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Begin at the beginning [...] and go on till you come to the end: then stop.
— Lewis Carroll






Preface

Op de kaft staat dat dit proefschrift wordt ingediend tot het behalen van de graad van doctor in de
wetenschappen. Maar zoals Michaelis, de ticket-of-leave apostle, zegt in Joseph Conrad’s The Secret
Agent: “All idealization makes life poorer. To beautify it is to take away its character of complexity —
it is to destroy it.” Dit proefschrift betekent dan ook veel meer dan twee letters en een puntje voor
mijn naam. Het staat symbool voor vele uren peinzen, wroeten, prutsen en herbeginnen, briljante
ideeén die even later doorprikt worden, dagenlang zoeken naar off-by-one errors, maar ook bergen
chocola uit Nancy’s kolenschophanden, ping-pongpartijtjes, wetenschappelijke (?!) discussies tijdens
de koffiepauze, happy hours, ... Zonder de hulp, raad en vriendschap van de mensen om mij heen
zou dit boekje nu niet voor u liggen.

Jan, bedankt om me destijds de kans te geven bij u te mogen thesissen en vervolgens te doctoreren. Uw
begeestering voor fysica en de boeiende gesprekken over vreemdheid, complexiteit en meer wereldse
zaken waren een verrijking. Lesley, jarenlang hebben we samengehokt, de één zwetend, de ander
rillend, samen gevloekt op strangecalc, samen gejuicht bij grote en minder grote successen. Het was
mij een waar genoegen. Nu lua de top-20 van meest gebruikte programmeertalen is binnengedrongen,
heb ik niets meer te zeggen behalve merci! Tamara, dankzij jou heb ik een vliegende start kunnen
maken. In dat eerste jaar, terwijl je zelf je thesis aan het schrijven was, heb je je ontelbare keren
moeten omdraaien, omdat dat koorknaapje weer met een prangende vraag zat. Sorry voor het storen
en bedankt voor je geduld. Tim, motard en orakel van het INW, bedankt voor jouw cynische blik,
stevige schouderklopjes en antwoorden op alles. In mijn hart blijf je voor altijd de key to happiness.

Dave, thank you for the insightful discussions and (perhaps unknowingly) helping us revamp our
code; your initial wrapper of strangecalc paved the way. I wish to thank Prof. Wally Van Orden
and Prof. Franz Gross for sharing their relativistic deuteron wave functions. I am indebted to Prof.
Johann Haidenbauer who provided the Jiilich-model hyperon-nucleon partial-wave amplitudes that
are a crucial input to this work. Sergey, many thanks for the nice collaboration and giving me
the opportunity to explore kaon capture. Model calculations are so much more meaningful when
they can be confronted with experimental data. In this regard, I wish to express my gratitude to
Prof. Hashimoto, Prof. Maeda, Prof. Kanda and Dr. Futatsukawa, who were so kind to share their
preliminary results, and thus effectively quadruple the amount of data in the final chapter of this
work.

Without the financial support of the Research Foundation — Flanders (FWO), this work could not
have been carried out. A substantial portion of the calculations presented in Chapter 6 were carried
out using the Stevin Supercomputer Infrastructure at Ghent University, which is funded by Ghent
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University, the Hercules Foundation and the Flemish Government — department EWI. I wish to
acknowledge the excellent technical support from the ICT Department of Ghent University.

Het INW, idyllisch gelegen tussen verbrandingscentrale, spoorwegberm en autosnelweg, is een unieke
werkplek. Zonder zijn bewoners had de productiveit bij momenten misschien iets hoger gelegen,
maar zou doctoreren toch nooit hetzelfde geweest zijn. Allereerst een woord van dank voor zij die
technische ondersteuning boden: Roland om mijn twee linkerhanden bij te staan wanneer mijn stalen
ros het liet afweten, Daniella en Linda voor het opkuisen van mijn occasioneel geknoei in SAP, Rudy
voor drukwerk allerhande, Bart om te hulp te snellen wanneer virtuele (en andere) servers het weer
lieten afweten. Klaas, bedankt dat ik je geduld zo vaak op de proef mocht stellen. Arne, Klaas,
Lesley en Sander, bedankt voor de vele discussies over git versus svn, OO versus procedural, lua
versus de wereld, ... Arne, Karim, Ola en Tom, sorry voor de ontelbare keren dat ik jullie bureau
binnenstormde om mijn caffeineniveau opnieuw op peil te brengen en bedankt om altijd klaar te
staan met een verkwikkende babbel. Iedereen die zich samen met mij gewaagd heeft aan de haute
cuisine van het UZ, bedankt. Alle afvalligen die veilig boterhammetjes aten, en mij sporadisch lieten
aanschuiven aan hun tafel, ook bedankt. Bart, Bright, Christophe, Freija, Lesley, Marc, Matthias,
Piet, Simon, Tim, Tom, Ward en Wim, thanks for keeping it mainstream.

De vrienden uit de ‘echte’ wereld stonden altijd klaar om het fysicagebeuren in perspectief te plaatsen.
Bedankt daarvoor en uiteraard ook voor de, via jullie belastingsformulier, indirect geleverde bijdragen.
“Ohne Musik ware das Leben ein Irrtum”, aldus Nietzsche. Gelukkig waren Broccoli en The Jealous
Gays daar om dat te onderschrijven. Mama, papa, vanuit de grond van mijn hart bedankt voor
alle steun, logistiek en anders. Meestal laat ik het niet genoeg blijken, maar ik ben jullie oneindig
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CHAPTER 1

Introduction

Conventional wisdom states that one should use the right tool for the right job. This statement
is extremely relevant in physics. The first and most important step towards understanding any
phenomenon boils down to identifying the relevant degrees of freedom.

The physics of hadrons confronts us with a prodigious diversity of processes and one cannot readily
identify the appropriate ingredients to address them in a single, unified picture. At the low-energy
end of the spectrum resides the deuteron, a proton-neutron pair, bound by only a fraction of its rest
mass. At the other end, one encounters the rich phenomena occurring in the depths of space which
we painstakingly try to reproduce in particle accelerators. Underlying all this is the theory of the
strong force, quantum chromodynamics (QCD), and its elementary fields, quarks and gluons.

The strong interaction challenges our mathematical toolbox and defies our intuition. Contrary to
the other fundamental forces in nature, it is asymptotically weak as interacting particles approach
each other. When they move apart, inter-particle energy grows, thus forcing them to be confined
into colourless objects. The quick variation, or running, of the strong coupling constant with the
length and time scale, calls for ever-changing degrees of freedom.

The nucleon is the prevailing manifestation of quark confinement. Through deep-inelastic scattering,
many details about its intricate structure have been uncovered. Structure functions, parton distribu-
tion functions, and form factors reveal that gluons carry up to half of the nucleon’s momentum and
that strange quarks in the sea make a significant contribution to the total spin. Yet, on average,
this complex system can be interpreted as a bound state of three valence quarks. Constituent-quark
models (CQM) encapsulate this perspective and their success in describing hadron spectra, magnetic
moments and electromagnetic form factors is uncontested. Nevertheless, one needs to ask where the
boundaries of this mean-field description lie and how they emerge from partonic degrees of freedom.
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Nucleon spectroscopy

Mapping out the baryonic spectrum remains a paramount issue in hadron physics. The masses,
widths, and transition form factors of the nucleon’s excited states are invaluable tests of models aimed
at understanding the internal structure of baryons. The experimental knowledge on excited nucleon
states is gathered bi-yearly by the Particle Data Group in the Review of Particle Physics (RPP) [1].
Their major source of information stems from partial-wave analyses (PWA) of 7NV scattering data. In
particular, the PWA performed by the Karlsruhe — Helsinki [2], Carnegie-Mellon — Berkeley [3] and
George-Washington — Virginia-Polytechnic-Institute (SAID) [4] groups. Resonances are identified by
examining the fitted amplitudes for poles in the complex energy plane. Alternatively, the amplitudes
serve as input to coupled-channels (CC) PWA [5-10]. Besides the fitted elastic 7N amplitudes,
these analyses include data on inelastic channels and, in some cases, photon-induced processes to
constrain their results. Despite partial-wave solutions of comparable goodness of fit, one often obtains
conflicting information on the resonant content. Beyond the first few established nucleon excitations,
many states are debated and the overall view on the resonance spectrum remains unclear [11].

A similar observation can be made when the experimental picture is confronted with nucleon spectra
predicted by CQMs. The description of low-lying states is adequate. Yet, beyond the 1800-MeV
mass range, an excessively dense spectrum is predicted. It is said that a number of resonances are
“missing”. This might be an indication of the fact that the effective degrees of freedom should be
re-examined, since alternative nucleon-structure models, such as quark-diquark models [12], envision
far fewer resonant states. On the other hand, the missing-resonance conundrum could be a direct
consequence of the unbalanced contribution of 7NV data to PWA.

Strangeness production

Electromagnetic (EM) kaon production plays a key role in the ongoing theoretical and experimental
efforts to explore the dynamics of QCD in the confinement regime. Since the production mechanism
inevitably involves quark-antiquark components of the nucleon’s sea, the reaction has the potential
to probe unexplored aspects of the nucleon’s structure. Hence, the presence of open strangeness
in the final state holds out the prospect of finding some elusive resonant states. Several quark-
model results indicate that a number of unobserved resonances couple weakly to the 7N final state,
but have considerable branching fractions to alternative reaction channels, including those with
strangeness [13-15].

The earliest work on EM strangeness production can be dated back to the sixties of the previous
century [16-18]. These studies were held back by the limited accuracy of the data available at
that time. It was not until the advent of high-duty-cycle, high-intensity electron accelerators
that the theoretical interest in kaon production was rekindled. Adelseck et al. constructed a kaon-
photoproduction operator using a diagrammatic technique based on purely hadronic degrees of
freedom [19]. This approach is known as the isobar model and has been applied to the analysis
of kaon production in numerous studies [19-30]. In a different approach, quark models have been
used directly to describe the reaction dynamics [31-37]. Focusing on a correct high-energy limit
for the kaon-production operator, a number of studies inspired by Regge phenomenology have
been published [38-42]. In recent years, several groups have undertaken the task of incorporating
strangeness production in CC formalisms [5, 10, 43-48]. Motivated by the prospect of a complete
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Figure 1.1 — Total photo-absorption cross section and exclusive cross sections for single- and multi-meson
production. Figure taken from Ref. [11].

kaon-production experiment, some exploratory multipole analyses have been carried out [49-51]. At
present, however, one is not yet able to extract a unique multipole solution from the data.

Leading experimental facilities' at ELSA (Bonn University, Germany), ESFR (Grenoble, France),
Jefferson Lab (Newport News, Virginia), MAMI (Mainz, Germany) and SPring-8 (Osaka, Japan)
have bestowed us with a large database of cross sections and polarisation observables, predominantly
for the p(v, KT)A and p(y, K*)X° reaction channels. The self-analysing weak decay of hyperons
is an enormous asset, since it facilitates the determination of the recoiling particle’s polarisation.
Hence, a wide range of single- and double-polarisation observables can be accessed in combination
with a polarised beam or target. This paves the way for the determination of a “complete” set of
observables. Along with the unpolarised differential cross section, this requires the measurement
of seven carefully chosen single- and double-polarisation observables [51, 53, 54]. Ideally, this leads
to an unambiguous determination of the reaction amplitude and, as such, stringent constraints on
dynamical models.

Building models for kaon production

Consider the total photo-absorption cross section on the proton given in Figure 1.1. At low energies,
where single-pion production dominates, one can clearly discern peaks, which are unambiguous
manifestations of the formation of nucleon resonances. Here, a description in terms of hadronic
degrees of freedom is appropriate. Since mesons, baryons and their excited states cannot be described
within a fundamental theory, one takes recourse to a field-theoretical framework adopting effective

for a review see Refs. [11, 52].
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Born

non-Born

s-channel Y, t-channel Y, \ u-channel

Figure 1.2 — Tree-level contributions to the N ('y(*), K)Y amplitude. The A*-exchange term is forbidden
for A production. The diagram in the bottom-left corner is resonant. The others are considered background
contributions.

interaction Lagrangians that reflect essential symmetry properties and conservation laws of the
underlying fundamental interaction. The finite spatial extension of the hadrons is incorporated
using phenomenological form factors. Care has to be taken, because this procedure breaks the vital
property of gauge invariance [55].

In the so-called isobar approach, the reaction dynamics are restricted to tree-level amplitudes,
consisting of two interaction vertices and one propagator. The considered diagrams are presented in
Figure 1.2 and can be classified according to several aspects. Considering the diagrams in Figure 1.2
per column, we distinguish between the exchange of a non-strange baryon (N, N*, A*), a kaon (K)
or a hyperon (Y, Y*), labelled s-, t- and u-channel respectively. The contributions in the top row are
known as Born terms and involve the exchange of a ground-state hadron (p, n, K, A, ). Finally, a
diagram can be either resonant or non-resonant. In EM kaon production, the kinematical conditions
are such that the intermediary particle in the N*- and A*-exchange amplitudes can be on mass shell.
Consequently, the propagator goes through a pole and produces resonant structures in the observables.
In the remaining diagrams of Figure 1.2, on the other hand, the exchanged particles cannot reach
their resonant pole. As our interest in strangeness production is generated by the discovery potential
for missing resonances, the contributions of the non-resonant diagrams are considered a background.

Contrary to fundamental field theories, effective Lagrangians represent parametrisations of the meson-
baryon interaction in terms of unknown coupling constants. A phenomenological analysis in the isobar
approach faces the challenge of determining the resonant content of a reaction while simultaneously
fixing the unknown effective coupling strengths. This dual situation of model selection and model
optimisation can be addressed via a Bayesian approach [56] at a substantial computational cost. In
any case, because the parameters of the resonant and background contributions are simultaneously
fitted to the data, they are inevitably strongly correlated.

The isobar framework has met with considerable success and has dominated the analysis of EM
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meson-production processes in the resonance region. Its application to strangeness-production
reactions should be regarded with caution. As seen in Figure 1.1, the total cross section lacks
clear resonant structures, implying that resonant contributions do not dominate. For this reason,
background diagrams make up a crucial element of the reaction dynamics. In the isobar approach,
these non-resonant terms diverge as energy increases [57]. Over the years, several mechanisms to
remedy this unrealistic behaviour have been proposed. The extracted resonance couplings, however,
heavily depend on the background model [27, 58].

The tree-level diagrams of Figure 1.2, considered in the isobar model, infer a perturbation series
which is truncated at lowest order. In practise, the effective coupling constants at the interaction
vertices are by no means small, implying rescattering effects need to be taken into account. Numerous
analyses of kaon production have been performed in different CC frameworks. Nevertheless, we wish
to stress the continued relevance of single-channel descriptions.

An attractive quality of the CC approach is its natural fulfilment of unitarity. For this to hold true,
however, all possible meson-baryon channels have to be considered. In view of the dominance of two-
pion-production channels in the photo-absorption process as seen in Figure 1.1, troublesome channels
such as ww N, with the inherent three-body cut, cannot be circumvented. Since CC models involve
numerous reaction channels, the number of free parameters that need to be fitted is substantially
larger than in single-channel approaches. Therefore, the task of optimising the model is far from
being trivial. In addition, comparing the different vp — X reactions in Figure 1.1, one immediately
observes that the kaon-production channel is several orders of magnitude smaller than the dominant
7N, mwN, and pN final states. Due to the reduced size and quality of the strangeness-production
database in comparison to these channels, constraining the model parameters to the kaon-production
results is complicated.

Because CC models still require tree-level amplitudes as input, many conceptual ambiguities related
to the isobar approach remain relevant. Issues, such as the restoration of gauge invariance [55, 59, 60],
continue to be pertinent [10] and can be more easily addressed at the level of a single-channel reaction
model.

The Regge model and beyond

Despite the publication of a large body of high-quality p('y(*), K)Y data in recent years, phenomeno-
logical analyses have not led to an unequivocal outcome. Disentangling the relevant resonant
contributions is challenging, because of the large number of competing resonances above the kaon
production threshold. Moreover, the smooth energy dependence of the measured observables hints
at a dominant role for the background, i.e. non-resonant, processes. Hence, the treatment of the
background is pivotal for any model.

At sufficiently high energies, the isobar description is no longer optimal. Whereas empirical informa-
tion indicates a smooth fall off for the cross section as one moves away from threshold, hadrodynamical
models reveal a pathological rise. It comes as no surprise that the use of hadronic degrees of freedom
cannot be justified above centre-of-mass energies of a few GeV, which corresponds to length scales
below 0.1fm. In this energy region, the kaon-production amplitude can be elegantly described
within the Regge framework, characterised by the exchange of whole families of particles, instead of
individual hadrons [38]. The Regge formalism boasts a number of attractive properties. Its amplitude
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naturally fulfils analyticity, crossing symmetry and unitarity. In addition, only a limited number of
free parameters are required. The applicability of the Regge formalism is obviously not limited to
kaon production. Successful Regge-based models have been considered for the EM production of
pions [38, 61, 62], n mesons [63, 64], K* mesons [65] and A(1520) hyperons [66].

Interestingly, the Regge model, a high-energy theory by construction, allows to describe the gross
features of the data in the resonance region [39, 40, 67]. Extrapolating the Regge model to intermediate
energies results in a reliable account of the kaon-production background. Additional support for the
validity of the Regge approach in the resonance region was furnished in a recent study, where scaling
compatible with Regge-trajectory exchange was clearly observed [68]. Near threshold, however, the
energy dependence of the measured observables exhibits structures which hint at the presence of
resonances and cannot be reproduced by a pure background model.

In Refs. [41, 42], a phenomenological mixing of the isobar and Regge descriptions is proposed. In the
resonance region a traditional hadrodynamical model is constructed and as energy rises the isobar
amplitude makes a smooth transition to the Regge model. In a different approach [39, 40, 69], the
Regge amplitude is constrained by the available data at high energies and subsequently enriched
with a carefully chosen selection of resonance-exchange diagrams. This gives way to a hybrid model
that incorporates resonant features akin with the isobar approach and simultaneously maintains the
correct high-energy limit. The resulting formalism was coined Regge-plus-resonance (RPR) and is
schematically illustrated in Figure 1.3.

The major virtue of the RPR formalism lies in the economical parametrisation of the non-resonant
part of the reaction amplitude. The isobar model requires the exchange of vector mesons in the
t-channel, hyperon resonances in the u-channel in addition to the three Born diagrams to deal with
the eminent background of kaon production. The Regge model, by contrast, manages an effective
description using two t-channel exchange diagrams and a mere three coupling constants. Moreover,
these free parameters can be fixed at high energies, thus effectively decoupling the evaluation of the
background and resonant contributions to the reaction dynamics.

The deuteron as effective neutron target

Thus far, the lion’s share of research efforts has been directed towards reactions off proton targets. The
current EM kaon-production database is heavily dominated by the p(y*), K*)A and p(y*), K+)x0
channels. A comprehensive survey of the four remaining reactions, namely n(y, K%)A, p(y, K°)XT,
n(y, K%)X° and n(y, K*)X~, would provide useful complementary information to elucidate the
strangeness-production reaction mechanism. In the absence of a free neutron target, a trustworthy
description of kaon production from the deuteron is of chief importance, for the deuteron’s weak
binding energy makes it a prime candidate as effective neutron target.

Our understanding of the nucleon-nucleon interaction is on solid ground [70] and the description of
the EM interaction with deuterons in elastic electron scattering and breakup reactions is reliable [71].
Deuterium is often used as an effective neutron target. Deuteron electrodisintegration with either
polarised targets, beams or ejectiles has allowed for the extraction of the neutron’s electric and
magnetic form factors, while in deep-inelastic scattering the neutron’s structure functions have
been determined. In all these cases, corrections due to the deuteron structure and to the reaction
mechanism were shown to be either negligible, or calculable [72].
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Figure 1.3 — Illustration of the RPR approach to EM strangeness production from the nucleon. At
high energy, the structureless cross section is described via the exchange of K(494) and K*(892) Regge-
trajectories in the ¢-channel. This amplitude serves as an effective parametrisation of the non-resonant
part of the reaction dynamics in the resonance region. An improved description of the data is realised by
adding nucleon-resonance exchange in the s-channel. Figure adapted from Ref. [69].

The dominant contribution to kaon photoproduction off deuterium is expected to come from the quasi-
elastic process. The incident photon interacts with a single nucleon inside the deuteron producing
the strange meson and baryon. All final-state particles subsequently leave the region of interaction
unperturbed as plane waves. As such, the kaon-production operator on a quasi-free neutron can
readily be extracted. The influence of medium effects, however, significantly complicates this picture.
The photoproduced hyperon and the spectator nucleon in the final state can undergo elastic and
inelastic rescatterings before reaching the detector systems. This final-state interaction (FSI) can be
considered a curse in case one wishes to examine elementary strangeness production. Yet, it also
presents unique opportunities.

A wealth of information is available with regard to the interaction between nucleons. Yet, as Adelseck
and Wright [73] elegantly put it, ‘In order to obtain a comprehensive understanding of the strong
interaction, it is essential that any theory reflect the underlying symmetry which is unveiled in the
multiplet structure of the particles. Thus, it is indispensable to go beyond the nucleon-nucleon
sector and incorporate and utilise aspects furnished by other members of the baryon multiplet,
among them the A and ¥ hyperon.”. The hyperon-nucleon (Y N) interaction is currently only poorly
constrained by experimental data. Direct measurements are held back by the challenges of building
and operating a stable hyperon beam. A different possibility to study the Y IV interaction is offered
by simultaneous production and scattering in the same target [74]. Hypernuclear spectroscopy is an
active field and puts stringent constraints on our knowledge of the AN and XN potentials [74-76].
Exploiting hyperon-nucleon FSI in the kaon-production reaction gives access to an even larger
dynamical range of the YV interaction. By focusing on kinematic regions where one expects
important contributions from hyperons rescattering off the spectator nucleon, one can gain access to
the elusive hyperon-nucleon interaction.
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Renard and Renard were among the pioneers to study kaon production on the nucleon and also
led the way in strangeness reactions from the deuteron [77, 78]. In their work, they employed
a simple parametrisation of the YN interaction. Modern hyperon-nucleon potentials based on
one-boson exchange were used in Refs. [73, 79, 80]. Yamamura et al. were the first to revisit the
reaction adopting a modern elementary kaon-production operator optimised against high-quality
data [81]. Including the effect of hyperon-nucleon FSI with the Nijmegen YN potential, the inclusive
and exclusive charged-kaon-production cross sections were studied. At a later time, polarisation
observables in exclusive kaon photoproduction were investigated [82]. The approach was extended in
Refs. [83, 84] to include two-step production and kaon-nucleon rescattering. Adopting this model,
neutral-kaon photoproduction has been studied. Refs. [85, 86] have focused on the extraction of the
elementary amplitude. A different study on the influence of YN rescattering using the P-matrix
approach was presented in Ref. [87]. Maxwell considered a host of rescattering diagrams where a ,
n or K meson is exchanged between the active nucleon, which absorbs the incoming photon, and the
spectator nucleon [28, 88]. In Refs. [89, 90], kaon photoproduction from deuteron is investigated using
a variety of isobar models in the non-relativistic plane-wave impulse approximation, demonstrating
the importance of a reliable elementary-production operator. Gasparyan et al. studied the possibility
to extract the low-energy An scattering parameters [91]. They investigated specific polarisation
observables and kinematics needed to isolate the singlet and triplet states of An scattering. Likewise,
Laget identifies well-defined regions in phase space where KN and Y N rescattering dominate while
the elementary amplitude is on shell and the momentum of the spectator nucleon is low [92, 93]. To
date, very few studies have considered electron-induced strangeness production from the deuteron.
Hsiao and Cotanch [94, 95] used the elementary-production operator of Thom [17]. In Ref. [96] the
Saclay-Lyon model [22] was adopted.

Outline

In this work, we present a covariant formalism for the photo- and electroproduction of kaons and
hyperons from the deuteron, thereby accounting for hyperon-nucleon rescattering.

In Chapter 2, the elementary-production operator is introduced. We begin our discussion with an
overview of the kinematics and observables relevant to EM kaon production from the nucleon. Then,
we turn our attention to the RPR formalism. At high-energies, an adequate description of the data
is realised using the Regge model. The Reggeization procedure is discussed and an elegant recipe
to guarantee a gauge-invariant amplitude is outlined. In a next step, a model including resonance-
exchange diagrams is optimised to the resonance-region data, while the three free parameters of
the Regge model are held fixed. Successful descriptions of the KT A- and K+X%production data
obtained before 2007 are realised. We conclude this chapter with a critical discussion of the RPR
model as it was published in Refs. [39, 40, 69, 97]. Recent developments of the RPR formalism are
highlighted and comparisons with the latest photo- and electroproduction results are shown. This
illustrates the descriptive and predictive power of the RPR model in the data-rich reaction channels.

Chapter 3 is devoted to those kaon-production channels where little or no experimental results are
at hand. A formalism is presented in order to transform the RPR transition amplitude that was
fitted to p(y™*), K+)A and p(y*), K+)%0 to the other N(y*), K)Y reaction channels. At the strong-
interaction vertices, one can rely on SU(2) isospin symmetry. The conversion of the EM coupling
constants, on the other hand, requires experimental input. The resulting RPR-model predictions
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are set against the world data for K+~ production from the neutron and K°>* production from
the proton. The sensitivity to the errors bars of the applied photocoupling helicity amplitudes is
investigated.

In Chapter 4, we make a small digression. The Regge model is employed in a exploratory study of
new results on radiative kaon capture. This reaction is related to kaon photoproduction through
crossing symmetry and is sensitive to the excited states of A and X hyperons.

After having established the RPR framework, we turn our attention to strangeness production from
the deuteron in Chapter 5. The kinematics are reviewed and the observables of the reaction are
defined in terms of the transition amplitude. The deuteron wave function is an essential ingredient of
the reaction dynamics and is discussed at length. We examine relativistic and non-relativistic wave
functions and introduce a covariant vertex operator for the deuteron-neutron-proton transition. The
transition amplitude is given in the relativistic impulse approximation. We define the plane-wave
approximation and provide a non-relativistic reduction. In addition, the contribution of hyperon-
nucleon rescattering is derived. We find that it can be decomposed in two parts. The first term has
all rescattering particles on mass shell, while the other involves off-mass-shell particles and allows for
sub-threshold production.

Chapter 6 is dedicated to the numerical results of the calculations. In a first step, the relativistic plane-
wave impulse approximation is thoroughly investigated. We study the sensitivity of the computed
observables to relativistic effects, to the deuteron wave function, and to the off-shell extrapolation of
the elementary-production operator. In addition, the propagation of the uncertainties related to kaon
production from the neutron is investigated. Subsequently, the dynamics of the hyperon-nucleon
rescattering contribution are examined. In the final section, we confront our predictions with the
available experimental results. We state our conclusions in Chapter 7 and indicate directions for
future work.

For reasons of readability, many technical details have been diverted to the appendices. Appendix A
establishes the notations and conventions assumed in this dissertation. In Appendix B, we briefly
introduce the number system of biquaternions and their applicability as representation of the Lorentz
group.

Owing to their elegant transformation properties under Lorentz transformations, helicity spinors play
an important role in our formalism. Appendix C is devoted to the subject. Appendix D summarises
the rules and ingredients needed to compute cross sections. We list the interaction Lagrangians
adopted in this work, as well as the transition amplitudes for the Feynman diagrams considered in

the RPR model.

In Appendix E, the derivation of two Lorentz-invariant forms of the 2H(y, KY)N cross section is
given. The density-matrix formalism is the topic of Appendix F. Density matrices play an important
role in the construction of polarisation observables.

This work makes use of a number of deuteron wave functions. Their parametrisations are provided in
Appendix G. Subsequently, Appendix H retraces the connection between these wave functions and the
covariant Dnp-vertex. In Appendix I, we tabulate the coupling constants of the adopted RPR model
for all six strangeness-production reaction channels. An overview of the published experimental data
for kaon photoproduction from the nucleon is given in Appendix J. Lastly, Appendix K presents
some details about the hyperon-nucleon interaction and more specifically the Jiilich potential.
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CHAPTER 2

The Regge-plus-resonance formalism

It comes as no surprise that a trustworthy model for elementary kaon production is an essential
ingredient in the description of strangeness production from the deuteron. With this in mind, we
provide a detailed discussion of the RPR formalism in this chapter. Section 2.1 gives an overview
of the kinematics of the N(y*), K)Y reaction and defines the relevant observables for photo- and
electroproduction. In the high-energy limit, pseudo-scalar meson production can be elegantly
described via the exchange of Regge trajectories. In Section 2.2, we present a Regge model for both
the p(y, KT)A and p(vy, K*)X° reaction channels. Extrapolating this Regge model into the resonance
region provides an efficient parametrisation of the non-resonant contributions to the transition
amplitude. By enriching the Regge-model amplitude with a number of s-channel nucleon-resonance
exchange diagrams, a satisfactory account of the available kaon-production data in the resonance
region can be achieved. This is the topic of Section 2.3.

The RPR model that we are about to introduce, dubbed RPR-2007, was the subject of T. Corthals’
doctoral thesis [69]. The results for A and ¥ photoproduction have been presented in Refs. [39, 40].
The formalism was extended to electroproduction reactions in Ref. [97]. Following the publication of
these results, a considerable amount of additional experimental results have been made available
(see Appendix J for an overview). These new data sets have confirmed the predictive power of the
RPR formalism, in spite of its apparent simplicity. Nevertheless, a number of shortcomings exist. In
Section 2.4, the merits and weaknesses of the current RPR model are identified. The reader should
be aware that the RPR model is the subject of continuous efforts and is constantly being improved.
For recent developments, we refer the reader to Refs. [56, 98, 99] for more information.

11
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Lepton Plane ¢

Reaction Plane

Figure 2.1 — Schematic representation of an electron scattering from a nucleon at rest, producing a kaon
and hyperon in the final state.

2.1 Kinematics and observables

2.1.1 Reference frames

Electron-induced kaon production from a free nucleon assuming the OPE approximation is illustrated
schematically in Figure 2.1. The incoming and outgoing electrons, with four-momenta k(Fk, E)
and K (E., K ) respectively, radiate a virtual photon with four-momentum p_ (E,,p,) = k— K and
virtuality Q% = — Dy Py = | ]5’7|2 —Eg. This photon interacts with a nucleon py (En, ) and produces
two outgoing particles, i.e. the kaon and hyperon, which are labelled p, (Ek, D)) and py (Ey, py)
respectively. The three-vectors k and k' span the lepton plane, whereas the three-momenta of the
photon, nucleon, kaon and hyperon lie in the reaction plane. The relative inclination of both planes
is given by the angle ¢. For kaon photoproduction, this angle is arbitrary and the photon’s virtuality
Q)? vanishes.

The N(y*), K)Y reaction can be readily described in the KY-CM frame. Three different reference
frames are commonly adopted in order to express the particles’ four-momenta and polarisations.
They are indicated in Figure 2.2. All three choices have their y axis perpendicular to the reaction
plane. For the unprimed reference frame, we take the z axis along the photon three-momentum. The
other reference frames have the 2’ (1) axis parallel to the kaon (hyperon). Explicitly we have,

. X
7= D j= " Px Fogxz, (2.1)
2 P, % Pyl
wzéﬂ, 7 =7, =i x 7, (2.2)
K
f:é%, i=7, F=ixl. (2.3)
Y

In addition, a fourth double-primed reference frame is defined in Figure 2.1, which has its y” axis
perpendicular to the lepton plane.

p. kx kK
7=t gl = 228 =" x 2" (2.4)
12 |k x k|

Variables that are expressed in the KY-CM frame are labelled with an asterisk to make the distinction
with those declared in the LAB frame where the target nucleon is at rest.
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Y \9;{
Y—> «—— N

Figure 2.2 — Orientation of the different reference frames (z,y, z), (z’,y', 2’) and (¢, n,l) for the N (v, K)Y
reaction in the KY-CM frame.

2.1.2 Independent variables

The CM scattering angle of the kaon 07 and the system’s invariant mass
Wiy =/ (p, + py)2 = —Q% + m} + 2Eymy (2.5)

determine the N(y*), K)Y kinematics unambiguously. The photon energy in the CM and LAB

frames are connected through a Lorentz transformation

2 2 2
:WKY_mN_Q

E Wy (2:6)
By solving the energy-conservation relation in the KY-CM
E;+\/Q2+E:;2+m§\,:\/|ﬁ;g|2+m§(+\/|ﬁ;g|2+m%, (2.7)
the kaon momentum |p}| can be determined.
Three Mandelstam variables are defined
sky = (py + pN)’,
— (p, — pi)?, (2.8)
u=(p, —py)’.
An elegant relation exists between these Lorentz-invariant variables
sy +t+u=—Q*+m% +m% +m3 . (2.9)

2.1.3 Transition amplitude

The dynamics of the kaon-production reaction are contained in the hadronic transition amplitude
A Ay 3
Tairy = (Prs Py Avlen” J" [py, An) - (2.10)

This is the expectation value of the transition current operator JH evaluated between the normalised
states of the incoming and outgoing particles with definite polarisation. The polarisation vector e

for a linearly polarised photon along the x or y axis reads

M=% =(0,1,0,0), or €Y =(0,0,1,0). (2.11)
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For circularly polarised photons, one has

Ay=
¢ $\/§(0 1,+i,0), (2.12)

whereas virtual photons can also have a longitudinal polarisation

=" =(0,0,0,1). (2.13)

The transition current operator can be constructed from a set of relevant Feynman diagrams. In
Sections 2.2 and 2.3, the structure of this operator in the RPR formalism will be discussed in depth.
The transition matrix elements fulfil the following useful property [100]

Tovay = (CDPNINTIL o =041, 2

owing to the reaction’s invariance under space inversions and rotations. This relation reduces the
number of independent amplitudes by a factor of two. In the transversity basis for real photon
reactions, one chooses the following set of independent amplitudes

bh=TY ..
e
by=T" .,
272 (2.15)

by = T°

3= Tgg
by =T

4 7;_%7_%7

where photons have a linear polarisation and the baryon polarisations are quantised along the y axis,
i.e. normal to the reaction plane.

2.1.4 Photoproduction observables

The differential cross section for the most general scattering reaction is given in Eq. (D.1). Applying
this to the kaon photoproduction reaction, one finds

d? pK d*py
do = ZIT | T35, (3 20y b oy~ py). (210
24/ M(sky,0, mN

Here, the symbol i implies that one sums (averages) over the polarisations of the outgoing (incoming)
particles. After integrating out the energy-momentum conserving delta function, one commonly
expresses the differential cross section as

Lo 1|5 =
= RN (2.17)
A%, 64n? BXWZ,

At higher energies, where the reaction becomes diffractive, the cross section is often reported in the
following Lorentz-invariant form

do 1 1
= T ]7'\2. (2.18)
dt  64rw E72WI2(Y Z
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In experiments where one or more external particles have a definite polarisation, one commonly
presents the results in terms of asymmetries. Owing to the tremendous advances in accelerator
and detector technology, in addition to the self-analysing weak-decay property of hyperons, kaon
production offers a unique opportunity to measure a comprehensive set of polarisation observables.
At leading experimental facilities, such research programs are currently being pursued [101, 102].
Given the differential cross section supplemented with seven well-chosen asymmetries, the transition
amplitude can uniquely be deduced [51, 53, 54]. This is often referred to as a complete measurement.
One should realise, however, that uncertainties inherent to experimental observables set restrictions
on the theoretical completeness of a measurement [103].

The prospect of a complete experiment has fostered a large number of studies that aim at studying the
most general expression for the differential pseudo-scalar meson-production cross section [20, 51, 104—
107]. Among these works, some disagreements exist [51]. These arise from different sign conventions
for the polarisation states. In this work, we adopt the definitions provided by Adelseck and Saghai [20],
who express all observables in terms of the transversity amplitudes (2.15).

Single-polarisation asymmetries are defined as

dot) — do™)
o T o (2.19)
Double-polarisation asymmetries adopt the form
(++) (=) — do+7) = go(=1)
do +do do do (2.20)

do+t) + do(=) + do+-) 4 do(=1)

Here, do®) and do*%) denote cross sections where one or two particles have a definite polarisation.
The polarisation state of the incoming photon is determined by the polarisation vectors given in
Egs. (2.11)—(2.13). For the hadrons involved in the reaction, the polarisations are (anti-)parallel to
their respective quantisation axes. The complete list of quantisation axes per polarisation asymmetry
is given in Table II of Ref.[20]. For experiments that involve one polarised particle, one defines the
photon-beam (X)), recoil (P) and target asymmetries (7)

S =N (Jby]? + [baf® — [bs|* — [ba]?) .
P =N (|b1]* = [bo)?® + |bs|* — [ba]?) , (2.21)
T =N"1x (|b1]> = |ba|* — |bs|* + [ba]?) ,
with
N = |b1’2 + ‘52‘2 + |b3|2 + |b4|2. (2.22)

For double polarisation experiments, a total of twelve asymmetries exist. Here, we restrict ourselves
to providing the definition of those involving beam and recoil polarisations

Co = —2N"" x 3 (b1b} — bob3) |
C.r = 2N x R (b1b + bob?) |
Oy = 2N 71 x R (b1b] — bob3)
O = 2N 71 x S (byb + bob3y) .

(2.23)

The notation Cy .+ (Oy ) refers to circularly (linearly) polarised photons. The former can also
be expressed with the quantisation axis along the unprimed axes defined in Eq. (2.1). Applying a
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straightforward rotation, they read

C, = Cpcosby + C,rsin 0y,

(2.24)
C, = —Cypsinby + C, cos Oy .

2.1.5 Electroproduction observables

Starting from the general expression (D.1), one finds the N(e, e’ K)Y differential cross section can be
written in the following factorised form!

d5 d2 *
9 ___rp%% (2.25)
dEL QLAY dQ
where
E Ky 1
[=_ 2 Zell (2.26)

22 E, Q2 1—¢€’
is the virtual photon flux factor and

Q2

2mpy

Ky =E, — (2.27)

the equivalent-real-photon laboratory energy. The most general form for the virtual-photon cross
section reads [105]

d2 * %
T _ PPy ||1]’;§|‘ [Rgfv R (R cos 20 + "R sin20)
K Y

+e(l+e€) (CR%% cos ¢ + “RE% sin d)) (2.28)

+ VT = @R+ hy/e(1 =€) ("R, cos &+ "R, sin ¢)] ,

with h the electron-beam helicity and

20951* 5 0e -
=14+ ——t¢ — 2.29
€ ( + 0? an” 5 , (2.29)

the transverse linear polarisation of the virtual photon. In the expression for the virtual-photon cross
section, a summation over the Greek indices (o, f =0, 1,2, 3) is implied. The operators

Pi

i =(1,P"), with i=N,Y, (2.30)

are given in terms of the polarisation vectors PN and PY of the nucleon and hyperon respectively.
The polarisations of these baryons can be evaluated in any of the frames presented in Figure 2.2.
The dynamics of the EM kaon-production reaction is contained in the response functions, which are

! A detailed account of the factorisation of the electroproduction cross section for EM kaon production from the
deuteron is given in Section 5.4. The derivation of the results given in Egs. (2.25)—(2.31) proceeds along similar lines.
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defined by
g =Y (TP TP R =n Y TR,
R = N R(TT ), sRf _ 2><Z S(Tr71).
Ry ST TY). a2 (P, e

“RiG = —2X§a ﬁ%(ﬂ (T + T‘)T> . R = —zxia ﬂs(ﬂ (T - T*)T> ,
Ri=x> (TP 1),
with
5]

= . 2.32
(167)2mNyWgky Ky (2.32)

The response functions Rf % are expressed in terms of the hadronic transition amplitudes (2.10) and
are evaluated in the CM of the kaon-hyperon system at ¢ = 0. For convenience, we have dropped
the polarisation states Ay and Ay from our notation for the transition amplitude. The symbol ia, P
denotes the bilinear products are summed over the nucleon (hyperon) polarisation when «(5) = 0,
e.g.
RY =2x Y [T > (2.33)
AN Ay

For a, 8 # 0, the difference between the polarisation states is implied, e.g.

0
R% = 2XZ AN=+Y, )\Y |7—>\ON:_?J7)‘Y‘2) : (2'34)

Owing to parity conservation (2.14), some response functions vanish identically (see Table I of
Ref. [105] for an overview).

The expression (2.28) is of limited use since exclusive measurements with all incoming and outgoing
particles polarised are extremely challenging. For undetermined target and recoil polarisations, the
components of the polarisation vectors PN and PY vanish and the cross section reduces to

d?c*  dPop Ao d2opr dPorr d?orp
= 2 1 1- i 2.35
i T A +6de< +e i cos2¢ +\/e(1+¢€) a, cos ¢ + hr/e(1 —€) a0 sing, (2.35)

with
d?o; ’pK RO for i=1T,L
dQ% |
2 .
d 0*'1 _ ’p[: CROO for 7= TT, LT, (236)
dQK |p'7|
and

d2op _ Pl
dQ, 1P|

R . (2.37)
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Another expression of practical use involves the combination of a polarised beam impinging on an
unpolarized target and a measurement which determines the polarisation of the outgoing hyperon.
For this situation, the virtual-photon cross section can be parametrised as

d*o* L = = oo
;E?:amw(1+mhw+RﬂpPY+aw-PY+ngﬂ), (2.38)
K

where oynpol is the unpolarized differential cross section. The recoil-polarisation P;, in turn, can be
expressed as the sum of an induced polarisation Pi0 and a transferred polarisation P/

Pi=P’+hP, for i=uxy,z2. (2.39)

By equating the Eqgs. (2.28) and (2.38), it is possible to express the induced and transferred
polarisations in terms of the response functions. In practise, the statistics of an experiment can be
improved by integrating over the angle ¢ between the lepton and reaction plane. This implies that
the azimuthal-angle dependence of Eq. (2.28) can be integrated out. As such the number of terms is

greatly reduced. After some easy algebra, one finds for the ¢-integrated polarisations®

P)=P)=P, =0,
1 / / /
p) = FVell+ K" <SR’£$ cos O + “RY2 4 *RiDsin 9}() :

1 / !/ !
P = S el = 9K (“RE P cos O — *RY, + “Rify sin b ) .

Pl =+1-eK,"' (—Rﬁ_”p/,o sin 0% + R& cos 9}) ,

(2.40)

where Ky = R%O + GROLO.

2.2 Kaon production in the Regge limit

The study of kaon production, and by extension all meson-production reactions, is primarily motivated
by the exploration of the nucleon-resonance spectrum. Therefore, analyses of experimental data
focus on the so-called resonance region, which roughly corresponds to Wiy < 2.5 GeV. Nevertheless,
one cannot ignore the contribution of non-resonant diagrams that are looked on as a background
with an eye to extracting nucleon-resonance information. The kaon-production cross section lacks
clear indications of dominant resonant states which hints that background contributions are by no
means subordinate to resonance exchange. As such, the description of the background is crucial
in order to extract reliable information on the nucleon-resonance spectrum. The RPR formalism
takes an uncommon approach and first focuses on modelling kaon production at energies beyond the
resonance region where only non-resonant diagrams subsist.

At high energies, hadronic scattering processes can be elegantly described in the framework of Regge
theory. Based on the observation that it is useful to regard angular momentum as a complex variable
when discussing solutions of the Schrédinger equation for non-relativistic potential scattering [108], a
successful theory was developed. It describes a large variety of concepts and results in high-energy

2In literature, one commonly adopts the notation P and P, for the ¢-integrated induced and transferred polarisations.
This notation can lead to confusion with the P/P] that feature in the cross-section decomposition of Eq. (2.38). For
the remainder of this work, the symbols P? and P, will refer to ¢-integrated observables.
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scattering experiments. A comprehensive discussion of Regge phenomenology falls beyond the scope of
this dissertation and we refer the interested reader to the works of Collins [109] and Donnachie [110].

Starting from the general principles of unitarity, analyticity and crossing symmetry, Regge theory
puts forward a link between the existence of bound states in direct scattering reactions and the
exchange of unstable particles in the crossed channels. This link is manifested by the existence of
so-called Regge trajectories, which unify families of particles that share identical internal quantum
numbers. Each trajectory represents an analytic relation J = a(m?) between the mass m and
the spin J of particles with even (odd) spin that belong to the same family. This relation can be
conveniently visualised in a Chew-Frautschi plot (see Figure 3.9 for examples). Experimentally,
the Regge trajectories for baryons and mesons turn out to be linear to a good approximation and
appear to have a universal slope [111]. Conventionally, Regge trajectories are named after their first
materialisation.

Building upon the work of Guidal, Laget and Vanderhaeghen [38, 112], we model the high-energy
p(v, KT)Y amplitude by means of KT (494) and K**(892) Regge-trajectory exchange in the t-
channel. A gauge-invariant amplitude is obtained by adding the Reggeized electric part of the
nucleon s-channel Born diagram [69]. The strong forward-peaked character of the differential cross
section, as shown in Figure 2.3, provides strong support for this approach. The exchange of a linear
kaon Regge-trajectory

e (1) = s o+ s (8= M) (2.41)
with m o4 and ag o+ o the kaon’s mass and spin, is realised through a Reggeized amplitude that

combines elements of the Regge formalism and a tree-level effective-Lagrangian model. Reggeization

2

) )~ ! propagator by the corresponding Regge

amounts to replacing the standard Feynman (¢t — m
propagator

1
<S >aK+(t) { e~ ima e+ (t) } 7TO/K+

73K+(494) (5,1)

Regge S0 sin(rag+ () T(1+ag+(t) (2.42)
1
PK*+(892)( t) s\ (71| e ) Tt
S, = — - )
Regge S0 sin(mageer (8) T (ot (£))
with sg = 1 GeV? a scale factor. The Regge trajectories are parametrised as
gt (t) = 0.70 (t —m2.), (2.43)

aper(t) = 14085 (t —m2.y),

2
when t and M)

are strongly degenerate. Consequently, the Regge propagators (2.42) have either a constant (1)

. are expressed in units of GeV2. The data [113, 114] indicate that the trajectories

or rotating (e‘”"‘(t)) phase. These phases cannot be deduced from first principles and need to be
determined from data.

In our implementation of the Regge model, the operatorial structure of the transition amplitudes is
dictated by an effective Lagrangian approach®, in which the ¢-channel propagators are replaced by
the corresponding Regge ones, i.e.

SR+ A g+ KO+ 2
JRegge - JFeynman X PRegge X (t - mK(*H) : (2‘44)

30ur choice of strong and electromagnetic interaction Lagrangians can be found in Section D.3.2.
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Figure 2.3 — Differential cross section as a function of the momentum transfer |¢| at four photon LAB
energies E, =5, 8, 11 and 16 GeV. For the p(y, K™)A channel (left panel), the Regge-2 model is shown.
The p(y, K*)X° results (right panel) are obtained with the Regge-3 (solid line) and Regge-4 (dashed line)
models. Data from Ref. [113].
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Figure 2.4 — Photon-beam asymmetry as a function of the momentum transfer |¢| at photon LAB energy
E, =16GeV. For p(y, KT)A results (left panel) are the Regge-2 model. The p(vy, K7)X0 results (right
panel) are obtained with the Regge-3 (solid line) and Regge-4 (dashed line) models. Data from Ref. [114].

As a consequence, the amplitude corresponding to K™*)* exchange in the t-channel effectively
incorporates the transfer of an entire trajectory. When considering the exchange of K*(494) and
K**(892) trajectories, the Regge model for p(vy, KT)Y has a mere three parameters

vt vt
I9K+Yp> and GK*+ = KR+ K+ X gK*+Yp’ (245)

with gg+yp, g%*ﬂ,p and gﬁ(*ﬂ,p the coupling constants at the strong-interaction vertex and & g+ g+
the K*1(892)’s transition magnetic moment (see Paragraph D.3.3).

A crucial constraint for the kaon-production amplitude is gauge invariance. It is well-known that the
t-channel Born diagram by itself does not conserve electric charge. In Ref. [38], an elegant recipe
to correct for this was outlined. Adding the electric part of a Reggeized s-channel Born diagram
ensures that the amplitude is gauge invariant. Thus, the transition current operator for high-energy
kaon production in the Regge limit reads

Theese g+ Teommman ™ X Phgge X (£ = mies) (2.46)
At sufficiently high energies (E, Z 4GeV), a limited amount of p(y, KT)Y data points are avail-
able. For the KA channel a total of 72 data points exist, comprising 56 differential-cross-section
data points [113], 9 photon-beam asymmetries [114], and 7 recoil asymmetries [115]. Even fewer
data is available for K*X° production: 48 differential cross sections [113] and 9 photon-beam
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Figure 2.5 — Hyperon-recoil asymmetry for the p(y, KT)A channel as function of the momentum transfer
|t| at photon LAB energy E., = 5GeV. Data from Ref. [115].

asymmetries [114]. In Refs. [39, 40], these data sets have been adopted to constrain the three free
parameters (2.45) of the Regge model, as well as the phases of the exchanged trajectories. Because
of the meagre database, a unique and optimal model could not be established and several model
variants attain a comparable x2. After carrying through the full RPR strategy (see Section 2.3) and
making use of photo- and electroproduction data in the resonance region, the number of possible
Regge models can be significantly reduced. For the KA amplitude, a single Regge model with two
rotating trajectories, coined Regge-2, emerged. It is encouraging that a later Bayesian analysis of the
Regge model in the high-energy domain was able to single out this particular model using high-energy
data alone [56]. The p(y, K*)X° data was found to be compatible with a rotating phase for the
K1(494) and a constant phase for the K**(892) trajectory. The sign of the tensor coupling constant
remained ambiguous, however. The K*X%production models are labelled Regge-3 and Regge-4.
The coupling constants for the Regge models that are employed in this work are summarised in
Appendix L.

The Regge models are compared to the available high-energy data in Figures 2.3, 2.4 and 2.5. The
differential cross section for both A and XY production are nicely reproduced. From Figure 2.3,
one notices that both Regge models for the K*X° channel give comparable results at low |t|. The
photon-beam asymmetries of Figure 2.4 have a striking feature which is perfectly reproduced by the
Regge model. The asymmetry rises quickly to +1 as a function of —¢. This behaviour is reminiscent
of the dominant exchange of a natural-parity state [116], which we identify as the K**(892) trajectory.
For the p(y, KT)A reaction, a set of recoil-polarisation asymmetries at forward kaon angles are
available. The sign and shape of the angular dependence can be reproduced in the model. The size
of the asymmetry, on the other hand, is considerably underestimated.

2.3 Kaon production in the resonance region

The Regge model’s amplitude can be interpreted as the asymptotic form of the full amplitude for
large s and small |t|. Owing to the t-channel dominance and the absence of a prevailing resonance,
the Reggeized background has been observed to account for the gross features of the kaon production
data in the resonance region [39, 40, 67]. Near threshold, the energy dependence of the measured
differential cross sections exhibits structures which hint at the presence of resonances. These are
incorporated by supplementing the background with a number of resonant s-channel diagrams.
This approach was coined Regge-plus-resonance (RPR) and has also been applied to double-pion
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production [117], as well as the production of  and 7’ mesons [63, 64].

We describe the resonant contributions using standard tree-level Feynman diagrams. The exact form
of the transition amplitudes for spin-1/2 and spin-3/2 nucleon-resonance exchange can be found in
Section D.3. By substituting

SKy—m%%SKy—m%-l-imRrR, (2.47)

in the propagator’s denominator, we take into account the finite lifetime of resonances with mass
mp and width I'p. To limit the number of fit parameters, we keep the resonances’ mass and width
fixed at the values given in the Particle Data Group’s Review of Particle Physics (RPP) [1]. Each
spin-1/2 resonance introduces one free parameter

GN* = EN*p X JK+Y N* » (2.48)

the product of the coupling constants at the electromagnetic and the strong-interaction vertex.
Spin-3/2 resonances have an additional degree of freedom at the photon vertex and give rise to two
free parameters

1 1
Gyl = KRy, X grcry e

(2)

p (2.49)
GN* = KN*p X JK+y N* -

The most general interaction Lagrangian for spin-3/2 fields allows for an additional three degrees-of-
freedom, often called off-shell parameters, in the strong and EM vertices [118]. To ensure that the
effects of the resonant diagrams fade at higher energies, we introduce Gaussian form factors at the
strong interaction vertices [69]

(srcy —m3)”

JK+YN* 7 JK+y N+ X €Xp A | (2.50)
strong

with Agtrong a cutoff mass. A single cutoff mass is used for all resonance-exchange diagrams and it is

considered a free parameter in the fitting procedure. For both A and X° production, the value of

Astrong is about 1600 MeV.

The dynamics of EM kaon production can be fairly involved, with several contributing nucleon
and delta resonances that interfere with an eminent background. Disentangling these contributions
is challenging. In the RPR approach, we seek to determine the resonant and non-resonant terms
separately. The Regge model that was the subject of the previous section has been fitted against
the available high-energy data. Its parameters are frozen and the Regge amplitude serves as an
effective parametrisation of the background. In the resonance region, a large body of data is
available. Lists of published data sets for p(y, K*)A and p(y, K*)X° are presented in Tables J.1
and J.2. In Refs. [39, 40], the database [119-122] published at that time was used to constrain
the resonance parameters of the RPR model, while keeping the background unaltered. In the
KT A-production channel at forward angles, a substantial discrepancy exists between results from the
CLAS [119, 121, 123] and SAPHIR [124, 125] collaborations [126]. This makes it impossible to find
an optimal model that describes both data sets simultaneously. In the optimisation procedure, only
the CLAS data are retained. Since the Regge model is derived in the limit of asymptotic CM energy
sky and vanishing momentum transfer ¢, the RPR model analysis of Refs. [39, 40] was restricted
to forward-kaon production. Only differential cross sections for cos @7 > 0.35 and polarisation
asymmetries satisfying cos 07 > 0 were considered in the fitting procedure.
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In the K™ A-production channel, a fair description of the considered data (x?/Ngor ~ 2.4) is realised
via the inclusion of the following set of resonances: S11(1650), P11(1710), P13(1720), P13(1900) and
D13(1900). The first three are considered well-established resonances in the RPP [1]. The evidence
for the P;1(1710) state, however, has eroded in the past decade. Recent analyses of 7N scattering by
the SAID group no longer consider it [127]. Also in models for strangeness production, this resonance
has been called into question [5, 128]. The P;3(1900) resonance has a two-star status in the RPP.
It plays an important role in the missing-resonance puzzle, since it is part of a quartet of nucleon
resonances predicted by symmetric quark models but not by quark-diquark models [11]. In our RPR
analysis, the P13(1900) state is cardinal to describe the data. Additionally, the optimal RPR model
includes a missing D;3(1900) resonance with a width of 200 MeV. Evidence for this state has also
been obtained in other analyses [45, 49, 128].

In Ref. [40], we established the phases of the leading kaon trajectories for the p(y, K*)X° channel.
With the available data, it turned out impossible to single out a unique parametrisation of the Regge
model. The two model variants, that yield an equally good description of the high-energy data, were
labelled Regge-3 and Regge-4. Subsequently, we added resonances to the Reggeized background am-
plitude, identifying the S11(1650), D33(1700), P11(1710), P13(1720), P13(1900), S31(1900), P31(1910)
and P33(1920) as essential contributions. These are established resonances with a three- or a four-star
status in the RPP [1], except for the P13(1900) and S3;(1900), which are two-star resonances. Both
the RPR-3 and RPR-4 models reach a goodness-of-fit of 2 /Naor = 2.0. We found no direct need to
include “missing” resonances in the K> channel.

In order to assess the predictive power of the RPR model, we extended our formalism to kaon
electroproduction in Ref. [97]. The Q2-dependence of the EM coupling constants was incorporated
using transition form factors as computed in the Bonn CQM [129]. Without refitting any parameters,
we found that the RPR model gives a decent account of the available kaon electroproduction data.

2.4 The RPR model: the good, the bad and the ugly

In the previous sections, the RPR approach to EM strangeness production from the proton was
presented and we introduced models for KA and KTX° production that were optimised against the
pre-2007 world data. These models will be utilised in Chapter 6 for the calculation of kaon-production
observables on the deuteron. Since their publication in Refs. [39, 40, 97], many new data sets have
been published, encompassing high-statistics data at previously measured kinematics as well as
totally new observables. Evidently, these experimental developments have prompted us to put the
RPR model to a stringent test. In this section, we sketch some conceptual imperfections of the RPR
formalism, many of which have been amended in recent years [56, 98, 99]. In addition, a selection of
recently published data will be confronted with the RPR model in order to confirm its reliability and
robustness.

New high-quality data with unprecedented statistics have been published by the CLAS collaboration.
These data comprise differential cross sections and recoil-polarisation asymmetries for both the
p(y, KT)A [123] and p(v, KT)X0 [130] reaction channels. The extended energy range, which reaches
well beyond the resonance region, is of particular interest to the RPR model. The new data sets
allow to cross-check the high-energy data that is used to tune the background parameters of the
Regge model. Dey and Mayer point out in Ref. [131] that considerable discrepancies exist between
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Figure 2.6 — Differential p(y, K™)A cross sections as a function of 8% for various photon energies E,. The
solid and dashed curves are calculations with the RPR and Regge models respectively. The vertical band
shows the angular range used for fitting. Data from Refs. [119] (e), [125] (W), [132] (A) and [123] (O).

the newest CLAS results and the older data sets. This implies the Regge model can be further
refined. The repercussions for the RPR model are thoroughly addressed in Ref. [98].

In order to keep the model uncertainties to a strict minimum and maintain a low number of fitting
parameters, resonances of spin-5/2 and higher are not considered in Refs. [39, 40]. The RPP lists a
number of well-established higher-spin resonances that are indispensable in the description of (double-
)pion production amongst others. Previous strangeness-production models that have considered
spin-5/2 resonance exchange [5, 22, 24, 29, 128], on the other hand, conclude that these states do not
contribute significantly to the reaction dynamics. Nevertheless, the forthcoming analysis [98, 133] of
the recent kaon-production data in the RPR approach takes spin-5/2 resonances into account.

Implementing resonances with spin J > 3/2 in a hadrodynamical framework is a non-trivial task.
The conventional Rarita-Schwinger description of high-spin fermion fields [136], which is adopted in
this work, involves some unphysical degrees of freedom, associated with their lower-spin content [137].
These degrees of freedom are manifested by the off-shell parameters (X,Y, Z) that feature in the
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interaction Lagrangians (see Section D.3) and give rise to unphysical structures in the transition
amplitude [138]. Extending the work of Pascalutsa [139], a consistent interaction theory for high-spin
fermions was formulated in Ref. [99]. In the forthcoming RPR model [98, 133], these consistent
interaction Lagrangians will be adopted for spin-3/2 and spin-5/2 resonance exchange.

As mentioned in Section 2.3, the RPR-model analysis of Refs. [39, 40] was restricted to forward kaon-
production angles. Later on in this work, the RPR elementary-production operator will constitute
one of the basic ingredients of the strangeness-production calculations from the deuteron. To this end,
we wish to assess the behaviour of the RPR model over the full angular range. In Figures 2.6 and 2.7,
the p(y, KT)A and p(y, KT)X° differential cross sections are shown for 1125 < E., < 2775MeV.
Immediately, one notices that the Reggeized background model provides a fair description of the
cross section even though it was optimised against high-energy data. In the threshold region, the
Regge model overpredicts the A-production data, whereas it accounts for about half the strength
of the K*X9 channel. At higher energies, the Regge model slightly overpredicts the data in both
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Figure 2.9 — The performance of the Regge-3 (left panel) and RPR-3 (right panel) model for the description
of the p(y, K1)X° data. Every data point represents a (Wxy,63) vector. The colour code indicates the
x? of the model for a particular data point. Data from Refs.[119-122, 125, 130, 134, 135, 140].

reaction channels. This is an indication of the data inconsistencies alluded to in Ref. [131].

Over the full energy range the RPR model nicely reproduces the data at forward angles. We remind
the reader that only the cosf7 > 0.35 data were included in the fits. In Figures 2.6 and 2.7,
this region is indicated with a vertical band. At backward angles, on the other hand, the RPR
predictions feature bumps that are absent in the data. These structures occur near threshold for
K3 production and are prominent at higher energies in the p(y, K)A channel. The difficulty of
the RPR model to account for the data in the backward hemisphere is readily visualised in Figures 2.8
and 2.9. They show the x? for the Regge and RPR models per data point, that is cross sections as
well as polarisation observables.

The RPR-model analysis of Refs. [39, 40, 97] was limited to forward angles, motivated by the
Regge model’s region of validity. At backward angles, one could expect that meson production can
be parametrised with Reggeized hyperon exchange in the u-channel [112]. Such an approach has
previously been applied in pion photoproduction [38]. For kaon production, however, the cross-section
data shown in Figures 2.6 and 2.7 lack of any form of peaking at backward angles. This rules out
the need for a Regge approach. We judge that the inclusion of nucleon resonances in the s-channel
can account for strangeness production over the full solid angle. Therefore, the restriction on the
angular range of the data used in the fitting database is relieved in the forthcoming RPR-model
analysis [98, 133]. This allows for a successful description of kaon production at all angles.
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Figure 2.10 — Beam-recoil polarisation asymmetries C, (upper panels) and C, (lower panels) for the
p(y, KT)A reaction as function of the kaon-hyperon invariant mass Wy at three kaon scattering angles.
The solid and dashed curves are calculations with the RPR and Regge models respectively. Data from
Ref. [140].

Despite its shortcomings, the RPR model provides an efficient description of EM kaon production.
This is exemplified by the excellent predictions for the beam-recoil polarisation asymmetries (2.23).
In Figure 2.10, the observables C, and C, are displayed at forward and backward angles. These
asymmetries have the remarkable feature that at nearly all kinematics C, remains close to zero and
that C, is near its upper limit +1. The Regge model reproduces these gross features. The addition
of s-channel resonances further improves the model’s correspondence with the data. Given that the
results of Figure 2.10 are predictions, this illustrates the predictive power of the RPR formalism.
Figure 2.11 features the beam-recoil asymmetries obtained with linearly polarised photons. The
RPR models fails to reproduce the data near threshold, where the resonances provide marginal
contributions. Since the lowest-mass resonance considered in the RPR-model analysis is the S1;(1650),
this might point at the need to consider sub-threshold resonances. At the higher energy bins, the
predicted role of the resonances grows and their inclusion greatly improves the agreement with the
data.

The extension of the RPR formalism to kaon electroproduction does not require any additional
parameters. The electroproduction results are thus pure predictions. Nevertheless, an adequate
description of the data is achieved [69, 97]. Here, we simply wish to illustrate this using two
recently published data sets. In Ref. [143], new results for the separated longitudinal and transverse
p(e, e’ KT)A cross sections are presented. They are compared to predictions from the Saclay-Lyon
isobar model [22] and a Regge model [144] that resembles the one presented in Section 2.2. We
show the new data in Figure 2.12. It is clear the Regge model underpredicts o7, but exhibits the
observed flat energy dependence. The longitudinal cross section is well described at Q% = 1.90 GeV?2.
At the highest Q? bin, however, the predicted cross section lies below the data. The authors of
Ref. [143] mention that the general EM kaon form factor is off shell when used in a ¢-channel diagram.
Therefore, it becomes function of the momentum transfer ¢ in addition to the photon’s virtuality Q2.
In order to better describe the observed energy dependence with the Regge model, they introduce
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with the RPR and Regge models respectively. Data from Ref. [141].

an off-shell extension to the traditional kaon form factor and fit the parameters corresponding to
the degree of off-shellness to the data of Refs [143, 145]. This procedure significantly improves the
description of the data. Our results indicate that the inclusion of resonance-exchange diagrams in
the s-channel provides an alternative explanation. The coupling constants of these contributions are
fixed in the real-photon point, and their Q? dependence is dictated by EM form factors computed in
the Bonn CQM. The RPR-model results describe the Wiy dependence of the cross section in both
Q? bins without having to fit additional parameters to the data.

Finally, we compare RPR-model predictions to measurements of the transferred polarisation over a
large range of photon virtuality in Figure 2.13. This observable can be considered the electropro-
duction extension of the beam-recoil polarisation asymmetries C, and C, that have been presented
in Figure 2.10. Again, a satisfactory correspondence is attained. The Regge model is able to account
for the data, and the addition of resonances introduces only a slight modulation as function of Q2.

In this chapter, EM strangeness production from the proton has been described within the RPR
framework. The RPR-2007 models published in Refs. [39, 40] have been introduced. The values for
their free parameters can be found in Appendix I. These parameters have been optimised to the
available data in the p(y, KT)A and p(y, K*)X? reaction channels, where experimental results are
abundant. A successful description of strangeness production from the deuteron, however, requires a
reaction model which accounts for all six kaon-production final states, including those where data is
scarce or lacking. This issue constitutes the topic of the next chapter.
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CHAPTER 3

Kaon production in data-poor reaction channels

A total of six photon-induced reactions exist on the nucleon with a kaon-hyperon pair in the final
state

y+p— KT +A,

v+p— Kt +3°,

v+p— K°+ 37,

3.1
y4+n— K+ A, (3:1)

y+n— K94+ %0,
y4+n— Kt 437,

High-quality kaon-photoproduction information is only available for p(y, K)A and p(y, KT)%°. As
discussed in the previous chapter, this has allowed us to construct successful Regge and RPR models
for these reactions. Here, we address the issue whether these models can be transformed in such a
way that trustworthy predictions can be made for the remaining isospin channels.

In the RPR formalism, the reaction dynamics consist of pseudoscalar- and vector-meson exchange in
the t-channel as well as nucleon-resonance exchange in the s-channel. The generic structure of the
transition current operator is given by

aKt(494) | 2K*t(892) |, sBorn-s,elec K7T(494)
Feynman PReg x ( mK + E :JFeynman E :JFeynman 3 2)

JRegge + JRegge

+J

In order to relate different reaction channels with each other, it suffices to convert the coupling
constants which feature in the interaction Lagrangians. As such, the two A-production channels and
the four -production reactions can both be described by a single set of parameters.

In the strong-interaction vertex, one can fall back on SU(2) isospin symmetry to find the relevant
conversion factors. This concept is reviewed in Section 3.1. The transformation of the coupling
constants in the EM-interaction vertex, on the other hand, cannot proceed without experimental
input. The case of kaon-production from the neutron is considered in Section 3.2. The subsequent
section deals with the production of neutral kaons.

31
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IKY A*

JKYN

Figure 3.1 — The three tree-level diagrams considered in the RPR framework. Special emphasis is put on
the strong-interaction vertices.

3.1 Symmetry considerations at the strong-interaction vertex

The relations among the coupling constants in the strong-interaction vertices of the various kaon-
production reactions, depicted in Figure 3.1, can be derived effortlessly. This is made possible by
means of the isospin symmetry of the strong force. In the strong-interaction vertex, the hadronic
couplings are proportional to the Clebsch-Gordan coefficients

IKANG) ™ <IK = %aMII( In=0,M{ =0 ’ = ;7M1{[(*)> ; (3.3)

WMA*~<L(—;M§~L\OJWX—OIJA*—EJWC>, (3.4)
and

Greon ~ <IK = LM Iy = 1M | Ty = 3 M, > , (3.5)

gmm“vékzéwd;thm@ Qu:;ML>. (3.6)

We adopt the following conventions for the isospin states of the N*) A* K®*) and ¥ particles,

va(*)+7N*+ — ‘I:%7 MI:+%>7
n, KFO N0 — |I=1 M'=-1),
A - | I=0, MI=0),
o =1, M =1),
(3.7)
o= jI=1, M'=0),
¥ o= |I=1, MI=-1),
AT o |I=3, M =+3),
*0 _ 3 I _ 1
A o [I=3, M'=-3)

The phase of the X7 state is taken to be positive. With this choice, the Condon-Shortley phase
convention dictates a minus sign for the ¥ state. Using these isospin states to calculate the
Clebsch-Gordan coefficients of Eqs. (3.3)—(3.6), we easily find the conversion factors of interest.
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The strong coupling constants for the A-production channels are found to be isospin independent

IR OAN*0 = R+ AN*+ -
Only two coupling-constant conversion factors are given, since the exchange of A isobars is forbidden.
The strong-interaction vertices for p(y, K°)X* can be related to those for p(y, K7)XY through the
following relations

Ix o5ty = V2 K@iy,
IK =05+ N*+ = \/§9K<*>+20N*+ ) (3.8b)
-1
GRS+ A+ = T ZIKE+T0A
K0T +A J2KErEoAt
and for KT~ production from the neutron one has
Ik +y—n = \@QK(*HzOpa

IK#+n-N*0 = \/§9K<*>+20N*+ ’ (3.8¢)
1

IKE+n-Ax0 = 79K<*>+20A*+ :
2

Finally, the transformation of the p(y, K*)X° amplitude to the n(y, K°)X° one, only requires some
minus signs

Gr 050y, = — IR () +x0p
I ()00 N*0 = — () +30 N*+ » (38d)

I (=00A*0 = JR(=)+0A*+ -

3.2 The unbound neutron as kaon-production target

In order to assess the predictive power of the RPR formalism, we will first focus our attention on
reactions with a neutron target. Only data for the n(y, K™)X~ channel have been published and
we will use this reaction to judge the reliability of our formalism in Paragraph 3.2.3. Besides the
conversion coefficients in the strong interaction vertex, one also needs transformation rules for the
EM coupling constants. This is addressed in Paragraph 3.2.2. First, we touch on the subject of

gauge invariance.

3.2.1 Gauge-invariance restoration

A crucial constraint for the kaon-production amplitude is gauge invariance. It is well-known that the
t-channel Born diagram by itself does not conserve electric charge. In Ref. [38], an elegant recipe
to correct for this was outlined. Adding the electric part of a Reggeized s-channel Born diagram
ensures that the p(y, K1)Y amplitude is gauge invariant.

For the K°A- and K9%°-production reactions, this gauge-invariance-restoration procedure is irrelevant,
because the kaon-exchange amplitude vanishes. The n(y, K*)X~ reaction is the only channel with a
neutron as target and a charged kaon in the final state. Since the neutron is electrically neutral,
the electric part of the s-channel Born diagram is identically zero. A gauge-invariant amplitude is
obtained by including the electric part of a Reggeized u-channel Born diagram.
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3.2.2 Helicity amplitudes

In contrast to the hadronic parameters, the relations between electromagnetic couplings have to
be distilled from experimental information. The partial decay width for the radiative decay of a
resonance of spin S to the ground-state nucleon is given by [1]

*2
. _ Py 2MN (AN 2N 2
DN = Ny) =~ e (ARl + AP (3.9)

in terms of photocoupling helicity amplitudes A]}’ . These helicity amplitudes can be directly linked
with current matrix elements. Using the conventions of Ref. [129], we have

T 1
.AN = <p *,)\N* = =
1/2 \/2’mN(m?V* —m3) N 2

TQ 3
AN = * )\ * = —
3/2 \/ZmN(m?V* —m3) <pN N7

Here, j#(x) is the current operator. It speaks for itself that Az)],\;z is zero when S = 1/2. The current

. . 1
0+ 15,0 oy = 1)

(3.10)

2

04150 |y = 3 )

matrix elements can be calculated within a quark model (see Ref. [129] for example), or using the
phenomenological interaction Lagrangians defined in Section D.3.2. In this way, the N* and A*
transition moments can be related to the photocoupling helicity amplitudes .A]}[ . One has [147]

2 2
N (& mN* - mN
= . A1
A1/2 :F2mN QmN KN*N , (3 )
for spin-1/2 resonances and
AN e mie —miy () mae(mye Fmy) o)
1/2 Am - 3my N*N 4m?v N*N | »
(3.12)
2 2
N __¢ [Mmy.—my 1) my- +MN_ (2)
A2 = T\ T <iﬁN*N ¥ 4mN”°N*N) !

for spin-3/2 resonances. In Egs. (3.11) and (3.12), the upper (lower) sign corresponds to positive-
(negative-) parity resonances. Inverting these relations and neglecting the small proton-neutron mass
difference, we find

n
KN*n _ “71/2 (3.13)
KN=p A€/2 ,

for spin-1/2 resonances and

Vo VBAL, £ A,

KN*n

W, VA A -
Ii%ln - \/3“4?/2 B 7:;5 Ag/z ‘
ﬂﬁlp \/3_,411’/2 o T:er) A§/2 ‘

for spin-3/2 resonances. Note that these conversion rules are only meaningful for N*’s, since the

. " 1,2 . .
A-nucleon magnetic transition moments &(A* 13, are isospin independent.

Values for the published helicity amplitudes of the S1;(1650), P11(1710), P13(1720), P13(1900) and
D13(1900) resonance are presented in Table 3.1. The listed numbers are from the RPP [1] and two
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/2 from

Table 3.1 — Photocoupling helicity amplitudes of selected nucleon resonances in units 1073 GeV ™~
the Bonn relativistic constituent-quark model [148], the Review of Particle Physics [1] and two SAID analyses
(SM95 [149] and SP09 [127]). No experimental information exists for the P;3(1900) and D13(1900). SP09
provides photo-decay amplitudes to protons and does not find evidence for the P;;(1710) resonance [150].
The ratio of EM couplings to proton and neutron (see Egs. (3.13) and (3.14)) is listed as well. The SP09

ratios are obtained with the A" of SM95.

Resonance Bonn RPP SM95 SP09
S11(1650) 711/2 —16.00 —15.00£21.00 —-15.00%& 5.00 =
AII’/Q 4.30 53.00 4 16.00 69.00+ 5.00 9.00+9.10
Z%% —3.72 —0.28+ 0.41 —0.22+ 0.07 —1.67x1.77
p
P (1710) A}, —26.70  —2.00£14.00 —2.00£15.00 -

Ajl?/2 52.80 9.00 £22.00 7.00£15.00 =
Entno —(0.51 —0.224+ 1.65 —0.29+ 2.23 =

Py3(1720) &« —30.20 1.00 +15.00 7.00£15.00 =
A? 75.90 18.00£30.00 —15.00=+15.00 90.50 &+ 3.30

&< 11.40 —-29.00£61.00 —5.00+£25.00 =
AP —25.40 —19.00=+£20.00 7.00£10.00 —36.00=+3.90

“Newo 039 -2.24+11.60 —0.38+ 2.00  0.06%0.30

™ —0.40 042+ 1.15 —0.50£ 1.08 0.08 £0.17

HN*p
P13(1900) A7), 2.6 - - -
Al 5.5 - - -
. 16.9 - - —
At 2.2 — - -
1
Sy 1.83 — — —
(D :
N*
@)
Men (.46 - - -
K
N*p
Dy3(1900) A}, 177 - - -
Al 47.9 — - —
b 12.3 — — —
Ay —185 - — -
1
i Q.98 - - —
(D :
N*
K
“Hym —0.40 — - -
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Figure 3.2 — Regge-model predictions for the n(y, K+)X~ differential cross section as a function of the
kaon-hyperon invariant mass for four different values of the kaon centre-of-mass scattering angle. Data
from Ref. [134]. The error bars represent the statistical uncertainties only. The systematic uncertainty is of
the order of 20%.

SAID analyses [127, 149]. It is clear that the photon couplings of those resonances pertinent to our
calculations are poorly determined. The extracted values are often incompatible, even after taking
into account the considerable error bars. No experimental information is available for the resonances of
mass 1900 MeV, i.e. P13(1900) and D;3(1900). Table 3.1 also features photon couplings as calculated
in the Bonn CQM [148]. The theoretical predictions for the transition moments of the S1;(1650)
to neutron (proton) agree favourably with the SAID analysis SM95 [149] (SP09 [127]). When
confronting the Bonn model calculations for the P;;(1710) and P;3(1720) resonances with the SM95
SAID analysis, one notices that the transition moments to proton and neutron are overestimated,
while their ratio matches within the error. The Bonn CQM provides a fair account of all .Ag from
the SP09 analysis. This analysis, however, finds no evidence for the P;;(1710) resonance [150].

3.2.3 Results

In Chapter 2, it became clear that the kaon-production reaction mechanism is dominated by the
background contributions, which we parametrise in terms of Regge-trajectory exchange. Therefore,
we will first examine the predictive power of the Reggeized-background model using the limited
number of available experimental results. At a later stage, the predictions of the full RPR model
will be investigated.

To our knowledge, only two data sets for the n(y, K*T)X~ reaction channel have been published in
the past. The results by the LEPS collaboration [134] comprise differential cross sections and photon-
beam asymmetries at forward angles (cos 6} > 0.65) in the energy range 1.5GeV < E, < 2.4GeV.
This data set has been obtained through quasi-free kaon photoproduction from a deuterium target.
Systematic errors originate from corrections for final-state interactions, the pion-mediated two-step
process, and detector uncertainties. Quadratically summing the estimates given in Ref. [134] yields
uncertainties of the order of 20 % for the differential cross section and |AX| ~ 0.2 for the photon-beam
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Figure 3.3 — Regge-model predictions for the n(y, K™)X~ photon-beam asymmetry as a function of the
kaon-hyperon invariant mass for four different values of the kaon centre-of-mass scattering angle. Data
from Ref. [134]. The error bars represent the statistical uncertainties only. The systematics are estimated
to be |[AX| ~ 0.2.

asymmetry.

Figures 3.2 and 3.3 show our Regge-model predictions for the measured observables. The differential
cross section is fairly energy independent and settles between 0.1 and 0.2 ub. The predictions of the
Regge models provide an acceptable description of the data. Overall, the quality of agreement is
better for the Regge-3 variant. The Regge-4 model overpredicts the cross section by a factor of two,
roughly. The LEPS data shows a clear predilection for the Regge-3 model.

As can be appreciated from Figure 3.3, both Regge models provide a satisfactory account of the
photon-beam asymmetry, with a vanishing asymmetry at threshold and a steady rise as the energy
increases. Again, it should be stressed that these results do not involve any free parameters and
are anchored to the fitted p(y, K*)X° amplitude through SU(2) isospin symmetry at the strong
interaction vertex. Despite its simplicity, our approach can account quantitatively for the LEPS
measurements.

Recently, the CLAS collaboration made available a large set of n(y, K*)X~ differential-cross-section
results covering a broad angular range [151]. The data have been obtained using photons, in an
energy range from 0.8 GeV to 3.6 GeV, incident on a liquid-deuterium target. The photoproduced
kaon and the pion and neutron coming from the decaying >~ hyperon are detected. Subsequently, the
presence of the spectator proton is inferred by putting limits on the missing mass. In addition, a cut
on the missing momentum ]ﬁp| < 250 MeV is applied. The systematic uncertainties are dominated
by the background subtraction and the photon-flux calculations, and are estimated to be about
4.5-13.5%. Owing to the large energy coverage of the CLAS data, the dynamics of the n(y, KT)X~
reaction can be investigated in the resonance region and at higher energies.

In Figure 3.4, Regge-model predictions are set against CLAS results at energies where the contribution
of resonance exchange is judged to have died out. Clear peaks at forward scattering angles are visible.
This indicates the dominance of K*) exchange in the ¢-channel. The exponential decrease of the
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Figure 3.4 — Regge-model predictions for the n(y, KT)X~ differential cross section as a function of 6«
for six different values of the kaon-hyperon invariant mass. Data from Ref. [151]. The error bars represent
the total (statistical plus systematic) uncertainty.
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differential cross section as a function of the scattering angle is characteristic for Regge-trajectory
exchange, and the Regge models naturally describe this trend. The magnitude at forward angles
tends to be overpredicted however. In the backward hemisphere the experimental error bars are
substantial. At these kinematics, the Regge-4 model predicts much larger cross sections compared to
the Regge-3 model. Overall, the calculations with the Regge-3 model agree better with the data.

The angular dependence of the n(y, K)X~ differential cross section obtained by the CLAS collabo-
ration in the resonance region is shown in Figure 3.5. The quality of agreement of the Regge models
is analogous to the situation with the LEPS results of Figure 3.2. The shape of the cross section
is reproduced by the Regge-3 model, yet its strength is overestimated. Again, the data favour the
Regge-3 model.

In previous work [40, 97], we had not been able to discriminate between the two Regge models on
the basis of the p(y*), KT)20 data. In the n(y, K*)X~ channel, on the other hand, the Regge-3
model clearly outperforms the Regge-4 variant. Accordingly, we will discard the latter from now
on. This implies that, for the remainder of this dissertation, we have two unique kaon-production
models at our disposal. For the A-production channels that is the Regge-2 and RPR-2 model. The
Y-production reactions will be described using the Regge-3 and RPR-3 models.

Both the differential cross section and the photon-beam asymmetry in Figures 3.2, 3.3 and 3.5 exhibit
a rather smooth energy dependence. The Regge model predictions procure a fair description, yet
discrepancies exist. These can possibly be attributed to nucleon and A resonances. Their role in the
n(y, K*)3~ reaction can be evaluated with the RPR amplitude. As was outlined in Paragraph 3.2.2,
the transformation of the p(y, K)X? amplitude requires a set of helicity amplitudes. The values
extracted in the latest SAID analysis, SP09 [127], are ill-suited for our purposes, as this analysis
does not provide resonance couplings to neutrons. We performed calculations with the two other sets
(RPP and SM95), and found them to produce qualitatively similar results. In what follows, we will
discuss the representative results obtained with the helicity amplitudes extracted in the SATD SM95
analysis [149]. No experimental information is available for the P;3(1900) resonance. Therefore, we
allow the ratios of its magnetic transition moments ng\lfli)b / Hs\l,;? (see Egs. (3.13) and (3.14)) to vary
between —2 and +2. This range encompasses the Bonn model predictions. Since the EM transition
strengths for delta resonances to protons and neutrons are identical, we include the Ds33(1700),
S531(1900), P3;(1910), and P33(1920) resonances with the EM coupling constants determined in the
p(7y, KT)X0 reaction channel.

The amplitudes of the RPR-3 model are the sum of the Regge-3 background and resonance contribu-
tions. In Figures 3.6 and 3.7, we confront the RPR-3 and Regge-3 predictions for n(y, KT)X~ with
the LEPS data. One observes a destructive interference between the Reggeized background and the
resonance diagrams. This reduces the reaction strength and marginally improves the agreement with
the cross section data in all angular bins and for all energies. From Figure 3.7, it is plain that the
Regge-3 and RPR-3 models provide similar predictions for the photon-beam asymmetry . This
observation leads us to conclude that the 3 observable is rather insensitive to resonance-exchange
contributions.

From Table 3.1, we learn that the helicity amplitudes extracted in the SM95 analysis have considerable

error bars. Their impact is assessed in Figures 3.6 and 3.7, and is quite dramatic. Using the error bars

given in table 3.1, we considered 21 equidistant values for every z]f\\;—*" and computed the n(y, KT)X~
p

observables for each of these 21% combinations. The shaded area of Figures 3.6 and 3.7 indicates the
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Figure 3.6 — The n(v, KT)X~ differential cross section as a function of the incoming photon’s LAB
energy for four different values of the kaon centre-of-mass scattering angle. The dashed curve indicates the
Regge-3 model, whereas the full curve corresponds to the RPR-3 amplitude, i.e. Regge-3 supplemented with
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are listed in table 3.1 under SM95. The ratios of EM coupling constants for the P;3(1900) resonance
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Kaon-MAID [23] predictions. Data from Ref. [134].
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range of values for do/dQ2 and ¥ obtained with this procedure. The experimental ambiguities of the
transformed photon couplings result in deviations up to 100 % for the differential cross section. The
reduced sensitivity to resonant contributions leads to predictions for the photon-beam asymmetry
that are affected to a smaller extent. Nevertheless, the uncertainty can be as large as AY =~ 0.8.

One notices that the error band in Figure 3.6 is not positioned symmetrically around the RPR
prediction. The addition of resonant diagrams to the Reggeized background amplitude produces
destructive interference. By varying the EM coupling constants of the resonances within their allowed
ranges, this destructive interference is easily destroyed. When one or more of the conversion factors
is large, particular resonances will dominate the reaction dynamics and the cross section will be
enlarged. We illustrate this by imposing a more restrictive range [—1, 1] for the coupling-constant
ratio of the P;3(1900) state. The results using these limits are shown in Figures 3.6 and 3.7 with a
darker shaded error band. The lower edge of the dark-coloured band coincides almost perfectly with
that of the light-coloured one. Yet, the width of the dark-coloured area is substantially reduced. For
the photon-beam asymmetry, the reduced error bars do not have a great effect on the size of the
induced uncertainties.

From the previous discussion, it becomes clear that Regge models have considerable predictive power.
As a consequence, one can rely solely on isospin arguments when transforming the K production
amplitude from proton to neutron targets. The RPR model, on the other hand, is less resilient. It is
clear that the current errors on the extracted helicity amplitudes impose severe constraints on the
predictive power of the RPR model. This result is not limited to the RPR model, but is inherent to
any model that includes the exchange of nucleon resonances in the s-channel. To illustrate this, we
have included model predictions for n(vy, K*)X~ from Kaon-MAID [23, 152] in Figures 3.6 and 3.7.
This isobar model treats the background in terms of s-, - and u-channel Born diagrams as well as
K*(892) and K;(1270) exchange. In addition, Kaon-MAID considers a “minimal” set of resonances,
consisting of S11(1650), P11(1710), P13(1720), S31(1900) and Ps;(1910). All of these resonances have
a three- or four-star rating. In order to convert the p(y, K*)X% to the n(y, K*)X~ amplitude, SM95
values for the helicity amplitudes were adopted. As can be appreciated from Figure 3.6, Kaon-MAID
describes the measured differential cross section up to E, =~ 2000 MeV at forward angles. The
predicted rise of the differential cross section with increasing £, is absent in the data. Furthermore,
the predicted sign of the photon-beam asymmetry is opposite to the data.

The energy dependence of the n(y, KT)X~ differential cross section is depicted in Figure 3.8 for
different angular bins in the forward and backward hemisphere. One observes that the results from
the CLAS and LEPS collaborations agree well with each other. At forward angles, the cross section
becomes constant at high energies. As one moves to backward angles, a fall-off becomes evident.
The Regge model reproduces this observation, but overpredicts the magnitude of the cross section in
the forward hemisphere. The resonant diagrams interfere mostly destructively with the Reggeized
background, thus bringing the model predictions closer to the data. At backward angles, however,
the RPR model produces a clear resonant structure at an energy Wiy =~ 1900 MeV. This bump,
which is most likely a manifestation of either the P;3(1900) or the D;3(1900) resonance, is also
present in the data for —0.55 < cosfg+ < 0.35, but is not as outspoken.

Figure 3.8 also illustrates the effect of the errors bars of the adopted helicity amplitudes. The results
confirm that the induced uncertainties are big and the effect on the predicted cross sections can be as
large as a factor five. Towards higher energies, the uncertainties dwindle. This comes as no surprise,
since the highest mass of the resonances considered in the RPR model is 1900 MeV. One notices that
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the RPR model that uses the central values for the coupling-constant ratios often corresponds to the
situation of maximised destructive interference between the resonant and background contributions.
This is especially true at backward scattering angles. Therefore, we can conclude that, in spite of the
large theoretical uncertainties, the RPR model provides convincing predictions for the n(y, KT)X~
reaction channel.

3.3 Regge formalism for neutral-kaon photoproduction

Another set of strangeness-production reactions where only limited amounts of data are available
involves the production of neutral kaons. The K°A and KX final states are produced when the
incoming photon interacts with a neutron target. Recently, polarisation asymmetries for these
channels have been presented in the dissertation of N. Hassall [153]. These data have been obtained
during the gl13 experiment using the CLAS spectrometer, and the final analysis is ongoing.

For the p(y, K°)X* reaction, several published data sets are available [154, 155], in addition to
results presented in the context of dissertations [156, 157]. Therefore, we will focus on this reaction
channel in order to evaluate our formalism for neutral-kaon production, which is the topic of the
following section.

3.3.1 The naive approach

In Section 2.2, the Regge model for strangeness production was introduced. The production
amplitude is modelled by the t-channel exchange of K(494) and K*(892) Regge trajectories. In
the left panel of Figure 3.9, we show their linear trajectories together with their RPP masses. To
ensure the gauge invariance of the reaction amplitude, a Reggeized version of the electric part of
the s-channel Born diagram was added. Transforming the p(y, K*)A or p(y, K7)X% amplitudes to
neutral-kaon production reactions requires modifications to the coupling constants of the relevant
Feynman diagrams. The recipe at the strong-interaction vertex has been outlined in Section 3.1.
The n(y, KT)X~ results of the previous section have demonstrated this approach is reliable. The
transformation rules for the three K°-production channels are contained in Eq. (3.8).

The transformation of the EM vertex is more troublesome, since it inevitably requires experimental
input from other reactions. When transforming K+ (494) and K**(892) exchange in the ¢-channel,
the relevant coupling constants in the EM vertex are the charge of the kaon and the magnetic
transition moment K+ respectively.

Neutral kaons have no charge, and therefore the contribution from the kaon-exchange diagram
vanishes in the N (v, K°)Y channels. For this reason, also the gauge-invariance-restoring s-channel
diagram is no longer needed. This leaves us with the K*°(892) exchange diagram. The decay width
of vector mesons to the ground-state kaon can be directly linked to the square of the magnetic
transition moment!. Adopting the decay widths listed in the RPP [1]

I (K*0(892) — K°(494)7) /Tiotal _ 2.3140.20- 1073
[ (K*+(892) — K+(494)7) /Tiotar 9.9 0.9-10—4

=2.3340.30, (3.15)

'See the technical notes accompanying the Ph.D. thesis of S. Janssen [158].
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Figure 3.9 — Chew-Frautschi plot for a comprehensive set of strange mesons as listed in the RPP [1].
Unconfirmed states are marked with a hollow circle (o). All particles are colour-coded according to their
respective trajectories.

we find the following relation

K K+0(892) K0(494)

= —1.53+£0.10. (3.16)
K K++(892) K+ (494)

The relative sign for these coupling constants cannot be deduced from experiment. In Eq. (3.16),
we adopt the sign predicted by the cloudy-bag quark model of Singer and Miller [159]. This sign is
confirmed by the Bonn CQM [160].

At this point, we are ready to make predictions for N(y, K°)Y observables using the Regge model
which parametrises the background contributions. Adding resonances to these amplitudes does not
introduce additional problems. The strong coupling constants can be transformed with the same
rules as the t-channel coupling constants (see Eq. (3.8)). In case of a neutron target, we also require
helicity amplitudes for the conversion of the EM coupling constants as was outlined in Section 3.2.

From Table J.3, we learn that very little data is available to test our formalism. For the p(y, K°)X*
reaction, we have differential cross sections, total cross sections and recoil-polarisation asymmetries
at our disposal. The SAPHIR collaboration has published differential cross sections in the energy
range 1100 MeV < E, < 2525 MeV with full angular coverage, as well as total cross sections in the
same energy range [154]. This data is supplemented with some low-statistics recoil-polarisation data
for two wide E, bins. This complicates the comparison with model predictions, since the calculations
need to be averaged. The CB/ELSA-TAPS collaboration [155]? has published cross-section results
covering angles and energies that almost coincide with those of the SAPHIR collaboration. The
recoil-polarisation results, on the other hand, have a better energy and angular coverage. The CLAS
collaboration has measured differential cross sections over a large energy range. These data have not
yet been published, but are presented in the dissertation of B. Carnahan [157]. Given the scarcity
of data in the p(vy, K°)X¥ reaction channel, we will make use of them. In what follows, fits will be
performed to p(y, K°)X* data. All above-mentioned data sets will be part of the fitting database,

2The same data set has been presented in smaller energy bins in R. Castelijn’s dissertation [156]. This is the data
we will use.
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except for the recoil-polarisation asymmetries of the SAPHIR collaboration, which are presented in
very wide energy bins.

The predictions using the Regge-3 and RPR-3 models are compared to the SAPHIR data in
Figures 3.10 and 3.11. It is plain that the results are not convincing. For the differential cross
sections, the strength is overpredicted by roughly one order of magnitude, except for the lowest
energy bins where the predicted angular shape does not agree with the data.

As mentioned previously, the large energy bins for the recoil polarisation make it very difficult to
compare the data to model calculations. The data do suggest that the asymmetry is positive and
not small for cos 07 # +1. This qualitative behaviour is reproduced by neither the Regge nor RPR
model. The former is zero, because it has a constant phase and is therefore real. This results in a
vanishing asymmetry. Once resonances are added to the Regge amplitude, a non-zero asymmetry is
obtained. The RPR-3 predicts a negative recoil-polarisation asymmetry, however.

Can we understand why the Regge model does a poor job in the p(y, K°)X* channel? In the left
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panels of Figure 3.12, we compare the Regge-3 and RRP-3 models to a selection of differential-cross-
section data in the p(y, K7)X" channel. The Reggeized-background parameters are fixed against
high-energy data. The largest deviations between the predictions of the background model and
the data are observed at forward angles and low energies. At these kinematics, one expects sizable
contributions from nucleon-resonance exchange. The dotted curve depicts calculations where the
K (494)-trajectory contribution has been left out. The latter plays an important role near threshold
and at extreme forward angles, where the K*(892)-exchange diagram vanishes. The full RPR model
gives a nice description of the data in the forward hemisphere, where it has been fitted, but performs
poorly at backward angles. This issue was mentioned in Section 2.4 and is addressed in Refs. [98, 133].

The p(y, K°)X* differential cross section in the right panels has roughly half the strength of its
isospin partner in the lowest energy bin shown. This effect grows as the photon energy rises. The
differential cross section is one order of magnitude smaller at the highest energy bin in Figure 3.12.
This experimental observation is not at all confirmed by the Regge model. From Egs. (3.8) and (3.16)
we learn that the EM and strong coupling constants of the K*(892)-exchange diagram are multiplied
by v/2 and —1.53 respectively. After squaring the amplitude, this implies the p(y, K°)X* differential
cross section will be roughly 4.7 times as large as the p(y, K*)X? one. This is consistent with
the results in Figure 3.12. Clearly, our naive approach to transform the fitted K*X%-production
Regge amplitude to the KX -production channel fails and needs to be revised. In the forthcoming
paragraphs, possible strategies to remedy this are presented.
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3.3.2 A third trajectory

In Regge theory, one should, in principle, add all contributions from all possible trajectories in either
the s-, t-, or u-channel. Fortunately, this is not necessary in practise. Assuming all coupling constants
adopt the same value, those trajectories with the lightest first materialisation will have the largest
contribution. For this reason, it suffices in the p(y, K*)X° channel to include only K*(494) and
K*T(892) exchange. In the p(y, K°)X* reaction, however, we are left with just one diagram. This
raises the question whether another trajectory should be added. A number of possible trajectories
are suggested in the right panel of Figure 3.9.

The K;(1270) trajectory has negative signature and is considered the degenerate partner of the
K (494) trajectory. This degeneracy is easily spotted in Figure 3.9. The spin-parity J of the first
materialisation is 17 and the trajectory can be parametrised as

at) =14 0.7(t = m3, 1970)) - (3.17)
Adopting EM decay widths as calculated with the Bonn CQM [160], one finds

R K9(1270) K0(494)

= —0.97. (3.18)
R (1270) K+ (494)
Also the K7(1400) trajectory has negative signature. Its first materialisation has J© = 1*. As

possible other members we consider K»(1820) and K4(2500). Fixing the trajectory’s slope using the
first two materialisations, one obtains

a(t) =14 0.75(t — m¥, 1400)) - (3.19)

Adopting EM decay widths as calculated with the Bonn CQM [160], the ratio of EM coupling

constants is given by o
K9(1400) K0 (494)

= 2.5277. (3.20)
Rk (1400) K+ (494)

Next, we consider the K*(1410) trajectory. The first materialisation of this positive-signature
trajectory has the same spin-parity as the K*(892). A possible second member for this trajectory is
K3(1980), which would result in a very small slope parameter. Relying on predictions for the kaon
masses from the Bonn CQM, we parametrise the trajectory as [69]

a(t) =1+ 0.85(t — mic (1410)) - (3.21)

The conversion factor for the EM coupling constants

K K*0(1410) K0(494)

= —1.1592. (3.22)
KK+ (1410) K+ (494)

is obtained with EM decay widths from the Bonn CQM as input [160].

The RPR strategy, outlined in Chapter 2, fixes the background parameters of the Regge model at
high energies. This background amplitude is subsequently extrapolated into the resonance region
while keeping all parameters fixed. This allows one to optimise the coupling constants of the resonant
diagrams unambiguously. Because of the absence of high-energy data in the K°Y* channel, it is
impossible to determine the parameters of a possible additional Regge trajectory at high energies. A
different strategy involves fitting a Regge amplitude consisting of three trajectories to the high-energy
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a function of the kaon’s CM scattering angle. The calculations use the model labelled RPR-A in Table 3.2,
i.e. the RPR-3 model supplemented with a K*(1410) trajectory in the p(y, K°)X* channel. The solid
curves are calculations with the Regge model, whereas the dashed curves represent the full model including
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K*3° channel data. This way, two trajectories with known coupling constants remain for the
p(7, K9+ reaction. Again, the quality of the data is a limiting factor. The high-energy fits with
two trajectories in the K*X° channel attain a x?/n.d.f ~ 1.1. Clearly, the current data set does
not require an extra trajectory. Introducing one nonetheless would not enable us to fix the free
parameters of this third trajectory in a meaningful way. A third option is to use resonance-region
data to determine a Regge amplitude consisting of three trajectories. This approach comes at a
cost, since one of the attractive conceptual advantages of the RPR formalism is lost, namely the
independent determination of resonant and non-resonant parameters.

In a first attempt, a pure Regge model consisting of 3 trajectories is fitted to the p(y, K*)X° and
p(v, K°)XT photoproduction data in the resonance region. We take the K (494) and K*(892) as
core trajectories and add either a pseudovector K;(1400) or a vector K*(1410) trajectory. The
coupling constants, five in total, are constrained to 100 and every possible combination of phases is
considered. A number of acceptable models is obtained with different combinations of phases. The
resulting goodness-of-fit is of the order x?/n.d.f. ~ 7 — 9. None of these model variants, however,
results in acceptable predictions for the K%+ channel. The use of p(y, K7)X° and p(y, K*)XT data
sets in a common fit does not lead to acceptable results, because of the disparity in the number of
data points.
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Table 3.2 — Revised RPR-3 models optimised against the available p(y, K°)XT data. Except for model
RPR-A, the ratio of EM coupling constants for the K*(892) trajectory was considered a free parameter.

K K+0(892) K0(494)

Label Trajectories [Phases] x%/n.d.f.
KK*+(892) K+(494)
RPR-A  K(494) [rot] + K*(892) [cst] + K*(1410) [cst] -1.530£0.100 5.23
RPR-B K (494) [rot] + K*(892) [cst] 0.054 £ 0.010 3.39
RPR-C K (494) [rot] + K*(892) [est] + K1(1270) [cst]  0.098 +0.015 2.78
RPR-D K (494) [rot] + K*(892) [cst] + K1(1270) [rot] ~ 0.117 40.013 2.47
RPR-E K (494) [rot] + K*(892) [cst] + K1(1400) [cst]  0.100+0.015 2.79
RPR-F  K(494) [rot] + K*(892) [cst] + K71(1400) [rot]  0.061+0.012 3.31
RPR-G K (494) [rot] + K*(892) [cst] + K*(1410) [cst] -0.430 £ 0.052 2.67
RPR-H K (494) [rot] + K*(892) [cst] + K*(1410) [rot]  0.070 £0.011 2.77

Next, a third trajectory is added exclusively to the KX+ channel. We fit its coupling constants to
the available data discussed on page 44, while the remaining parameters are kept fixed. Starting from
the RPR-3 amplitude, which has been optimised against K™%0 data, either a K;(1270), K1(1400) or
K*(1410) trajectory is added. Only the fit with an additional K*(1410) and a constant phase leads
to an acceptable result (x?/n.d.f. = 5.23). Why this particular trajectory leads to fair results is
illustrated in Figure 3.13 where the RPR prediction is decomposed into its various contributions. In
order to reduce the cross section to the level of the data, the additional trajectory needs to provide
strong enough destructive interference with the problematic K*(892) trajectory. This can only be
achieved by a trajectory with similar quantum numbers and the same phase, hence the K*(1410)
trajectory.

3.3.3 Adjusting the strength of the K*(892) trajectory

In Paragraph 3.3.1, we conclude on the basis of Figure 3.12 that the RPR model overestimates
the p(y, K°)X* cross section, because the dominant trajectory, the K*(892), is magnified by its
isospin coefficient (3.8) and the ratio of EM decay widths (3.16). In the previous paragraph, we
have attempted to suppress the K*(892) trajectory’s contribution by adding an additional trajectory.
Directly readjusting the K*(892)’s coupling constants presents an alternative to control this taxing
diagram’s strength. The ratio of coupling constants in the strong interaction vertex is given by
SU(2) isospin symmetry and is on solid ground. The ratio of EM coupling constants, on the other
hand, is based on the EM decay widths of the K*(892) to charged and neutral K(494). Although
this ratio is well-known experimentally, we need to acknowledge that we are, in fact, dealing with
phenomenological parameters. The t-channel diagrams in our Regge formalism correspond to the
exchange of entire trajectories instead of merely their first materialisations. In this light, it is a
viable option to consider the ratio of EM coupling constants as a free parameter left to be fitted.

Fitting the EM coupling constant of the K*(892) Regge trajectory to the available K% *-production

data, we find
K K*0(892) K0(494)

= 0.0540 £ 0.0101 . (3.23)
K K*+(892) K+(494)

All other parameters of the RPR-3 model have been kept fixed. Despite the fact that only one



50 3.3. Regge formalism for neutral-kaon photoproduction

0.10— ‘ —— : .
rcosB =-090 __ RpRr.B Tcosb, =-0.70 ]
008= = RPR-A ]
0 I RPR-D ] ]
0.061 —+ .
0.04f { + + L} .

L. v vy @ | ::‘ ‘ P T R i \+ L ;
1800 2000 2200 2400 1800 2000 2200
W,y (MeV)

| ]
2400

Figure 3.14 — The p(y, K°)X7 differential cross section as a function of the kaon-hyperon invariant mass
for various cos 0 +. The curves represent different models presented in Table 3.2. Data from Refs. [154] (e)
and [157] (H).

free parameter is introduced, we attain y?/n.d.f. = 3.39. The fitted ratio of the EM coupling
constants given in Eq. (3.23) is approximately a factor of thirty smaller than the value (3.16) obtained
with decay widths from the RPP. In addition, the sign has changed. With the fitted value for the
EM coupling constant, the contribution of the K*(892) trajectory is strongly suppressed and the
p(v, K9t reaction dynamics will be dominated by nucleon-resonance-exchange diagrams.

Since we have identified a mechanism to control the strength of the K*(892) trajectory, the possibility
of a third trajectory in the KX channel can be reconsidered. As in Paragraph 3.3.2, we add either
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a K71(1270), K1(1400) or K*(1410) trajectory to the RPR-3 model, while simultaneously allowing
the ratio of EM coupling constants of the K*(892)-exchange diagram to vary. The different model
variants lead to acceptable x? values as can be appreciated in Table 3.2. The reduction of the
x? in view of the two additional free parameters is small however. The optimal solution includes
a K7(1270) trajectory with a constant phase. All fitted ratios of EM coupling constants are tiny
compared to the experimental value (3.16), with the exception of the model with an additional
K*(1410) trajectory with constant phase. As discussed in the previous paragraph, this trajectory

manages strong destructive interference with the leading K*(892) trajectory.

3.3.4 Results

The different model variants introduced in the previous two paragraphs are listed in Table 3.2. In
Figures 3.14 to 3.18, they are confronted with the p(y, K°)XT data. We do not show results for all
three-trajectory models with a fitted EM coupling-constant ratio, and only retain the model variant
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RPR-D with the lowest x?.

Figure 3.14 features the differential cross section as a function of the kaon-hyperon invariant mass.
The different RPR models give a fair description of the data and have a similar qualitative behaviour.
At forward angles, however, the RPR-A model exhibits a problematic trend towards higher energies.
This is confirmed in Figure 3.15. All considered RPR models have a peak structure near forward
scattering in the highest energy bins. This peak is most outspoken for the RPR-A model and is not
observed. The angular dependence of the cross section is well accounted for by all model variants.
The RPR-D model tends to predict smaller cross sections than the RPR-B variant. At forward
angles, however, the RPR-D cross section peaks more strongly.

The total cross section is given in Figure 3.16. One immediately spots the troublesome high-energy
behaviour of the RPR-A model. The cross section has a broad maximum about Wgy = 1900 MeV.
Apart from the RPR-D model, this feature is accounted for by our calculations.

Finally, we show the comparison of the RPR models with the recoil-polarisation data in Figures 3.17
and 3.18. The error bars on the experimental results are considerable and it is not obvious to
differentiate between the different model variants. In general, the recoil asymmetry is positive and
is matched by the models. Only the RPR-A model produces negative asymmetries towards higher
energies.

The RPR-A, which consists of the RPR-3 model with an additional K*(1410) trajectory, gives the
least optimal description of the available KX+ data and can be discarded. The remaining model
variants listed in Table 3.2 provide a comparable agreement with experiment. The RPR-B model
takes precedence over the others, because it contains only a single free parameter, compared with
three for models RPR-C to RPR-H. Therefore, we will adopt the fitted ratio in Eq. (3.23) without
adding a third trajectory when transforming the p(y, K*)X? amplitude to channels with a neutral
kaon in the final state.

In the A-production channels, no data is accessible to examine the predictions of the RPR model.
Hence, we will stick with the naive approach and adopt the experimental ratio (3.16) for the EM
coupling constants of the K*(892) trajectory.



Chapter 3. Kaon production in data-poor reaction channels 53

N

&

ANRERRNRRRR

=

T

o
W

T T
<3

o
=

s
S W

E, = 1200 MeV

—_
S W
TITT [T T[T T T[T [ TITT[TTTT
TN EETEN AEEEE SRRT AR
+ H-H

[ H
D
’LHH\HH\HHHH|HH‘HH

ey

S o o
wn O W
[

'
'
'
—

—_
o

E, = 1400 MeV E, = 1500 MeV

n

T e
bt 1 I 1] ] 1 I |

CESLN AN LR LR R

O = =

Recoil asymmetry P

wn o

S o
o o

=
=t D
AR RRRRERERE

E, = 1700 MeV

; b ey

FE, = 2000 Me 1 E, =2100 MeV ¥ E| = 2200 Mev 7
L P P P PSS SN T SR N T ST ST S SN ST SR S PSR e SN S SR S S N S S S L MR
1307705 00 05 10 05 00 05 10 05 00 05 10

cosOy

Figure 3.17 — The recoil-polarisation asymmetry for p(, K°)X+ as a function of the kaon’s CM scattering
angle. The curves represent different models presented in Table 3.2. Data from Ref [155].

1.0

05 md— 7

1050 <E, (MeV) < 1550 1550 < E, (MeV) <2600
UL L L B AL L R L I L L L

[aW

=

5

é W T T L TP

> 00— o

—~ | —RPRB

§ -0.5F ---- RPR-A + y

<7 [ RPR-D ]
1oy Ty by by
o905 00 05 10 05 00 05 10

.
cosOy

Figure 3.18 — The recoil-polarisation asymmetry for p(vy, K°)X+ as a function of the kaon’s CM scattering
angle. The curves represent different models presented in Table 3.2. The results are averaged over the
range of photon energies. Data from Ref [154].



o4

3.3. Regge formalism for neutral-kaon photoproduction




CHAPTER 4

Radiative kaon capture

After having introduced the RPR formalism for N (), K)Y in Chapters 2 and 3, we are ready to
build a framework in order to study strangeness production from the deuteron. Before proceeding, we
illustrate the strength of the RPR approach by considering the radiative capture of kaons on protons.
In Section 4.1, we establish the link between this reaction and photon-induced kaon production.
Section 4.2 provides cross-section results obtained with the Crystal Barrel at Brookhaven National
Laboratory that have been published recently. An exploratory analysis of these data is presented
adopting the RPR formalism.

The experimental study of the radiative reactions p(K ~,v)A and p(K~,~)X" is of special physical
interest because it is one of few cases in which one can get access to the excitation spectrum of
hyperons. Measuring the masses and decay widths of these resonances constitutes important input to
models that attempt to describe the internal structure of hadrons. The Particle Data Group’s RPP [1]
lists a number of established A and ¥ resonances (see Table 4.1), albeit with large uncertainties for
the masses, widths and branching ratios.

An abundant amount of data and several models for the radiative capture of kaons at rest exist (see
Refs. [161, 162] and references therein). The reaction is dominated by the A(1405)Sp; resonance. A
more comprehensive study of the hyperon spectrum is possible through the study of in-flight capture
of kaons on a proton, for which only a meagre set of data is available. To date, no dedicated model
calculations for this reaction channel are available. The radiative capture process can, however, be
described with the help of models for kaon photoproduction, because both reactions are intimately
related through crossing symmetry.

4.1 Formalism

We wish to study the reaction
K +p—vy+Y, (4.1)

55
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Table 4.1 — Selection of established A and ¥ resonances relevant to the data presented in the present work.
We list the resonances’ mass and total decay width ranges as given in the RPP [1], in addition to their star
status. In the last two columns, we tabulate predictions by the Bonn constituent-quark model [163, 164] for
the partial electromagnetic decay widths to the ground-state A(1116) and X°(1193).

Resonance Loy status Mass (MeV) Width (MeV) Ty, (MeV) TI's5o, (MeV)

A(1405) So1 Hokkok 1406 £ 4 50 £ 2 0.912 0.233
A(1520) Dos wkkx 1519.5 £ 1.0 15.6 £1.0 0.258 0.157
A(1600) Py *okok 1560-1700 50-250 0.104 0.0679
¥(1660) Py koK 1630-1690 50-70 0.451 0.578
A(1670) So1 Hokkok 1660-1680 25-50 0.159 - 1073 3.827
¥(1670) D3 Hokokok 1665-1685 40-80 1.457 0.214
A(1690) Dos Kook 1685-1695 50-70 0.0815 1.049

with Y either a A or XY hyperon. The four-momenta of the incoming and outgoing particles are
given by py, py, pyand py-. One can define three Mandelstam variables

sy = (p, +py)°,

2

t/ = (pK - p’y) 9 (42)
2

u' = (px — py)” -

We have adopted a notation with primes to avoid confusion with the Mandelstam variables for kaon

photoproduction defined in Eq. (2.8). The differential cross section for the radiative-capture reaction

is derived as in Paragraph 2.1.4. It reads

d*c 1 E & :
- . ‘T — | )
dQz - 64n? |pK|8nyZ frmay

(4.3)

and is expressed as a function of the transition amplitude.

In order to investigate the dynamics of this amplitude, one can exploit the fact that radiative kaon
capture is linked with photon-induced strangeness production through crossing symmetry [21, 22, 165—
167]. This relation is illustrated in Figure 4.1. The transition amplitude for radiative kaon capture
Tips~yy 18 the analytic continuation (AC) of the kaon-production amplitude with the signs of the
kaon and photon momenta reversed

C
Ticpry (Pic, PN Doy Py) = Topsicy (=P PN —Pic> Dy) - (4.4)

Since crossing symmetry flips the signs of the kaon and photon momenta, one has

Sfyy =u,
t'=t, (4.5)
u' = SKY .

Thus, the roles of the Mandelstam-s and -u variables are interchanged. The Mandelstam-t variable,
on the other hand, remains the same. As a consequence, the contributions to the amplitude that
arise from t-channel exchange do not change, but the role of s- and u-channel diagrams is turned
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7 (pv,PN; PK, DY) 7T (—p~,PN; —PK, DY)

Figure 4.1 — Schematic representation of the transition amplitude for kaon photoproduction (left) and
radiative kaon capture (right). The latter amplitude is the analytic continuation of the former with the
signs of the kaon and photon momenta reversed.

around. In kaon photoproduction, the resonant contributions to the reaction amplitude are related to
the exchange of nucleon resonances in the s-channel. For radiative kaon capture, this role is reserved
for hyperon-resonance exchange. This explains the potential of the p(K~,~)Y reaction to probe the
hyperon spectrum.

4.2 Crystal-Ball data: an exploratory analysis

Recently, differential cross sections for K~ radiative capture in flight on the proton, leading to the
vA and vX° final states, have been measured for the first time [168]. The momenta of the K~ meson
ranged between 514 and 750 MeV /c. The data were obtained with the Crystal Ball multiphoton
spectrometer installed at the separated K /7 beam line C6 of the Alternating Gradient Synchrotron
at Brookhaven National Laboratory. The results improve substantially the existing experimental
data available for studying radiative decays of excited hyperon states.

In Figures 4.2 and 4.3, the differential cross sections for the p(K~,~)A and p(K~,~)X" reactions
are shown. Since the radiative-kaon-capture reaction is related to photon-induced kaon production
through crossing symmetry, the ¢-channel contributions to both reactions are the same. Therefore,
one can apply the Regge model, developed for kaon photoproduction, to the description of radiative
kaon capture, without introducing or adjusting any parameters. As can be appreciated in Figure 4.2,
the Regge-model predictions for p(K—,~)A are of the same order as the measured differential cross
sections and are in reasonable agreement with the data except for the underpredicted strength at
forward angles. The situation for the p(K~—,v)X" channel is entirely different. Figure 4.3 shows
that the Regge model underpredicts the data by almost an order of magnitude. This hints at an
important role for resonance exchange in p(K~,~)X°.

In order to assess the possible resonant contributions to the radiative capture reactions, the Regge-
model amplitudes can be enriched with hyperon-resonance exchange terms, along similar lines as
s-channel resonances have been added for the p(vy, K)Y processes in Section 2.3. Table 4.1 lists six
established hyperon resonances relevant to the energy range of the data presented here. Since there
is no experimental data available on the electromagnetic decay widths of these resonances, we have
included predictions by the Bonn CQM [163, 164]. Note the tiny EM branching fractions. Hyperon
resonances decay almost exclusively to hadronic final states. Fixing the resonances’ mass and width
at the central value given in the RPP, inclusion of a spin-1/2 or spin-3/2 resonance introduces two or
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Figure 4.2 — Differential p(K ~,~)A cross section as a function of the photon CM scattering angle. Regge-
model predictions are represented by the solid line. The dashed (dotted) curves show the RPR-model
results including a A(1520)Do3 (X(1670)D;3) resonance. Data from Ref. [168].

three free parameters respectively!. The quality and amount of the considered data are not sufficient
to perform fits with multiple resonances. Therefore we carried out fits with a single resonance at a
time. For the p(K~,v)A channel we obtain typically x? ~ 115 for 92 data points. The results for
the p(K—,7)X0 reaction are less satisfactory, since for all but one model x? attained =~ 230 for 96
data points. The fit including a A(1670)Sp; converged at x? = 355 for 96 data points.

In figure 4.2, we show the p(K~,~v)A model calculations including a A(1520)Dp3 or a 3(1670) D3,
since these resonance have the largest branching ratio to the Ay channel according to the Bonn
model. Both models predict a flat differential cross section with some enhancement at forward angles.
The strength of the ¥(1670) D13 resonance increases as the energy of the incoming kaon rises, whereas
the contribution of the A(1520)Dys is more uniformly spread. Figure 4.3 features model calculations
for the p(K—,~)X" channel including either a A(1600)Py; or a A(1690)Dog resonance. Both models

!The most general Lagrangian for spin-3/2 resonances has three additional degrees-of-freedom, i.e. the off-shell
parameters. To limit the total number of fitting parameters we discard the latter.
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Figure 4.3 — Differential p(K —,v)X° cross section as a function of the photon CM scattering angle.
Regge-model predictions are represented by the solid line. The dashed (dotted) curves show the RPR-model
results including a A(1600)Py; (A(1690)Dys) resonance. Data from Ref. [168].

are in good agreement with the data and show a slight enhancement of the differential cross section

at backward angles.

The evaluation of the total cross sections for the radiative reactions p(K~,v)A and p(K—,~)X° was
based on fits to the differential-cross-section data with Legendre polynomials that were subsequently
integrated. The systematic uncertainties in the total and the differential cross sections are considered
similar. The results for the total cross sections of both the radiative reactions are shown in Figure 4.4
and 4.5, in conjunction with the RPR model calculations. For the p(K ~, )% reaction, an analysis
by the Valparaiso-Argonne group (V-A) [169] of the same data set is given as well.

For the p(K~,v)A reaction, the total cross section falls off as the invariant energy W,y rises. This
trend is predicted by the Regge model, which accounts for roughly half of the strength. The addition
of a A(1520)Dy3 resonance allows to largely make up for the missing strength. The Bonn CQM
predicts a large electromagnetic decay width for the ¥(1670) D13 — A(1116)~ transition. The RPR
fit including this resonance improves the description of the total cross section at the highest energy
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Figure 4.4 — Total p(K~,7)A cross section. Regge-model predictions are represented by the solid line.
The dashed (dotted) curves show the RPR-model results including a A(1520)Dgs (X(1670)D;3) resonance.
Data from Ref. [168].
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Figure 4.5 — Total p(K—,7)X° cross section. Regge-model predictions are represented by the solid line.
The dashed (dotted) curves show the RPR-model results including a A(1600)Py; (A(1690)Dg3) resonance.
Data from Refs. [168] () and [169] (o).

bins, but fails to account for the rise at lower energies.

The p(K~,7)X? total cross section is shown in Figure 4.5. The two available experimental results are
incompatible, even though the same data set was analysed. The energy dependence of cross section
is similar, but the V-A result is systematically smaller than the data from Ref. [168]. The authors of
Ref. [168] attribute this disparity to an substantial oversubtraction of the background contributions
in the V-A analysis. Since we have fitted our RPR-model amplitudes to the differential cross sections
of Ref. [168], we will discard the V-A data points from now on. The energy dependence of the total
cross section differs notably from the A final state, peaking in the highest measured energy bin.
This behaviour is opposite to the Regge-model result, which underestimates the total cross section
by a factor of four and predicts a fall off as energy increases. A nice correspondence with the data at
lower energies is realised through the inclusion of a A(1600)Py; resonance, which has a particularly
large value for the total decay width in the RPP. The Regge-model calculations supplemented with
a A(1670)Sp; resonance, having a large value for I' 50 in the Bonn model, allow to reproduce the
apparent peak in the total-cross-section data, but fails at lower energies.

For both reaction channels presented in this work, the data cannot be understood in terms of a
reaction amplitude consisting of non-resonant terms in conjunction with a single resonance. The
energy dependence of the total cross sections, however, clearly suggest a prominent contribution for
a resonance in the ~ 1550 MeV (~ 1700 MeV) range for the yA (yX°) final state.
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Formalism for electromagnetic kaon production from the deuteron

Up until now, we have focused on production reactions from unbound nucleons. It pays to consider
the same reaction on more complex targets, such as the deuteron. We see three major reasons to
extend the Regge-plus-resonance formalism to quasi-free production on the deuteron. First, owing
to the deuteron’s weak binding, it is ideally suited as an effective neutron target. Therefore, kaon
production on the deuteron gives access to the elementary n(v, K)Y reaction process. Second, by
comparing reactions off free and bound protons, our understanding of nuclear-medium effects is put
to the test. An important source of medium effects are the rescatterings between the final-state
hyperon, nucleon and kaon. These could be considered an undesirable background effect when the
deuteron is being exploited as neutron target, since the interesting physics at the photon-neutron-kaon
vertex would be partially obscured. On the other hand, the FSIs provide us with a tool to gain
an improved understanding of the hyperon-nucleon and kaon-nucleon potentials, which cannot be
assessed in a direct scattering experiment. Focusing on kinematic regions where one expects major
contributions from hyperons rescattering off the spectator nucleon, allows one to gain access to the
elusive hyperon-nucleon interaction.

In analogy to the kaon-production reaction on free nucleons, six different reactions with a kaon-
hyperon pair in the final state can be identified

A 42H s Kt 4+ A+n,
A 42 s K420 4,
7 4+ 2H — KO+ %t 40,
7 4+ 2H — KO+ A +p, 51)
7 4+ 2H — KO+ 30 4+ p,
AW 4 2H — KT 427 +p.
Each reaction can be induced by either a real photon () or a virtual photon (v*) that is radiated
by an electron scattering off the deuterium target. In this chapter, we present a formalism for

61
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Lepton Plane

Figure 5.1 — Schematic representation of an electron scattering from a deuteron at rest, producing a kaon,
hyperon and nucleon in the final state.

describing both the photoproduction and electroproduction of kaons from the deuteron. We start
our discussions by presenting the kinematics of the reaction process. Next, we introduce the different
photoproduction and electroproduction observables in Sections 5.3 and 5.4 respectively. One of
the main ingredients to the nuclear transition amplitude is obviously the nuclear wave function.
Consequently Section 5.5 elaborates on a covariant description of the deuteron-neutron-proton vertex
and presents a comprehensive set of relativistic and non-relativistic deuteron wave functions. In the
final section, we introduce the transition amplitude in the relativistic impulse approximation.

5.1 Kinematics

5.1.1 Reference frames

Producing a kaon on a deuterium target results in a three-body final state. This makes for a slightly
more complicated situation than the N(v*, K)Y kinematics we have described earlier in Section 2.1.
In Figure 5.1 we show a schematic of the 2H(e, e’ K'Y)N reaction in the LAB frame, where the struck
deuterium target is at rest. We have assumed the OPE approximation. The four-vectors of the
incoming and scattered electron, k(FE., E) and K (E., K ), define the lepton plane. The electron emits
a space-like photon with four-vector p, = k— K and virtuality Q% = —Py Py = ]ﬁ,y|2 - E%, with [p|
and FE, the virtual photons momentum and energy in the LAB frame. In what follows, all variables
will be expressed in the LAB frame unless explicitly stated differently.

The four-vectors of the kaon, hyperon and nucleon in the final state are labelled p,-, py- and py
respectively. The photon and nucleon momenta span the nucleon plane, whereas the kaon and
hyperon momenta lie in the strangeness plane. For kaon photoproduction, the picture simplifies as
there is no electron plane and the virtuality Q2 of the photon vanishes.

Because of the three-body final state, one can define a large number of coordinate systems. To keep
our notation as general as possible, we will label the final state as 1 + (23), where the outgoing kaon,
hyperon and nucleon are tagged 1, 2 and 3 at will. The coordinate system (z,y, z), in which we will
describe the reaction, has its z axis along the photon momentum. The y axis is chosen perpendicular
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to the plane spanned by the photon and particle 1. We define a second reference frame (2/,y/, 2’),
whose 2’ axis is oriented along p, + ps. The 3 axis is taken parallel to the y axis. This reference
frame will be used to describe kinematics in the centre-of-mass (CM) frame of particles 2 and 3,
for which we use the notation (23)-CM. Finally, we introduce a third reference frame (z”,y", 2") in
which we will define the photon’s polarisation vector. The z” axis will be taken along the photon
momentum and the 3" axis normal to the lepton plane. We define ¢ as the angle between the electron
plane and the plane spanned by the photon and particle 1. Obviously this angle becomes arbitrary
in case of photoproduction. Explicitly we have,

5:|§j|, J:Zx%, F=gxZ, (5.2)
~y 1
= 7' =7, =g 7, (53)
2 3
o1 _ Zii'y’ 37” SR 7" — :lj” < 7" (5.4)
17| k| (K]

To illustrate the different coordinate systems, all three of them are shown in Figure 5.1 for the

particular situation the outgoing nucleon is tagged as particle 1.

In the unprimed reference frame, every four-vector can be decomposed as follows

9.9
= (E;, |pi| cos ¢; sin 0, |p;| sin ¢; sin 0;, |p;| cos0;), i=~,D,K,Y,N, (5:5)

where all variables are evaluated in the LAB frame. Alternatively, the four-vectors can be expressed
in the (23)-CM frame using the primed reference frame,
v = (B, .
= (E7, |07 | cos &7 sin 07, |5 sin ¢ sin 07, [P’ cos 07) , i =, D, K,Y,N.
The representations in equations (5.5) and (5.6) are related to each other through a rotation about
the y axis followed by a boost into the centre-of-mass of particles 2 and 3, i.e.

pi = Ip;, (5.7)
with o]
E
w00 -y 1 0 0 0
1 1 — cos?
A0) = 0 0 0 0 cos 093 0 cos? O3 (5.8)
0 0 1 0 0 0 1 0
—% 0 0 V’f/—?;; 0 —v1—cos26y3 0 cos O3
Here, we have defined the four-vector
Pe3 =P2tP3 =Dy +Pp—P1 (5.9)

= (B3, —|pa3| v/ 1 — cos? b3, 0, | pas| cos f23) ,
with
E93 = Ey+mp — Ey,
P2s| = [Py — Pl
s23 = B3 — |Pas” (5.10)
|P5| — [P cos 61 .
V/(Ey — E1+mp)? — s23

cos Op3 =
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t13

2 tos
Figure 5.2 — Schematic representation of the reaction 1+ 2 — 3 + 4 + 5. Every particle has mass m; and

the Lorentz invariants are defined by s;; = (p; + p;)* and t;; = (p; — p;)*.

Using the four-vectors of the particles participating in the 2H(y*), KY)N reaction, one can define
ten Lorentz-invariant Mandelstam variables

Stot (p, + pp)?, (5.11a)
SKY (pk +py)*, (5.11b)
skn = (pg+pN5)7, (5.11c¢)
syn = (py +p5)°, (5.11d)

tyi = (py— p;)?, i=K,Y,N, (5.11e)

tpi = (pp—p;)?%, i=K,Y,N. (5.11f)

Several relations exist among these variables. They are straightforward to derive starting from the
relation between the Mandelstam variables for 2 — 2 scattering, given by Eq. (2.9), and using the
schematic representation of 2 — 3 scattering in Figure 5.2. Labelling the initial-state particles as 1
and 2, while denoting the outgoing particles as 3, 4 and 5, one has

tog + to5 + s45 = t13 + m% + mi + m% . (5.12)

Electromagnetic production of kaons from the deuteron can proceed when Wiy = \/Stor > (i +
my + my). This implies that E, obeys the inequality

(mg +my +my)? —m?3 + Q?
2mD '

E, > (5.13)

The thresholds for the different kaon-production channels are listed in Table 5.1.

5.1.2 Independent variables

Scattering reactions involving n particles are function of (3n — 10) internal independent variables.
This implies five variables for the 2H(y*), KY)N reaction, excluding the virtuality Q2 of the photon.
The general problem of expressing the physical region of reactions involving n particles in terms
of (3n — 10) Lorentz invariants has been addressed in Ref. [170]. The relevant formulae for the
case n = 5 are concisely outlined in appendix E, where we derive expressions for Lorentz-invariant
differential cross sections.

Alternatively, the kinematics are entirely determined when we specify
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Table 5.1 — Threshold values of the invariant masses of the total system W;,;, the kaon-hyperon pair Wiy
and the hyperon-nucleon pair Wy y, as well as the photon energy E. for the different photon-induced kaon
production final states. All quantities are in MeV.

E’Y Wtot WK Y WYN

( )n 792.12  2548.9 1609.36 2055.25
( )n 898.20 26259 1686.32 2132.21
H(y, K°ST)n  899.22 2626.6 1687.04 2128.93
( )
( )
( )

p 795.79 2551.6 1613.36 2053.95
p 901.99 2628.6 1690.31 2130.91
p 903.12 26294 1691.13 2135.72

the photon’s virtuality Q?2,

the invariant mass Wa3 or the photon’s LAB energy FE.,

the LAB energy Ep of particle 1,

particle 1’s LAB scattering angle 61,
e the solid angle Q3 of particle 2 in the (23)-CM frame.

Applying the definition of the invariant mass in conjunction with conservation of four-momentum,
one finds

2 o) =
Wi = (p,+pp —p1)” = Q>+ mp +mi+2E,(mp — E1) + 2|, ||| cos b1, (5.14)

which gives Wa3 in terms of the photon’s energy or vice-versa. The momentum |p5| of particle 2 in
the (23)-CM frame can be obtained by solving the energy-conservation relation

Was = \/m3 + (7512 + /m3 + 752 (5.15)

Combining the solid angle Q3 with [p5| yields the four-vectors of particles 2 and 3 in their centre-of-
mass. The latter can be boosted back into the LAB frame with Eq. (5.8), thus completely solving
the kinematics.

At times, it is beneficial to express the kinematics solely in terms of LAB variables. With regard to
the above-mentioned list, this implies replacing Q3 by Q2. From Eq. (5.8), we deduce

B "
E5 = BB, — @WQ\ (cos Ba3 cos B — sin fag sin by cos ¢2) . (5.16)
Was Was

Rearranging and squaring yields the following quadratic equation

0= ]5’2\2 —Egg + \ﬁ23\2 (sin Oa3 sin O3 cos ¢y — cos Ba3 cos 02)2]
— 2|y || Fag | B W3 (sin Baz sin 3 cos ¢o — cos Bz cos O2) + E3>Way — Exm3 . (5.17)
Solving for |, fixes the kinematics, albeit not in a unique way. Two physical solutions can correspond

to the same set {Q?, E,, Eq,61,92}, making this group of independent variables less suited when
(semi-)inclusive observables are considered (see page 69).
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5.2 Transition amplitude

The dynamics of EM kaon production are contained in the nuclear transition amplitude for which we
introduce the following notation

A x g%
7;\1;/)\3/)\]\7(1)1792’@52)’ (518)

where A\, Ap, Ay and Ay indicate the helicities of the incoming photon and deuteron and outgoing
hyperon and nucleon respectively. Our notation explicitly shows that we take the three-momentum of
the outgoing particle 1 in the LAB and the spherical angles of outgoing particle 2 in the (23)-CM as
independent variables. The transition amplitude is obtained by evaluating the EM current operator
J# between the initial deuteron and final kaon-hyperon-nucleon states.

In Section 5.6, the explicit form of the transition current in the RIA is covered in detail. Here, we
elaborate on some universal properties of the transition amplitude, which are valid irrespective of
the concrete form of the transition current. First, we express the transition amplitude for kaon
electroproduction in terms of the NV ('y(*), K)Y amplitude. In the subsequent paragraphs, we touch
on the transformation of amplitudes from one frame to the other and parity conservation.

5.2.1 Electroproduction

In the OPE approximation, the transition matrix element for kaon electroproduction on deuterium
is given by
_g/,w + Pﬁlf
. P -
Meposexyn = (K| —iey, k) TV (prspy; PNl Jv D) (5.19)
¥

where we have omitted the spin quantum numbers for the time being. The nuclear current operator

JV acts on the states of the on-mass-shell initial- and final-state particles for whom we will assume a
covariant normalisation

(palp’a’) = 2p°(27)*6®) (5 — )b - (5.20)

The photon propagator can be decomposed as [171]

1 (. Py 1 .
(-0 ) =g T omee,. (521)

2 2 | T 02
Py Py @ Ay=0,£1
where ), is the photon helicity. After introducing two covariant currents

o= (K k. s) (eh,)" (5.22a)
Mi»?AYAN = <pK7pY7>\Y7pN7/\N‘jM‘pr)\D> El;,ya (522}3)

we eventually rewrite the transition amplitude (5.19) as

ie .
MeposekyN = o2 Z(_l)/\U)\vM/\w : (5.23)
)‘W
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In the (2”,y", 2") frame, the photon polarisation vectors are given by

un ’ﬁ”/‘ EW)
60 = <7 07 07 A )
@ @ (5.24)

1
yn .
el =F—1(0,1,%7,0) .
+1 I\/i( )
It is however more natural to evaluate the contraction in (5.22b) in the unprimed frame. To this

end, the polarisation vectors of the photon need to be expressed in this frame. Both reference frames
are related to each other by a rotation through the angle ¢ about the 2 axis,

e =€) and ey =€, (5.25)
Accordingly, we get
Q
MSDAYAN:T ADAY AN ?
2 (5.26)

ADAYAN _ tidpg+
M:t =€ 7;\D)\Y)\N s

in terms of the hadronic transition matrix elements

7—)\013)\}/)\]\] = <pK7 Dy, )\Ya Dn, )\N’ jO ’pD: )‘D>

+ 1 e s (5.27)
Ty = iﬁ (PK; Py Ay PNy AN (j izjy) lpp, AD) ,
where we have used current conservation
0= PZ}L (PK; Py, Ay PN, )\N‘ ju |PD7 )\D> ) (5-28)
to express the longitudinal hadronic matrix element in terms of the time-component 7')?D Ay Ay

5.2.2 Lorentz transformations

For EM kaon production from the deuteron, a total of twenty-four transition matrix elements exist.
Each one corresponds to a set of helicities for the incoming and outgoing particles. In this work, we
will always define these helicities in the LAB frame using the unprimed reference frame (5.2). As we
will see in Section 5.6, it is beneficial to calculate particular contributions to the current operator in
the (23)-CM frame. Therefore a relation is needed to transform the transition matrix elements from
one frame to the other.

Let u; denote helicities in the (23)-CM frame. Using the transformation properties for helicity states
stated in Section C.2, we have

by 1/2 * 1/2 Y
Ty Ay = Z [Q,Aé,,\y (vapY))} {@M{W\N (r(lpn)) | T3y i - (5.29)
Hy BN

where the transformation ¢ relates the LAB to the (23)-CM frame and has been defined in Eq. (5.8).
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5.2.3 Parity

In Ref. [172], Arenhével and Fix show how the general form of the transition amplitude for EM pion
production from the deuteron can be rewritten using a partial-wave decomposition for the final state
and an expansion of the transition current in electric and magnetic multipoles. From their expression
and applying parity selection rules for the multipole transitions to the final-state partial waves, an
expression for the invariance under parity transformations is derived. Their final result reads

A * ok A *
TA;,-/\Y7-)\N(p17927¢2) ( 1)1+A7+)\D+AY+ANT;)\Y)\N (p1792a —¢>§) ) (530)

and is equally valid for EM kaon production from the deuteron.

The symmetry property is particularly useful when the dependence on the azimuthal angle is
integrated out. The following equality illustrates this principle

27 27
/ iy 3 UDMN@l,ez,qb;)P:/ dos S 1T (105 —03),
0 ADAy AN 0 ADAy AN 5 31
2 )\ 1 ( . )
=/0 a5 S TS (o 05 )

ADAY AN

5.3 Photoproduction observables

The differential cross section for the most general scattering reaction is given in Eq. (D.1). Applying
this to the kaon photoproduction reaction, one finds

—

1 Ppx d*py d*pn
do = 2 TP 55 (27)3 2By (27)3 2En (2
24/ A(s,0,m%) K\2m yiem Ni=T

E (2m)*o™ (py +Pp — Pk — Py — Pn)-

(5.32)

The flux-factor A, the transition matrix element 7, the phase space factors TE 2] of the outgoing

dd
3E, (or
particles i (= K,Y, N) and the Dirac delta function, which expresses conservation of momentum and
energy, are all Lorentz-invariant quantities. This enables one to evaluate the cross section in different
reference frames. The symbol ) © denotes summing over the final-state and averaging over initial-state
particle’s polarisations. In Section 5.3.2, we will focus on scenarios where the incoming and/or
outgoing particles have a definite polarisation. Beforehand, we will introduce several expressions for

the differential cross section.

5.3.1 Differential cross section

In analogy to Section 5.1, we will keep our results as general as possible by labelling the three-particle
final state as 1 + (23). After integrating out the delta function in Eq. (5.32), the photoproduction
reaction 2H(v, KY )N is characterised by a five-fold differential cross section. In the LAB frame, it
reads

d’o 1 P P15 S
= 5.33
d‘ﬁlydgldﬂg 32(271’)5 TecmDEvElz”-’ ’ ( )

with the recoil factor

Ey . .
free = E2+E3—W(py—p1)‘192

(5.34)
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Measuring exclusive cross sections with three particles in the final state is very challenging. In
order to improve on the statistics, it is often more convenient to express the experimental results as
semi-inclusive observables. Thereby, one integrates over the phase space of one or two undetected
particles in the final state. As stressed on page 65, the kaon-production kinematics is not uniquely
fixed when only LAB variables are given. Therefore, the exclusive cross section given in Eq. (5.33)
cannot be readily integrated over the solid angle of particle 2. Partially expressing the cross section
in the (23)-CM frame, solves this problem. We find

d’o L (B PIes| =
- dfd, : 5.35
dlp,|dQ; — 32(2m)? mDEwE1W23/ 5> 7] (5.35)

Integrating the semi-inclusive differential cross section over the momentum and solid angle of particle
1 finally yields the total cross section

—’max'

R A 5.36
o=2n cos _. )
| sty /ﬁm P (5.36)

The integration limits for the three-momentum of particle 1 follow from the threshold condition
Wasg > (mo + m3)2 . (5.37)

Expanding this condition in the LAB, we find a quadratic equation in particle 1’s momentum that

yields as integration limits

— \]3’7| cos 01 (8 +m? — m%3) + (B, + mD)\/)\(s, m?,m3;) — 4m%\ﬁ7|2 sin® 6,
max| —

, 5.38
Stot + |7, sin 01 (5:38)

and

Smin |

’p1

|9, cos 01 (s +m3 —m3s) — (B, + mD)\//\(s,m%,m%P)) —4m3|p. |? sin? 6,

= max < 0,

T 5.39
Stot + P4 ]2 sin® ) (5:39)

In the previous expressions, we made use of the compact notation me3 = meo + mg.

Finally, we wish to introduce yet another representation of the ?H(y, KY)N cross section. Upon
expressing the differential cross section in terms of Mandelstam variables, the Lorentz invariance
of the initial Eq. (5.32) can be preserved. The details of the derivation of Lorentz-invariant cross
sections are diverted to Appendix E. Here, we merely report two useful distributions, i.e. the Dalitz
cross section (E.17)

max tmax

do IWryWyn /WK /DN 1 .02
= dt dt , 5.40
Wiy dWyn — @m) A, 0,m0) Jumgn 7 e PN =2 IT (5.40)
and the Chew-Low cross section (E.18)
do 2Wy N /S?Q‘?" /%‘?&‘ 1 =,
= d dtpN —= . 5.41
dWYth'yK (47[')4)\(8, 0, m%) err(u}r/l SKY t%‘f\} DN \/_7A42|T| ( )

The limits of integration as well as a definition of the Gram determinant A4 can be found in
Appendix E.
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5.3.2 Polarisation observables

From our experience in meson production off free nucleons we know that polarisation observables are
of great interest. Often they depend on interferences between different (non-) resonant contributions
to the reaction amplitude. As such, they provide a handle on subtle contributions which cannot
be discerned in the differential cross section. With this in mind, we present in this section a brief
discussion on polarisation observables. To our knowledge, none of these observables will be measured
in the near future, although experimental techniques are sufficient to carry out such a program.

In the expression (5.32) for the differential cross section, the polarisations of the particles involved
in the reaction are omitted. Spin observables can be elegantly defined using the density-matrix
formalism. The most general expression for the differential cross section is proportional to

do ~ Z’TP =Tr [TfpﬁnalTpinitial] . (542)

The transition matrix elements (5.18) are evaluated in the helicity basis and the trace runs over the
helicities of all incoming and outgoing particles. The density matrices of the initial and final systems
are given by

() ® p(D) ,
¥) g p(N )

Pinitial = P
* (5.43)
Pfinal = P

In Appendix F, the most general decomposition of the density matrices of spin-1/2 particles, spin-1

systems and photons is discussed.

The unpolarised cross section is obtained by squaring the transition amplitude, averaging over initial
spin states and summing over the final ones

dso-un ol .1 A .
Tadnag = 2En ) 5 D Ty (P 05,05)F, (5.44)
‘p1| 1 2 A AD Ay AN
with
> 1 AR
eE - 4
( 'val) 32(27T)5 mDE»yElWQg’ (5 5)

the phase-space factor. Owing to the symmetry property of Eq. (5.31), the number of matrix elements
that need to be evaluated can be halved for the semi-inclusive differential cross section

d30'un 1 N * 1 Ay=-+1 . .
ﬁ = ®(Ey,71) /dQ? 3 Z | Tx oAy Ax (p1, 03, 05). (5.46)
‘pﬂ ! ADAY AN

For kaon production with a polarised photon beam, we use the density-matrix composition given in
Eq. (F.30)
1
o =2 (]12 + Py + PVo, + Pc(ﬂaz) . (5.47)

It is parametrised using three polarisation coeflicients. The helicity states of the incoming photon are
conventionally defined in a reference frame that is tilted over an angle ¢ with respect to the scattering
plane. The z axis of this frame can be taken in the direction of maximum linear polarisation, such
that Pt(ﬂ’) = 0. Inserting the density matrix into the expression for the differential cross section, one
finds the following decomposition

d>o d5aunp01

= 92 ()
- 1+ B8 cos 20 + PV% ) 4
d|py | d€2 d$2; d!ﬁﬂcﬁhdﬂ;( + P73 cos2¢ + P, ) (5.48)
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with
dSUu 1 1 =41 N1
VRO — H(E., ) - [( ) . } 7
ld|ﬁ1|d91d93 ( K P) 3 )\D%:)\N 7;‘D>\Y>\N TAD)\YAN
1
)\D)\Y/\N
d5gun 1 )\ 1 )\ 4
Py R T 5 ( 7 2 . >
Cd|ﬁ1|d91d95 ( 7 ) )\D)\Y/\N D>\Y>\N| | AD)\Y)\N| )

the beam asymmetries for linearly and circularly polarised photons respectively. Using Eq. (5.31),
one notices that . vanishes when only one particle is detected in the final state. In case particle 1 is
emitted along the direction of the beam, the azimuthal angle ¢ becomes arbitrary and the (zy)-plane
is no longer defined. Therefore, ¥; vanishes when 6; = 0.

In case the deuteron target is polarised along a quantisation axis cf(&d, ®4), the density matrix can
be decomposed as (F.29)

o <z>=<‘1};m2m +1 ( ;L . )e‘iM%d{wo(ed)PI, (5.50)
IM

Prnm! -m M

with P} and P» the degree of vector and tensor polarisation defined in Eq. (F.28). For a tensor-
polarised target, i.e. P; = 0, the differential cross section assumes the following form

d50. d50_ pol 2 )
= unpo 1 P T M d 0 . 1
dlp,|dndQs  d|p,|dQdQ; + 2MZ::O 2 cos(M¢a)diyo(0a) | (5.51)

where we have introduced the tensor-polarisation asymmetries

5
d Ounpol

oM—=—=e or
M ], A dSy;

~ - o) La(E,.5)

_1-A 1 1 2 R
X /\DZ>\:lD( ].) D ( )\ID _>\D M > )\’Y%:)\N |:(7;\D>\y)\N) 7;\/;)\},/\]\7] y (552)

for M =0,1,2.

The general case of simultaneous beam and target polarisation is treated thoroughly in Ref. [172].
Formulae are presented for exclusive as well as semi-inclusive differential cross sections.

Finally, we consider the situation where the polarisation of the recoiling hyperon is detected in the
final state. Using the density-matrix decomposition (F.7) for spin-1/2 particles,

p) = % (124 P 5) | (5.53)

the five-fold cross section can be written as a function of four terms

d°o d® Tunpol ( —
- _= - (1+ A7) 5.54
dp [ dndSs — dlp, |49 A% (5:54)
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with
d5aunpol = 1 Ay * Ay
de|ﬁ1\d91d93 = ®(Ey. 1) 3 \ ;\ R |:<7:\D’)\Y:+%,>\N> 7;\D,>\Y:é,>\N] ’
YADAN
I d50unpol _ CI)(E ]7 ) 1 Z S TA’Y * T)W
yd|ﬁl‘d91d95 A 3)\ = ApAy=+1An ApAy=—3An |’ (5.55)
YADAN
s d5 T unpol — &(E., ) 1 Z |,7-/\7 2 |,7-/\7 2
= d|py | dQ dS RAREEA AD Ay =+3AN AD Ay =—%AN
1 2 MADAN

When only the outgoing hyperon is detected, one needs to integrate over the solid angle of particle 2.
Owing to parity invariance (5.30), the following identities hold

2T *
()—ul dgs > §R{<7;;Ay=+§AN> 7;;AY=%JN}’

AADAN
2 \ \ (556)
— * v 2 . 5 2
O—/O d¢2 Z |:‘ )\D,)\Y=+%,)\N‘ ‘ )\D7)‘Y:_%,)\N‘ :| .
AyADAN
Consequently, only one recoil-polarisation asymmetry remains. It reads
o unpol L. 1 2w . N \, * A
Hym = ®(E,,py) 3/, de Z S 7')\D7/\Y:+%7/\N 7j\D’/\Y:_%7/\N : (5.57)

A ADAN

5.4 Electroproduction observables

In our formalism we will evaluate the electroproduction cross section in the LAB frame. After
neglecting the electron’s mass and integrating over p3 and |pa|, one finds

dBo

_ 1 1 Ee|pa
dEL A dpdQs . 64(27)

¢ EemDEl

g fre Y IMepserynl, (5.58)

where the recoil factor fye. was defined in Eq. (5.34). Inserting (5.23) into this expression, we find

0.\ >
Bo 1 . |ﬁ2\ \/47ra(:055

dELdQLdp1dQs  64(2m)8 " mpEy

Z(—l)AwMLMMH{;\, , (5.59)
2B, sin? e | !
e 5 YNy

where we have introduced a leptonic and a hadronic tensor. The later is defined as

S t
Hil, = . AZA MOPAYAN (M}D”*N) . (5.60)
DAY AN

The simple structure of the leptonic vertex allows one to compute the leptonic tensor analytically.
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For an incoming electron with helicity h/2, one finds after summing over the final electron’s spin,s

0\ ' .
L)\)\/ = <4E6E(,i COS2 26> Z/]/\JI\/
S

0.\ "1 1,
= (BBLcos 5 ) S0+ msf) (o) (6 )
/ 2 Oe - / / / (5'61)
= <4E6E€ cos 2) 2[(k ex)(K-€)+ (k-€)(K -ex)— (k-K)(e) - €ex)
+ ih€uapel kO k"
In the final step, we have decomposed the tensor into a symmetric, helicity-independent and a
asymmetric, helicity-dependent contribution. Those obey the following relations [173]

L0 v = (=DM (I8y)"

Y . (5.62)
LF_L)\_)\/ = (_1)1+)\ A (LK)\/) 5

reducing the number of independent tensor elements to six. Evaluating them in the LAB frame, we
find

Ly = |1?j|2’ (5.63a)
L(1)1 = L(l1—1

= 2@32 + tan? % , (5.63b)
Ly = Liy=-Lo1=-L

= \}§|]§i| \1272 + tan? % , (5.63c)

L(l)fl = Lfn2

_ 2@7'2 7 (5.63d)
Ly = Lh,=1", =0, (5.63e)
Lgl = L’fo = LS 1= L}lw

_ éhfi‘ tan o (5.631)
L}fl = _L}ilfl

= tan% ’2?72‘2 + tan? % . (5.63g)

The hadronic tensor, which we defined in Eq. (5.60), is a Lorentz-covariant quantity and is hermitian,
i.e.
iy, = (a{l,) " (5.64)
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We use this property in conjunction with the expressions (5.26) for the transition matrix elements to
expand the contraction of the leptonic and hadronic tensor

SN L B, = DB+ L8 (B + 5 ) 208w
Ay N

2Ly (ROHG) - R(HT ) + hih (#f; - B )

+2nrly (RO + RO )

2 _
1 (%) TR+ I (TR 4T F)
21
+219 > (cos 26R(TFT ) = sin263(TF 7))
+ 2L, <Q> i(cos SR(TOT ) 4 sin pS(TOT 1)

175
— cos pR(TOT 1) + sin gb%(TOT*T))
+hLly Y (1T =17 P)
+ 2nLY <|§i|> i(cos PR(TOT T + sin pS(TOT )
+ cos pR(TOT 1) — sin ¢%(7*)T’T)) . (5.65)
For the simplicity of the notations, we have omitted the polarisations of the deuteron, hyperon and
nucleon.

With Eq. (5.65), the electroproduction cross section of Eq. (5.59) can be rewritten as a sum of
longitudinal, transverse and interference contributions. This decomposition, however, is not unique.
For the sake of completeness we will present the two most popular forms here. In nuclear physics, it
is customary to express the cross section as [173]

2
ddc « cos %ﬂ
— = —_ Kp|——2 | x
dE!dQ.dpdQy — 212 2E, sin? &

v, Ry, + vr Ry + vpr (CRTT cos 2¢ + ° Rpr sin 2¢)

(5.66)
+vrr (CRLT cos ¢ + *Ryrsin gf)) + hvpr Ry
+ hvpp (CRLT/ cos ¢ + * Ry sin qﬁ)] ,
with , ,
w2, —
Ky = ~tot “™D (5.67)
2mD

the equivalent-real-photon laboratory energy. The expressions for the response functions and their
corresponding prefactors can be found in table 5.2. Alternatively, introducing the transverse linear
polarisation of the virtual photon

-1
N
=11 t — 5.68
€ (—I— 02 an” , ( )
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the cross section is given by

Ao do*
-7 5.69
dELdQY. dp1dQs dp1dQsy’ ( )
with oK )
@ Lelln (5.70)

T2 E. Q1 —¢’
the virtual photon flux factor. The virtual photon cross section can be cast in the following form [174],

do*

——— =Rr+eRp + e(CRTT cos 2¢ + *Rpr sin 2¢>
dp1dSds

+ 6(1 + 6) (CRLT cos ¢ + SRprsin gf)) (5'71)
+hv1-— 62RT/ + hy/ 6(1 — 6) (CRLT/ cos ¢ + Ry sin (;5) .

In table 5.2 we list the different response function definitions.

5.5 Deuteron wave function

Owing to the deuteron’s weak binding energy, it is the ideal laboratory for investigating kaon
production off neutrons. Thereby, the deuteron’s structure constitutes a crucial ingredient of the
reaction dynamics. The deuteron is the sole observed two-nucleon bound state. The nucleon-nucleon
interaction, which binds the deuteron, is composed of scalar, spin-spin, tensor and spin-orbit forces
(see Ref. [175] for a review). It is primarily the tensor force that procures the necessary attraction to
produce the stable isospin-singlet bound deuteron state. High precision experiments have determined
the deuteron’s mass [176]

mp = 1.87614(19) GeV (5.72)

and
€p = my +my, —mp = 2.22463(4) MeV , (5.73)

its binding energy to high accuracy.

Experimentally, spin and parity of the deuteron are found to be J” = 1. The total spin of the
deuteron is the vector sum of the spins of the two nucleons and of their relative orbital angular

momentum

j:§N1+§N2+E. (5.74)

The spin part of the deuteron’s state with total spin projection Ap can be decomposed in the basis
of relative orbital momentum and total nuclear spin S = § Nt S No s

[J=1,1.=Xp)=>_ > (L,mp;S,ms| 1,Ap) Xsumg |LmL) (5.75)
S,mg Lymp,
- XIAD |00> + Z <27 )\D_mS; 17777,5” ]-7 )‘D> leS ‘27 )‘D_mS>
mg
+ xoo [1AD) + Y (1, Ap-ms; 1,ms| 1,Ap) Xumg |1, Ap-ms) , (5.76)
mg

where

Xoo = = (11 = 1)1 ;). (5.77)
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Y A A

Figure 5.3 — The different contributions to the deuteron’s wave function. Time flows from bottom to top.
Lines moving backward in time are anti-particles.

and
X141 = H‘>1 |+>2 ) (5'77b)
o= = (10 R+ 12 142) (5.77¢)
X1-1 = ‘_>1 ‘_>2 ) (5-77d)

are the spin-singlet and spin-triplet wave functions respectively. Since each term in (5.75) can be
labelled according to its J, L and S quantum number, we introduce the following spectroscopic
notation: 25+ ;.

Before we proceed with our discussion of the deuteron’s wave function, let us introduce some useful
four-vectors. The nucleon’s four-vectors in configuration and momentum space are r1 2 and p; 5
respectively. Furthermore, we define
_ _ 1 _ 1 _ 1
r = -1 , R = 5(rn+m), m = R+35r, m = R—3r, (5.78)
p = 5P—-p). Pp = P1+Py ., P = 3Ppp+tP, Py = 3Pp— P,

as the relative four-vectors.

The polarisation vectors of a deuteron quantised along the z axis in its rest frame are given by

£°(2) = (0,0,0,1) ,
1 (5.79)
+1/ > .
Z)=F—=(0,1,%4,0) .
£ = %5 (0.1, 40.0)
For different orientations of the spin quantisation axis, the polarisation four-vectors can be rotated

with the help of Wigner rotation matrices (see Section A.2). For a deuteron polarised along an axis
7i(0, ¢), one has

£%(7) = (0, —sin 6,0, cosh) ,

eFio (5.80)
7 (0,cos @, +i,sin6) .

SHOEE:

5.5.1 Covariant Dnp-vertex

The wave function of the deuteron describes its break-up in a proton and a neutron. Owing to
the binding energy, both constituents are, in general, off their mass-shell, i.e. p? # p3 # m?v This
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implies that one can break down the wave function in four different contributions as in figure 5.3,

where each nucleon is either a particle moving forward in time or an anti-particle moving backward.

For our purposes, it suffices to consider the Dnp-vertex with one particle put on the mass shell. The
covariant vertex function for a deuteron with momentum pp and polarisation Ap going to a state
with nucleon 2 on mass shell (p3 = m?\,) and nucleon 1 propagating off mass shell is given by

(22l ¥(0) pAp) = 3L (s )N O (ot ). (5.81)
N
where
() = F() — Sy NP0 (e T0D ) o)

with p = % Pp — Py This 4x4-matrix in Dirac space was introduced by Blankenbecler and Cook [177]
and features four scalar form factors F', G, H and I that depend only on the relative three-momentum.
We will come back to these form factors and how they can be linked with (non-)relativistic wave
functions in appendix H.

The decomposition of the single-nucleon propagator (A.45)

m?\r - p% - 2E, E, —p? Ey +p(1)

my+p, 1 (Z u(Py; Nu(p; A) Z v(=p1; —A)U(=py; _)‘)> , (5.83)

A A

with B, = \/|p;|> + m%, can be inserted into the expression for the Dnp-vertex. In the LAB frame,
where pp = (mp,0), py = (Ep, —p) and p; = (mp — E,, ), one gets

(ool U(0) [ppAp) "= v/ (2m)32mp [ > u(@ M)TLE, (5 Ap) + > v(=5: —\) ULk, (7 Ap)
: : (5.84)
In the previous expression, we have introduced
Uk (5 Ap) = 1 (i M)THERPCu” (—f; Aa)
(2m)%2mp 2B, (2E, —mp) (5.85)

—1 (=g AT rCu’ (<5 o)

Ut (P Ap) =
A1 A2 (75 Ap) (27T)32mD 2E,mp

This result brings us back to the components of the deuteron’s wave function depicted in Figure 5.3.
Since we put particle 2 on mass shell, the diagrams with particle 2 moving backward in time do not
arise. The wave function ¥ is identified with the diagram of the deuteron going to two nucleons,
whereas U~ can be interpreted as the wave function of an anti-nucleon and deuteron bound into a
nucleon.

We would like to point out that a one-to-one correspondence can be made between the decomposition
in 29+1[ j-states in Eq. (5.75) and the wave functions ¥** and U~F we have come to define. The
parity of the deuteron is given by

D =y (1), (5.86)
and is experimentally found to be +1. Since we have 1, =7, = +1, the ¥T" wave function must
be an an admixture of 3S1- and 3Dj-components. The L = 1 states in Eq. (5.75), on the other
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Table 5.3 — The contribution of the 3D;-, 3P;- and ! Pi-waves to the deuteron’s wave function for a
collection of (non-)relativistic potential models. The D-state admixture is defined in Eq. (5.91). The
definition for the probability of the singlet and triplet P-waves is analogous. All values are expressed as
percentages (%).

Paris [178] CD-Bonn [179] Nijm93 [180] Gross-IIb [181] WJC-1% [182]

3Dy 5.77 4.85 5.754 4.538 7.3432
3p — ~ — 0.137 0.1119
1p — ~ — 0.006 0.2118

?As is explained in Section G.3, Ref. [182] presents two versions for the WJC-1 wave function. In this work, we
always make use of the scaled wave function.

hand, contribute to ¥~ because the intrinsic parity of an anti-particle is opposite that of the
corresponding particle. A more detailed account on the connection between states of definite J, L
and S and the wave-function decomposition introduced in (5.85) can be found in appendix H.

Finally, we wish to point out the wave functions in (5.85) can straightforwardly be expressed in
configuration space through the Fourier transform:

TEH (7 A\p) P PTUE (5 \p) . (5.87)

5.5.2 Non-relativistic wave functions

For numerous reactions involving the deuteron, it is not necessary to make use of the covariant
Dnp-vertex introduced previously. Often, it suffices to apply a non-relativistic reduction. Obviously,
the wave function ¥~ has no meaning in a non-relativistic context and can be set equal to zero.

The non-relativistic deuteron wave function is usually defined in terms of the well-known 29;- and
3Dy-wave components. In configuration space, it reads

w7 20) = s, ¥i0(0,0) + T S (2 Aprmsi 1] 1AD) o Ve (606 . (555)

ms
with u(|7]), w(|7]) the radial 3S1- and ®D;-wave functions and Y7, (6, ) the spherical harmonics.

The normalisation condition
/ P [ E ] O N) = 6, (5.89)

implies

e + wrim) = 1. (5.90)

Modern non-relativistic wave functions are calculated by solving the Schrodinger equation with
realistic NN potentials. These phenomenological NN potentials are fitted to the world’s NN
scattering data and attain a typical x2/d.o.f. of = 1. In figure 5.4, we depict the radial wave functions
as calculated with three popular realistic potentials: the Paris potential [178], the charge-dependent
Bonn potential [179] and the Nijmegen potential [180]. The figure also features two relativistic wave
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Figure 5.4 — 35;- and 3 D;-state radial wave functions in configuration (left panels) and momentum (right
panels) space as calculated by various models: Paris [178], CD-Bonn [179], Nijmegen-III [180], Gross-
IIB [181] and WJC-1 [183].

functions, which will be discussed in the forthcoming paragraph. For large spatial separations, or
equivalently small relative momenta, the wave functions more or less coincide. For smaller values of
r, a slight model dependence becomes apparent. We clearly see that the L = 0 wave dominates. The
total probability of the L = 2 state is defined as

Po = [ ditu?(i). (5.91)

All models predict a D-state admixture of approximately 5% (see Table 5.3).

5.5.3 Relativistic wave functions

In a relativistic framework, the concept of a wave function is ill-defined and it is more natural to speak
in terms of amplitudes and vertex functions. In order to make a direct link with the non-relativistic
description, however, it can be instructive to define a relativistic wave function, even though the
number of wave-function components is model dependent. Within the covariant Bethe-Salpeter
approach a total of eight components are defined [184]. Covariant light-front dynamics considers
six contributions [185], whereas in the covariant spectator theory (CST) or Gross formalism this
number is reduced to four [173, 186]. In our formulation of the 2H(y, KY)N transition amplitude,
which is the subject of Section 5.6, the considered Feynman diagrams are always reduced to a
deuteron-neutron-proton vertex with one nucleon on-mass-shell. For this reason, we will employ the
CST approach and formulate two additional wave-function components of relativistic origin that
supplement the 3S;- and 3D;-waves introduced in Paragraph 5.5.2.

We define

_ - .o 2 L Us|T 2
U (7 Ap) = —i () Z(l,)\p—mg; L,ms| 1, AD) Ximg Y1, Ap-mg () — i ﬁ‘{l)xooYuD(T). (5.92)
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The two new P-state wave functions vs(|7]) and v;(|7]) couple to the singlet and triplet spin-wave

mgs

function respectively. Within our relativistic framework, u and w can be thought of as the upper
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Figure 5.5 — 3P;- and ! P;-state radial wave functions in configuration (left panels) and momentum (right
panels) space as calculated by the Gross-IIB model [181] and WJC-1 [183] models.
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Figure 5.6 — Momentum-space wave functions calculated within the WJC-1 model [182] at high relative
momenta.

components of the Dirac wave functions. The P-states act as the lower components and are
comparatively much smaller, especially at small relative momenta. This intuitive picture is confirmed
in figures 5.4 and 5.5. The 25;- and 3D;-waves resemble their non-relativistic counterparts in size
and shape.

As can be learned from table 5.3, the P-waves are minute. Nevertheless, by means of interference
with the larger components of the wave function, they can produce significant contributions to actual
observables. This is exemplified in the calculation of the deuteron form factors in the framework of
CST [187].

In Figure 5.6, all four contributions to the deuteron wave function calculated within the WJC-1 model
are drawn for high relative momenta (|p| > 400 MeV). The S-wave has a node and all components
are of comparable sizes. This implies that at high relative momenta all wave-function components
contribute to the transition matrix elements.
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5.6 Relativistic impulse approximation

In Sections 5.3 and 5.4, we have given a comprehensive overview of observables for the EM production
of kaons from deuterium targets. The essential ingredient for these observables is the nuclear transition
amplitude RA;/\Y AN which contains all the physics of both the production process and the nuclear
medium. In Eq. (5.27), it was defined in terms of the nuclear transition current operator jnud
the reaction under study, we have a photon incident on a bound state of two nucleons producmg
a three-body final state, and in general jrﬁl .1 Tepresents an intricate many-body operator. In this
work, we stay clear of the complexity of many-body currents and invoke the impulse approximation,

which states the full nuclear many-body current operator can be approximated by a sum of one-body

a3 S g, (5.93)

i=1,2 x

current operators J'. We have

The sum over x represents the different contributions to the relativistic impulse approximation (RIA)
that will be enumerated in Paragraph 5.6.1. Each operator acts on both particles 1 and 2 inside the
deuteron. This is indicated by the sum over ¢. It is important to note that each contribution j)f‘ to
the current operator contains an isospin filter and consequently acts either on a proton or a neutron.

To investigate the implications of the RIA, we adopt the occupation-number representation. The
deuteron state is represented by

1 1
o AD) = D0 D D UL (P pn Ap) (5 i 5. 1200.0) af a0, 10), (5.99)
DP1:Po A1,A2 t1,t2

where we have restricted ourselves to the positive-energy states. When the negative-energy com-
ponents of the wave function are taken into account, the discussion presented in this paragraph
proceeds along the same lines. The nucleon creation and annihilation operators, that feature in
Eq. (5.94), obey the usual anticommutation relations [188]

{aav a;} = 504,6 ’

5.95
{aa, a5} = {al,al} = 0, (5:99)

and are labelled by the nucleon’s four-momentum p,, polarisation \; and isospin component ¢;,
with «, 8 = {p;, M, t;}. In second quantisation, each one-body current-operator contribution T for
kaon-production from the deuteron can be written as

SA
YA PN (prci Py Ay P AN T w1 [Py AD) ey iy vt ap s (5.96)

In this notation, we explicitly indicate that the photon interacts with a nucleon with quantum
numbers {p, A, t}. Like we have mentioned earlier, this nucleon is either a proton (¢t = 3) or a neutron
(t = —7) The primed quantum numbers reflect the state of the so-called spectator nucleon and the
operator a}Y y is shorthand notation for the creation of the kaon-hyperon-nucleon final state.

Now, we wish to examine the result of T acting on the deuteron state (5.94). Repeated application
of the anticommutation relations (5.95), leads to the following identity

T T _ T _ T
apv)\atapl,)\l,h ap2,>\2,t2 |0> - 5177171 6>\7)\1 6t»t1 apz)\g,tz 6177172 5>\7)\25t7t2ap1,)\17t1 |0> : (597)
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Taking into account the deuteron wave function ¥ is symmetric under the exchange of particle 1
with 2 and the antisymmetric property

1 1 1

1
Z t: =, 10,0y = —(=,t; =.,t]0,0 5.98
<27727 ‘7> <27 727‘7>7 ( )

we find that the action of the production operator (5.96) on the deuteron state (5.94) gives

1 S
(1272 > (P Py Avi P AN T s ipr vt |PDs AD)
pAP'N

/
bp—Dp
X \1111&2( 9 ;pD’)‘D)aL’YN |0> : (5'99)

This implies the nuclear transition amplitude in the RIA can be written as

“Ay 1A 25w
(P Py, Ay PN AN| T el \pp, Ap) = Zi\/i@K;Py’)\Y;PN,)\M J<"(1)|pp,Ap) . (5.100)

Thus, the RIA entails that the full nuclear transition amplitude is approximated by a coherent sum
of current matrix elements, where each current operator acts on particle 1. Every contribution comes
with a plus- (minus-)sign that depends on whether the incoming photon interacts with the proton or
neutron inside the deuteron.

In the remainder of this chapter, the different contributions to the RIA transition amplitude are
considered. In order not to overload the notation, we no longer indicate that the one-body current
operator acts on particle 1 inside the deuteron. In paragraphs 5.6.2 and 5.6.3, expressions for the
different matrix elements

(PK; Py, A\y; PN AN T lpp, Ap) , x = RPWIA, NRPWIA, YN-FSI, etc., (5.101)

are presented. When observables are calculated in Chapter 6, we sum the relevant contributions
multiplied with the correct RIA-factor £+/2 to form the nuclear transition amplitude.

5.6.1 Different contributions to the relativistic impulse approximation

A multitude of reaction mechanisms can contribute to the nuclear transition amplitude. The
contributions which we identified as dominant for the 2H(y, KY)N reaction are illustrated in
Figure 5.7.

In the lowest-order diagram, the kaon and hyperon are produced on a single nucleon and all three
final-state particles subsequently leave the reaction unperturbed as plane waves. This reaction picture
is known as the relativistic plane-wave impulse approximation (RPWTA) and constitutes the subject
of Paragraph 5.6.2.

A higher-order diagram, a so-called two-step process, is depicted in figure 5.7(b). Here the incident
photon creates a pion-nucleon pair. The former consequently rescatters inelastically off the spectator
nucleon producing the final kaon and hyperon.

After the initial photon-induced production of strangeness, either directly or via an intermediary
pion, the outgoing particles in the three-body final state can interact. These final-state interactions
(FSIs) involve, in principle, a three-body operator, but are typically approximated by a sum of
two-body interactions. Since the elementary strangeness-production vertex is adjusted to data, one
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Figure 5.7 — The relevant contributions to the 2H(y*), KY')N reaction in the RIA: (a) plane-wave impulse
approximation, (b) two-step process with initial photoproduction of a pion 7 and (c,d) single rescattering
in the final state. The target nucleon inside the deuteron D is labelled T

assumes it effectively incorporates the kaon-hyperon FSI. The remaining FSI diagrams are shown in
figures 5.7(c) and 5.7(d). Their contribution can naively be expected to be most significant at the
thresholds of the different reaction channels. As the kaon’s scattering length is considerably smaller
than in the case of hyperon-nucleon scattering, we will limit our formalism to the hyperon-nucleon
final-state interaction (YN-FSI). It will be discussed in Paragraph 5.6.3.

5.6.2 Relativistic plane-wave impulse approximation

We will start our discussion of the RIA by writing down the transition matrix element in the
relativistic plane-wave impulse approximation (RPWIA). The corresponding Feynman diagram is
given in figure 5.7(a). Applying the Feynman rules summarised in Appendix D, one has

A
(PK; Py, Ay PN, AN| TRpwia [Pps AD) =

= TV * mr + B
—ﬂ(pY)\Y)EiVJ (Wky, 0%) Pp =Py

m7 — (pD - PN)

QgﬁDanp(pN7 pp)Cu’ (P, An), (5.102)

with J” the elementary kaon-production operator which we have covered thoroughly in Chapter 2.
For clarity, we have explicitly indicated this operator is to be evaluated at the invariant mass
W2y = (px + py)? and for the scattering angle 0%, i.e. the angle P3Py in the KY-CM frame.

In order to make the connection with the NRPWIA, we consider the decomposition of the deuteron-
neutron-proton vertex of Eq. (5.84), retaining only the positive-energy contribution. This yields an
expression for the transition amplitude that is no longer covariant and should be evaluated in the
rest frame of the deuteron

N LAB
(Pr: Py A\vs Py AN| INRpwia 1PD> AD) =

—/@m)2mp > (pii Py Ay | I [prA) Wi (=py, Ap) . (5.103)
At
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The target nucleon absorbs the incoming photon and has four-momentum p, = p, — py. It is
obviously off its mass shell and has a non-vanishing virtuality

ma — pr > 0. (5.104)

Accordingly, the elementary-production vertex in both the RPWIA and NRPWIA are evaluated
with one off-mass-shell leg. Owing to the tiny binding energy of the deuteron, the virtuality is minor
as long as the momentum of the spectator nucleon is small. As [py | rises, the effective mass of the
target nucleon tends to zero. The physics of tachyons falls beyond the scope of this dissertation. For
this reason we impose an upper limit on the LAB energy of the spectator,

2 2
mp +my

En < (5.105)

2mD
which ensures that p2T > 0. This hard cutoff does not pose a serious problem, since we expect an
intrinsic falloff for the elementary kaon-production reaction as the target nucleon’s virtuality mounts.
Moreover, examining figures 5.4 and 5.5, we notice the deuteron’s wave function drops dramatically
at large relative momenta, and hence the transition amplitude will be incredibly small when the
spectator reaches its imposed upper bound.

Nevertheless, we wish to assess the level of uncertainty related to the off-shell extrapolation of the
elementary-production operator. To this end, we introduce the on-shell four-vector of the target

_  LAB [ .

Accordingly, the propagator of the target nucleon can be divided into an on-shell and off-shell part,

nucleon in the LAB frame as

pr+my =p,+my -1 (Br —pr) . (5.107)

For the remainder of this section, we will neglect the proton-neutron mass difference. This implies

}3(% = Ep. After we insert the propagator’s decomposition in the expression for the transition

amplitude in the RPWIA, the current operator falls apart in two contributions

ol LAB 4 ol
JRPWIA = JRPWIA onshell + JRPWIA offshell - (5.108)

We define an on-shell piece

. . 7y LAB
(Pr; Py Ay PNy AN jRPWIA,onshell |Pp;Ap) =

. Ay 5 TN +p L
—a(py, Ay)eJ HE,Q\DF’SHP(PN,PD)CUT(]?N,AN)a (5.109)
my — Pr
and an off-shell component
=Y LAB
<pK§ Dy, Ay PN, )\N‘ jR;WIApffsheu |pD7 )\D> =
Ey—-Er_ Ay s T,
———u(Py, Av)e T EPTh, (py, pp)CT" (B, Av) . (5.110)
my — Pr

In the LAB frame, the denominator of the target-nucleon’s propagator can be rewritten as

m3% — p» =mp(2EN —mp). (5.111)
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Applying this in the expression for the on-shell part of the RPWIA transition amplitude (5.109),
and using Eq. (A.42), we obtain

SA LAB
(Pii Py s Ay P AN TRPwWIA onshell [PDs AD) =

2EN A |~ N
Y (27r)32mDm7D ; (Prs Py, A [ I [Py Ar) O3 (=Pvs Ap), (5.112)
T

where we have used the definition of the positive-energy deuteron wave function ¥+ in terms
of the covariant Dnp-vertex (5.85). We remark that the on-shell contribution to the RPWIA
amplitude is equal to the NRPWIA form, except for a kinematical factor that is close to one for
moderate spectator-nucleon momenta. In addition, the transition amplitude on the right-hand side
of Eq. (5.112) is evaluated with all incoming and outgoing particles on their respective mass shells.

Before we conclude our discussion of the RPWIA, we try to estimate the contribution of the off-shell
correction to the transition amplitude in the RPWIA. Starting from Eq. (A.41), we can introduce
the following, alternative completeness relation for spinors,

2ENY" = Ay (Pr) — A (=pp), (5.113)

in Eq. (5.110) and applying the definition of the positive- and negative-energy deuteron wave
functions (5.85), we find

S LAB
<pK§ Dy, Ay; Dby, >\N’ jRIV)WIA,oHsheH ’pDa )\D> =

En — Er ., A 3 . .
(277)32mD7mD Y By, W) S u(=y, Ar) U (=P, Ap)
AT
mp PN Ay 3 = _ N
— = Ay e JY AU (=, A . (5.114
+ QENmD%:U(PY, Y)ew v(P, T) ,\T,\N( DPNsAD) ( )

The kinematic factor in front of the off-shell contribution can be approximated by

Exy — FE € o |2
Ev—Er o IPnl"

, (5.115)
mp mp  mNmp

at lowest-order of the spectator-nucleon’s momentum, with ep the deuteron’s binding energy (5.73).
Obviously, the off-shell part of the RPWIA transition matrix element is modest as long as the
three-momentum of the outgoing nucleon is small compared to its mass. It generates a 5% correction
at |py| ~ 300 MeV.

5.6.3 Hyperon-nucleon final-state interaction

We wish to evaluate the Feynman diagram for the YN-FSI process that is depicted in Figure 5.7
(c). It involves a loop where we choose to integrate over the four-momentum p,, of the spectator
nucleon. The four-vectors of the remaining particles in the loop, i.e. the target nucleon 7" and the
rescattering hyperon Y’, are fixed by energy-momentum conservation. We have

Pr =Pp — Pn/»

(5.116)
Py = Py + Py — PN -
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Based on the Feynman rules given in Section D.2, the YN-FSI contribution to the transition amplitude
reads

5\
(Pr; Py s Ay PNy AN Iviirst [Pps AD) =
d4p -
Z/(27_[_) (pNy)\N)Ua(va)\Y) adeGl df(pN/ mN/)G%,ce(pY’va’)
&IV Gy (prymN )P Thuy (P, Pp)C| Lo (507)

FYN

where we have written the Dirac indices explicitly for clarity. The vertex operator represents

the (in)elastic hyperon-nucleon rescattering process and is covered in appendix K.

The transition amplitude features three fermion propagators G'1. All three exhibit singularities as
they move on mass shell. Clearly, the largest contributions to the amplitude are realised when at
least one pole is reached. Working within the constraints of CST [186, 189], we choose to restrict
one particle on its mass-shell. One can prove that this approach can be used without loosing the
manifest covariance of the transition amplitude. Making use of the residue theorem, forcing the
spectator nucleon on mass shell is equivalent to the following substitution

d*p ., .+ mp B3P
l/ Py pN N ; _Z/ pN ﬁN”/\N’)ﬂ(ﬁN/,)\N/). (5.118)

(2m)4 p?\,/ — m%v, + i€

Consequently, the YN-FSI contribution to the transition-current matrix element becomes
29\
(Pr; Py s Ay PNy AN Ivirst [Pps Ap) =
d3p r o .
—Z/(N/Ub(pNy)\N)Ua(pY,)\Y)F;[bl?cdud(pz\//a)\N')G;,Ce(pY'amY/)

Ay 3 — o
GV’YJVG%(pT’mN)gli\Danp(pN’pD)C of uf(pN”)‘N’)' (5.119)

With the spectator nucleon on mass shell, the target nucleon absorbs all the binding energy and
therefore never fulfils Einstein’s relation. The propagator of the rescattering hyperon, on the other
hand, passes through its singularity. It can be decomposed as (A.45)

G1(py:, myr) = ! ( Acy) APy > (5.120)

1
2 2Ey/ pg,, — Ey/ + 1€ pg)/, =+ Ey/ — 7€
where we have defined an on-shell four-vector for the rescattering hyperon

]Aiy, = (Ey/,ﬁy;) ,  with Ey/ =4/ |133/,|2 +my . (5121)

The denominator of the second term will be large compared to the one of the positive-energy part.
Its contribution will be neglected in our calculations. Thereby, the covariance of our formalism is
lost. Our approximate expression for the YN-FSI contribution to the transition amplitude then reads

S
(Pr: Py A\Y; PN AN | JyN-Fs |pp, Ap) =

B, o . AL (Py)] .
—Z/(% Ny (i, AN )T (By s Ay )T apeatia (P, Anv) [ )]
X

)P2EN2Ey P, — Eyr +ie

Ay Sy _ L
X e J G%(p:r,mN)fﬁDF’Snp(pN,pD)CLfUf(pN/,/\Nf)- (5.122)
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This amplitude will have its largest contribution when the singularity corresponding to an on-mass-
shell rescattering hyperon is reached. With the use of the general relation

1 1 ~
= =P | 5——=—| —ind(p} — Ey), (5.123)
Py, — By +ic | pY — By
where PJ...] stands for a Cauchy principal-value integration, the current operator breaks up into an
on-shell and an off-shell part, i.e.
jYN-FSI = jYN—FSI,onshell + jYN—FSI,oHshell . (5.124)

The on-shell contribution is defined as

9\
(P Py, Ay P, AN | JYR_Fst onshell [PD> AD) =

. 3Py ~ A~
- Z /(2 ) N 5(]9())//_EY/) <pY>)\Y;pN7)\N|JYN|pY/7)‘Y’;pN’7)\N/>
™

39 En12Ey

ANT Ay
~ 9
X (Pi; Pyrs Ay P AN | Tapwia |Pps Ap) - (5.125)
We can dispose of the delta function by integrating over the three-momentum of the spectator nucleon

in the YN-CM frame. The spectator-nucleon three-momentum | ﬁj\},|, for which the rescattering
hyperon is put on mass shell, fulfils the following constraint

Wyn = \/|ﬁj*v,\2+m§,+\/|ﬁ;;,,|2+m§v,. (5.126)

After solving this equation, we obtain

< = W2\ +m2, —m?2,
By =/ 2+ m?, = K QW;VN ¥, (5.127)

Carrying out the integration over |pj,| in Eq. (5.125) yields

. . 5 Ay YN-OM
(PK; Py Ay PN, AN jYN-FSI,Onshell |pp, Ap) =

—i [Pk / 20 L i
d ’ Ay ,)\ J /,)\ 5 /,)\ U
3972 Wy v E N Py Ay PNy AN IYN [Py, Avrs B, Anv)

Ay Ay
~ . S
X (Prcs Py Avrs Py AN | Tapwia [Pps Ap) - (5.128)

This amplitude features the transition matrix element for the hyperon-nucleon interaction with all
incoming and outgoing particles on mass-shell. In Appendix K, we elaborate on the properties of the
hyperon-nucleon interaction Jyn.

In the second contribution to the YN-FSI diagram the hyperon-nucleon interaction vertex has one

off-mass-shell leg. It reads

L9\
<pK; Py, Ay PN, /\N’ jYKI-FSI,offshell ‘pD7 )‘D> =

> /dQQN/P/dW ||5N/‘2 ! (Dys Ay P AN YN [Py, Ay s e, Ave)
4(2m)3 N EniEy: p\,, — Ey o e

AnrAys

S
X (Pgcs Pyrs Avrs Py ANt | Trpwia [Py Ap) - (5.129)



Chapter 5. Formalism for electromagnetic kaon production from the deuteron 89

As is pointed out in Appendix K, the non-vanishing virtuality of the rescattered hyperon allows the
rescattering process to occur below threshold. Similar to the evaluation of the delta function in the
on-shell contribution to the YN-FSI amplitude, we will abandon our covariant notation to further
simplify the principal-value integral in Eq. (5.129). With the help of the following identity

~ 2 .
(p9)° - (EY) = Wy (B — B (5.130)

we are able to rewrite the off-shell contribution to the YN-FSI diagram in a form suitable for
numerical integration, i.e.

. . 5Ny YN-CM
(P Py, Ay PNy AN | JYR pstofshell [PDs AD) =

dQQ*/ rtomax
- X [rr)
6473 m

ANT Ayt N

N7 . P Wyn — EX, + E3,
dEN = ” "
’ WYNE;;, EN/ - EN/

B A
X <PY7 )‘Y§pN7)‘N‘ Jyn ’PY'»)\Y'SPNU)\N'> <pK§pY’>>\Y’;pN’7)‘N" jR;WIA ‘pDa)‘D> . (5-131)

The integration over the solid angle €23, and CM energy EY, are performed with the aid of the
quadrature routines from GSL [190]. At threshold, where the singularity is located at the integral’s
lower bound, we adopt the QAWS routine. For all other energies, the QAWC routine is employed.

*,max

Finally, we need to specify the upper bound Ey,”. In principle, the integral is unbounded. In
practise, however, the effective masses of the target nucleon and the rescattering hyperon depend
on the three-momentum of the spectator nucleon. As was pointed out in Paragraph 5.6.2 in the
context of the RPWIA contribution to the transition amplitude, an effective upper bound for |py| is
needed to prevent the target nucleon’s effective mass from becoming negative. A similar constraint
is imposed for the effective mass of the rescattering hyperon. It yields

2 2
WYN + mN/

Ex <
N = 2Wy N

(5.132)
Because of the specific structure of the elementary kaon-production operator in the RPR model a
third restriction is needed. In case the kaon-production vertex has both an incoming and outgoing
particle off mass-shell, the elementary operator can be evaluated below the physical production
threshold. Besides the uncertainties related to this off-shell extrapolation, an artificial singularity can
arise once the invariant mass in the vertex reaches down to the physical nucleon mass. This singularity
is caused by the presence of the s-channel Born diagram needed to guarantee gauge-invariance in the
context of the Regge model. When

(Px + py')? = m7, (5.133)

the pole of this diagram is reached. We stay clear of this singularity by solving Eq. (5.133) for E%,
and imposing it as an upper bound.
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CHAPTER 0

Results for kaon production from the deuteron

In Chapter 2, we introduced the RPR formalism as a trustworthy and economical description of EM
kaon production from the unbound proton. Chapter 3 dealt with extensions to the RPR model which
aimed at describing reaction channels for which only limited data sets are available. A relativistic
formalism for the EM production of kaons off deuterium targets was the subject of the previous
chapter. We presented the RPWIA and discussed the different contributions to the hyperon-nucleon
FSI. In this chapter, we collect all these different ingredients and present calculations for strangeness
production from the deuteron.

The results are obtained utilising the RPR-2007 elementary-production operator presented in Chap-
ter 2 and Refs. [39, 40, 69]. For the sake of clarity, the coupling constants of the adopted models are
listed in Appendix I. Although a variety of deuteron wave functions have been presented in Section 5.5,
all calculations employ the relativistic wave function obtained with the WJC-1 nucleon-nucleon
potential of Gross and Stadler [183], unless mentioned otherwise. For the investigation of the YN-FSI,
we use helicity amplitudes calculated with the Jiilich hyperon-nucleon potential as input. The Jiilich
model is briefly reviewed in Section K.4.

We start this chapter with an in-depth discussion of the 2H(y, KY)N cross sections obtained in the
RPWIA. We investigate which kinematic regions dominate the reaction and explore the sensitivity
of the formalism to its different ingredients. Section 6.2 is devoted to the YN-FSI contribution.
We conclude this chapter by confronting our model calculations with the available photo- and
electroproduction data in Sections 6.3 and 6.4 respectively.
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0 100 200 300 400 500 600 700 €
Bl (MeV)

Figure 6.1 — Deuteron density (6.2) calculated within the WJC-1 model [183] as function of the relative
proton-neutron three-momentum |p].

6.1 Relativistic plane-wave impulse approximation

6.1.1 Non-relativistic spectator-nucleon approximation

Starting from the on-shell contribution to the RPWIA transition amplitude (5.112), one can show
that

— N ) -
Z’ (Pic; Py Ay PNy AN| TRPwiA onshell [PDs AD) >~ PD(’pN’)Z’ (P Py Av [ IV [BrAT) |2,
(6.1)

where we have defined the deuteron density as

pp(p) = u*(p) + w?(p) + v (p) + vi(p) - (6.2)

Inserting this relation in the expression for the exclusive differential cross section (5.35), we find for
small values of the spectator momentum |py|

d°o 1 1Dy oy
_ x — (1 4+ = 0 D) ——— . 6.3
o %( 2 cost ) o) g (6.3

This relation is known as the non-relativistic spectator-nucleon approximation to the cross section
and is valid as long as |py| < my. Assuming that FSI effects are negligible, Eq. (6.3) provides
a straightforward recipe to extract information on the elementary kaon-production reaction from

exclusive cross section measurements at small |p)y|s.

Because of the non-trivial phase space of a three-particle final state, the 2H(y, KY)N results can be
presented in terms of a plethora of combinations of the kinematic variables. Owing to the convenient
factorised form (6.3) of the cross section, we can easily assess which regions in phase space are
to contribute most to the reaction’s strength. The transition amplitude of the elementary kaon-
production process is obviously an essential component, but exhibits only mild variations with energy.
The deuteron density pp(|py|), by contrast, falls off exponentially as the relative three-momentum
of the proton and neutron inside the deuteron increases. This is illustrated in Figure 6.1 with the
WJC-1 deuteron wave function [183]. Assuming that the reaction is dominated by the RPWIA
contribution to the transition amplitude, the cross section will thus exhibit most strength for low
momenta of the outgoing nucleon. Our intuition is confirmed in Figure 6.2, where the semi-inclusive
differential cross section for charged-kaon production is shown as function of || and cosfy for
three representative values of the kaon-hyperon invariant mass. We notice an exponential falloff
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Figure 6.2 — The semi-inclusive 2H(y, KT)Y N differential cross section using the full RPR operator in
the RPWIA as a function of the nucleon momentum |7 | and scattering angle cosfn in the LAB frame at
three different values of the invariant mass of the kaon-hyperon system (from left to right: Wyy = 1700,
1900 and 2100 MeV).

as |py| increases, reminiscent of the deuteron density pp. The differential cross section is nearly
isotropic, yet the coloured bands in Figure 6.2 are slightly tilted in the clockwise direction. This
indicates a mild dependence on cos f that becomes stronger as the spectator momentum rises.

In case the 2H(v, K)Y N observables are presented as a function of the momentum and scattering
angle of the outgoing kaon, e.g.

d3c d°c
__\7 == dQ* _‘— 9 6.4
d|py|dQx / Y d|p | dQk d (64)

the spectator-nucleon momentum and hence the deuteron density are function of |pj|, 0, the photon
energy I/, and the hyperon’s scattering angle 65, in the YN-CM frame. We exemplify this dependence
in Figure 6.3 for three photon energies and at forward scattering angles in the YN-CM frame. It
stands out that the deuteron density is strongly peaked at small values of 65.. At £, = 1000 MeV,
that is close to threshold, pp is concentrated at forward scattering angles for the photoproduced
kaon. As energy rises, this distribution spreads over a larger region of kaon momenta and shifts
towards more backward angles.

Figure 6.4 shows RPWIA results for semi-inclusive charged-kaon photoproduction. This reaction
receives contributions from elementary KtA and KTX° production from the proton, in addition to
K™Y~ production off the neutron. The threefold differential cross section is given as a function of
the kaon’s momentum and scattering angle in the LAB frame. These results are obtained with the
full RPR current operator. A comparison with Figure 6.3 reveals that the shape of the semi-inclusive
cross section is mainly determined by the deuteron density distribution. Whereas the available
phase-space volume makes sure the cross section vanishes as the kaon’s momentum approaches zero.
The cross section is largest for kaons created along or near the direction of the incoming photon.
At all but the lowest photon energy, the cross section consists of two modi. The one at the highest
kaon momenta corresponds to quasi-free A production, the second to the production of a £° and X~
hyperon. As the photon energy increases, the gap between both ridges becomes smaller.
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Figure 6.5 — Effective mass (6.5) of the target nucleon that absorbs the incoming photon as a function of
the relative proton-neutron three-momentum |p].

6.1.2 Off-shell extrapolation

As mentioned in Section 5.6, in our implementation of the RIA we put the spectator nucleon in the
Dnp-vertex on its mass shell. As a consequence, the nucleon that absorbs the photon carries the
complete binding energy of the deuteron. As such, the elementary-production operator needs to be
evaluated with an effective mass

mres. = £/ (Pp — Py)? = \/m%) + m?v —2mpy/|Py]* + m?\,, (6.5)

for the target nucleon Since the RPR operator is not constrained by data for mr s 7# my, this

involves an off-shell extrapolation. In Figure 6.5, the effective mass of the target nucleon is shown as
a function of the relative proton-neutron three-momentum [p]. At low values of |p|, mr eg. remains
close to the physical nucleon mass. As the relative momentum approaches 700 MeV, it becomes zero.
For higher values of |p], the effective mass is imaginary.

We illustrate the off-shell extrapolation of the elementary production operator in Figure 6.6. The
squared transition amplitude for the p(y, K*)A reaction as calculated within the RPR formalism is
given as function of the kaon’s CM scattering angle at three representative values of the invariant
mass of the kaon-hyperon system. We remind the reader that with our choice of normalisations this
quantity is dimensionless. For mr g ~ my, i.e. at the top of the panels, the transition amplitude
is computed with the physical nucleon mass. The matrix element is evaluated at smaller masses
as we go down the ordinate axis. It is clear the elementary-production operator exhibits off-shell
structures and does not disappear as the target-nucleon mass approaches zero. We have carefully
scanned the phase space of the different elementary reaction channels and conclude the transition
amplitude is free of singularities. The off-shell structure of the elementary reaction is likely to play a
role in observables, but we do not expect any dramatic effects.

The effect of the off-shell extrapolation is most readily investigated by comparing the RPWIA
contribution (5.102) to the transition amplitude with its on-shell reduction given in Eq. (5.112). In
Figure 6.7, we compare the one-fold differential 2H(y, K+ A)n cross section as calculated with both
forms of the transition amplitude. Clearly, the RPWIA result and the on-shell approximation coincide
for small values of the spectator-nucleon momentum. At the lowest energy, the agreement holds up
to [p| < 200 MeVs, and the region of similarity becomes larger for higher values of Wiy . At large
missing momenta, the results bifurcate, with the on-shell form of the transition amplitude giving
significantly larger cross-section predictions compared to the RPWIA result. This discrepancy is not
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three different values of Wiy. The solid curve is the RPWIA result (5.102). The dashed line is obtained
with the on-shell reduction of Eq. (5.112).

only due to the off-shell extrapolation of the elementary-production operator, but stems in part from
the additional contribution (5.110) to the RPWIA amplitude that is omitted. In Paragraph 5.6.2,
we argued that this contribution is kinematically suppressed for small missing momenta. At higher
values of |ply|, however, it can no longer be neglected.

6.1.3 Wave-function sensitivity

The deuteron wave function is an essential ingredient in the description of EM kaon production
from the deuteron. This can be most clearly illustrated within the non-relativistic spectator-nucleon
approximation which gives rise to the expression (6.3) for the cross section. Figure 6.8 shows the
missing-momentum dependence of the 2H(v, KT A)n cross section for various choices of the deuteron
wave functions'. For missing momenta up to approximately 250 MeV, the different wave functions
give nearly indistinguishable results. This comes as no surprise, because all NN potentials produce
comparable 35| waves which dominate in this kinematic region. As the spectator nucleon’s momentum
rises, the cross-section predictions start to diverge. It is worth noting that the non-relativistic wave
functions of the Paris and Nijmegen potentials and the relativistic Gross-IIB wave function generate

1See Sections 5.5.2 and 5.5.3
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Nijmegen-III [180], Gross-IIB [181] and WJC-1 [183].

very similar predictions. The cross sections based on the CD-Bonn and WJC-1 potentials, on the
other hand, differ up to an order of magnitude for high missing momenta.

6.1.4 Helicity-amplitude dependence

Evidently, the elementary kaon-production vertex is a crucial ingredient of strangeness production
from the deuteron. The RPR model, that was introduced in Chapter 2, is optimised against data in
the p(y, KT)A and p(v, KT)X° channels. In the description of the N(v®*), K)Y process, the four
remaining final states, where little or no data is available, cannot be ignored. In Section 3.2, we
demonstrated that the major source of uncertainties for modelling the n(y, K)Y reaction channels
stems from the helicity amplitudes of the considered nucleon resonances. Here, we wish to assess to
what extend these uncertainties propagate in (semi-)inclusive reactions on the deuteron.

The semi-inclusive charged-kaon-production cross section is depicted as function of the outgoing
kaon’s LAB momentum in Figure 6.9. The cross section clearly exhibits two maxima where the
quasi-free condition for A and ¥ production are realised. Below the Y-production threshold, i.e.
|P| Z 619MeV, only the KA channel contributes to the reaction. At lower kaon momenta, both
the p(y, K7)XY and n(y, K*)X~ reactions play a role. The later takes place on the neutron and,
consequently, is prone to the uncertainties related to the unconstrained helicity amplitudes. The
effect is sizable as can be deduced from the magnitude of the shaded area. In the quasi-elastic
peak, variations of the order of two are possible. From the above discussions, we conclude that the
resonance contributions to the elementary-production operator are the major source of uncertainties
for the 2H(vy, KY)N predictions. Those stemming from the off-shell extrapolation (Paragraph 6.1.2)
or the deuteron wave function (Paragraph 6.1.3) are substantially smaller.

6.2 Hyperon-nucleon final-state interactions

In the previous section, we explored kaon photoproduction from the deuteron in the RPWIA
formalism. The momentum distribution of the spectator nucleon emerged as dominant in shaping
the differential cross sections. Besides the RPWIA contribution, Paragraph 5.6.1 introduced a set of
interesting higher-order diagrams. Our motivation to study these additional contributions is two-fold.
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Figure 6.10 — Meson-exchange diagrams considered in the context of non-relativistic potential models for
elastic AN and XN as well as inelastic AN — XN scattering. The interpretation and dynamical origin of
the exchange diagrams involving scalar mesons (o, p, ag, &, w') differs greatly among different models [191].

In case the deuteron is exploited as a neutron target, one wishes to identify regions in phase space
where higher-order effects are minimal. Kinematical conditions with significant roles for kaon-nucleon
or hyperon-nucleon final-state interactions, on the other hand, provide access to the elusive KN and
Y N interactions.

In this work, we concentrate on the influence of the hyperon-nucleon final-state interaction. The
expressions for this contribution to the transition amplitude are discussed in Paragraph 5.6.3. When
both the photoproduced hyperon as well as the spectator nucleon are on mass shell, the amplitude is
given by Eq. (5.128). In case the rescattering hyperon is off mass shell, the off-shell dynamics of
the hyperon-nucleon interaction vertex play a role and sub-threshold production is possible. Details
on the off-shell extrapolation of the hyperon-nucleon interaction are diverted to Section K.3. The
off-shell YN-FSI diagram (5.131) involves a principal-value integral. Integrating over the spectator
momentum comes at a significant computational cost. For this reason, we restrict calculations with
the RPWIA plus full YN-FSI amplitude to exclusive conditions. For semi-inclusive results, we adopt
a truncation scheme and retain the on-shell part of the YN-FSI diagram.

Evidently, a trustworthy description of the hyperon-nucleon interaction is an essential component in
order to assess the role of rescattering to kaon production in the nuclear medium. In the low- and
medium-energy domain, hadron-hadron interactions can be adequately described in the context of
a meson-exchange picture. A hallmark result is the success of realistic nucleon-nucleon potential
models that fit the available data with an astonishing x?/Ngata &~ 1. The results from NN phase-shift
analyses are considered equivalent representations of the data. For hadronic interactions involving
strangeness, similar descriptions can be adopted. Model builders are hindered, however, by the small
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amount of experimental data with mediocre statistics over a limited kinematical range, as well as
the lack of information on polarisation observables.

For the purpose of describing the hyperon-nucleon interaction, an effective potential can be constructed
by considering a set of scalar, pseudo-scalar, vector and axial-vector meson-exchange diagrams [192,
193]. Figure 6.10 provides a graphical representation of these contributions. Relying on SU(3)
flavor symmetry or the SU(6) symmetry of the quark model, most coupling constants at the
strange vertices can be related to nucleon-nucleon-meson coupling constants which are constrained
by nucleon-nucleon scattering data. The remaining free parameters are optimised against the
available hyperon-nucleon total cross section data [194-198]. All modern hyperon-nucleon potential
models [199-201] successfully reproduce these data, notwithstanding the substantial differences in
implementation between the different models. Especially the treatment of the (iso)scalar-meson sector,
which effectively incorporates two-meson-exchange diagrams and accounts for the intermediate range
of the interaction, is vastly different. In recent years, an alternative formalism for the description
of the hyperon-nucleon interaction has come forth. Effective-field theory (EFT) is based on chiral-
perturbation theory and provides a powerful diagrammatic expansion. The accuracy of calculations
can be systematically improved by going to higher orders and the theoretical uncertainties can be
evaluated. An EFT model for the hyperon-nucleon potential is available at leading order [202] and is
currently being extended to next-to-leading order [203].

In Figure 6.11, total-cross-section data for elastic and inelastic hyperon-nucleon scattering are
presented. They are compared to two conventional meson-exchange potentials, the Nijmegen97f
potential [205] and the Jiilich 04 model [199], in addition to the leading-order chiral EFT model of
the Jiilich group [202]. All models provide a good description of the data, even though the EFT model
shows some minor discrepancies. Our YN-FSI calculations are performed with scattering amplitudes
obtained with the Jilich 04 model [199]. More details on these amplitudes can be found in Section K.4.
The cross-section data in Figure 6.11 show that the hyperon-nucleon interaction is strongest close to
threshold. Therefore, phase-space regions where Wy is small are expected to exhibit the largest
sensitivity to YN-FSI effects. In addition, one notes that the YN-FSI contributions (5.128) and (5.131)
to the transition amplitude are proportional to the RPWIA amplitude. This implies that rescattering
will be important in phase-space regions close to hyperon-nucleon thresholds where the spectator
momentum is small.

Figure 6.2 demonstrated that the missing-momentum distribution for kaon photoproduction in the
RPWIA has two prominent features: near isotropy and an exponential fall off as the spectator
nucleon’s momentum rises. There is no published data available to verify these characteristics, but
preliminary momentum distributions have been obtained with the CLAS spectrometer in Jefferson
Lab’s Hall-B and are shown in Figure 6.12. This data exhibits the predicted qualitative behaviour for
low missing momenta. The data reveal a peak near || ~ 50 MeV and barely any cos § dependence
in accordance with RPWIA calculations. At high missing momenta and forward angles, an excess of
events is observed.

Figure 6.13 presents exclusive cross section results for 2H(y, KT A)n production at three representative
values for Wiky. The kinematics are coplanar and the photoproduced kaon moves forward in the
KY-CM to maximise the cross section. The top panels are calculated at the quasi-elastic peak.
At these kinematics, the YN-FSI have a small impact and do not alter the isotropic aspect of the
cross section. The results in the lower panels, by contrast, are obtained at a moderate value for
the missing momentum and are clearly forward peaked as a result of the YN-FSI. This behaviour
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integration limits are 1 except for the XTp — X Tp and ¥~ p — X~ p cross sections where cos Omax,min =
+0.5 was taken. The experimental cross sections in (a) are taken from Refs. [194] (O) and [195] (e), in (b)
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Jiilich chiral EFT result [202], the solid curve is the Jilich ’04 model [199], and the dashed curve is the
Nijmegen NSC97f potential [205]. The figure was taken from Ref. [191].

is characteristic for the high-momentum tails of the cross section and provides an opportunity to
extract information on the hyperon-nucleon potential. In an experimental analysis that focuses on
phase-space regions with high missing-momenta, any strong anisotropy will reveal the presence of
hyperon-nucleon rescattering. Note that at these kinematic conditions the cross sections are small
and count rates will be reduced.

The exclusive 2H(y, K*A)n cross section is shown in Figure 6.14 as function of the LAB scattering
angle of the outgoing hyperon for kaons produced along the photon momentum. The calculations are
performed at energies (£, = 1100 and 1300 MeV) relevant for contemporary experimental facilities.
The tendency of the hyperon to be produced co-linear with the photon is evident at all values for the
kaon momentum. The panels on the left correspond to kaon momenta slightly above the reaction’s
threshold. Here, the hyperons are restricted to a small solid angle in the forward hemisphere and
both the on-shell and off-shell parts of the YN-FSI diagram contribute constructively to the reaction’s
strength. In the vicinity of the quasi-free A-production peak, corresponding to the |p}| values of the
middle panels, YN-FSI effects are absent in the forward direction, but play an increasingly important
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Figure 6.14 — The exclusive 2H(y, KT A)n differential cross section as a function of 6y for coplanar
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MeV. The left panels are close to threshold, the middle panels correspond to quasi-free A production and
the right panels are near the ¥-production threshold. The solid curve corresponds to RPWIA calculations.
The dashed and dotted results include the on-shell and off-shell YN-FSI contribution.

role as the hyperon moves away from the z axis. Remarkably, the off-shell contribution to the YN-FSI
amplitude is negligible. Finally, the panels on the right hand side present calculations a little beyond
the X-production threshold. Both components of the YN-FSI amplitude contribute equally to the
reaction strength. At extreme forward angles, however, the effects of YN-FSI are negligible.

The role of the YN-FSI contribution appears largest close to the threshold of a reaction channel. This
observation is illustrated in Figure 6.15. It features the exclusive differential cross section at fixed
values of Wy . The cross section is given as a function of the kaon’s LAB momentum. As |p}| rises,
the energy of the incoming photon grows and the maximum momentum in the figure is equivalent
with a photon energy E, ~ 1500 MeV. The thresholds for the different kaon production channels are
listed in Table 5.1. The results in the panel at the top are obtained at the 2H(~y, K+ A)n threshold.
This leads to very small cross sections. The effect of the YN-FSI diagram is considerable and stems
predominantly from the off-shell contribution. The calculations in the middle panel are a mere 5 MeV
above threshold, yet the influence of YN-FSI has dwindled. The on-shell rescattering contribution
overpowers the off-shell part. Away from threshold, the reaction’s strength can be entirely attributed
to the RPWIA diagram and the role of the hyperon-nucleon interaction is negligible.

From an experimental point of view, EM kaon production from the deuteron sets a challenge due to
its small cross sections. Exclusive measurements are mandatory in order to extract information on
the elementary kaon-production amplitude. Through (semi-)inclusive measurements, the statistics
of an experiment can be significantly improved. This comes at the cost of losing sensitivity to
higher-order effects, such as the hyperon-nucleon rescattering contribution. Note that our results
including hyperon-nucleon rescattering have made it clear that the regions with the largest sensitivity
to YN-FSI are marked by small cross sections. Therefore, the effects of the rescattering diagrams
risk to be washed out when (partially) integrated observables are considered.
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One expects important contributions from YN-FSI when Wy is close to the reaction threshold. For
2H(y, K)Y N) observables, the invariant mass is given by

2 N
W%N = (p7 +pp — pK) = Sor + m%{ +2mpEg + 2E, (Ex — |px|cosbk) , (6.6)

which implies Wy reaches a minimum when 0 =~ 0°. Therefore, one anticipates the influence
of YN-FSI to be largest when the kaon is produced along the beam direction. This is exemplified
in Figure 6.16 where charged- and neutral-kaon production are shown at three representative photon-
beam energies. The forward-peaked aspect of the cross section is prominent and for cosfg ~ 1,
hyperon-nucleon rescattering leads to an enhancement. This effect is more pronounced at somewhat
higher photon energies. For neutral-kaon production the heightening due to the YN-FSI diagram is
less dramatic, because the cross section peaks near cos 0 ~ 0.9.

In Figure 6.17, we zoom in on the charged-kaon production reaction. Kaon-momentum distributions
are given at the same photon energies as in Figure 6.16 for cos 0 = 0.9, 0.95 and 1. As discussed
in Section 6.1, the shape of the differential cross section is mainly determined by the momentum
distribution of the spectator nucleon in the RPWIA. At the lowest photon energy, one is close
to the Y-production threshold and the cross section only peaks when the condition for quasi-free
A-production is fulfilled. At both other photon energies, the distribution is bimodal. The height of
each quasi-elastic peak is determined by the strength of the underlying elementary kaon-production
reaction and varies markedly as function of the photon energy and kaon scattering angle. Deviations
from the RPWIA result are only noticeable when the kaon is produced along the photon three-
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dashed lines represent the RPWIA result. The solid lines also include the on-shell YN-FSI contribution.

momentum. The YN-FSI strengthen the cross section especially for higher photon-beam energies.
The effect leads to enhancements up to 10 % in the quasi-elastic peaks. The global appearance of the

cross section remains unaffected however.

6.3 Photoproduction data

To date, a limited amount of fully analysed experimental results are available to confront model
calculations with. At Jefferson Lab, the CLAS collaboration has collected data during three run
periods with a photon beam incident on a deuterium target. No data from the g2 experiment [207]
have been made public so far. The gl0 run period [206, 208] provided data for the elementary
n(y, KT)X~ reaction [151]. The RPR-model calculations are compared to these data in Figure 3.8.
The g13 experiment [209] ran in 2006 — 2007. Preliminary results for the photon-beam asymmetry
off bound protons [210] and polarisation observables in K°A and K°%% production [153] have been
presented. These analyses, however, are ongoing and have not been published yet.

To our knowledge, the only published 2H(v, K)Y' N data set has been obtained at the Laboratory for
Nuclear Science (LNS) at Tohoku University using the Neutral-Kaon Spectrometer (NKS) [211, 212].
The semi-inclusive neutral-kaon photoproduction cross section from deuterium was measured in
two photon-energy bins close to threshold. The data are averaged over 100 MeV-wide energy
bins and integrated over 0.9 < cosfx < 1. The NKS spectrometer has since been upgraded to
NKS2. In 2005 — 2006, new data has been collected with significantly higher count rates and an
extended solid-angle coverage [213-215]. The NKS2 data comprises four angular bins in the forward
hemisphere (Acosfx = 0.1). In addition, semi-inclusive A-production cross sections have been
extracted from the NKS2 data set. These data are presented as hyperon-momentum distributions in
two angular bins in the forward hemisphere (A cosfy = 0.05) and a partial total cross section as
function of the photon energy.
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Figure 6.17 — The ?H(y, K*)Y N differential cross section as function of the three-momentum of the
outgoing kaon in the LAB frame. The results in the upper, middle and lower panels represent photon
energies £, = 900, 1100 and 1300 MeV respectively. The results are obtained at three values for the kaon’s
scattering angle in the LAB (from left to right: cosfx = 1, 0.95 and 0.9). The dashed lines represent the
RPWIA result with the shaded region indicating the contribution of the 2H(v, K+ A)n channel. The full
result, which includes the on-shell YN-FSI contribution, corresponds to the solid lines.

In Figures 6.18 and 6.19, our RPWIA results for neutral-kaon momentum distributions are compared
to both the NKS and NKS2 data sets. The model calculations are performed at the centre of the
photon-energy bin. As photon energies close to the >-production threshold are probed, the cross
sections are predominantly uni-modal except in the highest energy bin at forward angles. The RPWIA
predictions reproduce the shape of the data and the characteristic quasi-elastic peaks of semi-inclusive
kaon production. At the lowest energy bin, the strength of the reaction is underpredicted by roughly
a factor of two-to-three at all angles. Whereas the model calculations suggest the differential cross
sections falls off when the angle between kaon and photon momentum grows, the LNS data in both
angular bins have the same size. One notices that the resonant contributions to the elementary-
production operator play an unsubstantial role. At E, = 1050 MeV, the size of the cross sections in
the RPWIA is in line with the measurements and the reaction is still dominated by the Reggeized
background. Yet, one notes that nucleon-resonance contributions are essential to reproduce the
observed shoulder at |pj| =~ 200 MeV. These kinematics correspond to quasi-free ¥-production.

In Section 6.1, the error bars on experimental helicity amplitudes emerged as the chief source of
theoretical uncertainties in our formalism. Because both elementary KYA and K°X° production
from the neutron contribute to the 2H(y, K°)Y N cross section, one can expect a considerable impact.
The shaded band in Figures 6.20 and 6.21 represents the range of cross sections obtained with
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Figure 6.20 — The semi-inclusive 2H(y, K°)Y N differential cross section as a function of the kaon
momentum |p | integrated over four cosfx bins. The data are from Refs. [211, 212] (o) and [215] (e),
and are averaged over 900 MeV < E, < 1000 MeV. The RPWIA results have been calculated at the bin
centre £, = 950 MeV. The dashed curve indicates the Reggeized background model, whereas the full curve
corresponds to the full RPR amplitude. The shaded area takes the uncertainties of the adopted helicity
amplitudes into account.

the intervals of RPR-model coupling constants listed in Tables 1.1 and 1.2. The influence of the
uncertainties is considerable. At E, = 950 MeV, where the RPR predictions do not agree with the
data, the missing strength can be compensated by including the helicity-amplitude errors. One
notices that the induced errors in the quasi-elastic A-production peak are large compared to those in
the region of quasi-free ¥ production. This can be understood if one considers the resonant content
of the RPR model for A production. Two less-established resonances, i.e. P13(1900) and D13(1900),
play a role and their photon-helicity couplings have not been determined experimentally. This forced
us to introduce sizable estimates for the error bars on the ratios of their coupling constants. As such,
our appraisal of the theoretical uncertainties is conservative and likely an overestimation.

The preliminary hyperon-momentum distributions for semi-inclusive A production are shown in Fig-
ure 6.22. These data have been obtained at two photon-energy bins (900 MeV < E, < 1000 MeV
and 1000 MeV < E, < 1080 MeV) and are integrated over two angular bins in the forward-scattering
hemisphere. The data are confronted with RPR model calculations using the RPWIA obtained for
photon energies at the bin centre. The overall agreement between theory and experiment is good.
The size and shape of the momentum distributions are nicely reproduced in both photon-energy
bins. This is in contrast with the semi-inclusive kaon-production results at £, = 950 MeV presented
in Figure 6.18, which underpredicted the data considerably. Charged-kaon production from the
proton inside the deuteron accounts for the bulk of the cross section strength.

In Figure 6.23, a partial total 2H(y, A)K N cross section is depicted over the full energy range of
the LNS experiment. The data have been integrated over hyperon scattering angles in the range
0.9 < cosfy < 1. In the threshold region, where neutral-kaon production plays an insignificant role,
the RPR model provides an excellent description of the NKS2 data. For £, 2 950 MeV, the relative
contribution of the 2H(~y, K°A)p channel builds up and the RPR predictions overshoot the data.
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Figure 6.22 — The semi-inclusive 2H(vy, A)K'N differential cross section as a function of the hyperon

momentum |py | integrated over two forward scattering-angle bins: 0.95 < cosfy < 1 (upper panels) and
0.9 < cosfy < 0.95 (lower panels). The data are from Ref. [215] and are averaged over 900 < E,(MeV) <
1000 (left panels) and 1000 < E,(MeV) < 1080 (right panels). The theoretical results are calculated at
the bin centres. The full line gives the RPWIA prediction using the RPR model, whereas the dashed line
singles out the contribution of the 2H(, K™ A)n channel.
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Figure 6.24 — The semi-inclusive 2H(vy, K°)Y N differential cross section as a function of the kaon
momentum |pj | integrated over forward scattering angles 0.9 < cosx < 1. The data are from Refs. [211,
212] (o) and [215] (e), and are averaged over two, 100 MeV-wide, photon-energy bins. The lines correspond
to RPR calculations using the RPWIA performed in 10 MeV steps for 900 MeV < E, < 1100 MeV.

So far, we have compared model predictions calculated at the centre of the photon-energy bins to the
experimental results from LNS. These data are averaged over 100 MeV-wide bins. The energy range
900 MeV < E, < 1100 MeV is near the kaon-production threshold. This implies that the shape of
the cross section undergoes rapid changes. We illustrate this in Figure 6.24. Model calculations
in the RPWIA are shown at the kinematics of the NKS data. The results are obtained over the
full range of photon-beam energies in 10 MeV intervals. Within each energy bin, both the threshold
value for the kaon momentum as well as the position of the quasi-elastic peak shift appreciably.
Especially the onset of the Y-production peak results in a non-linear evolution of the cross section.
As a consequence, the effect of averaging substantially alters the aspect of the cross section and the
data will be very sensitive to possible asymmetries in the detector’s acceptance.

Bin-averaged and bin-centred RPWIA results are compared to the data in Figures 6.25 and 6.26. As
anticipated, the averaging procedure smears the characteristic shape of the differential cross sections.
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Figure 6.26 — As in Figure 6.25 for data averaged over 1000 MeV < E, < 1100 MeV. The model results

have been calculated at the bin centre £, = 1050 MeV.

Particularly at E, = 1050 MeV and 0.9 < cosfk < 1.0, the shoulder attributed to quasi-free 2
production is far less pronounced. At each value of |pj |, we have computed the standard deviation

on the cross section. The latter are represented by the shaded area. The uncertainties related to bin

averaging are appreciable and the relative effect can amount to 100%. This is similar in magnitude

to the experimental error bars.

Finally, we consider the role of the YN-FSI diagram at the kinematics of the LNS experiment.
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In Figure 6.16, cross sections for neutral-kaon production are shown as a function of the kaon’s
scattering angle. The effect of the YN-FSI contribution is generally small and is most outspoken in a
small angular range at extreme-forward angles. This is evident in Figure 6.27 which features the
semi-inclusive cross section at forward angles. For cosfx = 1, the X peak dominates and YN-FSI
effects result in an 25 % increase of the cross section. However, as soon as the kaon is no longer
produced along the photon, A production has the upper hand and rescattering effects are minimal.
Since the NKS and NKS2 data are integrated over angular bins that have a width of Acosfx = 0.1,
the overall YN-FSI contribution is unimportant. Our calculations point to an effect of at most 1-2

%.

6.4 Electroproduction data

Also for the 2H(e, ¢’ K)Y N reaction, few data are available. To our knowledge, a total of two data
points have been published. These data have been obtained at Jefferson Lab’s Hall-C [216] in a
double-coincidence experiment. The incident-beam energy was fixed at 3245 MeV and scattered
electrons where measured at an angle of 14.93°. The virtual photon has virtuality Q? = 0.35 GeV?
and energy E, = 1668 MeV. Even though data was collected at different configurations for the kaon
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dashed curve shows the contribution of the Reggeized background, whereas the solid curve also includes
the s-channel resonant contributions of the full RPR amplitude. Data from Ref. [216].

spectrometer, cross sections have only been published for a single value of the kaon scattering angle.
These cross sections have been averaged over the azimuthal angle.

By fitting missing-mass distributions to data, A and ¥ production have been separated. Owing
to the small mass difference between the 3° and ¥~ hyperons, only the total ¥ strength could be
determined via the missing-mass technique. Ref. [216] disentangles the X° and ¥~ contributions
based on a dedicated phenomenological model developed in Ref. [217]. Inevitably, this introduces a
critical model dependence in the published exclusive Y-production results. Therefore we will only

use the inclusive Y-production cross sections.

In Figure 6.28, RPWIA predictions are confronted with the Hall-C data. The model calculations
clearly overestimate the data. No experimental angular distributions have been published to verify

the predicted fx-dependence of the cross section.
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Conclusions and outlook

Motivated by the desire to understand the structure of baryons in the confinement regime, the
exploration of the nucleon’s excitation spectrum has been a cornerstone of modern hadronic physics.
Nucleon spectroscopy presents a unique opportunity to judge the validity of the constituent-quark
paradigm. Pion-nucleon scattering is the conventional tool to chart the excited states of the nucleon.
Yet strangeness production is highly complementary, because of its inherent sensitivity to the nucleon
sea.

The Regge-plus-resonance formalism

The traditional approach to EM meson production is based on isobar models. For kaon production,
however, one quickly runs into trouble because of the high threshold and the dominance of background
terms. This calls for a description in terms of alternative degrees of freedom. Regge theory provides
an efficient account of the reaction dynamics in the high-energy region, where partonic degrees of
freedom dominate. We successfully model charged-kaon photoproduction at high energies through
the exchange of KT (494) and K**(892) Regge-trajectories. Extrapolating this amplitude into the
resonance region, we find that it accounts for the general trends of the data. Applying the Regge
model as a parametrisation of the troublesome background contributions, the coupling constants of
the resonance-exchange diagrams can be determined independently. In this way, the analysis of the
resonant and non-resonant content of strangeness production is effectively decoupled.

An RPR model including different resonance-exchange diagrams is optimised to the resonance-region
data, while the three free parameters of the Regge model are held fixed. In the KA channel, the
set of established resonances found in the RPP turns out to be insufficient and a missing D13(1900)
resonance is introduced. For K+X° production, both established nucleon and A resonances are
considered and a successful description of the data is achieved. Interestingly, in both KA and
K*+¥° production, the two-star P;3(1900) resonance emerges as a vital model ingredient. Since this
state is not predicted by quark-diquark models, it represents strong evidence in favour of a picture

113
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of the nucleon with three constituent quarks.

Using the most recent photo- and electroproduction data, the reliability of the RPR model can be
evaluated. Some interesting extensions to the current RPR model are formulated. These aim at
improving the description of the differential cross section at backward angles. In addition, it is also
desirable to consider spin-5/2 resonances in the analysis of the resonant content of the reaction.
The RPR framework has recently been updated in this direction and a re-analysis of the complete
database is forthcoming. In spite of its limited number of adjustable parameters, the RPR-2007 model
displays a remarkable ability to describe and predict the available p(’y(*), KT)A and p(’y(*), KH)x0
observables from threshold up to E, = 16 GeV.

In order to gauge the predictive power of the RPR model, whose parameters are constrained by data
obtained off proton targets, we extend the formalism to reactions with a neutron target or a neutral
kaon in the final state. The conversion to neutron targets of kaon production models that include
resonant diagrams requires knowledge of helicity amplitudes. Beyond the second resonance region,
the latter are either unknown or poorly constrained by pion-production data. As a consequence, they
put severe limits on the predictive power of both the RPR and isobar approaches. The Regge model,
by contrast, offers an elegant and economical description of EM kaon production. Isospin symmetry
suffices to anchor the neutron to the proton channel.

Applying the RPR formalism to neutral-kaon production fails to account for the available p(vy, K9)%+
data. Because the K°(494)-exchange diagram does not contribute, a single trajectory remains in
the Regge amplitude. We consider the option of adding an additional trajectory and identify the
K*(1410)-trajectory with a constant phase as the best solution. Since there are no data available at
high energies to reliably anchor the parameters of this contribution, we opt for a more pragmatic
approach. In the N (v, K)¥ channels, the EM coupling constant of the K*(892)-exchange diagram
is re-adjusted to the available data, resulting in a good description of the observables.

The usefulness of the RPR formalism is illustrated by considering K~ radiative capture in flight on
the proton, which is related to kaon photoproduction through crossing symmetry. This reaction is
ideally suited for studying the spectrum of excited hyperon states. Recently, the first differential-
cross-section results for the yA and yX° final states have been published. A theoretical analysis is
performed with the RPR approach. The non-resonant contributions to the reaction amplitude can be
parametrised by the Regge model that has been optimised against kaon-photoproduction data. Using
the cross-section data, we explore the possible contributions of hyperon resonances listed in the RPP.
The v3° final state is dominated by hyperon-resonance exchange and hints at an important role for
a resonance in the 1700 MeV mass region. In the yA final state, on the other hand, the non-resonant
contributions account for half of the measured strength, and the data suggest the importance of a
resonance in the mass region around 1550 MeV.

Strangeness production from the deuteron

In the final part of this work, we focus on EM strangeness production from the deuteron. By
studying kaon production from this barely bound state of a proton and a neutron, one hopes to
extract the elementary reaction from the neutron. To date, the strangeness-production database
is heavily dominated by charged-kaon production from the proton. Measuring all six possible final
states would in some sense constitute an isospin-complete experiment and would help constrain the
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reaction dynamics.

We develop a covariant formalism for 2H(y, KY)N based on the RIA using the RPR model as
elementary-production operator. The leading contribution to the reaction amplitude stems from
the RPWIA. The momentum distribution of the deuteron emerges as the dominant factor that
dictates the angular and momentum dependence of the cross sections. Studied as a function of the
momentum of the outgoing nucleon, one notices that the reaction strength falls off exponentially as
the missing momentum increases and that the distribution is nearly isotropic. The semi-inclusive
kaon-production cross section is dominated by those phase-space regions where the spectator nucleon
is almost at rest.

We investigate the sensitivity of the computed cross sections to the various model ingredients. The
details of the deuteron wave functions do not have a large impact on the final results, except at
large missing momenta. A similar observation is made for the effect of off-shell extrapolations of
the elementary-production operator. The variations induced by the poorly constrained helicity
amplitudes, on the other hand, are large. We judge the extrapolation of the resonance information
from proton to neutron targets to be the most important source of uncertainties.

Model predictions for semi-inclusive K° and A photoproduction are compared to experimental results
obtained in the threshold region with the NKS and NKS2 spectrometers at LNS. Except at the lowest
energy for 2H(, K°)Y' N, all predictions compare favourably to the data. The agreement of the
RPR-model with the two published charged-kaon electroproduction data points is less satisfactory.
The data is overpredicted by roughly a factor two to three. Additional measurements are clearly
needed to further investigate the 2H(e, ¢’ KY )N reaction.

The effectiveness of the deuteron as a neutron target is threatened by final-state interactions. We
investigate the effect of a photoproduced hyperon which rescatters of the spectator nucleon. This
contribution can be split up in an on-shell part, with all rescattering particles on mass shell, and
an off-shell term. The latter involves a virtual hyperon and requires a computationally expensive
principal-value integration. The effect of YN-FSI is important when the invariant mass of the
hyperon-nucleon system is close to threshold. For semi-inclusive kaon production, rescattering
contributes exclusively when the kaon is emitted along the direction of the incident photon. Since
the YN-FSI-diagram is unimportant at low missing momenta, the quasi-free strangeness-production
cross section can be effectively extracted when judicious cuts are applied on the momentum of the
outgoing nucleon. Thus, the deuteron can be considered as a reliable effective neutron target.

From an alternative point of view, strangeness production from the deuteron can be thought of as a
nuclear laboratory to study the hyperon-nucleon interaction. Such a program requires that one focuses
on phase-space regions where YN-FSI dominate the reaction dynamics. Our model calculations
indicate that this implies exclusive measurements at high missing momenta. The reliable extraction
of information on the hyperon-nucleon force at these kinematics will however be challenging. At
high missing momenta, the cross section is small and count rates will be low. Moreover, this region
in phase space is most prone to theoretical uncertainties originating from the adopted deuteron
wave function and the off-shell extrapolation of the elementary-production operator. Therefore, we
conclude that in order to distill trustworthy information on the hyperon-nucleon interaction from
strangeness-production data, the deuteron structure and the reaction dynamics need be investigated
further.



116 Chapter 7. Conclusions and outlook

Outlook

In this dissertation, we have studied strangeness production from the nucleon and the deuteron using
the RPR formalism. This framework provides a unique approach to kaon production, and makes
it possible to describe data in the resonance region with a small number of free parameters, while
the correct high-energy limit is ensured. We have demonstrated the ability of the RPR formalism
to predict results for strangeness production from the neutron, as well as neutral-kaon production.
In the foreseeable future, new experimental information for the N (v, K°)Y reaction channels will
become available. These data will constitute an important test for the extensions to the RPR-model
presented in Chapter 3.

For the transformation of the Regge-model amplitudes to neutral-kaon production reactions, we have
made use of the limited database in the resonance region. The planned upgrade of the accelerator
facility at Jefferson Lab offers the opportunity to measure strangeness production at photon energies
well beyond the resonance region. These results would constitute invaluable input for the construction
of more reliable Regge models, making it possible to constrain Regge-model amplitudes for all six
strangeness final states in an energy region where resonant contributions have died out.

Our results for strangeness production from the deuteron rely chiefly on the elementary-production
operator. In Section 2.4, we have anticipated a re-analysis of the current N (v, K)Y database in an
upgraded RPR framework. This forthcoming model will mainly provide an improved account of the
reaction mechanisms at backward angles. Applying this model in future deuteron calculations will
lead to more reliable results.

Our primary motivation to study the 2H(y, KY)N reaction stems from the prospect to extract
information on quasi-free kaon-production from the neutron. Our YN-FSI results have provided
evidence that the deuteron indeed constitutes a dependable neutron target. In order to further
substantiate this claim, other possible rescattering contributions need to be considered. Especially
the two-step process, where an intermediary pion is produced by the incoming photon, can play an
important role, since the elementary pion-production cross section is nearly one order of magnitude
larger than the kaon-production one. The two-step process can be calculated in an analogous way to
the YN-FSI contribution, and requires models for the elementary pion-production operator and the
mN — KY rescattering vertex. For the former, many reliable models that are constrained by a large
database are available. Experimental information on the latter, on the other hand, is scant, and a
successful evaluation of the two-step process will hinge on a reliable description of the N (7, K)Y
reaction.



APPENDIX A

Notations and conventions

If you obey all the rules, you miss all the fun.
— Katharine Hepburn

Throughout this document, we adopt the conventions used in the textbook of Gross [218]. Our
conventions with regard to Lorentz transformations and rotations largely follow those of Leader’s
textbook on spin in particle physics [100]. For the benefit of a self-contained manuscript, our

conventions and notations will be summarised in this appendix.

In this work, we assume God-given units [171], where
h=c=1. (A.1)

In order to convert lengths and cross sections to SI units, the following conversion constants are
useful [1]

he = 197.3 MeV fm,

) ) (A.2)
(hc)® = 389.4 GeV~ pbarn .
A.1 Four-vectors and tensors
A contravariant four-vector x is written as
o = (20, 7) = (2°,0) = (2%, 21, 0%, 2%) (A.3)

where the Greek index p runs from 0 to 3 and Roman indices run over spatial coordinates 1 to 3.
The covariant four-vector is obtained by lowering the Lorentz index

T, = g’ = (xo, —7). (A.4)
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In this expression, we tacitly assume summation over the duplicated indices and introduce the metric

tensor
1 0 0 0
0 -1 0 0
L =g = A5
Guv =9 0 0 -1 0 (A.5)
0 0 0 -1

The symbol p is used to denote the energy-momentum four-vector. One has the Einstein relation for
free particles
P’ =p-p=pp" = gur'p’ = ")’ —pI> =m’> >0, (A.6)

where m is the rest mass.

The totally antisymmetric tensor is defined according to

+1 for even permutations of (0,1,2,3),
€% = ¢ 1 for odd permutations of (0,1,2,3), (A7)

0 for repeated indices .

A.2 Rotations and Lorentz transformations

Conventionally, transformations are considered either from the active or passive point of view.
Here, we adopt a different convention. A transformation ¢ denotes the physical operation of the
transformation on the object on which it acts. The notation ¢p implies that p is physically boosted
and/or rotated. In literature, this action corresponds to the active point of view. The transformation
t of the axes of a reference frame O is referred to as tO.

A rotation is completely specified by three real parameters. In this document we will adopt two
different descriptions:

e in terms of Euler angles a, # and ~ the rotation r(«, 3, 7) is performed by successive rotations
through angle v (0 < a < 27) about the z axis, angle 8 (0 < < 7) about the y axis and
finally angle o (0 < v < 27) about the z axis. Denoting by r;(0) (i = x,y, z) a rotation through
angle # about the ¢ axis, we have

T(OC7 B, 7) = rz(a)ry(ﬁ)rz(V) : (A8)

e as a single rotation through the angle w (0 < w < ) about the unit axis it defined by the polar
and azimuthal angles § and ¢. We use the notation r(w; 6, ¢) or (&) with & = w.

An arbitrary Lorentz boost 1(5) is equivalently fixed by three real parameters: the boost speed | 8 |

and the azimuthal and polar angles of the boost direction 3= 5 /| 8 |. For a boost with velocity v
along the x, y or z axis, we adopt the notation: [;(v) (i = z,y, 2).

Any physical Lorentz transformation ¢ can be decomposed as a rotation r(&J) followed by a pure

Lorentz boost I(3). For such a Lorentz transformation acting on a four-vector, we adopt the following
standard notation

(tp)" = [A(D)]", p", (A.9)
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having
Y VB v By VB2 10 0 0
2 - VB 1+a52 aﬁrﬂy a3z, 0
A(t) = A(l A(r(@)) = * , A.10
= AMUEDAC@) = | 5" 55" 1ap ans || 0 Ry (A.10)
V8. af.f aﬁzﬁy 1+ aﬁf 0
where
1
V= —,
_ 132
1-16] (A.11)
o= ih
y+17
and
R;j = coswd;j + (1 — cos w)o?icfij - sinweijkcﬁk, (A.12)

with 4,5 = 1,2, 3.

A Lorentz transformation ¢ acting on the Dirac indices of spinors is denoted by S(t). For a rotation

(), we have explicitly
w w -

S(r(d)) = cos 5 isin 5&5,;7570*/ . (A.13)
The representation of a boost I( _’) is given by
S(U(B)) = cosh g + sinh g Gyt (A.14)
with & the rapidity and
1

cosh & =

V11— 16

cosh§ _[eosh&+1 (A.15)
2 2 ’

sinhg = \/COSh%.

Finally, we introduce the Wigner rotation matrices ®7(r) as the unitary (2J + 1)-dimensional
representation matrices of the rotation r. They obey the following property

[ernm/ (T)]

*

= (=)™ DI (). (A.16)
Describing the rotation in terms of Euler angles, the Wigner matrices are given by
7 (o, B,7) =e ™) (B)e ™, (A.17)

where the non-trivial part is contained in the real-valued d-functions. The latter enjoy several
symmetry properties

d’r{zm’(ﬁ) = dim’,—m(ﬁ) - (_1)mim,d7{z’m(ﬂ) - (_1)J+md7{z,—m’(7r - B) - d’r{z’m(_ﬁ) : (A18)



120 A.3. Pauli and Dirac matrices

The d-functions used in this work are

1/2 B
d1/2,1/2(ﬁ) =S5,
1/2 :
d1§2,71/2<ﬁ) - s,
1+ cospf
dh(8) = —5 . (A-19)
_sinﬁ

dio(B) = ,
10 (/8) \/i
dbo(B) = cos 3.
The Wigner rotation matrices for rotations in the representation r () or r(w; 6, ¢) are defined as

D (@) =D (wi0,0) = (Jm| e | m) (A.20)

with J = (jx, jy, jz) the angular momentum operators, which are the generators of rotations. The
Wigner matrix for J = 1/2 is given by [219]

DY2(w:0, ) = cos § — isin % cos7tr9 —sin § sin gei(@+3) (A.21)
—sin % sin 96_’(¢+5) cos % + 4 sin % cos

A.3 Pauli and Dirac matrices

The Pauli sigma matrices are given by

ol = 01 . o= 0 - . o= L0 , (A.22)
10 i 0 0 -1

and obey the relation

olod = ieijkak , (A.23)
where we have introduced the antisymmetric tensor
€123 = €231 = €312 = 1 and ejz'k = _5ijk . (A.24)
The Pauli matrices fulfil the following commutation and anticommutation relations

[O'i, O'j] = 2ieijkak,

o (A.25)
{O’Z, O'j} = 26ij .

Dirac or gamma matrices are defined as the set of n X n matrices v* that generate the Clifford
algebra defined by the anticommutation relation

A =AY A = 29" x 1, (A.26)

with 1,, the n-dimensional unity matrix. In four-dimensional Minkowski space, several representations
of the Dirac matrices exist. We adopt the Dirac representation which, in terms of Pauli matrices,

1 0 ; 0 o

0 2 i

= d = . A27
v ( 0 1, ) and 7y ( o0 ) ) ( )

gives
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for ¢ = 1,2, 3. Several interesting matrices can be constructed from these v matrices. We define the
traceless product

7 =iy, (A.28)
the traceless antisymmetric combination
ot = %W‘,v”], (A.29)
and the charge conjugation matrix
C = —ir"2. (A.30)

A.4 Dirac spinors

The positive- and negative-energy four-component spinors u(p;ms) and v(p;ms) of an on-mass-shell
particle with four-momentum p = (E,, p) and mass m = /pFp, are solutions to the Dirac equation

0= (p—m)u(@ms) = (p+m)v(F;ms), (A.31)
where we have adopted Feynman’s notation

A=A". (A.32)
Defining the conjugate spinor @(p;m,) = uf(7; ms)7°, and imposing the normalisations

u(p; ms)u(p;ml) = 2Mbmm, 5 O(P;ms)v (P ml) = —2mbpm m, » (A.33)

the spinors read

Ep+m

. 1,
u(p§ms):\/Ep+m< Gp )XmSa

57 (A.34)
o(im,) = m( 1 )nms.
2
The two-component spinors x.,, and 7,,, are orthogonal and normalised so that
X Xomt = T ot = O, - (A.35)

Associating ms with the physical spin component of the fermion along the z axis, one can adopt the
following representation

X+1/2(9 =0,¢9= 0) = ( é ) ) X—1/2(0 =0,¢0= O) = ( (1) ) : (A.36)

A spinor u(p;ms, 0, ¢) with spin-projection mg along an axis fixed by (6, ¢), can be obtained by
rotating the spinor w(p; m.) = u(p; m’,0,0) with the Wigner matrices defined in (A.17), i.e.

(@i ms, 0,0) =D, (6,0, —6)u(;ms) . (A.37)
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Explicitly, the two-component spinors are given by

.6 =P i O
><+1/2(0,<z>)=< 0% 2 ) , x_m(e,qb):( ‘ Zm?)- (A.38)

10 qing 0 (44
€ s 5 COS 5

The two-component spinors for particle and antiparticle states are related to each other up to an
arbitrary phase. We define the following phase convention

NMms = X—ms - (A.39)
The v and v spinors are then related by charge conjugation as follows

CET(ﬁ; ms) = (2ms) u(ﬁ, ms) ) OﬁT(ﬁ; ms) = (2ms) U(ﬁ; ms) . (A40)

One can define projection operators for positive- and negative-energy states as

Ar(p)=p+m,
*@ P (A.41)
A— (p) =m — p )
or in terms of spinor components
(At (D)) ap = Y alB ms)u(5:ms)
e (A.42)
[A*(p)]ab = - Z Ua(ﬁ; ms)ﬁb(p; ms) :
ms
This allows one to write the completeness relation
A+ (5) + A ()] = 2m 00 (A.43)
Finally, the propagator of a Dirac particle of mass m and four-momentum p is given by
p+m
G R A — A.44
1(p,m) . (A.44)
and has the following useful decomposition
1 A4 (P) A_(—p)
G = - A.45
3(p.m) 2F, (pO—Ep+i€ P+ E, —ie) (A.45)

with E, = /[F]2 + m2.
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Biquaternions

And here there dawned on me the notion that we must admit,in some sense,
a fourth dimension of space for the purpose of calculating with triples. ..
An electric circuit seemed to close, and a spark flashed forth.

— W. R. Hamilton

It is well known that an arbitrary complex number has a unique representation on the two-dimensional
plane. By virtue of Euler’s formula, one has

x+iy:rcos¢+irsin¢:’r€i¢, (B.1)

where r and ¢ are the modulus and phase respectively. Since elbei? — ei(¢+¢/), we see intuitively
that complex numbers with unit norm form a representation of the rotation group in two dimensions,

denoted by O(2).

The number system of quaternions H was introduced by W. R. Hamilton in 1843 in an attempt to
extend the concept of complex numbers to three dimensions. A set of three numbers turned out to
be insufficient to form an algebra. The breakthrough occurred when Hamilton decided to abandon
the commutative law of multiplications. He introduced two additional imaginary units j and k,
obeying the rules

i =42 =k =ijk=—1. (B.2)
A quaternion () is represented by

Q = qo+iq + jg2 + kg3, (B.3)

with qo, g1, g2 and g3 real numbers. Later, Hamilton extended the notion of quaternions by allowing
the four components to be complex numbers. He dubbed these objects biquaternions.

It is not our intention to give a extensive review on biquaternions and their role in number theory
and physics. We will restrict ourselves to providing their definition and some of their basic properties
in Section B.1. In this thesis, biquaternions will prove to be a useful alternate representation of the
Lorentz group. To this end, the relevant formulae connecting biquaterions to rotations and Lorentz
boosts will be presented in Section B.2
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B.1 Definition

We adopt a number of different notations for a biquaternion

3
ZQiei = (QO7Q1>C]2aQ3) = (q()v(j)? (B4)
1=0

Q

where ¢; € C. The imaginary units of the biquaternions are denoted by e; (i = 1,2,3) and their
multiplication is defined as
g;e; = —5Z-je0 + €ijkek , (B.5)

for 7,7 = 1,2,3. Here, we have defined ¢y = 1.

Biquaternions are added, subtracted and multiplied with scalars according to the usual laws of
arithmetic. Due to the property (B.5) of the imaginary units, they obey the following non-commutative
multiplication law

QQ' = (090 — G- 7' 907" + @7+ 7* 7, (B.6)
with (O-0) and (O x O) the usual scalar and vector product of three-vectors.

We define biquaternion conjugation

@Z (qm_(D ) (B7)

as well as complex conjugation

In addition, hermitian conjugation is defined by
Qf =0Q~. (B.9)

In general, the norm N (Q) of a biquaternion is a complex number

NQ) =QQ=QQ=g+d+d+4d, (B-10)
and obeys the rule
N(QQ) =N(QN(Q). (B.11)
For biquaternions of non-zero norm, one can define an inverse
1 J
=—Q. B.12

B.2 Representation of the Lorentz group

In a biquaternion representation, a four-vector p reads

Q(p) = (°,ip), (B.13)

in which case the norm of the biquaternion is equal to the four-vector’s length

N(@Q(p)) =p". (B.14)
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The biquaternion representation of a general Lorentz transformation ¢ acting on a four-vector is

defined by
Qtp) = Q(HQ(P)QM). (B.15)

It is easily shown that the four-vector’s length is invariant as long as N (Q(¢)) = 1. Therefore, biquater-
nions of unit norm form a representation of the Lorentz group. Multiple Lorentz transformations
can be chained by multiplying them from the left.

A boost in the direction 3 with rapidity & (see Eq. (A.15)) is represented as
PP P
Q(I(B)) = (cosh 2 i sinh 5) , (B.16)
whereas a rotation through the angle || about the unit axis & can be accomplished by the following
operator

Q(r(@)) = (cos —,dsin —) . (B.17)

Remark that the biquaternion representation of a rotation is expressed in terms of half of the rotation
angle w. This is an important observation with regard to the rotation of (helicity) spinors, a subject
that we will discuss in Section C.2. Clearly, two distinct quaternions represent the same rotation.
This is reminiscent of the group SU(2) being a surjective homomorphism with regard to the rotation
group SO(3). Indeed, quaternions of unit norm are isomorphic to the group SU(2).

Finally, we wish to point out a useful feature of the biquaternion representation of the Lorentz group.
A Lorentz transformation t can always be decomposed as a rotation r that is followed by a Lorentz
boost [. Given the matrix representation (A.10) of a Lorentz transformation, it is difficult to uniquely
determine r and [. Starting from the biquaternion representation @Q(t), however, a straightforward
recipe exists. Defining two quaternions R [Q(t)] and I[Q(¢t)] as the real and imaginary part of Q(t),

3
RIQH] =Y RIQ(1)iles
7 (B.18)
SR =) _ SQ#)ile,
1=0
we have
Qr) = SR 1Q()] .
S (B.19)
Q) = (i, —i;%[Q(t)] S[Q®)]),
with

b=/ RQWIRIQW]. (5.20)
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APPENDIX C

Helicity spinors

In Section A.4, we have introduced the four-component Dirac-spinor solutions u(p;ms, 0, ¢) and
v(p; ms, 0, @) to the free Dirac equation. In this representation, the spin quantisation axis needs to be
specified in a particular frame, and since this axis is a three-vector, it cannot be readily transformed
to another frame. Suppose the state of a particle with momentum p is given by u(p;ms) in the
frame O. Say that we wish to express this state in a different frame O’ = [='O. With the spinor
representation of Section A.4, one finds u(lp;m/). However, it remains absolutely unclear what the
corresponding spin projection m/, is in @’. The helicity formalism, which we will introduce hereafter,
provides an elegant solution to this problem.

C.1 Definition

Our discussion of helicity states applies to particles as well as antiparticles. For this reason, we
introduce the notation

[pims, 0, 9) (C.1)

to describe the state of a (anti)particle with four-momentum p and spin projection mg along an axis
fixed by the polar angle # and azimuthal angle ¢. For each particle of mass m and three-momentum
P in some frame O, we can define a so-called helicity transformation,

h(p) = r(ép, Op, 0)L=(v) , (C.2)

where 6, and ¢, are the polar and azimuthal angle of the three-momentum p’ respectively, and

v = __bl (C.3)

This helicity transformation allows to associate a helicity rest-frame
Op = h(p)O, (C.4)

127



128 C.2. Lorentz transformations

with each particle. In its helicity rest-frame, a particle is at rest

=,

WL @)p = b = (m,0). (C5)

Using the helicity transformation, we define the helicity state |p, A) for a particle with four-momentum

p in some frame O as
P, A) = S(h(p))

Thus, A can be regarded as the z-component of the particle’s spin in its helicity rest-frame O,.

DA, (C.6)

Moreover, the state |p, A) is an eigenstate of the helicity operator, i.e.

'Bp

J
Pl

P, A) = Alp,A) (C.7)

where J is the total angular momentum operator.

Before proceeding, a word of caution is in order. Our definition (C.6) for helicity states differs from
those in the seminal paper of Jacob and Wick [220] in two respects. First, they employ a more
complex rotation in their expression for the helicity transformation. In addition, a distinction is
made between the states for different particles based on their role in a reaction, e.g. beam or target.
In accordance with Ref. [100], we have chosen to treat all particles on an equal footing. These
differences in conventions result in different phases for our helicity states.

Adhering to our choices for Dirac matrices and antiparticle two-component spinors described in
Appendix A, the helicity spinors for particles of mass m with three-momentum p are given explicitly
by

1 1 E,+m
_’7 A=*F7)= —— P 0 ) 3

1 1 —2)/]
A=d-)= —— _x(6,, ,
v(p 2) ,/Ep+m<Ep+m>£’\(p¢p)

where 0, and ¢, are the polar and azimuthal angle of the three-momentum p respectively. The

(C.8)

two-component spinors read

e~ 0/2 cos 6,2 —e /2 5in 6, /2
Er1/2(0p, Pp) = ( ¢i9/25in 6, /2 s E1y2(0p, Pp) = ¢i9r/2 cos 9,2 . (C.9)

C.2 Lorentz transformations

Suppose a particle with momentum p and helicity A is described in some frame O by the state
’ p7)\>. Let @' = t7'O be a second reference frame obtained by carrying out a physical Lorentz
transformation ¢t~!. The momentum for the particle in this new frame is p’ = tp and we can express
the state as

[P, Ao = S() [p, A) - (C.10)

Invoking our definition for helicity states (C.6) and inserting the unit operator 1 = h(p”)h=1(5"), we
find

‘p7 )‘>(’)’ = S(h(ﬁ/))S(T’(t7ﬁ))

p;A) (C.11)
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where we have introduced the transformation

r(t,7) = h™ (5") t h(p), (C.12)

commonly referred to as the Wick helicity rotation. As its name suggests this transformation always
represents a rotation, irrespective of the transformation ¢. One easily sees that (¢, p) is the rotation
that connects the two helicity rest-frames O, and Oy, i.e.

Op = r(t,7)O0y . (C.13)

Using the Wigner rotation matrices defined in Section A.2, one can directly apply the Wick rotation
in Eq. (C.11). We find

P, N o = S DY 2(r(t, 7))

As the @i{i are scalars, the helicity transformation can act directly on the state on the right-hand

p;A) (C.14)

side. Using the definition for helicity states, we obtain our final, elegant result
N =DY20r(t, ) [P, N C.15
|pa >O’ )\//\(T( 7p)) ‘p7 > . ( . )

This proves that it is straightforward to express helicity states with a helicity defined in a particular
frame in any other frame. It suffices to work out the Wick rotation (C.12) for the Lorentz transforma-
tion connecting both frames and to compute the appropriate elements of the Wigner rotation matrix.
The biquaternion representation of the Lorentz group, introduced in Appendix B, is particularly well
suited to address this issue. By virtue of Eq. (B.19), one can easily extract the axis of rotation and
rotation angle. In addition, the unit-norm quaternions are isomorphic to the group SU(2). It is well
known that spinors only transform up to a sign under the rotation group SO(3). The isomorphism
to SU(2), in conjunction with the expression (A.21) for the Wigner matrices as a function of w/2,
allows one to correctly transform the helicity spinors.
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APPENDIX D

Feynman rules

If I could explain it to the average person,
I wouldn’t have been worth the Nobel Prize.
— Richard Feynman

This appendix summarises the rules and other ingredients needed to compute cross sections and
decay rates. First, the formulae for the observables are given in terms of the transition amplitude.
In the next section, we review the rules needed to construct these transition amplitudes from given
Feynman diagrams. For the description of the elementary kaon-production reaction, we adopt an
effective field-theoretical description in this work. Section D.3 lists the relevant Lagrangians and
propagators which are required to calculate N(v*, K)Y transition amplitudes.

D.1 Cross sections and decay rates

When the transition amplitude 7 for the scattering process A+ B — 1 4+ 2+ ...n is known, the
differential cross section is given by

n

_ 1 I o2 d’p; 45(4) -
do = Ta = 7p] 2EA2EBZ|T| (H W) (2m)*0" (pa + PB _Zpi)7 (D.1)

i=1 i=1

where 7; = % are the velocities of the incident particles. With i we denote summing (averaging)
over final- (initial-) states.

The differential decay rate for a particle of mass m at rest reads

n

N 3= n
dl' = %Z’T\Q <1_[1 2ch(§;)3> (27T)45(4)(P - Zpi)- (D.2)

i=1
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D.2 Transition amplitude

The Lorentz-invariant transition amplitude 7 is a sum of a comprehensive and adequate set of

Feynman diagrams. Each diagram is translated to a numerical value by following a strict set of rules:
e Each amplitude requires a factor of 1.

e At each interaction vertex an appropriate operator is to be inserted. Each vertex implies an

energy-momentum conserving delta function.
e Each internal line is to be substituted by a propagator.
¢ Incoming and outgoing lines should be replaced by the free fields which they represent.

e Internal four-momenta p that are not fixed by energy-momentum conservation are integrated
[ &
(2m)*

e Every closed fermion loop results in an additional minus-sign.

over as follows

The precise form of the propagators and the operators at the interaction vertices is the subject of
the next section.

D.3 Effective fields and interactions

In order to translate the Feynman diagrams to transition amplitudes, expressions for propagators
and interaction vertices are required. The latter are derived from an interaction Lagrangian applying
a set of rules:

e Gradient operators acting on an incoming (outgoing) field ¥ (W) with four-momentum p are
substituted as follows

¥ — —ip, ¥,

D.3
a#\I/T — ipH\I/Jr . (D-3)

e The Lagrangian is multiplied with the imaginary unit .

e All external fields are removed, revealing the bare interaction vertex.
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D.3.1 Propagators

Internal lines representing a spin-0, spin-1/2, spin-1 or spin-3/2 particle with four-momentum p,
mass m and width I" are replaced with the following propagators,

1
Golp) = S a imT
p+m
G =
%(p) p? —m?2+iml’
1 p,upu (D4)
77 o v
Gl (p) - p2 _m2 —i—sz <—g” + 7n2> )
1 1 2ptp” AFp” — A4 pt
GLY = Y — — bV — — .
3 (p) p? —m? +iml <g 377 3m? 3m

D.3.2 Effective Lagrangians

In this paragraph, we list our choices with regard to the interaction Lagrangians relevant to this
work. In case of electroproduction, the photon field is virtual and a form factor should be inserted at
every EM coupling constant.

For the photon field A* and vector-meson field V¥, we define an antisymmetric tensor
FHY = 9¥ AF — 9H AV |

(D.5)
VI = QUVH — QRVY

For convenience of notation, two functions are introduced that take a different value depending on
the parity of the exchanged particle

.. {1 (P=-1)
R
75 =y (D.6)
I — {’7 (P=-1)
1 (P=+1)

Born terms The EM interaction Lagrangian for a photon field A* coupling to a ground state
nucleon N, kaon K or hyperon Y is given by

Loy = —eNyuNA*+ ZXNo, NP (D.7)
P

Loxi = —ie (K10, — Ko,K) A, (D.8)

Lyy = —eV7YA' + Vo, Y P (D.9)
P

When the kaon is neutral, the photon doesn’t couple to it. For neutral nucleons and hyperons, the
first term in Eqgs. (D.7) and (D.9) vanishes.

For the strong K'Y N-vertex, a pseudoscalar coupling is adopted

LryN = _igKYNKT?’)/g,N + h.c. . (D.lO)
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Vector-meson exchange For the EM interaction Lagrangian of the vK K*-vertex, we make a
distinction between positive-parity vector mesons

Loxx, = i%]\f}“{ (0, A,0"VY — 9,A,0"VI) K | (D.11)

and negative-parity vector mesons

eHK*K

T N F Vi K + hee. (D.12)

Lykk+ =
Conventionally, the normalisation is fixed at M = 1 GeV.
In the strong-interaction vertex one has

t
v N g * X~ v
ﬁK*YN = _gK*YNYFMNVM + W%YO’MVVM I'N + h.c. . (D13)

Spin-1/2 resonance exchange The EM interaction Lagrangian for spin-1/2 resonances reads

Loy = e:;;NRF’JWNF“” +he. . (D.14)

At the strong vertex, the interaction Lagrangian is given by

Lxyn- = —iguynKIYTR + hec. . (D.15)

Spin-3/2 resonance exchange The EM interaction of a spin-3/2 resonance, described by a
Rarita-Schwinger field R*, is given by the following effective Lagrangian

(1) (2)

Lopn- = iSXNR Y, (V)T NFY — SXNFl G (X)T (3N) F + hee. . (D.16)
2my, 4mg
At the strong-interaction we take
Liyn- = ZXNF L (2)T'Y (9VK) + he. . (D.17)

M+

In both the EM- and strong-interaction vertices, the tensor

1
GMV('Z) = Guv — (Z + 2) YuTv (D.18)

features. The coupling constant z is called an off-shell parameter.

D.3.3 N(v,K)Y transition amplitudes

After having introduced our choice of effective interaction Lagrangians, we now list the formulae
for the different contributions to the transition amplitude for kaon photoproduction. The relevant
Feynman diagrams are drawn in Figure 1.2. In Chapters 2 and 3, a RPR-model optimised to the
available photoproduction data is presented. The fitted coupling constants of this model are tabulated
in Appendix L.
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Born s-channel
P, TPy t+tmn EN .
TBorn-s = €9KYNUYV57—2 ('y“ + ——iol k:l,> UNEpy - (D.19)
SKYy — my 2mpy
Born ¢-channel
TBorn-t = egxynUy (21)/12 - PQL) f—m2 YsUNEp - (D20)
K
Born u-channel
Ky . \ Py P, tmy
TBorn-u = €9rynUy | V¥ + Y ok, Y—72’y5uN5“. (D.21)
2mpy U —my
Positive-parity vector-meson exchange
e _ [y N 1
1 1 1
ot . . (D.22)
X |Gy + ———io ( - ) UNEy, -
K, TA ma + my X\ Py — PN || V5UNEL
Negative-parity vector-meson exchange
A
e _ . g“
Trow —— VP
Ko =g emel Py PRy 2 T D23)
. .
< lav. K ( £ _ .6 ) o
[ YA T m mpZUAg Py —Pn )| UnE
Spin-1/2 nucleon-resonance exchange
T = Uyl 7 ] T'uyet. D.24
N eQmpuY SKy — M2 + impyD Py N ( )
Spin-1/2 hyperon-resonance exchange
Gy~ pY —p, tmy
Ty+ = e——uyio,,pY X Tuyet. D.25
Y €2mpuy ZU#ypryu_mg/* +’LMy*FY* UnE ( )
Spin-3/2 nucleon-resonance exchange
e
T = Uy Tp3cap (2) G5 (p., +
N Qmme+ vt Pk aﬁ( ) % (pv pN) (D 26)
1 2
X [vazenv (Y) v — GE\,Q@W (X) pN,u] (pre" — phe”) Tux .
Spin-3/2 hyperon-resonance exchange
e _ 1 2
Ty» =— 7, [ (p,”ygﬂ — pﬁa”) {G;E'yuﬁyn (Y) - Gg*)pyvuﬁyn (X)}
2mme+ (D27)

X G%a (py — p,) bap (2) pf(F'uN )
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APPENDIX E

Lorentz-invariant cross sections

The differential cross section for the reaction 2H(y*), KY)N is given by

1 d*Prc d*py d*py
do = T1>@2m)*6W (p, + pp — Px — Py — ,
o 2 s, Q2,m2D)| ”(2m) (Pw Pp — Pk — Py pN)ZEK(27T)3 2Ey (27)3 2By (27)3
(E.1)
with s = (p, + pp)? and
Mz, y,2) = 22 +y* + 22 — 22y — 222 — 2z, (E.2)

the triangle function [221], which is totally symmetric in each of its arguments. Even though the
differential cross section is a Lorentz invariant, cross sections are often presented as a function of

kinematical variables expressed in a particular frame.

In this Appendix, we derive expressions that are frame independent. In order to do so, the three-
body phase space needs to be expressed in terms of independent Lorentz-invariant quantities (see
Eq. (5.11a) for definitions). This is a non-trivial problem and has been dealt with in Ref. [170] for
the general case of n particles. After integrating out the momentum-conserving delta function, one
finds that Eq. (E.1) reduces to

1

1
do = T 2 dSKdeYNClt KdtDN . E.3
(A -Qnmd) VR " E3)
Here we have introduced the symmetric Gram determinant
-Q* p,-pp P, Px P, Py
2
16A, = 2mp  Pp Px Pp Py
2mi PPy
2
2 (E.4)
—Q* s+Q*—m} —tyxk—Q*+miy  s—sky +ipy —mj
_ Qm% s—sYN—i-tﬂ,K—i—Q2 —tDN—i—m%—i—m?V
2m%< s—sKy—SYN—i—m%
Qm?\,
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An explicit form for the Gram determinant can be found in Ref. [222]. It is a second-degree polynomial
in any of the invariants s, sy, syn, tyx and tpy. Conveniently, the ranges of physical values for
these Lorentz-invariant variables coincide with the region A4 < 0.

The four-fold differential cross section defined in (E.3) is of limited use. By integrating over a
selection of invariants, different potentially interesting semi-inclusive observables can be defined. We
will present two famous distributions: the Dalitz [223] and Chew-Low [224] plots.

E.1 Dalitz cross section

The Dalitz plotting technique involves studying the cross section as a function of the invariant mass
of two pairs of final-state particles, e.g. sxy and sy . This implies that the expression (E.3) needs
to be integrated over ¢,k and tpy for a fixed s, sky and syy. The physical regions for the the
latter variables are given by

(mx +my)? <sgy < (Vs —mn)?,

(my +mn)? <syn < (Vs — mg)*. (E.5)

For a given siy, the energies of the hyperon and nucleon can be readily determined in the kaon-
hyperon rest frame

sKy+Q2—m§(+m§/

Ey = ,
2\/SKy
E.6
. s—sKy—m?V (E-6)
g =" KY TN

2\/sKy

The upper and lower values of sy are reached when the hyperon’s three-momentum is (anti-)parallel
to the nucleon’s, i.e.

2
s%g/max = (B} + EX)® — <\/E)*/2 —m =+ \/]5’]*\[2 — m%) . (E.7)

In order to integrate over the momentum transfers ¢, and tpy in (E.3), we require the integration
limits for fixed values of s, sixy and syy. To integrate over tpy, we determine the roots of

16A4 = Athy +2Btpy +C =0, (E.8)

where

A= \(s, syn,m%),

2 2
B = SSKylyk + SSYyNtyk + SSKYSYyN + SKYSYNtyk — S“tyk — SKY Sy N

4

2,2 2 2,2 2 2 42 2 2
+ mpmygmy — 2mpmyrmy — MgMmy — Mgmp + SKySyNmp — 8

my
— synNmbpmy + stygmi + ssynmy + smimi — Q%smy — Q*mim3 Eo
Q2 2 4 902 95t 2 2,m2 4y 2.2 (E.9)
— SynNmy + QsgysynN — 2s yKMy + Synmygmy + tygkmygmy
+ smhm3 + sgymbmi + synmomasyn — Q*ssyn + Q*sm3;

2 2 22 2.2 2.2 2
— SyNtyxkMy — SSKymp + smpmy + Q7sy n + smgmy — 2ssy nmi

2 2 2 2 2 2 2 2
+Q mygmy — Q SyNmME + SKySyNmMy — Skytyxmiy + St,meK



Appendix E. Lorentz-invariant cross sections 139

and the discriminant is given by
4B? — 4AC = 16G(sky, Sy N, S, m%,m%,m?\,)G(s,tﬂ(, syn, —Q* m%,m%). (E.10)
In the previous step, we have defined the useful function

G(CU, Y,z,u,v, w) = CUQZ/ + my2 + 22u + 2u? + 2w + vw? + zzw + zUv + Y2U + yuw

(E.11)
—zy(z+utv+w) —zuz+y+v+w) —vw(E+y+z+u).
As it as a second-order polynomial in y, it can be rewritten as
G($aya z,u,v,w) :x(y_y*)(y_y+)v (E12)
with 1 1
Y+ =u+w+ 2*(1‘ —v+4u)(z—z—w)* 2—\/)\(:c,u,v))\(x,z,w) . (E.13)
x x
The roots of the constraint A4 = 0 determine the integration limits for tpy
/mi -B =+ 2\/G(SKY7 SYN, S, m%/7 m%{7 m%\])G(S7 t’yKa SYN, _Q27 m2D) m%{)
ton. = , (E.14)

A(s, syn,m2)
under the condition that the discriminant (E.10) is not negative. Solving the first factor for sy n
with the help of (E.13), it can be easily shown that the roots of

G(SKY,SYN,S,m%,m%(,WQ )7 (E15)

correspond to the limits we have defined in Eq. (E.7). Since Eq. (E.15) is positive within these
bounds, this implies that the second G function in the discriminant (E.10) should be negative. This
condition results in integrations limits for ¢y, i.e.

max/min 1 1
tK fmin _ —Qz—l-m%(—l-%(3—Q2—m2D)(SYN—S—m%<):I:%\/)\(s, —Q2%,m%)\(s, syn,m%). (E.16)

The product of triangle functions under the square-root sign is always positive given the physical
region for sy y defined in (E.5)

Collecting the above results, we obtain our final result for the Dalitz cross section

do AWy Wy N /ti‘f? /t%‘}‘vx ik
— dtx dtpn . E.17
dWKydWYN (47T)4A(S, —QQ, m%) t;n}l(n 7 tIBi]G —A4 ( )

E.2 Chew-Low cross section

A Chew-Low plot represents a scatter plot as a function of one invariant mass in conjunction with a
transferred momentum. For the reaction at hand, it is relevant to consider cross sections in terms of
the invariant mass of the hyperon-nucleon system and the momentum transferred from photon to
kaon. This implies that the differential cross section needs to be integrated over sxy and tpy. If one
adopts the exact same approach as in the preceding section, the Chew-Low cross section becomes

dO' 2[/[/YN /sr}?? /t%?\)]( |T|2
= d dt . E.18
d[[ Yth’yK (471-)4)\(3, _QQ, m2D) min SKY tIBIJG DN _A4 ( )

SKY
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For fixed values of sy and t,x within their physical bound given by (E.5) and (E.16) respectively,
the integration limits for tpx are the same as in Eq. (E.14). The limits on sxy are imposed by the
roots of the factor in the discriminant (E.10). Since

G(SKY7 SYN, S, m%? m%{7 m%V) = G(SYNa SKY S, m%/a m?\[v m%{) ) (Elg)
we can make use of (E.13) to find
s?‘;‘f/min =m3 +mi +
1
25y N

5 (SYN+m§/ —m?v)(s—SYN —m%()
YN (E.20)

\//\(SYN, m%,, m?\,))\(s, SYN, m%() .

+




APPENDIX F

Density matrix

Scattering experiments that make use of polarised beams and/or targets deal with quantum-mechan-
ical particles without a definite polarisation in the classical sense. Indeed, for incoherent mixtures of
particles, only statements about the average properties of the statistical ensemble are meaningful.
The density-matrix formalism is a convenient tool to account for the polarisation properties of the
initial and final particles when addressing cross sections [225]. In this appendix, this formalism is
sketched. After introducing the density matrix and some of its basic properties in Section F.1, we
discuss the most general decomposition of the density matrix for an ensemble of spin-1/2 particles,
spin-1 particles and photons.

F.1 Definition

For a particle of spin s, one defines a complete set of normalised basis states |s;ms) with mg =
—8,...,8. A pure quantum-mechanical spin state |¥,) can be decomposed as

S
W)= > . lsima) . (F.1)
ms=—S

The expectation value of an observable Q) is defined by

<Q> - <\Ila’ Q ’\Pa)
_ Z C%* Qmsm’ C%/ , (F2)

!
ms,mj

where we have introduced a matrix notation for the operator € in the basis {|s;ms)}, i.e.

Qmym:, = (s;ms\fl s;m;> . (F.3)
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142 F.2. Spin-1/2 system

A statistical ensemble of spin-s particles does not need to be in a pure state and is described by an
incoherent sum of pure states

D palla) (F.4)

with p, € R the statistical weight of each state in the ensemble such that ) po = 1. The mean
value of the observable ) over the entire ensemble then reads

@ = Zpa (Wal Q Wa)

(F.5)
=Tr (Qp) ,
where we have introduced the spin density matrix
pij = Y Patic™. (F.6)
«

The density matrix obeys a number of properties, which we shall not prove here (see Ref. [100] for
an introduction). We only mention that p is a hermitian matrix with unit trace.

In this work we deal with spin-1/2 and spin-1 particles. Therefore we investigate the density matrix
for those systems.

F.2 Spin-1/2 system

After selecting a quantisation axis, a spin-1/2 particle can occupy two basis states (up or down).
This implies the density matrix of a spin-1/2 system will be a 2x2-matrix. A hermitian matrix with
dimension two and unit trace can be decomposed as [225]

1
(a2 _ 1
P 2

1 1+p. pz—1ip
15 + pyot + pyo? + p.o’) = = , v, F.7
( 2 T Pz Dy Dz ) 5 Do+ ipy 1—p, ( )

where o are the Pauli matrices of Eq. (A.22). The interpretation of the coefficients p; becomes clear
upon considering the expectation value of the spin-1/2 angular-momentum operators S; = %ai

AN o1/2)) — Pi
(S;) = Tr (Szp ) > (F.8)
where we made use of (o9 = 1)

TI“(O'Z‘O'j) = 25@' . (F9)

The three-vector p'= (pg, py, p») can be interpreted as the spin-polarisation vector for the ensemble
of spin-1/2 particles.

F.3 Spin-1 system

The spin structure of a spin-1 particle is more involved. The density matrix p(l) is a hermitian 3x3-
matrix with unit trace. In literature, they are either expressed in terms of rectangular operators [225]
or spherical tensor operators [226]. For completeness we will present both and show how they are
related to each other.
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The spin-1 angular-momentum operators can be defined as [225]

1 010 1 0 — 0 1 0 0
Seg=—4=| 1 01|, Sy=—4|3¢ 0 —i |, S:=]1020 0 . (F.10)
V2 010 V2 0 ¢« 0 0 0 —1
With these operators one defines six traceless symmetric rank-two tensors
3
Pij = 5 (S,SJ + SJSZ) — 2(5@']].3 . (F.ll)

This leaves us with an over-complete set of operators which span the space of traceless hermitian
Jdx3-matrices

010 0 — 0 10 0
_ 1 _ 1 —
Po =5 101, P=g|di 0 —i], P.=|00 0],
010 0 2 O 0 0 -1
0 0 -1 0 1 0 0 -1 0
_ 3i 3 _ 3
Poy=%5|00 0 |, Pu=55|1 0 -1 [, Pe=11 0 1], (F12)
10 0 0 -1 0 0 -1 0
-1 0 3 -1 0 -3 1 0 0
Pez=3| 0 2 0 |, Py=35| 0 2 0 |, P.=|0 —-20
3 0 -1 -3 0 -1 0 0 1
The redundancy can be eliminated using the following relation
0 00
0 00

Finally, we wish to impose a normalisation condition. Extending the normalisation of the spin-1/2
spin operators (F.9), we take the conventional [225]

Te () = 36,5 . (F.14)

This leads to the following set of normalised rectangular operators §2;

3 3 3 2 2 2 1 1
{113,\@7%, \/;Py,\/;z,\/;@w, \/;Pm,\/gpyz,\/; (Po —Pyy),\/;mz} C(Bas)

which allow to decompose the density matrix of a spin-1 system

1 3 2
pt = 3 (113 + 5 0P+ 9y Py +2P2) + 5 (PayPay + PazPaz +0yzPyz)
(F.16)

1 1
+6 (pxx - pyy) (P:r:v - Pyy) + 2pzz73zz) .

In analogy to the spin-1/2 case, the coefficients can be interpreted as polarisation probabilities for
the ensemble. For a spin-1 system, one has three vector polarisations p;, and five tensor polarisations
pij- These quantities are bounded by [225]

—5 SDpij < 5 (F.17)
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As mentioned previously, the decomposition (F.16) is not unique. Some authors prefer to expand
the density matrix in terms of spherical tensor operators T]{/[ of rank I with their corresponding
orientation parameters Prys [226, 227]

1
p(l) S

22 (DY TP (F.18)

IM

I are defined through their reduced matrix elements

(171 = v3var+1, (F.19)

The operators 7

allowing us to write the density matrix as function of 3j-symbols [226]

1
pfi?n/ =3 Z(—l)M (Im| 3, [1m”) Pr_n

Sy
1 1 1 I (F-20)
= N (=) Vor 1 P,
\/g %;( ) + ( m —m —M ) IM ,
or explicitly,
X 1+ %Plo + \}§P20 %Pl—l + §P2_1 V3P o
pD) = 3 f\/an —\/5Pn 1— 2Py \/gPH —\/53P |- (F.21)
V3Py —\/3Pi+4/3Pn 1—4/3Pio+ \}EPQO

Equating (F.16) and (F.21), allows to establish a relation between the expectation values of spherical
and rectangular operators

3

Po = /5%, (F.22a)
V3 .
Plj:l = ¢7 (Pg; + 'pr) y <F22b)
1
Py = EPZZ s (F22C)
1 :
Py = :Fﬁ (P:vz + ZPyz) ) (F22d)
1 .
Py = ﬁ (Pxx - Pyy + QZny) . (F22€)

Using the following property of the spherical tensor operators and their expectation values,
(TJ{/I)T = (-1)M7ly and Ppy = ()Y Prou, (F.23)

we find the inverse relations

P, = —ZR(Py), Py =—ZS(Pu), P, = /2Py,
P:py - \/5%(]322), sz - _\/§§R(P21); Pyz - _\/3%(P21)7 (F24)

Pry = V/3R(Pa2) — %sz Pyy = —V/3R(Pa2) — %P%? P.. = /2Py
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When polarised spin-1 particles are used as target in an actual experiment, the density matrix will
be diagonal with respect to a quantisation axis d defined by the polar and azimuthal angles 6; and

¢a [227],

D) (d) = PGy - (F.25)

Py
Using the decomposition of the density matrix (F.21) and the orthogonality relation for 3j-symbols

. . . . . a/
. JuoJ2 I3 Juo gz Js
Y (25 +1 Y S F.26
( J3 + ) ( ) ) 3 > < ) N g > j3js Ymami ( )

mima2

we can relate the orientation parameters to the diagonal elements

Prag(d) = SpoV3 Y (1) V21 + Ipyy < ;L b > ; (F.27)

-m 0

-

which yields P]M(d) = dpoPr, with

Py=1,

b= \/g(pl —p-1) (F.28)

P2:;§(1_3p0)‘

Owing to the elegant properties of the spherical tensor operators under rotation, we can easily express
the density matrix of a spin-1 particle oriented along d, in a reference frame with the quantisation
axis along the z axis,

1 1 I
m -m M

P () = (‘1};’” S VATl ( ) e MOl (60)Pr (F.29)
IM

where dzn v (0) are Wigner’s small rotation matrices.

F.4 Photons

Although the photon is a spin-1 particle, it has only two polarisation states. Therefore, the photon
density matrix has a structure analogous to that of an ensemble of spin-1/2 particles

1
o = 5 (112 +PVo, + PVoy, + Pcw)az> , (F.30)

with respect to the circular polarisation basis {|4),|—)}. We added the superscript v to the

coefficients Pi(

spin-1/2 case. Using the definition (F.6), we can write down density matrices for some explicit cases,

" to emphasise that their physical interpretation is very different from those for the
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where the photon ensemble is in a pure state

v _

|IRC) = |+) = A0 = ldyto.),
ILC) = |=) > o = LMa-o),
Lz) = L(+)—1-) = pY) = SMa-o),
|Ly) () +1-) = ) L1y + 0y)
Ty = L(Lz)-|Ly)) = pF) = $(@2-0,),
Ty) = L(La)+|Ly) = pY) = t(la+ay).

From these equations it is clear why the polarisation coefficients are labelled ¢, [ and ¢. The quantity
PC(W) can be interpreted as the degree of circular polarisation, with PC('Y) > 0 (< 0) indicating right-
(left-)handed orientation. The coefficient le expresses the amount of linear polarisation along the
Yy (le >0) or x (le < 0) axis, whereas Pt(V) > 0 (< 0) quantifies linear polarisation along the y

(7) axis rotated —7 about the z axis.



APPENDIX G

Parametrisations of the deuteron wave function

In Section 5.5, we have dealt with the deuteron. After discussing the covariant Dnp-vertex, we
introduced the non-relativistic and relativistic wave functions. In this dissertation, we use the
deuteron wave functions obtained with a number of different NN potentials. For all but one of these
wave functions, convenient parametrisations exist.

In Section G.1 of this appendix, we discuss a parametrisation for the non-relativistic Paris and
CD-Bonn wave functions. Sections G.2 and G.3 are devoted to the parametrisations used in the Gross
formalism. To our knowledge, no parametrisation for the deuteron wave functions obtained with
the Nijmegen potential is available. The latter wave functions can be found on-line in a tabulated
format [228].

G.1 Non-relativistic wave-function parametrisation

Realistic NN potentials, such as the Paris potential [229] and the charge-dependent Bonn potential
[179], are often expressed as a discrete superposition of Yukawa terms. This naturally leads one to
the following algebraic parametrisation of the deuteron wave functions in configuration space

. 3 3
=Y "Die ™" (1 =
w(r) Z i€ ( + o + m?r2> ,
with m; = a+ (i —1)mg. In the limit » — 0, the radial wave functions satisfy the boundary conditions

u(r) = r and w(r) —r>. (G.2)
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Table G.1 — Expansion coeflicients of the parametrised radial deuteron wave functions (G.1) corresponding
with the Paris potential [229] and the CD-Bonn potential [179].

Paris (n = 13) CD-Bonn (n = 11)

i C; (fm™1/2) D; (fm™1/2) C; (fm™1/2) D; (fm™1/?)

1| 0.88688076-10T°  0.23135193-101  0.88472985-1010  0.22623762-10~"
2 | —0.34717093-1010 —0.85604572-10T% —0.26408759-101° —0.50471056 - 1010
3 | —0.30502380- 10"  0.56068193-101! —0.44114404-10~"  0.56278897-101°
4| 0.56207766-1072 —0.69462922-1012 —0.14397512-1072 —0.16079764 - 1012
5| —0.74957334-1073  0.41631118-10"  0.85591256-1012  0.11126803-1013
6 | 0.53365279-107* —0.12546621-101* —0.31876761-1073 —0.44667490 1073
7 | —0.22706863-10"°  0.12387830-10T*  0.70336701-10%3  0.10985907 - 10
8 | 0.60434469-10%°  0.33739172-107* —0.90049586- 1072 —0.16114995-10**
9 | —0.10292058 -107¢  —0.13041151-10T>  0.66145441-1073 see (G.3b)

10 | 0.11223357-107¢  0.19512524-107° —0.25958894 - 1073 see (G.3b)

11 | —0.75925226 - 1015 see (G.3b) see (G.3a) see (G.3b)

12 | 0.29059715-10%5 see (G.3b)

13 see (G.3a) see (G.3b)

a 0.23162461 fm~! 0.2315380 fm ™+

mo 1.0 fm™! 0.9 fm~!

This gives rise to the following constraints for the coefficients of Eq. (G.1)

(G.3a)

n n

D;

=1

n

= 2017
=1
n

— ZDi
=1

NN

In table G.1, we have listed the coefficients C;, D;, a and mg for the Paris and CD-Bonn wave
functions.

Using (H.2), it is straightforward to find the parametrised radial wave functions in momentum space

2 e~ G
U =1/ — ,
») \/;; P2+ m?
2 e~ —D;
w =4/ — ,
(7) \/;ZZ; p? + mf

where we have made use of the boundary conditions in (G.3b).

(G.4)
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G.2 Relativistic wave-function parametrisation I

Buck and Gross developed an analytical form for their relativistic wave functions [230] which is in
line with the parametrisation of Eq. (G.1)

N
Pi(q) = Z binG7(q) with i=3°51,°D),°P,' Py, (G.5)
n=1

with L the angular momentum of the state. This parametrisation is valid both in configuration as in
momentum space, visualised by the ¢ dependence. As their non-relativistic counterparts, these wave
functions obey the boundary conditions (G.2). These conditions can be met by the following choice

N+2

Gila) = frala) = Y K7 ifrn+i(a), (G.6)

=1

with

L L+2 2 a2
no_ (ML,N-H’) M7} nyj— ML,

Li— 2 2 )
Mpn j=1 ML,N+j o ML,NJri (G.7)
J#i
ML,z’ =y, + (Z + 1)mL’0.
In analogy with the non-relativistic parametrisation we have
fO,n(T) = G_MO’nT7
1
fin(r) = e Mt <1 + ) ;
(") My v (G.8)

= 133,

in configuration space and

in momentum space.

In table G.2 we have listed the expansion coefficients [231] for the relativistic wave function labelled
IIb in Ref. [181].

G.3 Relativistic wave-function parametrisation I

In Ref. [182], Gross and Stadler have introduced a parametrisation for the deuteron wave functions
that are obtained from the OBE potential presented in Ref. [183]. The different components are
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Table G.2 — Expansion coefficients of the relativistic deuteron wave function labelled IIb in Ref. [181] to be
used with the wave-function parametrisation of Section G.2. The coefficients o, and b;,, have dimensions
MeV and MeV /2 respectively. The parameter my, o is fixed at 138 MeV for all states.

351 3D1 3P1 1P1

ar, 0.45702000- 1072 0.45702000-10%2  0.13800000-10"3  0.13800000 - 103
bi1 1.23473909- 1071 3.04445499-10~'  3.58649195-1072  9.01574296-103
bio | —9.79182548 1071 —2.28389143-107° —1.11941519-107" —5.62298514-10~*
bis | —1.33149654-1071 —1.25535880- 1071  1.24100281-107°  5.90732942.10*°
bia 2.03598985- 107! 4.75484843-1010  3.01054706- 10Tt —1.88499536-10!
bis | —5.49883687-10T1  3.44785873-10T0 —5.39212864-10T!  7.36252577-107°
big | —3.35208211-10*"!  1.06337512-107° —2.96869223-10"!  1.35240434-10*!
bz 1.42816421- 101 —7.15449045-1073  2.39138486- 101  7.26850340- 101
big 4.58613894 - 1071  —2.60000217-10~!  5.34140258-10tt  5.58906563 - 10~
big 5.36566194 - 10Tt  —2.11957448-10~!  5.34280647-10T' —2.62991867 - 1010
bito | 4425711961071 —1.11702589-10~1  3.71934963 107! —2.81893558- 1017
bin | 2.71001008-107! —4.10060436-10"2  1.84515566- 107! —1.67873493-107°

biia | 1.03563424 107! —8.54424870-107%  5.34193503-107" —5.38676867 107"

expanded like in Eq. (G.5). In momentum space, the expansion functions are given by

Las2 2ng—L
_ p ML,n—ZML,nfl

2
G (p) =/ =
L(p) \/; 9 N 9 N )
] jL,nf2 +p ] 4L,n71 +p

(G.10)

forn=1,...,(N —1), with M ; defined in Eq. (G.7). The final expansion function, labelled the
tail wave function, ensures a correct falloff as p — oo and is defined as

L 27LL+1—L
2 p M "
N . L,N—1
Gp(p) = \E( YR (G.11)

My + p2>

The expansion functions in configuration space are more involved. For the terms n < N, we have

1+~ M, 1 Mg G.12
+§ 0,n—1 - Mo%n_l 3 ( . )

M2 M}
GS(T) —_ 0,7’L72 O,TL*l 5 C_TMO’W’72 _ e_rMO,nfl

(Mg,nfl - Mg,an)

2 4
n(r) = My, oMy, i { My -2 o—Min2 [1 n 1 ]
(Mlg,nfl - M12,n72) Ml,n—l TML”_Q

1 r M1 M7,
1+ 4+ 1- L . (G.13
lel,nfl 2 ( ldinfl ( )

_ e*TMl,nfl
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7‘[2 7‘[6 ]\[2
7 2n—2"""2n—1 2n—2 _rMoy, _
( — 2,n—2
a(r) = 3 5 e ;
(M22 | — M3 2) 2mn—1
n— ,n—

3 3 1+rMs o M2
1+ + — + 2n—1 1— 2n—2
T‘M27n,1 T M27n71 2

7”2M22 1 M22 2 ’
S L I P e . (G114

Finally, the tail wave functions in configuration space read

T Ma 2 r2M227n 9

3 3
o b

_ e_TM2,n71

2r2

GY(r) = - Mg 1 K1(rMon-1),
N 2% G.15
Gy (r) = 3 MI,N—IKO(TMLN—I)a (G.15)
N 2 5
G2 <T) = 157_[_M2,N—1K0(TM27N_1> ?
where . -
z 1
K, — —z2t (42 1) 3 1
()= e 1)”/1 dre=" (12 — 1) (G.16)

are the modified Bessel functions of the second kind.

In table G.3, we have listed the expansion coeflicients for the wave functions obtained with the
WJC-1 model of Ref. [183]. As was pointed out in Ref. [182], the CST wave functions obey the
following normalisation condition

1= [ [+ )+ )+ 2+ ()] (@17)
0 dmp
The last term, which does not feature in the conventional normalisation of the deuteron wave function,
is of the order of a few percent. Therefore, the authors put forward a scaled wave function that
conforms to the conventional normalisation condition and recommend it for use in EM calculations
based on the RIA. When we refer to the WJC-1 wave function in this work, we will always allude to
this scaled wave function.
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Table G.3 — Expansion coefficients of the relativistic deuteron wave function labelled WJC-1 in Ref. [183]
to be used with the wave-function parametrisation of Section G.3. The parameters ay, and my, ¢ are given
in MeV. The coefficients b; ,, have dimensions GeV ™32, The tail mass My, n—1 is not given by Eq. (G.7),

but is fixed at 2 GeV instead.

351 3D1 3P1 IP1

N 17 16 12 12
nr, 2 3 2 2
ar, 45.716 45.716 488.000 633.000
mro 75.000 80.000 109.090 109.090
bi1 134.963 23.813 —27.120 —78.763
bio 52.871 32.709 233.155 688.895
bis —217.709 —111.381 —998.893  —2910.298
bi 1876.699 844.861 2679.013 7690.084
bis —11369.449 —4376.965  —4894.348 —13861.596
big 49427.176 16489.297 6277.553  17571.825
biz | —156695.247  —45122.587  —5674.481 —15720.926
bis 369322.468 91061.493 3550.952 9747.293
big | —655367.189 —136672.748  —1467.429  —3994.747
bi.10 879178.453  152411.033 360.796 975.086
bi1n | —887103.150 —124633.670 —40.010 —107.489
bi12 662786.733 72617.712 —498-1077 —394-1077
bi1z | —355720.583  —28549.974

bi14 129738.381 6790.953

bi 15 —28805.739 —1738.436

bi 16 2939.797  —100- 1076

b7 —125.10°°




APPENDIX H

Connecting (non-)relativistic wave functions with the covariant Dnp-vertex

In Section 5.5, we introduced the covariant Dnp-vertex (5.82). This vertex is the most general
structure that describes the breakup of a deuteron into two nucleons, with the second nucleon on its
mass-shell. It is given in terms of four Lorentz-invariant form factors.

In Eq. (5.85) we defined two energy-projected wave functions in terms of the covariant Dnp-vertex,
and in paragraphs 5.5.2 and 5.5.3 we have argued that these wave functions can be linked to the
well-known (non-)relativistic wave-function decompositions in the 25*1L; basis. In this appendix,
we will prove this correspondence explicitly. In addition, we will deduce a connection between the
form factors and the wave functions.

First, we require the deuteron’s wave functions given by Egs. (5.88) and (5.92) in momentum space.
This is readily achieved by taking the Fourier transform (5.87). We obtain

V(B Ap) = w((p])xan, Yoo (§) — w([) D (2, Ap-mis; 1, ms| 1,AD) Ximg Y2\ pems (D) 5

ms

U Ap) = —vs([71) X0 Yirp (B) — ve([1) D (1, Ap=mig; 1, mis| 1, AD) X Y1 p-ms (D)

ms

6i(p) = \E /O " drrea(r)jn(pr), (H2)

with ¢; (i = 1,2,3,4) a shorthand notation for the u, w, vs and v; wave functions in configuration

(H.1)

Herein, we have defined

and momentum space. The functions jr () are spherical Bessel functions of the first kind.

The wave functions in (H.1) are expressed in the direct-product representation % ® % of the spins
of both nucleons. Introducing the notation ;X s ¢ (i = 1,2) for the Pauli matrices acting in the
spin-space of particle i, one can easily prove identities such as

51 : 6:2 XSms = XSmS . (H'S)
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After some manipulations, one can rewrite the wave functions as

S o w - .
w3~ "5 5= 515 o,

D) = [ :
a0 =) 2 [P -5 5 D 45 5] v,

(H.4)

In order to make a direct connection with the energy-projected wave functions (5.85) defined in
terms of the covariant Dnp-vertex, we will first rewrite (H.4) in matrix representation, where

10 0 1
)1 [+)2 = 00 |’ )1 = 00 |
(H.5)
N R P TR
S N N
In this representation, the coupled-spin wave functions can conveniently be expressed as
= 10
Xl'm = <5: : é-m y> 9 (HG)
V2 A2

where we have taken the deuteron’s polarisation vectors as defined in Eq. (5.79). The indices A; and
A2 are the spin-projections of particles 1 and 2 along the z axis. For a general operator A; (Bs)
acting in the spin-space of particle 1 (2), one can prove the following equivalence

ilo
A1Boxi = (B g-&mA \/%>

with A = 09AT 09, After putting this relation to use, we find an expression for the wave functions in

, (H.7)
A2 A1

matrix representation

WIKQ(PaAD):ﬁ[ (Ip1)7 ?D+w\(/§)(3ﬁ-é%aﬁ—&-§w>} Z\% o

2 H.8
s 02 [t 0o B o pom] 7
A1 Ag (B3 D) = vs(|p1)P - € NG (¢-po-& p-EP) \/§A>\ .

Note that the vs-term is antisymmetric in the indices, whereas the other terms are symmetric.

In order to link the form factors of the covariant Dnp-vertex with the deuteron wave functions, we
need to rewrite the energy-projected wave functions defined in terms of the Dnp-vertex in matrix
representation. Adopting the conventions for positive- and negative-energy Dirac spinors given in
Section A.4, we are able to work out the deuteron wave functions as given in Eq. (5.85). After a
tedious calculation, one obtains

(=1)2—*

V (27)32mp2E,(2E, — mp)
xsil{ L [ () B =N ) 151 0, 1 i) - G ’ﬂ]

my m

Uit (9 Ap) =

NOEOS L 2E =B ) ) L,

F(|pl)(Ep —mn) + H(|p])
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(-
(2m)32mp2E,mp

. nT_M{Zﬁ- &0 ((F(a0) - (a0 + 107 ™

\11;1)\2 (P Ap) =

N

) +2(G - - P —ﬁ-g\D)H(\ﬂ)ZLLi}%-
(H.10)

Through an explicit computation, it is elementary to prove the following properties for two-component
Pauli spinors

1_ .
(—1)2 EI\WX = —i oyl > (HA1)
1y 4, - :
(=1)2~ A 5;077)\’ = —1 Ua'y|>\)\/ )
and since any complex 2x2-matrix A can be decomposed as A = Apl + )", A;0;, we have in general

1y .
(127N el Any = —i Aoy, - (H.12)

Applying this to our previous expression for the deuteron wave function, a direct comparison can
be made with Eq. (H.8). In this way, we obtain the deuteron wave functions u, w, vs and v; as a
function of the Dnp-vertex form factors. After inverting these relations, we reach our final result

F(F) = =v/2mp (2E, = mp) [uuﬁn - 5wl + o B <rp|>] ,

myu(|p]) | my(2E, +my) w(|p]) 3my

Boamy P vz V2l ”t(ﬁ')]’ _—
1) = =vZn \f =

alf) B+ 2myw(d)y | Vimo
2y —mo) (0 = B ) e 5<'p‘)]'

G(|pl) = mv2mp(2E, — mp)

I(|p]) = —7v2m
Pmp
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APPENDIX |

Parameters of the Regge-plus-resonance model

Essentially, all models are wrong, but some are useful.
— George E. P. Box

The RPR formalism was introduced in Chapter 2. It consists of non-resonant contributions that
are parametrised as Regge-trajectory exchange in the t-channel and the exchange of a selection
of nucleon and A resonances in the s-channel. Expressions for the different contributions to the
transition amplitude are given in Paragraph D.3.3. In this appendix, we summarise the coupling
constants that feature in these amplitudes.

The parameters for the A-production RPR model are given in Table I.1. This model has been published
in Refs. [39, 69]. Table 1.2 lists the coupling constants of the RPR model for the ¥-production
channels discussed in Refs. [40, 69].

In Chapter 3, we develop a formalism which permits to derive the coupling constants for the reaction
channels with a neutron target and/or a neutral kaon in the final state from those for p(y, KT)A
and p(vy, KT)X°. The EM coupling constants of resonance-exchange diagrams have error bars due to
the experimental uncertainties related to photocoupling helicity amplitudes. We have adopted the
helicity amplitude labelled SM95 in Table 3.1.
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Table 1.1 — Coupling constants of the RPR-2007 model optimised for KA production. The cutoff mass for
the Gaussian form factor at the strong-interaction vertices of the resonance-exchange diagrams is fixed at
A =1636.53 MeV.

p(y, KH)A n(v, K°)A
Born graN —1.064-1011 —
K*(892)  GY. 1.082-10*! —1.655-10*!
Gl —2.906-10"! 4.446 - 101

S11(1650)  Gn+ —2.251-1072  4.951+1.575-1073
P;1(1710) Gy~ —2.348-107!  0.681£5.235-107¢

Pi3(1720) G} 3.842.1072 —1.460+7.685-10~2
G —1812:102  0.906:£1.957-10~2

X 1.437-1012 1.437-1012
Y 5.696 - 101 5.696 - 101
7Z —3.117-1071 —3.117-107 1

Pi3(1900) G} —7.499-10"1  0.000+1.500-10+°
G2 33771001 0.000£6.754 1071

X  —1.770-10"! —1.770- 101!

Y 2.588- 1010 2.588- 1010

7 —8.878-1071 —8.878-1071

D13(1900) G\ 1.115-10*0  0.00042.230 - 10*0
G 5105-1071  0.00041.021-10*°

X 4.031-101! 4.031-10%!

Y  —1.399-101! —1.399- 107!

Z  —3.969-1072 —3.969 - 102
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Table 1.2 — Coupling constants of the RPR-2007 model optimised for K3 production. The cutoff mass for
the Gaussian form factor at the strong-interaction vertices of the resonance-exchange diagrams is fixed at
A = 1593.37 MeV.

p(, KN)E°  p(y, KO n(y, K9x° n(y, KT~

Born ggsy  4.606-101° — — 6.514-107°
K*(892) GY%.  1.454-10"! 1.110-10%° —~7.852-1071 2.056 - 101
Gt.. —2.725-10"1 —2.081-107° 1.472- 1010 —3.854- 1011
S11(1650) G+ —1.391-1071 —1.967-10"! —3.060+0.974-102  4.328+1.377-1072
Ds3(1700) G) —2.463-1070  1.741-10+0 —2.463-10"° —1.741-10%°
G —2.057.10°  1.455.10+0 —2,057-10%0 —1.455-10%0

X —4.999-101% —4.999-101° —4.999 1070 —4.999 -1010

Y  —4.521.10"° —4.521.101° —4.521-10710 —4.521-1010

Z —1577-100' —1.577-107! —1.577-107! —1.577-107!

Pi1(1710) Gy« 1.744-107'  2.466-107!  0.506+3.888-10"! —0.715+5.499-10~"

Pi3(1720) G 1.839-1071  2.600-10!  0.699+3.677-10~1 —0.98845.201- 10!
G 56891072 8.045-1072  2.84446.144.1072 —4.02248.689- 102

X —6.114-10M° —6.114-1010 —6.114-1019 —6.114-1010
Y  —4490-107' —4.490-107! —4.490-101 —4.490-1071
7Z 3.276-10M°  3.276-1010 3.276-1010 3.276-1010

Pi3(1900) G0 9.811-1071  1.387-100  0.000+1.962-10"°  0.00042.775- 1070
G 1.890-10%0  2.674-10*0  0.0003.781-10%0  0.00045.347 - 10+°

X 4.465-10T0  4.465-1010 4.465-1010 4.465- 1010
Y  —3.495-1010 —3.495.1010 —3.495-1019 —3.495-1010
Z  —2442-107! —2.442-.107! —2.442-107t —2.442-101
S31(1900) G+ 3.236-1071 —2.288-10~1 3.236-1071 2.288-1071
P31(1910) Gy« —2.597-1071  1.836-107! —2.597-107! —1.836-10!
Py3(1920) G, 4.709-101 —3.329.10"" 4.709-101 3.329.10"!
G 4589.1071 —3.245.10"! 458910 3.245- 101
X 8.031-10°  8.031-10™° 8.031-1010 8.031-101°
Y 2.416-10T%  2.416-101° 2.416-1010 2.416- 1010

Z —=5272-1001 —5272.-1071 —5.272-1071 —5.272-1071
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APPENDIX J

Experimental data

Facts are meaningless.
You could use facts to prove anything that’s even remotely true.

— Homer Simpson

In this appendix, an overview is given of the published datasets for kaon photoproduction from the
nucleon.

In Tables J.1 and J.2, the experimental data for the p(y, KT)A and p(y, K*)X° reactions is given.
The datasets used in Refs. [39, 40] to optimise the RPR-2007 model are marked in the rightmost
column. The fitted coupling constants are listed in Appendix I.

The p(v, K°)XT reaction data is enumerated in Table J.3. The last column marks the datasets used
in Section 3.3 to optimise the K*Y(892)’s EM coupling constant and explore the possibility of a third
Regge trajectory.

Table J.4 provides an overview of the published experimental data for the n(vy, KT)X~ reaction. To
date, no results have been published for the n(y, K°)A and n(y, K°)X° reactions.
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Table J.1 — List of published experimental data for the reaction p(y, KT)A in chronological order per
observable. The datasets used to determine the RPR-2007 model are marked in the last column.

66

Observable Year Experiment Reference # data points Fitted
o 1998 SAPHIR Tran et al. [124] 24
2004  SAPHIR Glander et al. [125] 36
2006 CLAS Bradford et al. [119] 78
do 1969 SLAC Boyarski et al. [113] 56 v
1998  SAPHIR Tran et al. [124] 90
2004 SAPHIR Glander et al. [125] 720
2004  CLAS McNabb et al. [121] 920
2006 CLAS Bradford et al. [119] 1377 v
2006 LEPS Sumihama et al. [135] 54
2007 LEPS Hicks et al. [132] 12
2010 CLAS McCracken et al. [123] 2066
z 1979 SLAC Quinn et al. [114] 9 v
2003 LEPS Zegers et al. [122] 45 v
2006 LEPS Sumihama et al. [135] 54
2007 LEPS Hicks et al. [132] 4
2007  GRAAL Lleres et al. [120] 66 v
P 1972 DESY Vogel et al. [115] 7 v
1998  SAPHIR Tran et al. [124] 12
2004  SAPHIR Glander et al. [125] 30
2004 CLAS McNabb et al. [121] 233 v
2007  GRAAL Lleres et al. [120] 66 v
2010 CLAS McCracken et al. [123] 1707
i 1978  BONN Althoff et al. [142] 3 v
2008  GRAAL Lleres et al. [141] 66
Cy,C, 2007 CLAS Bradford et al. [140] 320
[141]

Oy, Oy 2008 GRAAL Lleres et al.
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Table J.2 — List of published experimental data for the reaction p(y, K7)X% in chronological order per
observable. The datasets used to determine the RPR-2007 model are marked in the last column.

Observable Year Experiment Reference # data points Fitted
o 1998  SAPHIR Tran et al. [124] 21
2004  SAPHIR Glander et al. [125] 33
2006 CLAS Bradford et al. [119] 72
do 1969 SLAC Boyarski et al. [113] 48 v
1998  SAPHIR Tran et al. [124] 70
2004  SAPHIR Glander et al. [125] 660
2004 CLAS McNabb et al. [121] 782
2006 CLAS Bradford et al. [119] 1280 v
2006 LEPS Sumihama et al. [135] 54
2006 LEPS Kohri et al. [134] 73
2010 CLAS Dey et al. [130] 2089
X 1979 SLAC Quinn et al. [114] 9 v
2003 LEPS Zegers et al. [122] 45 v
2006 LEPS Sumihama et al. [135] 54
2006 LEPS Kohri et al. [134] 35
2007  GRAAL Lleres et al. [120] 42 v
P 1998  SAPHIR Tran et al. [124] 12
2004  SAPHIR Glander et al. [125] 16
2004 CLAS McNabb et al. [121] 98 v
2007  GRAAL Lleres et al. [120] 8 v
2010 CLAS Dey et al. [130] 455
Cy,C, 2007 CLAS Bradford et al. [140] 190

Table J.3 — List of published experimental data for the reaction p(y, K°)X* in chronological order per
observable. The datasets used in Section 3.3 for fitting are marked in the last column.

Observable Year Experiment Reference # data points Fitted
o 1999 SAPHIR Goers et al. [232] 5
2005 SAPHIR Lawall et al. [154] 12
2008 CB/ELSA-TAPS Castelijns et al. [155] 12
do 1999 SAPHIR Goers et al. [232] 18
2003 CLAS Carnahan [157] 48 v
2005 SAPHIR Lawall et al. [154] 120 v
2008 CB/ELSA-TAPS Castelijns et al. [155] 72 v
P 1999 SAPHIR Goers et al. [232] 4
2005 SAPHIR Lawall et al. [154] 10
[155]

2008 CB/ELSA-TAPS Castelijns et al. [155 72 v
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Table J.4 — List of published experimental data for the reaction n(y, K*)X~ in chronological order per
observable.

Observable Year Experiment Reference # data points
do 2006 LEPS Kohri et al. [134] 72
2010 CLAS Anefalos Pereira et al. [151] 388

)Y 2006 LEPS Kohri et al. [134] 36




APPENDIX K

Hyperon-nucleon interaction

This appendix deals with the hyperon-nucleon interaction. In the first section, we sketch the
kinematics of the hyperon-nucleon scattering reaction. Section K.2 introduces the transition matrix
elements that are required for the calculation of the YN-FSI contribution to EM kaon production from
the deuteron (see Section 5.6.3). They will be expressed in terms of the helicity amplitudes of the
hyperon-nucleon scattering process. The latter can be obtained within the context of non-relativistic
hyperon-nucleon potential models. The issue of the off-shell extrapolation of the scattering amplitude
is the subject of Section K.3. In the final section, we will briefly present the Jiilich model whose
scattering amplitudes will be adopted in this dissertation.

K.1 Kinematics

Throughout this appendix, we will consider the following (in)elastic scattering reaction
Y+ N Y+ N, (K.1)

where we label the incoming hyperon and nucleon with primes. This notation is somewhat uncommon,
but simplifies the comparison with Section 5.6, where we present the YN-FSI contribution to kaon
production from the deuteron.

The kinematics of the scattering process are fixed by specifying the invariant mass Wy y and the
hyperon’s scattering angle 65y, in the YN-CM frame. The latter is given by
Dy Dy
COSs H;Y’ = T ox 1 ox (K2)
1zaliza
As was pointed out in Paragraph 5.6.3, the hyperon-nucleon rescattering diagram is most readily
obtained in the YN-CM frame using the primed reference frame that was introduced in Eq. (5.3).
Four-momenta in this frame are denoted with an asterisk, i.e. p;. The elementary scattering reaction,
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Y

*
YY'

Y/_».(_N/

Figure K.1 — Orientation of the dotted reference frame (z,y, 2) for the YN’ — Y N reaction in the
YN-CM frame.

on the other hand, is typically described in a reference frame (&, 7, 2) that has its Z axis along the
incoming hyperon and the 3 axis perpendicular to the reaction plane. This dotted frame is illustrated
in figure K.1 and is defined through
B

Py

- -
Py X Dy

= = f:ijé. K.3
Dy x py|’ (K-3)

Y=

Z =

The four-vectors of the particles participating in reaction (K.1) are represented in the dotted reference
frame as

with r the rotation that connects both frames. It consists of rotations about the z and y axis that
bring the momentum of the incoming hyperon along the z axis and is followed by an additional

rotation about the z axis that moves the outgoing particles in the zz plane. Caution is needed to
ensure that the momentum of the outgoing hyperon lies along the positive z axis. Explicitly, we have

r=rz(0)ry(=0y:)r-(—¢y), (K.5)
with

6, g o aretan ( /1 —cos? 65, —sin by (sin @31 cos ¢y — cos ¢y, sin ¢§‘,) ) ’ (K.6)

cos 63, sin 65, (cos @31 cos @3, + sin ¢y, sin qﬁf/) — sin 05, cos 05

for cos 0y, # 1. When cosfy.y, = 1, 0, is arbitrary. In case the argument of the arctangent is
singular, 6, = +7/2, where the positive (negative) sign occurs for a positive (negative) nominator.

K.2 Transition amplitudes

In Paragraph 5.6.3, expressions are derived for the YN-FSI contribution to the kaon-production
transition amplitude. There, the hyperon-nucleon rescattering diagram is written in terms of

-~ YN-CM
(Pys Ay Py AN YN [Py, Ay s Avr) =

U (B Ay VT (B AN) Topreq Ue(B5 Ay ua(Bro, Anr), (K.7)

where the elementary rescattering vertex I''N is sandwiched between spinors for the incoming and
outgoing particles. This transition amplitude is to be evaluated in the YN-CM frame with its helicities
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defined in the primed reference frame. In the previous section, we introduced dotted coordinates as
the most natural reference frame for the description of the elementary hyperon-nucleon scattering
process. In that frame, the hyperon-nucleon vertex operator reads

L ed = Sac(r)Spr(r) TXRn Sge(r™)Sha(r ™), (K.8)
where
St =+"8T(t)4°, (K.9)

is the representation of the inverse transformation ¢! in Dirac space [218]. After inserting the unity
operator several times in Eq. (K.7) and applying the transformation rule for helicity spinors provided
in Paragraph C.2, we obtain for the transition amplitude

. 1/2 N
<pY7)‘Y;pN’)‘N|JYN|pY’7>\Y’;pN’7)‘N’> = Z |:©N</7>\Y (T(rapy))

By 1 N SHY SN
1/2 o * 11/2 S 1/2 S YN
X Dy D] D2 BN D L ) T > (K10)

where we have introduced helicity amplitudes

T widgr s = Ual(Dy, Ay )b (Br, AN) T te(Dyr, Ay )ua(Dae, Anv) (K.11)

for the hyperon-nucleon scattering reaction with the helicities defined in the dotted reference frame.
With the help of the explicit form of the rotation r and the definition of the helicity transformation
given in Eq. (C.2), the different Wick rotations can be worked out. One finds

r(r,p;) =r2(Pi), (K.12)

for i =Y’ N'| Y, N. Since the Wigner rotation matrix is diagonal for rotations about the z axis (see
Section A.2), this implies that the rotation r conserves the helicities and merely introduces an
additional phase. We wish to stress the importance of using the quaternion representation of the
rotation group introduced in Appendix B. Since we are rotating spinors, the isomorphism between
this representation and SU(2) is crucial to obtain the correct phases. In the most general case, no
elegant closed form exists for the rotation angles @;. However, they can easily be found numerically.
The phase for the incoming hyperon is the noted exception. It simply reads

by =6, . (K.13)
Introducing the Wick rotations into the Wigner rotation matrices of Eq. (K.10), we obtain

. T . =i Ay O A N1 P — Ay Py — AN D YN
<pY7AY7pN7)‘N|JYN‘pYU)‘Y’apN’J)\N’> =€ Ay '@yt Ay Py —ANPN) 7;\)/,)\1\7;)\)//)\]\,/ . (K14)

K.3 Off-shell scattering

In the previous section, we have focused on the frame-dependence of the helicities that feature in the
transition amplitude for hyperon-nucleon scattering. A second important aspect of the amplitude is
the kinematics at which it is to be evaluated. In Section K.1, we have noted that the elementary
scattering process depends on the variables Wy y and 65.,. However, when the rescattering vertex
is inserted in a loop diagram such as the YN-FSI contribution considered in Paragraph 5.6.3, this no
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longer holds true. Because of the deuteron’s binding energy and the energy-momentum conserving
delta functions at the different interaction vertices, the rescattering hyperon is generally off its mass
shell, i.e.

Py # My (K.15)
The hyperon-nucleon scattering vertex operator I'YN has, to our knowledge, not been considered in a
covariant field-theoretical framework. A number of hyperon-nucleon potential models are available on
the other hand [199-201], and the question arises how the scattering amplitude with one off-mass-shell
leg can be obtained within the context of non-relativistic scattering theory.

Potential models construct a phenomenological potential that serves as a kernel to solve a Lippmann-
Schwinger equation. In doing so, one obtains a half-off-energy-shell amplitude

TIN (W, 0ryr; W' (K.16)

AV AN Ay AN
with W’ and W the invariant masses of the initial and final state respectively. As one can have
W' # W, the XN — AN transitions can occur below the physical threshold of the initial hyperon-
nucleon state, for example. In the limit of physical scattering, one has W/ — W and the half-off-shell
amplitude converges to the on-shell amplitude

T widgr o WoO3ry) = TN Lo (W 5y W) (K.17)

It can be shown that off-energy-shell amplitudes in non-relativistic scattering theory and amplitudes
with off-mass-shell legs from relativistic quantum field theory have the same on-shell limit [233]. The
off-shell extrapolations, however, are not unique. When the hyperon-nucleon transition amplitude
with one leg off-mass-shell is needed in the off-shell contribution to the YN-FSI diagram (see
Eq. (5.131)), we will consider the following half off-energy-shell amplitude

T (Wyn, Oyys; WY/N') ) (K.18)

y,)\N;/\Yr)\N/

with

Wyini = \/!ﬁg‘;/P +mi, + \/|ﬁ;,|2 +m3, . (K.19)
In the limit that the rescattering hyperon Y inside the loop is on its mass shell, one has
Wyrnr — Wyn (K.20)

and the half off-energy-shell amplitude converges to the on-shell amplitude.

K.4 Julich model

In Section 6.2, the effect of the YN-FSI contribution to the dynamics of strangeness production
from the deuteron is investigated. As input, we adopt the hyperon-nucleon transition amplitudes as
calculated within the Jiilich model, which is discussed at length in Ref. [199].

The different elastic and inelastic hyperon-nucleon scattering reactions can be grouped in four charge

channels
qg=+2: Yrp = XTp, (K.21)
q=-+1: Ap,Xn, 2% — Ap, Xt n, X%, (K.22)
qg=0: An, X%, 2"p — An, X%, X7 p, (K.23)
g=—1: Yn—Y¥n. (K.24)
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Table K.1 — Coefficients of the isospin decomposition of the hyperon-nucleon amplitudes in the particle
basis. (Y N|T'2|Y'N) and (EN|T3/2 |$N) are the isospin I = 1/2 and I = 3/2 amplitudes respectively.
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In the Jiilich-model, however, the helicity amplitudes are obtained in the isospin basis [234]. For
hyperon-nucleon scattering, there are only two isospin channels
I= AN,X>N — AN, XN, (K.25)

I =

|| =

SN — SN (K.26)

In order to go from the isospin basis to the particle basis, we calculate the isospin decomposition of
the amplitudes using the states defined in Eq. (3.7). The different coefficients are listed Table K.1.

For every isospin transition and each point in phase space, there are a total of sixteen helicity
amplitudes. Parity invariance of the strong interaction, however, yields [100]

:( 1)Ay/ AN’ — )\Y+)\N7'YN (K27)

y, )\N,—Ay/, )\N/7

7-)‘Y7

)\N,Ay/ )‘N’

which allows to reduce the number of independent amplitude by a factor of two. We define

T 7jr+ o TN =T
T =T T =T
T =T T TYN++’
R T++ —+> TN =T ot (K.28)

where = is shorthand notation for the helicities A = j:%. In case of elastic scattering, the amplitudes
also obey time-reversal invariance [100]

YN _ Ayt —Ant— Ay +AN YN
AYv)‘N;)\Y”AN/ - ( 1) Y N 7-)‘Y’ >‘N’ Ay, AN ? (K29)
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and one has
TN = -7, and TN =-N. (K.30)

The mass differences between the different hyperons is relatively small, i.e. of the order of ~ 78 MeV.
This implies the AN and XN channels will be strongly coupled. Therefore, a non-relativistic
CC Lippmann-Schwinger equation is solved in momentum space in order to obtain the scattering
amplitude. This is most readily done with partial-wave decomposed amplitudes in the JLS-basis

TN = (JM; LS| TN [ IM; LS (K.31)

More details can be found in Ref. [193].

Since we require helicity amplitudes as input for our formalism, the amplitudes in the JLS-basis
need to be converted. This can be achieved by inverting Egs. (B.13) and (B.14) of Ref. [193]. After
some algebra, one obtains relations for the partial-wave helicity amplitudes

TYN J TYN g LJ+1 _yNam 1 J YN, J M
7000 T 957 J+11J+11+22J+1J11J 1,1
J(J+1) (o yNIm YN,JM
- 5 2J +1 (7}+1,1,J 1,1 + 7:] 1,1,J+1 1) ) (K-32)
1 J 1 J+1
YNJ _ YNJIM | YN,JM YN,JM
T4 7}1 J1 T 557 n 1T]+1,1;J+1,1 + 297 1 17]-1,1;J—1,1
J(J+1) (o yNIm YN,JM
5 2J +1 (7}+1,1,J 1,1 + 7} 1,1,J+1 1) ) (K33)
7-YN J 1 YNJM 1 J yNogm L J+1 N
- 2 J,0;J,1 29J +1 J+1,1;J-1,1 29J 4+ 1 J—-1,1;J+1,1
LI +1) (N YN,JM
- 5 27 + 1 (TJ+1,1,J+1 1 TJ 1,1,J 1 1) ’ (K-34)
TYNJ _ 1oynom 1 J+1 _yNom 1 J YN,J M
6,8 - 9 J,1;J,0 29J 4+ 1 J+1,1;J-1,1 29J 4+ 1 J—-1,1;J+1,1
LI +1) (N YN,JM
- 5 27 +1 (TI+1,1,J+1 1 T 1,1,J 1,1) : (K'35)

Finally, the partial-wave helicity amplitudes need to be recomposed

TN =7+ )TN d] o (05 y), TN =7+ )T, d] o (05 y),
J J
TN = Z(2J + )73 d] 1(0yy), N = Z(2J + 1)7:1YN’Jd£1,1(9§</Y’) ;
J J
TN =Y "2+ )T, d] o (03y) | TN ==Y @7+ 1T d] o(0y)
J J
TN == @I+ ) d o0y, TN =Y @I+ )T d o0y . (K36)
J J

In our calculations, we have considered partial waves up to J = 5.



Samenvatting

Nederlands is geen taal,
maar een verkoudheid
— Jacques Brel

Inleiding

Vooraleer een fenomeen doorgerekend kan worden, dient men er allereerst de relevante vrijheidsgraden
van te bepalen. Dit lijkt triviaal, maar het antwoord ligt vaak niet voor de hand en vereist het een
grondige kennis van de materie.

De hadronenfysica confronteert ons met een weelde aan fenomenen. Enerzijds is er het deuteron, een
proton-neutron paar dat slechts met een fractie van zijn restmassa gebonden is. Aan de andere kant
van het spectrum spelen zich overal in de kosmos hoogenergetische reacties af, die men poogt na te
bootsen in deeltjesversnellers. Dit alles kan verklaard worden aan de hand van de theorie van de
sterke wisselwerking, kwantum-chromodynamica, en de bijbehorende elementaire velden, quarks en
gluonen.

De sterke wisselwerking voldoet aan enkele opmerkelijke eigenschappen die ervoor zorgen dat het
zich onderscheidt van de andere fundamentele krachten. De wisselwerking wordt kleiner naarmate
interagerende deeltjes zich naar elkaar toe bewegen. Anderzijds neemt de kracht van de wisselwerking
toe met toenemende afstand tussen de deeltjes. Dit contra-intuitieve aspect geeft aanleiding tot
confinement. Quarks worden nooit vrij waargenomen maar enkel gebonden in kleurloze objecten. De
koppelingssterkte van de sterke wisselwerking variéert snel als functie van de lengte- en energieschaal,
waardoor de relevante vrijheidsgraden constant wijzigen.

Het nucleon is de alomtegenwoordige manifestatie van de confinement van quarks. Door middel van
diep-inelastische verstrooiingsexperimenten is een vrij compleet beeld opgebouwd van de intrigerende
structuur van het nucleon. Gluonen staan in voor ongeveer de helft van de impuls van het proton en
de vreemde quarks in de zee leveren een niet te verwaarlozen bijdrage tot de spin. Desalniettemin
kan dit complexe systeem gemiddeld gezien beschreven worden als een gebonden toestand van drie
valentie quarks. Dit vormt het uitgangspunt van constituente-quarkmodellen die ontegensprekelijk
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hadronspectra, symmetrie-eigenschappen en elektromagnetische vormfactoren succesvol weten te
beschrijven. Maar waar ligt de limiet van deze gemiddeld-veldbeschrijving? Vanaf welke energieén
treedt de overgang naar partonische vrijheidsgraden op?

Nucleonspectroscopie

Het in kaart brengen van alle baryonen en hun aangeslagen toestanden speelt een cruciale rol binnen
de hadronenfysica. De massa’s, vervalbreedtes en transitie-vormfactoren van nucleonresonanties
vormen namelijk de link met de modellen die trachten de structuur van baryonen te doorgronden.
De stand van zaken op experimenteel gebied wordt tweejaarlijks gebundeld in de Review of Particle
Physics (RPP). Die haalt zijn informatie vooral uit partiéle-golfanalyses (partial-wave analysis, PWA)
van pion-nucleon (wN) verstrooiingsdata. Deze experimentele gegevens kunnen echter ook verwerkt
worden samen met data uit inelastische kanalen en fotongeinduceerde reacties. De verschillende
analyses slagen er niet in om een eenduidige interpretatie te geven, terwijl zij toch een vergelijkbare
overeenkomst vinden met het experiment. Over de eerste paar aangeslagen toestanden van het
nucleon is er eensgezindheid, maar reeds heel snel lopen de bevindingen over het aantal resonanties,
hun massa’s en de bijbehorende kwantumgetallen uiteen.

De overeenkomst tussen theoretische voorspellingen en de opgelijste resonanties in de RPP vertoont
een gelijkaardig patroon. Onder de 1800 MeV-grens slagen constituente-quarkmodellen erin om
een adequaat beeld te schetsen. Hogerop in het nucleonspectrum loopt het echter mis. Het aantal
voorspelde toestanden is een veelvoud van hetgeen experimenteel is vastgesteld. In de literatuur
wordt verwezen naar de ontbrekende (missing) resonanties. Dit kan erop wijzen dat constituente-
quarkmodellen gebruik maken van de verkeerde vrijheidsgraden. Alternatieve modellen, die één paar
quarks als gebonden beschouwen, voorspellen namelijk dat het nucleonspectrum veel minder rijk
is. Een andere verklaring bestaat erin dat vele aangeslagen toestanden niet worden waargenomen,
vanwege de dominantie van de w/N data bij het opstellen van de RPP.

Vreemdheidsproductie aan het nucleon

Elektromagnetische (EM) vreemdheidsproductie biedt mogelijks een antwoord op deze situatie.
De aanwezigheid van vreemde deeltjes als eindproduct van de reactie duidt erop dat een vreemd
quark-antiquarkpaar in de zee van het nucleon wordt aangeslagen. De productie van kaonen is
bijgevolg gevoelig voor nieuwe vrijheidsgraden in het nucleon. Dit kan ertoe leiden dat bepaalde
(ontbrekende) resonanties niet vervallen naar een pion en een nucleon, maar naar een kaon en
een hyperon. Dit intuitieve beeld wordt bovendien bevestigd door berekeningen aan de hand van
constituente-quarkmodellen.

De zoektocht naar ontbrekende resonanties heeft ertoe geleid dat EM vreemdheidsproductie een
essentieel deel uitmaakt van de onderzoeksactiviteiten aan toonaangevende experimentele faciliteiten
zoals ELSA en MAMI in Duitsland, ESFR in Frankrijk, Jefferson Lab in de VS en SPring-8 in Japan.
In de afgelopen jaren zijn dan ook veel nieuwe experimentele resultaten verschenen. Aangezien het
verval van het geproduceerde hyperon zelf-analyserend is, bekomt men de polarisatie van het uitgaande
baryon zonder bijkomende apparatuur. Dit biedt de mogelijkheid om een compleet kaonproductie-
experiment uit te voeren. Mits de bepaling van de ongepolariseerde differentiéle werkzame doorsnede,
aangevuld met zeven weloverwogen polarisatieobservabelen, kan de onderliggende reactieamplitude
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namelijk ondubbelzinnig bepaald worden. Op deze manier kunnen heel stringente beperkingen
opgelegd worden aan modellen die trachten de dynamica van de vreemdheidsproductiereactie te
doorgronden. Bij dit alles dient echter een kanttekening geplaatst te worden. In de praktijk is ieder
experiment uiteraard onderhevig aan fouten inherent aan het meetproces. Deze meetfouten doen
teniet aan de volledigheid van een compleet experiment en in de praktijk zullen een hele resem
observabelen vereist zijn om een eenduidig beeld te vormen van de reactiedynamica.

Vreemdheidsproductie aan het deuteron

Tot op heden gaat, zowel op experimenteel gebied als vanuit theoretisch standpunt, de meeste
aandacht uit naar kaonproductie-experimenten aan het proton. De beschikbare database wordt
namelijk gedomineerd door de p(y*), K+)A- en p(y*), Kt)x0-reacties. Een grondige studie van
de vier overige kaonproductiekanalen biedt echter de mogelijkheid om vreemdheidsproductie beter
te begrijpen aangezien deze reacties sterk complementair zijn. Een dergelijk initiatief vereist dat
ook experimenten op het neutron uitgevoerd worden. Omdat dit deeltje onstabiel is, neemt men
toevlucht tot deuterium als trefkern. Deze zwakgebonden toestand van een proton en een neutron is
namelijk de ideale bron van neutronen. Vanuit dit oogpunt, wordt in dit doctoraat een model voor
kaonproductie aan het deuteron ontwikkeld.

Het Regge-plus-resonantiemodel

Een betrouwbare beschrijving van kaonproductie aan het proton en neutron is uiteraard van cruciaal
belang om vreemdheidsproductie aan het deuteron te modelleren. In eerste instantie wordt de
productie van geladen kaonen aan het proton onder de loep genomen.

Het isobaar model

De EM productie van de verschillende pseudoscalaire mesonen vertoont vele gelijkenissen. Omdat
het pion het lichtste meson is, werd pionproductie historisch als eerste bestudeerd. Bij lage energieén
vertoont de werkzame doorsnede enkele markante pieken die een duidelijke manifestatie zijn van
de vorming van aangeslagen nucleontoestanden. Een beschrijving aan de hand van hadronische
vrijheidsgraden is dan ook aan de orde. Men spreekt over een hadrodynamisch raamwerk. Aangezien
mesonen, baryonen en hun aangeslagen toestanden geen elementaire deeltjes zijn, beschikt men niet
over een fundamentele theorie om hun interacties te begrijpen. Als alternatief wordt een effectieve-
veldentheoretische formulering op poten gezet die steunt op fenomenologische interactie-Lagrangianen.
Die laatste beschrijven de meest algemene interactie tussen hadronen en worden opgesteld op basis
van symmetrieprincipes zodat aan de eigenschappen van de onderliggende elementaire veldentheorie
voldaan is. De eindige extensie van de hadronen wordt in rekening gebracht met behulp van
vormfactoren. Dit dient echter doordacht geimplementeerd te worden omdat vormfactoren de
ijkinvariantie van de interactie kunnen opheffen.

Binnen het isobaar model wordt de reactiedynamica beschreven aan de hand van laagste-orde
(tree-level) Feynmandiagrammen die opgesteld worden op basis van effectieve interactie-Lagrangianen.
Deze diagrammen worden op meerdere manieren geclassificeerd. Men maakt het onderscheid tussen



174 Samenvatting

het s-, t- en u-kanaal al naargelang er een niet-vreemd baryon, een meson of een hyperon uitgewisseld
wordt. Wanneer het deeltje in de intermediaire toestand geen resonantie is, spreekt men over een
Borndiagram. Het laatste en belangrijkste onderscheid heeft te maken met de impulsoverdracht
binnen het diagram. Doorgaans is het uitgewisselde deeltje virtueel. De kinematica van kaonproductie
zijn dusdanig dat bij de uitwisseling van nucleon- en deltaresonanties de intermediaire toestand
zich echter op zijn massaschaal (on-shell) kan bevinden. Hierdoor wordt de propagator singulier en
vertoont de transitieamplitude een pool. Men spreekt over een resonant diagram. De voornaamste
drijfveer voor mesonproductie-experimenten is het potenti€el om nucleonresonanties te ontdekken.
Vanuit dit oogpunt worden alle niet-resonante diagrammen beschouwd als achtergrondprocessen die
de bepaling van het nucleonspectrum in de weg staan.

Het isobaar model steunt op een hadrodynamische beschrijving en niet op een fundamentele theorie.
Hierdoor zijn de sterktes van de verschillende bijdragen tot de wisselwerking niet gekend en dienen zij
bepaald te worden door middel van een fit aan de experimentele gegevens. Omdat de parameters van de
resonante en achtergronddiagrammen gelijktijdig geoptimaliseerd worden, zijn zij sterk gecorreleerd
met elkaar. Een correcte inschatting van de belangrijkste achtergrondcontributies is dan ook
elementair. Wanneer het isobaar model aangewend wordt voor de studie van vreemdheidsproductie
geldt dit gegeven des te meer. De gemeten werkzame doorsnede heeft een egaal energieverloop en
vertoont niet de markante kenmerken die duiden op de aanwezigheid van overheersende resonante
structuren. Dit wijst erop dat de achtergrondprocessen domineren en bijgevolg is het cruciaal dat zij
correct in rekening gebracht worden.

Binnen het isobaar model wordt de achtergrond van de vreemdheidsproductiereactie beschreven door
middel van de uitwisseling van de drie Borndiagrammen. Deze termen divergeren echter waardoor
hun aanwezigheid nefast is bij hogere energieén. Deze situatie kan gecorrigeerd worden door de
uitwisseling van vectormesonen in het ¢-kanaal en eventueel hyperonresonanties in het u-kanaal
te beschouwen. Op deze manier worden echter een groot aantal extra parameters in het model
geintroduceerd. Bovendien blijkt dat de afschatting van de resonantieparameters sterk afhangt van
de techniek waarmee de achtergrond onder controle wordt gehouden. Dit vraagt om een alternatieve
beschrijving van de achtergrondbijdragen.

De Regge-plus-resonantiestrategie

Bij hoge energieén zijn hadronische vrijheidsgraden niet langer aangewezen. De dynamica van het
vreemdheidsproductieproces wordt niet langer bepaald door nucleonresoanties en dit uit zich in
vloeiende, egale werkzame doorsnedes die uitsluitend bepaald worden door achtergrondcontributies. In
principe is dit het domein van de partonische vrijheidsgraden. Door middel van Regge-fenomenologie
hoeven we echter geen afstand te doen van de isobaar beschrijving. Regge theorie laat ons toe om op
een efficiénte manier een ganse familie aan deeltjes, een trajectorie!, uit te wisselen met behulp van
één enkel diagram. De kaonproductiedata in het hoge-energiegebied kan succesvol beschreven worden
met de uitwisseling van een K (494)- en een K*(892)-trajectorie in het ¢-kanaal. Deze beschrijving
omvat slechts drie parameters.

Alhoewel Regge theorie afgeleid wordt bij asymptotisch hoge energieén en in de limiet van voorwaartse
verstrooiingshoeken, blijkt het Regge model ook in het resonantiegebied een bevredigende beschrijving
te geven van de beschikbare data. Uiteraard slaagt dit zuivere achtergrondmodel er niet in om

leen Regge-trajectorie wordt aangeduid met de naam van het lichtste hadron dat er deel van uitmaakt.
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de subtiele structuren in de gemeten observabelen die het gevolg zijn van resonante bijdragen te
beschrijven. Dit kan echter opgelost worden door resonante bijdragen toe te voegen.

De Regge-plus-resonantiestrategie (Regge-plus-resonance, RPR) bestaat erin om een hybridisch model
op te stellen dat enerzijds de resonante bijdragen bij lage energieén beschrijft en terzelfertijd over
de correcte hoge-energielimiet beschikt. Dit wordt verwezenlijkt door in eerste instantie het Regge
model te optimaliseren aan de hand van experimentele gegevens bij hoge energieén. Vervolgens
doet dit model dienst als parametrisatie van de achtergrondprocessen in het resonantiegebied.
Zonder de achtergrondparameters aan te passen, worden resonante diagrammen toegevoegd en hun
koppelingssterktes gefit aan de data. Het resulterende model heeft beduidend minder vrije parameters
in vergelijking met isobare modellen. Bovendien slaagt men er op deze manier in om de bepaling van
de sterktes van de resonante en niet-resonante diagrammen te ontkoppelen.

Het model

In het kader van het doctoraat van T. Corthals is een RPR-model ontwikkeld aan de hand van de
destijds gepubliceerde data voor p(v*), K+)A- en p(v®), K+)X%productie. Dit model vormt het
onderwerp van hoofdstuk 2. Aan de hand van hoge-energiedata stelt men het Regge model op. Dit
achtergrondmodel wordt vervolgens aangerijkt met resonante contributies.

In het A-productiekanaal bekomt men een RPR-amplitude die erin slaagt de beschikbare data correct
te beschrijven. De resonante bijdragen worden geleverd door de S11(1650), P11(1710), Pi3(1720),
P13(1900) en D;3(1900) nucleonresonanties. Over het bestaan van de eerste drie bestaat weinig twijfel
aangezien ze ook een belangrijke rol spelen in andere reacties. De noodzaak om twee resonanties met
een massa van 1900 MeV in te voeren is echter interessant. De P;3(1900)-resonantie werd reeds in
enkele eerdere analyses geintroduceerd en maakt deel uit van het door constituente-quarkmodellen
voorspelde nucleonsprectrum. Er is echter geen plaats voor binnen het quark-diquark beeld. Het is
dus een kandidaat om de controverse tussen beide op te lossen en de meest aangewezen vrijheidsgraden
voor de beschrijving van nucleonstructuur vast te stellen. De D13(1900)-resonantie tenslotte is in de
RPR-analyse essentieel om de data te beschrijven, maar staat niet in de RPP. We hebben hier dus
te maken met een mogelijke ontbrekende resonantie.

De beschrijving van het Y-productiekanaal is minder éénduidig. De hoge-energiedata laten niet toe
om een uniek Regge model te bepalen. Het teken van de tensorkoppeling van de K*(892)-trajectorie
blijft in het ongewisse. De twee bekomen modelvarianten worden Regge-3 en Regge-4 gedoopt. In
het resonantiegebied is dezelfde set resonanties als in het A-kanaal van toepassing met uitzondering
van de Dj3(1900)-resonantie. Bovendien spelen in dit reactiekanaal ook A-resonanties een rol. De
D33(1700)-, S31(1900)-, P31(1910)- en P33(1920)-resonanties maken deel uit van het RPR-model. De
beschrijving van X-productie wijst dus ook in de richting van de Pj3(1900)-resonantie. Er zijn echter
geen aanwijzingen voor ontbrekende resonanties.

Sinds de publicatie van het RPR-model werden een groot aantal nieuwe experimentele resultaten
gepubliceerd. Enerzijds werden reeds gekende grootheden met een veel hogere precisie gemeten en
anderzijds kwamen ook enkele voorheen onbepaalde observabelen ter beschikking. De nieuwe data
maken het mogelijk om het RPR-model kritisch tegen het licht te houden. De enkele conceptuele
tekortkomingen van het huidige RPR-model werden weggewerkt in het kader van de doctoraten van
L. De Cruz en T. Vrancx. Op basis van dit verbeterde RPR-model is momenteel een heranalyse van
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de experimentele gegevens aan de gang.

Niettegenstaande de enkele imperfecties, blijkt uit de confrontatie van de RPR-modelberekeningen
met de nieuwe data de sterke voorspellende kracht van het formalisme. Dit is vooral treffend wanneer
vergeleken wordt met dubbele-polarisatieasymmetrieén. Deze worden adequaat beschrijven over
een ruim energiegebied en dit zowel bij voorwaartse als achterwaartse hoeken. Bovendien is ook de
extrapolatie naar reacties met virtuele fotonen uiterst betrouwbaar. De RPR-modelvoorspellingen
voor electrongeinduceerde vreemdheidsproductie zijn zondermeer impressionant te noemen, gegeven
het feit dat geen nieuwe vrije parameters ingevoerd werden.

Uitbreiding van het RPR-formalisme

Het RPR-model werd geoptimaliseerd voor de beschrijving van de K A- en KX -productiekanalen.
Om betrouwbare berekeningen uit te voeren voor vreemdheidsproductie aan het deuteron is het
echter noodzakelijk om ook de resterende kanalen correct te karakteriseren. Dit wordt bemoeilijkt
door de relatief kleine experimentele database. Om het gefitte RPR-model te kunnen gebruiken,
dienen transformatieregels opgesteld te worden voor de koppelingsconstanten van de relevante
diagrammen. Concreet zijn dit de t-kanaaldiagrammen van het K (494)- en K*(892)-meson en de
resonante diagrammen waarbij een resonantie uitgewisseld wordt in het s-kanaal. Dit onderwerp
wordt uitvoerig behandeld in hoofdstuk 3.

Vreemdheidsproductie aan het neutron

In eerste instantie wordt de productie van kaonen aan een vrij neutron onderzocht. De conversie
van de koppelingsconstanten in de sterke-interactievertices steunt op SU(2)-isospinsymmetrie. De
transformatie in de EM vertices heeft meer voeten in de aarde. De verhouding van EM koppelings-
sterktes voor de resonante diagrammen kan uitgedrukt worden in termen van heliciteitsamplitudes.
Deze amplitudes dienen experimenteel bepaald te worden in andere productiereacties zoals pho-
tongeinduceerde pionproductie. De heliciteitsamplitudes die opgelijst staan in de RPP, hebben
echter relatief grote foutenvlaggen. Bovendien zijn de heliciteitsamplitudes voor de P;3(1900)- en
D13(1900)-resonanties onbepaald.

De kwaliteit van de RPR-modelverspellingen aan het neutron wordt nagegaan aan de hand van
experimentele gegevens voor het n(y, KT)X~ kanaal. Deze data laten toe om een onderscheid te
maken tussen de twee evenwaardige RPR-modellen in het »-productiekanaal. Vergelijkingen met de
data laten duidelijk zien dat het Regge-4 model de werkzame doorsnede niet correct beschrijft. Het
Regge-3 model daarentegen geeft wel een bevredigend resultaat. Wanneer ook de resonante bijdragen
beschouwd worden, verbetert de overeenkomst met het experiment nog verder. De foutenvlaggen op
de experimenteel bepaalde heliciteitsamplitudes spelen echter een belangrijke rol. De onzekerheden
propageren naar het eindresultaat en geven aanleiding tot grote fluctuaties bij de berekening van
werkzame doorsnedes. Enerzijds zet dit een limiet op de voorspellende kracht van het RPR-formalisme.
Anderzijds zullen bijkomende metingen op het neutron ook toelaten om de heliciteitsamplitudes
nauwkeuriger te bepalen.
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Productie van neutrale kaonen

Ook bij de transformatie van de RPR~amplitudes naar reactiekanalen met een neutraal kaon in de
finale toestand kunnen we steunen op isospinsymmetrie in de sterke-interactievertex. Dit is de enige
vereiste aanpassing voor de resonante diagrammen. Het kaonuitwisselingsdiagram daarentegen is
exact nul en de EM koppelingsconstantes van de K*(892)-trajectorie moeten getransformeerd worden
op basis van gegevens over het EM verval van dit meson.

Wanneer voorspellingen op basis van deze naieve aanpak vergeleken worden met de beschikbare
data in het K"~ -productiekanaal, blijkt de predictie de meetresultaten ruimschoots te overtreffen.
Meerdere methodes worden onderzocht om dit problematische gedrag te corrigeren. Uiteindelijk
wordt er gekozen voor een pragmatische aanpak waarbij de EM koppelingssterkte artificieel kleiner
gemaakt wordt door hem te fitten aan de beschikbare data. Op deze manier wordt een behoorlijke
beschrijving van de data gerealiseerd.

Radiatieve kaonvangst

Vooraleer het formalisme voor vreemdheidsproductie aan het deuteron geintroduceerd wordt, is er een
klein intermezzo in hoofstuk 4. De kruissymmetrische partner van photongeinduceerde kaonproductie
wordt er besproken. De radiatieve kaonvangstreactie geeft complementaire informatie vanwege zijn
gevoeligheid voor hyperonresonanties. Net als het nucleonsprectrum is ook het bepalen van de
aangeslagen toestanden van vreemde baryonen een belangrijk ijkpunt voor baryonstructuurmodellen.

Door de kruissymmetrie wordt de rol van de s- en u-kanaal in de transitieamplitude omgekeerd. Bij
radiatieve kaonvangst zijn het dus de u-kanaaldiagrammen met hyperonresonanties in de intermediaire
toestand die voor de resonante bijdragen zorgen. Aangezien de t-kanaalcontributie dezelfde blijft, kan
het Regge-model uit hoofdstuk 2 opnieuw als parametrisatie van de achtergrond gebruikt worden.

De resultaten van het Regge-model worden vergeleken met de allereerste experimentele gegevens
voor de differentiéle werkzame doorsnede. In het p(K~,~)A-kanaal geeft de Regge-voorspelling reeds
een goede beschrijving van de data. Het p(K —,v)X-resultaat daarentegen wijst op een belangrijke
rol voor resonante bijdragen. Bij wijze van verkende analyse wordt getracht de beschrijving van de
data te optimaliseren door één voor één enkele gekende hyperonresonaties uit de RPP aan de Regge-
amplitude toe te voegen. De data laten niet toe om meerdere resonanties gelijktijdig te overwegen en
er kunnen geen sluitende conclusies getrokken worden. De analyse wijst op een belangrijke rol voor
hyperonresonanties in het 1550 (1700) MeV massagebied in het yA (y£?)-productiekanaal.

Vreemdheidsproductie aan het deuteron

Nu het RPR-formalisme geintroduceerd is en er een efficiént model voor de beschrijving van EM
vreemdheidsproductie aan het vrije nucleon op punt staat, kan de stap gezet worden naar het
deuteron.
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Theoretisch raamwerk

Behalve de elementaire productieamplitude is ook de beschrijving van de structuur van de trefkern een
essentieel ingrediént om tot een correcte beschrijving te komen van kaonproductie aan het deuteron.
Binnen een covariant formalisme wordt de transitievertex van een deuteron dat overgaat naar twee
ongebonden nucleonen beschreven aan de hand van vier vormfactoren. Deze vormfactoren zijn op hun
beurt gedefiniéerd in functie van de golffuncties van het deuteron. Op basis van niet-relativistische
realistische nucleon-nucleon potentialen kunnen de deuterongolffuncties berekend worden. Er zijn
ook relativistische resultaten beschikbaar die steunen op een parametrisatie van de nucleon-nucleon
interactie op basis van een één-bosonuitwisselingspotentiaal bekomen in de covariante spectatortheorie
(covariant spectator theory, CST). Alle modelresultaten zijn onderling consistent zolang de relatieve
impuls van de constituenten kleiner is dan 400 MeV. Bij die energieén is de waarschijnlijkheid om

nog een nucleon in het deuteron aan te treffen echter reeds ettelijke grootteordes geslonken.

In hoofdstuk 5 wordt een covariant formalisme gepresenteerd voor de transitieamplitude van de
kaonproductiereactie aan het deuteron op basis van de relativistische impulsbenadering. Deze
benadering houdt in dat het inkomende foton interageert met slechts één enkel nucleon binnen het
deuteron. Op die manier kan de complexe veeldeeltjestransitieoperator herleid worden tot een som
van ééndeeltjestransitieoperatoren.

De belangrijkste bijdrage tot het reactiemechanisme wordt geleverd door de relativistische vlakke-
golfimpulsbenadering (relativistic plane-wave impulse approzimation, RPWIA). Dit diagram beschrijft
de situatie waarbij de drie reactieproducten na de wisselwerking met het foton ongestoord de
interactieregio verlaten. Hogere-orde effecten komen voor wanneer het kaon-hyperonpaar of het
hyperon-nucleonpaar herverstrooien. In dit doctoraat wordt enkel de laatste mogelijkheid beschouwd.
De bijdrage van de hyperon-nucleon herverstooiing (hyperon-nucleon final-state interaction, YN-FSI)
wordt berekend in de veronderstelling dat het spectatornucleon altijd on-shell is. Het YN-FSI-diagram
valt uiteen in een on-shell en een off-shell stuk. In het eerste geval zijn de inkomende en uitgaande
deeltjes in de herverstrooiingsvertex op hun massaschaal. Bij de off-shell-contributie daarentegen
is het intermediair hyperon virtueel. Dit maakt het mogelijk dat de >N — AN transitie reeds
bijdragen levert vooraleer de fysische drempelenergie overschreden wordt.

Resultaten

Hoofdstuk 6 is gewijd aan de resultaten die bekomen werden aan de hand van het formalisme uit
hoofdstuk 5. Het RPR-model uit hoofdstuk 2 wordt hierbij toegepast als elementaire kaonproduc-
tieoperator. Voor de berekening van reacties op het gebonden neutron en processen waarbij een
neutraal kaon gevormd wordt, zijn de transformaties uit hoofdstuk 3 essentieel.

In eerste instantie wordt het belang van de verschillende modelingrediénten in de RPWIA onderzocht.
De momentumdistributie van het deuteron blijkt de bepalende factor die de differentiéle werkzame
doorsnede vorm geeft. De momentumdistributie piekt wanneer het spectatornucleon een impuls
van om en bij de 50 MeV heeft. De regio’s in de faseruimte van de vreemdheidsproductiereactie
waar dit geldt, dragen dan ook maximaal bij tot de werkzame doorsnede. De absolute sterkte
van de reactie wordt bepaald door de onderliggende elementaire reactieamplitude. Aangezien het
foton koppelt aan een gebonden deeltje is de elementaire amplitude altijd off-shell. Aan de hand
van een on-shell-reductie van de RPWIA-amplitude wordt het belang en de bijdrage van deze
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off-shell-extrapolatie nagegaan. Er is enkel een belangrijk effect wanneer het spectatornucleon een
hoge impuls wegdraagt en de werkzame doorsnede dus klein is. In diezelfde kinematische situatie is
ook de gevoeligheid aan de gebruikte deuteron golffunctie het grootst. De allergrootste bron van
onzekerheden op de bekomen resultaten zijn echter de heliciteitsamplitudes die aangewend worden
om de elementaire reactie op het neutron uit te rekenen.

Na de studie van de RPWIA wordt de aandacht gevestigd op het effect van het YN-FSI-diagram.
Hierbij wordt gebruik gemaakt van amplitudes die berekend werden met de hyperon-nucleon potentiaal
van het Jiillich model. Bij lage impulsen van het uitgaande nucleon is het effect van YN-FSI
verwaarloosbaar. Bij hoge impulsen daarentegen wordt de kenmerkende isotrope productie van
het nucleon verstoord door de herverstrooiing. Zowel het on-shell als het off-shell stuk van het
diagram versterken de emissie van nucleonen in de voortwaartse richting. Voor de semi-inclusive
kaonproductiereactie vinden we een gelijkaardig effect. Het YN-FSI-diagram speelt vooral een rol
wanner de impuls van het foton en het kaon op één lijn liggen. Over het algemeen kan men vaststellen
dat de relatieve bijdrage van het YN-FSI-diagram enkel significant is daar waar het quasi-vrije
reactieproces niet domineert en de werkzame doorsnede bijgevolg klein is. Dit heeft als gevolg dat
het deuteron als een efficiénte bron van neutronen kan beschouwd worden.

De modelberekeningen worden tenslotte vergeleken met de beschikbare data. Aan het LNS werden
werkzame doorsnedes gemeten bij fotonenergieén dicht bij de drempelenergie. Het effect van YN-FSI
is verwaarloosbaar bij deze kinematieken. De RPWIA-voorspellingen voor de semi-inclusive neutrale-
kaonproductiedata zijn bevredigend. De vorm van de werkzame doorsnedes wordt correct beschreven
en op de laagste fotonenergie na wordt ook de sterkte van de reactie goed voorspeld. De resultaten voor
semi-inclusive A-productie zijn van dezelfde kwaliteit. Op gebied van electrongeinduceerde processen
is de hoeveelheid beschikbare data eerder beperkt. In totaal zijn er twee gepubliceerde datapunten
voor semi-inclusive geladen-kaonproductie bij voorwaartse hoeken. De RPWIA-voorspelling overschat
de data met ruwweg een factor twee a drie. Metingen over een groter energie- en hoekbereik zouden
het mogelijk maken om de discrepantie tussen model en experiment beter te begrijpen.

Vooruitblik

In dit werk werd vreemdheidsproductie aan het nucleon en het deuteron uitgebreid besproken
in het kader van het RPR-raamwerk. De reactiemechanismen zijn goed begrepen en de overeen-
komst tussen theorie en experiment is bevredigend. Er blijft echter ruimte om de beschrijving van
kaonproductiereacties verder te ontwikkelingen en te verbeteren.

In de nabije toekomst zullen een reeks nieuwe polarisatiemetingen voor de n(vy, K°)A en n(vy, K°)x°
reacties via de CLAS collaboratie beschikbaar worden. Deze data zullen toelaten om de uitbreidingen
van het RPR-model die in hoofdstuk 3 gepresenteerd werden te evalueren. De geplande uitbreiding van
de infrastructuur aan Jefferson Lab biedt bovendien de mogelijkheid om EM vreemdheidsproductie
te bestuderen bij hoge energieén. De experimentele bepaling van de werkzame doorsnede van
kaonproductiereacties aan het neutron of met een ongeladen kaon in de finale toestand zou waardevolle
informatie bevatten om het Regge formalisme verder te verbeteren. Zoals in hoofdstuk 3 duidelijk
werd, wordt het opstellen van een volledig RPR-model momenteel enigszins beperkt door een gebrek
aan data in het energiegebied waar resonante bijdragen geen rol meer spelen.

Het elementaire kaonproductiemodel speelt uiteraard een essenti€le rol bij de beschrijving van
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vreemdheidsproductie aan het deuteron. De resultaten die in dit werk gepresenteerd worden,
maken gebruik van het RPR-2007 model uit hoofdstuk 2. Zoals vermeld, is een heranalyse van de
kaonproductiedatabase op basis van het uitgebreide RPR-formalisme aan de gang. Dit vernieuwde
model zal uiteraard een betere beschrijving geven van het reactiemechanisme en toelaten om meer
betrouwbare berekeningen voor vreemdheidsproductie aan het deuteron te bekomen.

De studie van vreemdheidsproductie aan het deuteron wordt voornamelijk gemotiveerd door de
mogelijkheid om het reactiemechanisme aan het neutron te onderzoeken. De resultaten in hoofd-
stuk 6 hebben aangetoond dat het deuteron inderdaad een goede potentiéle neutronenbron is. Om
deze vaststelling verder te bevestigen is het van belang om overige herverstrooiingsdiagrammen te
beschouwen. Met name het tweestapsproces, waarbij in eerste instantie een pion geproduceerd wordt,
kan mogelijk een belangrijke bijdrage leveren. De berekening van dit diagram verloopt analoog aan
die van YN-FSI. In de literatuur zijn meerdere modellen beschikbaar die EM pionproductie adequaat
beschrijven. Om het tweestapsdiagram te evalueren, dient men ook over een correcte beschrijving van
de N(7, K)Y -reactie te beschikken. Voor dit proces zijn weinig experimentele gegevens beschikbaar
en de betrouwbaarheid van de berekening van het tweestapsdiagram zal dan ook verder theoretisch
werk vereisen.
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1 strive to be brief, and I become obscure.

List of acronyms

(23)-CM
Dnp

CcC
CLAS
CM
CcCQM
CST
EFT
EM

FSI

GSL
KY-CM
LAB
LEPS
NRPWIA
OPE
PWA
QCD

Centre-of-Mass of particles labelled 2 and 3, see page 62.
Deuteron-neutron-proton, see page 77.
Coupled-Channels.

CEBAF Large Acceptance Spectrometer, see Ref. [239].
Centre-of-Mass (frame).

Constituent-Quark Model.

Covariant Spectator Theory, see Ref. [240].
Effective-Field Theory.

Electromagnetic.

Final-State Interaction, see page 83.

GNU Scientific Library, see Ref. [190].

Kaon-Hyperon Centre-of-Mass frame.

Laboratory (frame).

Laser Electron Photon beamline at SPring-8, see Ref. [241].

Non-Relativistic Plane-Wave Impulse Approximation, see page 84.

One-Photon Exchange.
Partial-Wave Analysis.

Quantum chromodynamics.
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RIA Relativistic Impulse Approximation, see page 82.

RPP Review of Particle Physics, see Ref. [1].

RPR Regge-plus-Resonance, see page 11.

RPWIA Relativistic Plane-Wave Impulse Approximation, see page 84.

SAID Scattering Analysis Interactive Dail-in, see Ref. [4].

SAPHIR  Spectrometer Arrangement for PHoton Induced Reactions, see Ref. [242].

YN-CM Hyperon-Nucleon Centre-of-Mass frame.

YN-FSI Hyperon-Nucleon Final-State Interaction, see page 86.

List of symbols

A
C

€;
€ijk
€aByd

Dnp

Gi(p)
h(p)
g

JM

gn
ANz, y, z)

Feynman-slash notation, see equation (A.32).

Charge conjugation matrix, see equation (A.30).

Imaginary unit of the quaternion group H, see equation (B.5).
Levi-Civita tensor, see equation (A.24).

Totally antisymmetric tensor, see equation (A.7).

Covariant Dnp-vertex, see equation (5.82).

Dirac gamma matrices, see equation (A.27).

Propagator for particle of spin-i, see equation (D.4).

Helicity transformation, see equation (C.2).

Transition current for EM kaon-production from the deuteron, see page 83.
Transition current for EM kaon-production from the nucleon, see page 13.
Rapidity of a Lorentz boost, see equation (A.15).

Deuteron polarisation vector, see equation (5.79).

Triangle function, see equation (E.2).

Four-vector in the LAB frame, see equation (5.5).

Four-vector in the (23)-CM frame, see equation (5.6).

Four-vector in the YN-CM frame, see equation (K.4).

Positive-energy projected deuteron wave function, see equation (5.88).
Negative-energy projected deuteron wave function, see equation (5.92).
Rotation defined by the Euler angles «, S and ~, see page 118.

Wick helicity rotation, see equation (C.12).
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™) Rotation through the angle | @ | about the unit axis &, see page 118.
o Pauli matrices, see equation (A.22).
7’;}\%\}/ Hadronic transition matrix elements for N(y*), K)Y, see equation (2.10).

T)\);’/\Y A Hadronic transition matrix elements for 2H(y*), KY')N, see equation (5.27).
u(p, \) Positive-energy helicity spinor, see equation (C.8).
(p; ms) Positive-energy Dirac spinor, see equation (A.34).
v(p, \) Negative-energy helicity spinor, see equation (C.8).
(

7y M) Negative-energy Dirac spinor, see equation (A.34).
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