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Summary 

One of the critical factors involved in remodeling of upper airway disease is TGF-beta,  acting 

as a master switch for the development of either chronic rhinosinusitis with or without polyp 

formation. TGF-beta impacts fibrosis formation through collagen production and its effect on 

the balance between MMPs and TIMP. Additionally, TGF-beta influences the differentiation 

of T cells towards Tregs, allowing different inflammatory patterns to establish in the case of 

deficiency. 

We have shown that the regulation of TGF-beta, its receptors and down-stream signals 

(phosphosmad) and products (collagen) are differently regulated in CRSsNP and CRSwNP, 

which results in different clinical expression and remodeling patterns. CRSsNP represents 

fibrosis, whereas CRSwNP is characterized by oedema formation.  

In line with a low TGF-beta expression, a significantly lower FOXP3 expression, but a 

significantly higher T-bet and GATA-3 expression in CRSwNP compared to controls was 

observed, suggesting a deficit in the T regulatory capacity, which leads to a strong increase in 

Th1 and Th2 effector cell signals. Eosinophils in Caucasian CRSwNP are activated and their 

survival is increased by IL-5, a Th2 cytokine suppressing the apoptosis of those granulocytes, 

and anti-IL5 has been identified as a therapeutic principle in eosinophilic CRSwNP. In 

CRSsNP, FOXP3, T-bet, GATA-3 and RORc expression  were not significantly different from 

controls; the disease is characterized by a modest increase in IFN-gamma and TGF-beta1 

mRNA and protein on the background of a functional T regulatory cell compartment in 

contrast to  CRSwNP. Thus, T-cell mediated inflammation seems to play less of a role in 

CRSsNP compared to remodeling in this disease phenotype.  

In fact, remodeling patterns are consistent in different ethnic groups, whereas inflammatory 

cell patterns vary, esp. the presence of eosinophil granulocytes in CRSwNP. These 

discrepancies may indicate that remodeling and inflammation may be dissociated processes, 

a hypothesis further supported by the finding of early signs of remodeling without 

inflammatory changes in early CRSsNP disease.  
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Samenvatting 

De ontwikkeling van chronische rhinosinusitis met of zonder nasale polipose wordt in 

belangrijke mate beïnvloed door TGF-beta. TGF-beta zorgt voor de ontwikkeling van 

weefselfibrosering via collageenproductie en onrechtstreeks beïnvloedt TGF-beta ook het 

evenwicht tussen degraderende matrix metalloproteinases (MMPs) en het inhiberende TIMP 

(tissue inhibitor metalloproteinase). Naast het effect op weefselremodelering, heeft TGF-

beta ook een effect op de differentiatie van T cellen naar T regulatoire cellen. Via dit 

mechanisme kunnen verschillende inflammatoire patronen tot stand komen in geval van 

TGF-beta deficiëntie. 

We hebben aangetoond dat de regulatie van TGF-beta, de receptoren, intracellulaire 

signalen (phosphosmad) en producten (collageen) verschillend gereguleerd zijn in CRSsNP en 

CRSwNP. Dit resulteert in een unieke klinische expressie en een verschillend 

weefselremodelering patroon. CRSsNP wordt typisch gekenmerkt door fibrose, terwijl 

CRSwNP gekenmerkt wordt door oedeemvorming.  

In overeenstemming met een lage expressie van TGF-beta in CRSwNP, werd een significant 

verlaagde expressie van FOXP3 (merker voor T-regulatoire cellen), maar een significant 

verhoogde expressie van T-bet en GATA-3 expressie in CRSwNP vastgesteld in vergelijking 

met controles. Deze bevinding suggereert een deficiëntie aan T-regulatoire capaciteit in 

CRSwNP, welke aanleiding kan geven tot een sterke toename van Th1 en Th2 effector 

celsignalen. Eosinofielen in Kaukasische CRSwNP zijn geactiveerd en de overleving is 

verlengd door IL-5, een Th2 cytokine welke de apoptose van deze granulocyten onderdrukt. 

Anti-IL5 is aldus een belangrijk therapeutisch target. In CRSsNP zijn FOXP3, T-bet, GATA-3 

and RORc expressie niet significant verschillend van controles; deze ziekte is gekenmerkt 

door een beperkte toename in IFN-gamma en toename in TGF-beta mRNA en proteïne op 

een achtergrond van een functioneel T regulatoir cel repertoire. T cel gemedieerde 

inflammatie blijkt aldus een minder belangrijke rol te spelen in CRSsNP in vergelijking met 

weefselremodelering. 

Remodeleringspatronen blijken uniform aanwezig te zijn in verschillende etnische groepen, 

terwijl de inflammatoire cellijnen zelf sterk kunnen uiteenlopen, zoals bijvoorbeeld de 

aanwezigheid van eosinofiele granulocyten in CRSwNP. Deze discrepanties kunnen indicatief 

7



zijn voor een dissociatie tussen remodelering en inflammatie. Deze hypothese wordt 

ondersteund door de bevinding dat vroege tekenen van remodelering wel reeds aanwezig 

zijn in beginnende CRSsNP zonder dat er duidelijke inflammatoire veranderingen aan te 

tonen  zijn in CRSsNP.  
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Chapter I: Introduction 

 

1. Definition and subgroups 

Chronic rhinosinusitis, by definition, is a disease of the paranasal sinuses that lasts longer 

than three months and is characterized by a chronic inflammation of the sinuses and the 

nose1. Symptoms of chronic sinusitis may include any combination of the following: nasal 

congestion, facial pain, headache, post nasal drip, loss of smell, an increase in previously 

minor or controlled asthma symptoms, aching teeth.  

Chronic rhinosinusitis represents a significant health care problem with considerable medical 

costs and severe impact on lower airway disease and general health outcomes. In order to 

summarize the current knowledge on rhinosinusitis, the European Academy of Allergology 

and Clinical Immunology (EAACI) has developed the EP³OS (EAACI position paper on 

Rhinosinusitis and Nasal Polyps) document on what is currently known about 

pathophysiology, as well as guidelines for evidence based recommendations on diagnosis 

and treatment1,2.  

Chronic rhinosinusitis is defined as a group of disorders that is characterized by persistent 

inflammation of the nose and the paranasal sinuses, and can present with nasal polyp 

formation. Based on current consensus, the two major subgroups are chronic rhinosinusitis 

without (CRSsNP) and with nasal polyposis (CRSwNP). Besides these subgroups, nasal polyp 

formation also occurs in specific conditions such as cystic fibrosis (CF) and allergic fungal 

sinusitis (AFS), based on genetic defects in CF and a specific IgE-mediated immune response 

to fungi in AFS respectively. 

 

The clinical diagnosis of chronic rhinosinusitis is currently based on symptoms and duration 

of symptoms, clinical examination, nasal endoscopy and CT-scan. 

However, the clinical presentation is aspecific since the pattern of symptoms and signs is 

overlapping in patients with chronic sinus inflammation, whether there is formation of nasal 

polyps (CRSwNP) or not (CRSsNP). As a result, all chronic sinus disease is considered as one 

disease spectrum, “chronic rhinosinusitis”, which obstructs the development of 

pathophysiological knowledge and new therapeutic approaches.  

However, when looking at inflammatory and remodeling patterns, chronic rhinosinusitis can 

be differentiated into distinct subgroups3.  
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Based on these biological patterns CRS without and with NP represent distinct disease 

entities within the spectrum of chronic sinus disease. This initially gave rise to a TH1/TH2 

dogma in chronic sinus disease, where CRSsNP could serve as a model for a Th1 biased 

disease, and CRSwNP as a model for Th2 driven eosinophilic disease. 

CRSsNP is characterized by a predominant TH1 milieu with high IFN-gamma and TGF-beta1 

concentrations,  whereas CRSwNP typically show a TH2 skewed eosinophilic inflammation 

with high levels of IL-5 and IgE3. 

 

Classification of nasal polyps and chronic rhinosinusitis.  
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Table: Clinical definition of chronic rhinosinusitis according to EP³OS guidelines2 

Clinical definition of rhinosinusitis/nasal polyps 

Rhinosinusitis (including nasal polyps) is defined as: 

• Inflammation of the nose and the paranasal sinuses 

characterized by two or more symptoms: 

- blockage/congestion; 

- discharge: anterior/post nasal drip; 

- facial pain/pressure; 

- reduction or loss of smell; 

and either 

• Endoscopic signs: 

- polyps; 

- mucopurulent discharge from middle 

meatus; 

- oedema/mucosal obstruction primarily in 

middle meatus; 

and/or 

• CT changes: 

- mucosal changes within ostiomeatal complex 

and/or sinuses. 

 

Severity of the disease 

The disease can be divided into 

MILD and MODERATE/SEVERE 

based on total severity visual 

analogue scale (VAS) 

score (0-10 cm): 

MILD = VAS 0-4 

MODERATE/SEVERE = VAS 

5-10 

 

Duration of the disease 

Acute/Intermittent 

< 12 weeks 

Complete resolution of 

symptoms. 

Chronic/Persistent 

>12 weeks symptoms 

No complete resolution of 

symptoms. 
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2. Epidemiology 

Chronic rhinosinusitis (CRSsNP) and nasal polyposis (CRSwNP) are diseases with high 

prevalence, estimated up to 15% and 4% respectively in industrialized countries.  Chronic 

rhinosinusitis is one of the most common chronic illnesses in the United States with almost 

31 million patients affected, and its prevalence is still increasing4. It occurs in both genders, 

and all ethnic groups. Prevalence appears to be increasing in women and individuals living in 

the southern US5. There is a considerable socio-economic burden, with loss of productivity 

and missed work/school. Quality-of-life scores are worse than those of other chronic 

diseases such as heart failure, asthma, and COPD6.  

However, estimating the prevalence of CRS is difficult due to shortcomings in current 

epidemiological methodology, and the heterogeneity of the disease. Recently, the GA2LEN 

network of excellence, funded by the European Union, conducted a large pan European 

study to evaluate the prevalence of CRS in Europe. A postal questionnaire was sent to a 

random sample of adults aged 15-75 in 19 centres in Europe. Participants reported 

symptoms of chronic rhinosinusitis, age, gender, and smoking history. Definition of chronic 

rhinosinusitis was based on the current EP³OS definition. Information was obtained from 

57128 responders living in 19 centers in 12 countries. The overall prevalence of chronic 

rhinosinusitis by EP3OS criteria was 10.8%. Chronic rhinosinusitis was more common in 

smokers than non-smokers7. Co-morbidities such as asthma and aspirin hypersensitivity are 

frequent in nasal polyposis. This is not the case in chronic rhinosinusitis without polyp 

formation.  

 

3. Clinical aspects of chronic rhinosinusitis 

3.1 Nasal endoscopy 

Clinical examination of chronic rhinosinusitis patients is based on nasal endoscopy. Using a 

nasal endoscope, endoscopy provides a detailed examination of both the nasal cavity and 

sinuses. 
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 Typical nasal endoscopic view of chronic rhinosinusitis without nasal polyps (left). Mucopurulent discharge from 

middle meatus can be seen. Right image showing nasal polyps. 

We used the following four category endoscopic staging system: 

Score 0: no polyps visible 

Score 1: small polyps visible in the middle meatus, not reaching below the inferior border of 

the middle meatus 

Score 2: polyps reaching the lower border of the middle turbinate  

Score 3: large polyps reaching the lower border of the inferior turbinate or polyps medial to 

the middle meatus 

Score 4:large polyps causing complete obstruction of the inferior meatus 
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3.2 Computed tomography 

CT scan imaging is the technique of choice for chronic rhinosinusitis, showing extent of the 

disease and anatomy. Plain sinus X-rays are insensitive and nowadays obsolete.  

The Lund-Mackay system is a validated staging system for assessing extent of the pathology. 

The system relies on a scoring system ranging from 0 to 2 as description of the extent of 

opacification of each sinus system and of the ostiomeatal complex:  0 in the case of absent 

opacification, 1 partial opacification and 2 in the case of complete opacification, deriving a 

maximum score of 12 per side. 

 Left Right 

Maxillary Sinus (0,1,2)   

Anterior Ethmoid (0,1,2)   

Posterior Ethmoid (0,1,2)   

Sphenoid (0,1,2)   

Frontal Sinus (0,1,2)   

Ostiomeatal complex (0,2)*   

Total score   

0: no abnormalities 1: partial opacification  2: total opacification 

0: not occluded* 2. occluded*  

 

CT scan of paranasal sinuses, coronal view showing typical changes with obstruction of the ostiomeatal complex 

in chronic rhinosinusitis without polyps (left). Right image showing massive nasal polyposis with complete 

opacification of the maxillary and ethmoidal sinuses. 
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3.3 Management of chronic rhinosinusitis 

Several therapies are used in the treatment of chronic rhinosinusitis, however, 

corticosteroids and antibiotics remain the  cornerstones  of the current medical treatment. 

When medical treatment fails, functional endoscopic sinus surgery (FESS) is indicated in 

order to restore physiologic aeration and drainage of the sinuses, which can facilitate the 

resolution of mucosal disease. However, FESS does not directly treat the underlying 

inflammatory disorder, therefore intensive post-operative medical management is 

mandatory.  

3.3.1 Chronic rhinosinusitis with nasal polyps 

Patients suffering from nasal polyposis complain mostly of nasal congestion, hyposmia or 

anosmia, anterior rhinorrhoea or postnasal drip. Medical treatment is intended to reduce 

the size and extent of the nasal polyps and control mucosal inflammation. Corticosteroids 

remain the cornerstone of treatment, they can be administered topically by either sprays or 

drops (instillation) or systemically.  

3.3.1.1 Topical glucocorticosteroids 

Topical intranasal corticosteroids have shown to be safe and effective in reducing polyp size, 

nasal obstruction, rhinorrhoea and sneezing in people with nasal polyposis8-10. Their anti-

inflammatory effect is localized and their systemic absorption has been shown to be 

negligible11-13. However, due to the mechanical obstruction of the sinuses by the nasal 

polyps, it is often impossible for sprays to reach within the sinuses. Therefore, nasal drops 

are likely to be more effective, because these solutions can reach further within the 

sinuses14. The patient is asked to assume a series of positions: first the head down forward 

position in order to reach the frontal and ethmoid sinuses, then right lateral supine position 

for the maxillary sinuses, and finally in the supine position to reach the sphenoid sinuses, 

each for one to two minutes.  

Topical glucocorticoids are also helpful in preventing the regrowth of nasal polyps following 

sinus surgery15. 
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3.3.1.2 Systemic glucocorticosteroids 

The use of systemic corticosteroids has been widely used in treatment of nasal polyposis, 

however systemic side effects limit its usefulness.  

In a double blind placebo controlled trial methylprednisolone shows a fast and significant 

effect of oral methylprednisolone on nasal polyp size, nasal symptoms and nPIF, with 

however a relapse as soon as 4 weeks and a total recurrence as early as 3 months after start 

of treatment16. 

Adverse effect of systemic steroid use include diabetes, peptic ulcer disease, glaucoma, 

severe hypertension, and advanced osteoporosis. Even a short course of steroids can 

significantly increase the blood pressure and glucose levels in patients with predisposition to 

hypertension and diabetes.   

3.3.1.3 Doxycyline  

A chronic microbial trigger is currently suggested to play an important role in the 

pathogenesis of chronic rhinosinusitis with nasal polyposis. Colonization with Staphylococcus 

aureus is present in 64 percent of patients with chronic rhinosinusitis with nasal polyposis, 

compared with approximately 30 percent in healthy controls or patients with chronic 

rhinosinusitis without nasal polyps. In addition, IgE antibodies directed against 

Staphylococcal superantigens have been found in the tissues of a high percentage of 

colonized polyposis patients. A randomized, double-blind, placebo-controlled trial was 

conducted to assess whether doxycycline could reduce nasal polyp size and provide anti-

inflammatory effects. Doxycycline (200 mg on the first day followed by 100 mg once daily for 

20 days) caused a statistically significant reduction in polyp size beginning at week 2 and this 

effect was sustained for 12 weeks. A significant reduction in nasal secretion eosinophil 

cationic protein (ECP) was also found after 20 days of doxycycline treatment17.  
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3.3.1.4 Other treatment options 

3.3.1.4.1 Anti-IL-5 

Nasal polyposis is characterized by abundant tissue eosinophilia in more than 80% of the 

Caucasian patients, and is frequently associated with asthma. IL-5 is essential for the 

differentiation of eosinophils, but it also activates and prolongs survival of the mature cells 

in the tissue.  Hence, IL-5 represents a specific therapeutic target.  

TGF-beta not only has pro-fibrotic and immunomodulatory properties, it is also known for its 

ability to counter effects on IL-5: TGF-beta counteracts the survival-prolonging effects of IL-5 

on eosinophils18. TGF-beta inhibits the release of eosinophil peroxidase. Thus, TGF-beta 

seems to inhibit eosinophil survival and function18. 

In vitro studies have shown that anti-IL-5 treatment resulted in eosinophil apoptosis and 

decreased tissue eosinophilia19.  

A first double-blind placebo-controlled studies has been performed with a monoclonal anti-

IL5 antibody (reslizumab) in nasal polyp patients20. This study showed that one single 

administration of 3 mg/kg and 1mg/kg of a humanized anti-IL-5 is safe and well-tolerated 

therapy however only 50% of the patients showed a clinical response with reduction of 

polyp size. Subgroup analysis showed that high local IL-5 concentrations in nasal secretions 

predicted a positive response.  

We performed a phase 2 study to determine the efficacy of two injections of a monoclonal 

anti-IL5 antibody (mepolizumab) on nasal polyp volume in subjects with severe nasal 

polyposis. The efficacy was studied by nasal endoscopy and CT-scan imaging21. In addition, 

markers of biological activity such as IL-5 and nasal eosinophilia were assessed over a period 

of eleven months post last dose. Two injections of mepolizumab were safe and well 

tolerated and significantly reduced the size of nasal polyps for at least 2 months post dosing 

based on endoscopic scoring and blinded CT scan assesment.  

 

3.3.1.4.2 Anti-IgE 

In patients with nasal polyps, a local massive multiclonal IgE response has recently been 

described22. Evidence accumulates that S. aureus derived enterotoxins act as superantigens 
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resulting in a multiclonal T- and B-cell activation with massive IgE formation within the 

airways. Therefore, IgE could be an interesting therapeutic target. In lower airway disease, 

omalizumab, a humanized monoclonal anti-IgE antibody was  used in severe asthmatics. 

Treatment with omalizumab resulted in marked reduction of serum IgE and a reduction of 

IgE+ cells in the airway mucosa. 

A double blind randomized placebo controlled study is currently conducted in our 

department with omalizumab in patients with severe nasal polyposis. 

 

3.3.2 Chronic rhinosinusitis without nasal polyps 

Patients with chronic rhinosinusitis without nasal polyps typically complain for longer than 

12 weeks about nasal obstruction, together with one or more of the following symptoms: 

discolored nasal discharge, headache with frontal pain and sometimes smell disturbances.  

 In case of mild symptoms, treatment with topical steroids and nasal irrigations with saline is 

appropriate. In the case of failure after three months, or in the case of moderate to severe 

symptoms, a long term antibiotic treatment is suggested by the current E³POS guidelines. 

3.3.2.1 Topical glucocorticosteroids 

The efficacy of glucocorticoid nasal sprays was evaluated in a trial of 167 patients with CRS 

and persistent symptoms despite two weeks of oral antibiotics, in which subjects were 

randomized to budesonide nasal spray (128 micrograms twice daily) or placebo for 20 

weeks13. The active therapy significantly reduced both morning -1.40 (95% CI, -2.18 to -0.62) 

and evening -1.37 (95% CI, -2.15 to -0.58) symptom scores from baseline, compared to 

placebo, with the greatest impact in patients with underlying allergic rhinosinusitis. 

For patients who have persistent symptoms despite consistent use of glucocorticoid nasal 

sprays, we advise them to change to nasal glucocorticoid instillations, as described 

previously.  

3.3.2.2 Low-dose macrolides  

Several reports have concluded that long-term administration of low-dose macrolide 

antibiotics is helpful in chronic rhinosinusitis23-25. It is unclear if this is due to anti-
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inflammatory or antimicrobial effects. One placebo-controlled trial in 64 patients with 

chronic rhinosinusitis evaluated monotherapy with the macrolide roxithromycin25. Patients 

were treated with 150 mg roxithromycin daily for 3 months. After 12 weeks of therapy, 

patients reported small but statistically significant benefits compared with placebo on the 

primary outcome measure of symptom score as well as several objective measures. 

However, long term treatment and routinely use of antibiotics still remains matter of debate 

due to the risk of development of multiresistant bacterial species.  

 

3.3.3 Surgery  

Functional endoscopic sinus surgery (FESS) has revolutionalized the surgical treatment of 

chronic rhinosinusitis, first introduced by Messenklinger and Stammberger. It has become 

the standard surgical intervention for patients with chronic rhinosinusitis (CRS) refractory to 

medical therapy. Performed through the nasal cavity using endoscopes and inciting no 

external scars, these advantages have renewed an interest in the surgical intervention of  

chronic sinus diseases.  
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4. T cell immunology in chronic sinus diseases  

Chronic rhinosinusitis with and without nasal polyposis are chronic sinus diseases, both 

characterized by persistent inflammation of the nasal and paranasal mucosa. Recent 

research has demonstrated that these pathologies can be differentiated into distinct 

subgroups, based on the expression of inflammatory mediators3, giving rise to a Th1/Th2 

dogma in chronic sinus disease.  

Chronic rhinosinusitis without polyps demonstrates a Th 1 typed inflammation, with high 

levels of IFN-gamma and TGF-beta.  

Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by a Th2 skewed 

eosinophilic inflammation, with high levels of IL-5 and total IgE, and low TGF-beta 

concentrations26.  

Because the intracellular mechanisms behind this initial T cell polarization remain largely 

unclear, this was subject for further research. 

4.1 T cell subsets  

T cells play a central role in cell mediated immunity. Progenitor T cells migrate from the 

bone marrow to the thymus were they are selected by positive selection (recognition of 

MHC) and negative selection (recognition of self antigens). Once CD4+ cells have survived 

the selection procedure in the thymus, they move to the periphery where antigen encounter 

occurs. Antigen presenting cells (APCs) such as macrophages, dendritic cells and B cells  

present the antigen to the T cell receptor in the form of a peptide-MHC II complex.  

Importantly, in the case of superantigens this presentation in the MHC II peptide binding 

groove does not occur, superantigens are able to cross link the MHC molecule and the T-cell 

receptor directly. It has been demonstrated that significantly more nasal polyp patients are 

colonized with Staphylococcus aureus. An increased response to S. aureus enterotoxins was 

observed in nasal polyps, reflected by a severe eosinophilic inflammation and higher total 

IgE production22. 
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Upon antigen recognition, differential maturation towards a Th1 or Th2 phenotype will 

occur. Factors that can influence this decisive step are the cytokine milieu and the 

phenotype of the APC. 

Different T cell subsets have been described, each with distinct functions. Initially, only two 

subsets of T helper (h) cells were described: Th1 and Th2 cell types. 

Based on knowledge acquired from allergic rhinitis and asthma, it is established that Th1 

cells characteristically interact with external pathogens ( e.g. bacteria, viruses) and secrete 

interleukin 2 (IL-2), IL-3, tumor necrosis factor alpha,  and interferon gamma.  

Th2 cells adapt B-cell production of immunoglobulins and humoral immunity. Th2 cells 

secrete IL-4, IL-5, IL-9, IL-10, and IL-13. IL-4 and IL-13 facilitate B-cell heavy-chain isotype 

switching from immunoglobulin G (IgG) to immunoglobulin E (IgE) production, with 

subsequent release of IL-5. IL-5 encourages eosinophilic inflammation, facilitating the allergic 

response and airway hyperresponsiveness. The IgE produced in response to allergens 

populates mast cells and basophils. Later exposure to the same allergen permits release of 

proinflammatory molecules, such as histamine. The IL-5-facilitated eosinophilic inflammation 

creates the nasal symptoms and airway inflammation characteristic of allergic rhinitis and 

asthma27,28, which are both associated with an abundance of Th2 cell response29,30. 

The existence of  a dedicated population of suppressive T cells was subject of controversy for 

many years. Recent advances in characterization of this T cell population, called regulatory T 

cells have firmly established their existence and their critical role in the immune system. 

Regulatory T cells are a specialized subpopulation of T cells that actively suppress activation 

of the immune system and thereby maintain immune system homeostasis and tolerance to 

self-antigens31. It is assumed that regulatory T cells play a key role in diseases characterized 

by dysregulated peripheral tolerance such as asthma, atopic dermatitis, allergic rhinitis and 

autoimmune diseases9-11. The activity of T-regulatory cells can also suppress the response of 

T cells to exogeneous antigens such as Staphylococcal enterotoxin B32. 

Recently, a subset of highly proinflammatory T cells that produce interleukin 17 (Th 17 cells) 

has been identified, these could play an important role in immunity and disease. The role of 

TH17 cells in allergy is still largely unclear, but experimental models suggest that TH17 cells 
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may be important for neutrophilic inflammation in acute airway inflammation. Many 

functions that were initially attributed to Th1 cells are being shown to be part of Th17 

responses33. 

4.2 Transcription factors  

Naïve T-cells differentiate towards different T cell subtypes based on the differential 

expression of transcription factors. T-bet (T-box transcription factor) expressed by Th1 cells 

expressing IFN-γ involves commitment towards Th1 cells, absence of T-bet results in 

elimination of IFN-γ production by Th1 cells34.  

T-bet is restricted to the Th1 subset, and Tbet transactivates the IFN gamma gene, induces 

IFN-gamma production in retrovirally transduced primary T-cells, and redirects polarized Th2 

cells towards the Th1 direction35. 

GATA-3 (gata binding protein 3) is critical for commitment towards Th2 cells and controls the 

expression of interleukin (IL)-4 and IL-536,37.  

FOXP3 is a novel member of the forkhead transcription factors, and is recognized to be 

essential for the development and function of T-reg cells. FOXP3 acts as a master regulator 

for the development and function of T-reg cells. Genetic mutations in the gene encoding 

FOXP3 have been identified in both humans and mice. Humans with mutations in FOXP3 

suffer from a severe and rapidly fatal autoimmune disorder known as Immune 

dysregulation, Polyendocrinopathy, Enteropathy X-linked (IPEX) syndrome38.  

The transcription factor involved in Th17 differentiation is called RORγt, equivalent to RORc 

in humans39. 
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Naïve T-cells differentiate towards different T cell subtypes based on the differential expression of certain 

transcription factors. T-bet (T-box transcription factor) involves commitment towards Th1 cells
40

; GATA-3 (gata 

binding protein 3) is critical for commitment towards Th2 cells, and controls the expression of interleukin (IL)-4,  

IL-5 and IL13
41,42

. Moreover, the balance between Th1 and Th2 is controlled by an intriguing subset of T cells, 

called T-regulatory cells (Tregs). The differentiation towards Treg cells is controlled by the transcription factor 

FOXP3. TGF-beta and IL-10 are indirect markers for induced Treg cell types, Tr1 and Th3 respectively
43

. RORc 

controls the differentiation towards Th17 cells. 

 

4.3  Regulatory T cell subsets 

Various populations of T cells have been described over the past years. T regulatory cells can 

be divided in two categories: natural and induced populations of regulatory T cells have been 

described, and they probably have overlapping functions in the control of the immune 

response44.  

4.4 Naturally occurring T regulatory cells 

Naturally occurring regulatory T (nTreg) cells functionally mature in the thymus, and exert 

their suppressive effect via cell-cell contact or via soluble mediators. The development of 

nTreg cells occurs under the control of the transcription factor FOXP3, and they are 
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characterized by CD4(+)CD25(+) phenotype. They exert their suppressive effect via cell-cell 

contact. CD4+CD25+ regulatory T cells constitute 7 to 10 % of the total CD4+ T cell 

population45. It is hypothesized that nTreg cells can migrate to sites of inflammation at 

mucosal surfaces and inhibit Th2 and Th1 cells via cell-cell contact 11.   

4.5  Induced type T regulatory cells: Tr1 and Th3 cells 

Inducible Tregs (iTregs) are generated from naïve T-cells in the periphery. The most 

important subsets of iTregs are Tr1 and Th3 cells. They suppress immune function by 

secretion of predominantly IL-10 and TGF-beta, respectively46. It is probable that both 

natural and inducible populations have complementary and overlapping functions.  

FOXP3 was initially thought to be a specific marker for nTregs that could not be activated in 

peripheral Tcells47-49. However, recent studies could demonstrate the induction of FOXP3 in 

iTregs both in vivo and in vitro 50-52, thus being a marker for both nTregs and iTregs.  

 

5. TGF-beta 

Transforming growth factor beta (TGF-beta) is a multifunctional and pleiotropic growth 

factor  involved in many processes, affecting processes ranging from regulation of cellular 

differentiation and growth to inflammation, wound healing, bone formation, and 

contributing to the pathogenesis of diseases as diverse as autoimmune disease and 

carcinogenesis.  

It’s main activities are extensive. It has a growth inhibitory action on epithelial cells, 

endothelial cells and hematopoietic cells.  TGF-beta also regulates the function of immune 

cells, for which it is a strong suppressor of activation of T cells and of antibody secretion by B 

cells. 

TGF-beta has an effect on chemotaxis, cellular differentiation, apoptosis and extracellular 

matrix production. It’s effect on extracellular matrix production is manifested by enhanced 

expression of extracellular matrix proteins and suppression of expression of matrix 

degrading proteins. Consistent with the multiple tissues and diseases in which TGF-beta is 
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involved, the cellular targets are not restricted to any lineages or cell types. Any cell can 

express TGF-beta receptors and secrete TGF-beta ligand53. 

In humans there are three isoforms known, TGF-beta1, 2, and 3. TGF-beta binds to at least 

three membrane proteins, referred to as receptor type I, II, and III, that exist on virtually all 

cells.  Type I and II are transmembrane serine-threonine kinases that interact with one 

another and facilitate each other’s signalling. The type III receptor, also called betaglycan, is 

a membrane anchored proteoglycan that has no signalling structure but acts to present TGF-

beta to other receptors54. The effects of TGF-beta on the synthesis and deposition of 

extracellular matrix are mediated by the type I receptor.  The effects on cell growth and 

proliferation are mediated by the type II receptor55. 

TGF-beta production, secretion and storage are complex. After secretion, TGF-beta is 

associated with a “latency associated peptide” (LAP) forming the small latent complex. This 

association prevents binding of secreted TGF-beta to ubiquitously expressed receptors and 

assures an extracellular reservoir of TGF-beta that can be activated on demand. In most cells 

LAP is covalently linked to an additional protein, LTBP (latent TGF-beta binding protein, 

existing in four isoforms), forming the large latent complex 56. LTBPs enhance the secretion 

of TGF-beta. LTBPs play a role in the targeting of the latent TGFbeta complex to the 

extracellular matrix. They are known to exist both as soluble molecules and in association 

with the ECM. LTBPs are associated into the matrix rapidly after secretion. TGF- beta can be 

released from the large latent complex by several activators, including integrins (integrin 

αvβ6), proteases and thrombospondin. TGF-beta acts both locally, by binding of the TGF-

beta large latent complex to the extracellular matrix through the latent TGF-beta-binding 

protein (LTBP), and distally, through proteolytic release of latent complex from the ECM57. 

LTBPs are structural ECM proteins for targeting TGF-beta action.  

5.1 TGF-beta signaling pathway 

TGF-beta is a 25kDa protein that exerts signaling through two receptors: a serine-threonine 

kinase type I and type II cell surface receptor. The TGF beta ligand binds to a type II receptor 

dimer, which recruits a type I receptor dimer forming a hetero-tetrameric complex with the 

ligand. TGF-beta receptor III has a high affinity for TGF-beta receptor I and II. TGF-beta 
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receptor III has  a non-signaling role and functions as a co-receptor, but is able to enhance 

the binding of TGF-beta to the receptor II. 

Upon binding of TGF-beta to the TGF-beta receptor II, TGF-beta receptor II recruits and 

transphosporylates TGF-beta receptor I.  TGF-beta receptor I activates the ligand specific 

SMAD proteins Smad2 and Smad3. 

SMADs are intracellular proteins that transduce extracellular signals from transforming 

growth factor beta ligands to the nucleus where they activate downstream TGF-beta gene 

transcription58. 

The SMAD proteins are homologs of both the drosophila protein, mothers against 

decapentaplegic (MAD) and the Caenorhabditis elegans protein SMA. The name is a 

combination of the two. 

Upon activation of Smad2 and Smad3, they form a trimeric complex with Smad4 and are 

translocated to the nucleus where they activate TGF-beta target genes. There exist inhibitory 

Smad proteins Smad6 and Smad7 that prevent either the dissociation of the Smad2/Smad3 

from the TGF-beta receptor complex, and/or inhibit the binding of Smad2/Smad3 to 

Smad459. 
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TGF-beta signaling pathway and function 

TGF-beta binds to Tbeta RII. This binding might be enhanced by the presence of Tbeta RIII. After 

binding to TGF-beta, Tbeta RII recruits and transphosphorylates Tbeta RI. The consequently activated 

type I receptors activate Smad 2 and Smad 3 by phosphorylation (P). This process is inhibited by Smad 

6 and Smad 7. Activated Smad 2 and Smad 3 form heterodimers with Smad 4 and translocate to the 

nucleus. This results in the activation of target genes, influencing inflammation and extrecellular 

matrix remodeling. 

5.2 Cellular Sources of TGF-beta 

TGF-beta can be generated by many cells such as macrophages, epithelial cells, fibroblasts 

and eosinophils60. TGF-beta is usually secreted in its latent form. The highest amounts of 

TGF-beta are found in human platelets and mammalian bone61. 
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TGF-beta and eosinophilic inflammation 

The eosinophil, which plays a pivotal role in the pathogenesis of asthma, has also an 

important role in the inflammatory process of sinus disease. Eosinophils are a rich source of 

TGF-beta 1. Other cell types involved in inflammation are also potential sources of this 

fibrogenic factor. These include macrophages, T cells, mast cells, neutrophils, endothelial 

and epithelial cells, as well as smooth muscle cells and fibroblasts themselves57,62. 

5.3 TGF-beta in chronic rhinosinusitis: dual role  

Among the growth factors that are possibly involved in chronic inflammatory diseases of the 

airways and therefore in chronic rhinosinusitis, TGF-beta could play a key role.  

TGF-beta mediates a broad spectrum of biological activities, particularly airway remodeling 

in lower airways62-64.  

TGF-beta is a fibrogenic growth factor which stimulates extracellular matrix formation and 

chemotaxis of fibroblasts, but inhibits eosinophil survival and induces eosinophil apoptosis65. 

In particularly, it stimulates the production of extracellular matrix components such as 

Tenascin – C, collagen, fibronectin and laminin. Transforming growth factor beta (TGF-beta) 

is found in low levels in tissue homogenates from CRSwNP66. A possible mechanism of 

pseudocyst formation in CRSwNP could be the lack of TGF-beta and the overexpression of 

metalloproteinase 9 and metalloproteinase 7 without the upregulation of the tissue-

inhibitor of matrix-metalloproteinase 1, which may account for the tissue destruction67. 

Remodeling in chronic rhinosinusitis will be discussed in chapter 2. 

TGF-beta and immuneregulation 

Many chronic diseases profit from the immunosuppressive effect of TGF-beta, however, this 

molecule has also been implicated in fibrosis formation and is suspected to play a major role 

in airway remodeling. In general, the function of TGF-beta could be understood as a counter 

regulatory cytokine to resolve inflammation and to initiate the repair process.  

Besides the effect of TGF-beta on already differentiated T cells, effect during the 

development has also been noticed. Indirect immunomodulatory effects of TGF-beta occur 

through T regulatory cells. TGF-beta1 induces FOXP3 expression in CD25(-) naïve T cells to 
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enforce transition to T regulatory cells and is a critical factor in the development of 

peripheral T regulatory cells68,69
. 

Moreover, T regulatory cells are able to suppress both Th1 and Th2 responses by producing 

suppressive cytokines such as IL-10 and TGF-beta.  

Although TGF-beta can affect many cell types, however CD4+ T cells are of special interest 

since anti CD4 antibodies are protective in TGF-beta 1 knockout mice70.  The effect of TGF-

beta on CD4+ cells in a mouse model was of particular interest: a stimulating effect was 

found on Th 1 cells whereas inhibitory effects were observed on Th 2 cells71.  
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Chapter II : Tissue remodeling 

Tissue remodeling in chronic rhinosinusitis 

Van Bruaene N., Bachert C. 

Review in Curr Opin Allergy Clin Immunol. 2011 Feb;11(1):8-11 

_________________________________________________________________________ 

Purpose of review 

The purpose of review is to summarize the current knowledge on remodeling in chronic 

sinus disease.  

Recent findings 

Chronic sinus disease is characterized by persistent inflammation of the nasal and paranasal 

mucosa and is currently classified into two major subgroups on the basis of the absence 

(CRSsNP) or presence (CRSwNP) of nasal polyps. TGF-beta and Matrix metalloproteinases are 

critical factors involved in the remodeling process. 

Summary 

Remodeling is clearly present in chronic sinus disease.  TGF-beta has been implicated as an 

important factor in remodeling processes involved in chronic sinus disease, and serves as a 

main switch for different remodeling patterns in chronic sinus disease. 
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1.Introduction 

Remodeling is a critical aspect of wound repair in all organs, being defined as “modeling 

again”, or “modeling differently”.  It is a dynamic process resulting in both extracellular 

matrix production and degradation. This may lead to a normal reconstruction processes with 

production of normal tissue, or may result in pathological reconstruction with formation of 

pathological tissue1.  

In lower airway disease remodeling has been extensively studied and reviewed1-3. It includes 

changes in airway epithelium, lamina propria and submucosa, resulting in airway wall 

thickening. The main histological features of remodeling are: macrophage and lymphocyte 

infiltration, fibroblast proliferation, angiogenesis, increased connective tissue formation 

(fibrosis) and tissue destruction. There is clear evidence that remodeling is also present in 

chronic sinus disease, and distinct remodeling features differentiate different subgroups of 

chronic rhinosinusitis. 

Chronic rhinosinusitis is clinically a heterogeneous group of chronic inflammatory sinus 

diseases affecting up to 15% of the global population, with important socio-economical 

impact4,5. However, based on differential inflammatory and remodeling patterns, chronic 

rhinosinusitis can be divided in two major subgroups i.e. chronic rhinosinusitis without nasal 

polyps (CRSsNP) and chronic rhinosinusitis with polyp formation (CRSwNP)6-8. In Caucasians, 

CRSwNP is characterized by a predominant Th2 typed eosinophilic inflammation with high 

levels of IL-5, ECP and eotaxin, and high levels of local IgE. However, in Asian CRSwNP, a 

Th1/Th17 polarization was observed, and samples from Asian polyps demonstrated a more 

neutrophilic inflammation. Typical remodeling features in nasal polyps from both ethnic 

groups are albumin accumulation and oedema (pseudocyst) formation within the 

extracellular matrix. One striking feature is the relative lack of the transforming growth 

factor beta (TGF-beta 1) signaling in CRSwNP and lack of collagen production within the 

extracellular matrix.  In contrast, CRSsNP is characterized by a mainly Th1 driven 

inflammation with high levels of IFN-gamma and active TGF-beta 1 signaling with 

subsequent excessive collagen deposition and fibrosis formation.  

Other specific subgroups include nasal polyposis in patients with associated cystic fibrosis 

and allergic fungal sinusitis; these will not be addressed here8. 
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The purpose of this review was to generally summarize the current knowledge on 

remodeling in chronic rhinosinusitis, using studies in human disease.  

 

2. Review 

 2.1. Histomorphological features of remodeling in chronic sinus disease 

The histology of chronic rhinosinusitis with polyp formation (CRSwNP) is typically 

characterized by the presence of pseudocyst formations consisting of albumin accumulation 

and oedema formation9, the lack of collagen within the extracellular matrix10, and the 

excessive infiltration of inflammatory cells mainly consisting of eosinophils in about 80% of 

the Caucasian polyps11,9. Other inflammatory cell types are lymphocytes and mast cells.  No 

nervous structures can be found within nasal polyps12,13. “Early stage” polyps can be 

distinguished from “mature” polyps. The typical characteristic of an early polyp is the 

presence a pseudocyst in the core of the polyp, loose connective tissue with few 

inflammatory cells and an accumulation of inflammatory cells at the top of the early stage 

polyp. In contrast a mature polyp typically consists of a large amount of pseudocysts, with a 

less expressed cellular component9. Nasal polyps show a lack of vascular structures, and 

epithelial damage is often present. 

In contrast, chronic rhinosinusitis without polyp formation is typically characterized by a 

more neutrophilic inflammation14, together with fibrosis formation within the extracellular 

consisting of excessive collagen deposition and thickening of the collagen fibers, and the 

absence of pseudocysts10.  

These typical features of CRSsNP and CRSwNP have been confirmed in Asian patients15, 

although the inflammatory patterns are different16. 

2.2. Factors influencing remodeling 

Several factors have been implicated in remodeling, we here review the best studied factors 

involved. 
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2.2.1 TGF-beta  

Transforming growth factor (TGF-) beta is a pleiotropic and multifunctional growth factor, 

with important immunomodulatory and fibrogenic characteristics. Many chronic diseases 

profit from the immunosuppressive effect of TGF-beta, however, this molecule has also been 

implicated in fibrosis formation and is suspected to play a major role in airway remodeling. 

In general, the function of TGF-beta could be understood as a counter regulatory cytokine to 

resolve inflammation and to initiate the repair process.  

TGF-beta is considered as a master switch in the induction of the profibrotic program, and 

acts as chemoattractant and proliferation factor for fibroblasts6. It induces fibroblasts to 

synthesize ECM proteins and contract extracellular matrix. Three different isoforms (TGF 

beta 1, 2 and 3) have been described, which can bind to three membrane proteins, referred 

to as receptor type I, II, and III. 

Further, TGF-beta regulates the function of immune cells; it is a strong suppressor of T cell 

activation and of antibody secretion by B cells. Recently, a deficit in FOXP3 expression (a 

specific transcription factor critical in Tregulatory cell differentiation and function) was 

demonstrated in CRSwNP, coinciding with low TGF-beta 1 protein levels. As TGF-beta acts 

both as an effector and an inductor of Treg function, the decreased expression of FOXP3 and 

TGF-beta1 protein, together with the upregulation of both Th1 (T-bet) and Th2 (GATA-3) 

transcription signals suggests defective T regulatory function in CRSwNP6.  

In a recent study, TGF-beta 1 protein expression was found increased together with TGF-

beta RI expression and a high number of phospho-smad 2 positive cells, indicating an 

enhanced TGF-beta signaling in CRSsNP. In strong contrast, in CRSwNP a low TGF-beta 1 

protein concentration, a decreased expression of TGF-beta RII and a low number of 

phospho-smad 2 positive cells indicate a low level of TGF-beta signaling in CRSwNP. These 

findings were reflected by the remodeling patterns observed, characterized by a lack of 

collagen in CRSwNP, and excessive collagen production with thickening of the collagen fibers 

in the extracellular matrix in CRSsNP10. 

Due to the regulatory function of TGF-beta in both inflammation and remodeling processes, 

TGF-beta could be an interesting therapeutic target for chronic rhinosinusitis treatment. 
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Long-term, low-dose macrolide therapy is currently suggested as treatment. It is believed 

that macrolides have an anti-inflammatory effect. Clarithromycin therapy has been shown to 

reduce cellular expression of TGF-beta 1 in in vitro biopsies (nasal mucosal cultures in the 

presence of clarithromycin or control) from CRS patients. In vivo however, nasal biopsies 

taken before and after clarithromycin treatment for three months showed no differences in 

cellular expression of TGF-beta17. 

2.2.2 Matrix metalloproteinases 

The role of matrix metalloproteinases (MMPs) in the pathogenesis of lower airway diseases 

has been extensively studied18-21. In view of the united airway concept, MMPs have also 

been focus of research in upper airway disease. Matrix metalloproteinases (MMPs) are a 

family of zinc and calcium-dependent endopeptidases that are known to be important to 

remodel the extracellular matrix.  

One of the mechanisms proposed possibly leading to pathologic tissue remodeling in CRS, is 

the imbalance between MMPs and the tissue inhibitor of metalloproteinases (TIMPs).In 

CRSsNP, elevated levels of MMP-9 and TIMP-1 together with high levels of TGF-beta 1 are 

found. TGF-beta 1 induces the release of TIMP-1, inhibiting the proteolytic activity of MMP-

922. In contrast in CRSwNP,  only MMP-9, but not TIMP-1, is up-regulated23-26, due to the 

relative lack of TGF-beta 1. Within the pseudocysts present in CRSwNP, the inflammatory 

cells showed positive staining for MMP-9, suggesting a direct degradative function27.  

The lack of inhibition of MMPs by TIMP-1 in nasal polyp tissue can cause tissue destruction 

leading to pseudocyst formation. In contrast, up-regulation of TGF-beta 1 and TIMP-1 over 

MMP-9 could explain the prominent fibrosis found in CRSsNP27. Again, these findings were 

similar when comparing Caucasian and Asian disease28. In a recent case control study of 

Wang et al., where 203 cases of chronic rhinosinusitis with nasal polyposis and 730 controls 

were enrolled, evidence has been provided that MMP-9 gene polymorphisms may influence 

susceptibility to the development of chronic rhinosinusitis with nasal polyposis in Chinese 

population29.  In contrast, the MMP2 gene does not play a crucial role in conferring risk for 

nasal polyps in a Taiwanese population30. 
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MMPs could also be an interesting therapeutical target in chronic rhinosinusitis. 

Tetracycline-derivatives such as doxycycline are MMP inhibitors, which at regular or sub-

antimicrobial dose exert systemic anti-inflammatory effects. In a double blind randomized 

placebo controlled trial, doxycycline has been shown to significantly reduce the levels of 

MMP-9 in nasal secretions, reducing the damage to nasal polyp tissue and eventually polyp 

size31. Methylprednisolone treatment did not change MMP-9 levels in nasal secretions. It 

was found that the effect of doxycycline on reduction of nasal polyp size was longer lasting 

(12 weeks)  when compared to methylprednisolone (8 weeks)31.   

Of note, in asthma macrolide antibiotics have also shown an inhibitory function on MMPs32.  

MMP-9 expression in the extracellular matrix is increased during wound healing after sinus 

surgery. As inflammatory cells are the major source of MMP-9 expression, high secretion 

levels of MMP-9 after sinus surgery are linked to poor healing quality 33. The frontal recess is 

especially vulnerable to restenosis, and frontal sinus stents have been used to overcome this 

problem. The use of doxycycline releasing stents have been studied in post-operative wound 

healing after sinus surgery. Doxycycline releasing stents significantly lowered MMP-9 

concentrations and bacterial colonization locally, and improved postoperative healing 

quality after functional endoscopic sinus surgery34. 

2.2.3 Other factors involved in remodeling of chronic rhinosinusitis 

Erbek et al. studied the expression of a disintegrin and metalloproteinase 33 (ADAM-33) 

protein in CRSwNP by immunehistochemistry. ADAM-33 is a member of the matrix 

metalloproteinases, and has a role in the angiogenesis and airway remodeling in asthma. In 

CRSwNP, it was found that the number of ADAM-33 positive cells was significantly higher in 

epithelial cells and in the mesenchymal cells of the vessels35, pointing towards a similar role 

for ADAM-33 in upper airway remodeling. 

In patients with CRS with asthma and CRS without asthma the role of platelet-derived 

growth factor (PDGF) was studied36. The study indicates that PDGF is produced by 

macrophages, eosinophils and epithelial cells in rhinosinusitis and that it acts on receptors in 

epithelial cells and fibroblasts. In the pathogenesis of rhinosinusitis PDGF may play a role in 

promoting tissue fibrosis and formation of nasal polyps. The role of the complement system 
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in CRSwNP has been studied, demonstrating significantly higher concentrations of the 

complement factors C3a desArg and C5a desArg in nasal secretions from CRSwNP patients 

when compared to controls. C3a and C5a cause an increased vascular permeability leading 

to plasma exudation and albumin accumulation as a consequence37. 

Very recent work by Sejima et al.38 points towards the role of fibrinolytic components in 

tissue remodeling in chronic rhinosinusitis. Fibrinolytic components induce extracellular 

matrix (ECM) degradation and break-down. Plasmin degrades fibrin and converts inactive 

pro-matrix metalloproteinases into active MMPs. These activities are counteracted by 

plasminogen activator inhibitor-1 (PAI-1). TGF-beta1 is known to activate PAI-1.  

Plasminogen activators play an important role in the fibrinolytic system, as these proteins 

convert the proenzyme plasminogen into the active enzyme plasmin. Especially, urokinase 

plasminogen activator (uPA) binds to a specific uPA receptor (uPAR) and possesses 

proteolytic activity including tissue remodeling. The PAI-1/uPAR ratio of CRSwNP was 

significantly lower when compared to CRSsNP or controls, suggesting that the activity of uPA 

may be dominant in CRSwNP compared with the other groups. uPA convert proMMPs to 

active MMPs via plasmin, and uPA itself also activates MMPs.  In CRSsNP, TIMP-1 is 

upregulated together with MMP-9, and high level of TGF-beta1 and low activity of uPA were 

observed, so that fibrosis is considered to proceed in the extracellular matrix. In contrast, in 

CRSwNP, TIMP-1 is not up-regulated, and high level of MMP-7/-9, high activity of u-PA, and 

low level of TGF-beta1 are observed, so that fibrinolysis is considered to proceed in the 

extracellular matrix. 

 

3. Conclusion 

Remodeling is a key feature of chronic rhinosinusitis, and distinct remodeling features clearly 

differentiate subgroups of chronic rhinosinusitis. 

Of interest, when comparing Caucasian and Asian polyps, remodeling patterns are more 

consistent than the inflammatory pattern. One of the critical factors involved in remodeling 

of upper airway disease is TGF-beta,  acting as a master switch for the development of either 

chronic rhinosinusitis with or without polyp formation. TGF-beta impacts fibrosis formation 
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through collagen production and the influence on the balance between MMPs and TIMP. 

Additionally, TGF-beta impacts the differentiation of T cells towards Tregs, allowing the 

different inflammatory patterns to establish. 

The importance of studying the mediators and cytokines lies in choosing the best 

therapeutic target.  

Doxycyclin has been shown to significantly reduce the levels of MMP-9 in nasal secretions, 

and to provide a more sustained effect on reduction of nasal polyp volume when compared 

to methylprednisolone. In contrast, remodeling appears to be corticosteroid resistant.  

Clarithromycin is capable of inhibiting pro-inflammatory cytokines in vitro, and reductions of 

TGF-beta and MMP-9 concentrations may represent additional mechanisms by which 

macrolides reduce inflammation in chronic airway disease, but failed to show effects in 

humans.  

Further studies are needed to unravel the complicated pathway of tissue remodeling in 

chronic rhinosinusitis.  
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Chapter III: Aims of the studies 

 

 

Aims of the study 

 

The aim of this thesis was to analyze the role of TGF-beta in  inflammation and the relation 

with remodeling processes in chronic rhinosinusitis with or without nasal polyps, and the 

potential of TGF-beta as a new target for treatment.  

 

Specific aims of the thesis were:  

 

Chapter 4: T-cell regulation in chronic paranasal sinus disease 

To analyze the role of TGF-beta in the T-cell mediated immune response, more specifically  

the direct tissue expression of transcription factors for T-cell subpopulations (including  Th1, 

Th2, Th 17 and T regulatory cells), in relation to the cytokine expression patterns in the 

different disease subgroups.   

 

Chapter 5: TGF-beta signaling and collagen deposition in chronic rhinosinusitis 

The objective was to analyze the presence of TGF-beta isoforms, receptors and intracellular 

SMAD signaling, in relation to tissue remodeling in chronic rhinosinusitis.  

 

Chapter 6: Inflammation and remodeling patterns in early-stage chronic rhinosinusitis 

To analyze pro-inflammatory cytokines and remodeling factors in early-stage chronic 

rhinosinusitis at different anatomical locations within the nose and sinuses. 

 

Chapter 7: Mepolizumab, a humanised anti-IL-5 monoclonal antibody, as treatment option 

for severe nasal polyposis. 

To investigate the therapeutic potential of inhibiting IL-5 using a humanized monoclonal 

antibody as treatment of severe nasal polyposis. 
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ABSTRACT  

Background 

Chronic rhinosinusitis is an inflammatory disease with distinct cytokine and remodeling 

patterns. Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by a Th2 skewed 

eosinophilic inflammation, whereas  chronic rhinosinusitis without nasal polyps (CRSsNP) 

represents a predominant Th1 milieu.  

Objective 

We aimed to study the direct tissue expression of transcription factors for T-cell 

subpopulations, including T regulatory cells, in relation to the cytokine expression patterns in 

the different disease subgroups.   

Methods 

The expression of  FOXP3, T-bet, GATA-3, RORc, the suppressive cytokines TGF-β1, IL-10 and 

Th1/ Th2/ Th17 cytokines (IFN-γ , IL-4, IL-5, IL-13, IL17) were analyzed by means of RT-PCR in 

13 CRSsNP, 16 CRSwNP and 10 control samples. Additional protein measurements were 

performed for TGF-β1 and IFN-γ. 

Results 

In CRSwNP, we observed a significantly lower FOXP3 mRNA and TGF-β1 protein expression, 

but a significantly higher T-bet, GATA-3, IL-5 and IL-13 mRNA expression compared to 

controls, whereas RORc was not significantly different compared to controls.   In CRSsNP, 

FOXP3, T-bet, GATA-3 and RORc expression  was not significantly different from controls,  
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whereas TGF-β1 mRNA, IFN-gamma mRNA and protein were significantly higher in CRSsNP 

compared to controls. For Il-17, no significant differences were noted between all groups. 

Conclusion 

We demonstrate for the first time a decreased FOXP3 expression, accompanied by an up-

regulation of T-bet and GATA-3  and a down-regulation of TGF-β1 in CRSwNP  versus control 

and CRSsNP.  

Clinical implications 

This study reveals a new understanding in chronic sinus disease, pointing towards a deficient 

T regulatory cell function in CRSwNP, but not in CRSsNP.  

Capsule summary  

Chronic rhinosinusitis with nasal polyps is a difficult to treat and often relapsing disease. 

Here we report an impaired FOXP3 expression as a likely mechanism in the pathogenesis of 

nasal polyp disease. 
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INTRODUCTION 

Chronic rhinosinusitis without nasal polyps (CRSsNP) and with nasal polyps (CRSwNP) are 

chronic sinus diseases, both characterized by persistent inflammation of the nasal and 

paranasal mucosa. Recent research has demonstrated that these pathologies can be 

differentiated  into distinct subgroups, based on the expression of inflammatory and 

remodeling mediators 1,2. CRSsNP is characterized by a  predominant Th1 milieu with high 

IFN-γ and TGF-β1 concentrations 1, whereas CRSwNP typically show a Th2 skewed 

eosinophilic inflammation with high levels of IL-5, IgE and low TGF-β1 3,4. However, little is 

known regarding the intracellular mechanisms behind this initial T cell polarization. Naive T-

cells differentiate towards different T cell subtypes based on the expression of certain 

transcription factors. T-bet (T-box transcription factor) involves commitment towards Th1 

cells 5; GATA-3 (gata binding protein 3) is critical for commitment towards Th2 cells, and 

controls the expression of interleukin IL-4 and IL-5 6,7. Moreover, the balance between Th1 

and Th2 is controlled by an intriguing subset of T cells, called T regulatory cells (T reg cells) 8. 

A number of recent studies indicate that T reg cells play an important role in diseases 

characterized by Th2 biased immune responses such as asthma and atopic dermatitis 9-11. Up 

to now, no data are available regarding expression and regulation in CRSsNP, in particular 

CRSwNP. It was tempting to speculate that in CRSwNP, characterized by a massive Th2 

driven eosinophilic inflammation, a de-regulated T regulatory function might be involved. 

Knowledge on T reg cells in human disease is scarce so far, and studies mostly are based on 

in vitro experiments using peripheral blood derived T reg cells. 

In this study we analyzed T cell transcription factors and downstream events at the level of 

the sinonasal mucosa in controls and chronic sinus disease.  

Two main populations of T regulatory cells have been defined. One comprises the naturally 

occurring T reg cells (nT reg), characterized by the CD4(+)CD25(+)Foxp3(+) phenotype. They 

functionally mature in the thymus, and their development is controlled by the transcription 

factor FOXP3. It is hypothesized that nT reg cells can migrate to sites of inflammation at 

mucosal surfaces and inhibit Th2 and Th1 cells via cell-cell contact 11.  Another group of T reg 

cells comprises the “induced” T reg cells (i T reg), generated from naïve T-cells in the 

periphery. The most important subsets of iT reg cells are Tr1 and Th3 cells. They suppress 

immune function by secretion of predominantly IL-10 and TGF-β1, respectively 12. It is 

probable that both natural and inducible populations have complementary and overlapping 
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functions. Although FOXP3 was initially thought to be a specific marker for nT reg cells and 

could not be activated in peripheral T-cells 13-15, recent studies demonstrated the induction 

of FOXP3 in induced T reg cells 16-18, positioning this transcription factor as a marker for both, 

nT reg cells and iT reg cells.  As indirect markers for Tr1 and Th3 activity, we measured IL-10 

and TGF-β1 mRNA expression.  

In this study we aimed to investigate the expression of key transcription factors for T 

regulatory and Th1/ Th2/ Th17 cells, in relation to the mRNA and protein expression of 

representative cytokines, in a Th2- and Th1-biased sinus disease.  

 

MATERIAL AND METHODS 

Patients 

Sinonasal mucosa from 13 patients suffering from CRSsNP, 16 patients suffering from 

CRSwNP, and 10 control patients was obtained at the department of Otorhinolaryngology of 

the Ghent University Hospital, Belgium. Inferior turbinates from patients without sinus 

disease undergoing septoplasty or rhinoseptoplasty were collected as controls. For CRSsNP, 

tissue samples originated from ethmoidal mucosa. For CRSwNP samples of ethmoidal polyp 

tissue were used.  

None of the control and CRSsNP patients had a history of asthma or a positive skin prick test 

to common inhalant allergens. In the CRSwNP group, five of the sixteen patients had asthma 

in history, two of these patients were skin prick test positive, with one patient reporting 

aspirin intolerance. The diagnosis of sinus disease was based on history, clinical examination, 

nasal endoscopy and computed tomography (CT) of the paranasal cavities according to the 

current European EP³OS 19  and American 20 guidelines. General exclusion criteria were 

based on the EP³OS definition for research (cystic fibrosis, gross immunodeficiency, 

congenital mucociliary problems, non-invasive fungal balls and invasive fungal disease, 

systemic vasculitis and granulomatous diseases). Patients with non-allergic rhinitis with and 

without eosinophilia and vasomotor rhinitis were also excluded. All patients stopped oral 

and topical application of corticosteroids for at least one month before surgery. Patients did 

not take any other relevant medication. Patients who underwent prior sinus surgery were 

excluded. The study was approved by the local Ethical committee of the University Hospital 

Ghent, Belgium. An informed consent was obtained from each patient and control subject 

before collecting material. 
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Gene expression analysis - Quantitative real time PCR  

cDNA was synthesized from 2 µg of RNA with the iScript cDNA synthesis kit (BioRad 

Laboratories, CA, USA) following the manufacturer's instructions. Levels of the transcription 

factors FOXP3, GATA-3, T-bet, RORc and cytokines IL-4, IL-5, IL-10, IL-13, IL-17, TGF- 1 and 

IFN-γ  were determined by real time PCR. Amplification reactions were performed on an 

iCycler iQ Real-Time PCR Detection System (Bio-Rad laboratories, CA, USA) using specific 

primer sequences (see online repository, Table 1). PCR reactions contained 30 ng cDNA (total 

RNA equivalent), 250 nM of primer pairs , 1X SYBR Green I Master mix (Bio-Rad laboratories, 

CA, USA) or  1X TaqMan mix with 100 nM of the TaqMan probe in a final volume of 20 μl. 

PCR protocol consisted of 1 cycle at 95°C for 10 minutes followed by 40 cycles at 95°C for 30 

seconds and at 60°C for 1 minute and for reactions using TaqMan probes of 1,5 minutes at 

95 °C followed by 50 cycles: 15 seconds at 95 °C and 1 minute at  60 °C.  

The expression of three housekeeping genes Beta actin (ACTB), Hydroxymethyl-bilane 

synthase (HMBS) and EF1 was used to normalize for transcription and amplification 

variations among samples after a validation using the geNorm software 21,22. The relative 

expression units of  each gene per 30 ng of cDNA sample, was determined by using the 

qBase program (version 1.3.5, UGent, Belgium) and results are expressed as the logarithm of 

normalized relative expression units / 30ng cDNA. 
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Table 1.   

Primer sequences used for real-time PCR amplifications. * Sequences were obtained from the 

Real-Time PCR primer and probe database (http://medgen.ugent.be/rtprimerdb/)  

** Sequences were provided by the Swiss Institute of Allergy and Asthma Research (SIAF) 

 Forward  (5’  3’) Reverse  (5’  3’) Amplicom 
size (bp) 

Accession 
number 

TGF-beta1 CAGCAACAATTC-CTGGCGATA AAGGCGAAAGCCCTCAATTT 135 NM_000660.3 

FOXP3** GAAACAGCACATTCCCAGAGTT
C 

ATGGCCCAGCGGATGAG 100 NM_014009 

T-bet** GATGCGCCAGGAAGTTTCAT GCACAATCATCTGGGTCACATT 83 NM_013351 

GATA-3** GCGGGCTCTATCACAAAATGA GCTCTCCTGGCTGCAGACAGC 79 NM_002051 

EF-1 CTGAACCATCCAGGCCAAAT GCCGTGTGGCAATCCAAT 59 NM_001402 

IFN-γ ACTGACTTGAATGTCCAACGCA ATCTGACTCCTTTTTCGCTTCC 101 NM_000619 

ACTB * CTGGAACGGTGAAGGTGACA AAGGGACTTCCTGTAACAATGCA 139 NM_001101 

HMBS * GGCAATGCGGCTGCAA GGGTACCCACGCGAATCAC 154 NM_00319 

 

TGF-β 1/ IFN-γ Elisa 

Tissue homogenates were assayed for total TGF-β1 and IFN-γ using commercially available 

ELISA kits from R&D Systems (Minneapolis, USA). All data were expressed as ng/ml.  For TGF-

β, acid was added during ELISA procedure, resulting in physicochemical activation of latent 

TGF-β. Total TGF-β concentrations are reported including both active and latent forms. 

Immunohistochemistry 

CD3 staining 

Sections were immunohistochemically stained with the mouse monoclonal antibody CD3 

(clone UCHT1, Dako, Glostrup; Denmark). For immunohistochemical stainings specimens 

were fixed in acetone  and incubated with primary antibody or isotype control for 1 hour and 

detected using the LSAB+  kit (Dako).  

The number of positive cells was analyzed using a magnification of 400x  and scored by two 

independent observers who did not know the diagnosis and clinical data. A grading scale 

from 0 to 3 was applied, ranging from absent to numerous stained cells. Score 0 represents 

no positive cells, score 1 <10 positive cells/field, score 2: 10-100 positive cells/field and score 
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3: >100 positive cells/field. All areas of the section  were analyzed and for each sample 10 

high power fields were scored. 

FOXP3 staining 

Tissue frozen sections were permeabilized with FOXP3 Fix/Perm solution (320501, 

BioLegend) and blocked with 10% normal goat serum (X0907, Dako Cytomation, Glostrup, 

DK) and incubated with primary polyclonal rabbit anti-human FOXP3 Ab (ab10563, Abcam, 

Cambridge, UK) overnigth at 4oC. Slides were incubated with peroxidase labelled polymer 

followed by 3-amino-9-ethyl carbazole (DAB). Sections were counterstained with 

hematoxylin (Sigma, St. Louis, MO) and permanently mounted with Ultramount (S1964, 

Dako Cytomation, Glostrup, DK). FOXP3 blocking peptide (ab14151, Abcam, Cambridge, UK) 

was used as a control to block anti-FOXP3 binding. Human tonsil sections were used as a 

positive control on each staining run. Counting of 10 random high power fields was 

performed by two independent observers. For more information on material and methods, 

please visit the on-line repository. 

 

Statistical analysis 

Statistical analysis was performed with MEDCALC software v 9.2.0.1 (F. Schoonjans, 

Belgium). Data are expressed in Box-and-Whisker plots. When comparisons were made 

between groups, the Kruskall-Wallis test was used to assess significant inter-group 

variability. The Mann-Whitney U two tailed test was used for between-group comparison. 

The significance level was set at α = 0.05. 
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RESULTS 

Immunohistochemistry for FOXP3 and CD3 

Immunohistochemical staining was used to determine the presence of FOXP3 expressing 

cells in healthy and diseased sinonasal mucosal tissue. Representative sections of control, 

CRSsNP and CRSwNP samples stained for FOXP3 are shown in figure 1 (n=6 per group). Tonsil 

sections were used as positive control. FOXP3 expressing cells were detectable in both 

healthy nasal mucosa and CRSsNP, but not in CRSwNP tissue (Figure 1). The median (IQR) 

counts for FOXP3 positive cells were significantly lower in CRSwNP (0; 0-4) compared to 

controls (39; 21-41; P<0.0001) and CRSsNP (52;  37-85; P<0.0001). Additionally, in order to 

estimate the total number of T cells present in tissues, we quantified the number of CD3 

positive cells present in the tissues. The median (IQR) of CD 3 positive cell number (sum of 

ten high power fields) was similar in CRSsNP (22;  20-26) and CRSwNP (23;  19-30), but 

significantly higher compared to controls (20;  18-21; P=0.01 and 0.001, respectively). 

 

Tissue expression of T reg and Th1/ Th2/ Th17 transcription factors 

The expression levels of transcription factors for T reg (FOXP3) and Th1 (T-bet)/ Th2 (GATA-

3)/ Th17 (RORc) populations were directly analyzed on tissue biopsies by means of 

quantitative real time-PCR. This revealed a significantly lower FOXP3 mRNA expression level 

in nasal polyps (CRSwNP) compared to controls (P=0.026), whereas the expression of T-bet 

(P=0.005) and GATA-3 (P=0.035) was significantly higher in CRSwNP compared to 

controls(Figure 2). RORc was not significantly different between the latter two groups, but 

was significantly lower in CRSwNP compared to CRSsNP (P < 0.001). In contrast, in chronic 

rhinosinusitis without polyps (CRSsNP), FOXP3 mRNA expression was higher compared to 

controls, and significantly higher compared to CRSwNP (P=0.005). No significant differences 

were noted for T-bet, GATA-3 and RORc compared to controls (median values and 

interquartile ranges for all transcription factors are specified in the online repository, Table 

2). 
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Figure 1 

Expression of FOXP3+ cells in nasal mucosa from healthy individuals (controls, CON) and 

subjects with chronic rhinosinusitis without nasal polyps (CRSsNP) or with nasal polyps 

(CRSwNP). Lack of staining is observed by blocking with FOXP3 immunizing peptide. Human 

tonsil sections served as a positive control with FOXP3+ cells located in the parafollicular 

cortex (T cell zone). Original magnification was x200 or x400. For human tonsil magnification 

was x100 or x400. Representative slides are shown (n=6 per group). 
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Figure 2  

mRNA expression of transcription factors (FOXP3, T-BET, GATA3) involved in naïve T-cell 

differentiation in controls (CON), nasal polyps (CRSwNP) and chronic rhinosinusitis (CRSsNP) 

expressed as logarithm of normalized relative expression units/ 30ng cDNA.  
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Th1/ Th2/ Th17 and iT reg related cytokine expression 

Differences in Th1/ Th2/ Th17 cytokine pattern, and iT reg related TGF-β1/ IL-10 were 

assessed at the mRNA level between CRSsNP, CRSwNP and controls (figure 3 A and B). 

Because of the relevance of post-translational regulation mechanisms, additional protein 

measurements were performed for TGF-β1 and IFN-γ (figure 3 B). 

In CRSwNP, we found a significantly higher mRNA expression of the  Th2 cytokine IL-5 

compared to controls (P<0.001) and to CRSsNP (P<0.001), and a significantly higher mRNA 

expression of IL-13 in CRSwNP compared to controls (P=0.029). For IL-4, no significant 

differences were noted between controls, CRSsNP and CRSwNP (Figure 3A). In contrast, both 

mRNA and protein levels  of the Th1 cytokine IFN-γ were significantly higher in CRSsNP 

compared to controls (P=0.009 for mRNA, P=0.001 for protein) and to CRSwNP (P=0.001 for 

mRNA, P=0.01 for protein). mRNA expression of TGF-β1 was significantly higher in CRSsNP 

compared to controls (P=0.033). At protein level, TGF-β1 showed higher concentrations in 

CRSsNP compared to controls and to CRSwNP, reaching statistical significance for the latter 

(P<0.001). Furthermore, TGF-β1 protein levels were significantly lower in CRSwNP compared 

to controls (P=0.015), although this difference was not observed at mRNA level (Figure 3B). 

For IL-10 mRNA expression, no significant differences were noted between groups (Figure 

3A). 

The mRNA expression of  IL-17 was not significantly different between all groups (see table 2 

in the online repository). 

Within the CRSwNP group, patients with and without comorbid asthma were compared for 

the expression of FOXP3, T-bet, GATA3, RORc and IL-4, IL-5, IL-13, IL-10, IL-17, IFN-gamma 

and TGF-β1. This revealed no significant differences between both nasal polyp subgroups. 
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Figure 3 A and B 

mRNA expression of key cytokines IFN-γ  (Th1) and IL-4, IL-5, IL-13 (Th2), and iT reg related 

TGF-β1 and IL-10 in controls (CON), chronic rhinosinusitis (CRSsNP), and nasal polyps 

(CRSwNP), expressed as logarithm of normalized relative expression units/ 30 ng cDNA. For 

TGF-β1 and IFN-γ, additional protein measurements were performed, expressed as pg/ml. 
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DISCUSSION 

In this study we analyzed at sinonasal mucosal tissue level, the expression of the 

transcription factors FOXP3, T-bet, GATA-3 and RORc in relation to Th1/ Th2/ Th17 cytokines 

and suppressive iT reg related cytokines.  

We here demonstrate for the first time a significantly lower expression of FOXP3 in CRSwNP 

compared to controls and to CRSsNP. The reduced expression of FOXP3 in CRSwNP at mRNA 

level was consistent with the immunohistochemical findings. FOXP3 positive  cells were 

almost undetectable in CRSwNP tissue sections, and appear to be focally present.  

We used FOXP3 as the most widely accepted marker for T regulatory cells which, although 

still controversial, also has been associated with suppressive function. It was demonstrated 

in a mouse model of colitis that retroviral transfer of FOXP3 converts naïve T-cells into 

functional CD25(+) Treg cells 23. Importantly, mutations in FOXP3 result in the absence or 

dysfunction of T reg cells and lead to the human IPEX syndrome (immune dysregulation, 

polyendocrinopathy, enteropathy, X-linked syndrome) and its murine homolog, the scurfy 

mouse 24,25. Moreover, the role of T regulatory cells in controlling allergic diseases became 

apparent. In allergic rhinitis a reduced number of FOXP3 positive cells was reported 

compared to controls 26. T regulatory cells play an important role in controlling Th2 immune 

responses, and an impaired expansion of natural and/ or inducible T reg cells has been 

suspected to result in the development of allergy and asthma 11. In similarity with asthma, 

CRSwNP are typically associated with a Th2 driven eosinophilic inflammation, characterized 

by high concentrations of ECP, eotaxin and IL-5, but not correlated to atopy 4. We suggest 

that a defective suppressive function of T regulatory cells in CRSwNP, indicated here by the 

low FOXP3 expression, might account for the often severe persistent eosinophilic 

inflammation. As T regulatory cells are assumed to control the pathogenic Th1 and Th2 cells, 

the reduced expression of FOXP3 in CRSwNP together with the up-regulation of T-bet and 

GATA-3 suggests either a deficiency or a dysfunction of T regulation in nasal polyp disease. 

However, this statement can only be of general nature at this moment. The exact functional 

implications of these findings need further investigation. 

In contrast, in CRSsNP, adequate expression of FOXP3 and unchanged expression of the 

transcription factors for Th1 and Th2 lymphocyte populations compared to control mucosa 

suggests active T regulatory function. Since corticosteroids are known to up-regulate FOXP3 
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and T regulatory cells in asthma, only samples of patients who ceased oral and topical 

steroids for at least one month prior to surgery were selected. 

GATA-3 is both necessary and sufficient  for commitment towards Th2 cells and controls the 

expression of IL-56,7. Moreover, GATA-3 also has the capacity to directly inhibit IFN-γ 

promoter activity, resulting in repression of Th1 and development of a Th2 phenotype 27-29. 

The up-regulation of GATA-3 in CRSwNP was reflected by the subsequent increase of the IL-5 

mRNA signal. These findings at mRNA level confirm previous protein data 30. In CRSsNP, IL-5 

mRNA was not up-regulated compared to controls, in line with the unchanged expression of 

GATA-3. Additionally, Th2 cytokines IL-4 and IL-13 were analyzed.  IL-4 mRNA was not found 

significantly different between CRSsNP, CRSwNP and controls, confirming previous data 31. 

However, IL-13 was significantly increased in CRSwNP compared to controls, which under 

certain circumstances has been described to replace IL-4 32. It should be noted that other cell 

types such as eosinophils and mast cells may contribute to GATA-3 expression 33. IL-4, IL-5 

and IL-13 levels can also variably be produced by eosinophils and mast cells. Although the 

coincidence of low FOXP3 levels and the upregulation of the GATA-3, together with the IL-5 

and IL-13 signal suggest a functional relation, the contribution of individual cell types to 

GATA-3 and cytokine expression could not be quantified at whole tissue level. 

T-bet is a Th1 specific T box transcription factor that controls the expression of the hallmark 

Th1-cytokine IFN-γ, and T-bet expression correlates with IFN-γ expression in Th1 cells 5. The 

up-regulation of T-bet in CRSwNP was not reflected by a significant up-regulation of IFN-γ at 

mRNA expression and protein level in CRSwNP, confirming previous protein data1. 

Differently to T-bet which expression is mainly restricted to Th1 cell type, IFN-γ can be 

produced by several cell types including CD4+-Th1 cells, CD8, NK cells but also B-cells. 

Additionally, IFN- γ expression can also be influenced by exogenous and endogenous factors 

(IL-12/IL-12R and IL-18) that can act together or independently of the T-bet signaling 

pathway. Accordingly, the expression of T-bet was not expected to directly correlate with 

IFN- γ expression.  

As a general remark we wish to mention that inferior turbinates from healthy persons were 

used as control tissue, since it is unethical to resect ethmoidal tissue from healthy persons. It 

should however be noted that the differences observed between controls and CRS with or 

without NP might be influenced by comparing these different tissue localizations. However, 

clear differences are observed between ethmoidal tissue from CRSsNP and CRSwNP. 
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As marker for Th17 cells, we analyzed RORc, a transcription factor that controls the 

differentiation towards pro-inflammatory Th17 cells and regulates IL-17 production 34,35. The 

expression of RORc was not significantly different in diseased tissue compared to controls, 

although there was a significantly lower expression of RORc in CRSwNP compared to 

CRSsNP. For IL-17 no significant differences were found at mRNA level between CRSwNP, 

CRSsNP and controls.  

In CRSsNP, IFN-γ mRNA expression was significantly up-regulated compared to controls. At 

protein level, this was also true when compared to CRSwNP, confirming the previously 

described Th1 polarized inflammation. However, the transcription signal of T-bet, critical for 

commitment towards the Th1 phenotype was not found up-regulated in CRSsNP.  

As markers for induced T regulatory activity of Th3 cells, we analyzed the expression of the 

suppressive cytokine TGF-β1. Th3 cells are known to exert their immune-suppressive effect 

via the production of this growth factor. However, numerous other cell types can express 

TGF-β, such as macrophages, mast cells, neutrophils, eosinophils, endothelial and epithelial 

cells and fibroblasts. Furthermore, TGF-β1 induces FOXP3 expression in CD25(-) naïve T cells 

to enforce transition to T regulatory cells and is a critical factor in the development of 

peripheral T regulatory cells36. There was no significant difference in TGF-β1 mRNA 

expression in CRSwNP tissue vs. controls. However, regulation of TGF-β1 mainly occurs at 

the post-transcriptional level. TGF-β1 is secreted from cells as small latent complexes, 

preventing binding of TGF-β1 to ubiquitously expressed receptors, assuring an extracellular 

reservoir of TGF-β that can be activated on demand37. Therefore we performed additional 

protein quantification by means of ELISA, measuring both active and latent forms of TGF-β1. 

Latent forms were released from extracellular matrix by adding acid. This confirmed 

previously published findings of our group 4 and others 38,39  of a down-regulation of TGF-β1 

protein in polyp tissue. Although the coincidence of low levels of TGF-β1 protein and the 

down-regulation of FOXP3 may imply a functional link, the impact of local TGF-β1 on T 

regulatory function has to be confirmed in CRSwNP.  

In contrast, we found a significant up-regulation of TGF-β1 at mRNA level in CRSsNP, just not 

reaching significance at protein level, compared to controls. Furthermore, normal TGF- β1 

protein levels coincided with adequate FOXP3 expression in CRSsNP tissue.  

IL-10, a cytokine that is deeply involved in the regulation of inflammatory and immune 

responses, was measured at mRNA level. The induction of peripheral regulatory T cells by IL-
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10 points towards a crucial role in the establishment of peripheral tolerance40. Specifically, 

IL-10 is instrumental in Tr1 mediated suppression of proliferation and cytokine production of 

naïve CD4(+)CD25(−) T, Th1 and Th2 cells. Activation of T cells in the presence of IL-10 

induces a long lasting state of non responsiveness or anergy41. Here, no significant 

differences in IL-10 mRNA expression were found between controls, CRSsNP and CRSwNP.  

TGF-β and IL-10 are both suppressor cytokines that frequently occur together at sites of 

inflammation, and both cytokines cooperate in the resolution of inflammation. TGF-β can 

induce IL-10, and IL-10 facilitates TGF-β regulatory activity42. The striking coincidence of low 

TGF-β1 protein levels, together with basal levels of IL10 mRNA (not higher compared to 

controls) in CRSwNP, points to a lack of regulatory effect in the resolution of inflammation, 

hence contributing to the chronicity of this disease.  

 

CONCLUSION 

In this study, we demonstrate a decreased expression of FOXP3 in nasal polyp tissue, 

reflecting a deficiency or a dysfunction of T regulatory cells in an often persistent, severely 

inflamed sinus disease, CRSwNP. In line with the low FOXP3 expression in CRSwNP, we 

describe low levels of TGF-β1 protein expression and an up-regulation of the transcription 

signals for Th1 (Tbet) and Th2 (GATA-3) subpopulations, pointing towards a defective 

suppression of their up-regulation by T reg cells. We suggest that this lack in T regulatory cell 

function may contribute to the severe persistent Th2-skewed airway inflammation often 

observed in CRSwNP patients. In contrast, up-regulated TGF-β1 protein levels compared to 

CRSwNP coincide with an adequate expression of FOXP3 and maintained control over T-bet 

and GATA-3 expression in CRSsNP, suggesting adequate T regulatory cell function in this 

sinus disease subgroup.  
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ABSTRACT  

Background: Chronic rhinosinusitis is an inflammatory disease with distinct cytokine and 

remodeling patterns.  

Objective: The objective was to analyze the presence of TGF-beta isoforms, receptors, 

intracellular signaling and collagen deposition in chronic rhinosinusitis.  

Methods: Sinonasal mucosal samples obtained from CRSwNP (n=13), CRSsNP (n=13) and 

controls (n=10) were analyzed for TGF-beta isoforms 1 and 2 by means of ELISA and IHC, and 

for TGF-beta receptor 1, 2 and 3 by RT-PCR and IHC. As downstream proteins phospho-Smad 

2 (pSmad 2) and collagen were analyzed by performing immunostaining and picrosirius red 

staining, respectively. 

Results: TGF-beta 1 and 2 protein concentrations, TGF-beta RI and TGF-beta RIII mRNA 

expression,  the number of pSmad 2 positive cells and total collagen amount were 

significantly higher in CRSsNP versus controls. In CRSwNP, TGF-beta 1 protein concentration, 

TGF-beta RII and TGF-beta RIII mRNA expression, the number of pSmad 2 positive cells and 

total collagen amount were significantly lower versus controls. Only TGF-beta 2 protein was 

found higher in CRSwNP versus controls.  

Conclusions:  A high  TGF-beta 1 protein expression, increased TGF-beta RI expression, and a 

high number of phospho-smad 2 positive cells all indicate an enhanced TGF-beta signaling in 

CRSsNP, whereas a low TGF-beta 1 protein concentration, a decreased expression of TGF-

beta RII and a low number of phospho-smad 2 positive cells in CRSwNP indicate a low level 
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of TGF-beta signaling in CRSwNP. These findings are compatible with the remodeling 

patterns observed, reflected by a lack of collagen in CRSwNP, and excessive collagen 

production with thickening of the collagen fibres in the extracellular matrix in CRSsNP. 

Clinical implications 

A better understanding of the roles of TGF-beta isoforms and receptors in health and disease 

can provide more specific targets for therapeutic intervention. 

 

Capsule summary 

Chronic rhinosinusitis without nasal polyps and chronic rhinosinusitis with nasal polyps 

represent distinct diseases with clear differences in TGF-beta signalling pathway. These 

differences are compatible with the remodeling patterns observed in these disease 

subgroups.  

 

Key words 

Chronic rhinosinusitis, collagen, inflammation, nasal polyposis, phospho-Smad 2, remodeling, 

TGF-beta 
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INTRODUCTION 

Transforming growth factor (TGF-) beta is a pleiotropic and multifunctional growth factor, 

with important immunomodulatory and fibrogenic characteristics. Many chronic diseases 

profit from the immunosuppressive effect of TGF-beta, however, this molecule has also been 

implicated in fibrosis formation and is suspected to play a major role in airway remodeling. 

In general, the function of TGF-beta could be understood as a counter regulatory cytokine to 

resolve inflammation and to initiate the repair process.  

Chronic sinus disease is characterized by chronic inflammation of the nasal and paranasal 

mucosa, accompanied by tissue remodeling that includes changes in the ECM protein 

deposition and tissue structure1. Distinct disease entities can be distinguished within the 

group of chronic sinus diseases, based on different inflammation and remodeling patterns. 

Chronic rhinosinusitis without nasal polyps (CRSsNP) is characterized by high levels of IFN-

gamma and TGF-beta 11,2. In contrast, chronic rhinosinusitis with nasal polyps (CRSwNP) is 

characterized by a predominant Th2 biased eosinophilic inflammation with high levels of IL-

5, ECP and eotaxin, high levels of local IgE, but low levels of TGF-beta1-3. Nasal polyps 

typically consist of albumin accumulation and oedema formation within the extracellular 

matrix (pseudocyst formation)4.  

TGF-beta could play a crucial role in both suppression of airway inflammation and 

remodeling.  TGF-beta either acts through direct suppression of the activation of T-cells and 

antibody secretion of B cells, or indirect through the induction of T-regulatory cell types 5. 

Moreover, TGF-beta is considered as a master switch in the induction of the profibrotic 

program, and acts as chemoattractant and proliferation factor for fibroblasts6. It induces 

fibroblasts to synthesize ECM proteins and contract extracellular matrix. Three different 

isoforms (TGF beta 1, 2 and 3) have been described, which can bind to three membrane 

proteins, referred to as receptor type I, II, and III. 

Until now the majority of investigations in upper airway disease have focused on the TGF-

beta 1 isoform, although recent studies in lower airway disease suggest a distinctive role for 

TGF-beta 2, predominantly expressed in severe asthma and related to eosinophils7. 

Additionally, only few data are available on TGF-beta receptor expression and intracellular 

signaling in chronic sinus disease. TGF-beta receptor signaling is a very complex mechanism 

and is mediated by several signaling steps involving dimerization and posphorylation of 

receptor and intermediate molecules. One of the most important proteins that modulate 
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TGF-beta ligand activity are the Smad proteins. After activation of TGF-beta receptor I, 

phosphorylated Smad 2 and Smad 3 form heterodimers with Smad 4 and translocate to the 

nucleus. This process is inhibited by Smad 7. Together with co-activators, co-repressors and 

other transcription factors, the Smad complex regulates target gene expression8.  

The aim of this work was to study the expression of TGF-beta isoforms 1 and 2 and receptor 

expression in CRS with or without polyp formation, and to link this to the number of 

phosphorylated Smad 2 (pSmad 2) positive cells as downstream marker for active TGF-beta 

signaling. As outcome parameter for remodeling, picrosirius red stainings were performed to 

quantify collagen content, and viewed with polarized light to asses fiber thickness9. 
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METHODS 

Patients 

Patients were selected at the department of Otorhinolaryngology of the Ghent University 

Hospital, Belgium. Inferior turbinate samples from patients without sinus disease undergoing 

septoplasty or rhinoseptoplasty were collected as controls (controls n=10, median age 27, 

range 18-45, 4F/6M ). Samples from patients suffering from chronic rhinosinusitis (CRSsNP 

n=13, median age 42, range 34-78, 6F/7M) and nasal polyposis (CRSwNP n=13, median age 

46, range 34-78, 5F/8M) were obtained during functional endoscopic sinus surgery (FESS) 

procedures. For CRSsNP and CRSwNP, tissue samples originated from the ethmoidal sinuses. 

All patients underwent a skin prick test to common inhalant allergens. None of the control 

and CRSsNP patients had a history of asthma or a positive skin prick test. In the CRSwNP 

group, four of the thirteen patients had a history of asthma, two of these patients were skin 

prick test positive, one patient had aspirin exacerbated respiratory disease.The diagnosis of 

sinus disease was based on history, clinical examination, nasal endoscopy and computed 

tomography (CT) of the paranasal cavities according to the current European EP³OS10 and 

American11 guidelines. General exclusion criteria were based on the EP³OS definition for 

research. Patients with non-allergic rhinitis with and without eosinophilia and vasomotor 

rhinitis were also excluded. All patients stopped oral corticosteroids for at least one month 

and topical application for at least two weeks before surgery. Patients did not take any other 

relevant medication. Subjects with concurrent asthma were maintained on no more than 

1000 mcg/day beclomethason diproprionate or the equivalent. Patients who underwent 

prior sinus surgery were excluded. The study was approved by the local Ethical committee of 

the University Hospital Ghent, Belgium. An informed consent was obtained from each 

patient and control subject before collecting material. 

ELISA for TGF-beta 1 and 2 

 Tissue homogenates were assayed for total TGF-beta 1 and 2 using commercially available 

ELISA kits from R&D Systems (Minneapolis, USA). Acid was added during ELISA procedure, 

resulting in physicochemical activation of latent TGF-β. Total TGF-β concentrations are 

reported including both active and latent forms. All data were expressed as ng/ml. 
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mRNA Gene expression analysis 

Quantitative real time PCR 

cDNA was synthesized from 2 µg of RNA with the iScript cDNA synthesis kit (BioRad 

Laboratories, CA, USA) following the manufacturer's instructions. mRNA levels of TGF-beta 

receptors I, II and III were determined by real time PCR. Amplification reactions were 

performed on an iQ5 Real-Time PCR Detection System (Bio-Rad laboratories, CA, USA) using 

specific primer sequences (see online repository, Table 1). PCR reactions contained 30 ng of 

cDNA (total RNA equivalent) of unknown samples, 1X SYBR Green I Master mix (Bio-Rad 

laboratories, CA, USA) and 250 nM of primer pairs in a final volume of 20 μl. PCR protocol 

consisted of 1 cycle at 95°C for 10 minutes followed by 40 cycles at 95°C for 30 seconds and 

at 60°C for 1 minute. The expression of three housekeeping genes Beta actin (ACTB), 

Hydroxymethyl-bilane synthase (HMBS) and Elongation Factor 1 (EF-1) was used to 

normalize for transcription and amplification variations among samples after a validation 

using the geNorm software12,13. The relative expression units of each gene per 30 ng of cDNA 

sample, was determined by using the qBase program (version 1.3.5, Ghent University, 

Belgium).  

Immunohistochemistry for TGF-beta 1, 2 and TGF-beta R I and II 

Tissue was fixated in formalin (Fluka, Belgium) and embedded in paraffin. Paraffin sections 

were prepared (thickness 4-5 µm) and air dried for 24 hours at 37°C. After deparaffinization 

in parasolve and antigen retrieval by heating in citrate buffer (pH=6), endogenous 

peroxidase activity was blocked with 0.3 % hydrogen peroxidase (VWR International, 

Belgium) in TBS (pH 7.8) containing 0.001 % NaN3  (VWR International, Belgium) for 20 

minutes at room temperature. The sections were then washed with TBS for 10 minutes, 

polyclonal anti-human antibodies TGF-beta 1 and 2 were added and incubated overnight at 4 

°C. Polyclonal anti-human TGF-beta receptor 1 and 2 antibodies were incubated for 60 

minutes at room temperature. All polyclonal anti-human TGF-beta antibodies (1, 2) and 

polyclonal anti-human TGF-beta receptor (1, 2) were purchased from R&D Systems 

(Minneapolis, USA) and diluted to 2 µg/l in TBS/0.5 % BSA. Negative controls consisted of an 

antibody of the similar isotype. Following the overnight incubation for TGF-beta 1 and 2, and 

the 60 minutes incubation for TGF-beta receptor 1 and 2, the slides were washed for 10 

minutes in TBS.  
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A labelled polymer HRP (Dako EnvisionTM + System, Peroxidase (AEC) kit, Dako Denmark) 

was applied and incubated for 30 minutes at room temperature. After washing in TBS for 10 

minutes staining was completed by a 10 minute incubation with AEC (amino-ethylcarbazole) 

substrate-chromogen which results in a red-colored precipitate. Finally, sections were 

counterstained with Heamatoxyline (VWR International, Belgium) for 2 minutes, washed 

extensively in running tapwater and mounted in Aquatex (VWR International, Belgium). 

Immunohistochemistry for phospho-Smad 2  

Paraffin sections were prepared as described before. Aspecific binding was blocked for 30 

minutes with 2% of BSA/TBS. Slides were then incubated with polyclonal Phospho-Smad 2 

(Ser 465/467) antibody (Cell Signaling Technology, Beverly, MA, USA) or control serum 

(rabbit serum (DAKO, Belgium), 1/100 in 2% BSA/TBS) for one hour. After washing in TBS for 

10 minutes, a labelled polymer HRP (Dako EnvisionTM + System, Peroxidase (AEC) kit, Dako 

Belgium) was applied and incubated for 30 minutes at room temperature. After washing in 

TBS for 10 minutes, the staining was completed by a 10 minute incubation with amino-

ethylcarbazole (AEC) substrate-chromogen which results in a red-colored precipitate. Finally, 

sections were extensively washed in running tap water and mounted in Aquatex (VWR 

International, Belgium).  

Image analysis 

Positive intranuclear pSmad 2 staining was analyzed in 6 samples per group. Images from the 

entire tissue section were obtained with a 40X objective lens (final magnification 400X) and 

recorded on a digital camera (Olympus C-5050) with no overlapping zones. Positive 

intranuclear cell staining was quantified using Image J (Rasband, W.S., ImageJ, U. S. National 

Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2007). 

Original images were converted to 8-bit grayscale. Using the threshold function, pSmad 2 

positive areas were converted to saturated black areas and all other areas where then 

rendered white to result in a binary image. The threshold setting was manually validated 

comparing the binary image to the original image. Positive nuclei were scaled by the 

function “analyze particles” (with a minimum size of 50 to a maximum of 500 pixels), and a 

report was generated for each image presenting the count of pSmad 2 positive cells. 

Picrosirius red stainings 

Collagen was measured by means of picrosirius red staining, a technique to identify collagen 

superior to trichrome masson stainings9. Paraffin sections were prepared as described 
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before. Sections were deparaffinized, hydrated, and stained with picrosirius red (direct red 

80, Sigma-Aldrich, St. Louis, USA) for 60 minutes. The sections were then washed in two 

changes of acidified water, dehydrated in three changes of 100% ethanol, and mounted in 

Tissue-Tek (Miles Inc, USA). The sections were analyzed using an Olympus microscope (CX-

40) equipped with filters to provide circularly polarized illumination. The lower filter was 

placed above the microscope’s field iris diaphragm ring, while the upper filter was placed 

below the linear polarizer aligned such that its transmission axis was at 45°. Tissue images 

viewed under bright-field and polarized light were obtained with a 40X objective lens (final 

magnification 400X) and recorded on a digital camera (Olympus C-5050).  

Image analysis 

Total collagen was quantified under bright-field microscopy. Image analysis was carried out 

with Image J software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, 

Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2007). Briefly, the entire section of a slide 

was captured by consecutive fields under bright-field at a final magnification of 400X, with 

no overlapping zones. The total collagen amount was calculated for each image after 

subtraction of background and conversion to 8-bit images. The total collagen content was 

calculated for each section expressed as percentage of the total area. 

Statistical analysis 

Statistical analysis was performed with MEDCALC software version 9.4.2.0 (F. Schoonjans, 

Belgium). Data are expressed as median and interquartile ranges. When comparisons were 

made between groups, significant between-group variability was first assessed using 

Kruskall-Wallis test. The Mann Whitney U-test two tailed was then used for between-group 

comparison. Exact P-values are reported. The significance level was set at α = 0.05. 
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RESULTS 

Elisa for TGF-beta 1 and 2  

TGF-beta 1 protein concentration was significantly lower in CRSwNP (30767 pg/ml; IQR 

18669-35096) when compared to controls (39814 pg/ml; IQR 36131-45750), but significantly 

higher in CRSsNP (50135 pg/ml; IQR 45397-69554) compared to controls and CRSwNP. TGF-

beta 2 protein was significantly higher in both CRSwNP (3091pg/ml; IQR 2662-3845) and 

CRSsNP (3068 pg/ml; IQR 2825-4395) compared to controls (1852 pg/ml; IQR 1298-2663) 

(see Figure 1). 

 

Figure 1. ELISA measurements for TGF-beta 1 and 2, expressed as pg/ml. Tissue 

homogenates were prepared from control tissue (inferior turbinate), CRSsNP and CRSwNP.  

 

RT-PCR data for TGF-beta RI, II and III  

In CRSsNP, transcript levels expressed as normalized relative expression units (NREU) of TGF-

beta RI (1.52 NREU; IQR 1.08-1.91) and TGF-beta RIII (1.31 NREU; IQR 0.97-2.39) mRNA were 

significantly higher when compared to controls (0.84 NREU; IQR 0.76-1.11 and 0.955 NREU; 

IQR 0.55-1.11). In CRSwNP, TGF-beta RII (0.43 NREU; IQR 0.248-0.86) and TGF-beta RIII 
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(0.495 NREU; IQR 0.27-0.79) was significantly lower when compared to controls (1.02 NREU; 

IQR 0.86-1.31and 0.955 NREU; 0.55-1.11) (see Figure 2).  

Within the CRSwNP group, patients with and without comorbid asthma were compared for 

TGF-beta 1 and TGF-beta 2 protein and mRNA expression of TGF-beta RI, II and III. This 

revealed no significant differences between both nasal polyp subgroups. 

 

Figure 2. TGF-beta receptor I, II and III mRNA expression measured by means of RT-PCR in 

controls, CRSsNP and CRSwNP. Data are expressed normalized relative expression units/ 

30ng cDNA. 
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Immunohistochemistry for TGF-beta 1 and 2, and for TGF-beta receptor I and II  

Immunohistochemical staining was used to determine the presence of TGF-beta 1 and 2 

isoforms in healthy and diseased sinonasal mucosal tissue. Representative sections of 

control, CRSsNP and CRSwNP are shown in figure 3. 

In control tissue, staining for TGF-beta 1 and 2 was detected in basal epithelial cells, the 

basal membrane was negative. Few TGF-beta 1 and TGF-beta 2 positive cells were detected 

subepithelially. Endothelial cells of blood vessels were found positive for TGF-beta 1 and 2, 

and TGF-beta 1 deposition could be observed within the lumen of the vessel representing 

accumulation of platelets and blood cells. TGF-beta RI and RII positive cells were detected in 

the ciliary and basal cells of the epithelium, and in inflammatory cells. 

In CRSsNP, the extracellular matrix stained more intensely for TGF-beta 1 when compared to 

normal mucosa. Some TGF-beta 1 positive cells were also detected within the epithelium. 

For TGF-beta 2, many positive cells were detected in ciliary and basal cells of the epithelium. 

TGF-beta RI and RII positive cells were more abundantly present in the epithelium of CRSsNP 

when compared to normal mucosa. Positive inflammatory cells in the subepithelial region 

were also detected. 

In CRSwNP, TGF-beta 1 staining was not detected in the epithelium. Few TGF-beta 1 positive 

inflammatory cells were detected subepithelially. Connective tissue surrounding pseudocyst 

zones was found positive. In contrast, TGF-beta 2 was detected in the epithelial cells of 

CRSwNP, and in inflammatory cells, some of which were eosinophils. The epithelium of 

CRSwNP showed less TGF-beta RI and RII positive cells when compared to controls and 

CRSsNP.  
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Figure 3. Immunostaining for TGF-beta 1, 2 and TGF-beta RI and II in controls, CRSsNP and 

CRSwNP. Epithelium, basal membrane and subepithelial region are shown at a final 

magnification of 400X. 

 

Immunohistochemistry for pSmad 2 

Representative sections of immunohistochemical stainings for pSmad 2 performed in 

controls, CRSsNP and CRSwNP are shown in figures 4 A-F. The number of pSmad 2 

intranuclear positive cells was significantly higher in CRSsNP (108.5; IQR: 53.5-164) versus 

controls (68.5; IQR: 42-110), and significantly lower in CRSwNP (32.5; IQR: 17-59.5) 

compared to controls (68.5; IQR: 42-110), as presented in figure 5A. 
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Figure 4. Immunostaining for pSmad 2 in controls (A and D), CRSsNP (B and E) and CRSwNP 

(C and F). Postive intranuclear staining is indicated by an arrow.  

Picrosirius red stainings for collagen in controls, CRSsNP and CRSwNP,  first viewed in bright-

field microscopy (G, H, I),  and viewed under polarized light (J, K, L) to assess fiber thickness. 
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Figure 5. A. Quantification by means of image analysis of the number of pSmad 2 positive 

cells in controls, CRSsNP and CRSwNP. B. Quantification by means of image analysis of total 

collagen content in controls, CRSsNP and CRSwNP.  

 

Picrosirius red stainings for collagen 

Picrosirius red stainings were performed to assess collagen content in the extracellular 

matrix. Sections were first viewed in bright-field microscopy, shown in Figure 4 G,H and I. 

Collagen stains red on a pale yellow background. The total collagen amount in the 

extracellular matrix was found significantly higher in CRSsNP (median percentage of area 

40.8) and significantly lower in CRSwNP (median percentage of area 24) when compared to 

controls (median percentage of area 35.1), as presented in Figure 5B. 

Sections were additionally examined through crossed polars ( see Figure 4 J, K and L). Larger 

collagen fibers light up in bright orange, and thinner fibers show green. This birefringence is 

highly specific for collagen14. Orange collagen fibers were present in CRSsNP, which is 

characteristic for thick collagen fibers. In contrast, almost no thick orange fibers could be 

detected in CRSwNP (Figure 4 J, K and L).  
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DISCUSSSION 

TGF-beta is a multifunctional and ubiquitously expressed growth factor, of major interest in 

airway disease. TGF-beta has important anti-inflammatory effects, but it also acts as a 

master switch in the induction of fibrosis. We here demonstrate clear differences in the local 

tissue concentration of TGF-beta 1 between CRSsNP and CRSwNP, confirming previous 

studies 1,4,15. Low TGF-beta 1 protein levels appear to be a constant finding in nasal polyp 

disease (CRSwNP), whereas TGF-beta 1 up-regulation is characteristic for CRSsNP. However, 

post-translational modifications might complicate the interpretation of TGF-beta 

measurements at tissue level. The regulation of TGF-beta is a complex mechanism. TGF-beta 

is secreted in an inactive form to prevent binding to ubiquitously expressed receptors. 

Moreover, TGF-beta can be associated to extracellular matrix proteins to assure an 

extracellular reservoir of TGF-beta, which can be activated on demand. This association to 

the matrix was observed on immunohistochemical stainings in CRSsNP, demonstrating 

intense extracellular matrix staining for TGF-beta 1.  Additionally the TGF-beta protein 

findings were linked to receptor expression and intracellular signaling.  

TGF-beta 1 first binds to TGF-beta RII, this complex then recruits TGF-beta RI. TGF-beta RIII 

acts as a facilitator to the binding of TGF-beta RI and TGF-beta RII, and thus has  no direct 

signaling role16. After binding to TGF-beta, TGF-beta RII recruits and phosphorylates TGF-

beta RI, leading to phopshorylation of Smad 2 and Smad 3. Phosphorylated Smad 2 and 

Smad 3 form heterodimers with Smad 4 and translocate to the nucleus. This process is 

inhibited by Smad 7. Together with co-activators, co-repressors and other transcription 

factors, the Smad complex regulates gene expression of TGF-beta target genes8. As TGF-beta 

RI and RII are both necessary for TGF-beta signaling, a decreased expression of TGF-beta RII 

observed in CRSwNP together with low TGF-beta 1 protein concentration suggests 

suppressed TGF-beta signaling. In strong contrast, in CRSsNP, the increased TGF-beta RI 

expression was observed together with high TGF-beta 1 protein expression. TGF-beta RIII, 

which act as an enhancer for TGF-beta RI and RII binding, was found decreased in CRSwNP 

and higher in CRSsNP compared to controls, further supporting the decreased TGF-beta 

receptiveness in CRSwNP, and increased TGF-beta susceptibility in CRSsNP. 

As a downstream signal of active TGF-beta, the expression of pSmad 2 was analyzed. Smad 2 

proteins are a family of transcription factors and are the only TGF-beta receptor substrates 

with a demonstrated ability to propagate signals8,17,18. Clear differences were observed in 
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the number of pSmad 2 positive cells.  The number of positive cells was higher in CRSsNP 

and lower in CRSwNP compared to controls, pointing towards increased active TGF-beta 

signaling in CRSsNP, and suppressed signaling in CRSwNP.  

Remarkably, little is known about the presence of  TGF-beta 2 in sinonasal tissue. In contrast 

to previous findings at mRNA level19, we here show a differential expression of TGF-beta1 

and 2 at protein level in CRSwNP. Recent studies in lower airway disease suggest a 

distinctive role for TGF-beta 2, predominantly expressed in severe asthma and mainly 

related to eosinophils7. Similarly CRSwNP, a disease characterized by a severe eosinophilic 

inflammation revealed a higher expression of TGF-beta 2 when compared to controls. 

However, no correlation could be found in biopsies of CRSwNP between ECP, an important 

end product of eosinophils, and TGF-beta 2 (data not shown). The lack of correlation could 

be explained by the fact that other cell types present in CRSwNP might also contribute to 

total TGF-beta 2 levels. Based on our immunohistochemical findings, we could detect TGF-

beta 2 positive eosinophils, however epithelial cells and other inflammatory cell types also 

stained positive for TGF-beta 2. Moreover, total TGF-beta 2 protein levels were also 

increased in CRSsNP, a disease lacking tissue eosinophilia.  

 

It was previously hypothesized that decreased TGF-beta expression in CRSwNP could be 

interpreted as a decreased T regulatory cell function, which has recently been confirmed2. 

On the other hand, TGF-beta plays a crucial role in the extracellular matrix metabolism,  It 

stimulates the production of TIMP-1, a tissue inhibitor of metalloproteinases (TIMP) that 

prevents enzymatic breakdown of the ECM20. In CRSsNP, matrix metalloproteinase 9 (MMP-

9) and TIMP-1 are found upregulated, whereas in CRSwNP, MMP-9, but not TIMP-1, is up-

regulated.  The lack of the upregulation of TIMP-1 can be related to the low TGF-beta 1 

levels in CRSwNP20-23.  

We here show a low amount of collagen present in the extracellular matrix of CRSwNP when 

compared to controls, and an absence of thick collagen fibers when viewed under polarized 

light. The lack of TGF-beta 1 in CRSwNP can be interpreted as a lack of tissue repair, 

reflected by loose connective tissue and oedema formation in a severely inflamed tissue. In 

contrast, TGF-beta 1 levels are higher in CRSsNP when compared to controls, together with 

TGF-beta R I and R III, and with a higher number of pSmad 2 positive cells. A higher collagen 
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content was present in CRSsNP compared to controls. This is indicative for excessive tissue 

repair and fibrosis formation in CRSsNP. 

We wish to mention that corticosteroids are currently the recommended treatment for both 

CRS with and without NP. In this study, almost all patients were treated with topical 

corticosteroids for three months. Treatment failure of corticosteroids indicated the surgery. 

A wash out period of 4 weeks was maintained prior to the actual surgery. To our knowledge, 

there are no data available on the effect of the prior use of topical steroids on TGF-beta and 

receptor expression in upper airways. Although the current use of steroids is clearly linked to 

changes in the cytokine and mediator profile24, corticosteroids seem to be unable to 

modulate TGF-beta expression, as observed earlier in severe lower airway disease25,26.  

We also wish to stress that we used inferior turbinates from patients with turbinate 

hypertrophy, but no chronic rhinosinusitis, as control tissues, and compared those to 

ethmoidal tissue from CRSsNP and CRSwNP patients. Since it is considered unethical to 

perform sinus surgery in order to resect ethmoidal tissue from undiseased sinuses, we used 

inferior turbinates as control. However, clear differences were also observed between 

ethmoidal tissues from CRSsNP and CRSwNP patients, supporting our observations.  

 

CONCLUSION 

Clear differences in the TGF-beta signaling cascade are observed between CRSsNP and 

CRSwNP. This supports the hypothesis that CRSsNP and CRSwNP are two distinct disease 

entities. A low TGF-beta 1 protein concentration, a decreased expression of TGF-beta RII and 

a low number of phospho-smad 2 positive cells in CRSwNP all indicate a low level of TGF-

beta signaling in nasal polyp disease.  In strong contrast, in CRSsNP, high TGF-beta 1 protein 

expression, increased TGF-beta RI expression, and a high number of phospho-smad 2 

positive cells all indicate an enhanced TGF-beta signaling in CRSsNP. This is reflected by the 

typical extracellular matrix remodeling patterns observed. CRSwNP is characterized by a lack 

of collagen and tissue repair, whereas CRSsNP demonstrated fibrosis with excessive collagen 

production and thickening of the collagen fibers. 
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ABSTRACT 

Background: A distinct set of inflammatory and remodeling factors have been found 

elevated in chronic rhinosinusitis; the investigation of their expression in early-stage disease 

may reveal early events in this common disease. 

Methods: Sinonasal mucosal samples from 9 patients with early-stage CRSsNP were taken 

from the inferior and middle turbinates, the uncinate process,  maxillary sinus, anterior 

ethmoid, bulla ethmoidalis and the posterior ethmoid and measured for TGF-beta 1 and it´s 

receptors, MPO protein as well as pro-inflammatory cytokines (TNF-alpha and IL-1beta) and 

the Th1 cell signature (IFN-gamma and T-bet). As outcome parameter for TGF-beta signaling 

collagen deposition was analyzed.  

Results: TGF-beta 1 protein concentrations were significantly increased in the maxillary 

sinuses (P = 0.006), the uncinate process (P = 0.01), the anterior ethmoid including the bulla 

ethmoidalis (P = 0.005) and the posterior ethmoid (P = 0.037) when compared to the inferior 

and middle turbinates. Collagen deposition was significantly increased in the maxillary sinus 

when compared to the inferior turbinates (P = 0.008).  In contrast, mRNA for TGF-beta 

receptors, Th1 related markers (IFN-gamma and T-bet), pro-inflammatory cytokines (IL-1 

beta and TNF-alpha) and MPO protein as neutrophil marker were expressed at all locations 

but showed no significant differences between the various locations.  

Conclusions:  In early-stage chronic sinus disease, TGF-beta protein is expressed in 

significantly higher concentrations within the paranasal sinuses when compared to 
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turbinates, whereas pro-inflammatory, neutrophilic and Th1 markers did not show any 

difference. These findings suggest that remodeling might exist before and independent from 

chronic inflammation.  

 

Key words 

Chronic rhinosinusitis, inflammation, remodeling, TGF-beta 
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INTRODUCTION 

Chronic rhinosinusitis represents a common and often debilitating form of sinusitis with 

important impact on the quality of life of the patients. The prevalence is high and still 

increasing1, estimated to affect up to 14% of the global population in the United States. Its 

etiology is probably multifactorial, including anatomical factors, allergic inflammation, 

immune deficiency, microbial factors and immune-microbial interactions2.  

Chronic rhinosinusitis clinically represents a spectrum of disorders that share chronic 

inflammation of the nose and paranasal sinuses; however it is today considered a 

heterogenous group of diseases. Based on the differential expression of inflammatory 

cytokines and remodeling patterns, chronic rhinosinusitis with polyp formation (CRSwNP) 

can be distinguished from chronic rhinosinusitis without polyp formation (CRSsNP)3.  

Clinically late-stage CRSwNP in Caucasians is characterized by a reduced expression of 

members of the TGF-beta family and its receptors, a preferentially Th2 driven eosinophilic 

inflammation and a deficit in T regulatory cells, whereas CRSsNP shows an increased 

expression of Th1 cytokines with a consequently neutrophilic inflammation, and an up-

regulation of TGF-beta and its receptors vs. inferior turbinate mucosa. The focus of this study 

was restricted to early stage CRSsNP disease and aimed to define early events in the 

development of CRSsNP, using inferior turbinate mucosa as comparator3-5. 

The aim of the present study was to analyze the inflammation and remodeling parameters in 

the different paranasal sinuses in early stage CRSsNP patients, who were selected on the 

basis of their history and CT scan, to define the mediators and location of early changes in 

this frequent disease. 

 

MATERIAL AND METHODS 

Patients 

Nasal tissue was obtained from 9 patients with chronic rhinosinusitis without polyp 

formation (CRSsNP) during routine endoscopic sinus surgery at the department of 

Otorhinolaryngology at the Ghent University Hospital, Belgium. Biopsies of the mucosa were 

taken at the following anatomical locations: inferior turbinate, middle turbinate, uncinate 
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process, maxillary sinus, anterior ethmoid including bulla ethmoidalis, and posterior 

ethmoid. Inferior turbinate samples from patients without sinus disease undergoing 

septoplasty or rhinoseptoplasty were collected as controls. 

The diagnosis of chronic rhinosinusitis without polyps (CRSsNP) was based on history, clinical 

examination, nasal endoscopy and computed tomography according to the current EP³OS 

guidelines2. Sinus CT scans were scored according to the Lund-MacKay system. The Lund-

MacKay staging system scores each sinus (anterior ethmoid, posterior ethmoid, maxillary, 

frontal, and sphenoid sinuses) according to the following scale: 0, no opacification; 1, partial 

opacification; 2, complete opacification. The ostiomeatal complex was scored as 0 (not 

occluded) or 2 (occluded). The left and right sides were staged separately. The scores were 

summed so that the total Lund score may range from 0 to 24 for each patient. We only 

included patients with early stage bilateral disease, lasting shorter than 4 years according to 

their clinical history. For the CT scan, the involvement of not more than 3 sinuses was 

allowed which persisted after adequate treatment following the EPOS guidelines.  

The ostiomeatal complex and the anterior ethmoid were the most frequent sinuses 

demonstrating mucosal thickening. All patients have been treated with a combination of 

topical corticosteroids and clarithromycine 250 mg per day for at least 2 months, but still 

suffered from or again developed symptoms justifying functional endoscopic sinus surgery. A 

wash out period of 4 weeks before surgery was maintained for oral and topical 

corticosteroids and antibiotics. Patients underwent a skin prick test for common inhalant 

allergens, and were asked about asthma symptoms and smoking habits. Rhinosinusitis 

symptoms were pre-operatively scored by a physician on a scale from 0-3 (no symptoms, 

mild, moderate, severe).  

General exclusion criteria were based on the EP³OS definition for research (cystic fibrosis, 

gross immunodeficiency, congenital mucociliary problems, non-invasive fungal balls and 

invasive fungal disease, systemic vasculitis and granulomatous diseases). Patients who 

underwent prior nasal or sinus surgery were excluded. The study was approved by the local 

Ethical committee of the University Hospital Ghent, Belgium. An informed consent was 

obtained from each patient before collecting samples. 
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PCR  

Gene expression analysis by means of quantitative real time PCR  

cDNA was synthesized from 2 µg of RNA with the iScript cDNA synthesis kit (BioRad 

Laboratories, CA, USA) following the manufacturer's instructions. Levels of the transcription 

factor T-bet, the cytokines IFN-gamma, TNF-alpha, IL1beta, and  TGF-beta receptor 1 and 2 

were determined by real time PCR. Amplification reactions were performed on an iCycler iQ 

Real-Time PCR Detection System (Bio-Rad laboratories, CA, USA) using specific primer 

sequences (see online repository, Table 1). PCR reactions contained 30 ng cDNA (total RNA 

equivalent), 250 nM of primer pairs , 1X SYBR Green I Master mix (Bio-Rad laboratories, CA, 

USA) or  1X TaqMan mix with 100 nM of the TaqMan probe in a final volume of 20 μl. PCR 

protocol consisted of 1 cycle at 95°C for 10 minutes followed by 40 cycles at 95°C for 30 

seconds and at 60°C for 1 minute and for reactions using TaqMan probes of 1.5 minutes at 

95 °C followed by 50 cycles: 15 seconds at 95 °C and 1 minute at  60 °C. 

The expression of the housekeeping genes Beta actin (ACTB) and Hydroxymethyl-bilane 

synthase (HMBS) was used to normalize for transcription and amplification variations among 

samples after a validation using the geNorm software6,7. The relative expression units of  

each gene per 30 ng of cDNA sample, was determined by using the qBase program (version 

1.3.5, UGent, Belgium) and results are expressed as the logarithm of normalized relative 

expression units / 30ng cDNA. 

Protein concentrations of TGF-beta 1 and MPO 

Surgical samples were snap frozen in liquid nitrogen and stored at – 80 °C until 

homogenization. The tissue was thawed, weighed and 1 ml of 0.9 % NaCl with protease 

inhibitor Complete (Roche, Mannheim, Germany) was added per every 0.1 g of tissue. The 

tissue was then homogenized using a B. Braun homogenizer for 5 minutes. The 

homogenates were centrifuged at 3000 g, 4 °C for 10 min. After centrifugation 250 µl 

aliquots were made and stored at –80 °C until needed for ELISA. To release latent TGF-beta 

from the extracellular matrix, samples were treated with acid prior to the ELISA. TGF-beta 1 

and MPO levels were determined using commercially available ELISA kits from R&D Systems 

(Minneapolis, USA). All data were expressed as ng/ml. 
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Collagen deposition by means of picrosirius red stainings 

Collagen was measured by means of picrosirius red staining8. Tissue was fixed in formalin 

(Fluka, Belgium) and embedded in paraffin. Paraffin sections were prepared (thickness 4-5 

µm) and air dried for 24 hours at 37°C. Sections were deparaffinized, hydrated, and stained 

with picrosirius red (direct red 80, Sigma-Aldrich, St. Louis, USA) for 60 minutes. The sections 

were then washed in two changes of acidified water, dehydrated in three changes of 100% 

ethanol, and mounted in Tissue-Tek (Miles Inc, USA). The sections were analyzed using an 

Olympus microscope (CX-40) equipped with filters to provide circularly polarized 

illumination. The lower filter was placed above the microscope’s field iris diaphragm ring, 

while the upper filter was placed below the linear polarizer aligned such that its transmission 

axis was at 45°. Tissue images viewed under bright-field and polarized light were obtained 

with a 40X objective lens (final magnification 400X) and recorded on a digital camera 

(Olympus C-5050).  

Image analysis 

Collagen content was quantified under polarized light microscopy. Image analysis was 

carried out with Image J software (Rasband, W.S., ImageJ, U. S. National Institutes of Health, 

Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/, 1997-2007). Briefly, the entire section 

of a slide was captured by consecutive fields under bright-field at a final magnification of 

400X, with no overlapping zones. The total collagen amount was calculated for each image 

after subtraction of background and conversion to 8-bit images. The total collagen content 

was calculated for each section expressed as percentage of the total area. 

Statistical analysis 

Statistical analysis was performed with MEDCALC software version 9.4.2.0 (F. Schoonjans, 

Belgium). Data are expressed as median and interquartile ranges. When comparisons were 

made between groups, significant between-group variability was first assessed using 

Kruskall-Wallis test. The Mann Whitney U-test two tailed was then used for between-group 

comparison. Exact P-values are reported. The significance level was set at α = 0.05. 
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RESULTS 

Patient characteristics (table 1) 

Nine  patients with early stage CRSsNP were included, with a median disease duration of 24 

months. Symptom scores showed that nasal obstruction and post-nasal drip were 

predominant. The median age of our study group was 46 years. Three of the nine patients 

had a positive skin prick test to common aeroallergens, one patient was asthmatic, and one 

patient was a smoker. None of the patients had previous sinus surgery. The median Lund 

and Mackay CT score was 6/24. 

Table 1: patient characteristics and symptom scores 

N       9 

Female/male      5/4 

Median age      46 (39,5-56) 

Duration of the disease (months)   24 (18,5-42) 

SPT positive       3/9 

Asthma in history      1/9 

Aspirin hypersensitivity in history   0/9 

Smoking      1/9 

COPD       0/9     

Previous FESS      0/9 

Median CT score (Lund/Mackay)   6/24 

Nasal obstruction     2 (1,75-3) 

Rhinorrhea      0 (0-2) 

Sneezing      0(0-0,25) 

Anosmia      1 (0,75-2,25) 

Post nasal drip     2 (1-2,25) 

Headache      1 (0-2,25) 

Dyspnoea      0 (0-1) 

Cough       1 (0-1,5) 

___________________________________________________________________________ 

N, number of included patients 

Data are reported as median and interquartile ranges. 
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Figure : A typical CT scan of a patient with early-stage CRSsNP, showing some opacification 

of the OMC-area and the maxillary sinuses. 

 

TGF-beta 1 protein expression, mRNA expression of TGF-beta receptors I and II (Figure 1) 

TGF-beta 1 protein concentrations were significantly higher – in this order - in the maxillary 

sinuses (14281 pg/ml; IQR 7766-23349 and P = 0.006) , the uncinate process (14048 pg/ml; 

IQR 8690-16236 and P = 0.01), the anterior ethmoid including the bulla ethmoidalis (10645 

pg/ml; IQR 9515-14415 and P = 0.005) and the posterior ethmoid (10130 pg/ml; IQR 5780-

12988 and P = 0.038) when compared to the inferior and middle turbinates (5027 pg/ml; IQR 

3852-8880).  No significant differences were noted in TGF-beta1, RI and II mRNA expression 

between the different locations.  
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Figure 1: Expression of TGF-beta 1 protein, and TGF-beta receptors I and II mRNA in sinunasal 

mucosal tissue. Inferior and middle turbinates served as control. 

IT: inferior turbinate, MT: middle turbinate, PU: processus uncinatus, MS: maxillary sinus, BE: 

bulla ethmoidalis, AE: anterior ethmoid, PE: posterior ethmoid 
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Th1 and pro-inflammatory cytokines, MPO protein (Figure 2) 

T-bet and IFN-gamma, markers of a Th1 driven inflammation, and TNF-alpha and IL-1 beta, 

representing pro-inflammatory cytokines, were expressed in all nasal and sinus locations, 

with no significant differences between the sites. The same was true for MPO protein, a 

marker of neutrophil inflammation, which could be detected in all anatomical locations 

without significant differences between the sites. 

Comparison of TGF-beta 1 concentrations in inferior turbinates of CRSsNP versus control 

patients showed a significant increase of TGF-beta 1 (p=0,017 on mRNA data).  The 

proinflammatory cytokines IL-1 beta and TNF-alpha and Th1 related cytokines did not show 

an upregulation in inferior turbinates of CRSsNP when compared to control patients.  
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Figure 2: Expression of mRNA for Th1 (IFN-gamma and T-bet) and pro-inflammatory (IL-1 

beta and TNF-alpha) markers and protein of the neutrophil marker MPO in turbinates and 

sinus mucosa. No significant differences were noted between all groups. 

IT: inferior turbinate, MT: middle turbinate, PU: processus uncinatus, MS: maxillary sinus, BE: 

bulla ethmoidalis, AE: anterior ethmoid, PE: posterior ethmoid 
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Picrosirius red stainings for collagen (Figure 4) 

Picrosirius red stainings were performed to assess collagen content in the extracellular 

matrix. Sections were examined through crossed polars (see Figure 4A). Larger collagen 

fibers light up in bright orange and thinner fibers show green. This birefringence is highly 

specific for collagen. Orange collagen fibers were present in significantly higher amount in 

the maxillary sinuses (median percentage of area 41.17%) when compared to inferior 

turbinates (33.49%, P = 0.008), as presented in Figure 4B. 

 

Figure 4: A. Picrosirius red staining for collagen in inferior turbinates (IT) and maxillary sinus 

viewed under polarized light  

Figure 4: B. Quantification by means of image analysis of total collagen content in inferior 

turbinates and maxillary sinuses demonstrating significantly higher collagen deposition in 

maxillary sinuses when compared to inferior turbinates 
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Discussion  

Inflammatory mucosal disease in the sinuses shows specific remodeling and inflammatory 

patterns. CRSsNP has previously been described as being a predominant Th1 mediated 

neutrophilic disease, characterized by increased levels of IFN-gamma and MPO3,5. Moreover, 

it was recently shown that TGF-beta 1 and it´s receptors TGF-beta RI and RIII are strongly up-

regulated in CRSsNP, resulting in a high number of phospho-Smad 2-positive cells to indicate 

pro-fibrotic signalling3-5. This is reflected by a typical remodeling  process characterized by a 

higher collagen deposition in CRSsNP together with the presence of thick collagen fibers 

when compared to healthy controls4.  

Here we show that in early stage CRSsNP disease, surprisingly little mucosal inflammation in 

the sinuses can be shown, whereas there already is a manifest up-regulation of TGF-beta 

protein expression. TGF-beta 1 was significantly over-expressed in the paranasal sinuses 

when compared to turbinates, with the highest expression in the maxillary sinuses; 

concentrations of TGF-beta 1 were three-fold higher compared to nasal turbinates. Although 

we were not able to demonstrate a significant up-regulation of the TGF-beta RI, we noted 

the presence and a marginal, but insignificant increase in the expression of this receptor.  

Subsequently, we could demonstrate that the up-regulation of TGF-beta 1 in the presence of 

the receptor was accompanied by an increased deposition of collagen within the maxillary 

sinuses. As TGF-beta 1 protein shows a higher expression within the paranasal sinuses, 

whereas the inflammatory and Th1 cytokines appear not to be up-regulated, we suggest that 

chronic rhinosinusitis is a TGF-beta mediated disease with subsequent remodeling and 

fibrosis formation, which only secondarily may be associated with inflammation of the 

mucosa.  

The selection of markers for inflammation was based on previous studies3,5. As markers for a 

Th1 biased inflammation, T-bet and IFN-gamma were analyzed. T-bet is a Th1 specific T box 

transcription factor that controls the expression of the hallmark Th1-cytokine IFN-γ9. T-bet 

and IFN-gamma were found to be up-regulated in CRSsNP in previous studies in patients 

who suffered from more severe disease with a median disease duration of 4.2 years 3-5. 

Strikingly, in this study involving patients with a median duration of 24 months, these 
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markers are ubiquitously expressed in the turbinates and sinuses, but did not show any 

significant topological differences. 

TNF-alpha and IL-1beta mRNA expression were measured as major pro-inflammatory 

cytokines3, reflecting pro-inflammatory responses against e.g. bacterial infection. We here 

detect these cytokines in both paranasal sinuses and turbinates, but were unable to find up-

regulation in the sinuses.  Finally, MPO (myeloperoxidase) was used as a marker for 

neutrophilic granulocyte activation, which also demonstrated no difference between 

turbinates and sinuses. Thus, to our surprise, we could not find any sign of inflammation in 

early stage CRSsNP in the sinuses. Th1-related and pro-inflammatory cytokines did not show 

an up-regulation in inferior turbinates of chronic rhinosinusitis versus control patients. 

 As TGF-beta 1 protein showed a higher expression within the paranasal sinuses, whereas 

the inflammatory and Th1 cytokines appear not to be up-regulated, we suggest that chronic 

rhinosinusitis is a TGF-beta mediated disease with subsequent remodeling and fibrosis 

formation, which only secondarily may be associated with chronic inflammation of the 

mucosa. The increased expression of TGF-beta 1 is in line with previous findings where we 

detected an up-regulation of TGF-beta 1 in advanced CRSsNP when compared to CRSwNP5, 

coinciding with adequate expression of the Tregulatory cell marker FOXP35. We have already 

demonstrated that inflammation and remodeling may be separate processes in upper airway 

disease, specifically in nasal polyps, which are likely to develop independently from each 

other. Whereas remodeling patterns in Chinese and Caucasian CRSwNP disease appear 

similar10, inflammatory patterns in those polyps are clearly different between the ethnic 

groups11, showing a Th2- versus a Th17-biased inflammation. These observations underline 

the dissociation of inflammation and remodeling.     

In comparison to lower airway disease, there was so far a clear lack of knowledge regarding 

the natural history of the upper airway inflammatory response.  In early stage asthma  

mucosal inflammation seems consistently present, and  remodeling may develop in 

parallel12,13.  The central role of TGF-beta in airway fibrosis has been described 

extensively12,14.  It is often assumed that there is a linear progression between an initiating 

stimulus leading to inflammation, which in turn leads to remodeling. However this paradigm 

has recently been challenged also in lower airway disease15,16. Based on studies on airway 
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biopsies in children, it has been suggested that remodeling may occur very early in asthma 

and may in some cases even precede clinical symptoms17. Similarly, we found an initial up-

regulation of TGF-beta with subsequent collagen deposition in upper airway disease.  

We wish to mention that this study is limited to cross sectional data on inflammation and 

remodeling patterns in a group of patients with limited chronic sinus disease existing for 

approximately 24 months. Frontal sinus tissue and sphenoidal tissue was not obtained on a 

regular basis in these patients, who had no involvement of those sinuses and thus no 

indication for surgery. We therefore limited the investigation to the mentioned locations. 

Furthermore, biopsies had to be limited in size, as the preservation of sinus mucosa showing 

no relevant alterations is mandatory in functional sinus surgery; this restricted the number 

of possible investigations.  

Still, these findings provide a new view on the natural course of CRSsNP, and suggest further 

research on the regulation of TGF-beta in the initiation and maintenance of the disease. The 

role of inflammation in the persistence of disease and its role in tissue remodeling need to 

be investigated in depth. Furthermore, these findings underline the importance of TGF-beta 

as target for therapeutic intervention, may it be early or late stage disease.   

 

Conclusion 

In early chronic sinus disease, TGF-beta is up-regulated within the paranasal sinuses, 

initiating the production of collagen and initiating a remodeling processes, whereas signs of 

inflammation are still lacking. We suggest that TGF-beta plays a central role in the initiation 

of CRSsNP, and represents a major target for further research and future intervention.  
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___________________________________________________________________________ 

ABSTRACT 

BACKGROUND: Approximately 85% of Caucasian nasal polyps are characterized by 

prominent eosinophilia. IL-5 is the key driver of eosinophilic differentiation and survival. 

OBJECTIVE: To investigate the therapeutic potential of inhibiting IL-5 using a humanized 

monoclonal antibody as treatment of severe nasal polyposis. METHODS: 30 patients with 

severe nasal polyposis (grades 3-4 or post-surgery recurrent) refractory to corticosteroid 

therapy were randomized in a double blind fashion to receive either 2 single IV injections (28 

days apart) of 750 mg mepolizumab (n=20) or placebo (n=10). Change from baseline in nasal 

polyp score was assessed monthly until 1 month post last dose (week 8). CT scans were also 

performed at week 8. RESULTS: 12/20 patients on mepolizumab showed a significantly 

improved nasal polyp score and CT-scan score compared to 1/10 on placebo at week 8 

versus baseline. CONCLUSION: Mepolizumab achieved a statistically significant reduction of 

the nasal polyp size for at least 1 month post dosing in 12/20 patients. IL-5 inhibition is a 

potential novel therapeutic approach in patients with severe eosinophilic nasal polyposis.  

(supported by GSK,  EUDracCT No 2005-005113-11) 
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CLINICAL IMPLICATIONS 

Two intravenous injections with mepolizumab (anti-IL-5) significantly reduce the size of 

chronic rhinosinusitis with nasal polyps based on endoscopic scoring and blinded CT scan 

assessment.  

CAPSULE SUMMARY 

Two injections of mepolizumab were well tolerated and significantly reduced the size of 

nasal polyps for at least 1 month post last dose.  

KEY WORDS 

Anti-IL-5, mepolizumab, eosinophils, Chronic rhinosinusitis, nasal polyposis  
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INTRODUCTION  

Chronic sinus disease covers a multitude of different entities, such as chronic rhinosinusitis 

without nasal polyps (CRSsNP) and CRS with NP (CRSwNP). Although in the recent position 

paper for sinus disease of the EAACI, the difference between CRSsNP and CRSwNP is made 

by clinical investigation and endoscopy,1 other studies have suggested that these two 

entities have distinct pathways of inflammation.2,3 CRSwNP in Caucasian subjects is 

characterized by a TH2 eosinophilic inflammation with high levels of IL-5 and IgE,4-6 whereas 

CRSsNP shows a TH1 milieu with high IFN-γ and TGF-β1 concentrations.3 

In Caucasian patients, 80-90% of the nasal polyps (NP) are characterized by prominent 

eosinophilia.1,7 It is assumed that through release of toxic products, eosinophils lead to 

tissue damage and growth of polyps.8 The accumulation and activation of eosinophils is 

favoured by low concentrations of TGF-β1 and by overproduction of IL-5 and eotaxin in NP 

tissue.3 High amounts of IL-5 were detected in patients with NP, both at mRNA and protein 

level.9,10 This cytokine seems to play a key role in chemotaxis, activation and survival of 

eosinophils.11,12 Treatment of eosinophil-infiltrated polyp tissue with neutralizing anti-IL-5 

mAb results in eosinophil apoptosis and decreases tissue eosinophilia in vitro.10 Concerning 

the raised IgE level, there is increasing evidence that Staphylococcus aureus derived 

enterotoxins stimulate the eosinophilic inflammation by production of TH2 cytokines and 

local IgE formation.13 

Interestingly, NP of Chinese patients are clinically indistinguishable from polyps of their 

Caucasian counterparts, but they lack IL-5 and eotaxin expression in the tissue resulting in 

lower numbers of tissue eosinophils.14,15 The direct comparison of Belgian and Chinese 

polyps shows that there is a shared but still to be clarified pathway of mucosal edema 

formation, T-effector cell activation and regulatory T-cell impairment.16 Moreover, Caucasian 

patients showed comorbid asthma more frequently than Chinese patients.16 Inflammation 

in asthma shares many features with the eosinophilic inflammation in NP, such as an 

increased number of mucosal eosinophils, IgE formation and a TH2 profile with raised IL-5 

and eotaxin.17 

These findings suggest that different types of polyps may require different treatments, 

based on the respective pathophysiology. Tailored medication schemes based on 

phenotyping have to be developed. In Caucasian patients, IL-5 is a key driver of maintaining 
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polyps, namely: eosinophilic differentiation and survival. The objective of the current study 

was to investigate the therapeutic potential of inhibiting IL-5 using a humanized monoclonal 

antibody as treatment of severe nasal polyposis. Our group has been able to demonstrate 

shrinkage of NP in over half of the patients treated with a single intravenous injection of an 

anti-human IL-5 monoclonal antibody in the past.18 Moreover, local IL-5 concentrations at 

baseline were significantly higher in responders, in contrast to non-responders. We 

suggested that nasal IL-5 levels could predict the response to anti-IL-5 treatment.18 

However, the primary endpoint of this study was safety, and efficacy was only studied by 

nasal endoscopy. In the current study, we wanted to determine the efficacy of two injections 

of mepolizumab on nasal polyp volume in subjects with severe CRSwNP by nasal endoscopy 

and CT-scan imaging. In addition, markers of biological activity such as IL-5 and nasal 

eosinophilia were assessed over a period of eleven months post last dose. 
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METHODS 

Patients 

Thirty subjects suffering from chronic rhinosinusitis with primary (grade 3 or 4, see outcome 

measures) or post-surgery recurrent (grade 1 to 4) NP were included. The inclusion criteria 

specified that subjects must have failed standard care for CRSwNP and the diagnosis of this 

condition was based on the European position paper on rhinosinusitis and nasal polyps.1 The 

use of systemic corticosteroids and surgical intervention were not allowed from one month 

prior to treatment until the end of the study, and subjects were not permitted to use nasal 

corticosteroids, nasal antihistamines, nasal atropine, nasal cromolyn, nasal saline and 

antibiotic treatment for two months after first dosing. The study was conducted at the 

Department of Otorhinolaryngology of the University Hospital in Ghent, Belgium. The local 

ethics committee approved the study and all volunteers gave a written informed consent 

before participation in the study. 

 

Study Design  

This is a randomized, double-blind, placebo controlled study of mepolizumab in patients 

suffering from CRSwNP. After signing the informed consent and a 4 to 12 week run-in 

period, subjects were randomized to receive 2 single IV injections (28 days apart) of 750 mg 

mepolizumab (20 subjects) or placebo (10 subjects).  Follow up visits were scheduled 1, 4, 8, 

12, 24, 36 and 48 weeks after first dosing. During the follow up visit after 4 weeks, the 

second injection of mepolizumab was administered. All randomized patients were included 

in the analysis. The study was double-blind up to 48 weeks. 

 

Outcome measures 

The primary endpoint of this study was the reduction in nasal polyp score19,20 at 8 weeks 

after the first dosing (one month post second dose). This total polyp score (TPS) is the sum of 

the right and left nostril scores, evaluated by nasal endoscopy. CRSwNP was graded based 

on polyp size: 0 = no polyps; 1 = small polyps in the middle meatus not reaching below the 

inferior border of the middle concha; 2 = polyps reaching below the lower border of the 

middle turbinate; 3 = large polyps reaching the lower border of the inferior turbinate or 
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polyps medial to the middle concha; 4 = large polyps causing complete obstruction of the 

inferior meatus. 

Secondary endpoints included changes in CT scans and assessments such as nasal peak 

inspiratory flow (nPIF), symptom score (sum of individual symptoms: anterior rhinorrhea, 

nasal obstruction, postnasal drip (PND) and loss of sense of smell; 0 = no symptoms, 1 = 

mild, 2 = moderate, 3 = severe). CT scans were assessed for improvement versus worsening 

or no change after 8 weeks with respect to baseline. This was done independently by three 

different observers. Biological activity was evaluated by peripheral blood eosinophil counts 

and measurement of cytokines and mediators in serum and nasal secretion. Blood 

eosinophils were counted automatically using a 2 ml heparinized blood sample. Nasal 

secretions were obtained by placing sinus packs (IVALON® 4000 plus) in both nasal cavities 

for exactly 5 minutes immediately processed as previously described.12 Serum and nasal 

secretions were assayed by ELISA for IL-1ß, IL-5 (R&D Systems, Minneapolis, USA), MPO 

(BioCheck, Foster City, USA) and SOL-IL-5Rα (Innogenetics, Ghent, Belgium). ECP 

concentrations were obtained using the Uni-CAP system (Pharmacia & Upjohn, Upsala, 

Sweden), while IL-6 concentrations were measured with a Fluorokine MAP cytokine 

multiplex kit (R&D Systems, Minneapolis, USA) using the BioRad Bio-plex 200. The lower 

detection limits (LDLs) before diluting were 2 µg/l for nasal ECP, 3.9 pg/ml for nasal IL-5, 7.8 

pg/ml for nasal IL-5Rα, 1.8 pg/ml for nasal IL-6, and 0.2 kU/l for nasal total IgE and 0.1 kU/l 

for serum total IgE.  

Safety was assessed by adverse event reporting, vital signs, symptom check, physical 

examination and blood analysis. 

 

Statistical analysis 

The primary endpoint of this study is the change from baseline (CFB) in TPS at week 8. This 

was analysed using the exact Mann-Whitney U test. As a supporting analysis, improvement 

in TPS (defined as a negative CFB) was analysed using the Fisher Exact test. Because of the 

large number of dropouts, we did not interpret any observations after week 8. 

Regarding the CT-scans, we checked inter-rater reliability using the Fleiss kappa coefficient. 

The Fisher Exact test of CT score improvement in the treated versus placebo groups was 

done for each rater. Symptom scores, blood eosinophils, serum ECP and serum IL-5Rα were 
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analysed using the exact Mann-Whitney U test, and nPIF via the AUC (area under curve). For 

the markers in nasal secretions, there were a lot of observations below LDL. Because of this, 

the Peto-Peto-Prentice test was used as it utilizes all data, acknowledging the unobserved 

values below LDL, without imputing an exact value for them.21 For nasal MPO there was no 

LDL issue and we have tested its CFB using the exact Mann-Whitney U test. 

Because the large number of dropout, time to withdrawal was compared using a Kaplan-

Meier plot and log rank test. We also looked at the reasons for dropout and their 

implications in more detail. In order to deal with the missing data problem, we performed a 

last observation carried forward imputation (LOCF) and an available case analysis (AC). 

Concerns exist regarding whether it is appropriate to use LOCF or AC.22 For brevity, 

throughout the manuscript only the LOCF results are stated, but the AC results are also 

calculated. 

Within the treated group a distinction could be made between responders (people with an 

improved TPS of at least 1 unit at week 8 versus baseline) and non-responders. We 

investigated whether there were baseline differences between responders and non-

responders, again using the exact Mann-Whitney U test and the Peto-Peto-Prentice test 

where appropriate. 

We performed a post-hoc power calculation for the Mann-Whitney U test of the primary 

endpoint - TPS CFB at week 8 - based on the present study, using the O'Brien-Castelloe 

approximation. A post-hoc power of 68% was obtained by LOCF paradigm. 

Data analysis was performed using SAS version 9.1 (http://www.sas.com/) and R version 

2.11.1 (http://cran.r-project.org/). Error bars in the figures represent 95% confidence 

intervals of the mean based on normal approximation. 
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RESULTS 

Patients 

The baseline characteristics of the study patients are summarized in Table 1. The history and 

symptoms of the mepolizumab and placebo groups were compared. Age and gender were 

similar. Almost half of the patients was atopic (based on skin prick testing) and 43% had 

asthma. The number of patients that had sinus surgery in the past was high. At baseline, our 

patient population consisted of 3 people with grade 1, 6 with grade 2, 16 with grade 3, and 5 

with grade 4 as maximal unilateral nasal polyp size, equally divided into the different groups. 

Consequently, the mean TPS in both groups was comparable. 

 

Table 1: Baseline characteristics of the study patients, divided into the groups 'Mepolizumab 

treated' and 'Placebo'. 

Baseline characteristics Mepolizumab treated Placebo 

N 20 10 

Age in years (range) 51 (33-66) 46 (27-59) 

Female/male 5/15 2/8 

Atopy (SPT positive) 10/20 4/10 

Asthma in history 10/20 3/10 

Aspirin intolerance 3/20 0/10 

Sinus surgery in history 12/20 8/10 

Duration of disease  

in years (range) 
10 (6-13.5) 12.5 (9-16) 

Tobacco use 5/20 1/10 

Median total symptom  

score (IQR) 
6 (6-9) 8.5 (7-9) 

Loss of smell 3 (2-3) 3 (2-3) 

Congestion 2 (1-3) 2.5 (2-3) 

Anterior rhinnorrhea 2 (1-2) 1.5 (1-3) 

Postnasal drip 1 (0-2) 2 (1-2) 
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Safety and adverse events 

Sixteen of the 30 subjects (53%) reported at least 1 adverse event over 48 weeks of follow 

up. One serious adverse event and 23 adverse events occured. The serious adverse event 

was a diverticulitis, due to a pre-existing condition and not considered to be related to the 

study drug. Of the adverse events, common cold was the most frequent, reported by 6 

persons (5 episodes in the mepolizumab-treated group and 1 in the placebo group). 

Comparing the mepolizumab-treated patients with the placebo group, none of the adverse 

events reached significance. We observed no meaningful changes in vital signs, physical 

examination and blood analysis. 

 

Primary endpoint: total polyp score  

The primary endpoint was the difference in TPS at week 8 (visit 5) versus baseline (visit 2). 

Using LOCF, the CFB on mepolizumab was -1.30 (SD 1.72) and on placebo was 0.00 (SD 0.94), 

resulting in a treatment difference of -1.30 (SD 1.51; p value p=0.028, Mann-Whitney U test). 

Figure 1 shows the CFB at different time points and the baseline and week 8 TPS for each 

subject. 

 

 

Figure 1: (A) Mean CFB in TPS based on LOCF for the treated (solid line) and placebo (dashed 

line) groups starting at the moment of first administration. Error bars indicate 95% CIs of the 

mean based on normal approximation. (B) Baseline and week 8 TPSs in absolute values 
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based on LOCF for each subject and divided into the mepolizumab-treated and placebo 

groups. 

Again, using LOCF, the percentage improvement in TPS for mepolizumab was greater than 

placebo, with 60% versus 10% (odds ratio 13.5; p=0.018, Fisher Exact test). 

 

CT score improvement 

The Fleiss kappa coefficient of inter-rater reliability was 0.679 using LOCF, indicating good 

agreement between the three raters of the CT scans. Figure 2 shows the percentages 

improvement of CT scan. An improvement was seen in over half of the mepolizumab-treated 

patients compared to <20% of the placebo group, compared to the baseline scans (p=0.058, 

p=0.024 and p=0.049 for the different raters using LOCF, Fisher Exact test). 

 

Figure 2: Proportional improvement in CT scan scores based on LOCF for the mepolizumab-

treated (black columns) and placebo (gray columns) groups rated by 3 different observers (A, 

B, and C). Error bars indicate 95% CIs of the proportion based on normal approximation. 
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Symptom scores and nPIF 

Reduction from baseline of loss of smell, postnasal drip and congestion at week 8 was 

greater in the treated than in the placebo group, but rhinorrhea stayed at the same level. 

Remarkable, the improvement of loss of smell stayed at the same level during the whole 

period of follow up (11 months post last dose), while the other symptoms normalized after a 

period of time. However, none of these differences was statistically significant.  

 

Figure 3 shows the mean CFB in nPIF, resulting in a different AUC. This suggests better values 

of nPIF in the mepolizumab-treated group than in the placebo group. The nPIF AUC values 

were also formally compared, resulting in p=0.095 for LOCF. 

 

 

Figure 3: Mean CFB in nPIF based on LOCF for the treated (solid line) and placebo (dashed 

line) groups starting at the moment of first administration. 
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Blood and serum markers 

CFB at week 8 of blood eosinophils (p<0.001 for LOCF), serum ECP (p=0.022 for LOCF) and 

serum IL-5Rα (p<0.001 for LOCF) showed a significant reduction in the verum versus the 

placebo group. Evolution of serum ECP, blood eosinophils and serum IL-5Rα is shown in 

Figure 4. 
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Figure 4: Fig 2. Mean CFB in serum ECP levels, blood eosinophil counts, serum IL-5Rα levels, 

and nasal MPO levels and mean nasal IL-1β and IL-5Rα levels (all in micrograms per liter), 

imputing 0 for observations of less than the LDL. These representations are based on LOCF 

and show the mepolizumab-treated (solid line) and placebo (dashed line) groups starting at 

the moment of first administration. Error bars indicate 95% CIs of the mean based on normal 

approximation. 

 

Markers in nasal secretion 

In contrast with nasal ECP (p=0.260 using LOCF), nasal IL-5 (p=0.094 using LOCF) and nasal 

total IgE (p=0.170 using LOCF) at week 8, which were not significantly different between 

groups, nasal IL-5Rα (p=0.010 for LOCF), nasal IL-6 (p=0.020 for LOCF) and nasal IL-1β 

(p=0.043 for LOCF) were significantly lower in the treated group. CFB at week 8 of nasal MPO 

(p=0.008 using LOCF) showed a significant reduction in the mepolizumab-treated group. 

Evolution of nasal IL-1β, IL-5Rα and MPO is also shown in Figure 4. 

 

Dropouts 

The proportions of treated and placebo patients still in the study at the different time points 

can be seen in Figure 5. There were 3 dropouts at the time of the primary endpoint (week 8), 

all of them in the placebo group. At the end of the study, there is a considerable dropout 

rate in both the mepolizumab and placebo arms. However, the time to drop out was 

significantly longer in the mepolizumab arm (p=0.005, log-rank test versus placebo). The 

reasons for dropout were comparable (Table 2). The most important were the need for 

rescue medication (5/20 in the mepolizumab-treated group and 3/10 in the placebo group) 

and nasal surgery with removal of NP (4/20 in the mepolizumab-treated group and 3/10 in 

the placebo group), which were said to be exclusion criteria. 
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Figure 5: Proportion of patients still in the study in treated (solid line) and placebo (dashed 

line) groups. 

 

Table 2: Overview of reasons for dropout in ‘Mepolizumab treated’ and ‘Placebo’ groups. 

 Week 8 (primary time point) Week 48 (end of study) 

 Mepolizumab treated Placebo Mepolizumab treated Placebo 

Still in study 20/20 7/10 9/20 1/10 

Rescue operation 0/20 1/10 4/20 3/10 

Rescue medication 0/20 1/10 5/20 3/10 

Accidental medication 0/20 1/10 1/20 1/10 

Did not show up 0/20 0/10 1/20 2/10 

 

Responder analysis 

The percentage of patients responding with an improvement in TPS at week 8 was 60% in 

the mepolizumab group. None of the baseline characteristics was significantly different 

between responders and non-responders. In particular for baseline TPS and local IL-5 levels 

we found no difference (p=0.97 and p=0.26). 
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DISCUSSION 

In this double blind, randomized, placebo controlled study, we evaluated the effect of two 

injections of mepolizumab 750 mg IV in patients with severe CRSwNP. This treatment 

produced a significant reduction in TPS in 12/20 patients. These effects were confirmed by 

changes in CT scan evaluations. Together, the observations support a role for anti-IL-5 in a 

subgroup of patients with CRSwNP, and confirm previous results achieved with a single 

injection of a different anti-IL-5 antibody, reslizumab.18 It is possible that additional doses of 

mepolizumab could lead to a larger impact on nasal polyposis or even resolution of the 

disease in a still to define subpopulation of polyp patients. Moreover, the rebound 

eosinophilia seen with reslizumab, was not observed using mepolizumab. 

As previous studies showed, anti-IL-5 treatment is safe and well tolerated.18,23,24 In our study, 

we did not observe significant differences of adverse events between the treatment and the 

placebo group. 

Both groups had a mean TPS between 5 and 6 out of a potential maximum of 8 points at 

baseline, reflecting the severity of the disease as determined by the inclusion criteria. A 

higher proportion of patients in the treated group improved compared to placebo at week 4, 

and this number increased after the second dosing. A beneficial effect was seen in more 

than half of the treated patients one month post last dose. Because similar studies with anti-

IL-5 treatment are lacking, we could only compare with our previous study.18 This also 

showed a reduction in nasal polyp size in half of the patients. A meta-analysis testing the 

effect of intranasal steroids compared to placebo, found a decrease in nasal polyp 

assessment (score from 0 to 3, comparable to our TPS without grade 4) of 0.43-0.63,25 while 

we observed a mean decrease of 1.30 (with 4 grades instead of 3), using mepolizumab. 

Of importance, the changes in TPS were assessed objectively by repetitive CT scans, 

evaluated by 3 independent observers. CT scan imaging confirmed that more than half of the 

patients objectively profited from this potentially new therapeutic approach. 

The typical symptoms that are so characteristic of CRSwNP, all showed trends towards 

improvement in the treated group, except rhinorrhea, but none of them reached statistical 

significance. Some of the effects were long lasting; the reduction of loss of smell in the 

treated group lasted for the whole period of follow up. Nasal congestion seemed to improve 

temporarily without reaching significance. Furthermore, nPIF changes compared to baseline 
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were superior in the mepolizumab-treated group, suggesting a decrease in nasal 

obstruction.  

When analysing systemic and local markers of eosinophilic inflammation, we found a 

significant decrease in blood eosinophils in the treated group compared to the placebo 

group, also reflected by ECP in the serum. This is in line with the results of other studies in 

asthmatics and is considered the most important effect of the treatment in the 

hypereosinophilic syndrome.26-28 The decrease in blood eosinophils was paralleled by a 

decrease in serum and nasal secretion IL-5Rα concentrations. Furthermore, nasal IL-6, MPO 

and IL-1b were significantly decreased, suggesting effects of treatment also on parameters 

of the neutrophilic inflammation present in CRSwNP. 

In contrast to reslizumab, there was no reactive eosinophilia with mepolizumab; this 

counterregulation clearly was of concern in former studies.18,23 However, increasing blood 

eosinophils with associated deterioration of the clinical condition is also reported with 

mepolizumab.29 The rebound eosinophilia after anti-IL-5 treatment is a result of a serum 

factor that enhances eosinophil survival. Reversal of this effect by the addition of anti-IL-5 

suggests that this factor may be IL-5 itself.30 We suggest that rebound eosinophilia could be 

avoided by the administration of multiple doses of anti-IL-5 treatment. This effect was also 

seen before in studies with more than one injection.23,28,29
 Monthly administration of this 

treatment is supposed to be most appropriate, stabilizing the clinical course and preventing 

rebound eosinophilia.29 However, one study found that improvement in symptoms and 

eosinophilia lessened with each subsequent dose.23 It remains unclear whether prolonged 

treatment with anti-IL-5 could be used and what the effect would be.  

As these patients suffer from severe and disabling disease, we observed clearly more 

dropouts in the course of the study in the placebo compared to the treatment group. Figure 

5 shows that, at any point, the dropout was larger in the placebo group than in the 

mepolizumab-treated group. This difference was significant, indicating that dropout depends 

on treatment. In fact, the main reasons for exclusion were the need for systemic steroids 

and the need for surgery in the follow up period, both higher in the placebo group, although 

each individual reason for dropout was not statistically significant. 

The comparison between responders and non-responders did not provide the expected 

proof of the relationship between response to treatment and concentrations of IL-5 in nasal 
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secretion at baseline, as seen in our previous study.18 We also tested the effect of 

mepolizumab in the responder group. The decrease of TPS in responders was significantly 

maintained until 36 weeks after treatment, implying a long-term effect. 

One of the major study limitations is the small sample size (n=30). This is probably the 

reason why we do not observe significant changes in symptom scores, although the nasal 

polyp score and CT scan significantly improved. Another study limitation is the long-term 

dropout rate, which makes interpretation of long-term follow up data difficult. Moreover, 

we only tested the administration of 2 injections of mepolizumab. More studies with a larger 

sample size and long-term treatment are required to determine the optimal treatment 

scheme for clinical use. Attention should be paid to parameters predicting treatment 

success, as this will be of clinical relevance. We believe anti-IL-5 treatment has a great 

potential, especially when we succeed in predicting the patients who would respond to the 

treatment. 

In summary, two injections of 750 mg anti-IL-5 mAb (mepolizumab) showed a significant 

improvement over placebo of the endoscopic TPS. The TPS was decreased at week 8 in 

12/20 patients with mepolizumab in contrast to 1/10 patients with placebo. In addition, 

11/20 mepolizumab-treated patients showed an improvement in CT scan. Furthermore, the 

injection of two doses of mepolizumab was well tolerated, and no rebound eosinophilia was 

observed. IL-5 inhibition seems to be a promising novel therapeutic approach in patients 

with severe CRSwNP, but we require more long term studies to assess its full possibilities 

and indications. Better phenotyping could help to select the patients that would benefit 

from this treatment. 
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TGF-beta in chronic sinus disease: dual role  

Based on our findings, TGF-beta plays a key role in the pathophysiology of chronic 

rhinosinusitis, since its functions relate to both inflammation and remodeling processes.   

A repeatable finding is the difference in TGF-beta protein concentrations in chronic 

rhinosinusitis with and without nasal polyps. Lower TGF-beta levels are a key feature of nasal 

polyps, whereas higher levels of TGF-beta are a persistent finding in chronic rhinosinusitis. 

Chronic rhinosinusitis without nasal polyps is characterized by a Th1 biased inflammation, 

with high levels of IFN-gamma, and fibrosis formation as a consequence of the up-regulation 

of TGF-ß. In contrast, Caucasian nasal polyps typically display a Th2 type inflammation, with 

high levels of IL5, total IgE and tissue eosinophilia, and edema formation as a consequence 

of the down-regulation of TGF-beta.  

 

I. T-cell regulation in chronic paranasal sinus disease 

In chapter 4, we have focused on the involvement of TGF-beta in T regulatory cell 

development and function. Chronic sinus diseases all show a T-cell mediated immune 

reponse1, however divergence of T cell polarization is observed towards a Th1 cytokine 

profile in CRSsNP with high IFN-γ and TGF-beta1 concentrations, or a Th2 profile in CRSwNP  

characterized by eosinophilic inflammation with high levels of IL-5, IgE and low TGF-beta1.  

To date, there is no knowledge available on the intracellular mechanism behind this initial T 

cell polarization. Therefore, we analyzed the transcription factors that are critical in the 

development of the different T cell subtypes. T-bet skews differentiation towards Th1 cells, 

whereas GATA-3 skews towards Th2 cells, and regulates the expression of IL-4 and IL-5. 

In recent years,  evidence grew on the existence of a dedicated population of regulatory T 

cells (Tregs), a subpopulation of T cells that act to suppress activation of the immune system 

and thereby maintain immune system homeostasis and tolerance to self-antigens.  

Tregs can inhibit Th1 and Th2 cells directly by cell-cell contact. These cells are called 

naturally occurring Tregs. Induced Tregs are generated in the periphery and have 

suppressive capacities via the production of TGF-beta and IL-10.  

Shortly after the discovery of Treg cells, another subset of T cells, called  Th17 cells filled the 

gaps in our understanding of T cell biology. Th17 cells have, via IL-17 production,  

proinflammatory properties through the induction of cytokines such as TNF-alpha, IL-1 beta 
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and IL-6. Experimental models suggest that TH17 cells may be important for neutrophilic 

inflammation in acute airway inflammation2. The transcription factor involved in Th17 

differentiation is called RORγt, equivalent to RORc in humans3. 

 

We have analyzed the expression of TGF-beta in relation to T cell subsets including Th1, Th2, 

T regulatory and Th17 cells. To evaluate the role of Foxp3+  T regulatory cells (Tregs) in the 

pathogenesis and management of chronic rhinosinusitis, we investigated the location and 

expression of Foxp3 in CRSsNP and CRSwNP.  

Knowledge on T reg cells in human disease is scarce so far, and studies mostly are based on 

in vitro experiments using peripheral blood derived T reg cells. We aimed to study the direct 

tissue expression of transcription factors that are responsible for differentiation towards the 

different T-cell subpopulations, in relation to the cytokine expression patterns in the 

different disease subgroups.   

 

The expression of  the transcription factors FOXP3, T-bet, GATA-3, RORc, the suppressive 

cytokines TGF-beta1, IL-10 and Th1/ Th2/ Th17 cytokines (IFN-γ , IL-4, IL-5, IL-13, IL17) were 

analyzed in CRSsNP, CRSwNP and controls. Additional protein measurements were 

performed for TGF-beta1 and IFN-γ. 

We could show a deficit in FOXP3 expression  in CRSwNP accompanied by an up-regulation 

of T-bet and GATA-3, coinciding with low TGF-beta 1 protein levels. In CRSsNP, FOXP3, T-bet, 

GATA-3 and RORc expression  was not significantly different from controls,  whereas TGF-

beta1 mRNA, IFN-gamma mRNA and protein were significantly higher in CRSsNP compared 

to controls. For Il-17, no significant differences were noted between all groups. 

As TGF-beta acts both as an effector and an inducer of Treg function, the decreased 

expression of FOXP3 and TGF-beta1 protein, together with the upregulation of both Th1 (T-

bet) and Th2 (GATA-3) transcription signals suggests defective T regulatory function in 

CRSwNP.  

 

Perspectives 

These data improve the understanding of pathophysiology of CRSsNP and CRSwNP, opening 

new perspectives for therapeutic approaches, suggesting that Tregs might represent a 

specific therapeutic target. 
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Relevance to lower airway disease 

Recent observations in asthma revealed comparable findings, demonstrating a decreased 

FOXP3 expression in CD4(+)CD25(high)T regulatory cells of peripheral blood mononuclear 

cells (PBMC) from asthmatics. There was also a tendency observed for increased FOXP3 

expression in glucocorticosteroids treated asthmatics4.  

Hartl et al could demonstrate that T reg cells were decreased in broncho-alveolar lavage 

fluid of asthmatic children compared with values in children with cough or control subjects. 

In children with asthma, inhaled corticosteroid treatment was associated with increased 

percentages of CD4(+)CD25(hi) T cells in peripheral blood and broncho-alveolar lavage fluid5. 

Relevance in therapeutic monitoring and management 

Li et al confirmed  an increased  number of FOXP3+ Tregs in nasal polyps (CRSwNP) after 

treatment with intranasal steroid (mometasone 50 micrograms/day for 4 weeks). They 

confirmed that FOXP3 and IL-10 were downregulated in CRSwNP compared to the control 

mucosa. FOXP3 and IL-10 expression were increased significantly after intranasal steroid 

treatment. These data confirm our results that FOXP3 is downregulated in CRSwNP and that 

intranasal steroids attenuate the chronic inflammatory response at least partially by 

enhancing the expression and function of Foxp3 in NP6.  

Relevance in phenotyping 

Another study of our group extended this knowledge to a Chinese population. Th1/Th2 and 

Treg associated transcription factors were analyzed in Chinese NP and compared to western 

CRSwNP. Chinese, predominantly neutrophilic polyps share the downregulation of FOXP3 

and TGF-beta1 with Caucasians; however, strikingly, Chinese nasal polyps have a mixed Th1 

and Th17 pattern with significantly lower GATA3 expression and higher IL-17 concentrations 

compared to Caucasian polyps.  

In western nasal polyps we repeatedly found low IFN-γ concentrations, whereas T-bet 

signaling was present. GATA-3 also has the capacity to directly inhibit IFN-γ promoter 

activity, resulting in repression of Th1 and development of a Th2 phenotype. The up-

regulation of GATA-3 in CRSwNP was reflected by the subsequent increase of the IL-5 mRNA 

signal. Moreover, it is probable that posttranslational mechanisms suppress IFN-gamma 

expression.  
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II. TGF-beta signaling and collagen deposition in chronic rhinosinusitis 

In chapter 5, we aimed to analyze the presence of TGF-beta isoforms and its receptors in 

chronic rhinosinusitis with or without polyp formation, and linked this to downstream 

intracellular signaling by measuring the number of phosphosmad 2 positive cells. TGF-beta 1 

first binds to TGF-beta RII, this complex then recruits TGF-beta RI. After binding to TGF-beta, 

TGF-beta RII recruits and phosphorylates TGF-beta RI, leading to phopshorylation of Smad 2 

and Smad 3. Phosphorylated Smad 2 and Smad 3 form heterodimers with Smad 4 and 

translocate to the nucleus. This process is inhibited by Smad 7. Together with co-activators, 

co-repressors and other transcription factors, the Smad complex regulates gene expression 

of TGF-beta target genes7.  

 As outcome parameter for remodeling we analyzed collagen deposition within the 

extracellular matrix.  

Inappropriate functioning of TGF-beta receptors has been implicated in several pathological 

conditions, such as carcinogenesis, rheumatoid arthritis, and fibrotic diseases. A better 

understanding of the relative roles of the three TGF-beta isoforms therefore seems crucial 

for a better understanding of the typical inflammatory and extracellular matrix changes 

observed in CRS.  

Clear differences in the TGF-beta signalling cascade were observed between CRSsNP and 

CRSwNP, supporting the hypothesis that CRSsNP and CRSwNP are two distinct disease 

entities. Low levels of TGF-beta 1 protein concentration, a downregulation of its receptor 

TGF-beta RII and a low number of phosphosmad 2 positive cells in CRSwNP all indicate a low 

level of TGF-beta signalling in nasal polyp disease.  In strong contrast, in CRSsNP, high TGF-

beta 1 protein expression, increased TGF-beta RI expression, and a high number of 

phosphosmad 2 positive cells all point towards an enhanced TGF-beta signaling in CRSsNP. 

This is reflected by the typical extracellular matrix remodeling patterns observed. CRSwNP is 

characterized by a lack of collagen and tissue repair, whereas CRSsNP demonstrated fibrosis 

with excessive collagen production and thickening of the collagen fibres.  
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Figure: Differences in TGF-beta protein and receptor expression, downstream signaling 

(phosphosmad 2) and remodeling features.  

 

Perspectives 

 

Besides the impact of TGF-beta on T cell differentiation as described in chapter number 4, 

TGF-beta appears to be one of the critical factors involved in remodeling of upper airway 

disease.  

TGF-beta acts as a master switch for the development of either chronic rhinosinusitis with 

or without polyp formation. TGF-beta impacts fibrosis formation through collagen 

production and the influence on the balance between MMPs and TIMP.   

Even when looking at different ethnic populations, this finding seems to be consistent. 

Nasal polyps (CRSwNP) in the Caucasian population are commonly characterized by 

prominent tissue eosinophilia8, (even more abundant present when comorbidities such as 

asthma and/or aspirin hypersensitivity are associated) and low levels of TGF-beta1 in 

former studies1. Recent studies in CRSwNP from South China, however, suggested that 

clinically equivalent NP disease also may exist with lack of tissue eosinophilia, and a lack of 
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IL-5 and eotaxin expression12. The remodeling patterns are more consistent than the 

inflammatory pattern, indicating that TGF-beta1 and its signalling may be a well-

conserved key marker for CRS differentiation9. 

These data need to be confirmed on larger scale. Therefore, a large European multicenter 

study has been conducted with help of the European Commission (6th framework 

programme GA²LEN) in order to characterize patients with upper airway diseases on the 

basis of clinical parameters, infectious agents, inflammatory mechanisms and remodeling 

processes, and to differentiate the term chronic rhinosinusitis further to smaller disease 

entities based on clinical and biological parameters10. A specific module has been dedicated 

to TGF-beta and remodeling in chronic rhinosinusitis.  

Relevance in therapeutic management 

There are a number of possible approaches to decrease the action of TGF-beta in fibrotic 

disease. Experiments with anti-TGF-beta antibodies showed reduced synthesis of matrix 

proteins in nephritic rats11. Treatment of dermal wounds with anti-TGF-beta showed a 

reduction of the collagen deposition. Another possible therapeutic approach could be 

soluble TGF-beta receptors, which inhibit the binding of TGF-beta to its membrane receptor. 

Similarly, the latency associated peptide that is released during activation of TGF- beta could 

be used to inhibit the action of TGF-beta.  
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III. Inflammation and remodeling patterns in early stage chronic sinus disease 

Chronic rhinosinusitis without polyp formation (CRSsNP) is typically characterized by an 

increased expression of Th1 cytokines with subsequent neutrophilic inflammation, high 

levels of TGF-beta and IFN-gamma, and expression of FOXP3, controlling GATA3 and T-bet 

expression, suggesting balanced T cell homeostasis in CRSsNP. Typical remodeling features 

include collagen deposition within extracellular matrix and thickening of collagen fibers.  

However, little is known regarding the initial events that lead to the development of CRSsNP.   

In Chapter 6, we aimed to study early events in the development of CRSsNP.  

We have analyzed inflammation and remodeling parameters at different sinusal locations 

(the inferior and middle turbinates, the uncinate process,  maxillary sinus, anterior ethmoid, 

bulla ethmoidalis and the posterior ethmoid) within a group of 9 patients with recently 

developed early chronic sinus disease without nasal polyps.  

Local intersinusal differences in the expression of pro-inflammatory and remodeling 

cytokines were investigated. Only patients with early stage bilateral disease were included, 

with  a Lund-Mackay–Score not higher than 12/24 after adequate treatment following the 

EP³OS guidelines.  

In early-stage chronic sinus disease, TGF-beta protein is expressed in significantly higher 

concentrations within the paranasal sinuses when compared to control mucosa from inferior 

turbinates, concentrations where highest in the maxillary sinuses. Pro-inflammatory, 

neutrophilic and Th1 markers did not show any difference between the sinuses and 

turbinates.  

These findings question the relation between inflammation and remodeling. Remodeling 

may be preceding inflammation, or may develop independent from inflammation; also the 

findings in nasal polyps point in this latter direction, as the remodeling pattern is largely 

similar in neutrophilic and eosinophilic polyps. Airway remodeling so far was assumed to be 

a consequence of chronic inflammation, but this relationship between the remodeling and 

inflammatory components is now questioned.  

Relevance to lower airway disease 

When comparing with lower airway disease in newly diagnosed asthma it is assumed that 

mucosal inflammation as well as remodeling are always present. However, based on studies 

on airway biopsies in children, it has recently been suggested that remodeling may occur 
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very early in asthma and may in some cases even precede clinical symptoms12. Our data in 

upper airway disease would support this possibility. 

Several studies have attempted to correlate the degree of remodeling and the severity of 

asthma, but conflicting data have been obtained13. 

 

 

Stimulus  Inflammation Remodeling 

 

 OR 

 

 Inflammation 

 

Stimulus 

 

 Remodeling 

 

Figure 1. Remodeling and inflammation  

It is often assumed that there is a linear progression between an initiating stimulus leading to 

inflammation, which in turn leads to remodeling. Alternatively, however, the same stimulus 

could independently lead both to inflammation and remodeling . 

 

Perspectives 

Despite the low number of patients in our study due to the fact that patients with early 

disease seldom would be indicated for surgery, it was striking to observe that no signs of 

inflammation were present. Although these findings need further investigation in larger 

numbers of patients, we can question the relation between inflammation and remodeling. In 

the case of a dissociation, both processes may need to be approached independently.  
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IV. Anti IL-5 

Several therapies are utilized in the treatment of chronic rhinosinusitis, however, 

corticosteroids and antibiotics remain the  basis  of the current armentarium.  

Research of the last years has led to better understanding of the pathogenesis and resulted 

in more tailored treatment options, in particular of nasal polyposis. The eosinophils have 

been suspected to play a key role in the pathogenesis of nasal polyposis. There is a clear 

relation between eosinophils and TGF-beta: TGF-beta is able to extinguish the prolonging 

effects of hematopoietins like IL-5, IL-3 and GM-CSF on eosinophil survival and to induce 

eosinophil apoptosis. The low TGF-beta levels observed in nasal polyposis may contribute to 

the massive eosinophilic inflammation observed in at least 80% of the Caucasian polyps14.  

In a first step, this has led to a safety and pharmacokinetic pilot study using humanized anti-

IL-5 antibodies for the treatment of nasal polyps. In a double-blind, placebo-controlled, 

randomized, 2-center study, 24 subjects with bilateral nasal polyps were randomized to 

receive a single intravenous infusion of reslizumab, a humanized anti-human IL-5 mAb, or 

placebo. A single injection of reslizumab was safe and well tolerated; blood eosinophil 

numbers and concentrations of eosinophil cationic protein were reduced up to 8 weeks after 

treatment in serum and nasal secretions. However, individual nasal polyp scores improved 

only in half of the treated patients for 4 weeks. Responders had increased IL-5 

concentrations in nasal secretions at baseline compared with non-responders, and logistic 

regression analysis revealed that increased nasal IL-5 levels predicted the response to anti-

IL-5 treatment.  

Therefore, a second randomized, double-blind, placebo controlled study with repeated 

injections of anti-IL-5 antibodies was needed. We aimed to determine the efficacy of two 

injections of mepolizumab on nasal polyp volume in subjects with severe nasal polyposis by 

using nasal endoscopy and CT-scan imaging as outcome parameters. In addition, markers of 

biological activity such as IL-5 and nasal eosinophilia were assessed over a period of eleven 

months post last dose. 

Thirty subjects suffering from chronic rhinosinusitis with primary or post-surgery recurrent 

nasal polyps (grade 3 or 4, see outcome measures) were included. 

151



Chapter VIII: discussion and perspectives 
 

 
 

Two injections of mepolizumab significantly reduced the size of nasal polyps for at least 2 

months post dosing in 60% of the patients. These effects were confirmed by changes in the 

CT scan evaluations.  

The comparison between responders and non-responders did not result in the expected 

relationship between response to treatment and nasal IL-5 at baseline, as seen in the first 

study. This discrepancy may be due to the fact that baseline IL-5 was identified as a predictor 

of response in a post-hoc analysis of the first study, which always should be considered with 

care. Furthermore, the number of patients in those studies does not allow firm conclusions.  

We also wish to mention that the position of anti-IL5 treatment in comparison to the current 

armentarium needs further research, as in this current study we did not compare with 

conventional treatment.  

However, these results underline the necessity of defining subgroups of patients for specific 

therapy based on clinical or biological parameters, even within a “clinical entity” such as 

nasal polyps.  

Therefore, a large multicenter anti-IL5 study is currently conducted, in order to allow further 

differentiation  into CRSwNP subgroups, based on inflammatory and remodeling parameters. This 

will allow a better fenotyping and probably predict response to treatment. 

An issue that needs further attention is the long term safety. Mepolizumab has been utilized 

for the treatment of hypereosinophilic syndrome and asthma. The current clinical 

experience in the treatment of asthma patients has been recently reviewed by Busse et al. 15 

These results point to no major safety concerns, in all cases mepolizumab was well tolerated 

and raised no major safety concerns.  
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General conclusions 

Chronic rhinosinusitis represents an umbrella term for different disease phenotypes such as 

CRSwNP and CRSsNP, based on clearly distinguishable remodeling and inflammatory cell 

patterns. Remodeling and T regulatory cell activity are both subject to the regulation of TGF-

beta, a major switch in sinus diseases, with a deficiency of T regulatory cells allowing for 

chronic inflammation. Both remodeling and inflammation are decisive for the expression of 

disease, and justify the introduction of specific phenotypes of CRS such as CRSsNP and 

CRSwNP; within CRSwNP, specific T cell cytokines such as IL-5 furthermore allow a further 

differentiation into endotypes responsive to novel treatment approaches by biologicals such 

as anti-IL5 humanized antibodies.    
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