtained by sampling an inter-

percentile interval on sample variance obtained from the noisy image, though

other strategies can be adopted when some information on the underlying

variance is known.

2. In the aggregation phase, a set of aggregated confidence matrices {Aggj}kj=1

is generated by applying OWA operators with different weighting vectors

over the input set {Ki}ni=1. (It can be read more about OWA operators in

Section 4.4.1). A set of seven representative OWA operators was used, the

weighting vectors are depicted in Figure 6.2. Note that the weights follow

a trapezoidal shape which gives higher weights to the lower values of the

sorted input. This way, the output of the OWA provides a higher confidence

value when the majority of candidates agree.

3. In the exploitation phase, the selected Kfinal(x), is calculated by minimizing

the penalty function Kfinal(x) = argminAggj

n∑
i=1

|Ki(x) − Aggj(x)|. (Penalty

functions are explained further in Section 4.5).

4. Finally, in the estimation phase, the Wiener filter of Eq. (6.1) is applied

with this final confidence estimation Kfinal(x) to get the restored image

IF (x).
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Figure 6.1: Proposed scheme for filtering of non-stationary noise using the para-
metric Wiener filter F (Eq. (6.1)) and the estimator K (Eq. (6.2)).
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Figure 6.2: Weighting quantification for the used OWA operators.

6.3 Experiments and discussion

We carry out different experiments to illustrate the behaviour of the proposed

approach in Section 6.2 facing the non-stationary Gaussian noise. In this section,

we first introduce the images, the noise shapes, and the similarity measures used

in the experiments. Followed by the experiments that show the advantages of the

proposed approach.
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6.3.1 Materials and methods

The proposed method was tested with the well-known images from Figure 6.3:

cameraman, barbara and mandrill corrupted with additive non-stationary Gaus-

sian noise. The images were normalized into the interval [0, 1]. An horizontal

ramp and a cosine function were adopted for the spatial distribution of σ2(x)

of noise as shown in Figure 6.4. The dynamic range of σ2(x) is [0.02, 0.07] for

cameraman, [0.03, 0.08] for barbara and [0.02, 1.0] for mandrill. The different re-

alizations of σi were {0.02, 0.04, 0.06, 0.08, 1.0, 1.2}, which were combined with

neighbourhoods of sizes 3, 5 and 7. Hence, 18 (3 × 6) different candidates were

calculated for the aggregation phase.

(a) Cameraman (b) Barbara (c) Mandrill

Figure 6.3: Original images used in the experiments.
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Figure 6.4: σ shapes used in the experiments.

The restoration performance was quantified by using the MSE, SSIM and

QILV. (These similarity measures are explained further in Section 2.4). The
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Noisy Ideal Ws [3x3] Ideal Ws [5x5] Ideal Ws [7x7]

MSE 142.6187 41.92737 37.88997 40.10132
SSIM 0.55594 0.83009 0.87973 0.88628
QILV 0.92905 0.99609 0.99519 0.99529

Table 6.1: Results using the ideal σ2(x) for the cameraman image with a dynamic
range of [0.02, 0.07] for the linear shape (Figure 6.4(a)).

Noisy Ideal Ws [3x3] Ideal Ws [5x5] Ideal Ws [7x7]

MSE 217.0559 84.29639 77.2783 78.99266
SSIM 0.5988 0.79997 0.84302 0.84767
QILV 0.8522 0.96353 0.95733 0.96327

Table 6.2: Results using the ideal σ2(x) for the barbara image with a dynamic
range of [0.03, 0.08] for the cosine shape (Figure 6.4(b)).

MSE is not bounded. A higher MSE represents worse quality. On the other side,

the SSIM and the QILV give a measure of the structural similarity between the

ground truth and the estimated images. Nonetheless, the former is more sensitive

to the level of noise in the image and the latter to any possible blurring of the

edges. This way we are able to assess the noise cleaning and border preserving

capability of the different schemes. Both indexes are bounded; the closer to one,

the better the image.

In order to compare with the ideal estimate of K, the Wiener filtered image

was calculated from Eq. (6.1) with the original σ2(x) used to corrupt the images

(see Figure 6.4). The neighbourhood size, that also affects the result, was set

for each experiment depending on their performance. For instance, different

executions were carried out for the neighbourhood size [3×3], [5×5], and [7×7].

We took for each case the best solution to be compared with our approach. Such

that Ws = [5× 5] got the better results for almost all the cases, and in those that

the results were similar to the Ws = [7×7], it was decided to use the previous one

because the visual quality was more convincing. However, for the experiments

done with the mandrill image the windows size was set to [3 × 3] as it obtained

better results. Some of these experiment results are shown in Table 6.1, 6.2

and 6.3.
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Noisy Ideal Ws [3x3] Ideal Ws [5x5] Ideal Ws [7x7]

MSE 264.608 118.3085 121.4869 126.7207
SSIM 0.69492 0.81014 0.80403 0.79756
QILV 0.8375 0.95495 0.94297 0.93773

Table 6.3: Results using the ideal σ2(x) for the mandrill image with a dynamic
range of [0.02, 1.0] for the linear shape (Figure 6.4(a)).

Noisy Ideal [5x5] Consensus [5x5]
mean std mean std mean std

MSE 142.167 0.4444 37.615 0.1589 42.790 0.1776
SSIM 0.556 0.0006 0.880 0.0006 0.869 0.0005
QILV 0.930 0.0007 0.995 0.0002 0.961 0.0009

Table 6.4: Mean and standard deviation (std) from a hundred executions of
the cameraman image contaminated with non-stationary Gaussian noise using a
linear shape (Figure 6.4(a)).

6.3.2 Experiments with the cameraman image

The first experiment was carried out with the image cameraman, where the algo-

rithm is tested in textured and homogeneous regions for the two different noise

shapes: linear and cosine. Figure 6.5 shows that our approach is comparable

to the ideal case in both experiments. As the MSE and SSIM also confirm

(Figure 6.6(a) and 6.6(b), respectively). Although the QILV gets affected its

performance by the noise (Figure 6.6(c)). It is not perceptible in the compar-

ison between images, due to the fact that the magnitude order is negligible in

variations in the decimal units. Furthermore, we can observe that a single realiza-

tion of the algorithm also obtains good results, as for instance a configuration of

σi = 0.06 and a Wsi = [5×5] shows for the experiment with the horizontal ramp;

and with σi = 0.08 and a Wsi = [5 × 5] for the cosine function case. However,

in both cases it is needed to know in advance the estimate, while we suppose it

is unknown and our approach is robust to it. The results shown until now are

from a single execution and therefore these are not significant statistically, that

is our motivation to execute the algorithm a hundred times. The results shown

in Table 6.4 and 6.5 present the expected behaviour for both cases.
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(a) Noisy (linear shape) (b) Noisy (cosine shape)

(c) Ideal (linear shape) (d) Ideal (cosine shape)

(e) Our approach (linear shape) (f) Our approach (cosine shape)

Figure 6.5: Results for cameraman contaminated with non-stationary Gaussian
noise which oscillates in [0.02, 0.07]. Two different noise shapes were used, in
concrete those shown in Figure 6.4.
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(c) QILV

Figure 6.6: Results using different quality measures for the cameraman image
for non-stationary Gaussian noise. In the first column we used a linear shape
(Figure 6.4(a)), while in the second column we used a cosine shape (Figure 6.4(b)).
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Noisy Ideal [5x5] Consensus [5x5]
mean std mean std mean std

MSE 141.327 0.4690 32.290 0.2038 38.942 0.1877
SSIM 0.551 0.0005 0.886 0.0007 0.837 0.0007
QILV 0.929 0.0006 0.997 0.0001 0.988 0.0003

Table 6.5: Mean and standard deviation (std) from a hundred executions of
the cameraman image contaminated with non-stationary Gaussian noise using a
cosine shape (Figure 6.4(b)).

Noisy Ideal [5x5] Consensus [3x3]
mean std mean std mean std

MSE 209.599 0.6791 79.400 0.3478 87.427 0.3700
SSIM 0.599 0.0006 0.844 0.0008 0.803 0.0009
QILV 0.868 0.0010 0.958 0.0012 0.911 0.0018

Table 6.6: Mean and standard deviation (std) from a hundred executions of the
barbara image contaminated with non-stationary Gaussian noise using a linear
shape (Figure 6.4(a)).

Noisy Ideal [5x5] Consensus [3x3]
mean std mean std mean std

MSE 216.613 0.6888 77.176 0.3728 90.333 0.4199
SSIM 0.598 0.0006 0.842 0.0008 0.790 0.0009
QILV 0.853 0.0013 0.959 0.0011 0.906 0.0016

Table 6.7: Mean and standard deviation (std) from a hundred executions of the
barbara image contaminated with non-stationary Gaussian noise using a cosine
shape (Figure 6.4(b)).

6.3.3 Experiments with the barbara image

Another experiment was done with a more textured image: the barbara image.

This image is also contaminated with the linear and cosine shapes. The results

shown in Figure 6.7 prove once more that our approach is comparable to the ideal

case. Moreover, in the graphs for the MSE from Figure 6.8(a) we also presented

the results from a single realization for a specific σi, where we can observe how

our approach improves any of them. This is due to that with consensus, the

image is improved locally, and consequently it improves globally. On the other

hand, the SSIM and QILV from Figure 6.8(b) and 6.8(c) respectively, get affected

their performance by the noise and worsens insignificantly with respect to the

best individual cases. Moreover, the results for a hundred executions shown in

Table 6.6 and 6.7 present the expected behaviour for both cases.
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(a) Noisy (linear shape) (b) Noisy (cosine shape)

(c) Ideal (linear shape) (d) Ideal (cosine shape)

(e) Our approach (linear shape) (f) Our approach (cosine shape)

Figure 6.7: Results for barbara contaminated with non-stationary Gaussian noise
which oscillates in [0.03, 0.08]. Two different noise shapes were used, in concrete
those shown in Figure 6.4.
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(b) SSIM
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(c) QILV

Figure 6.8: Results using different quality measures for the barbara image for
non-stationary Gaussian noise. In the first column we used a linear shape (Fig-
ure 6.4(a)), while in the second column we used a cosine shape (Figure 6.4(b)).
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Figure 6.9: Detailed results for mandrill contaminated with non-stationary Gaus-
sian noise using a linear shape which oscillates between 0.02 and 1.0. a,e: original;
b,f: noisy; c,g: ideal; d,h: our approach.

Noisy Ideal [3x3] Consensus [3x3]
mean std mean std mean std

MSE 266.372 0.7949 118.931 0.4716 133.868 0.5175
SSIM 0.694 0.0006 0.810 0.0008 0.791 0.0007
QILV 0.835 0.0014 0.955 0.0010 0.920 0.0012

Table 6.8: Mean and standard deviation (std) from a hundred executions of the
mandrill image contaminated with non-stationary Gaussian noise using a linear
shape (Figure 6.4(a)).

Noisy Ideal [3x3] Consensus [3x3]
mean std mean std mean std

MSE 279.609 0.9271 128.395 0.5103 172.259 0.5762
SSIM 0.719 0.0006 0.819 0.0006 0.735 0.0007
QILV 0.813 0.0019 0.941 0.0015 0.853 0.0017

Table 6.9: Mean and standard deviation (std) from a hundred executions of the
mandrill image contaminated with non-stationary Gaussian noise using a cosine
shape (Figure 6.4(b)).

6.3.4 Experiments with the mandrill image

A new experiment was accomplished with the mandrill image, it is a very textured

image and contaminated with an horizontal ramp and a cosine shape. Figure 6.9

shows that our approach gets better qualitative appearance than the ideal case.

The edges are better defined and the textures are better preserved. Furthermore,

the numerical results, MSE, SSIM and QILV shown in Figure 6.10(a), 6.10(b)

and 6.10(c) respectively, support this behaviour. The results for a hundred exe-

cutions for both shapes (linear and cosine) are shown in Table 6.8 and 6.9.
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(b) SSIM
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Figure 6.10: Results using different quality measures for the mandrill image for
non-stationary Gaussian noise. In the first column we used a linear shape (Fig-
ure 6.4(a)), while in the second column we used a cosine shape (Figure 6.4(b)).
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6.3.5 Discussion

In any case, we can figure out from the different experiments (Figure 6.6, 6.8

and 6.10) that if the σi estimation is lower or higher to the best particular case,

the quality measures fall down quite fast. Nonetheless, the window size also

affects the behaviour of the results. If the σi is lower than the best one, the

behaviour is quite similar for any windows size. This is due to that K(x) → 1,

and it is relying in the data, consequently, the Wiener filter is selecting the noisy

pixels for the final image. On the other hand, when σi is over-estimated, it works

differently: K(x) → 0, then the model is considered for that pixel. So the Wiener

filter substitutes the pixels for their local average (IN(x)〉x), affecting the window

size to the local statistics and, therefore, the filter behaviour.

6.4 Conclusions

A new methodology based on consensus decision-making is presented, offering

the possibility to use parametric restoration methods when any of the parame-

ters cannot be properly estimated or the data do not strictly fit the underlying

model. As an illustration we have applied this methodology to the case of images

corrupted with non-stationary Gaussian noise, where there is a wide range of

uncertainty on the value of the noise variance. To overcome this problem we have

used the well-known Wiener filter (originally designed for stationary noise) and

we obtained an output using a consensus procedure by selecting an aggregation

function from a set of OWA operators by means of a penalty function. This

allows us to use a wide range of input parameters at the same time, in this case

the noise variance and the window size. The method presents a consistent and

a conservative behaviour, preserving the borders. The experimental results show

that the performance of the consensus method is similar to the case in which all

the parameters are accurately known before.

Although the proposed method has been used in a simple scenario (signal

plus noise), this has to be seen as a single illustration of the possibilities of this

methodology in image restoration. The method can be extrapolated to other

cases if (1) the restoration algorithm follows a parametric model; (2) there is an

uncertainty on the input parameters or a slight misfit between data and model;

(3) there is a way to measure the confidence of the model and the data.
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A consensus approach for

non-stationary Rician noise filtering

Noise is one source of degradation always present in magnetic resonance imaging

(MRI) acquisitions. Thermal noise in MR scans is mainly originated by the

subject or object to be imaged, followed by electronics noise during the acquisition

of the signal in the receiver chain. Since noise is related to stochastic motion

of free electrons, it is intrinsically imbricated with the acquisition process and

therefore it is unavoidable. Some modern acquisition sequences are particularly

affected by noise. For instance, techniques that demand large amounts of data,

in order to reduce the acquisition time, also reduce the temporal averaging; as a

consequence, the noise power is increased proportionally to the square root of the

speedup. This is also true for those acquisitions in which the signal is attenuated,

such as diffusion sequences with high b-values.

The degradation pattern introduced by noise affects the visual image quality

and can negatively lead to an adequate interpretation and analysis of the data.

Not only visual inspection is affected by noise, but also many common post-

processing tasks (image registration, tissue segmentation, diffusion tensor estima-

tion) and the obtaining of precise measures and quantitative imaging biomarkers.

The direct approach to minimize the influence of noise over the final image

is the use of noise removal or signal estimation techniques. (In Chapter 2 can

be read more about image restoration). Traditionally, noise filtering techniques

in medical imaging are based on well-defined prior statistical models of data.

The Gaussian model is the usual assumption in many algorithms. The definition

of more evolved noise models for MRI have allowed the natural extension of

147
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well-known image processing techniques to cope with features specific of MRI.

(These density functions are presented in Section 2.3.2). Many examples can be

found in the literature, such as the conventional approach (CA) [75], maximum

likelihood (ML) [93], linear estimators [4], or adapted non-local mean (NLM)

schemes [72, 105].

In the simplest case, when single-coil acquisitions are considered, the complex

spatial MR data is typically assumed to be a complex Gaussian process, where

real and imaginary parts of the original signal are corrupted with uncorrelated

Gaussian noise with zero mean and equal variance σ2
n. Thus, the magnitude

signal calculated as the envelope of the complex signal is known to be Rician

distributed [55, 57]. This Rician model has been the standard in MRI modeling

for many years, and it has been the base for a myriad of filtering techniques as

well as noise estimation algorithms [4, 71, 72, 105].

With the advent of multiple-coil systems to reduce acquisition time, paral-

lel magnetic resonance imaging (pMRI) algorithms are used, dominant among

them sensitivity encoding (SENSE) [85] and GeneRalized Autocalibrating Par-

tially Parallel Acquisitions (GRAPPA) [53]. From a statistical point of view, the

reconstruction process carried out by pMRI techniques is known to affect the

spatial stationarity of the noise in the reconstructed data; i.e. the features of the

noise become position dependent. Instead of assuming a single σ2
n value for each

pixel within the image, the variance of noise varies with x, i.e. σ2
n(x) [5, 8].

If SENSE is considered, the reconstruction process yields to the magnitude

value of a complex Gaussian, and therefore, the final magnitude signal can still be

considered Rician distributed, but with a different σ2
n(x) for each x [8, 35]. This

way, many algorithms proposed for single coils systems can still be used if SENSE

is considered, as long as the non-stationarity of the noise is taken into account.

However, the estimation of the spatial pattern of σ2
n(x) is an issue that presents

serious difficulties and some prior information is needed, such as the sensitivity

maps in each coil. Unfortunately, this information is not always available.

Here we propose a novel approach to noise filtering in MRI assuming the

spatially-variant patterns of noise created by SENSE. It assumes a Rician model

but any additional information (such as the sensitivity of the coils or noise esti-

mates) is not needed. The method is based on the consensus of different realiza-

tions of a given signal estimator for different σ2
n values. The idea is to generate

a wide variety of candidates that are merged in a global solution that estimates
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σ2
n(x). However, as the representative inputs are not known in advance, we use

a set of aggregation functions to merge the realizations. Then, for each pixel,

a penalty step will select the aggregated value that presents less dissimilarities

with respect to the inputs [25, 26]. The final image is obtained with the informa-

tion contained in the different candidates, showing a consistent spatially variant

behaviour.

This approach extends a previous version of the method presented in Chap-

ter 6, where Gaussian noise was considered, to the case of spatially-variant Rician

noise in MRI. Although it is initially intended for SENSE acquisitions, it can re-

ally be applied to any other data where the noise follows a similar distribution.

As a restoration algorithm, we considered the linear minimum mean square

error (LMMSE) estimator for Rician noise [4] due to its simplicity and robust-

ness, which is the natural extension of the Wiener filter proposed in Section 6.1.

However, the method can be applied to other signal estimators. An example of

adaptation to the NLM algorithm will be provided as well.

This chapter is organized as follows: Section 7.1 introduces the statistical

noise presented in SENSE reconstructed images and the LMMSE estimator. In

Section 7.2 the new approach is presented. Then, in Section 7.3 different ex-

periments are discussed for synthetic and real MR magnitude images using the

proposed approach with LMMSE and adaptation for the NLM. Followed by the

discussion in Section 7.4.

7.1 Background

In this chapter we propose an application of a consensus-based strategy between

different realizations of the same filter with different parameters in order to obtain

a final image independent to some parameter estimation. It is based on the con-

sensus decision-making methodology introduced in Chapter 4. Although different

noise filtering methods could have been selected, we will base our approach on the

linear minimum mean square error (LMMSE) estimator for the Rician distribu-

tion proposed in [4] due to its simplicity and robustness. By means of a consensus

methodology, we want to adapt this estimator for spatially variant noise scenarios

where the original approach may fail. This methodology can easily be extended

to other Rician filtering approaches.
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7.1.1 Statistical noise model in SENSE

reconstructed images

The starting point of this approach is the assumption that, under some acquisition

circumstances and postprocessing procedures, the noise in the final magnitude

image becomes non-stationary, i.e. the variance of noise σ2
n becomes dependent

on the position x: σ2
n(x). This is precisely the case in pMRI when SENSE is

used. (Non-stationary noise is introduced in more detail in Section 2.3.2).

The formulation of the SENSE reconstruction is beyond the scope of this

work. However, we follow prior studies [8, 85, 88, 102] where authors recall that

the signal reconstructed with Cartesian SENSE in the x-space, SR(x), follows

a Complex Gaussian distribution. If the magnitude is considered, i.e. M(x) =

|SR(x)|, the final magnitude image will follow a Rician distribution [8, 102], just

like single-coil systems. However, in both cases, due to the reconstruction process,

the resulting distributions are non-stationary. This means that the variance of

noise σ2
n will vary from point to point across the image: σ2

n(x). The final value of

the variance of noise at each point will depend on the covariance matrix between

coils of the original data (prior to reconstruction) and on the sensitivity map of

each coil, but not on the data themselves.

The magnitude image can be modeled as follows:

M(x) = |SR(x)| (7.1)

where

SR(x) = I0(x) + N(x; 0, σ2
n(x)). (7.2)

Being M(x) the noisy magnitude image, I0(x) a noise-free SENSE recon-

structed signal and N(x) = Nr(x) + j ·Ni(x) some complex Gaussian noise with

zero mean and x-dependent variance σ2
n(x). Note that, noise is not really added

to the reconstructed signal, as described in Eq. (7.1). However, the final model

given by the reconstructed signal allows us to simplify the whole process and

model it this way, without loss of generality. This way, we do not need the sensi-

bility of the coils and correlation information, and the model is totally compatible

with single-coil formulations.
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7.1.2 LMMSE estimator

The selected noise filtering technique is the LMMSE signal estimator for the

stationary Rician distribution, as proposed in [4], and based on the Wiener filter

introduced in Section 2.3.1. It estimates the original signal Î0(x) from the noise

magnitude data, M(x) as described in Eq. (7.1), using the local information and

the original variance of noise σ2
n. The estimator is defined as follows

Î0(x) =
√

〈M2(x)〉x − 2σ2
n + K(x) · (M2(x) − 〈M2(x)〉x), (7.3)

with

K(x) = 1 − 4σ2
n (〈M2(x)〉x − σ2

n)

〈M4(x)〉x − 〈M2(x)〉2x
. (7.4)

The operator 〈Mn(x)〉x is the n-th local sample moment of M(x) in a neighbour-

hood η(x) around each pixel, defined as:

〈Mn(x)〉x =
1

|η(x)|
∑

p∈η(x)

Mn(p). (7.5)

When non-stationary noise is considered, the parameter σ2
n becomes x-dependent,

and it must be replaced in Eq. (7.3) and Eq. (7.4) by σ2
n(x).

The function K(x) in Eq. (7.3) can be seen as a confidence measure of how

data fits the considered model. In those pixels where K(x) → 1 (in the edges of

the image, for instance, where the local variance is high), the data is far from the

model, and therefore the final image Î0(x) → M(x) − 2σ2
n. Since the model is

not trusted, the output is just the data (with some bias removed). On the other

hand, in those areas where K(x) → 0 (homogeneous areas, for instance), the

model totally fits the data, and the best possible output is given by an unbiased

version of the averaged data, i.e., Î0(x) → 〈M2(x)〉x − 2σ2
n. This K(x) function

will be later used to control the consensus procedure.

7.2 Proposed method: a consensus

LMMSE

The starting point of our approach are MR images corrupted with non-stationary

Rician noise, as those generated after a SENSE acceleration and reconstruction.
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Our aim is to estimate the noiseless signal. We work with MR magnitude images

that are affected by Rician noise. This noise can be spatially I0(x) out of the noise

data. We will assume a simplified corruption model as described in Eq. (7.1). As

previously stated, we will use the LMMSE estimator in Eq. (7.3) as filtering

technique. We assume our inability to properly assess a σ2
n(x) map. Thus, we

cannot initially calculate a value for K(x) in Eq. (7.4), since it depends on σ2
n(x).

The solution proposed to overcome this issue is based on a consensus strategy

to a pixel level introduced in Section 4.7: from a set of different input values of

Ki(x), i = 1, . . . , n we try to reach a consensus for a unique K(x) value:
K1(x)

K2(x)
...

Kn(x)

 Consensus−→ K(x).

These different Ki(x) are calculated using different configurations of the input

parameter set, namely a σ2
n value and the size of the neighbourhood where the

local moments are calculated, Wsi = |ηi(x)|, see Eq. (7.5). Here K(x) will be

used as a pixel confidence: it gives a measure of how the data fits the model.

Since we cannot make an initial correct estimation of σ2
n(x), different candidates

Ki(x) calculated with different σ2
i values will contribute to the final decision.

A scheme is presented in Figure 7.1 where a complete overview of the method

is given. The whole consensus-based algorithm is as follows:

1. In a preliminary phase, a set of confidence matrices {Ki}ni=1 is calculated

by using Eq. (7.4) with different values for the noise variance (σ2
i ) and the

neighbourhood size (Wsi). A reference set {σ2
i }ni=1 can be built from an ini-

tial reference variance. For instance, a reference variance can be estimated

using any noise estimator already existing in the literature [4, 5]. This esti-

mation is done assuming a single σ2
n value for the whole image, which will

not be accurate for all pixels, but it gives a global reference value. A set of

multiple {σ2
i }ni=1 can be obtained by sampling an inter-percentile interval

around the estimated value. Other strategies can be also adopted when

some information on the underlying variance is known.

2. For a aggregation phase, a set of aggregation functions merges all the in-

formation from {Ki}ni=1. Then a set of aggregated confidence matrices
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{Aggj}kj=1 is generated by applying OWA operators with different weight-

ing vectors. (These OWA operators are explained further in Section 4.4.1).

A set of seven representative OWA operators was used, whose weighting

vectors are depicted in Figure 7.2. Note that the weights distributions fol-

low trapezoidal shapes with different tilt grades. They mainly give higher

weights to the lower values of the sorted input. This way, the output of

the OWA operator provides a higher confidence value when the majority of

candidates agree. There are also null weights that correspond to the input

omission.

3. In the exploitation phase, to build Kfinal(x), we select the Aggj that best

suits and less disagrees with respect to the initial {Ki}ni=1. In order to

help in this issue the Aggj is calculated by minimizing the penalty-based

function (introduced in Section 4.5):

Kfinal(x) = argminAggj

n∑
i=1

|Ki(x) − Aggj(x)|.

4. Finally, in the estimation phase, to get the MR magnitude image, the

LMMSE estimator from Eq. (7.3) has to be applied using the confidence

estimation Kfinal(x) and a spatial variance estimation σ̂2
n(x). The σ̂2

n(x) is

calculated isolating the variable from Eq. (7.4) and using the input Kfinal(x)

as shown in Eq. (7.6).

σ̂2
n(x) =

〈M2(x)〉x −
√
〈M2(x)〉2x − (1 −Kfinal(x)) · (〈M4(x)〉x − 〈M2(x)〉2x)

2
.

(7.6)

7.3 Experiments and discussion

Different experiments are carried out to illustrate the behaviour of the MRI noise

reduction approach proposed in Section 7.2 to deal with the non-stationary noise

created by SENSE. For it, we first introduce the used materials, to follow with

the experiments. Two databases are used for the experiments, where one is

contaminated by different non-stationary noise patterns. Moreover, our approach
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Figure 7.1: Proposed scheme for filtering of non-stationary noise using a LMMSE
estimator for Rician noise. A consensus approach for multiple inputs as a function
of K(x) is considered.
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Figure 7.2: Weighting quantification for the 7 used OWA operators considering
10 elements.

is compared to other methods using several similarity measures that measures

their performance. Then, in the different experiments we show the effectiveness

of the proposed approach.

7.3.1 Materials and methods

We tested the proposed method with two different data sets as it is shown in

Figure 7.3: (1) Synthetic noise-free MR slices from the BrainWeb data set [31];
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(a) Coronal (512× 512) (b) Sagital (512× 512) (c) In vivo (256× 256)

Figure 7.3: MRI slices used in the experiments. Images (a) and (b) come from
the BrainWeb dataset; (c) is a real in vivo acquisition from a multi-coil GE Signa
1.5T EXCITE.

(2) one in vivo1 T1 MR magnitude image acquired in a GE Signa 1.5T EXCITE,

FSE pulse sequence, 8 coils, TR=500ms, TE=13.8ms, image size 256 × 256 and

FOV: 20cm×20cm.

To simulate SENSE-like noise, the synthetic images were corrupted with non-

stationary noise following the model in Eq. (7.1) with four different spatial pat-

terns, G(x), shown in Figure 7.4. The noise variance is calculated from this

pattern for different signal-to-noise ratio (SNR) simply by a linear scaling:

σn(x) = σ0 + G(x) · σ1.

The different patterns used are:

1. An unrealistic highly variant synthetic noise pattern, Figure 7.4(a). Al-

though it is very unlikely that a pattern like this occurs in real acquisition,

this 4-section scheme will give a very good insight of the behaviour of the

filtering schemes.

2. A synthetic Gaussian-shaped noise pattern, Figure 7.4(b). This pattern

follows the shape of some real patterns in SENSE acquisitions [8].

3. A noise shape generated with a SENSE simulator: Figure 7.4(c). This is

the reconstruction from a sensitivity map belonging to 8-coils scheme as

shown in Figure 7.5.

1Image provided by Doctor W. Scott Hoge from the LMI, Brigham and Womens Hospital,
Boston.
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4. In order to verify the behaviour of the method in presence of stationary

noise, a fourth pattern is proposed, assuming G(x) to be a constant, i.e.

σ2
n(x) = σ2

n.

(a) Extreme (b) Slim Gaussian (c) SENSE

Figure 7.4: Non-stationary noise patterns used with the synthetic MR images.
G(x) range is [0, 1]. It was scaled to obtain images with several SNRs.

Figure 7.5: Sensitivity map used for the experiments.

From the spatial pattern G(x), the variance σ2
n(x) is finally obtained for dif-

ferent SNRs. For the experiments, a neighbourhood size Ws = [7 × 7], and a

range of 10 different central values for σ2
n are considered. They are calculated as

elements of a range that varies around an initial variance σ̂2
n. The minimum is

between (0.5625-0.7225) times σ̂2
n, as well as the maximum is between (1.44-1.69)

times σ̂2
n. In other words, the minimum is between (0.75-0.85) times σ̂n, and

the maximum is between (1.2-1.3) times σ̂n. The initial variance is calculated as

σ̂2
n = 4/9 · σ2

n(x), when σ2
n(x) is available. Otherwise, σ̂2

n is estimated from the

data. We also apply this initial variance as an input parameter of the filters used.

Our approach was compared with the following state-of-the-art Rician-based

filtering schemes:

• The Original LMMSE estimator (Original LMMSE) as proposed in [4],

assuming a single σ2
n value for the whole image. A 7 × 7 square window is

used for the sample moments estimation.

• The Non-local mean (NLM) algorithm without the Rician bias, as proposed

in [72] (Rice NLM). The essence of the NLM algorithm consists of a weighted
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average that considers the distance and intensity between the target pixel

and all observed pixels. The original idea was proposed by Buades et al. [20]

for Gaussian noise. The required parameters for this approach are the radio

search window (Rsearch = 11); the radio similarity window (Rsim = 3); the

degree of filtering (f = 1.2 · σ̂n) and an estimation of the variance (σ̂2
n).

• The Chi-square unbiased risk estimator (CURE), as proposed in [71]. It

considers the squared-magnitude magnetic resonance image data to derive

an unbiased expression for the expected mean-squared error to remove noise,

which are well modeled as independent non-central chi-square random vari-

ables on two degrees of freedom. The task is done in the wavelet-domain for

its compromise between the execution speed and performance. It uses the

unnormalized Haar wavelet transform (Haar CURE), where each wavelet

subband is treated independently. The other required parameter is the

variance estimation, σ̂2
n.

The restoration performance was quantified by using different similarity mea-

sures from the ones introduced in Section 2.4. Specifically, the mean square error

(MSE), the structural similarity index (SSIM) and the quality index based on

local variance (QILV) were used. The former one is simple to calculate and gives

a measure of how pixelwise similar two images are. Though it does not take

into account any structural information. It is not bounded; a higher MSE means

worse quality. On the other hand, the SSIM index and the QILV give a measure

of the structural similarity between the ground truth and the estimated image.

However, the SSIM is more susceptible to the noise level in the image and the

QILV to any blurring in the edge. Both measures are bounded in [0, 1]; the closer

to one, the better the image. Moreover, all the measures are only applied on

areas of interest in the image, this means that the background is excluded.

7.3.2 Experiments with synthetic data

In order to show the relevance of our model, we compare our approach with three

other methods: the original LMMSE, Rice NLM and Haar CURE; as well as with

the ideal LMMSE estimation making use of the actual σ2
n(x) (Ideal LMMSE). Fur-

thermore, we also compare our approach for the case that the LMMSE estima-

tion (Eq. (7.3)) uses the actual σ2
n(x) instead of the estimated sigma σ̂2

n(x) from
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Eq. (7.6) (Our approach σ2
n(x)). For these two last estimations of the LMMSE,

the windows size (Ws) chosen varies between [5×5] and [7×7]. Each experiment

was repeated 100 times to ensure a significant statistical analysis.

The first experiment evaluates the behaviour in an extreme case with an unreal

noise shape. Figure 7.6 reveals how the SNR is highly affected with the increasing

noise. Results show the lower performance of other methods in situations with

very variant noise and low SNR, while our approach is able to overcome situations

and highly improving the results of the original LMMSE. The results are com-

parable with the ideal case and with our approach using the actual σ2
n(x), where

for the SSIM measures both cases are identical. Although our approach presents

worse results for the QILV measure, we can appreciate that it complements the

SSIM measure. Moreover, other approaches with better QILV and worse SSIM

are over-filtered, as Figure 7.7 shows. The results for the three measures also

manifest the convergence to similar results as the SNR increases.

In the second experiment, we selected a noise shape that approaches the

SENSE shape contaminating the image. In this case, the SNR is less affected

by the noise range, mainly due to the effect of a large image part where the noise

is almost non-existent. In Figure 7.8 better results of our approach are observed

when compared to the rest of the approaches and how even for this case, the

different measures for our approach are again almost equivalent to the ideal case.

Although the QILV is slightly worse than the ideal case for low SNRs. For this

last measure, the original LMMSE curiously gets worse results as the SNR in-

creases, what affects the sharpening of the edges. This behaviour can be due

to the selected windows size and the remaining noise, although the magnitude

is insignificant (less than two hundredths). Moreover, we can also appreciate

how in this case the Rice NLM presents worse results than the original LMMSE.

However, as the SNR increases, the Haar CURE becomes comparable to our

approach (around 17.5 dB), while, in all the cases, our approach improves the

original LMMSE. In Figure 7.9 we present the images for one of the executions

for the different filters where we can observe how our approach better preserves

the details.

The next experiment was performed on images contaminated by a SENSE

reconstruction simulator that simulates a 8-coils acquisition scheme with equal

correlation between coils (ρ = 0.25). The used sensitivity map belonging to

the 8-coils system is shown in Figure 7.5. The results from Figure 7.10 exhibit
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Figure 7.6: Results obtained from the synthetic MR magnitude image from Fig-
ure 7.3(a) with different SNRs. Each case was launched 100 times for the extreme
noise shape (Figure 7.4(a)).

that there is no significant difference between the approaches for the MSE, al-

though our approach obtains the worst performance for low SNRs. Nonetheless,

the SSIM shows some differences among them. We can clearly appreciate that

CURE outperforms the rest of the approaches. Though considering our maximal

expectations with respect to the ideal case, we can conclude that our approach

is equivalent to it. Moreover, the QILV measures neither show a significant dif-

ference, except for the original LMMSE, that as in the previous case, it curiously

gets worse results as the SNR increases, although it is insignificant (less than two

hundredths). In general, our approach shows a similar performance to the ideal

case, or the original LMMSE except for the QILV measure where our approach

improves. This behaviour may be because the noise range is not wide enough to

show the benefits of our approach. Then the image is treated as an image with
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(a) Noisy (MSE = 3174.50, SSIM = 0.31) (b) CURE (MSE = 1410.74, SSIM = 0.46)

(c) Rice NLM (MSE = 1440.85, SSIM =
0.54)

(d) Our appr. (MSE = 874.30, SSIM =
0.52)

Figure 7.7: Different image results obtained from the synthetic MR magnitude
image from Figure 7.3(a) with the filters CURE, Rice NLM and our approach for
the extreme noise shape from Figure 7.4(a) with a SNR = 2.21.

non-spatial distributed noise, since they behave as the original LMMSE. On the

other side, it is important to note that, as the SNR increases, the performance

differences decrease between the algorithms. In other words, we obtain the best

result we can get using the selected estimator. In Figure 7.11 we may observe the

equivalency of the methods from their image results.

The last experiment with synthetic data shows how our approach is also able

to properly deal with images that contain stationary noise. To this end, we

make use of different stationary noise shapes that obtain images with different
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(c) QILV

Figure 7.8: Results obtained from the synthetic MR magnitude image from Fig-
ure 7.3(b) with different SNRs. Each case was launched 100 times for the slim
Gaussian noise shape (Figure 7.4(b)).

SNRs (σ2
n(x) = σ2

n)). The results from Figure 7.12 manifest how all approaches,

including our approach, obtain almost similar and coherent results. However,

our approach is slightly affected by the noise introduced by our technique as we

are using a range of σ2(x). But in any case, it shows a similar behaviour to the

original LMMSE, that this time overlaps with the ideal case, as they are using

the same σ2(x). We should take into account that the original LMMSE is the

best result we can afford with our approach. Despite the SSIM performance is

the worst for some cases, it also improves in some others. Possibly due to the

selected windows size. For the QILV measure, it presents a similar behaviour to

the two previous approaches, where for the original case it also decreases as the

SNR increases. Besides that, the Haar CURE obtains the best performance. In

Figure 7.13 we show the images for the different filters for one of the executions.
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(a) Noisy (MSE = 135.74, SSIM = 0.66) (b) CURE (MSE = 48.86, SSIM = 0.87)

(c) Rice NLM (MSE = 67.97, SSIM = 0.84) (d) Our appr. (MSE = 40.02, SSIM = 0.88)

Figure 7.9: Different image results obtained from the synthetic MR magnitude
image from Figure 7.3(b) with the filters CURE, Rice NLM and our approach for
the slim Gaussian noise shape from Figure 7.4(b) with a SNR = 16.59.

Besides showing that our approach presents a good behaviour in situations

with a variant non-stationary noise. It also exhibits good running times. In

Table 7.1 we present the average time from the hundred executions for each algo-

rithm. The original LMMSE has the best one, closely followed by our approach.

Therefore, we can extract that our approach does not overload the running times

despite making several runnings of the same filter. Although we should bear in

mind that this running time will depend on the selected filter. On the other side,

the Rice NLM obtains high running times with respect to the rest of the filters.
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(c) QILV

Figure 7.10: Results obtained from the synthetic MR magnitude image from Fig-
ure 7.3(a) with different SNRs. Each case was launched 100 times for the SENSE
reconstruction simulator that generates the shape noise from Figure 7.4(c).

Experiment Figure 7.6 Figure 7.8 Figure 7.10 Figure 7.12
Original LMMSE 0.061 ms 0.072 ms 0.060 ms 0.064 ms
Our approach 1.302 ms 1.405 ms 1.306 ms 1.327 ms
Haar CURE 5.828 ms 6.710 ms 5.727 ms 6.487 ms
Rice NLM 87.106 ms 96.602 ms 80.173 ms 85.123 ms

Table 7.1: Average running times for the hundred executions of the different
algorithms and different experiments carried out.

7.3.3 Experiments with real data

In order to test the proposed method with real data, we use the real multicoil

in vivo acquisition in Figure 7.14. For simplicity, the fully sampled k-space has

been acquired, and the sensitivity map has been estimated for each of its 8 coils.
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(a) Noisy (MSE = 141.45, SSIM = 0.59) (b) CURE (MSE = 27.34, SSIM = 0.93)

(c) Rice NLM (MSE = 58.74, SSIM = 0.88) (d) Our appr. (MSE = 42.75, SSIM = 0.88)

Figure 7.11: Different image results obtained from the synthetic MR magnitude
image from Figure 7.3(a) with the filters CURE, Rice NLM and our approach
for the SENSE reconstruction simulator that generates the shape noise from Fig-
ure 7.4(c) with a SNR = 15.66.

The data in each coil was subsampled to simulate a 2x acceleration, and the

final magnitude image has been reconstructed using an offline SENSE algorithm.

Since the initial σ2
n(x) is not available for this image, a prior estimation is done

assuming stationary noise [4] as

σ̂2
n = mode{〈M(x)2〉x}.

The {σ2
m}10m=1 elements are selected from the range [0.0001 · σ̂2

n, 0, 0009 · σ̂2
n]

for its good performance, and in accordance with the range data that belongs to

[2.507 · 10−4, 3.0138]. In Figure 7.14 it is shown how the consensus LMMSE and

the Haar CURE obtain the best results among the restored images. Although

consensus LMMSE slightly obtains better results in homogeneous areas than Haar
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(c) QILV

Figure 7.12: Results obtained from the synthetic MR magnitude image from Fig-
ure 7.3(b) with different SNRs. Each case was launched 100 times for a stationary
noise.

CURE. On the other hand, the restored Rice NLM image still keeps a lot of noise,

while the original LMMSE removes more noise in exchange to blur the image

(this effect is emphasized close to the borders). On the contrary, our consensus

approach based on the original LMMSE does not exhibit this problem anymore.

7.3.4 Spatial variance distribution estimation

The proposed methodology not only improves the image quality. It also estimates

the spatial variance distribution using Eq. (7.6) and the reached Kfinal(x). We

can analyze the behaviour of our approach using synthetic images, so we can

compare the estimation with respect to the real introduced degradation. In Fig-

ure 7.15, different noise maps with their respective original noise degradations are
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(a) Noisy (MSE = 276.08, SSIM = 0.46) (b) CURE (MSE = 39.59, SSIM = 0.89)

(c) Rice NLM (MSE = 68.19, SSIM = 0.84) (d) Our appr. (MSE = 59.93, SSIM = 0.84)

Figure 7.13: Different image results obtained from the synthetic MR magnitude
image from Figure 7.3(b) with the filters CURE, Rice NLM and our approach for
the case of stationary noise with a SNR = 10.02.

shown. These are obtained using the MR magnitude image from Figure 7.3(a)

and Figure 7.3(b). We can observe that the estimation follows the noise pattern,

as well as it detects the image borders.

7.3.5 Experiments with NLM

The idea of using a consensus approach when input parameters are unknown is

not just restricted to the LMMSE estimator. The methodology can easily be

adapted to other filtering schemes. As an illustration, we will use it together

with a Rician NLM. The original unbiased NLM scheme is defined as

Î0(x) =
√

NLM(M2(x)) − 2σ2
n.
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(a) Original (b) Our approach (c) Original LMMSE

(d) Haar CURE (e) Rice NLM

Figure 7.14: Dynamic range regions extracted from the filtered images using the
real data from Figure7.3(c).

If the single σ2
n value is replaced by the σ̂2

n(x) estimation given by Eq. (7.6), we

can rewrite it as

Î0(x) =

√
NLM(M2(x)) − 2σ̂2

n(x).

The synthetic experiment for the image in Figure 7.3(b) for different SNRs is

repeated only for the different NLM schemes: Ideal NLM, that is the Rice NLM
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(a) σn(x) (b) σ̂n(x)

(c) σn(x) (d) σ̂n(x)

Figure 7.15: The noise maps σn(x) compared with their respective estimation
σ̂n(x) for the synthetic magnitude MRI from Figure 7.3(a) and Figure 7.3(b) using
two different noise shapes and SNRs. Being the noise shapes from Figure 7.4(a),
and Figure 7.4(b); and 10.13 and 14.39 the SNRs respectively.

using the actual σ2
n(x); Rice NLM using the estimated initial variance σ̂2

n; and

the proposed approach Rice NLM using our estimation σ̂2
n(x). Results from

Figure 7.16 show that our adaptation improves significantly the MSE for low

SNR images with respect to the original NLM, while it approaches the ideal

case and preserves the behaviour for the SSIM. For the QILV the results slightly

improve. Moreover, the different approaches tend to merge as the SNR increases.

7.4 Conclusions

A new methodology is presented as a solution to noise filtering when the input

image shows a spatially variant noise pattern, and some of the input variables
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(c) QILV

Figure 7.16: Results obtained from the synthetic MR magnitude image from
Figure 7.3(b) with different SNRs using the NLM algorithm. Each case was
launched 100 times for the slim Gaussian noise shape (Figure 7.4(b)).

cannot be properly estimated. Spatial non-stationary noise is a kind of noise

whose features (the variance in this case) depends on the position within the

image. The clearer example of this kind of noise in MR data can be found in

pMRI acquisitions that uses SENSE as a reconstruction process, but not only.

The proposed method is applied together with some existing filtering method.

In this approach, the LMMSE signal estimator for stationary Rician noise is

considered. This filter on its own will fail when applied over a spatially variant

σ2
n(x), since it is intended for a single σ2

n. However, the combination of the

LMMSE with the proposed consensus decision-making approach is able to take

into account the non-stationarity of the data. The algorithm also assumes our

incapability to proper estimate the input data, in this case the map of noise and

the optimal size of the window in which the local moments are calculated.
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Results of the experiments done using synthetic and real data show how the

proposed method highly improves the behaviour of the stationary LMMSE, and

its performance is very similar to the optimal case assuming a non-stationary

LMMSE with σ2
n(x) perfectly known. In many cases, the new approach even

outperforms Rician filters that in the past have shown even a better performance

than the LMMSE itself. The method is particularly useful in those cases when

the variability of σ2
n(x) is high and extreme. That will depend on the position

and calibration of the acquisition coils.

As we have previously stated, this philosophy of work can be easily extended

to other filtering techniques in MRI. This extension will allow other algorithms

to better cope with non-stationary noise, but not only. They can also be adapted

to automatically select the better set of input parameters, or to cope with devia-

tion from the statistical model, to perform a different filtering around important

structures and edges or even to combine the results of different kind of filters into

a single output.

The main drawback of the method is that the number of operations increases,

since the method carries out a filtering procedure for each input set. The more

the input possibilities, the greater the number of times the filtering is repeated.

The good news here is that each of the iterations is totally independent of the

others, and therefore the method can easily be highly parallelized.
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8

Conclusions & future work

8.1 Conclusions

This thesis shows that penalty-based decision making can be used for image

restoration as it has been previously used in other image processing areas, such

as segmentation or image reduction. In this way, we transform our problem into

making a choice between a set of possible solutions, e.g. a set of different tech-

niques that accomplish different actions, where we take the solution, or technique,

that best adapts to our constraints or goals. In short, penalty-based decision mak-

ing gives the chance to work with scenarios where we do not know beforehand

which alternative is better to use.

Among all fuzzy decision methodologies, we focus on decision-making based

on penalty functions because it allows to reach a consensus through an evaluation

of all the inputs. Moreover, we also use aggregation functions, what allows to

put in value all the inputs. Thus, the aggregation functions generate the set of

solutions for our consensus methodology and hence already obtaining an agree-

ment between the inputs. We decide to work with OWA operators because they

provide flexibility in the weights definition. We can even use fuzzy quantifiers to

calculate the weights, what gives the possibility to use human expressions such

as ‘at least half’, ‘most’ and ‘many’. Then, through penalty-based functions we

select the aggregation function that presents minimum penalty between the set

of aggregation functions and the original inputs. Furthermore, we introduce the

theory behind penalty functions over cartesian product of lattices, what gives

the possibility to apply penalty functions on small groups of pixels. Therefore

172
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this definition brings the possibility to work with penalty functions in each re-

gion independently, where these regions can be of any shape, and for instance,

share some characteristics. Although in the proposed consensus methodology,

as we want to get the best aggregation function for each position, a cartesian

product of lattices allows to define the pixel regions independently of the result.

Then, in case we work with pixel regions or the complete image, before applying

penalty functions we build a new set that combines all possible variations of the

aggregation functions.

Due to the flexibility that presents the introduced consensus methodology in

the aggregation and exploitation phase definition, this methodology can be seen

as a framework, where it can easily be adapted to different problems. Therefore,

we develop three different approaches to show that consensus methodology can

be used for restoration of noisy images.

A first approach has been developed for the task of blind noise reduction. In

such way that this approach finds a cooperation between different noise reduction

methods to deal with an image contaminated by an undetermined noise distribu-

tion. This proposed approach is a good alternative in situations where we do not

know which filter to use, or when a combination of different filters perform better

than any single one. For it, we define the aggregation phase as a set of three

OWA operators where their weights are defined using fuzzy linguistic quantifiers.

Specifically, ‘at least half’, ‘most of them’, ‘as many as possible’. Followed by

the exploitation phase, where a penalty function takes the OWA operator that

presents the minimum penalty with respect to the original filtered images. The

use of this methodology obtains always a good performance and assures a result

better than the worst of the individual solutions.

A new approach based on consensus is presented, offering the chance to use

parametric restoration methods when any of the parameters cannot be properly

estimated or the data does not strictly fit the underlying model. As an illustration

we apply this methodology to the case of images corrupted with non-stationary

Gaussian noise, where there is a wide range of uncertainty on the value of the

noise variance. To overcome this problem we adapt the Wiener filter to obtain an

output using a consensus procedure by selecting an aggregation function from a

set of OWA operators by means of a penalty function. The experimental results

show that consensus performance is similar to the case in which all the parameters

are accurately known before.
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Finally, another approach is presented as a solution to noise filtering when

the input image shows a spatially variant noise pattern, and some of the in-

put variables cannot be properly estimated. For it, we adapt the parametric

LMMSE signal estimator for stationary Rician noise to take into account the

non-stationarity of the data. In such a way that we can deal with the noise

present in MR data acquired with pMRI and reconstructed with SENSE, but

not only. Inspired by the previous approach, we propose a combination of the

LMMSE for stationary Rician noise with the consensus methodology by selecting

an OWA operator by means of a penalty-based function. Results of the experi-

ments done using synthetic and real data show how the proposed method highly

improves the behaviour of the stationary LMMSE, and is particularly useful in

those cases when the variability is high and extreme.

In summary, we prove that consensus methodology is an alternative for image

noise reduction, showing that it can be easily adapted to deal with the uncertainty

present in different problems. For instance, the previously introduced approaches

can be easily extended to work with other filters, as well as to use a different

set of aggregation functions and a penalty function. What allows us to see this

methodology as a framework. The main drawback of the proposed methodology

is that the number of operations increases with the number of inputs and aggre-

gation functions. Although we should keep in mind that increasing the number

of aggregation functions, does not always mean an improvement in the results.

Then, the challenge is to find a compromise on the number of aggregation func-

tions to obtain a good performance. The good news here is the method is highly

parallelized.

8.2 Future work

We introduce some of the possible applications of consensus methodology. How-

ever, this is just the beginning, as new applications can be found for image

restoration. For instance, a straightforward extension is the use of consensus

methodology to deal with the non-stationary noise present in MR data acquired

by pMRI and reconstructed with GRAPPA. Moreover, the study of new aggre-

gation functions can be also carried out, what opens the possibility to fine-tune

the results to specific problems. As well as the use of new penalty functions,

what allows to use new criteria. On the other side, we can also study the use
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of different penalty functions over pixel regions, in such a way that we can ac-

complish different actions according to different goals or constraints in regions

that share some characteristics. In short, we present a consensus framework that

offers many possibilities yet to be studied.
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when the underlying parameters are not known. It is based on the consen-
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sults for a specific noise model, and when it is known previously. Nonethe-

less, there is a lack in denoising algorithms that can deal with any unknown

noisy images. Therefore, in this paper, we study the use of aggregation

functions for denoising purposes, where the noise model is not necessary

known in advance; and how these functions affect the visual and quantita-

tive results of the resultant images.
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Appendix A

Probability distributions and

moments

A.1 Gaussian distribution (Normal)

X ∼ N(µ, σ2).

PDF:

p(x;µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
. (A.1)

MGF:

MX(t) = exp

(
µt +

σ2t2

2

)
.

Main parameters:

Mean = µ,

Median = µ,

Mode = µ,

Variance = σ2.
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Main moments:

µ1 = µ,

µ2 = µ2 + σ2,

µ3 = µ3 + 3µσ2,

µ4 = µ4 + 6µ2σ2 + 3σ4.

A.2 Rayleigh distribution

R =
√

X2
1 + X2

2 Xi ∼ N(0, σ2).

PDF:

p(x) =
x

σ2
exp

(
− x2

2σ2

)
. (A.2)

MGF:

MX(t) = 1 + σteσ
2t2/2

√
π

2

(
erf

(
σt√

2

)
+ 1

)
.

Raw moments:

µk = σk2k/2Γ(1 + k/2).

Main parameters:

Mean = σ

√
π

2
,

Median = σ
√

log 4,

Mode = σ,

Variance =
4 − π

2
σ2.

Main moments:

µ1 =

√
π

2
σ,

µ2 = 2σ2,

µ3 = 3

√
π

2
σ3,

µ4 = 8σ4.
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A.3 Rician distribution

R =
√
X2

1 + X2
2 , Xi ∼ N(Ai, σ

2).

R = |X| X = N(A1, σ
2) + jN(A2, σ

2).

PDF:

pM(M |A, σ) =
M

σ2
e−

M2+A2

2σ2 I0

(
AM

σ2

)
u(M), (A.3)

where

A =
√
A2

1 + A2
2.

Raw moments:

µk = σk2k/2Γ(1 + k/2)Lk/2

(
− A2

2σ2

)
,

where

Ln(x) = M(−n, 1, x) = 1F1(−n; 1; x).

Main parameters:

Mean = σ

√
π

2
L1/2

(
− A2

2σ2

)
,

Variance = 2σ2 + A2 − πσ2

2
L1/2

(
− A2

2σ2

)
.

Main moments:

µ1 =

√
π

2
L1/2

(
− A2

2σ2

)
σ,

µ2 = A2 + 2σ2,

µ3 = 3

√
π

2
L3/2

(
− A2

2σ2

)
σ3,

µ4 = A4 + 8σ2A2 + 8σ4.
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Var = 2σ2 + A2 − πσ2

2
L2
1/2

(
− A2

2σ2

)
≈ σ2

(
1 − 1

4x
− 1

8x2
+ O(x−3)

)
with x =

A2

2σ2
.

Series expansion of Hypergeometric Functions:

L1/2(−x) =
2
√
x√
π

+
1

2
√
π
√
x

+
1

16
√
πx3/2

+ O
(
x−5/2

)
L3/2(−x) =

4x3/2

3
√
π

+
3
√
x√
π

+
3

8
√
π
√
x

+
1

32
√
πx3/2

+ O
(
x−5/2

)
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