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1 INTRODUCTION

“Like a drunk who looks for his lost keys under the lamp-post,
because that is where the light is, scientists do certain experiments
simply because they have the technologies available”

— Jane Calvert, 2012

1.1. GENERAL OVERVIEW

In the 19th century Gregor Mendel discovered that certain properties of
garden peas could be passed on to next generations, depending on certain
invisible factors, which are now coined genes. The significance of his work
wasn’t recognized until the 20th century, but from that time genetics has
played an important role in medicine, anthropology, psychology and, of
course, plant and animal breeding. In the beginning of the exploitation of
genetics in animal and plant breeding, it was still only a rather abstract
concept and breeders tried to incorporate the genetic value or genetic
merit of the individuals under study by modelling correlation between
their phenotypic scores based on the pedigree of these individuals. Later
on, the molecular side of genetics was studied intensively, leading to the
knowledge that DNA is the molecule behind genetic inheritance and that
DNA is composed out of a chain of nucleotides of which two strands are
linked together in a helical structure. This knowledge was crucial for the
development of DNA sequencing, which allows to read certain sequences of
nucleotides from the DNA. Several of these sequences are now known to vary
considerably in certain populations in only a single nucleotide and these
variations are captured by a method called single-nucleotide polymorphism
(SNP) genotyping.

The information from SNP genotyping experiments was introduced in animal
and plant selection programs from the 1990s, when genetic merit was no
longer only seen as a combined effect of all the genes of the individual, but
it was modelled as the sum of this combined effect and the specific effect of
certain SNPs. With the evolution of DNA sequencing, more SNPs became
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available and some of these were categorized as having a significant effect on a
certain quantitative trait. This particular locus on the DNA was then said to
be a part of a quantitative trait locus (QTL). A locus is defined as the specific
position of a gene or a short DNA sequence on the chromosome. These loci
can occur in different forms known as alleles and a different allele may result
in a difference in phenotype. In SNP genotyping it is mostly assumed that
there are only two alleles possible at the specific locus and the difference
is due to a difference in a single nucleotide. Nowadays, for dairy cattle
over 36,000 different QTL are known to play a role in almost 500 different
traits (http://www.animalgenome.org/cgi-bin/QTLdb/BT/index)). This
number is still rising, and it is thought that quantitative traits are not only
controlled by QTL with a large contribution, but the combined effect of
many QTL with only a minor contribution may play an important role in the
further genetical improvement of the agronomical performance of animals
and plants.

In order to take into account the combined effects of the many different
QTL, dense SNP arrays were developed, sampling up to 700,000 SNPs across
the whole genome and all this information is taken into account in so-called
genomic selection programs. The estimation of the values of all these effects,
referred to as genomic prediction, is almost impossible based on a low number
of records, even with state-of-the-art methods. Therefore, a data-driven
approach may represent a better way for optimising the predictability of the
different effects that play a role in quantitative traits. Such a data-driven
approach uses the abundance of information to deduce results without trying
to optimise the analytical model as opposed to a theory-driven approach,
where models are optimised to fit specific cases, usually based on smaller
data sets. In fact, data-driven biology is emerging and technological advances
in this area can lead to conceptual ones [I]. As the cost for genotyping is
constantly decreasing due to technological advances, a first step for a data-
driven genomic selection program, namely the genotypic data collection, is
no longer an issue. However, the analysis of large-scale data sets still suffers
from the computational burden associated with it. Although phenotypic
data collection might still be an issue, historical records may be used and
based on the analysis of these records, future phenotypic tests may be better
planned when the predictions are more reliable.

A next step to take is thus enabling the analysis of these large-scale data
sets to improve genomic selection programs. Nowadays, high performance
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computing clusters are becoming more and more available not only in
academia, but also in industry and even for private use. Efficiently applying
this supercomputing power may accelerate advances in genomic prediction
resulting in better estimates of genomic value of an individual, a better
understanding of the origin of this genetic value and insights in how genetic
value can change under different environmental conditions. For this reason,
this dissertation tries to highlight the computational burden of genomic
prediction and how this can be resolved by efficiently applying the computing
power of a dedicated cluster. Moreover, two well-known and widely-used
analysis methods in animal and plant breeding are implemented in such
a way that the analysis of large-scale data sets on a high performance
computing infrastructure becomes possible. The results show that indeed
the data-driven research may dramatically increase the potential of genomic
prediction and that high performance computing methods aid in the fast
validation of the applied models. This dissertation thus tries to make
new technology available for scientists to enable new ways of modelling or
experimentation.

1.2. A ROAD-MAP TO THIS DISSERTATION

This dissertation consists of an introductory part (part I), a part describing
the main contributions (part II) and a conclusive part (part III). As such, it
can be read in a linear way, because each chapter is the logical continuation
of the previous one. Part I contains a very general but thorough introduction
to genomic prediction as well as high performance computing, while part
II describes two contributions of this dissertation in an animal and plant
breeding context based on the methods that were introduced in the first
part. Part III then summarises the results of part II and provides some
future prospects based on the results of part II as well as current research
practices.

1.2.1. PArT I

Not only is it logical to start with an introductory part, it is also the
perfect way for explaining the theoretical and historical foundations of the
research fields at whose crossroads this dissertation is situated. A complete
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introduction to both research fields would lead us too far, but the emphasis
is on methods that will be used in part II for the applications in animal
and plant breeding. A brief overview of the different chapters of this part
is presented here to guide the reader on which topics might be of interest,
before jumping into the contributions of this dissertation.

A very general introduction to genomic prediction is provided in Chapter 2,
putting this dissertation in a historical perspective, while providing some
insights of the computational aspects of genomic prediction. This might be
of interest to all readers as some frequently used terms that are specific to
genomic prediction are introduced. Also, it is always interesting to know
more about historical aspects as Theodore Roosevelt once said: “The more
you know about the past, the better prepared you are for the future”.

Chapter 3 is dedicated to the use of linear mixed models in animal and
plant breeding as this type of modelling still forms the cornerstone of current
genomic prediction applications. The difference between linear regression and
linear mixed models, who introduce random effects, is explained, together
with the reason why these random effects are of importance in genomic
prediction. The derivation of the best linear unbiased prediction (BLUP) for
these random effects and the best linear unbiased estimation (BLUE) of the
fixed effects in the linear mixed model is explained in depth. Furthermore,
it is shown that the BLUP and BLUE can be found as the solution of a
system of linear equations, better known as the mixed model equations.
Finally, the computational aspects of solving these mixed model equations are
emphasised, with common simplifications used in current genomic prediction
settings to alleviate the computational burden.

The random effects in linear mixed models are assumed to follow a certain
distribution, which is assumed to be the normal distribution throughout
this dissertation. Mostly, the covariance structure of these random effects is
known, but it still depends on some variance components. The estimation of
these variance components is the subject of Chapter 4, again starting with
a historical description of variance component estimation, but focusing on
the method that is mainly used in genomic prediction, namely Restricted
Maximum Likelihood. Subsequently, a convenient algorithm, the Average
Information Algorithm, for finding the restricted maximum likelihood es-
timates is presented. Although the derivation of this algorithm is tedious,
it provides for a computational convenience that is explained at the end of
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Chapter 4, followed by a comparison of the computational burden of this

algorithm to the computational complexity of other algorithms.

To resolve the computational demands of solving the mixed model equations
and estimating the variance components for large-scale data sets, some
high performance computing methods are presented in Chapter 5. At first,
a little history of supercomputing is presented and the different ways of
parallelisation as well as the limitations of parallel computing are explained.
Next, distributed computing and sparse matrix algebra are discussed in
depth, because these methods will be used in the following chapters of this
dissertation. Finally, the application of high performance computing in
genomic prediction is reviewed in a historical context and the opportunities
for further developments in this area are highlighted.

1.2.2. PArt 11

The concepts explained in Part I are applied in both animal breeding and
plant breeding, which is described in Part II. The first contribution of this
dissertation is the application of distributed computing methods in an animal
breeding context. This method was extended for being used in plant breeding
where environmental conditions may play a role in the genetic ability of an
individual. Therefore, sparse matrix algebra was coupled to the distributed
computing methods that were used in the animal breeding context, because
information coming from the different environments is usually only sparsely

present.

Chapter 6 discusses the benefits of using distributed computing in an ani-
mal breeding setting, where the number of genotyped individuals becomes
very large (up to 1 million) and the number of SNP markers used for
genotyping can grow to 360,000. This implementation was called DAIRRy-
BLUP, a parallel, distributed-memory ridge regression BLUP (RR-BLUP)
implementation, that uses the Average Information algorithm for restricted
maximum-likelihood estimation of the variance components. The goal of
DAIRRy-BLUP is to enable the analysis of large-scale data sets to pro-
vide more accurate estimates of marker effects and breeding values. A
distributed-memory framework is required since the dimensionality of the
problem, determined by the number of SNP markers, can become too large
to be analysed on a single computing node. The results showed that predic-
tion accuracy is mainly influenced by increasing the number of genotyped
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individuals included in the analysis instead of increasing the density of the
SNP arrays used for genotyping.

In plant breeding, as explained in Chapter 7, phenotypic scores not only
depend on the effect of genetic markers, but also on the environmental
conditions. Moreover, the effect of markers may vary substantially under
the influence of different environmental conditions and thus marker-by-
environment interaction effects have to be taken into account. However, this
may lead to a dramatic increase of the computational resources needed for
analyzing large-scale trial data. A high performance computing solution,
called Needles, is presented for handling such data sets. Needles is tailored
to the particular properties of the underlying algebraic framework by ex-
ploiting a sparse matrix formalism where suited and by utilizing distributed
computing methods to enable the use of a dedicated computing cluster. It is
demonstrated that large-scale analyses can be performed within reasonable
time frames with this framework. Moreover, by analyzing simulated trial
data, it is shown that the effects of markers with a high environmental
interaction can be predicted more accurately when more records per envi-
ronment are available in the training data. The availability of such data
and enabling their analysis with Needles may also lead to the discovery
of highly contributing QTL in specific environmental conditions. Such a
framework thus opens the path for plant breeders to select crops on these
QTL, resulting in hybrid lines with optimized agronomic performance in
specific environmental conditions.

1.2.3. PArtT III

The last part only consists of a single chapter, Chapter 8, which draws
some general conclusions and highlights the future prospects of this research.
The main conclusion from this dissertation is the fact that increasing the
number of records in the analysis coming from genotyped individuals has
a significant effect on the prediction accuracy of breeding values as well as
on the predictability of the effects of the genetic markers. This increased
predictability can lead to the detection of highly contributing QTL and QTL
that have a variable effect in different environments. This provides a lot
of potential for future research where crop or animals may be selected for
specific types of environmental conditions and even for certain weather types.
As weather predictions are always subject to uncertainty, risk minimisation
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for yield loss when the weather is predicted incorrectly will play an important

role in future genomic prediction.

1.A. NOTATIONAL CONVENTIONS

The use of mathematics to formalize and solve problems is a recurrent

theme throughout this dissertation. Therefore, we will be needing a rather

extensive mathematical notation. Even though several notational aspects

are application specific, we will respect several conventions that are common

in modern literature.

e Vectors

Throughout this dissertation, we will often be using a vector notation.
Vectors are denoted as boldface lowercase characters and are assumed
to be column vectors. For example, x of dimension n represents an
n x 1 column vector. The transpose of the vector x is denoted x’
and the ith element is denoted z;. This means that we can write
x = (21,...,2,)". Sometimes a vector will be indexed, for example,
Ueny and ugn, denote two different vectors of different dimension. The
ith element of such vectors is then denoted ueny,; Or Usnp;. Several
“special” vectors are used: 0, denotes a n x 1 vector of zeros; 1,

denotes a n x 1 vector of ones.
Matrices

Matrices are denoted as boldface capitalized characters. For example,
A of dimension m x n denotes an m X n matrix of real numbers. Square
n X n matrices are referred to as square matrices of dimension n. The
ith row of a matrix A is denoted A; ; The jth column is denoted A ;.
Moreover, the element in the ¢th row of the jth column is denoted
A,;; and will also be referred to as element (4,j) of A. Sometimes,
when notation allows it, the element in the ith row of the jth column
of A is denoted a; ;.

A’ denotes the matrix transpose of A. For a square n x n matrix A,
A~! denotes the inverse of A (assuming that its inverse exists). A
matrix can also be subdivided into submatrices denoted as A; ), for

7
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example:

A |Aan Aa
Ay A

The element (i, j) of A(j9) is then denoted Ay ), ..

The n x n identity matrix is denoted I,,. A rectangular m x n matrix
filled with zeros is denoted 0,,x,. Sometimes, when the dimensions
are not known or not specifically mentioned, 0 can denote a matrix
filled with zeros of any dimension and I the identity matrix of an
unspecified dimension.

The determinant of a matrix A is denoted |A|. The trace of a matrix
A is denoted tr(A).

¢ Functions

A generic function f with as input z is denoted f(x), and for a vector
input x this becomes f(x). The partial derivative of a function with
respect to the variable x; is denoted gTé Moreover, the gradient vector
of f is denoted V f(x;) and the Hessian matrix is denoted H.

¢ Random vectors

There is also a difference between fixed vectors, denoted by Greek
symbols and random vectors, denoted by Latin characters. The differ-
ence between the two is explained more thoroughly in Chapter 3, but
in short, random vectors are sampled from a probability distribution,
while fixed vectors are not. In the model y = X3 + Zu, y and u are
random vectors, while 3 is a fixed vector. Estimates and predictions
of vectors that are used as effects in models are denoted by a hat, for
example 1 is the predicted value of the random vector u.

The expected value of a random vector u is denoted E(u) and the
covariance matrix of such a vector is denoted var(u). The covariance
matrix between two different random vectors u and e is denoted
cov(u,e).

e Probability distributions

The only probability distribution discussed in this dissertation is the
normal distribution and a random vector y that is sampled from a
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normal distribution with expected value B and covariance matrix V is
denoted

y ~N(B,V).
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2 COMPUTATIONAL IMPLICATIONS OF
GENOMIC PREDICTION

2.1. A SHORT HISTORY OF GENOMIC PREDICTION

The goal of genomic prediction is improving agronomic performance of plants
or animals by making use of information about their genetic constellation.
Sometimes it is also referred to as genomic selection, but where genomic
selection puts the emphasis on the selection process, performed by the
breeder, genomic prediction is actually a part of this process, focused on the
analysis of the data and issuing recommendations to the breeder. Marker-
assisted selection (MAS) is also used as a synonym for genomic prediction,
however, the distinction between MAS and genomic prediction lies in the
number of markers used in the predictive model. MAS usually only relies
on a few markers, while we talk about genomic prediction when more than
thousand markers across the whole genome are used. Although genetic
effects were already discovered by Gregor Mendel in the 19th century, it
wasn’t until the beginning of the 20th century that genetics became a widely
known concept in breeding. At first, studies were focused on qualitative
traits, resulting in distinct discrete phenotypes. For instance, Mendel’s
garden peas had green versus yellow pods or round versus wrinkled seeds.
These qualitative traits are mostly controlled by only one or a few genes
and are in general not influenced by environmental conditions. Moreover,
the gene has commonly only two alleles, a dominant one and a recessive
one. In most multicellular organisms two copies of a gene are present, each
inherited from one of the parents, and thus also two alleles are present. If
these alleles are both the same, the organism is said to be homozygous with
respect to that gene and if they are different, the organism is said to be
heterozygous with respect to that gene. When the organism is homozygous
for the recessive allele, the phenotype is different than when the organism is
heterozygous or homozygous for the dominant allele.

Although qualitative traits might be useful in breeding, e.g. for disease
resistance, nowadays the main interest for breeders lies in quantitative
traits. As opposed to qualitative traits, quantitative traits don’t result in

13
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different categories of phenotypes, but display a continuum of phenotypes
and are mostly heavily influenced by the environment. The most important
quantitative trait for breeders is yield. For plants this is mostly expressed
in tonnes/hectare, while for animals this can be kg/animal when breeding
for meat or 1/animal in dairy farming. It is also known that the genes
that have an effect on the quantitative trait do not act independently and
their combined effect is the product of additivity, dominance and epistasis.
Additivity means that the total effect is relative to the number of times
the alleles that influence the trait are present. If the total effect of two
equal alleles at the same locus is smaller than simply doubling the effect of
when the allele is present only once, dominance effects play a role. When
the total effect of two alleles at two different loci is greater than the sum
when only one of the alleles is present, it is said that epistasis is present. So
dominance effects are due to the interaction of genes at the same locus, while
epistasis is due to the interaction between genes at different loci. Because
these effects are difficult to model, due to the fact that many interactions
are possible, quantitative traits are mostly modelled by only considering
the additive effects, as will also be the case further on in this dissertation.
Another important concept in quantitative trait breeding is heritability,
which is defined as the amount of genetic variance relative to the amount
of phenotypic variance. This measure can be translated as the amount of
variance in the phenotype that is due to genetic effects and thus a trait with
low heritability is more influenced by non-genetic, mostly environmental
effects. Such traits are thus harder to optimise by only selecting on the
phenotypic performance, as this performance is a bad indicator of the genetic
potential of the individual.

Quantitative trait breeding is nothing new, and has been performed for
decades, but without the knowledge of the genetic constellation of a plant or
animal. Crops with a high yield have always been selected above crops with
a lower yield and farmers have also been aware that beneficial properties of
plants can be passed on to their progeny. This type of phenotypic selection
was commonly used to achieve a high-quality pure line. In animal breeding
this led to intense inbreeding, not only due to difficulties in transportation,
but mainly due to breeding prize males with their daughters and granddaugh-
ters in search of even better performing progeny. However, these inbred
lines often grew sterile, which was only fully understood when Mendelian
inheritance became a wide-known concept. To counter this decrease in

14



§2.1. A short history of genomic prediction

fertility, the inbred lines were crossed with other inbred lines, to develop
a new crossbreed. Finally, this resulted in a constant cycle of inbreeding
in search of high-quality lines and crossbreeding for avoiding degenerative
properties. First improvements in plant breeding originate from the late
18th century when intensive and systematic investigations were performed
with hybrid plants [2]. From these early studies, it was learned that in
nature, self-pollination was generally avoided in order to take advantage
of crossbreeding. This led to a quote from Charles Darwin, stating in his
book Cross and Self Fertilization in the Vegetable Kingdom published in
1876: “the first and most important conclusion which may be drawn from
the observations given in this volume, is that cross-fertilization is generally
beneficial and self-fertilization injurious.” Therefore, seeds for future genera-
tions came from open-pollinated cultivars, which resulted in a mixture of
many different hybrids.

George Shull was one of the first scientists who made use of this knowledge
to come up with enhanced breeding schemes for creating hybrid maize lines.
He did this by using only pure inbred lines in separate fields, so these
inbred lines could still be selected on their performance. But in one of his
landmark papers, Shull also recognized that selfing towards homozygosity
leads to inbreeding depression and that these inbred lines should be crossed to
produce the best single crosses [3]. His findings led to the rapid introduction
of hybrid maize in corn farms in the USA from the 1930s. At first double-
cross maize hybrids were used, which are the progeny of the crossing of
two single crosses, because they enabled the economic production of hybrid
seed. However, double crosses are less uniform than single crosses, because
a single cross is the result of crossing two pure lines that are homozygous
in most alleles and so single crosses of the same pure lines will have almost
the exact same genotypes. As double crosses are the result of crossing two
single crosses that are likely to be heterozygous in some alleles, segregation
occurs and so double crosses of the same single crosses can have varying
genotypes. This of course makes it harder to predict the performance of
these double crosses as they combine the properties of 4 inbred lines. Their
introduction already increased grain yields significantly, but when single
crosses became available in the 1960s due to the availability of new inbreds
with higher seed yields, grain yield increased with an impressive rate of 0.129
t/ha per year. As a result, current maize hybrids have a yield that is 5 times
higher than their prehybrid ancestors [4]. Nonetheless, food demands keep
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Figure 2.1: Five year moving average of the grain yield in the USA. Source [5]

on rising due to an ever increasing human population and thus even better
performing hybrids are required. Therefore, plant breeders, but also animal
breeders, make use of advanced statistical models and genetical information
to constantly improve the production yield of their crop.

Statistics have always been of great help to animal and plant breeders, but
while the latter focused on experimental design and analysis of trial data,
the former were more interested in predicting breeding values for candidates
of selection. The reason for this distinction in interest is obvious. First,
reproduction of plants is faster and more numerous than reproduction of
domestic animals, resulting in more and faster data acquisition. Secondly,
testing of plants is a lot easier as inbred lines exist and as such these inbred
lines and their single crosses can be used as checks in multiple environments to
estimate the environmental impact on the agronomic performance. Therefore,
plant breeders mainly relied on the outcome of multiple-environment trials
to select the lines with a better performance. In animal breeding, data
acquisition is a lot harder and it should not come as a surprise that especially
to dairy cattle breeding, statistics has always made important contributions.
The breeding of dairy cattle is confronted with the problem that performance
can only be deduced directly for female cows, while the breeding value of
male sires can only be estimated from the performance of their progeny.
This is very time consuming, since breeders need to wait until the progeny is
fully grown to estimate the breeding value of the sire. Furthermore, the data

16



§2.1. A short history of genomic prediction

is usually very unbalanced since only the bulls with the best progeny are
used further on in the breeding process. Therefore, from the beginning of
the 20th century, statistical models were applied to make use of information
of relatives and to deal with the unbalancedness of the data.

Although it was originally conceived for studying human genetic variability,
Fisher’s infinitesimal model, stating that observations are a result of a large
number of genetic additive factors and some residual, still is the statistical
genetic point of departure for estimating breeding values in dairy cattle [6].
But the biggest contribution to the routine use of statistical models in
animal breeding undoubtedly came from Henderson. He introduced linear
mixed models in animal breeding, together with different methods to estimate
variance components used in these models [7]. Most importantly, he extended
greatly the use of matrix notation, leading to the still widely-used mixed
model equations, which yield as solution the best linear unbiased predictions
(BLUP) of the effects in a linear mixed model |8, 9]. Initially, genetic effects
were modelled by assuming that each individual had a different genetic value
and correlations between these individual effects were based on the pedigree
structure. However, the rise of DNA sequencing starting from the 1970s,
made it possible to also include information from genetic markers.

Genetic markers are identifiable variations in the genotype that can consist
of a long or short DNA sequence and in animal breeding they were quickly
used to investigate inheritance of quantitative traits [I0]. At the end of
the eighties, the linear mixed models as introduced by Henderson were
transformed to enable the inclusion of information coming from these genetic
markers [I1, 12]. In practice, an effect was attributed to the genetic markers
instead of attributing a single genetic effect to an individual. It marked
the start of so-called marker-assisted selection, where information about the
pedigree and of genetic markers were combined to estimate the agronomic
potential of plants and mainly animals. Although it was predicted to yield
8 to 38 % of genetic gain, the usefulness of the sparse genetic markers is
questionable when traits are controlled by a large number of loci and a
population with a high genetic variability is under study [13].

The new millennium came with some new opportunities. Next-generation
sequencing methods were implemented in commercial DNA sequencers,
enabling genotyping across the whole genome with a dense marker map.
The landmark paper by Meuwissen et al. from 2001 introduced the concept
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of genomewide selection using information of genetic markers across the
entire genome for the prediction of breeding values [14]. This paper clearly
showed that using the BLUP estimation procedure with all marker effects
included outperforms the least squares regression technique, which first
has to preselect the informative markers. Moreover, the choice of a prior
distribution for the genetic marker effects did not have a significant impact
on the accuracy of the predicted breeding values. Therefore, it was a first
hint that the normal assumption in the BLUP methodology, leading to the
linear mixed model equations, is not a limiting factor. Especially because
BLUP is far less computer intensive than other Bayesian methods, it can be
considered as a viable method for estimating genetic marker effects.

Continuous improvements in genotyping led to the availability of more than
50,000 genetic markers for dairy cattle by 2008, implemented in a commercial
DNA sequencer, the Illumina BovineSNP50 BeadChip [15]. These markers
are single nucleotide polymorphisms (SNPs), which are defined as variations
of the DNA at a single nucleotide that are common within a given population.
They are very practical in use as they mostly only have two alleles, i.e. only
two nucleotides are possible at the specific locus of the SNP. Therefore, SNPs
are mostly presented as a binary code where 0 stands for the most frequent
allele and 1 stands for the least frequent allele. Combining SNP codings for
the maternal and paternal allele is performed by the summation of the binary
code of the two chromosomes. As such 0 stands for homozygosity for the least
frequent allele, 1 stands for heterozygosity and 2 stands for homozygosity
for the most frequent allele. As the development of the BovineSNP50 assay
was a collaboration with the US department of agriculture (USDA), the
introduction of this large amount of SNP marker information in a BLUP
estimation of the breeding values was also achieved by them [16]. This
information was introduced by deriving relationships between individuals
based on their SNP genotypes instead of using pedigree information as was
already suggested in 1997 by Nejati-Javaremi et al. [I7]. Although BLUP
estimations resulted in fairly good estimates of the breeding values, several
approaches were put forward, assuming a different distribution of the genetic
marker effects [I8] [19] 20]. For some data sets these more advanced methods
resulted in a slightly higher prediction accuracy of the breeding values, but
many studies also showed that the gain in performance was only very little
compared to BLUP [21], 22, 23] 24]. In these studies and also further on in
this thesis performance is quantified as the Pearson correlation between the
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estimated values and the true values. This measure is commonly used in
breeding applications as a linear correlation between true breeding values
and estimated breeding values is considered important since breeders want
to select the best performing individuals over worse performing individuals.
Because a non-normal distribution of the marker effects has not shown to
improve the performance of the predictive models, this dissertation will only
focus on the BLUP methodology, applied to large-scale data sets.

Even though these methods mostly found their origin in animal breeding and
more specifically in dairy cattle breeding, the plant breeding community has
since the 1990s started to use the same methods to predict the performance of
new hybrid breeds [25] 26]. But for plants there is an additional difficulty in
the fact that the performance of plants is heavily influenced by environmental
conditions. For animals this is of minor importance as environmental
conditions are mostly under the control of the breeder, while plants are
impacted by the climate, soil properties and fertilization. Not all plants
behave equally under these varying environmental conditions, e.g. some
families of plants will thrive better under sunny conditions, while others grow
better under rainy conditions. Such effects are modelled by interactions
between the genotype and the environment, so-called GXE effects [27].
The increased use of genetic markers for genotyping plants has caused the
adaptation of the models used in animal breeding by introducing marker-
by-environment interaction effects [28], 29, 30, [31]. This can lead to a huge
increase in computational resources needed for analysis of the data and due
to the never-ending growth of such data, the computational challenge for
analysing such data is a hot topic.

2.2. COMPUTATIONAL ASPECTS

From the beginning of the use of linear mixed models and the BLUP
estimation procedure, some computational aspects have been a challenge
and /or limiting factor. Henderson already proposed 3 methods for estimating
variance components in linear mixed models [7]. The method with the most
satisfactory results had as a downside that it was not always computationally
feasible and the other two were examples of balancing between simplicity
and accuracy. Computational aspects were also one of the reasons why
Henderson transformed the BLUP estimation into solving a matrix equation.
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The BLUP estimation procedure involves the inversion of the covariance
matrix of the observations, which can become a costly and difficult operation.
This was certainly the case in times when a personal computer was not yet
available [9].

With the rise of the microprocessor in the 1970s and 1980s, applicability
of the BLUP procedure increased to ever growing data sets. However, the
collection of data was still faster than Moore’s law [32], and thus specialized
algorithms had to be applied for enabling the analysis of the data. As
Henderson already had problems calculating the variance components, this
still was the bottleneck for the BLUP methodology. There were different
algorithms available for estimating the variance components, but they all
had in common that they required the inversion of the coefficient matrix
of the mixed model equations. As these coefficient matrices were mostly
sparse, i.e. contained a lot of zeros, efficiency of the computer algorithms
could be optimized by exploiting this sparsity [33, B34]. Even though a
“supercomputer" was already used by Misztal, very large problems still took
too much time to be evaluated [34].

The application of genetic markers in genomic prediction led to new com-
putational problems. The replacement of a single genetic effect attributed
to the genetic merit of an individual by a summation of the genetic marker
effects resulted in a densely filled coefficient matrix of the mixed model
equations, restricting the use of a sparse matrix formalism. Meuwissen et al.
already stumbled upon this problem by the fact that the coefficient matrix
did no longer fit in the RAM memory of his Pentium500 PC and he needed to
use an iterative technique, which increased the computer time quadratically
with the number of effects to be estimated [14]. Luckily, computing power
increased dramatically in the following years, but the number of genetic
markers also increased with gigantic leaps. It made Legarra and Misztal
think about different options to overcome the demand for considerable com-
puting resources in time as well as in storage and they proposed several
strategies to efficiently solve the mixed model equations [35]. As a conclusion,
they proposed to use iterative techniques such as preconditioned conjugate
gradient (PCG), which do not require the set-up of the mixed model equa-
tions, unless when the number of observations should increase dramatically.
The PCG method’s complexity is in fact proportional to the number of
observations and therefore, a direct solution using Cholesky decomposition
becomes a viable alternative, since this method’s complexity only depends
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on the number of effects included in the linear mixed model.

Due to the availability of even larger SNP arrays, VanRaden showed that an
equivalent model exists where again individual genetic effects are modelled
for which a relationship matrix is deduced from the genetic marker informa-
tion [16]. The downside of this method, was the need for inversion of this
genomic relationship matrix, which could be unfeasible when this matrix
is singular. Such a framework paved the way for a method where genomic
selection could be improved by combining the information of the pedigree,
genetic markers and phenotypic information of non-genotyped individu-
als [36]. Nonetheless, it was already acknowledged that this algorithm was
limited in the number of genotyped individuals to be included. As such most
studies concentrated on data sets with low numbers of genotyped individuals
(< 10,000) [37,38]. Advances in the field of genomic prediction were also ori-
ented towards larger SNP assays, while the number of genotyped individuals
included in the analyses did not increase significantly [39] 40].

However, it had already been shown theoretically and experimentally that
for a major improvement in prediction accuracy of the breeding values, the
number of genotyped individuals included in the analysis should increase
dramatically, especially when the trait under study has a low heritability |21,
41]. The challenges to be met with such large-scale data sets were pointed out
by Cole, stating that there is a need to be able to process and analyze large-
scale data sets using high-performance computing techniques [42].

The research in this dissertation is situated in that specific field. Namely,
applying high performance computing techniques to enable the analysis of
large-scale data sets for improving the accuracy of the prediction of breeding
values of animals in plants in the context of genomic selection.
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3 LINEAR MIXED MODELS IN BREEDING
APPLICATIONS

3.1. INTRODUCTION

In this chapter, a summary of the properties of a linear mixed model is given,
together with an extensive derivation of the methods used further on for
estimating the fixed and random effects. The difference between these two
types of effects that make up a linear mixed model are explained further on.
For a more thorough description of linear mixed models, their history and
different estimation procedures, the book “Variance Components” by Shayle
R. Searle is highly recommended [43]. Not only was Searle an expert in
linear and mixed models, he was also a PhD student of Charles Henderson,
making him familiar with animal breeding and as such many of the examples
in his book come from animal breeding experiments.

A linear mixed model is an extension of a linear model where the n observa-
tions y are a linear function of k fixed effects making up the vector 3 and a
vector e of n residuals:

y=XB+e,

where X is the incidence matrix for the effects, which is in this thesis always
fixed and contains no random variables, and thus var(y) = var(e) = V.
The residual e is defined as y — E(y) and as such it holds that E(e) = 0,.
The Generalized Least Squares Estimator (GLSE) for the effects, which is
unbiased, consistent and efficient, is:

GLSE(8) = (X'V'X) ' X'V ly.

This estimator is not always useful in practice, because the covariance matrix
V is mostly not known, and thus Ordinary Least Squares (OLS), ignoring
the covariance matrix, is still commonly used, which is also computationally
faster. Nonetheless, iterative solutions for obtaining the GLSE exist when
V is not known, but when V is incorrectly estimated, these methods may
result in an estimator that is no longer efficient. We will not go into details
about comparing these methods as we mainly introduce GLSE here as an
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introduction to linear mixed models, where the GLSE for the fixed effects
can be obtained in a more elegant way.

Fixed effects models have already proven their value in many different areas,
for instance, in clinical trials where k different treatments for reducing blood
pressure are compared against each other. The difference in blood pressure
for each patient is the observation vector y, while the vector 3 consists of the
effects of the k different treatments. However, this model can be extended
when the clinical trial is performed over a number of randomly chosen clinics,
but the different treatments are of course to be used globally and not be
limited to the clinics where the treatments were tested. The effects of the
clinics are then modelled as random effects, since we only possess of data
coming from a random sample of the much larger population of clinics where
the treatments should be applied. This is, therefore, a good example of a
linear mixed model, where fixed as well as random effects are modelled. A
general form of this kind of models is:

y=XB8+Zu+e,

where u is the vector of [ random effects and Z is the incidence matrix
for these random effects. In its most general form, the random effects
may be considered as drawn from any kind of distribution with different
possibilities for the covariance structure, but commonly the random effects
have zero mean and a covariance structure that depends on only a few
variance components. This can be summarized as:

E() =0,  var(u) = G(¢),

where E represents expectation, ¢ is the vector of variance components on
which the covariance structure relies and 0; is the null vector of length I.
Moreover, a universally adopted assumption is the fact that the residuals
and the random effects are not correlated and statistically independent and
thus

cov(u,e) = Ojxp ,

with 0;y,, a matrix filled with zeros and as dimensions the number of random
effects [ and the number of observations n. As such, the entire covariance
structure for the observations, with var(e) = R(«) and « a vector of variance
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components on which the variance of e relies, has the form:

var(y) = ZG(¢)Z' + R(7).

In the clinical trial example, we modelled the clinics as random effects,
because the treatments were only tested in a random sample of clinics,
and the results needed to be inferred towards a larger population of clinics.
Nonetheless, if we were interested in the specific effect of the clinics where
the treatments were tested and the treatments would only be applied in
those clinics, it would be possible to model them as fixed effects. It is thus
not always very clear when to model an effect as random or fixed. There are
two questions that could be posed to discriminate between the two:

e Are the different effects a sample from a larger population and do we
want to extend the results of the analysis towards the entire population?

e Do we possess of prior information, indicating that the realised values
of the effects come from a probability distribution?

If the answer is yes to one of these two questions, it might be wise to model
the effects as random effects instead of fixed effects. Sometimes, as in the
case of the clinical trial, it is much simpler to make the distinction, as we are
mostly only interested in the effect of the treatment and not specifically in
the effect of a certain clinic. The clinics are, therefore, modelled as random
effects because it enables us to distinguish variance due to clinical effects
from the residual variance due to the difference in reaction to a treatment by
the different patients. However, apart from being interested in the variation
due to the random effects, it may be required to possess of an estimation of
the realised value for the random effect. Suppose that the random sample
of clinics should also be evaluated on their performance, for instance to
determine where procedures were not followed in accordance with best
practices, then, a ranking of the different clinics is required. Note that such
an estimation is actually called a prediction of the random effect, while fixed
effects are estimated. It should now be clear that the distinction between
fixed or random effects does not depend on whether we want to know the
realised values of that effect, but is determined by the assumption that
the realised values of that effect are sampled randomly from a probability
distribution. The prediction of these random effects can be done in a couple
of ways, but we will focus here on the Best Linear Unbiased Prediction
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(BLUP) as will be discussed in Section

In dairy cattle breeding, linear mixed models where first used to analyse the
milk production records of a herd of cows. As breeders were mainly interested
in the breeding value of a sire, the milk production records of the progeny
of a sire were analysed as having an effect of the sire and of the herd [9].
Both can be considered as random effects, because they can be treated as
random samples of a larger population. At first the covariance structure was
kept very simple by modelling the covariance matrix as a constant diagonal
matrix. However, Henderson quickly saw hail in introducing information
about the relationships between the animals as a correlation between their
genetic effects [44]. A commonly used model can then be written as:

y=XB+Zis+Zoa+e, (3.1)
with
var(s) = 028,
var(a) = o2A

a is a vector with random effects representing genetic merit of an animal,
s is a vector representing other random effects (e.g. herd effects), S is
known and nonsingular and A represents the relationship matrix. This
relationship matrix is symmetric, with diagonal elements 1 + f;, where f; is
the inbreeding coefficient of animal 7 and off-diagonal elements depend on
the relationship between the different animals, derived from the pedigree,
and their inbreeding coefficients [45].

Table 3.1: Example of a population structure

Individual Parents Herd

unknown

unknown

1 and unknown
1 and 2

3 and 4

1 and 4

DD UL R W N
W W NN =

As an example, let’s look at a population with a structure as defined in
Table [3:1] A simple way of calculating the numerator relationship matrix
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A is using the recursive formula stating that the coefficient of correlation
between two individuals is half of the sum of the correlation coefficients of
the parents of one of the individuals with the other individual. Moreover,
the inbreeding coefficient is half of the coefficient of correlation between the
two parents of the individual. In this way, the elements of the numerator
relationship matrix A can be calculated from the upper left corner to the
lower right corner:

1 0 05 05 05 075 ]
O 1 0 05 02 025
05 0 1 025 0625 0375
05 05 025 1 0625 0.75
0.5 025 0.625 0.625 1.125 0.5625
0.75 025 0375 075 05625 1.25 |

As there is only one record available per individual, Zs is equal to the
identity matrix of dimension 6. The covariance structure of the herd effects
is usually assumed to be diagonal and as such S is the identity matrix of
dimension 3 (= number of herds). The incidence matrix Z; is then defined
as

S O O = o=
o O = Rk O O
_ =0 O O O

0

The total covariance matrix V of the observations y will then have the
following form:

V =02Z1Z) +02A+0216

o2+02+02 o? 0.502 0.502 0.502 0.7502
o? o2+02 402 0 0.502 0.2502 0.2502
0.502 0 o02+02+02 02+40.2502 0.62502 0.37502
- 0.502 0.502 02+40.2502 02+402+02 0.62502 0.7502
0.502 0.2502 0.62502 0.62502  02+1.12502+02 02+0.562502
| 0.7507 0.2502 0.37502 0.7502 03+0.56250; 02 +1.250;+0¢ |
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With the advent of commercial DNA sequencing, this kind of model had
to change to include information of genetic markers. Meuwissen et al.
thus transformed the linear mixed model in Eq. by replacing the
random effect of genetic merit by adding the different effects of the genetic
markers [I4]. This resulted in the following model, omitting other random
effects:

y=XB8+Zu+e,

with u the vector of genetic marker effects and Z their incidence matrix. In
this way the relationship matrix was no longer of use, because relationships
between individuals were naturally incorporated due to the fact that more
related individuals shared more of the same genetic markers.

Until now it was left in the middle what kind of distributions were assumed
for the random effects. Historically, most random effects were assumed
normally distributed, with a covariance structure most suited to the setting
where the model was used. Meuwissen et al. considered a few options
for this covariance structure, assuming no correlations between the genetic
marker effects. One of the options is a homoscedastic variance for all marker
effects, leading to var(u) = o2I. Another option was a varying variance for
each marker effect, sampled from a scaled inverted chi-square distribution,
with the possibility that certain marker effects have zero variance and
thus do not contribute to the trait. Such assumptions are equivalent to
assuming that the part of the markers that contribute to the trait are
sampled from a student t-distribution. These, and other so-called bayesian
methods were compared against the normality assumption with little or
no gain in prediction accuracy for the breeding values [19, 46]. Also, as
will be shown later on, the assumption of normality leads to a predictor
of the random effects u that is linear in y and such prediction methods
lend themselves better to be scaled up with the use of high performance
computing techniques. Therefore, from now on, random effects will be
assumed normally distributed, with a covariance structure only depending

on a few variance components.
The remainder of this chapter will be organised as follows:

e Section [3.2will derive the best linear unbiased predictor for the random
effects in a linear mixed model, under the assumption of normality of
the random effects.

e Section 3.3 will give a derivation of the Mixed Model equations and
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prove that the solution of these equations yields the best linear unbiased
estimators/predictors for the fixed and random effects.

e Section [3.4] will review the computational aspects of solving these
mixed model equations in a breeding perspective and will comment
on some methods that have already been applied.

3.2. BEST LINEAR UNBIASED PREDICTION (BLUP)

The Best Linear Unbiased Predictors (BLUPs) for the random effects in a
linear mixed model have first been found by Henderson in 1963, but were not
called this way until 1973 [8] [47]. The prediction methodology of the BLUP
for the random effects in a linear mixed model actually involves the Best
Linear Unbiased Estimation (BLUE) of the fixed effects. Strictly speaking,
the distinction between the two is that fixed effects are estimated, while
an estimate of a realised value of a random effect is called a prediction.
Nonetheless, BLUP is globally assumed as incorporating BLUE, because a
BLUP of random effects requires BLUE of the fixed effects. The derivation
presented here is slightly different than the original derivation of Henderson,
as he did not explicitly use the fact that the random effects are normally
distributed, but rather used Lagrangian multipliers to minimise the mean
squared error of prediction. Note that the ending P of BLUP can stand
for prediction as well as predictor, just as the ending E in BLUE can mean
estimate, estimator or estimation depending on the context.

Our derivation starts with the following assumptions:
y=XB8+Zu+e,
G O
o, ,
e 0 R

y ~N(XB,V),
V =72ZGZ +R, (3.2)

with

where we have left out the dependence of the covariance matrices on the
variance component vectors ¢ and 7, since in this chapter we will assume
that these are known and G, R and V are constant. The best estimator for
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estimating a parameter usually means minimising the variance, but in this
case the best predictor for u is defined as the predictor that minimises the
mean squared error of prediction. The mean squared error for the prediction
4 of a single random variable u is:

Bl(u— 7] = [ (@ w2 (uy)dydu,

where f(u,y) is the joint density function of the random variables U and Y
at the point (u,y). For a vector of random variables u, the above can be

extended to:
E[(f — u)/ A (i — u)] = / / (- v)A(d - v)f(v,y)dydv,  (3.3)

where A is any positive definite symmetric matrix. The best predictor which
minimises Eq. (3.3)) is known to be the conditional expectation of u given
y:

best predictor : 1 = E(uly),

This is verified as follows, by denoting ug = E(uly):
E[(@—u)A(a—u)]=E[(t—up+uy—u)A(ta—ug+up — u)
=E[(0 —up) A(a — up)] + 2E[(q — up)'A(ug — u)]
+ E[(ug — u)’A(ug — u)].

If we look a bit closer to the second term, it can be seen that:

E[(@ - ug)'A(up — u)] = By [E,[(@ — ug)' A(ug — u)ly]]

Ey
E,[(@ — o)’ A(ug — up)] = 0,

because only u is not fixed given y and E,(uly) = up. As such, the mean
squared error is composed of 2 terms, but we want to minimise it with
respect to u and the last term does not depend on u. Because A is a
positive definite matrix, (@ — ug)’A (@ — ug) is always positive except when
(W—uyp) is the null vector 0;. Therefore, the mean squared error is minimised
by choosing & = uy = E(uly).

Given the assumptions in Eq. (3.2), an expression for E(uly) will be derived
based on the conditional probability density function f(uly). Bayes theorem

30



§3.2. Best Linear Unbiased Prediction (BLUP)

states that the conditional density of u given y can be found as:

flu,y)
fly)

The marginal density function of y ~ N (X3, V) is written more explicitly

fluly) =

(3.4)

- exp (— 1y — XB)YV-1(y — X))
fly) = : (27T)n/2’V’1/2 )

with n the number of elements in vector y. The joint probability density

function of u and y is defined as:

(] e V1)

with V as defined in (3.2)) and the exact form of the joint probability density
function of u and y can be written as:

- (_% W woxe]E —uXmD
fluy) = (27)(n+D /2[5 |1/2 ’ (3.5)

G GZ
> =
727G V

and [ is equal to the number of elements in vector u. The determinant of

where

such a block matrix, assuming V is invertible, can be found as:

2| =|V||G-GZ'V'ZG|, (3.6)
while the inversion of X in a blockwise fashion is:
-1
s-1_ G GZ
7ZG V
B %% ~-WGZ'V-1 (37)
- |-VT1ZGW V14 VIIZGWGZ' V|’ '

with
W =(G-GZV'ZG)™.
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For the division of f(u,y) by f(y), let us first look at the denominators
of both probability density functions. Using the result of Eq. (3.6)), the
denominator of f(uly) is:

(27T)("H)/2‘2’1/2

— (9 /2IW Y2

The numerator is a quotient of two exponential functions which amounts to
the subtraction of the arguments of these exponential functions:

. f(uly) _ 1| w | m
1g<(27r)*l/2|W|*1/2> 2 |:y—X,E}] 3 |:y_XB]

- S -XBYV iy - Xp)

(WWu - (y - XB) V™ '1ZGWu

N | =

—u'WGZ'Vl(y - XB) + (y - XB)'V Hy — XB)
+(y —XB)VIZGWGZ'V~(y — X3)
~(y = XB)'V 'y - Xp))

- _ % <(u —GZ'V~l(y - XB)) Wu

—(u—GZ'V~(y - XB)) WZGV~!(y — xa))

_ % (u—GZ'V~l(y —XB)) W (u— GZ'V~(y — X3)) .

In the second step we made use of the explicit formula for the inverse of X
as shown in Eq. (3.7). The conditional probability density function of u
given y is thus:

exp (—% (u - GZV-i(y - Xﬁ))/W (u -GZ'Vl(y - XB)))
(2m) /2 W1/ ’

f(uly) =
which can be summarised as
uly ~N (GZ'V iy - XB8),W ).
As such, the best predictor u of u is:
u=E(uly) = GZ'V l(y - XB).

If we want this predictor to be linear in y and unbiased, a linear and unbiased
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estimator of X3 is required. Such an estimator is already known as the
GLSE of X3. The best linear unbiased estimators/predictors of respectively
B3 and u can thus be summarised as:

BLUE() = 8 = (X'V'X) ' X'V-ly (3.8)
BLUP(u) == GZ'V~l(y — X3). (3.9)
Although these estimators are in theory unbiased, a bad estimation of
the covariance structure V, might result in an estimator/predictor that

is no longer unbiased. Therefore, it is essential to estimate the variance

components as correct as possible based on the entire data set.

3.3. MixXeEp MoDEL EQUATIONS (MME)

Before it was shown that Eq. and yield the estimators/predictors
that minimise the mean squared error and are unbiased, Henderson already
found these estimators/predictors by searching for the maximum likelihood
estimates for the fixed effects of a linear mixed model [48]. The system of
equations leading to these estimators/predictors was derived by maximising
the joint density function of y and u, but the form of this joint density
function was slightly different than the one we proposed in Eq. . An
equivalent formula for the joint density function can be found by using the
Bayes theorem of Eq. in a different form:

fly,u) = f(yla)f(u),

with f(u) the marginal density function of u,

1./—1
exp (—5u'G 'u
(2m) |G/

and f(y|u) is the conditional density function of y given u, recalling that

var(e) = R

exp (—%(y —XB—-Zu)/R Yy - X8 — Zu)) .

f(y[ua) = (27)"/2|R|1/2
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The joint density function can then be written as:

o (-} ((y - X8~ Zu/Ry ~ X8~ 7w + wG )

fly,u) = (2m) (/2[R [1/2|G[1/2

The attentive reader will notify the equality between this expression and
Eq. , which can be derived using some algebraic tricks. Maximisation
of this joint density function with respect to 3 and u is done by taking the
partial derivatives with respect to these variables of f(y,u),

W(ayﬁm) = (X'R™'y - X'R'XB - X'R™'Zu) f(y,u),
{ﬁggm =(ZR 'y -ZR7'XB - ZR 'Zu+ G 'u) f(y,u),

and equating these partial derivatives to zero. Denoting the solutions for 3
and u by 8 and 1, yields the following equations:

X'R'X3+X'R'Za=XRly, (3.10)
ZR'XB+ (ZR'Z+G Hu=ZRy. (3.11)

These are known as the mixed model equations (MME) and can be written

Bl _|[XR7y
-l o

more compactly as

X'R'X X'R'Z
ZR'X ZR'Z+G™!

It will now be shown that the solutions of these mixed model equations are
exactly the same as the BLUE for 8 and the BLUP for u. Therefore, we

will first rewrite Eq. as
a=(ZR'Z+G H) 'ZR Yy — XP3) (3.13)
and substitute this in Eq.
X' (R!'-R1'Z(ZR'Z+G H'ZR ) (XB-y)=0. (3.14)
From the blockwise inversion of a matrix where both diagonal blocks are
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invertible, we can deduce that
(A-BD!'C)'=A"1'+ A 'B(D-CA'B)"'CcA!
and substituting D by —D gives us
(A+BD!IC)'=A"'1-A"'B(D+CA'B)"!CcA!.
Using this result in Eq. transforms this equation into
X'(R+ZGZ) Y(XB—-y)=0.
With V =R + ZGZ' as in Eq. (3.2)), the solution of this equation is:
B=XVIX)'X'Vly,
which is exactly the BLUE for 3 as in Eq. .

To find the solution for 1, we will again use a result from the blockwise
inversion of a matrix where both diagonal blocks are invertible:

(A-BD'C)"'BD!=A"'B(D-CA'B)"!
and again when substituting D by —D:
(A+BD!C)"'BD'=A"'B(D+CA'B)!.

This result can be applied on Eq. (3.11)) as formatted in Eq. (3.13)):

a=(ZR'Z+ G H'ZR(y — XB)
—GZ'(R + ZGZ') Ny — XJ)
=GZ'V iy - Xp),

leading to the BLUP equation as in Eq. . The mixed model equations
are thus a practical tool for finding BLUP and BLUE for the random and
fixed effects in a linear mixed model when the covariance matrices are
known. However, the latter is commonly not true and as already mentioned,
the covariance matrices mostly depend on some variance components that
should be estimated based on the data. This is the subject of the next
chapter, where especially Restricted Maximum Likelihood will be discussed
for estimating variance components.
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3.4. COMPUTATIONAL ASPECTS OF BREEDING AP-
PLICATIONS

The greatest accomplishment of the mixed model equations is the fact that
the covariance matrix V of y is no longer needed to be calculated and
inverted to find BLUE and BLUP of B and u. Only the inversion of G and
R is required, which were commonly assumed to be diagonal and thus easily
invertible. However, problems arose when breeders wanted to incorporate
pedigree information by inserting a relationship matrix as covariance matrix
for the random genetic effects. Such a relationship matrix was usually not
diagonal and at a time when no personal computers were yet available,
the calculation of an inverse of a non-diagonal matrix was a tedious and
time-consuming job. As the mixed model equations needed the inverse of
the covariance matrix of the genetic effects, Henderson in 1976 came up with
an inventive method to directly construct the inverse of the relationship
matrix, without needing to explicitly compute the relationship matrix [45].
This method was extremely useful when the base population was unrelated,
non-inbred and not selected. If these assumptions were not fulfilled, it could
lead to a singular relationship matrix, making it impossible to calculate
the inverse of the relationship matrix. A solution for such a problem was
proposed by Harville, leading to a new symmetric system, without the need
for inverting G [49]:

X'R™1X X'R1ZG

GZR'X GZR 'ZG+G| |d GZR 'y

ﬂ] - [X/R_ly] , (3.15)

where the BLUP for the original random effects u are found as a1 = Gd.
An important remark here is that due to singularity of G, the coefficient
matrix of these transformed mixed model equations is also singular and
thus the solution for d is not unique, but & = Gd is nonetheless a unique
solution [49].

The use of SNP marker effects in breeding applications dramatically increased
the number of random effects included in the model and thus also the
dimensionality of the mixed model equations. Also, when using marker
effects as random effects, the covariance matrix for the random effects was
mainly assumed to be a constant diagonal matrix of the form G = o2I
and thus initially, the problems with inverting G were no longer applicable.
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However, larger problems that did not make use of marker effects could
benefit from the fact that Z was a very sparse matrix, because the random
effects were genetic effects specific for a certain animal and there were
commonly only a few records of the same animal in a data set. Furthermore,
the relationship matrix, which was used as the covariance matrix G in these
models was mostly also sparse in large data sets, due to the fact that in large
populations many animals are unrelated. This led to a sparse coefficient
matrix that can be stored very efficiently and for which iterative techniques
can be optimised to solve the mixed model equations very rapidly.

Although in genomic prediction with random SNP marker effects, the co-
variance matrix G is also sparse, the incidence matrix Z is not. Even if
the allele coding was chosen such that homozygosity in the most frequent
allele was coded as a zero, the multplication Z'R™1'Z always results in an
almost completely dense coefficient matrix. In fact, the common assumption
is R = 02T and thus the only zero elements in Z'Z will be due to alleles that
are in complete linkage disequilibrium. The introduction of SNP marker
effects as random effects thus leads to higher memory requirements if the
coefficient matrix should be stored explicitly. Legarra compared several
strategies to deal with such mixed model equations and came to the conclu-
sion that iterative techniques that do not require the complete storage of the
coefficient matrix, such as preconditioned conjugate gradient (PCG) [50] and
Gauss-Seidel iterations [51], are preferred for solving the mixed model equa-
tions [35]. However, these iterative techniques, also known as iteration on
data methods, may have problems with numerical stability and convergence
when the coefficient matrix is ill-conditioned. An important side note is the
fact that the time to solve for these iterative techniques is proportional to
the number of records, just as the memory requirements. On the other hand,
for a direct solution of such a matrix equation, for example using Cholesky
decomposition, the time to solve and the memory requirements are constant
for a given number of effects. The iteration on data methods also do not
set up the entire mixed model equations, but process the incidence matrices
line per line from file each iteration [52], which might result in an important
increase in computing time for large-scale data sets.

To reduce numerical problems with PCG or GS when using marker data ex-
plicitly as random effects, VanRaden used the SNP marker data to construct
a so-called genomic relationship matrix which could be used instead of the
relationship matrix based on the pedigree as the covariance matrix G [16].

37



CHAPTER 3. LINEAR MIXED MODELS IN BREEDING APPLICATIONS

However, this genomic relationship matrix could be singular, again leading
to the use of the transformed Eq. , or a weighted mean of the pedi-
gree and genomic relationship matrix could be chosen to avoid singularity.
But the creation of these genomic relationship matrices is quite costly and
quadratically proportional to the number of genotyped individuals included.
Even dedicated implementations needed about three hours to construct a
genomic relationship matrix for 30,000 individuals, genotyped with 40,000
markers [53].

It was already mentioned earlier on that some widely used assumptions
are:
var(e) = R = I, var(u) = G = oI,

leading to the simplified mixed model equations

X'X X7 Bl Xy
ZX 77+ %1 |y|  |zy|’

which can also be written as

(W'W + A’D)a = W'y,
with
W= [X Z} 7 D— Orxr  Ogxi 7 \2
O I

where I; is a square identity matrix with as dimension the number of
random effects, 0;x; is a zero matrix with as dimension 7 x j, k and [
are resp. the numbers of fixed and random effects. This is very alike
to a ridge regression formulation and therefore, this specific form of the
mixed model equations is mainly referred to as Ridge Regression BLUP
(RR-BLUP) [54]. Piepho reviewed 6 methods to fit this RR-BLUP model
in a computationally efficient way [55]. As a conclusion, the most efficient
method was the one using a spectral decomposition as proposed by Kang et
al. [56]. However, it is almost impossible to extend this model to incorporate
other effects and variances, which makes it impractical for use in realistic
scenarios. Furthermore, this method and most other methods described
by Piepho were tested on data sets where the number of effects is a lot
larger than the number of genotyped individuals, benefiting methods that
use a genomic relationship matrix instead of explicitly modelling the marker
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effects. Nonetheless, due to the ever decreasing cost of genotyping, the
number of genotyped individuals will most probably surpass the number of
SNP markers, making it computationally more efficient to model these SNP
markers explicitly.
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4  VARIANCE COMPONENT ESTIMATION
WITH RESTRICTED MAXIMUM
LIKELIHOOD

4.1. INTRODUCTION

In the previous chapter we have assumed that the covariance matrices of the
random effects and the residuals were known. However, in reality only the
covariance structure is assumed known, but it still depends on some variance
components that need to be estimated based on the data. Again, this chapter
will focus on the specific methods and algorithms that have been chosen as
the most appropriate for this dissertation. Readers with a broader interest
in variance component estimation are recommended to consult the book
“Variance Components” by Searle, which gives a general overview of variance
component estimation procedures from different perspectives [43].

Variance component estimation has always played a major role in quantitative
genetics and some major contributions in this field actually came from solving
problems that had emerged in an animal breeding context. Actually, in 1919
Fisher initiated one of the first methods for variance component estimation
called the analysis of variance method (ANOVA) in his landmark paper
about the analysis of human variability through Mendelian inheritance [6].
The ANOVA method has been widely used from the 1940s and still is
commonly used today, although it is very simple in nature and initially
had some flaws, which needed to be overcome to make it more useful in
practice. The simplicity of the ANOVA method originates from the fact that
it equates the expected values of the variance components to their so-called
sums of squares. If we recall the model used in the previous chapter for
analysing clinical trials, the effect of a single treatment can be inferred from
a simple random effects model

Yij = W+ u; + €45,

with y;; the effect of the treatment on each patient j, u the mean effect of
the treatment, u; the random effect of clinic ¢ and e;; the residual effect

41



CHAPTER 4. VARIANCE COMPONENT ESTIMATION WITH REML

of each patient. When the treatment is applied in a clinics on n patients
per clinic, it is called a balanced model with a classes of the random effects.
Assuming var(u;) = o2, var(e;;) = o2 and all covariances equal to zero, the
ANOVA estimates for the variance components in such a balanced random
effects model can be summarised as:

o7 :a(nl—l) SN (i —5i)?,

i=1 j=1
1 < &2
~2 5o )\2 _ “e
Uu _a _ 1 Zl(yz y) n ) (41)
1=
with
1 & 1 —
vi- = Zlyij and g =— Zlﬂz
j= i=

Of course, many adaptations and extensions of this method have been
studied, but a particularly interesting adaptation was motivated by the
problem in dairy cattle breeding of how to use unbalanced data for variance
component estimation. As can be seen in Eq. the original ANOVA
equations make explicit use of the balancedness of the data by the presence
of n in the denominators. In 1953 Henderson developed 3 methods that were
adaptations of the ANOVA method for using unbalanced data from random or
mixed models for the estimation of the variance components [7]. We will not
go into the details of these methods, but method I is the computationally most
practical method by just using analogous formulas as the ANOVA estimates,
but with denominators that depend on the number of records in each class
of the random effects. Method II is more specifically aimed at mixed models,
because fixed effects are first estimated by their least squares estimates and
the observations are then adjusted for these fixed effects. Subsequently,
Method I is applied on these adjusted observations for the estimation of the
variance components of the random effects. Method III is based on using sums
of squares where the average values in Eq. are replaced by estimated
values for y after fitting a linear model, yielding unbiased estimates and being
the most satisfactory method of all 3. However, Henderson himself already
noted that this method quickly became computationally unfeasible when
the number of different classes for the random effects became high.

Nevertheless, some other weaknesses that are inherent to the ANOVA method
remained unsolved by Henderson. In particular, estimates for the variance
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components could still be negative as can be seen in Eq. (4.1) where 62 can

~2

become negative whenever 7 exceeds 5 Z (7;. — 9..)%2. Another negative

aspect of the ANOVA method is the fact that no prior information about the
distributional properties can be included in the estimation process. These
problems were mainly solved by the introduction of Maximum Likelihood
(ML) estimators for the variance components. It were Hartley and Rao who
developed the methodology for a very wide class of models in 1967 [57].
Although Fisher already derived the method of maximum likelihood in 1922,
it was commonly rejected as an estimation method due to the computational
effort connected to the maximum likelihood estimation [58|. Hartley and
Rao circumvented this problem by applying matrix algebra and advanced
numerical methods to alleviate the computational burden.

The solutions of the maximum likelihood estimation are mostly not available
in a closed analytical form, which means that iterative techniques should
be used to obtain estimates of the variance components. This was one
of the reasons why, initially, ML estimation was not used as widespread
as ANOVA methods, but with the advent of new computing methods
and more powerful computers, the main problems inherent to maximum
likelihood estimation were circumvented and ML became an attractive
variance component estimation procedure. Nonetheless, for balanced data,
maximum likelihood estimators are not equal to ANOVA estimators, which
have the attractive property of being unbiased. Therefore, Patterson and
Thompson considered the maximum likelihood estimation of that part of the
likelihood that was invariant to the fixed effects [59]. This has become known
as restricted or residual maximum likelihood (REML). The computational
burden of REML is identical to that of ML estimation, but REML has the
beneficial property that it takes into account the number of degrees of freedom
used for estimating fixed effects when estimating variance components.
Another advantage is that for balanced data, the REML estimates are equal
to the ANOVA estimates and thus unbiased. Therefore, REML estimation
will be discussed more thoroughly in the following section as it is the preferred
method of estimation, especially for unbalanced data.

In the early days of variance component estimation, the covariance structures
were kept as simple as possible and were mainly considered to be constant
diagonal matrices. However, during the last decades, more complex covari-
ance structures have been used with an ever increasing number of variance
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components to be estimated. The advantage of REML estimation is the fact
that it can be used for any covariance structure and any number of variance
components, but of course the complexity of solving the REML estimation
equations will increase with increasing complexity of the covariance struc-
ture and with a higher number of variance components. Although in the
previous chapter we argued that a simple covariance structure could suffice
for genomic selection, a more general derivation of the REML estimation
procedure will be given in the next section to show its usefulness for more
complex models.

The remainder of this chapter is organised as follows:

e Section [4.2 will derive the REML estimation equations for variance
component estimation in a very general case.

e Section will present an iterative algorithm called the Average Infor-
mation algorithm (AI-REML), which has a convenient computational
way of maximizing the REML likelihood function.

e Section will review the computational aspects of applying the
AI-REML algorithm and will review other commonly used iterative
techniques for maximising the REML likelihood function in a breeding
perspective, while comparing them with the AI-REML algorithm.

In this chapter, many results from linear algebra are used, and some of
the derivations can be found in the Appendix. However, readers who are
interested in the details of these algebraic results are referred to the book
“Matrix algebra from a statistician’s perspective” by Harville [60].

4.2. RESTRICTED MAXIMUM LIKELIHOOD (REML)

The starting point of the derivation of the Restricted Maximum Likelihood
equations is the linear mixed model

y=XB+Zu+e,

where y is a vector of n observations, 3 is the vector of k fixed effects
with incidence matrix X, u is the vector of [ random effects with incidence
matrix Z and e is the vector of n residuals. In the following we will always
assume that X and Z are full of rank, even though this is not a necessary
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condition. The assumptions for the distributions of the random variables

and the residuals can be summarised as follows:

o e [ wln))
e 0 R(¢)

where v and ¢ are vectors of variance components on which the covariance
matrices rely. For the moment, we will make no further assumptions on the
structure of the covariance matrices to keep this derivation as general as
possible. The probability density function of

y ~N(XB,0°V),

with
V = ZG(7)Z + R(9),

can then be written as

exp (=5 (y — XB) V- (y — XB))
(27T0-2)n/2‘v‘1/2

fly)=

The likelihood function for the parameters 3, 02, v and ¢ is exactly this
probability density function:

exp (— 45 (y — XB)' V- (y — XB))
(2mo2)n/2|V |1/2

L=L(B,0%~, dly) =

Maximisation of this likelihood is usually performed by maximising the log-
arithm of the likelihood function, the so-called log-likelihood function

(B, 0%, dly) = log(L)
1
2

(n log(2mc?) + log | V| (4.2)

—

=XV - X))

Maximising in function of 8 will result in a maximum likelihood estimator
for B, which is obtained by taking the derivative of 1(3,02,~, ¢|y) with
respect to B
81(16’0-277>¢‘Y) 1 IxN7—1 In7—1
= —= (X'V - X'V™/X
03 o2 ( y B)
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and equating it to zero, leading to the maximum likelihood estimator for 3,
denoted as 8,
B=XVIX)"IX'v-ly. (4.3)

This estimator is exactly the same as the BLUE from the previous chap-

ter.

Maximising the log-likelihood in Eq. with respect to the variance
components would lead to ML estimators for these variance components.
However, the restricted maximum likelihood (REML) estimators maximise
that part of the likelihood function that is invariant to the fixed effects.
Therefore, linear combinations of elements of y are chosen such that they
are no longer dependent on (3. This was referred to by Harville as an error-
contrast , with zero as its expected value [61]. A set of these error-contrasts
k'y can be found by solving the following equation for k’

E(Ky)=KX3=0.

As this equation should hold for any 3, a general form for k/ can be found
as the solution of

kKX =0,
which can easily be verified to be
kK =c (I, - X(X'X)"'X'),

for any ¢’ and with I,, the identity matrix of dimension n. We can thus find
an infinite number of these error-contrasts, but as we are only interested in
a set of linearly independent error-contrasts, it is first checked how many of
these linearly independent error-contrasts exist.

The matrix T = X(X'X) !X’ is an idempotent matrix, which means that
TT =T:

TT = X(X'X) I X'X(X'X)"' X' = X(X'X)"'X'=T.

Two important properties of idempotent matrices are firstly that if T is an
idempotent matrix, then I — T is also an idempotent matrix; and secondly
that the trace of an idempotent matrix is equal to its rank. Therefore, the
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rank of I,, — X(X’X)~!X’ can be calculated as

rank(I, — X(X'X)"1X') = tr(I, — X(X'X) "X’
= tr(I,) — tr(X(X'X)"1X)
=n —tr(X'X(X'X)™)
=n — tr(I)

=n—=k.

For the last step we have used the property that tr(X(X'X)"!X’) =
tr(X/X(X’X)~!) = tr(Iz). From this result we can conclude that there
are no more than n — k linearly independent vectors k’. If we use such a set
of linearly independent vectors as the rows of a matrix K’, then the REML
equations are based on maximising the likelihood of

K'y ~ N(0,0°K'VK) ,

where K’ has full row rank n — k.

One may wonder why we only need n — k linear combinations of the total
of n observations to estimate the variance components and if we don’t
loose information by not using all observations. An intuitive explanation
is the fact that k linear combinations of observations have been used for
an ML estimation of the fixed effects, while n — k linearly independent
combinations of observations will be used for a REML estimation of the
variance components. This has also been proven by many others by showing
that inferences based on y can also be obtained by maximising the likelihood
of a transposed data vector Ay, which can be split into maximising a
likelihood that depends on 3 and one that does not depend on 3 [59, [61], 62].
Maximising the likelihood that depends on 3 with respect to 3 results in the
ML estimation for B as shown in Eq. , while maximising the likelihood
independent of 3 comes down to maximising the likelihood of K'y.

The probability density function of K'y is

— Ly K(K'VK) 'K’
() = P (oY KKVE) K'y)
(QFUZ)("*k)/Q‘K’VKP/Q
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and thus we can write the REML log-likelihood function as

1
IreML(0?, 7, ¢/ K'y) = — 5 ((” — k)log(2mo?) + log |[K'VK| (4.4)

o2

YK (K'VK) ™! K’y>

This log-likelihood can be made independent of K by applying some algebraic
tricks. First we will focus on the last term of Eq. . To that end,
we will construct the matrix T = I, — V-1/2X(X'V-1X)"IX'V~1/2 —
VI2K(K'VK)'K’'V'/2 and show that this matrix is a null matrix. This
can be done by first showing that T is idempotent:

TT = (In CVI2X(XIVIIX)TIXVY2 V1/2K(K’VK)*1K’V1/2)2
=1, -2V I2X(X'V7IX)"'X'V~1/2 _ oVI2K(K'VK) ' K'V1/?
+ (V‘1/2X(X’V‘1X)‘1X’V‘1/2)2 n (Vl/QK(K’VK)‘lK’V”Q)z
+ VI2K(K'VK) 'K'V/2v 12X (X'VIX)~IX/'V—1/2
+VIIEX(XIVIX)TIXVAVIPK(K'VK) K V2
=1, - VI2X(X'VIX)"IX'V~1/2 - VI2K(K'VK) 'K'V1/?
=T, (4.5)
where we have made use of the fact that V~1/2X(X'V~1X)~1X'V~1/2 and
VI2K(K'VK)'K'V'/2 are idempotent matrices and K'X = 0 = X'K.

We know that for an idempotent matrix its rank is equal to its trace and
thus

rank(T) =tr(T)
—tx(T,) - tr (V/AX(XVTIX)TIXVR)
Ctr (V1/2K(K’VK)—1K’V1/2)
=n — tr(L;) — tr(In—x)

=n—k—(n—k)=0, (4.6)

where we have made use of the property of traces that tr(ABC) = tr(CAB).
The only matrix that has rank zero is the zero matrix and thus we have
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proven that T = 0. As such,
VI2K(K'VK)'K'VY/2 =1, - V12X (X'V1X)"1X'v~1/2
and multiplication to the left and to the right by V~1/2 results in:
KKVK)'K =v! - vIXXVIX)"XVv'i=pP,

where we have introduced the matrix P because it will be used frequently
later on and it has some special properties that will also be described when
necessary. The REML log-likelihood is thus reduced to

1 P
e 02 $1K'y) = 5 (0= 1) log(2r0?) + log KV + 2V

o2

Let us now focus on the determinant of K’VK and construct first the square
n X n matrix
L-[K V'X].

It can be shown that this matrix is non-singular by proving that the deter-
minant of L'L is not zero:

L] = det KK KV1X
= de
X'V-IK X'Vv—2X

= |[K'K||X'V?X - X'V'K(K'K) "K'V 'X|
= |[K'K|| X'V (I, - K(K'K)"'K') V'X] .

Analogously to Eq. (4.5 and (4.6)), it can be shown that I, — X(X'X) !X’ —
K(K'K) 'K’ is a null matrix and so

IL'L| = [KK||X'V'X(X'X)"'X'VX]
= |K'K||X'VIX| [X'X| ' [X'VX]| .

None of the matrices on the right-hand side are singular leading to the
conclusion that L'L and thus also L are not singular. If we now look at the
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determinant of L' VL, then

IL'VL| = |[K'VK| |X'V'X - X’K(K'VK) 'K'X]
K'VK| |X'V'X - X'PX|
= [K'VK||X'V'X] ,

where we have used a first property of P, namely that

PX =V X - Vv IX(X'VIX)"IX'V~IX
=V IX-viIX=o0.
Making use of the property that the determinant of a product of square

matrices of equal dimensions is equal to the product of their determinants,
the determinant of K'VK can be replaced by:

IK'VK| = |[L'VL| [x'V'x|™

ILL||V]|X' VX[

IK'K||X'VIX[? [X'X]|V]|[X'VX[
= |[K'K||X'X||V][X'V'X],

where the two first determinants are independent of the variance components.
The REML log-likelihood can then be rewritten by omitting constant factors

as:
Ireai (07,7, $IK'y) = — (<n — k) log(e?) + log | X'V !X
P
+log [V + y02y> . (4.7)

This equation can be transformed so that the dependence on the different
variance components becomes more clear by looking at the mixed model

equations as derived in the previous chapter

Bl |[XRly
a| |[zZRrRly|

Computing the determinant of the coefficient matrix C of this system of

X'R1X X'R1Z
ZR X ZR'Z+G!
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equations leads to

ICl=|ZR'Z+ G| X'RT'X - X'R'Z(ZR'Z+ G ") 'ZR'X|
= |G L, +GZR1'Z)| X' (R -R'Z(ZR'Z+ G H)'ZR ) X] .

We can again exploit the property of blockwise inversion of a matrix with 2
invertible diagonal blocks A and D

(A+BD!IC)'=A"1-A'B(D+CA'B)"'CcA™!

and Sylvester’s determinant theorem for matrix A of dimension m x n and

B of dimension n x m [63]:
L, + AB| = |I, + BA| .
This leads to

IC|= |G| I, + RT'ZGZ/| |[X'(R + ZGZ')'X|
= |G| R (R+ ZGZ)| X'V 'X]
= |G| R/ V] |X'VTX] .

Taking the logarithm of this expression and moving some terms to the other
side leads to

log | V| +log |[X'V™'X| =log|C| + log |G| + log |R|

and hence the REML log-likelihood can be rewritten as

i (02,7, K'y) — — <<n _ 1) log(0?) + log |C] + log |G
P
+log [R| + y02y> . (4.8)

The maximisation of this REML log-likelihood function is performed by
derivation of this function with respect to the different variance components
and equating these derivatives to zero. The REML estimate for o2 can thus
be found by equating to zero

Olgemi(c®,v,¢) _ (n—k y'Py
Oc? o2 ot '

(4.9)
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An analytical solution can thus be found for the REML estimate of o2 in
the form of

.o YPy
0% =
n—=k

Most often, this is the only variance component for which an analytical

expression of its REML estimate can be found.

For the variance components ~; included in the vector -, the derivation of
the REML estimates is a bit more tedious:

OlreML(02, 7, @) dlog|C|  Olog|G| 1 ,0P
= — — — 4.1
i i - i e 07> ) (4.10)

because R does not depend on . For the derivative of the logarithm of
the determinant of a matrix we can use Jacobi’s formula stating that for an
invertible matrix A [60]

oA _,0A
“or Al <A m)

and thus

Olog|A| 1 A
ot |A| ot

0A
=tr| AP ).
' < ot )
As such, denoting g—g by GZ-, Eq. 1} becomes

y 1 0P
>+tr (G 1GZ—) + =5y 8%y) . (4.11)

8ZREML(U2»77¢) _ <t1" <01 oC
8’}/1’ Vi

We know that the coefficient matrix C of the mixed model equations only
depends on v through the presence of G™! in its lower right block Z’R~Z +
G~!. Therefore,

0C  |Okxk  Okx
v Ok %5
where .
G- :
=-G'G,G™!
i

and 0;y; is the null matrix of dimension 7 x j. If we then write the inverse
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§4.2. Restricted Maximum Likelihood (REML)

of C as
Cfl _ CXX CXZ

Y

CZX CZZ

with CXX of dimension k x k, C4Z of dimension I x I, CXZ of dimension
k x 1 and C%¥ of dimension [ x k, the first term of Eq. 1’ becomes

tr <C_160> =tr 0 0
i 0 -G 'G,6!
) < 0 CXZ—G—l(;,G—lD
= tr

0 -C%2G7'G,G™!
- (CZZG_lGZ-G_l) .

CXX CXZ
CZX CZZ

For the last term of Eq. (4.11]), we will first derive a general form for the
derivative of P with respect to any variance component x; on which V
relies:

oP ov—1 0
Ok; Ok, Ok;

VX (X'VIX) T XV

w19V 19V 1 n7—1
VISV VISRV (XY X) ' X'V
~VIX (X'VIX)TIXVE 1gZV*1x(X’V4x)‘1X'V*1
vx Vo) xv Yy
OK;
_ 40V - -1 =1x) " v -1
- -V 8m(v ~VIX (XVIX) XV
+VIX (X'VTX) TRV g: (V- vIx(XVX) T XV
-1 -1 N —1 ov
~ (Ve vIX (VX)X )%P
Ay
= PP

In particular for the variance components in «, we obtain

oP A%
' y=—yP—P
yawy Y i Y
= —y'PZG,Z'Py

and from the previous chapter we have learned that the BLUP of u was
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found by
i=GZ'V! (y - XB)
—GZ/V (y - X (X'VIX) ' X'V ly)
—GZ/ (V7 - vIX (XVIX) T XV y
~ GZ'Py,

where we have introduced the BLUE of 8 in the second step. Using these

results we can find the REML estimates of the variance components in v by
equating to zero

OlremL (02,7, @)

— tr (CZZG‘lGZ-G‘l) “tr (G‘léi)

i .
+ ﬁ,G_lf';G_lﬁ . (4.12)
The variance components ¢; included in ¢ can be found analogously:
Olreme (02,7, 8) _ <8log|C | Olog[R| 1 y,apy>
0 0¢i Opi 02" 0¢;
= - (tr <01§;> +tr (R*Ri)
—%y’P g;/;Py> , (4.13)

where %R is denoted by R;. The first term of Eq. |D contains the

following expression:

oC [X’agd;lx X’agfz:Z]
ob; Zfaggx z’ag;‘ilz

X'R'R,R X XR'R,R!Z
T [Z’R—lRiR_lx ZRR,R'Z
= - WR 'R,R'W,

—_

with W = [X Z} . For the last term of Eq. (4.13]), we make use of the fact
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that g—}; = Rl and that
Py = (V- vIX(XVIX) ' XV
=V (y - x8)
- (R+2GZ) ' (y - XB)
- (R -R'Z(ZR7'2+G7") " ZR) (v - XB)
_R! <y . XB) ~R'ZGZ (R+2GZ)"" (y . XB)
—R! <y XA - Zﬁ)
=R'e,
where we again used some equalities from the blockwise inversion of a matrix
with 2 invertible diagonal blocks in steps 3 and 4 and where é is the vector

of residuals after estimation of the fixed and random effects. Eventually, the
REML estimates of the variance components in ¢ can be found by equating

to zero
ol 2 . .
REMLa(g 79 _ (C‘IW’R‘lRiR_lw) —tr (R_lRZ)
R R-1a
+ w _ (4.14)
o

It can be seen that an analytical solution for the REML estimates of ¢ and
~ is almost never attainable even for simple covariance structures due to
the presence of (a part of) the inverse of C in the first term of Eq.
and ([4.14). Therefore, we have to resort to iterative techniques for finding
the REML estimates of v and ¢. A well-known iterative technique for
maximising a likelihood is the Newton-Raphson method which relies on
the first derivatives with respect to the parameters to be estimated of
the likelihood and the Hessian matrix. The Hessian matrix contains the
second derivatives with respect to the parameters to be estimated of the
likelihood, but may be tedious to construct. Therefore, it can be replaced
by its expected value, the so-called Fisher information matrix, which was
also used by Patterson and Thompson, because it was easier to construct
compared to the Hessian matrix [59]. Other quasi-Newton methods make
use of other approximations of the Hessian matrix when it is too difficult to
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construct the Hessian or Fisher information matrix or if they are non-existent.
Another famous and widely-used method for maximising the REML log-
likelihood is the expectation-maximisation (EM) algorithm, which does not
need the calculation of a (quasi-)Hessian matrix [64]. However, although the
computing time per iteration decreases compared to quasi-Newton methods,
the number of iterations needed to converge is usually a lot higher resulting
in a higher overall computation time.

In this dissertation, we focus on a variant of the Newton-Raphson method
called the Average Information algorithm, as it was shown by Gilmour
et al., in a plant breeding context, and Johnson and Thompson, in an
animal breeding context, that this method is a viable alternative when
problems get larger in number of observations and number of variance
components [65], [66]. In the following sections we will give more details
about the average information algorithm and explain why it has been chosen
in this dissertation as the method for maximising the REML log-likelihood,
compared to some other alternatives.

4.3. AVERAGE INFORMATION ALGORITHM

The average information algorithm for maximising the REML log-likelihood
is mostly referred to as the AI-REML algorithm. It is a quasi-Newton method
as it uses a simplified average of the Hessian and the Fisher information
matrix to obtain updates for the REML estimates at each iteration. The
original Newton-Raphson method for maximising a function f with respect
to a set of parameters 6 is the following:

gim+1) _ g(m) _ (H<m>) B, (9<m>) , (4.15)
where 8™ is the estimated value for the vector of parameters at iteration
m, H(™) is the Hessian matrix with the second derivatives of the function f
with respect to @ evaluated for 8™ and V f (9(’")) is the gradient vector of
f with respect to 8 evaluated for 6™ In our case, for the maximisation of
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the REML log-likelihood , V f (6) takes the form

dreMmL(02,7,9)
Oo?

2
VigemL (07,7, ¢) = %ﬁ’m = |72 | lremL(0?,7. @),
alREML(027’Y7¢) o)
0

[ 964

with p the number of variance components in vector v and ¢ the number of
variance components included in vector ¢. The elements of this vector can

be calculated using the results in Eq. (4.9), (4.12)) and (4.14)).

The Hessian matrix has the following form in our case

fod 0? 9?2
(@07 00°07 90204
— 9?2 9?2 9?2 2
H= 0020~ 00~O 0P lREML(U Y d)) 3
9?2 0? 0?2

90204 0pOy  0pOd

which is symmetric and contains the following elements:

O*lremr (02,7, @) 52 52 2
({90'2({9’)// - |:80'28’Yl T m] lREML(U 7Y ¢) 5
O*lrEmr (02,7, @) 52 92 ] 2
0020¢ = [3023¢1 " 90%09, lrREML(07, 7, @),
- g2 52 1
ooy o
OlrevL (0,7, 9) P o 2
IO~ = : . . lREML(J 777¢)a
gl 2
LOv0v1 T Ovpo,
r 92 92
0v10¢ T 9m0é
Plpmn(o® v, ) | P 2
~0 / - . . : lREML(U 577¢)a
7 ¢ 82 82
LOvp,061 1 Dvp0gq
r o2 52
9p10p1 T 010
62lREML (0.2’ s ¢) _ 1. ' . 1- ! lREML (0_2 ~ ¢)
7 — : t. N 1) ) .
a¢a¢ 92 o2
L 0¢p061 0,08

57



CHAPTER 4. VARIANCE COMPONENT ESTIMATION WITH REML

However, taking the second derivatives starting from the first derivatives

in Eq. (4.12) and (4.14)) is not so convenient. Therefore, a more general
form of the first derivative of the REML log-likelihood with respect to any
variance component x; on which V relies is derived, based on the expression

in BEq. ([4.7):

dlremL (02, K) _ <810g‘X’V‘1X} N dlog|V]| N 1.,P )

Ok OK; OK; o2Y %y
—r (XVIX) T XV VX)) - (V)

y'PV,Py

o2

"PV,P .
= yrvity 21 Y _ tr (V71Vi>
o

+ tr (V*lx (X'vx)™ X’V”VZ-)
y'PViPy
g2
—u (V- vIX (XVTX) TRV V)
_yPViPy (PV) . (4.16)

o2

where k; are the elements of the vector k = (v/,¢')’ and V; = gTV The

second derivatives can then be found based on Eq. (4.9) and (4.16)

8QZREML (0'2, K,) n—=k - 2y’Py

(80’2)2 - ol o6

Plremr, (0%, k) B y'PV,Py
0020k; N ot ’

aleEML (0‘2, K,) _ iy, aniPy B otr (PVZ) (4 17)
OK;iOK; o2 OK;j OK; ' '

The last equation in (4.17) needs some more work to be evaluated. Firstly,
the trace function is a linear operator on the matrix elements and thus it
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commutes with the derivative, implying that

ou (PV,) - ( 3pvi>

aﬁj 8/43]'
ov; 0P .

= (PV) - tr (PV,PV,)

- 2 . . " .
where we have denoted 82 3; - by V;;. For the evaluation of a%zj?P, we use

the well-known product rule for derivation:

PV,P P Vi . 0P
OPViP a—Vl-P—|—PaVP—|—PV2-a— y
(9:%]' 8:%]' 6:%]' 8/@
=y'PV,;Py — 2y'PV,PV,Py,

where the last step holds because y’ PVZ-PVij is a scalar and thus equal
to its transpose y’ PVjPV,-Py. As such the second derivative with respect
to elements of k can be written as

0%l 2, . . .. PV, P
REML (U R) =tr (PVjPVZ'> —tr (PVz‘j) + yPViPy
8/@8/@]- 02
2y'PV,PV,Py
_ p _

This expression can be hard to evaluate because traces are needed of some
matrices that are tedious to calculate. Another option is to use the Fisher
information matrix, which is the expected value of the Hessian matrix,
instead of the observed Hessian matrix as used originally in Eq. for
updating the variance components. The expected Hessian can be derived
from the observed Hessian using the following theorem for quadratic forms
for any symmetric matrix A and a random variable y with E(y) = p and

var(y) = Q [T
E(y'Ay) =tr (AQ) + p'Ap.

This theorem can be extended for non-symmetric matrices B by noticing
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that y’B’y is equal to y’By and thus

S (E(yBy) +E(yBY)) = ;E (v (B+B)y)

E (y'By) = 5

which is again a quadratic form with a symmetric matrix B+B’ and so
1
r((B+B)Q)+5u (B+B)p
(tr (BQ) + tr (B'Q) + B + p'B'p)

(tr (QB) + tr (QB) + 2u'Bp)
r(BQ) + u'Bu,

E (y’By)

l\D\i—‘l\D\)—'l\D\H

Il
-+

where we have made use of the cyclic property of the trace operator tr(AB) =
tr(BA) and the fact that the trace of a matrix and the trace of its transpose
are equal: tr(A) = tr(A’). Another important property of P will also be
used, namely

PVP = (V' - VXXV X)XV V (V- VX (XVX) XV
= (L-vIX VX)X (V- VvIX (XVX) XV
—VIoVvIX(XVIIX) XV - VvIIX (X'VIX) XV

FVIX(X'VTIX) T X VTIX (X'VTIX) T XV
—VIoVvIX (X'VIX) T XV
—-P.

Let us now calculate the expected values of the different terms that are
present in the observed Hessian matrix:

E (y'Py) = o*tr (PV) + BX'PX}3
= o%tr (I - VX (X'VTIX) X

~ o (VX (X'VTIX) X))

2 tr (Ix))

=0
2 ]{7),

g

= (e

—o%(n—tr (X VoIX (X'VTIX) )
(n—
(n—
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E <y’PV,~Py) o2tr (PV, PV> + 8X'PV,PX3
= o’tr (PVP )

PVi).

E (y’P\"fZ-ij) — o2tr PVZ]PV> + BX'PV,,PXp

= o’tr

= o’tr

P),

E (y’PViPVij) = o%tr (PV,PV,PV) + 3 X'PV,PV,PX3

(

(

(P

(
= otr (PVPVW)

(

( )
= o%tr (PVPV PV, )
— o2tr (PVZ-PV]-) :

where we have made use of the fact that PX = 0 and of the cyclic property
of traces. Finally the elements of the Fisher information matrix can be
calculated as

E<82ZREML(027R)> _n—k 20*(n—k) n—k

(802)2 ] 6 oA
(P o)) 5PV
0020k, - o? ’

. (8%3?/:%?:2, KZ)) — tr (PVjPVi> — tr (PVU> + tr <PVz‘j)
iOkj
— 2tr <PV¢PV]‘)
= —tr (PV@PVj) .

These still require the evaluation of the traces of matrices that are tedious
to construct and thus the average information algorithm uses a simplified
average of both the observed and the expected Hessian matrix, which is
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called the average information matrix and shall be denoted by Z 4:

T, Ta (02,02) Ta (0'2,&)
| Za (0%, k)  Za(k,K)
(T4 (02, 02) Ta (02, /{1) o Ty (02, /-f,«)
_|2a (0%, k1) Za(ki,k1) - Za(k1,kr)
_IA (0'27 ’fr) Za (Hla Hr) o Iy (K/T7 /{7‘)

with 7 = p + ¢ the total number of variance components on which V relies.
The different components of 74 can be calculated as

Za (0%, 0%) = 1 <32ZREML (0% k) LE <82lREML (02,&))>

2\ (002 (002)?
_l(n—-k 2y'Py n-k
2\ ot o o
_ y'Py
="
9 1 [ Plrewv (0% k) &*Irenr, (07, k)
Ta (0% m) =5 0020 T\ T a0,
1 ypupy b (PV)
2 ot o2
y'PVPy
= — T ,
o (i 550) 1 O*lrpmL (02, k) L E O*lremr (0%, k)
AR Rj) = 2 8/@8/% a:‘iialﬁj
1 3 3 . y’PV,-ij
-3 (tr (PV,PV) —tr (PV ) + T

2y'PV, PV, P o
eAaliat y—tr(PViPV]))

g

_y'PV,PV,Py

o2 ’

where tr (PV1> is approximated by %y’ PV,Py because maximising the
likelihood means that Eq. 1} approaches zero and where y’ P\"/'iij is
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approximated by its expected value o?tr (PV”> Note that these last terms
also disappear whenever V is a linear function of k. As such, the elements
of Z4 do no longer involve the calculation of traces of matrices and are,
therefore, much easier to calculate than the elements of the Hessian or Fisher
information matrix.

4.4. COMPUTATIONAL ASPECTS

4.4.1. COMPUTATIONAL CONVENIENCE OF THE AI-REML
ALGORITHM

Although we mentioned that the computation of the average information
matrix is no longer as hard as calculating the Hessian or Fisher information
matrix, it still seems a computational burden since we might need to calculate
P. However, this can be avoided by recognizing that the average information
matrix can be written as:

1
= ,QPQ,
with
Q= [%y ViPy --- V,Py|.

If we again look at the specific variance components v and ¢, the matrix Q
can be written as

_ 1 oV oV oV oV
Q= [py a—wa ﬁPy aTﬁle aquPy )
with
Vv ) .
0 Py = ZG,Z'Py = ZG;G 'a,
3%’
oV . .
Py = R,Py =R,R'é.
90; y y e
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To obtain Q'PQ in an easy way, we will first construct an augmented form
of the coefficient matrix C:

'QlRle QIR71X Q’R*1Z
M= [XR!Q XR X X'R™'Z
'R7IQ ZR'X ZR'Z+G!
B _Q/R—IQ QIR—IW

with W = [X Z] as defined before. The Schur complement of the coeffi-
cient matrix C in this matrix is defined as

M/C=QR'Q- QR 'WC'WR!Q
=Q R '-R'WCT'WR)Q. (4.18)

If we define the inverse of C as

Cfl _ CXX CXZ

)

CZX CZZ

then we can obtain an expression for each part of the inverse using the
blockwise inversion of a matrix:

-1

A B| (A-BD'C)™" - (A-BD'C)'BD!
C D -D'C(A-BD'C)”' D'+D!C(A-BD!C) 'BD
and so

CXX:

_ —1
X'R7'X-XR'Z(ZR'Z+G ) ZR7'X)

(
- (X (rR'-R'z (z’R—lz +G ) ZR) X)il
( 1

= (xX'v7x)",
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Cc?Y = — (ZR'Z+G ) ' ZRIXCYY
- —(ZR'Z+G ) ' ZRIX (X'VIX) !
- - GZ (R+2GZ) 'X(X'V'X)™
— —GZV X (X'VIX) ' = (c¥?),
C%Z = (ZR'Z + Gr_1)—1 — CZXX'RZ(ZR'Z+ G_l)—l
— (ZR'Z+G )
+GZVIX (X'VIX) ' X'R'Z(ZR'Z+ G 1)~
=G - GZ (R+ZGZ) ' ZG
+GZ'VTIX (X'VIX) T X'V'ZG
~G-GZ (V' - vIX(XVIX) XV zZ6G

1

-G - GZ'PZG,

/ . . . . ’
where C%X = (CX z ) , because C is a symmetric matrix and thus its inverse
is also symmetric. Using these expressions, we can derive a convenient form

of WC™'W:
WC'W =X (X'VIX) ' X - X (X'V'X) ' X'V 12GZ/

~ZGZ'V X (X'VX) ' X' + ZGZ — ZGZ'PZGZ

— X (X'VIX) T X X (X'VTIX) X
+X (X'VIX) T XVIR-X (X'VTIX) T X
+RVIX (X'V7IX) ' X'+ V-R - VPV + VPR
+RPV - RPR

— X (X'VX) ' X'VIR-X (X'V X)X
+RVIX(X'VIX) ' X'+ V-R-V
X (XVIX) X 4 R-X(X'VIX) T X'V'R+R
~RV X (X'V'X)"' X' —RPR

— R-RPR,

where in the first step we used the fact that V = ZGZ + R and thus
ZGZ =V — R.. Therefore, the Schur complement of C in matrix M is equal
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to:

QR'-R'WC'WRHQ=Q R '-R'R-RPR)R ) Q

=QR'-R'+P)Q
= Q'PQ.

Note that we did not make use of any property of matrix Q and so in this

expression Q can be replaced by any other matrix or vector. As such, it

is shown here that matrix P does not need to be calculated explicitly to

obtain the average information matrix.

The whole variance component estimation process thus needs the following

components:

66

e An initial estimate of the variance components.

e The first derivatives of the REML log-likelihood with respect to the
different variance components, also called the score functions:

Olremr (02,7, @) n—k yPy
o2 B o? ot )7 (4.19)
2 . .
OlrEML(0™, 7, @) tr (CZZG—IGiG—1> . (G—le)
i

WG 1G;G a
+

o2

, (4.20)

OlgemL (02,7, @)
0¢;

— tr (C”W’R”RiR*lW) —tr (R*Ri)
N &R R,R 'é .

o2

e The average information matrix Z4 = U%Q’ PQ, which can be found

as the Schur complement of C in M:

[QIR—lQ QIR—lw
M =
WR'Q C

with

Q= [;gy ZG,G'a --- ZG,G'a RR'é - Rqulé]
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Note that when « and ¢ have been assigned a value, there exists an analytical
solution for 62 = % by equating the first score function in Eq. to
zero. First of all, we see that for evaluating the score functions and setting
up the Al matrix, the BLUP for u is needed together with a prediction of e,
which also requires the BLUE of 3. The Mixed Model Equations (MME)
provide an easy way of finding these estimates and predictions. One way
of solving these MME is using a direct solving routine, which is based on
the Cholesky decomposition of the coefficient matrix C. The availability
of the Cholesky decomposition facilitates solving other equations with C
as coefficient matrix, because calculating the Cholesky decomposition is
a task of complexity O(m?3), with m the dimension of the square matrix,
while solving an equation when the decomposition of the coefficient matrix is
known only has complexity O(m?). So when the Cholesky decomposition of
C is already available due to the direct solving of the MME, the Al matrix

can be calculated using Eq. (4.18)):

e Construct matrix WR™'Q.

e Solve the equation CY = W/R™!'Q for Y by using the previously
obtained Cholesky decomposition of C.

e Compute QPQ = QR 'Q - QR 'WY.
o I, = 5QPQ.

Moreover, for evaluating the score functions we also need the inverse of the
coefficient matrix, which can also more easily be calculated by using the
already obtained Cholesky decomposition of C. In fact, the inversion of C
then comes down to inverting its factor, which can be done by applying m
forward substitions, and multiplying it with its transpose:

C=LL
cl= (LY

4.4.2. COMPARISON OF AI-REML WITH OTHER ITERATIVE
PROCEDURES

It was already mentioned that when the REML equations were conceived
in 1971 by Patterson and Thompson, the Fisher information matrix was
used for iteratively searching for the values of the variance components
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that maximise the likelihood [59]. However, it was also shown in the same
paper that the calculation of the elements of the Fisher information matrix
can become very tedious when the number of observations gets large as
we need to calculate traces of different n x n matrices for each element.
The expectation-maximisation algorithm, first described in 1977, solved
this problem by no longer needing a Hessian or Fisher information matrix
for finding an update of the variance component estimates [64]. Details
of this algorithm are left for the interested reader and can be found in
many textbooks and articles [43], 64]. In short, this algorithm comes down
to equating the score functions to zero and solving them for the variance
components, by replacing the variance components with the value of the
previous iteration in C~! and by using the values for @ and é based on a
solution of the MME with the values for the variance components of the
previous iteration. The computational burden was thus decreased compared
to the originally used method, however, the score functions still needed to
be evaluated, implying inversion of the coefficient matrix.

The derivative-free method for maximising the REML log-likelihood, put
forward in 1986, was very promising as it no longer required the inversion
of the coefficient matrix due to the introduction of some approximations of
the traces required in the score function [68]. Unfortunately, the decreased
computing time of the derivative-free method came with the price of much
poorer numerical properties and some computational optimisations of the
EM algorithm closed the performance gap between EM and the derivative-
free approach [69]. This was mainly possible because in the pre-sequencing
period, the coefficient matrix was very sparse and thus specialised algorithms
for sparse matrix inversion could be used to speed up the evaluation of the
score functions (these specialised algorithms will be discussed in the next
chapter). Using these optimisations, the EM algorithm was only 3 times
slower per iteration compared to the derivative-free approach, but the number
of iterations needed to converge was usually a lot less for EM. As such, the
EM algorithm regained its value, as it also was independent of the choice of
the starting value for the variance component estimations.

Still, computing time remained an issue for the EM algorithm as it usually
converges in a lot more iterations than Newton-Raphson based methods,
but was widely used due to the low computing time per iteration [43]. From
its conception in 1995, the average information algorithm was suggested
as a viable alternative to the EM algorithm as the computational burden
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was greatly reduced compared to the original Fisher scoring method, while
keeping the number of iterations needed for convergence low [65]. In the
paper by Gilmour et al., where the Al algorithm was introduced, first tests
showed already that the AI algorithm outperformed both the EM and
derivative-free algorithm [65]. The only downside of the AI algorithm is
the fact that it is less robust with respect to the choice of the starting
values compared to the EM algorithm and thus both algorithms can still
be applied next to each other, depending on the problems encountered [70].
Usually, AI-REML is proposed as the method of choice, but if AI-REML
estimates depend heavily on the chosen starting values, EM might be a good
alternative for finding more robust REML estimates.

After the Al algorithm, no viable alternatives were presented for maximising
the REML log-likelihood and because the computational burden of both
EM and Al are equivalent, they struggle with the same computational
limitations. A major difficulty was introduced by the application of genetic
markers in genomic prediction, which turned the coefficient matrix into a
dense matrix instead of a sparse matrix, making it a lot harder to evaluate
the score functions. Originally, for the genomic prediction models, the
variance of the genetic marker effects was derived from a previous estimate
of the total genetic variance, where this genetic variance was commonly
just divided by the number of genetic markers involved [14] 16} [71]. It was
also proposed to use Gibbs sampling for variance component estimation,
definitely when the data sizes were large [35], [70]. However, Gibbs sampling
is not entirely automatic and the results depend on the choices made by
the user. Although AI-REML also depends on the choice of the starting
values of the variance components, algorithms exist which circumvent this
problem by using a primary round of EM estimation before using AI-REML
with as inital values the EM estimations obtained in the primary round
[72]. Moreover the AI-REML algorithm is usually a lot faster than Gibbs
sampling and it is not subject to Monte Carlo error as can be the case
when using Monte Carlo estimators [73]. As such, this dissertation has as a
goal to enable AI-REML estimation of variance components for large-scale
data sets. Therefore, the next chapter will discuss some high performance
computing techniques that can be applied for making it possible to perform
an AI-REML estimation for the variance components of large-scale data,
using the power of a supercomputing cluster.
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5 A SELECTION OF HIGH PERFORMANCE
COMPUTING METHODS

5.1. INTRODUCTION

In the previous chapters, the computational aspects of the mixed model
approach and variance component estimation are always emphasised to
make clear that the research field of genomic prediction depends on advances
in numerical computation methods as well as in computing power. It
was already mentioned that numerical methods such as preconditioned
conjugate gradient or Gauss-Seidel iterations for solving a system of equations
have a huge impact on the applicability of genomic prediction. Moreover,
for variance component estimation, the development of different iterative
schemes for maximizing a likelihood function opened up the path for more
complex models and the analysis of larger data sets. However, it should
also be noted that many of the computational advances originated from the
field of genomic prediction itself, showing that the computational problems
encountered in genomic prediction are to a certain extent specific to the
field, making it an interesting world not only for biologists, but also for
computational scientists. This is also confirmed by the many research papers
from the animal and plant breeding field that deal with the computational
burdens encountered in genomic prediction [16), 34, 35] [36, B39, [45] 53, 55,
65, 69, [70].

It may thus not come as a surprise that from the moment the digital
computer became available for researchers, it was used to help animal and
plant breeders for evaluating their phenotypic records. The start of this
computer-aided data-processing in a breeding application could be marked
by the acquisition of an IBM 650 by Cornell University in 1956, when
Henderson was research leader of the Dairy Records Processing Laboratory
at this institute [74]. Henderson and his PhD students made intensive use
of this machine because it enabled them to invert a 10 x 10 matrix in only 7
minutes compared to about three hours when it should have been done by
hand. Using such computing power they were able to process data of 108,000
cows per year. This put the lab of Henderson at the forefront of animal
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breeding, not only because of the availability of such a computer, but also
due to their constant strive for improving the analytical methods, leading to
increasing prediction accuracy of genetic merits of dairy bulls [7, [8 45| [48].
As a result, Henderson was awarded the 1977 National Association of Animal
Breeders Award from the American Dairy Association, where it was noted
that Henderson’s work helped increase milk production from 6,810 pounds
per cow in 1950 to 13,612 in 1976 [74].

Computing power increased during the following years due to the invention
of the integrated circuit in 1959 [75]. The evolution of computing power
is adequately summarized by Moore’s law, stating that the number of
components per integrated circuit would double every year [32]. This law
was conceived in 1965 as an observation of the evolution from 1959 to 1965,
but had to be revised in 1975 to a doubling of the number of transistors
per integrated circuit every two years [76]. Of course, such technological
advances resulted in more powerful computers and the chip performance even
doubled more rapidly because of a combined effect of the increased number
of transistors and the fact that these transistors were of better quality and
thus became faster. Numerous machines were built using integrated circuits
and also the Dairy Records Processing Laboratory of Henderson updated
its computing infrastructure frequently to enable processing data of more
and more cows, leading to a total of about 650,000 cows under analysis in
1984.

Computers in those days were so big that they needed an entire room to fit
in, but due to the introduction of the microprocessor in the beginning of
the 1970s, more compact and portable personal computers were produced.
Nowadays, microprocessors are so dense and powerful that our mobile
phones can perform tasks faster than the gigantic computers of the 1960s.
However, room-filling computer systems still exist for high-end purposes and
are usually dubbed supercomputers to distinguish these systems from the
personal computers such as laptops or desktops. The term supercomputer
was already used in the 1960s for systems that achieved superior performance
by applying innovative designs. One example is the CDC6600, which was 10
times faster than all other computers of that time because of switching from
germanium to silicon transistors and using a refrigeration system to prevent
the transistor from overheating [77]. Therefore, it is generally considered
as the first successful supercomputer. From the late 1980s, starting with
the conception of the Cray-2 machine in 1985, supercomputers are referred
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to as machines consisting of several processors, while parallelism between
these processing units can be exploited. The Cray-2 machine was the fastest
machine in the world until 1990 and again it was used in animal breeding to
estimate the variance components for an animal model with almost 75,000
effects [34].

From the 1990s, the number of processors that could be used in parallel
on supercomputers increased dramatically and the current fastest super-
computer consists of more than 3 million CPU cores that can be run in
parallel. This opened up the path to many different architectures and ways
of exploiting this huge amount of processors for highly demanding computing
tasks. Actually, even common laptops and desktops can be compared to
the supercomputers of the 80s and the 90s as they also consist of several
processing units that can run in parallel, using a shared memory block (the
RAM memory in current computers). This is commonly referred to as mul-
ticore computing or symmetric multiprocessing and is still an active branch
in the parallel computing field. However, the vast majority of the currently
top-ranked supercomputers are cluster computers. The ranking of these
supercomputers is based on a benchmark that measures the performance of
a system when solving a dense system of equations and is publicly available
in the so-called TOP500 list that is updated twice a year [78]. A cluster
computer can be regarded as a large supercomputer, consisting of several
loosely coupled computing units. These computing units are commonly
referred to as computing nodes and they are coupled to each other through
a local network. Different levels of coupling between these computing nodes
result in different applicability of these computer clusters.

The most loosely coupled clustering is performed by means of the internet,
thus restricting the amount of communication between the different comput-
ing nodes. Such a type of parallel computing is commonly known as grid
computing and although many computing nodes can in this way be coupled
to each other, it is not really suited for high performance computing due
to the low bandwidth and high latency of the internet. However, it can be
very useful for executing a large number of independent tasks, which do not
require a lot of communication between the different computing nodes. This
is commonly referred to as embarrassing parallelism and such applications
are considered the easiest to be parrallelised. A striking example of grid
computing is the “Great Internet Mersenne Prime Search" (GIMPS), where
more than 100,000 participants share their computing power to search for
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all possible Mersenne prime numbers, which are prime numbers that are one
less than a power of two (M, = 2P — 1) [79]. This project resulted in the
discovery of 14 Mersenne prime numbers of which also the largest known
until now, M57,885,161-

However, these grid computers usually are not regarded as supercomputers,
because the computing units are not entirely available whenever necessary
and the computing power can only be applied for performing many different
tasks without much communication between the computing nodes. They are
thus also not included in the TOP500 list, as they perform quite poorly on the
benchmark used for compiling this list. Current supercomputers are mainly
located at the same geographical location where the different computing
nodes are connected to each other using a high-speed communication network.
When the computing nodes each dispose of local memory that is not shared
and they can only exchange information through message passing, the
computer system is called a distributed system. In general, grid computers
are a subset of distributed systems, but we will make a distinction between
the two by the fact that distributed systems can be applied for so-called
coarse-grained parallel tasks, which require some communication between
the nodes, while grid computers almost do not communicate with each other
and are only suited for embarrassingly parallel tasks. Systems optimised for
distributed computing thus consist of several autonomous computing nodes
disposing of local memory and connected to each other with a high-speed
network to minimise the communication overhead.

The computing nodes of these distributed systems nowadays are high-end
multicore processors, meaning that there are two types of parallelism that
can be exploited in these systems. At first the coarse-grained parallelism
between the different nodes can be utilised, where communication between
the nodes is only possible using the interconnection network and should
thus be limited to minimise the communication overhead. Secondly, the
fine-grained parallelism inside each node can be applied, where each CPU
core can access the shared memory of the computing node with high speed
and can process in parallel a part of the task that is dedicated to the
computing node. A widely used application programming interface (API) for
shared memory multiprocessing programming is OpenMP, while for message
passing between processes the standardized message passing interface (MPI)
is freely available in the implementations MPICH and Open MPI, but
also in commercial implementations as IntelMPI, Microsoft MPI and IBM
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Platform MPI. Whenever MPI is used for message passing between nodes
and OpenMP exploits the multicore parallellism on these nodes, it is common
to denote this as a hybrid OpenMP /MPI implementation. These hybrid
models are gaining popularity as they efficiently use the computing power
of most currently available supercomputers.

Of course, parallel programming has its limitations, which should be taken
into account when parallelising existing implementations for utilising the
computing power of supercomputers efficiently. A well-known law in parallel
computing is Amdahl’s law, stating that the maximum speedup achievable
by parallel programming is limited by the fraction of the program that is
strictly serial and cannot be parallellised [80]. More formally, when « is the
fraction of the program that is strictly serial, the time 7T'(n) the algorithm
takes to finish when executed on P parallel threads is

T(P) = T(1) <oz+]13(1 —a)) . (5.1)

As such the theoretical speedup achieved when being executed on n threads
is

(1) 1

T(P) a++5(1-a)

Therefore, when for example 10% of an algorithm is strictly serial, the

S(P) = (5.2)

maximum attainable speedup is 10, no matter how many threads can be
executed in parallel. Figure shows the fact that the number of processors
that can be efficiently applied in parallel depends greatly on the fraction of the
program that can be parallelised. Moreover, increasing the number of parallel
threads might result in a substantial overhead, due to the communication
and synchronization between the threads, leading to a decrease in speedup
whenever the number of applied threads surpasses a critical value.

Nonetheless, Amdahl’s law supposes that the problem size is fixed, while
an increase in computing power may lead to solving larger problems in the
same amount of time. This was indicated by Gustafson’s law assuming that
the total amount of work to be done in parallel increases linearly with the
number of processors [81]. As such, the achieved speedup by parallelism can
be expressed as

S(P)=P—«a(P—-1), (5.3)

where P is the number of involved processors, linearly dependent on the
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Figure 5.1: Graphical representation of Amdahl’s law where speedup is depicted
in function of the number of involved processors for programs with different fractions
that can be parallelised.

problem size. As Amdahl’s law states that parallel computing can only have
a minor impact for fixed problem sizes, Gustafson’s law actually increases
the impact of parallel computing by stating that larger problems may always
benefit from increased computing power, without letting the serial part of
the program bring down the benefit of parallelisation. Parallelism is as such
defined to be more fruitful for problems that can increase dramatically in size.
Therefore, it can become extremely interesting for the genomic prediction
field, where not only the number of data points is likely to increase due
to the reduced cost of genotyping, but also the dimensionality of the data
points may increase due to the larger number of genetic markers included in
the analysis [42 [82].

For clarity, we would like to introduce the difference between high perfor-
mance computing and big data processing. Big data recently gets a lot of
attention as the digitization of data gathering leads to enormous amounts
of data that can be analyzed to gain insights in processes or to predict
future scenarios. The analysis of these data sets is usually tedious due to
its size and not due to the processing algorithm. Therefore, the number of
required computing cycles may not be the limiting part of the analysis, but
overhead is mainly created by data movement, data processing and data
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management. In contrast, high performance computing deals with problems
that may not be as large as in big data processing, yet the actual computing
cycles on the involved processors needed for processing the data are the most
time-consuming aspect. The main difference between big data processing
and high performance computing is the fact that for the latter the data
is usually read in once and then stays stored in that same location, while
for the former pieces of the data set are read in and analyzed frequently,
sometimes by different processors, leading to many read and write operations.
As discussed in the previous chapters, genomic prediction is based on solving
large matrix equations and inverting matrices several times in an iterative
cycle, while only changing some elements of the matrices. Therefore, the
data can stay stored at a certain location and high performance computing
methods can be applied for a more efficient processing of the data.

At Ghent university different centrally coordinated supercomputers were
installed from 2008 to boost high performance computing research in several
disciplines. One of them was the Gengar cluster, consisting of 194 computing
nodes, containing 8 CPU cores per node and 16 GB of RAM, while being
interconnected through a 4x DDR Infiniband network (20 GB/s). It was thus
optimised for distributed high performance computing applications using
MPI due to the fast interconnection network and it even reached the TOP500
list in 2008. In 2013 this system was replaced by an even more powerful
supercomputer Delcatty, consisting of 160 compute nodes with 16 cores per
node and 64 GB of RAM per node, interconnected with an FDR Infiniband
network (56 GB/s). These two clusters were mainly used in this dissertation
as they were configured especially for the needs of this research. As already
said, genomic prediction can benefit from distributed computing as it mainly
involves solving large systems of equations and inverting large matrices.
Therefore, the aggregated memory of the different computing nodes is used
to store the matrices, while the computing power of all the CPU cores can be
applied for performing operations on these matrices. The benchmark for the
TOP500 list of supercomputing sites is also based on solving large systems
of linear equations and thus the distributed computing approach will also
be portable to many high performance computing infrastructures.

Next to the distributed computing methods, the genomic prediction frame-
work as elaborated on in the previous chapters can also benefit from sparse
matrix algebra, where matrices filled with many zeroes are stored and pro-
cessed more efficiently. Technically speaking, sparse linear algebra is not
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specifically a high performance computing method as it can also be used on
a single processor. However, as we intend to use it in combination with dis-
tributed computing techniques, some important properties of sparse matrix
algebra are discussed in this chapter. The remainder of this chapter is thus
organised as follows:

e Section will explain the main properties of distributed computing
with an emphasis on linear algebra and matrix operations. Parallelisa-
tion and optimisation of these operations will be discussed using some
basic examples.

e Section will present some properties of sparse matrix algebra,
together with efficient methods for dealing with sparse matrices. Fm-
phasis is put on solving a sparse system of equations and inverting a
sparse matrix.

e Section will review the usefulness of both distributed computing
methods and sparse matrix algebra in a genomic prediction framework
and will briefly discuss some computational advances throughout the
history of genomic prediction.

5.2. DISTRIBUTED COMPUTING

5.2.1. GENERAL OVERVIEW

Distributed computing refers to the efficient use of distributed systems for
tackling large-scale problems, which become computationally impractical
to be processed on a single computing node. These distributed systems
consist of computers that are interconnected through a, preferably high-
speed, network, allowing for communication between the computing nodes
through message passing. The messages can be certain objects that need
to be transferred to another node, ranging from simple integer values to
whole arrays of complex datatypes. But the messages can also be signals
allowing the processes to coordinate the tasks that have to be performed by
each processor. An important aspect of distributed computing is that each
computing node only has access to its own local memory and no memory
is shared among the different computing nodes. It is thus vital that each
computing node reads in the correct information from an input file and that
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the messages passed between the nodes contain the correct information for

the receiving node.

To facilitate the message passing between the different nodes, the standard-
ized and portable Message Passing Interface was released in 1994 [83]. The
conception of this standardized interface was a joint collaboration between
members of more than 40 organizations, including major vendors of con-
current computers, universities, government laboratories and industry. The
goal of such an interface was to design an application programming interface,
which allows for efficient communication, presents convenient C and Fortran
77 bindings for the interface, assumes a reliable communication interface,
where the user need not cope with communication failures and defines an
interface that can be implemented on many vendor’s platforms. The suc-
cessful design of this standard interface led to multiple implementations of
the standard in open-source distributions (MPICH, Open MPI) as well as
commercial implementations from Intel, HP or IBM. Nowadays, there is
already a third version of the MPI standard available (MPI-3), including
several extensions to the original version, keeping MPI still very relevant in
any supercomputing application.

The release of such a standard directly led to the development of a library
that makes use of MPI for performing several linear algebra operations on
distributed systems. This library was called ScaLAPACK, an abbreviation
for Scalable LAPACK, where LAPACK is an acronym for linear algebra
package. LAPACK was conceived in 1992 as an attempt to make linear
algebra operations run more efficiently on shared-memory parallel processors
by reorganizing the algorithms to minimize data transportation through the
memory hierarchy of a processor. In fact, all machines (not just supercom-
puters) have a hierarchy of memory levels, for example, with registers at
the top, followed by cache, RAM memory, and finally disk storage at the
bottom. At the top of the hierarchy, the memory is smaller, faster and more
expensive, making it ideal to perform a lot of small-scale operations, while
at the bottom we prefer to have a small number of large-scale operations.
The key to the efficient use of this memory hierarchy is dividing a matrix
into smaller blocks which fit in the top level memory and performing the
algebraic operations on the entire matrix in a blockwise manner. In this
way vendors of processors can optimise the standard library for matrix
operations by choosing an appropriate size of the blocks so they can fit in
the different memory levels, while minimising data transportation in the
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memory hierarchy.

LAPACK provides routines for solving linear equations and least squares
problems, factorizing matrices, inverting matrices and calculating singular
value and eigenvalue decompositions. These routines are all based as much
as possible on matrix-matrix operations as defined in level 3 BLAS. BLAS
are the Basic Linear Algebra Subprograms that provide standard building
blocks for vector-vector (level 1), matrix-vector (level 2) and matrix-matrix
(level 3) operations. The level 1 BLAS were already conceived in 1979 [84],
but level 2 and 3 BLAS only saw the daylight ten years later, because these
made it possible to exploit the memory hierarchy of the processing units
that were invented around that time. BLAS and LAPACK are still part of
most mathematical software such as MATLAB, Mathematica and R. There
also exist several vendor-optimized implementations available in Intel MKL
for Intel processors and ACML for AMD processors, but there are also free
alternatives such as GotoBLAS, OpenBLAS and ATLAS, which provides
optimized BLAS versions for different types of processors.

As BLAS and LAPACK form the basis of ScaLAPACK, we will first describe
how they achieve high performance. Afterwards, it will be explained how
matrices can be processed in a distributed-memory setting and finally we
will show how parallelism can be exploited in these distributed memory
systems, leading the the distributed-memory parallel BLAS (PBLAS) and
ScaLAPACK.

5.2.2. BLOCKWISE ALGEBRAIC OPERATIONS

It has been presented above that performing algebraic operations in a
blockwise manner can exploit the memory hierarchy in current processing
units. As this is a vital step in understanding distributed computing we will
present two examples where blockwise computations can lead to a significant
gain in performance. One example , the matrix-matrix multiplication, is a
level 3 BLAS routine, while the other example, an LU decomposition, is a
LAPACK routine based on level 3 BLAS routines.

At first, we will handle a simple matrix-matrix multiplication for 2 matrices
A and B, with respective dimensions m x [ and [ x n. The elements ¢;; of
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the product C = AB with dimensions m X n are given by

I
Cij = § Qikbr; -
k=1

Let us now split up all dimensions in two parts, where m = mj + mao,
Il =11 4+ 1y and n = ny + ng, so each of the involved matrices is split up in 4
blocks:

A |Aan Aa
Aey A

Bany Bayg

B: C:

B Beg) 1y Cpg)

where the dimension of A ) is m1 X I3, of Ay gy is my X Iz, of Ay is
mg X l1, of A(gg) is ma X Iz and similarly for the other matrices. The
elements of Cq 1) can be expressed as, for 1 <i <my, 1 <j < ny:

l 15 l1+l2
[Caply =ci= > aibi; =Y aibi + > by
k=1 k=1 k=l1+1

= [AqnBayl,; T [Aa2Be)
= [AqpBay + AazBey),; -

ij

For the other blocks, we can derive similar expressions showing that for
matrix multiplications the blocks can be treated as if they were elements of

a matrix:

Can Cup Bany Bay

_ lAm) A
Apy Ay

Cen Crpo B21) By
lA(Ll)B(Ll) +Au2Be1 AayBaz) +Aa2Beg

A nBany +AeBe1 AweBasz) +Ae2Beyy

This can also be proven for any number of blocks, as long as the matrix
dimensions of the blocks of the matrices agree [85]. So when the dimension
m is split up in ¢ parts, n is split up in r parts and [ is split up in s parts, the
different blocks of C can be computed as, for 1 <a<q,1<g<r

Clap) = D A Bis) -
v=1
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In this way a blocksize can be chosen so that the different blocks all fit in the
top level of the memory hierarchy and thus operations on these blocks can be
performed very efficiently. As an example, we give some experimental timings
for a matrix-matrix multiplication of two square matrices of dimensions
n X n with varying blocksizes b x b in Table and compare this with
a naive implementation of matrix-matrix multiplication without splitting
the matrices into blocks. Note that when a matrix is split up in blocks,
all blocks are square and have an equal size across the involved matrices.
It can be seen that the blockwise algorithm clearly outperforms the naive
implementation with a maximum speedup of almost 5 for the largest matrices.
Moreover, the size of the blocks also plays a role as too small blocks lead to
a suboptimal use of the top level memory and too large blocks will have to
use partly the second level memory which is slightly slower. Next to this,
we compare these implementations with the Intel version for matrix-matrix
multiplication as implemented in the Intel Math Kernel Library (MKL) level
3 BLAS. This library provides optimised versions of BLAS and LAPACK for
Intel processors and their specific memory hierarchy. A remarkable 16-fold
decrease in runtime is achieved by using the Intel-optimised version for the
largest matrices, which is probably due to the fact that some sort of recursive
blocking is used to optimise the use of all memory levels of the processing
unit. Unfortunately, Intel MKL is commercial software and only free under
an academic license.

Table 5.1: Runtimes (in seconds) for matrix-matrix multiplications of
two equally sized square matrices of dimension n X n on a single Intel
Nehalem processor for different algorithms (averaged over 10 runs)

Matrix size Naive Blockwise algorithm with blocksize  Intel MKL
(n) algorithm 4 x 4 16 x 16 64 x 64 version
2,048 89.9 30.3 24.3 29.2 1.9

4,096 1,080.9 271.2 229.6 231.5 14.5

8,192 9,002.1 2,387.1 1,831.8 1,844.6 114.9

The second example that we will discuss is the LU decomposition of a matrix
by Gaussian elimination, because such a decomposition is commonly used
for solving linear equations or inverting a matrix. The LU decomposition
factorises the matrix in a lower and upper triangular matrix and solving a
linear equation is then transformed into solving 2 linear equations, which can
be performed using forward and backward substitution with a complexity
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O(n?) (with n the number of linear equations), compared to a complexity
O(n3) of the LU decomposition:

Ax=y < LUx=y.

1. Solve Lw =y with forward substitution.
2. Solve Ux = w with backward substitution.

The algorithm for Gaussian elimination is simple in nature and can be
performed column-by-column with elementary row operations. For a square
matrix A of order n the algorithm is described in Algorithm [I} where memory
requirements are reduced by overwriting the lower and upper triangular part
of A by resp. L and U

Algorithm 1 Calculate LU decomposition of a square matrix A of order n

1: procedure LUdecomp

2 fori «+ 1tonstep1do

3 for j « i+ 1tonstep1ldo

1 A1)« AG,i) /A, i)

5: end for

6 for j < i+ 1tonstep1do

7 for kK < i+ 1tonstep1do

8 A(j, k)« A4, k) — A(j,1) « A(i, k)
9

: end for
10: end for
11: end for

12: end procedure

For large matrices this algorithm becomes inefficient, as it only applies vector
operations, where matrix operations as implemented in the level 3 BLAS are
more efficient than the vector operations in the level 2 BLAS [86]. Therefore,

make use of the following expressions:

A B
C D

M:

the algorithm can also be performed in a blockwise manner, where we can
La O
= [ A (5.4)

I 0

Lo I|0 S
C[LaUs LaUg

LUy, LU+ S

Us Up
0 I

Y
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where A = L4U 4 is the LU decomposition of the A block matrix and S is
also known as the Schur complement. Lo and Upg are mostly not triangular
matrices, but are a submatrix of a larger triangular matrix. The complete LU

decomposition of the above-defined matrix can be obtained by calculating
the LU decomposition of S = LgUg and inserting it in Eq.

|la B| [Li oI o]|1 o]|Us Up

|lc D| |Le I||0 Lg||o Ug|l| 0 I
_LAOUAUB
_LcLsoUS.

The LU decomposition of S can of course also be performed in a blockwise
manner and thus an improved iterative blockwise algorithm, making use of
matrix operations instead of vector operations is described in Algorithm

Algorithm 2 Calculate LU decomposition of a square matrix M of order
n in blocks of size b
1: procedure BlockLLUdecomp
2 fori «+ 1tonstepb+1do
3: tb=1i4+b
4: > We use the non-blocked algorithm for calculating the LU
decomposition of the block with dimension b x b.

5: LUdecomp (M (i : ib, i : ib))

6: > L; and U; denote the lower and upper triangular part of
M (i : ib,i : ib) after LU decomposition.

7 M(i : b, ib+1:n) + L;'M(i : ib,ib+ 1 : n)

: > by forward substitution

0: M(ib+ 1 : n,i: ib) (U;TM(z'b INRRE ib)T>T

10: > by forward substitution

11: M(@ib+1:n,ib+1:n)« M@Eb+1:n,ib+1:n)—M(ib+1:
n,i:ib) * M(i:ib,ib+1:n)

12: end for

13: end procedure

Again a blocksize can be chosen so the blocks that are decomposed fit in
the top level memory and decomposition of these blocks can be performed
efficiently, while the forward substitutions and matrix-matrix multiplications
are performed with the aid of the optimised level 3 BLAS, which inherently
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uses blockwise operations. In Table[5.2| we compare the naive implementation
as in Algorithm [1| with the blockwise LU decomposition using optimised
level 3 BLAS and ultimately it is again compared with the MKL version
of an LU decomposition. As for matrix-matrix multiplication we again see
that blocksizes should not be too small or too big, but in this case the
optimal blocksize is somewhat larger as for matrix-matrix multiplication
because for the latter, 3 blocks should be stored simultaneously in the top
level memory as opposed to only one block for LU decomposition. In this
case the optimised Intel MKL version does not outperform significantly our
blockwise implementation as both versions are based on the same optimised
level 3 BLAS routines of the Intel MKL.

Table 5.2: Runtimes (in seconds) for an LU decomposition of a square
matrix of dimension n x n on a single Intel Nehalem processor for dif-
ferent algorithms (averaged over 10 runs)

Matrix size Naive Blockwise algorithm with blocksize  Intel MKL
(n) algorithm 8 x 8 64 x 64 512 x512  version
4,096 29.0 8.0 6.0 7.8 5.3

8,192 237.1 62.7 44 4 51.5 40.0
12,288 1,123.52 234.5 150.2 174.1 132.5

For simplicity both algorithms described above do not take into account
the partial pivoting that was also implemented in all algorithms. This
partial pivoting is introduced to counteract the numerical instability that
can occur when a diagonal element becomes very small. As a remedy, we
always look for the element with the largest absolute value in a column 4,
and swap the row where the element belongs to with row i. In this way,
actually a permuted LU decomposition is calculated: A = PLU, with P a
permutation matrix, but this has only minor implications on the complexity
of the algorithm.

5.2.3. DISTRIBUTION OF MATRICES OVER THE LOCAL MEM-
ORIES OF THE DIFFERENT COMPUTING NODES

The algorithms introduced in the previous section are very general and the
blocks of the matrices that are processed in each iteration might even be read
in from the lowest memory level (disk storage) and the solutions written back

85



CHAPTER 5. A SELECTION OF HIGH PERFORMANCE COMPUTING METHODS

aO 0 aO 1 aO 2 aQ 3 : aQ.4 aU.5 é aU (-] aU 7 : aU.S aO 9 aO 10

PD Pl ; PD ; Pl ; Pﬂ Pl
B Buaity, A oifie sl A 1 e Buoifuso
aZO aZl.a22 23;32.4 az.ﬁgazﬁ a27-a28 a29. 2,10

P, P, : P, P, P, P,
B B ifee & 39:8q 8 25 B s7i8s B9fan0
a40 41 a42 43 44 4_5§a4_6 aA? 4.8 a4-9 4,10

P, P, P, i P P, P,
a5 0 aS 1 aS 2 aE 3 aE 4 35.5 é a5 6 a5 7 aﬁ 8 a5 9 as 10

Figure 5.2: Schematic representation of a 2 dimensional block cyclic data layout
of a 6 x 11 matrix with elements a; ; for a 2 x 2 process grid of 4 processes P, and
blocks of size 2 x 2

to this disk storage. However, reading from and writing to this disk storage
is very slow and so it is desired that this kind of memory is not used for
basic operations such as matrix multiplications, because reading and writing
the data then becomes the bottleneck of the algorithm instead of the actual
computations. Therefore, it is vital to be able to store the entire matrix at
least in RAM memory which can be read and written to very rapidly. RAM
memory is mostly limited in size and it should thus always be kept in mind
what size of matrix can be stored in the RAM memory of the computing
node. This of course depends on the type of elements in the matrix, but
usually we would like to store the elements as 64-bit floating point numbers
(usually referred to as doubles) for optimal numerical accuracy. For instance
when 16 GB of RAM is available on a machine, the maximum size of a
square matrix of doubles that can be stored and processed is 44,721. For
processing larger matrices in an efficient way, one must then look for a
machine with more RAM memory installed, or distribute the matrix over the
local memories of different interconnected nodes. The latter is considered in
this dissertation as such interconnected machines are already widely available
and it has the benefit that the computing power of each of these computing
nodes may be used in parallel to reduce computation time as well.

There are several ways of distributing a matrix over the local memories
of different computing nodes, but the recommended strategy is the so-
called two-dimensional block cyclic layout. This data layout has shown
to perform well in terms of scalability, load balance and communication
properties [87, 88]. Such a distribution starts with splitting the original
m X n matrix into rectangular submatrices of size my X n; and mapping
the available p processes in a rectangular p, X p. grid. An example of the
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two-dimensional block cyclic data layout can be found in Figure for a
matrix of size 6 x 11, with blocksize 2 x 2, distributed on a 2 x 2 process
grid. Such a data distribution has several advantages. First of all the
blockwise distribution enables the use of level 2 and level 3 BLAS to perform
algebraic operations on the submatrices present in the memory of each
process. Secondly, when looking at the LU decomposition operations are
performed on the matrix from left to right and from the top down, and thus
the cyclic distribution offers a good load balance as opposed to a non-cyclic
distribution where for example Py would no longer contribute after n/P
steps. Finally, the two-dimensional data distribution offers possibilities to
exploit parallelism both column-wise and row-wise.

5.2.4. EXPLOITING PARALLELISM IN LINEAR ALGEBRAIC OP-
ERATIONS

Distributed computing does not only have as a benefit that larger matrices
can be processed, but it can also make use of the aggregated computing
power of the involved computing nodes. Therefore, some parallelism should
be exploited in the different algebraic operations. If we look at matrix-matrix
multiplications, we have seen that each block of the matrix product can be
formed, for 1 <a<q, 1 < <r, as

Clap) = D A Bis) -
y=1

The SUMMA method (Scalable Universal Matrix Multiplication Algorithm)
is a widely-used algorithm for exploiting the parallelism of a matrix-matrix
multiplication, based on this blocking of the matrices [89]. The algorithm
is again quite simple in nature, but has shown to be highly efficient when
memory use per node is kept constant. The pseudo-code for this algorithm is
shown in Algorithm [3] where this algorithm can be executed by each process
in the process grid in parallel. The broadcasts mentioned in the algorithm
denote that the process possessing the matrix block sends the block, while
the other processes in the process row or process column receive the matrix

block.

The algorithm can be summarised as follows. The processes calculate in
parallel the blocks of C stored in their local memory by receiving the blocks
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Algorithm 3 Calculate matrix multiplication C = AB with A and B of
resp. dimensions m x [ and [ X n distributed over a p, X p. grid with blocks
of dimension b x b

1: procedure SUMMA

2: for i < 1to % step 1 do

3: if this process contains a block C; ) then

4: for j < 1to 7 step 1 do

5: if this process contains the block C; ;) then
6: for k «+ ltoéstepldo

7 broadcast A; x) over process row

8: broadcast By ;) over process column
9 Cig) = Clig) + Aaw Bk

10: end for

11: end if

12: end for

13: end if

14: end for

15: end procedure

of A and B necessary for computing the block of C in an iterative way. This
parallelism based on a two dimensional block cyclic distribution of the matrix
is also exploited in the parallel BLAS (PBLAS) routines. These routines form
the basis of ScalLAPACK, which is a high-performance implementation of
the LAPACK library for distributed systems. The PBLAS and ScaLAPACK
routines make use of the Basic Linear Algebra Communication Subprograms
(BLACS) that arrange the message passing between the nodes. Such a
standard communication library enables portability between systems using
different libraries for message passing. In this way, ScaLAPACK and PBLAS
offer a standard solution for efficiently processing large-scale matrices on
distributed systems.

5.3. SPARSE MATRICES

The previous section elaborated on distributed computing methods for linear
algebraic operations on large matrices. Sometimes the use of distributed
systems can be avoided when a matrix contains a lot of zeroes and is only
sparsely filled with non-zero values. Such a matrix is called sparse opposed
to a dense matrix, where a matrix is generally treated as sparse whenever
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less than 10% of the values are non-zero. The advantage of the sparsity of
a matrix is the fact that zero values do not contribute in a lot of algebraic
operations, as zero is the identity element in additions and subtractions
and it is the absorbing element in multiplications. Thus, for instance, in a
matrix-matrix multiplication, the zero elements of the factors can be ignored.
Consequently, only the non-zero values of the factors should be stored and
the algebraic operation can be performed by iterating only over the non-zero
values.

There are BLAS available for sparse matrices, although they only contain
routines for sparse vector operations, sparse matrix/dense vector operations
and sparse matrix/dense matrix operations. This is partly because the
previously explained method of blockwise operations is not applicable for
most sparse matrices as for an arbitrarily chosen blocksize the number of
non-zero elements in these blocks may vary dramatically, leading to an
inefficient use of the memory hierarchy. For the factorisation of a matrix,
solving linear equations and inverting a matrix, however, algorithms exist
that are optimised for sparse matrices, which we will touch upon in this
section. These algorithms are implemented in some widely used software
packages such as PARDISO [90], MUMPS [91], HSL [92] and SuperLU [93].
They all offer various routines for sparse matrices based on slightly different
implementations. In this dissertation, it was chosen to use PARDISO, as it
offered the solutions suited for the problems encountered in this research
and also because the developing team was very open for collaboration.

Some of the basic concepts of sparse matrix algebra will be introduced in
the following sections, but for more details, we would like to refer to a book
about solving sparse linear systems by Saad [94] and a very informative
review paper by Liu [95].

5.3.1. STORAGE FORMAT

Where a dense matrix is most efficiently stored as an array containing the
consecutive elements of the matrix when running through it column- or
row-wisely from the top down and from left to right, there are several ways
for storing a sparse matrix. The simplest way is to store the non-zero
values together with their row and column coordinates, which enables the
construction of the matrix in an easy way. However, a more compressed
form that still allows for efficient arithmetic and algebraic operations is the
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Compressed Row/Column Storage (CRS or CCS) format. The CRS format
is also used by PARDISO and thus will also be used further on in this
dissertation, but the CCS format is equivalent to the CRS format.

The coordinate format requires 3 arrays with the number of elements equal
to the number of non-zeroes in the sparse format. These arrays are the
array with the non-zero values (val), the array with the column indices
of these non-zero values (col) and the array with the row indices of these
non-zero values (row). Compared to the coordinate format, the CRS format
compresses the array of the row indices row to an array with as size the
number of rows in the matrix incremented by one (row_ptr). This is achieved
by sorting the non-zero values row-wisely in the val array with their column
indices at the same position in the col array. The row_ptr array contains
at every position i the index where row ¢ starts in the val and col arrays.
The first element of the row_ptr array is always one and the last element
(position m + 1, with m the number of rows of the matrix) is always the
number of non-zero values incremented by one. As an example, if we look
at the following sparse matrix

10 05 0
2 70 0
0 00 O0f°
4 0 1 11

the different arrays of the CRS format have the following elements:

val = [10,5,2,7, 4,1, 11]
col = [1,3,1,2,1,3,4]
row_ ptr =[1,3,5,5,8] .

Note that in this example we followed a one-based indexing, so when zero-
based indexing is used the values of col and row_ptr should be reduced by
one.

5.3.2. SOLVING A SPARSE SYSTEM OF LINEAR EQUATIONS

For solving a sparse system of linear equations, just as for solving a dense
system of linear equations, two options exist, namely using direct solving
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methods based on a matrix decomposition or using iterative solving methods
applying successive approximations of an initial guess to converge towards
the exact solution. These iterative methods, like the conjugate gradient
method, have been around since the 1950s and are also applied for solving
dense systems of linear equations. Because most iterative methods only
need matrix-vector operations, the sparsity of the system can efficiently be
exploited. However, a downside of the iterative methods is the fact that
for each solution of a system with a similar coefficient matrix, the iterative
cycle has to be repeated. Moreover, the behavior of iterative solvers can
be unpredictable and they are mostly not robust for small perturbations
[94]. Therefore, in the 1970s, a lot of research was oriented towards efficient
sparse direct solvers, mainly initiated by electrical engineers for the design

of electrical networks.

A first step for direct solving routines is computing the LU decomposition of
the coefficient matrix of the system of equations. An obstacle that had to be
overcome, was the fact that the LU decomposition of a sparse matrix could
become densely filled with non-zero values. Such fill-in can be reduced by
reordering or permuting the sparse matrix. A very simple but informative
example is the LU decomposition of the following sparse matrix

(103 2 8 9 1 0 o0

o offio 3 2 8 9
2150 0 0 02 1 0 0 0||0 144 —04 —1.6 —1.8
5 0120 0|/=]05-01 1 0 ol]lo 0o 11 -42 -47|, (5.5)
6 0 016 0 06 01 -01 1 of|l0o 0o o0 105 —6.2
8 0 0 015 |08-02-02-071][0 0 0 0 25

where the factors are two completely filled triangular matrices. This fill-in
can easily be avoided by switching the first and last row and column of the

matrix:
(15 0 0o o 8] [1 o o o offi5 0 0o o g
0 15 0 0 2 o 1 0 0 0|0 15 0 0 2
0o 0 12 0 5|/=l0 o 1 o ollo o 12 o 5|, (5.6)
0 0 0 16 6 o 0 o0 1 ol|lo o o 16 6
9 3 2 8 10| |06 02 02 05 1)[0 0 0 0 1

where the factors now have the same sparsity pattern as the original ma-

trix.

91



CHAPTER 5. A SELECTION OF HIGH PERFORMANCE COMPUTING METHODS
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Figure 5.3: The graph representation of the matrices in Eq. (5.5) (left) and (5.6)
(right).

Finding the best ordering for minimising fill-in in a more general case is
an NP-complete problem and thus can only be approximated by heuristic
methods. Algorithms that try to find the best fill-reducing ordering are
all based on a graph representation of the sparse matrix. For a matrix
with a symmetric structure this is an undirected graph, while otherwise a
directed graph is used. In this section we will assume that the matrices will
be symmetrical in structure and for these matrices, the nodes of the graph
representation are the rows/columns of the matrix and an edge between node
i and node j is drawn when element (4, j) of the matrix is not zero. The graph
representations of both matrices are shown in Figure [5.3] The most simple,
but well-performing algorithm for minimizing the fill-in of a sparse matrix
when being factorised, is the so-called Cuthill-McKee algorithm, which starts
at a node with the lowest degree and then orders all its neighbours from lowest
to highest degree [96]. The algorithm iteratively goes through all the nodes
of the graph using a breadth-first traversal, visiting first all the neighbours
at a certain level before moving on to a next level of neighbours.

Actually, before the Cuthill-McKee algorithm was conceived, a more greedy
approach was used, called the minimum degree algorithm [97]. This algo-
rithm performs at each step of the Gaussian elimination procedure some row
and column permutations to minimise the number of off-diagonal non-zeroes
in the pivot row and column. Several enhancements and variations of this
algorithm have been proposed, whereof the approximate minimum degree
algorithm is probably the most popular because of its high speed and accu-
racy [98]. Another algorithm for finding the optimal fill-reducing ordering is
the nested dissection algorithm based on recursive graph partitioning [99].
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This algorithm is particularly used for symmetric positive definite matrices
and even distributed-memory implementations of this algorithm, such as
ParMETIS [I00] and PT-Scotch [101], exist for handling very large sparse
matrices.

Next to the continuous reduction in fill-in due to the improvement of the
fill-reducing ordering algorithms, the direct solution method for sparse linear
systems gained a significant boost by the development of a frontal solver
in 1970 [102]. Such a frontal solver combines several non-zero elements in
so-called frontal matrices that are efficiently partially factorized by dense
matrix operations. An improvement to this method was the multifrontal
method, making use of the fact that several frontal matrices could be
processed independently of each other, based on a tree structure for detecting
dependencies between frontal matrices [I03]. This cleared the path for
parallel processing of the frontal matrices and, furthermore, instead of
factorising the sparse matrix column-by-column, several columns could be
treated together in the supernodal form of the multifrontal method. This
supernodal multifrontal method is the basis of most modern implementations
of a direct solver for a sparse systems of linear equations and it is very efficient
because it can use level 3 BLAS to perform algebraic operations on the
supernodes. As a detailed description of this method is outside the scope
of this dissertation, we refer the interested reader to the review paper by
Liu [95].

5.3.3. INVERTING A SPARSE MATRIX

The inverse of a sparse matrix is in most cases no longer a sparse matrix.
For instance, if we again look at the sparse matrix from Eq. (5.6), then the
inverse of this matrix can be computed as given by

[ 0.398  0.083 0259 0.233 —0.621]
0.11 0.094 0.086 0.076 —0.207
0.092 0.023 0.155 0.065 —0.172] , (5.7)
0.276  0.069 0216 0.256 —0.517

[ —0.552 —0.138 —0.431 —-0.388 1.034 |

which is a completely dense matrix. For completeness, we would like to
remind the reader that permutations do not offer less fill-in in the inverse
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matrix as is the case for the LU factors, because the inverse of a permutation
matrix is equal to its transpose and so

1

(PAP') =PA™'P/,

with P a permutation matrix.

However, sometimes it might be useful to calculate a subset of the elements
of the inverse of a sparse matrix. For example, when having to calculate the
trace of the product of a symmetric matrix with the inverse of its derivative
towards a certain parameter, we only have to calculate the elements of
this inverse that are non-zero in the original matrix. Such a subset can
be calculated in a recursive manner by the Takahashi equations, which
were already derived in 1973 [104]. The beauty of these equations lies in
their simplicity and efficiency and, therefore, they are presented here for
calculating a subset of the elements of the inverse of a sparse symmetric
matrix. Assume A is a symmetric sparse invertible matrix of dimension
n X n and let us denote its inverse by Z. Because A is a symmetric matrix,
it can be factorised as LL’ by the Cholesky decomposition, with L a lower
triangular matrix. As such,

ZA =1, ZLL =1, < ZL =L1L"""

and when defining D = diag (L), a diagonal matrix with as diagonal elements
the same elements as on the diagonal of L, we can add ZD — ZL to each
side of the equation, yielding

ZD=L"'+7ZD - ZL
=L'+Z(D-L).

So finally, the Takahashi equation for Z becomes
Z=L"'D'+ZD-L)D .

The first term of this equation is an upper triangular matrix because the
inverse of an upper triangular matrix is also upper triangular. The diagonal
elements of this matrix are the squares of the reciprocals of the diagonal
elements of L, which will be denoted as d; ;. The second term of this equation
is a multiplication of a dense matrix, Z, and a strictly lower triangular matrix
with zeroes on the diagonal, (D — L)DL.
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Because A is a symmetric matrix, Z is also symmetric, and thus we only
have to calculate the lower triangular part of Z. The diagonal elements are

then calculated as .

1 1
Zii = @ T i, Z Zhilki
’ 7 k=i+1
and the off-diagonal elements, for j < i, as

n

1
g = T Z Z,ilk.j 5

Y k=j+1

where terms with [, = 0 can be skipped. These equations can be traversed
iteratively with ¢ going down from n to 1 and j from ¢ to 1 and can be used
for dense and sparse matrices. However, for a sparse matrix, it is known
that for k& > ¢

lij #0,lk; #0=lki #0

and so a subset of elements of Z corresponding to non-zero elements in L
can be computed using only the non-zero elements of L and elements of Z
also present in this subset [105]. In this way it is not necessary to compute
the entire inverse of the sparse matrix resulting in a more efficient use of
computing resources in terms of memory as well as computing power.

The supernodal multifrontal method for calculating the decomposition of a
matrix can also be modified to compute the subset of the inverse based on
the Takahashi equations [106]. In this way, level 3 BLAS can be used for
inverting the dense supernodes and several supernodes can be processed in
parallel. This is also exploited by the PARDISO package, which was one of
the reasons why this package has been chosen to be used in our large-scale
genomic prediction implementation.

5.4. APPLICATION OF HIGH PERFORMANCE COMPUT-
ING IN GENOMIC AND GENETIC PREDICTION

This section presents a brief summary of the use of high performance
computing and sparse matrix algebra in a genomic prediction setting, but
will also highlight why further research was needed in this area and in what
way high performance computing could be introduced even more. It is thus
also a bridge to the following chapters, which will explicitly deal with the
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improvements high performance computing can offer to the field of genomic
prediction.

5.4.1. BEFORE THE INTRODUCTION OF GENETIC MARKERS

As mentioned in the introduction to this chapter, the field of genomic predic-
tion has always made use of supercomputers to overcome the computational
burdens of solving the mixed model equations and inverting the relationship
matrices. Until the introduction of genetic markers, the focus was mainly
on sparse matrix algebra, because the coefficient matrix of the mixed model
equations and the covariance matrices were mainly sparse. Although the
sparse matrix algebra as introduced in this chapter was not explicitly inte-
grated from the beginning, Henderson already found a method for directly
computing the inverse of a sparse numerator relationship matrix in 1976,
making it no longer necessary to build and invert the numerator relationship
explicitly [45]. This numerator relationship matrix was commonly used as
the covariance matrix for the individual genetic effects, so sparse matrix
algebra was in this way implicitly applied in genomic prediction. At that
time, Henderson’s methods for estimating the variance components, which
were in principle variations of the ANOVA method, were applied, not yet
requiring the inversion of the coefficient matrix [7].

The rise of restricted maximum likelihood for variance component estimation
in the beginning of the 1980s changed the origin of the computational burden
for genomic prediction, because the coefficient matrix of the mixed model
equations had to be inverted to obtain REML estimates of the variance
components. Because Henderson’s method can only be used for inverting
the numerator relationship matrix, because of its specific properties, it could
not be used for inverting the coefficient matrix. Furthermore, the coefficient
matrix has to be set up for solving the mixed model equations and when
using a direct solving routine, the factorisation of this coefficient matrix can
also be used to compute the inverse by forward and backward substitution.
However, at that time computing resources were a lot more scarce and
for certain analyses it was even not possible to keep the entire coefficient
matrix in memory, when being stored as a dense matrix. The derivative-
free algorithm for obtaining REML estimates of the variance components,
conceived in 1986, tried to overcome this by no longer needing the inversion
of the coefficient matrix and by sequentially reading and processing the
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data [68]. This algorithm already exploited the sparsity of the coefficient
matrix, which was a novelty in variance component estimation for genomic
prediction.

Another breakthrough for large-scale genomic prediction was the introduction
of a direct sparse solver in the expectation-maximisation algorithm for REML
estimation of the variance components in 1990 [34]. This made the EM
algorithm again competitive with the derivative-free algorithm, which was
previously a lot faster due to the fact that before that time dense inversion
was used in common implementations of the EM algorithm. Misztal was the
driving force behind computational optimisation of the EM algorithm for
use in animal breeding and where at first he used a commercial sparse direct
solver, his work led to the development of a sparse matrix package FSPAK,
which also incorporated the Takahashi equations for finding a subset of the
elements of a sparse matrix [69, [107].

As shown in the previous chapter, it is indeed not necessary to compute
the entire inverse of the coefficient matrix, as for example in Eq.
only the trace of CZ2G~1G;G ! is needed for obtaining an estimate of the
variance components of the random (mostly genetic) effects. Commonly, the
covariance matrix G has the following form

71 G 0 0

0 79Gy - 0

G=| . . .
0 0 - ,Gy

and so the derivative of G with respect to a variance component ~;, G; and
the inverse of G are of the form

0 0 0 - -
L(;l—l 0 0
: 71
' 0 1aGgj! 0
G,= |0 G, 0| G '= e
: 0 0 1g-t
0 0 0 L Yo 9
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Their product is then of the form

[0

) 1
G,G'l==o

Vi
0

and

[0

) 1
GGG =0

i
0

0 0]
[ o
0 0
0O --- 0]
G;‘l 0
0 ]

The coefficient matrix C of the mixed model equations can also be written

asS
[X'R-1X X'R1Z,
o Z\R7'X Z'R7'Zi + LG
Z,R'X ZIR™Z,

X'R™'Z,
Z\R"'Z,

-1 1 -1
Z,R™'Zy+ -G |

leading to the observation that the non-zero elements in G~ 1G,G™! are
also non-zero in Czz. If the inverse of C is defined as

CXX CXZ1

) CZ1X CZ1Z1
C =

CZgX CZgZ1

CX%4g
CZ1Zg

C%9%g

then the trace that originally needed to be calculated can be reduced to
the trace of CZiZiG;l. To calculate that trace, we only need the diagonal
elements of the product and as such only the elements of C%%i that are non-
zero in G ! have to be calculated. Because of the fact that the Takahashi
equations can return the elements of the inverse matrix corresponding to the
non-zero elements in the Cholesky factors, this subset of inverse elements
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also contains the elements corresponding to non-zero elements in the original
matrix. In this way, when the coeflicient matrix is sparse, the traces in the
score functions of the REML estimation can be rapidly evaluated using the
Takahashi equations.

Due to these highly efficient computational improvements, the software
package developed by Misztal is still used today and the BLUPF90 suite
of programs for genomic prediction, which is very popular among animal
breeders, relies on the FSPAK package [I08]. Most of the first results with
this package were obtained from utilizing a Cray supercomputer, but a
square matrix of rank 8,345, which was only for 0.1% filled with non-zero
elements could already be partially inverted on a personal computer in 30
seconds [69]. This family of programs thus greatly increased the usability of
genomic prediction in animal breeding farms.

5.4.2. AFTER THE INTRODUCTION OF GENETIC MARKERS

The use of genetic markers in genomic prediction was first introduced at
the end of the 1980s, but the number of markers was only limited at that
time and so sparse matrix algebra could still be used [12]. However, with
the advent of SNP genotyping by the end of the previous millennium, many
genetic markers became available, leading to the problem of efficiently
incorporating this information in genomic prediction models. The landmark
paper of Meuwissen et al. was the first to introduce this dense marker
information in genomic prediction by modelling a random effect for each
genetic marker instead of modelling a single genetic effect per individual [14].
This dramatically changed the appearance of the mixed model equations
as they were no longer sparse but dense and the dimension was equal to
the number of genetic markers plus the number of fixed effects, instead of
the number of individuals plus the number of fixed effects. Furthermore,
the covariance matrix for the genetic marker effects was usually a diagonal
matrix, making it easily invertible. Therefore, sparse matrix algebra was of
lesser importance for genomic prediction, but due to the constant increase
in computing power in those years, the dense coefficient matrices could
still be processed when the number of genetic markers remained low (up to
1,000).

By 2008, the number of commercially available genetic SNP markers went up
to 10,000 and more and so the processing of the dense mixed model equations
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became a time-consuming operation. Legarra and Misztal compared direct
solving routines to iterative methods for solving the mixed model equations,
where the latter show a much faster performance, but the solving time is
linearly dependent on the number of phenotypic records [35]. Therefore,
direct solving routines were suggested as a viable alternative when the number
of records is a lot higher than the number of SNP markers. At the same time,
VanRaden came up with a method to avoid the explicit modelling of genetic
marker effects, because dense marker maps became available with about
50,000 SNP markers, making it computationally impractical to process the
resulting mixed model equations [16]. Instead of modelling the marker effects
explicitly, the genetic marker information was used to set up the covariance
matrix between individual genetic effects, reducing the dimensionality of the
mixed model equations from the number of genetic markers to the number
of individuals genotyped, which resulted in a dimension reduction of about
one order of magnitude, leading to the fact that reliabilities could be more
easily computed for these models.

Not much later, many efforts were put into the computational side of so-called
single-step GBLUP, where phenotypic records of genotyped individuals could
be combined with phenotypic records of non-genotyped individuals in a single
analysis [30, 109, 110]. Correlations between ungenotyped and genotyped
individuals were based on pedigree just as the mutual correlations of the
ungenotyped individuals, where mutual correlations between genotyped
individuals were based on their genotypes. This leads to a covariance matrix
that is partly sparse and partly dense, which is handled by splitting it in
a sparse and a dense part and solving the mixed model equations in an
iterative way by calculating the matrix-vector products separately for the
dense part and the sparse part [36]. It should be noted that the dense part
was usually several orders of magnitude smaller than the sparse part of these
covariance matrices. However, because the number of genotyped individuals
kept on growing, the calculation of the covariance matrix for the genotyped
individuals could become time-consuming and, therefore, for the first time,
it was investigated in 2011 whether the BLAS and LAPACK routines could
aid in decreasing the runtime for setting up this covariance matrix [53].
Parallelisation was also investigated in the same study, but it was limited to
shared-memory multiprocessing with OpenMP. In 2014, efforts were made
to improve efficiency of the factorisation and inversion of the sparse part for
REML estimation of the variance components [39]. Although the supernodal
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multifrontal method was introduced in this research instead of the commonly
used iterative methods and the implementation made use of the BLAS and
LAPACK routines, the implementation did not make use of any form of
parallelisation.

Furthermore, all the above computational optimisations were based on the
fact that the number of genotyped individuals in the analysis stayed reason-
ably low (at maximum 10,000) and that the number of SNP markers was a lot
larger than this number of genotyped individuals. However, the conclusions
of a symposium about the future of processing and analysing large-scale
data sets in 2011 summarised that parallel programming paradigms were
necessary for utilizing high performance computing infrastructures, because
of the continuous growth of genotypic data as well in the number of geno-
typed individuals as in the number of SNP markers used for genotyping [42].
It is therefore that this research aimed as a first step at introducing dis-
tributed computing techniques in the field of genomic prediction for animal
breeding. The distributed computing techniques can help to overcome the
computational burden of an analysis with many genotyped individuals re-
sulting in a high-dimensional dense coefficient matrix for the mixed model

equations.

The field of plant breeding mainly followed the developments made for ge-
nomic prediction in animal breeding, but because plants are more influenced
by environmental conditions, during the last decade research was oriented
more and more towards modelling interactions between the genotype and the
environment. For these interaction effects, information is only sparsely avail-
able since each observation is performed in a single environment. Moreover,
when each marker is modelled to have a different effect in each environ-
ment and these marker effects are modelled explicitly, the dimensionality
of the mixed model equations can increase dramatically. Therefore, as a
second step of this research, the distributed computing methods developed
in the first part were coupled with sparse matrix algebra to efficiently use
supercomputing power for the analysis of large-scale trial data coming from
different environments with the inclusion of genotypic information, resulting
in a partly dense, partly sparse system of equations.
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6 DAIRRY-BLUP: A HIGH-PERFORMANCE
COMPUTING APPROACH TO GENOMIC
PREDICTION IN ANIMAL BREEDING

6.1. INTRODUCTION

In the field of genomic prediction, genotypes of animals or plants are used to
predict either phenotypic properties of new crosses or breeding values (EBVs)
for detecting superior parents. Since quantitative traits of importance to
breeders are mostly regulated by a large number of loci (QTL)F_-I, high density
SNP markers are used to genotype individuals. The most frequently used
SNP arrays for cattle consist of 50,000 SNP markers, but even genotypes
with 700,000 SNPs are already available [42].

Some widely-used analysis methods rely on a linear mixed model backbone
in which the SNP marker effects are modelled as random effects, drawn
from a normal distribution [14]. The predictions of the marker effects are
known as BLUP, which are linear functions of the response variates. It has
been shown that when no major genes contribute to the trait, Bayesian
predictions and BLUP result in approximately the same prediction accuracy
for the EBVs [21], 22, 23]. At present the number of individuals included in
the genomic prediction setting is still an order of magnitude smaller than the
number of genetic markers on widely-used SNP arrays, favoring algorithms
that directly estimate EBVs, which is in this case computationally more
efficient than first estimating the marker effects [16], 28| [36] [40]. Nonetheless,
it has been shown theoretically that in order to increase the prediction
accuracy of the EBVs for traits with a low heritability, the number of
genotyped records should increase dramatically [2I]. Most widely used
implementations like synbreed [I11I] and BLUPF90 [108] are limited by
the computational resources that can be provided by a single workstation.

The content of this chapter has been published as De Coninck, A., Fostier, J., Maenhout,
S. and De Baets, B. (2014) DAIRRy-BLUP: A High-Performance Computing Approach
to Genomic Prediction. Genetics 197(3):813-822.

E.g. more than 2000 QTLs are already found to contribute to the composition and
production of milk in cattle (http://www.animalgenome.org/cgi-bin/QTLdb/BT/index)
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We present DAIRRy-BLUP, a parallel framework that takes advantage of
a distributed-memory compute cluster in order to enable the analysis of
large-scale datasets. Additionally, results on simulated data illustrate that
the use of such large-scale datasets is warranted as it significantly improves
the prediction accuracy of EBVs and marker effects.

DAIRRy-BLUP is optimized for processing large-scale dense datasets with
SNP marker data for a large number of individuals (> 100,000). Variance
components are estimated based on the entire dataset using the average
information restricted maximum likelihood (AI-REML) algorithm. Therefore,
it distinguishes itself from other implementations of the AI-REML algorithm,
which are mostly optimized for sparse settings and not able to make use of
the aggregated compute power of a supercomputing cluster [39] [108].

All matrix equations in the algorithms used by DAIRRy-BLUP are solved us-
ing a direct Cholesky decomposition. Although efficient iterative techniques
exist that can reduce memory requirements and calculation time for solving
a matrix equation [35], the choice for a direct solver is motivated by the use
of the AI-REML algorithm for variance component estimation on the entire
data set. In fact, this Cholesky decomposition can be used multiple times in
the algorithm to solve systems of equations with a different left-hand side
and it can also be used for calculating the inverse of the coefficient matrix,
necessary for AI-REML estimation of the variance components.

6.2. MATERIALS AND METHODS

6.2.1. SIMULATED DATA

The simulated data used for benchmarking DAIRRy-BLUP was generated
using AlphaDrop [112], which was put forward by the Genetics Society of
America (GSA) to provide common datasets for researchers to benchmark
their methods [113]. Since no datasets with more than 10,000 phenotypic
and genotypic records are yet publicly available, this software was used to
create datasets with 10,000, 100,000 and 1,000,000 individuals of a livestock
population genotyped for a varying number of SNP sites (9,000, 60,000 and
360,000). AlphaDrop first launches MaCS [I14] to create 4,000 haplotypes
for each of the 30 chromosomes using an effective population size of 1,000
for the final historical generation, which is then used as the base generation
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for the next 10 generations under study. The base individuals of a simulated
pedigree had their gametes randomly sampled from the 4,000 haplotypes
per chromosome of the sequence simulation. The pedigree comprised 10
generations with 10 dams per sire and 2 offspring per dam, with the number
of sires depending on the total number of records that was aimed for (50,
500 or 5,000). Genotypes for individuals from subsequent generations were
generated through Mendelian inheritance with a recombination probability
of 1% per ¢cM. The phenotypes of the individuals were affected by 9,000 QTL,
randomly selected out of the approximately 1,670,000 available segregating
sites. The effects of these QTL were sampled from a normal distribution
with mean 0 and standard deviation 1. Final phenotypes based on the QTL
effects were generated with a user-defined heritability of 0.25. This means
that one fourth of the variance of the phenotypes was due to the variance
of the sum of the additive QTL effects or the true breeding values (TBV).
Boxplots of the phenotypes and of the TBV for a population of 100,000
individuals are shown in Figure to illustrate this.

“* R

BV phenotypes

Figure 6.1: A boxplot is given of the simulated true breeding values and the
simulated phenotypes for a population of 100,000 individuals.

When constructing the large-scale datasets, it became clear that AlphaDrop,
which is a sequential program and does not make use of any parallel pro-
gramming paradigm, was not designed for generating SNP data for such
large numbers of individuals. The largest dataset that could be created
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comnsisted of 1,000,000 individuals, each genotyped for 60,000 SNPs. This
required about 118 GB of working memory and the final data set was stored
in text-files with a total size of about 350 GB. The simulation took more
than 13 days on an Intel Xeon E5-2420 1.90 GHz with 64 GB RAM and
another 65 GB as swap memory. The datasets can be recreated by using the
correct seeds for the random number generators in the MaCS and AlphaDrop
software.

6.2.2. STATISTICAL METHOD: LINEAR MIXED MODEL

The underlying framework for the analysis of genotypic datasets is the linear
mixed model:
y=XB+Zu+e,

where y is a vector of n observations, B is a vector of k fixed effects, u is
a vector of [ random effects and e is the residual error. X and Z are the
incidence matrices that couple the effects to the observations. Assuming
that the random effects and the residual error are normally distributed: u ~
N (0,G) and e ~ N (0,R), the observations are also normally distributed:
y ~ (X3,V), with V=R + ZGZ'.

The BLUP of the random effects are linear estimates that minimise the mean
squared error and exhibit no bias. Henderson translated this estimation
procedure into the so-called mixed-model equations (MME), which can be

)

These equations were conceived at a time when SNP markers were not yet

written in matrix form as [8]:

X'R1X X'R1Z

ZR X ZR'Z+G! ZR ly

X’R_ly]

available and the random effects were associated with a genotypic value per
individual. However, when SNP markers were introduced in animal breeding,
these equations were used with the SNP markers modeled explicitly and the
genotypic value corresponding to the sum of the SNP marker effects [14].
In this study, SNP marker effects are always modeled explicitly to obtain a
matrix equation whose dimensionality depends only on the number of SNP
markers and the number of fixed effects included in the analysis. As such
it is anticipated that genomic datasets will mainly grow in the number of
individuals due to the decreasing cost for genotyping [115].
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A common simplification, which leads to the ridge regression (RR) formu-
lation [28], is to assume that all SNP marker effects are uncorrelated and
have homoscedastic variance ¢2. Similarly, residual errors are assumed to
be uncorrelated and to have homoscedastic variance o2. Although these
assumptions might not be in accordance with reality, it has been shown that
this simplified model can reach prediction accuracies that are close to those
of more complex models [16], [40]. The covariance matrices are thus set to

R = 021, (with I,, the identity matrix of dimension n) and G = ¢2I;, which
leads to the following MME:

Bl Xy

a| | Zy

The solution to this matrix equation is known as the Ridge Regression BLUP
2
(RR-BLUP), because Z—g can be seen as a ridge regression penalization pa-

rameter, which controls the penalization by the sum of squares of the marker

X'X  X'Z
ZX 77+ %1,

effects. In this case, however, the penalization parameter is not estimated
by cross-validation, but since it is a ratio of two variance components, the
latter will be estimated by a Restricted Maximum Likelihood procedure
(REML).

In this specific study on simulated datasets, no fixed effects other than the
overall mean are modelled, i.e. kK =1 and X = 1,,, a vector of n ones. The
random effects are the SNP marker effects and every observation corresponds
to the phenotypic score of an individual. The Z matrix is set up using the
0/1/2 coding, where 0 stands for homozygosity in the most frequent allele, 1
stands for heterozygosity and 2 stands for homozygosity in the least frequent
allele. An example of the applied linear mixed model with 5 individuals,
genotyped for 3 SNP markers is

[ 1.025 ]| 020 el
2.547 1 0 O |ug €9

—0.015| =p+ |2 0 1| |uz| + |es
0.852 01 2| |us eq

| —4.782] 11 1 L es ]
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6.2.3. AVERAGE INFORMATION REML (AI-REML)

When the covariance structures of the random effects and of the residual
errors depend on the respective variance component vectors v and ¢,

R W)
e "1 0o R

the REML log-likelihood can be written as follows, derived in chapter 3, see

Eq. [65]:

e, (027, ) = — (<n — k)logo® + log |G| + log |R}
P
+log |C| + Y 2y> ,
g

where C is the coefficient matrix from the MME as defined in the previous
section and
P=V!I_-vIX(XV'X)"'XV"’

With the aforementioned assumptions and setting 02 = 02, R = I, and

G = 91I;, with v = Z—é, this simplifies to a log-likelihood with only 2
parameters, namely o2 and 7 :

/
P
lremL (07,7) = = ((n — k) logo? + blogy +log |C]) + yg2y :

where C and P only depend on «. In this form, we can find an analyti-
2

cal solution for the maximization of the log-likelihood with respect to o,

provided ~ is known:
o2 = y'Py

¢ n—k

The maximization of the REML log-likelihood function with respect to v
can mostly not be solved analytically, due to the complex first derivative

with respect to v, also known as the score function, which was derived in

Chapter 3, Eq. (4.20):

OlREML _ (b tr (CZZ) u'a )

(6.1)

dy v E o2
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with C%Z, the lower right block of the inverse of C, also depending on
~v. Newton’s method for maximizing likelihood functions can be used to
find a solution for this optimization problem. The iterative scheme looks
like:

Kit1 = ki — H; 'Vigpmr (ki)

with k; the vector of unknowns (here k; = (J?,’y)) at iteration ¢, H; the
Hessian matrix of Iggpyr, evaluated at ; and Viggmr, (ki) is the gradient
vector of the REML log likelihood with respect to k, evaluated at k;.
However, the Hessian matrix can be very hard to construct due to the large
size of the matrices that need to be multiplied or inverted.

Originally, Patterson and Thompson used the Fisher information matrix,
which is the expected value of the Hessian matrix, for updating the variance
components, but the computation of the elements of this Fisher information
matrix involves calculating traces of large matrices, which are tedious to
construct [59]. Taking an average of the expected and observed Hessian
matrix, these traces disappear in the expression of the update matrix. The
resulting update matrix is called the Average Information matrix (Al-matrix)
and it can be shown that this Al-matrix can easily be calculated as [65]:

Hy = ,QPQ, (62)
with
Q-3 2. (6.3)

The details for obtaining this expression for the average information matrix
have been presented in Section 4 of Chapter 3, where it was also shown that
this update matrix can be obtained as the Schur complement of C in an
augmented form of this coefficient matrix.

Not only is the AI-REML procedure computationally practical for use in a
distributed-memory framework, it has also been shown that less iterations are
needed to obtain convergence compared to a derivative-free (DF) algorithm
or an expectation-maximization (EM) algorithm [65]. Despite the fact that
the computational burden of the Al algorithm is somewhat heavier compared
to both DF and EM, the total computation time might be significantly lower
due to rapid convergence.
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6.2.4. DISTRIBUTED-MEMORY COMPUTING TECHNIQUES

For large-scale datasets, the application of the RR-BLUP methodology on
a single workstation is computationally impractical because of the high
memory requirements to store the large and dense coefficient matrix C. In
order to deal with datasets beyond the memory capacity of a single machine,
a parallel, distributed-memory implementation was developed. DAIRRy-
BLUP can take advantage of the aggregated compute power and memory
capacity of a large number of networked machines by distributing both
data and computations over different processes, which can be executed in
parallel on the CPU cores of the networked nodes. This allows DAIRRy-
BLUP to be executed even on clusters with a low amount of memory per
node, because every large matrix in the algorithm is distributed among all
parallel processes, i.e. every process holds parts of the matrix and can pass
these parts to another process if necessary through message passing [116].
By default the matrix is split up in blocks of 64 by 64 elements, however,
this can be changed in function of matrix size and computer architecture.
Nonetheless, the matrices are always distributed over the processes using
a two-dimensional block cyclic data layout as presented in the previous
chapter.

The coefficient matrix C has dimensions of (k + 1) x (k + 1), the sum of
the random and fixed effects, however, in order to construct it, we need to
multiply matrices with dimensions [, the number of random effects, by n, the
number of individuals, and k, the number of fixed effects, by n. In genomic
data sets, [, the number of SNP markers, is usually a lot larger than k£ and
nowadays n is mostly still smaller than [. However, as will be discussed in
further sections, the number of observations (n) should increase to provide
accurate estimates of the marker effects and the resulting breeding values.
It is expected that indeed the number of genotyped individuals will rise in
the future, since the cost of genotyping is constantly decreasing and more
data of genotyped animals will be gathered in future years. Therefore, the
algorithm is implemented in such a way that the number of observations n
does not have an impact on memory usage. To obtain this, the y-vector and
the Z and X matrices are read from the input files per strip, as was also
suggested by Piepho et al. [55]. These strips consist of a certain number of
rows, defined by the blocksize and the number of processes involved, more
explicitly, for a p, X p. process grid and a square blocksize of b x b, a strip
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consists of only bp. rows. For instance, the lower-right block of the coefficient
matrix Czz is then calculated as follows:

q
Czz =Y ZiZi+1, (6.4)
=1

with ¢ the number of strips needed to read in the entire matrix Z and Z;
the strips of the matrix Z.

All mathematical operations that have to be performed on the distributed
matrices rely on the standard distributed linear algebra libraries PBLAS [117]
and ScaLAPACK [I18]. The MME are solved through a Cholesky decom-
position of the symmetric coefficient matrix C. The AI-REML algorithm
iterates until convergence of v and since predictions of the marker effects,
depending on +, appear in the score function of the AI-REML algorithm, a
Cholesky decomposition of the updated coefficient matrix is required each
iteration. ScaLAPACK overwrites the original coefficient matrix by its
Cholesky decomposition, implying that C has to be set up from scratch
at the beginning of every iteration. Nonetheless, when sufficient working
memory is available and the construction of C becomes a time-consuming
factor, an option can be enabled in DAIRRy-BLUP to store a copy of the
coefficient matrix, which can then rapidly be updated with new values of v
and thus renders a complete set-up of C unnecessary.

For clarity, we will look at an explicit example with a blocksize of 64 x 64
and a 3 x 2 process grid and will denote the blockwise form of Z as

Zayy Zaz - Zay
z - |Zen Ze Z(2.)
Ziy)y Lz o ZLpy

At first, it should be noted that PBLAS and ScaLAPACK assume that
matrices are always stored column-wise, but the process grid is mapped
row-wise. However, reading matrices from files is usually performed row-wise
and so reading in a matrix row-wise, actually comes down to reading in its
transpose column wise. Therefore, the distributed read-in of one strip of Z’
column-wise comes down to

e process (1,1) reads in Zy 1), Z1,4)s - Z(1,14ix3)5
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e process (2,1) reads in Zy 2y, Z1 5y, -5 L(1,24x3)5

® DProcess 3, 1) reads in Z(1,3)’ Z(1,6)7 ceey Z(l,i*3)7

(2,1)

(3,1)

e process (1,2) reads in Zy 1), Z(2,4)s - Z(2,1+ix3)>

e process (2,2) reads in Zy9), Z(25)s - Z(2,2+ix3)>
(3,2)

e process (3,2) reads in Za3), Z26); -5 L(2,ix3)-

As such, the first strip of Z’, Z is stored according to the PBLAS standards
and Z}Z, can be computed and stored in the memory reserved for Czz
following Eq. (6.4). The number of strips that have to be read in is here
m/2, or more generally m/p., where m is the upper round of n/b, with n
the number of observations and b the blocksize used for splitting up the
matrices in blocks.

6.2.5. ALGORITHMIC DETAILS: CALCULATION FLOW

The calculation flow for the DAIRRy-BLUP implementation is presented
here. The way how matrices are distributed among processes is not explicitly
mentioned since this depends on the number of processes involved and
the chosen size of the blocks. The processes are always mapped to a two
dimensional grid where the number of columns is as close as possible to
the number of rows, since this is recommended in the ScaLAPACK User’s
Guide [118]. Below are listed the main steps of the algorithm; the complete
code can be obtained at https://github.com/arnedc/DAIRRy-BLUP.

1. Every process reads in the blocks of the strips of matrices X, Z and y
that are assigned to it by the two-dimensional block cyclic distribution
and the coefficient matrix as well as the right-hand side of the MME
are calculated using equivalent forms of Eq. for obtaining Z'Z,
X'X, X'Z, Z'y and X'y. The first two multiplications are calculated
using the level 3 PBLAS routine PDSYRK, optimised for computing
the symmetric product of a matrix and its transpose, while the others
are calculated using level 3 PBLAS routine PDGEMM, optimised for
computing the product of two general matrices. All these products
are immediately stored as submatrices of C, distributed in a two-
dimensional block cyclic way over the local memories of the involved
processors. A copy of Z'y and X'y is kept in memory for use in step 4.
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2. Compute the Cholesky decomposition C = LL’ in parallel using
the PDPOTRF ScalLAPACK routine, optimised for computing the
Cholesky decomposition of a symmetric positive definite matrix.

3. Estimates for the random and fixed effects are obtained by directly
solving the MME using the Cholesky decomposition of C and the
PDPOTRS ScaLAPACK routine, which performs the forward and
backward substitutions

]
a

X/
Lw = [ y] and L’
where X'y and Z'y are overwritten by 8 and @

oy

4. An estimation for 02 = % can be calculated as the Schur complement

of C in the matrix

, (6.5)

/ /
Mo |YY YW
Wy C

because this is equal to y'Py as was shown in chapter 3, with W =
[X Z}. The estimation of o2 than comes down to

/
2 YPy 1 / WCOLW'
= = —_ C
T S — &y -y y)

where W'y, is the right-hand side of the MME and thus C™'W'y is
N /
exactly <ﬂ,, o ) as calculated in the previous section. The estimation

of 02 thus simplifies to the subtraction of the square of the Euclidean
norm of y, which was calculated immediately when y was read in
using the PBLAS routine PDNRM2, and the dot product between
the right-hand side of the MME, set-up in step 1, and the vector of

R /
estimates (ﬂ/, ﬁ’) , which can be calculated by the PBLAS level 1
routine PDDOT.

5. Construct matrix Q and vectors X'Zu and Z’'Z1, by reading in again
vector y and matrices X and Z and using level 3 PBLAS routine
PDGEMM. Solve the following linear equation with the PDPOTRS

115



CHAPTER 6. DAIRRY-BLUP: AN HPC APPROACH IN ANIMAL BREEDING

116

ScaLAPACK routine for vector v:

VX

C (6.6)

X’Zﬁ]

_ 1
Vz Y 771

using the Cholesky decomposition of C as computed in step 2.

The Al update matrix is calculated as the Schur complement of the
coefficient matrix C inside the matrix M (Eq. (6.5))), with y replaced

by Q from Eq. (6.3):

1

Ha =
AT 202

(QQ-QWC'wW'Q) . (6.7)

L o

PQ =
352 QPQ
Matrix Q'Q is square and the diagonal elements can be calculated
using the squares of the Euclidian norms of % and %, while the
off-diagonal elements are the dot product between those two vectors.
Furthermore, it should be noted that

X'y X'Zua
c'wqQ=c'|g%
Z'y Z'Zua
o2 ~

& vx

oz Vz

and so the second term for calculating Har in Eq. is the matrix
product of 2 rectangular matrices, of which the elements have been
calculated before, namely Q'W, vx and vy in step 5 as well as B and
1 in step 3.

Using the Cholesky decomposition the inverse of C is calculated with
the PDPOTRI ScaLAPACK routine and the trace of C™! is calculated
with the BLACS routine DGSUM2D for obtaining the score function
as defined in Eq. . This routine gathers from all participating
processes the elements on the diagonal of C~! and returns the sum in
the root process.

. As long as the relative updates for o2 and the REML log-likelihood are

not smaller than € = 0.01, repeat from step 1 using an updated value
for 02 and o2. The iterative cycle is also stopped when the maximum
number of iterations is reached (default 20). The values of € and the
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maximum number of iterations can be changed by the user to obtain

faster convergence or more accurate solutions.

9. Optionally, breeding values can be calculated for a large-scale dataset
based on the estimates of the SNP marker effects. Genotypes for the
testset are read in by all processes in a distributed way as defined by
the two-dimensional block cyclic distribution. To minimize memory
requirements, breeding values are calculated in strips, which means
that only a few breeding values are calculated in parallel by the
level 3 PBLAS routine PDGEMM. The number of breeding values
calculated in parallel is defined by the chosen blocksize and the number
of dedicated processes, equivalently to the set-up of C as defined in

Eq. .

6.2.6. INPUT FILES

As already mentioned, the data files can require more than 100 GB of disk
space when stored as a text file. Due to the distributed read-in of the data
files, DAIRRy-BLUP can only cope with binary files, which may require
even more space when the data is stored as 64 bit integers or doubles. To
overcome this massive hard disk consumption, DAIRRy-BLUP can read in
data in the Hierarchical Data Format (HDF5) [I19]. The HDF5 file format
stores data sets in a file-system like format, providing every data set with a
/path/to/resource. Metadata can be added to the data sets in the form of
named attributes attached to the path or the data set. It is recommended
to use the HDF5-filetype for analyzing data with DAIRRy-BLUP due to 2
major advantages.

First of all, HDF5 offers the possibility to compress data into blocks such
that up to 10 times less space is consumed by the final HDF5 file than by
storing the data in text files. Secondly, if the size of the compressed blocks
is equal to the size of the blocks in which the data is distributed across the
memory of all dedicated processes, there is also a significant gain in read-in
time of the data. Indeed, every process only needs to decompress several
blocks before reading in and doesn’t have to go through the whole data set
as is the case when using conventional binary files.
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6.2.7. HIGH PERFORMANCE COMPUTING INFRASTRUCTURE

All results were obtained using the Gengar cluster on Stevin, the high per-
formance computing (HPC) infrastructure of Ghent University. This cluster
consists of 194 computing nodes (IBM HS 21 XM blades) interconnected
with a 4X DDR Infiniband network (20 Gbit/s). Each node contains a dual
socket quad-core Intel Xeon L5420 2.5 GHz CPU (8 cores) with 16 GB RAM.
To achieve a high performance a one-to-one mapping of processes to CPU
cores was applied and the number of dedicated CPU cores was chosen in
such a way that there was a fair balance between wall time and occupation
of the Gengar cluster, ensuring that the limit of two GB RAM per core was
not exceeded.

6.3. RESULTS

The results illustrate the capability of DAIRRy-BLUP to analyze large-scale
data sets in a reasonable amount of time, when sufficient computing power is
available. Table summarizes the computational demands for the different
data sets. It is clear from these results that it becomes computationally
impractical to use only a single computing node due to the high amount
of RAM required. Implementations that use a genomic relationship matrix
to estimate genomic EBVs directly, will in this case require at least 40
GB of RAM when only the upper or lower triangular of the symmetric
coefficient matrix is stored [I6]. There are machines available with this
amount of memory, however, the distributed-memory implementation has
the advantage of being able to use as much working memory as available on
all networked computers, and computing power can thus easily be increased
by adding more machines to the network.

Another advantage of DAIRRy-BLUP is the fact that memory usage depends
only on the number of fixed and random effects, and not on the number of
individuals included in the analysis. Adding information on more individuals
only influences the time required for reading the data from the input files
and constructing the coefficient matrix, which is observed to scale linearly
with the number of individuals. For data sets where genotypic information is
obtained with a certain SNP chip, the required amount of working memory
will remain constant regardless of the number of individuals included in
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Table 6.1: Computational demands of DAIRRy-BLUP for different
numbers of SNP markers included in the analysis for a population of
100,000 individuals.

SNPs (1) | Parallel Runtime  Number = RAM per Total
processes  (hh:mm:ss) of itera- process RAM
tions (MB) (GB)
9,000 16 00:10:56 3 93 1.5
60,000 32 02:54:48 2 608 19.5
360,000 720 17:48:10 2 1,154 831

the analysis. As will be shown further on, prediction accuracy of EBVs
increases more significantly when adding more individuals to the analysis
than when using denser SNP arrays, at least when the SNP arrays are
already sufficiently dense so that the QTL and SNP markers are in linkage
disequilibrium [120]. DAIRRy-BLUP can easily be used on the same machine
for such data sets, where the number of genotyped individuals is constantly
increasing. Therefore, more accurate estimates of EBVs are obtained with
minimal effort.

6.3.1. ESTIMATED VERSUS TRUE BREEDING VALUES

Since breeding values are of utmost importance to breeders, it is of course
essential to be able to predict these breeding values correctly. In the data
sets, the traits were defined by 9,000 random QTL, whose effects were drawn
from a normal distribution. For every animal, the QTL genotype is available
and thus the true breeding value (TBV) is nothing else but the sum of the
simulated QTL effects. Table presents the Pearson correlation between
the EBVs and TBVs for different sizes of the population in the data set
and different numbers of SNP markers used. More formally, the difference
between the vector of TBV and the vector of EBV can be summarised
as:
TBV = Zu EBV = Zu,

with u the vector of simulated QTL effects and G the vector of estimated
QTL effects. Unfortunately, generating a data set of 1,000,000 individuals
genotyped for 360,000 SNPs was not feasible, due to limitations of the
simulation software AlphaDrop. Although the Stevin computing infrastruc-
ture includes a machine with about 120 GB of working memory, it seemed
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that this was not sufficient to generate this large data set. Nonetheless,
DAIRRy-BLUP would be able to analyze such a data set as only the read-in
time would be ten times higher compared to the analysis of the data set
consisting of 100,000 individuals genotyped for 360,000 SNPs.

Table 6.2: Pearson correlation between the Estimated Breeding Values
(EBVs) and the True Breeding Values (TBVs), for datasets with dif-
ferent numbers of individuals and genotyped for different numbers of
SNPs. Column 2 displays the Pearson correlation between TBVs and
EBVs, based on the estimated QTL effects (see Table . The missing
value in the lower right corner is due to the impossibility to create such
a dataset with AlphaDrop.

Pearson correlation between TBVs and EBVs based on

QTL (1) SNPs (1)
Individuals (n) 9,000 9,000 60,000 360,000
10,000 0.768 0.643 0.700 0.705
100,000 0.939 0.610 0.809 0.839
1,000,000 0.99 0.612 0897 X

In the second column of Table the results are listed for EBVs based on
the QTL genotypes. In this case the random effects are the QTL of which it
is known that they influence the phenotypic score by a predetermined effect.
In the next paragraph, the estimates of the QTL effects are discussed, but
here only the EBVs based on the estimated QTL effects are examined. As
expected, it is confirmed that when all loci that contribute to the trait are
known and genotypes for these loci are available, EBVs are always more
accurate than when relying on genotypes for random SNPs. However, even
when the exact positions of the QTL are known, it is observed that predictions
of the EBVs are more accurate when the number of individuals is an order
of magnitude higher than the number of QTL. The results also indicate that
it is more opportune to collect genotypic and phenotypic records of more
individuals than to increase the number of SNP markers in the genotypic
records, at least when the number of markers is already sufficiently higher
than the number of QTL involved. Current large-scale genomic evaluations
are performed for at most 40,000 individuals genotyped for around 50,000
SNPs [37, 121], where more information is included using sparse pedigree
information of non-genotyped individuals. To improve prediction accuracies
of these genomic evaluations, it is shown here that instead of using denser
SNP arrays, it is more interesting to increase the number of genotyped
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individuals.

In Figure the estimated breeding values are plotted in function of the
true breeding values for a population of 100,000 individuals. It illustrates
the fact that EBV based on 60,000 SNPs are better predicted than based on
9,000 SNPs, but using 360,000 SNPs doesn’t add that much to the prediction
accuracy. However, when EBV are based on 9,000 QTL, the cloud of points
as observed in the other plots, narrows down to a nearly linear correlation
between the estimated and true breeding values.
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Figure 6.2: Estimated breeding values plotted in function of the true breeding
values for a population of 100,000 individuals based on genotypes for (a) 9,000
SNPs, (b) 60,000 SNPs, (c¢) 360,000 SNPs and (d) 9,000 QTL.

6.3.2. ESTIMATING QTL EFFECTS

Breeding values already provide a lot of information to breeders, but it is
sometimes interesting to have a good estimate of the marker effects. In the
simulated data sets the phenotypic scores are determined by the true QTL
effects and the QTL genotypes of the individuals. True SNP marker effects
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are not known because SNP markers are randomly drawn and there is no
information available about the linkage disequilibrium between the QTL
and the SNP markers. Therefore, only the Pearson correlation between the
estimated QTL effects and the true QTL effects is given in Table When
comparing the results of Table with those in Table it is seen that
although the estimates of the marker effects can be quite poor, the resulting
estimates of the breeding values might still be fairly accurate. Of course,
when trying to identify the positions of important QTL, it is essential to
have access to accurate estimates of SNP marker effects and it is observed
that large numbers of genotypic and phenotypic records are then required.
As an illustration the estimated QTL effects are plotted in function of the
simulated QTL effects in Figure

Table 6.3: Pearson correlation between the estimated QTL effects and
the true QTL effects, for a trait determined by 9,000 QTL

Individuals (n) Prediction accuracy
of QTL effects

10,000 0.354

100,000 0.669

1,000,000 0.851

6.3.3. PARALLEL EFFICIENCY

The primary motivation for the development of DAIRRy-BLUP is that it
enables the analysis of large-scale data sets beyond the memory capacity
of a single node. This is achieved by the distribution of all matrices and
vectors involved in the model among the local memories of a large number
of computing nodes. Additionally, DAIRRy-BLUP leads to a significant
reduction in runtime because the required computations are performed by
several CPU cores concurrently. The parallel speedup S(P) is defined as
S(P) = %, where T'(P) denotes the runtime on P CPU cores. The
parallel efficiency u(P) is defined as the ratio of the parallel speedup and
the number of CPU cores used: u(P) = @. In the ideal case, the speedup
S(P) is equal to the number of cores used and the parallel efficiency is
100%. However, Amdahl’s law states that parallel speedup is limited by
the fraction of the program that is parallelizable [80]. Moreover, due to all

sorts of overhead such as inter-process communication and load misbalance,
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Figure 6.3: Estimated QTL effects are plotted in function of the simulated QTL
effects for a population of (a) 10,000, (b) 100,000 individuals and (c) 1,000,000

individuals for a trait determined by 9,000 QTL.
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the parallel efficiency is typically even lower than what can be maximally
expected from Amdahl’s law.

In order to determine the parallel efficiency u(P) for the largest problem,
i.e., the data set with 100,000 individuals genotyped for 360,000 SNPs, the
runtime 7'(1) on a single CPU core is required. As it is impractical to
obtain this value through a direct measurement, it is estimated through
extrapolation of the runtime of a smaller problem with 100,000 individuals
genotyped for 30,000 SNPs, taking into account the computational com-
plexity of the algorithm. The dominating complexity is determined by the
Cholesky decomposition and solution of the MME which are known to have
cubic complexity. However, the construction of the coefficient matrix C is
also a time-consuming factor since it has a complexity of O(nl?) and the
number of individuals (n) thus plays an important role when it has the same
order of magnitude as the number of SNPs (1), as was the case for both
data sets (n = 100,000). Therefore, the runtime for the construction of
the coefficient matrix was extrapolated separately because of its quadratic
complexity in the number of SNPs, as opposed to the cubic complexity of
the other time-consuming parts of the algorithm.

Table lists the computational demands for the smaller data set with
30,000 SNPs when evaluated on a single CPU core and the estimated runtime
and memory requirements for the large data set with 360,000 SNPs on a
single CPU core. The timings were averaged over the required iterations,
because convergence was reached in a different number of iterations for
both data sets. It is clear from this table that the analysis of the 360,000
SNPs data set becomes computationally impractical when not applying any
parallel programming paradigm as the processing of the data set would
require several months of computing time. By applying DAIRRy-BLUP
on a cluster with 720 CPU cores, predictions of marker effects could be
calculated roughly 400 times faster. This corresponds to a parallel efficiency
in excess of 55%, which is generally considered acceptable.
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Additionally, the memory requirements do not pose any problem, since
the distributed-memory framework allows for the aggregation of the local
memory (2 GB) available to every CPU core, which means that a total of
1,440 GB RAM could be used.

6.4. DISCUSSION

As has been pointed out by Cole et al., there is a need for being able to
process and analyze large-scale datasets using high performance computing
methods [42]. DAIRRy-BLUP, a distributed-memory computing framework
for genomic prediction is presented and meets some of the issues addressed
by Cole et al. It has been shown that DAIRRy-BLUP is able to analyze large-
scale genomic datasets in an efficient way when sufficient computing power
is available. It is also suggested that analyzing such large-scale genomic
datasets is necessary for obtaining better prediction accuracies for marker
effects and breeding values, as was already suggested by Hayes et al. and
VanRaden et al. [21, 41]. The results show that genotyping more individuals
has a stronger effect on prediction accuracy than genotyping for a higher
number of SNPs, although an increasing number of SNPs can also provide a
higher prediction accuracy. This effect is in accordance with the observations
by Habier et al., where a plateau was already reached for around 15,000
SNPs, but the phenotypes were only influenced by 200 QTL as opposed to
9,000 QTL in our study [120]. The number of individuals was also quite
low (maximum 2,000), but an increase of prediction accuracy was already
noticeable when increasing the number of individuals in the training data.
These results, together with the results obtained with DAIRRy-BLUP, justify
the choice for an algorithm whose computational demands are dominated
by the number of estimated random effects rather than by the number of
individuals included in the analysis.

If the exact positions of the QTL on the chromosomes are known and
animals can be genotyped for these QTL, prediction accuracies might improve
substantially. Additionally, if a large number of phenotypic records of QTL-
genotyped individuals is present, the effects of the different QTL can be
estimated with significant accuracy. Current real datasets are probably still
too small to obtain an accurate estimation of the marker effects; nonetheless,
as the cost of genotyping is constantly decreasing, future datasets will contain
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the potential for identifying QTL on a large scale.

The results of this study on simulated datasets indicate that for accurate
genomic predictions of breeding values, the number of genotyped individuals
included in the analysis should increase substantially. Due to the constant
decrease in cost for genotyping animals or plants, it is assumed that such
large-scale datasets will be available in the near future. Since analysis
of these datasets on a single computing node becomes computationally
impractical, DAIRRy-BLUP was developed to enable the application of a
distributed-memory compute cluster for predicting EBVs based on the entire
dataset with a significant speedup.
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7 NEEDLES: TOWARDS LARGE-SCALE
GENOMIC PREDICTION WITH
MARKER-BY-ENVIRONMENT

INTERACTION

7.1. INTRODUCTION

Genomic prediction methods most often rely on a linear mixed model
framework that models at the same time fixed effects as well as random
genetic effects [14]. These genetic effects are modeled by assigning a small
effect to markers, which are used to genotype the individuals. Introducing a
large number of genomewide markers in the analysis has already proven to be
beneficial instead of using only pedigree information or a few markers which
are known to have a significant effect (so-called marker-assisted selection)
in animal breeding [41) 109] as well as in plant breeding [29] B0, [71]. In an
animal breeding perspective, environmental effects are mostly not modeled
and only regarded as nuisance, because environmental effects are either
negligible [122] or can be under the control of the breeders by creating
selection environments which are very close to commercial environments [123].
Using this assumption, DAIRRy-BLUP [124] was developed to employ the
computing power of supercomputing clusters for analyzing data sets with a
large number of genotyped individuals, based solely on dense linear algebra
because genetic marker information is mainly dense.

However, when cultivating plants, the environment and some specific envi-
ronmental conditions (e.g. soil moisture, solar radiation and air humidity)
can have a much stronger impact on the phenotypic trait and effects of
markers may vary in different environments. It is thus recommended to
also include genotype-by-environment interaction effects (GxE effects) for
genomic prediction in plant breeding [27, [125]. Different models have been

presented to account for these interaction effects in genomic prediction and

The content of this chapter has been submitted as De Coninck, A., De Baets, B.,
Kourounis, D., Verbosio, F., Schenk, O., Maenhout, S. and Fostier, J. (2015) Needles:
towards large-scale genomic prediction with marker-by-environment interaction Genetics
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most of these models apply a two-stage approach, where in the first stage an
adjusted genotype mean is computed across environments, which is then used
in the second stage to predict breeding values for untested plants based on
their marker genotypes [126]. Actually, this two-stage approach commonly
includes a preliminary step in which the intra-environmental effects, such as
block, row and column effects are taken into account when computing the
genotypic mean per environment. These intra-environmental effects can be
modeled together with a location effect and the GXE effects to immediately
obtain the genotypic means across the environments in the first step of a
two-step approach [126]. However, in recent single-stage analyses, where
the computation of genotypic means across environments is avoided and the
interaction effects are explicitly modeled, the phenotypic records are mostly
already corrected for spatial variations inside the environment [30)], 127, [12§].
Nonetheless, the single-stage approach may include the modeling of these
intra-environmental effects to enable the direct analysis of the raw pheno-
typic data [3I]. The genetic effects can be assumed to follow a wide range of
distributions. The most widely-used choice is the assumption that genetic
effects come from a normal distribution and while other assumptions may
lead to better predictions of the genomic breeding values, the normality
assumption is a viable alternative due to its simplicity and computational ef-
ficiency [29) [129]. This assumption leads to the so-called best linear unbiased
predictors (BLUP) for the random genetic effects [47].

When genetic marker information is applied for calculating correlations
between individuals, this is referred to as GBLUP, where the G stands
for the usage of a genomic relationship matrix instead of a relationship
matrix based on pedigree data [I130]. More advanced methods depending
on correlations based on pedigree as well as genetic marker information
do sometimes result in a slight increase of the prediction accuracy of the
breeding values, but the gain in prediction accuracy does mostly not outweigh
the added complexity [29, 30]. However, these methods can be of importance
when records of ungenotyped individuals should be included in the analysis,
which is commonly the case in animal breeding, because historical records
of ungenotyped individuals can then be linked to records of genotyped
individuals due to the availability of extensive pedigree information [109} [13T].
Recently, the GBLUP methodology has been extended to incorporate GxE
effects by assuming that the genetic effects were different in each environment,
where correlations between genotypes or environments could be included
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in the covariance matrices for the random genetic effects and the residual
errors [30]. Other methods include a global genetic effect and variable genetic
effects across the environments, implying correlation across environments
through the shared global genetic effects [128] [132].

In all these studies, genetic marker information is only used to derive more
correlations between individuals than when only using pedigree information,
while originally in genomic prediction the effect of each marker was modeled
explicitly and breeding values were calculated by adding all the genetic
marker effects [I4]. GBLUP is still preferred as opposed to the explicit
modeling of the genetic marker effects, because it enables solving the BLUP
equations in the dimensions of the number of genotypic lines used in the
study, which is in common data sets still lower than the number of genetic
markers included in the linear mixed model. Therefore, the computational
burden is still lower for a GBLUP approach than for the explicit modeling of
marker effects and their environmental interactions. However, our approach
models the genetic marker effects and their environmental interaction effects
(MXE effects) explicitly, because we believe that increasing the number of
genotypic lines in the analysis has a big potential to increase the prediction
accuracy of the model, as was already shown in previous experimental and
theoretical research [21), 124]. In such data-driven biology, the number of
genotypic lines can in fact become larger than the number of markers, lending
support to our explicit modeling approach.

Such explicit modeling of the marker effects was actually first applied in
the field of QTL mapping, an important side-track of genomic prediction,
helping marker-assisted selection by inclusion of the known QTL as genetic
markers [I33]. Of course, the field of QTL mapping also includes environ-
mental dependence of the QTL to obtain reliable estimates of the QTL main
effects [134]. Linear mixed models used in QTL mapping resemble those
of genomic prediction with as a major difference that the QTL effects are
mostly modeled as fixed effects next to a random genetic effect, leading to
the detection of only a few QTL (max. 40) [135], 136], 137, [138]. However,
by treating the QTL effects as fixed effects, they tend to get overestimated,
leading to less reliable predictions of the breeding values based on these QTL
effects [138]. Therefore, as the explicit modeling of the marker and MxE
effects in genomic prediction directly returns predictions for these effects, it
seemed interesting to investigate whether these genomic prediction models
can be applied for detecting if QTL effects are stable across environments
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or not. Although in the next section the statistical model for genomic
prediction will be explained generally for SNP markers and their interaction
effects, the results section will only be focused on the prediction accuracy
of the simulated QTL marker effects and their environmental interaction
effects (QxE effects). In fact, simulating QTL and their effects on the trait
is the only way to verify if estimates of genetic marker effect are accurately
predicted, because for random SNP markers it can never be ascertained
what their exact effects are on the phenotypic trait.

Explicitly modeling M XE effects can lead to huge numbers of effects to
be estimated, since every marker is coupled once to each environmental
condition. For instance, when plants are tested in 100 different environmental
conditions and genotyped for 3,000 markers, this leads to 300,000 MxE
effects. Fortunately, the information about the MxE effects is very sparse,
because each observation is made under a specific environmental condition,
resulting in this case in an incidence matrix for the M xE effects filled for at
least 99% with zeroes. Using only dense matrix algebra to provide estimates
of all these effects would require huge distributed systems and result in an
unnecessary waste of memory and computational resources. Therefore, we
exploit the sparsity of the information about the MxE effects and use a
technique that couples sparse and dense linear algebra for analyzing such
large-scale genomic prediction settings. The first implementation of such
a framework, presented hereafter, is called Needles, referring to the saying
"finding needles in a haystack", which is very appropriate when trying to
find the genetic markers that contribute most to a certain trait out of the
results of multi-environment trials. The source code of this implementation
can be found on https://github.com/arnedc/Needles.

7.2. MATERIALS AND METHODS

7.2.1. SIMULATED DATA

All data used for benchmarking were simulated using AlphaMPSim [139],
which is flexible simulation software for creating large populations of multi-
parent recombinant inbred lines whose polygenic traits are controlled by
large numbers of QTL. The default option of AlphaMPSim was chosen to
create a historical population of founder haplotypes using MaCS [114]. The
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distribution of the AlphaMPSim software included an example for obtaining
wheat-like data, mimicking the evolution of wheat according to specified
mutation and recombination rates, by employing MaCS. In this way, a pool
of 400 haplotypes for each of the 21 chromosomes was provided as a starting
point for this study. Actually, wheat is a hexaploid consisting of 3 genomes
of 7 chromosomes with homeological effects, but it is commonly modelled
as having a diploid genome with 21 chromosomes. A base generation
of 2,000 homozygous founders with a genetic diversity as defined by the
historical population is then constructed by randomly selecting one of these
haplotypes per chromosome. From this base generation 500 lines of 4-way
recombinant inbred lines (RILs) were simulated as is schematically depicted
in Figure The choice for simulating RILs is motivated by the fact that
these are used frequently in gene-environment interaction studies and QTL
analyses [140, [141]. The pedigree was set up in such a way that there were
50 siblings per line and each of these siblings went through 7 generations
of selfing. This resulted in a total number of 203,000 individuals to be
simulated, of which the 25,000 of the last generation resemble common
wheat RILs.

These 25,000 RIL genotypes were simulated by AlphaMPSim and traits
were simulated based on 2 different numbers of QTL (1,575 and 3,150). The
global contributions of the QTL to the trait were sampled from a normal
distribution with mean zero and standard deviation of one unit. For each
genotype, the sum of the global QTL effects is defined here as the true
breeding value ignoring any environmental effect and regarding the breeding
value as the global genetic potential of a plant. As the goal was to simulate
multi-environment trials with different set-ups, random samples were drawn
from these 25,000 RIL genotypes and their phenotypes were simulated for
different environments. Therefore, 32% of the QTL (resp. 500 and 1,000)
were randomly chosen to have a variable effect depending on the environment,
sampled from a normal distribution. The total simulated phenotypes were
a sum of the true breeding values, the QxE effects for the given genotype,
a fixed environmental effect and a residual term sampled from a normal
distribution. This means that no specific row, column or block effects were
simulated and thus the phenotypic records can be regarded as already being
corrected for spatial variations inside each environment. The variances of the
normal distributions were chosen in such a way that of the total variance of
the phenotypes, excluding the fixed environmental effects, 37% is attributed
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to pure genetic effects, 23% to interactions between the genotype and the
environment and the remaining 40% to factors unaccounted for (residual
term). These values are in accordance with findings of Jarquin et al. on
experimental data about grain yield of 139 wheat lines tested in 340 year
x location combinations, which was also the basis for the choice of the
variances of the QxE effects and the residual term [132].

The multi-environment trial was simulated in such a way that in each
environment an equal number of different RIL genotypes were tested and
4% of the total number of phenotypic records per environment came from
RIL genotypes that were tested across all environments. These so-called
standards were replicated 4 times per environment, except for the simulation
with the largest number of records where they were replicated 10 times in
each environment. As such, the simulation resembles a sort of augmented
design [142], where the RIL genotypes that are not standards are tested
in 4 different environments, except for the largest simulation where they
are tested in all (10) environments. To illustrate this with an example,
consider a simulation with 1000 phenotypic records per environment and 50
environments in total. In each environment 40 of the records come from 10
standards that are replicated 4 times in this environment. The other 960
records are simulated from 960 different RIL genotypes. The 10 standards
are also replicated 4 times in all the other environments, meaning that of the
total number of 50,000 multi-environment trial records, 2000 of these records
are obtained by simulating the phenotypic trait of the 10 standards in all
environments. The other 48,000 records come from the 960 non-standard
RIL genotypes tested in each environment, but because these genotypes are
tested in 4 environments, only 12,000 different non-standard genotypes can
be included in this multi-environment trial. It must be stressed that an
environment in this context is defined as an abstract concept and can be
seen as a location, a location X year combination or a class of environments
that shared more or less the same environmental conditions.

For a simulation of such a trial, but only on 10 environments, the distribu-
tion of the fixed environmental effects, GXE effects, true breeding values
(TBV) and the phenotypes is illustrated in Figure . The distribution of
these effects, except for the fixed environmental effect, across the different
environments is shown in Figure It can be seen that the true breeding
values do not vary a lot across the environments as expected and so the
variation of the phenotypic records across the environemtns is mainly due
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Figure 7.1: Schematic drawing of the set-up of the 4-way recombinant inbred
lines. Four founders are used to create an inbred line of which 50 siblings are
simulated per line. In total 500 of these lines are created, which results in a pool
of 25,000 wheat RIL types that can be tested.
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to the fixed environmental effects and the GxE effects.
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Figure 7.2: Distribution of the simulated phenotypes for a total of 10,000 records
coming from 10 different environments.

7.2.2. STATISTICAL METHOD: LINEAR MIXED MODEL

The underlying framework of the genomic prediction model with explicit
marker-by-environment interaction is the linear mixed model:

y= XeHV/Bcnv + anpusnp + ZeiUmei + €,

with y the vector of n observations, B, the vector of k fixed environmental
effects, ume; the vector of [ random marker-by-environment interaction effects,
Ugnp the vector of m random genetic marker effects and e the residual error
term. In the remainder of this chapter, each genetic marker will be assumed
to have a variable effect in each environment and thus [ = k x m. The design
matrices for the effects are respectively Xeny, Zmei and Zg,p, where the Zipe;
and Zg,, matrices are 0/1/2 coded with 0 standing for homozygosity in
the most frequent allele, 1 standing for heterozygosity and 2 standing for
homozygosity in the least frequent allele. This allele coding was chosen
instead of a centered and standardized coding so Ze; could be stored more
compactly as a sparse matrix. For a specific environment ¢ the model
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Figure 7.3: Distribution of the different effects contributing to the total phenotype
per environment. Boxplot (a) shows the distribution of the phenoytpes corrected
for the fixed environmental effect. Boxplot (b) shows the distribution of the GxE
effect and boxplot (¢) shows the distribution of the true breeding values.
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becomes:
yi = ]—ﬁenv,i + anp,i (usnp + umei,i) +e;,

with 1 a vector of ones, Benv,; the fixed environmental effect of environment
i, Zsnp,; the matrix of genotypes evaluated in environment 7 and Upei;
the marker-by-environment interaction effects in environment i. As the
phenotypic records were modeled as being already corrected for spatial
variations inside each environment, no specific intra-environmental effects
(e.g. block, row or column effects) had to be modeled.

The random effects and residual term are modeled as:

Usnp orplm O 0
Umei | 7~ N 0,0’2 0 O-rQneiIl 0 5
e 0 0 I,

which results in an a priori assumption that the observations are distributed
as:

y ~ N (Xenvﬁenv’ V) )
with

V= 0-2 (In + O-s2anSHpZ;np + 0-12neizmei inei) .
Although this model, commonly referred to as a compound symmetry (CS)
model, poses some restrictions in the fact that a certain homogeneity between
the environments is assumed, it is the most simple method to include marker-
by-environment interaction effects and has shown to perform rather well
compared to more advanced methods [30]. Moreover, it was shown that this
model is the best balance between model complexity and fit to the data
when analyzing yield of maize [I38]. Because this model required the least
number of assumptions about the environmental interaction effects, the data
was also simulated using the compound symmetry model.

The Best Linear Unbiased Estimators and Predictors (BLUE and BLUP)
of the fixed and random effects are linear estimates or predictions that
minimize the mean squared error and exhibit no bias. They are also the
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solutions of the so-called Mixed Model Equations (MME) [§]:

/ / . / -
Xenv Xenv Xenv Zme1 Xenv Z snp B env X:anv Yy
/ / . I / “ /
meiXenV Zmeizmel + U12nci meizsnp Upmei | = Zmeiy s (71)
! ! . ! I ~ !
anpXenv anpzmel anpzsnp + ﬁ usnp anpy

with ,Benv, Upmei and Ugyp the estimators/predictors for B, Umei and ugnp.
The coefficient matrix of this equation will be referred to as C.

2

This system of linear equations depends on the variance components og,,

2 2

mei’ mei
variance relative to the variance of the residual error o2, but for ease of nota-

and o2 ., which are not known a priori. Actually, Ugnp and o7 . are ratios of
tion we will also refer to these variance ratios as variance components. These
variance components are estimated using the Average Information Restricted
Maximum Likelihood (AI-REML) methodology based on the entire data set.
AI-REML is an iterative, gradient-based approach that has shown to converge
more rapidly compared to a derivative-free or expectation-maximization

approach [65]. The update equation for the variance components is:

Kn+1 = kn — Hax, ' VIREML(Kn) , (7.2)

where K, is the vector of variance components at iteration n, here Kk =

np> arznei)/, HAt, is the AT update matrix at iteration n and Viggmr, (Kn)

is the gradient of the REML log-likelihood with respect to k evaluated at &,.

(02,02

This is very similar to Newton’s method for maximizing likelihood functions,
but the difference lies in the use of the Al update matrix instead of the
Hessian matrix. Originally the expected value of the Hessian matrix, also
known as the Fisher information matrix, was used as the update matrix in
Eq. due to the tedious computation of the Hessian matrix [59]. But the
average information matrix, a simplified average of the Hessian and Fisher
information matrix, can be constructed in an elegant way and therefore lends
itself better to be used in a distributed computing paradigm for updating
the variance components each iteration [124].

Using Eq. (4.8) as derived in Chapter 4, with R = I,, and

G- aganm 0
0 o2 .1 ’

mei
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the REML log-likelihood function can be written as:

1
IREML(0F, Oonp: Ornei) = —3 <(n — k)logo?

+1log o2

mei

2
snp

+mlogo
y’Py)

+1log |C| + =
O’e

with
P=V -V !X, (X!

_ —1 —
oy V1 X)) XL, VL

env

When anp and o2 ; are known, an analytical solution for the maximization
of this likelihood function with respect to o2 can be found. However, for
maximization with respect to ognp and o2 ;, we have to resort to the iterative
AI-REML technique and the gradient of the REML-log likelihood should

thus be evaluated for both variance components, based on the results of

Chapter 4, Eq. (4.20):

OlREML 1 tr(Cé}z)) U Umei
(a2 ) T 202 = 2 22 (7.3)
1 o
OlrREML 1 tr(0(3,3)) Uy, Usnp -
d(02,) T 952 m = o2 T 5242 ) (7.4)
snp snp snp €~ snp

with 0(212) and C(?,j?)) the blocks of the inverse of C corresponding to the

blocks in Eq. (7.1) containing resp. Z,;Zmei and Zg,,Zgyp.

snp

7.2.3. IMPLEMENTATION DETAILS

Although the solution of the system in Eq. seems trivial, it can become
a very computationally demanding task when the number of effects to be
estimated becomes so high that the coefficient matrix no longer fits in the
working memory of a single computing node. Moreover, the calculation of
the inverse matrices in Eq. and will also become a time-consuming
task, since the time complexity is a cubic function of the dimension of the
matrix.

To efficiently apply the computing power of a high performance computing
cluster, we developed an algorithm that takes advantage of distributed
computing techniques and the fact that a large part of the coefficient matrix
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C is filled with zeroes. The latter is due to the fact that every observation
comes from a single environment and thus Z,e; is only sparsely filled with
information. Therefore, the coefficient matrix C is split up in sparse and
dense parts:

‘A B
c=| ol (7.5)
with )
Xgnv XeHV Xgnv Zmei
A= ] (7.6)
| “Fenv~mel meij “~'mel Ur2nei
I
D = Zl Zowp + 7 (7.7)
snp
B = [Zénpxenv Zénpzmei:| ) (78)

where A is a sparse submatrix, while D and B are treated as dense subma-
trices. The solution of the system in Eq. as well as the calculation of
the two blocks of the inverse of C can then be performed blockwise. For
more information about the blockwise inversion of a matrix, we refer the
interested reader to the Appendix of this dissertation.

For the blockwise solution of the system, we will first derive a system of
equations equivalent to the system in Eq. (7.1)), using the notation as defined

above in Eq. ([7.5)-(7.8):

A B |xa| |vya
B D XD] B lyD] ’
with
s — [ﬁem] ’ _ [Xénvy ]
Uppei ZyeiY
Xp =Usp and  yp=ZL,,y,
leads to

Axs+Bxp=ya
B'xs+Dxp=yp

Solving the first matrix equation for x4 and introducing this in the second
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equation leads to:

Xq = AflyA — A 'Bxp
B' (A™'ya— A™'Bxp) +Dxp =yp

Solving the second equation for xp leads to:

Xyq = A_lyA — A" 'Bxp
(D-B'A'B)xp=yp-BAlyq,

This way of solving the mixed model equations involves the construction of
the Schur complement S of A:

S=D-BA'B, (7.9)

which transforms the solution of system in Eq. (7.1)) into solving respec-

tively:
X! |y
Sﬁsnp — Z/ y — B/A—l env
P Zyeiy
N X/
A /(?env — /envy _ Bﬁsnp .
Upnei Y/

Moreover, the block C(?,jg) of Eq. is precisely the inverse of this Schur
complement, which is elaborated on in the Appendix. Although only the
diagonal elements are needed for calculating the trace of C(g}g), the entire
inverse of S is needed for obtaining these diagonal elements. For a sparse
matrix however, a selected inverse can be computed, only requiring the
elements of the inverse corresponding with non-zero elements in the factors
of the sparse matrix [104]. The diagonal elements of C(_;z) can then be
calculated using S™! and the selected inverse of A:

C—l

_ A1 o Q—1~N
(2,2)1’] - AZ,] +YZV'S Y'7j7

with Y = A7'B, Y; . the i-th row of Y, Y. ; the j-th column of Y, (P

(2,2)4,4
element (i, 7) of C(}lg) and A;jl element (7,75) of A1

The sparse matrix is stored in compressed sparse row format, as it is also
used by the PARDISO solver [143] [144), [145], which is applied for solving
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the sparse matrix equation and calculating the selected inverse of submatrix
A. PARDISO is a multi-threaded solver, but it cannot yet cope with a
distributed sparse matrix. Therefore, one computing node is entirely reserved
for storing sparse submatrix A and all CPU cores available on this node
are applied for constructing, factorizing and partially inverting it. All other
nodes are used for storing dense submatrices B and D in a one-dimensional
block-cyclic column-distributed way. By distributing the matrices in this
way, Y can be calculated easily by broadcasting A to all nodes and solving
AY = B on each node for all columns of B available on this node. As such,
the solution Y is automatically distributed in a one-dimensional block-cyclic
column-distributed way over the available nodes.

7.2.4. HIGH-PERFORMANCE COMPUTING INFRASTRUCTURE

All results were obtained using the Delcatty cluster on Stevin, the high-
performance computing (HPC) infrastructure of Ghent University. This
cluster consists of 160 computing nodes interconnected with an FDR, Infini-
band network. Each node contains a dual-socket octa-core Intel Xeon Sandy
Bridge (E5-2670) 2.5-GHz CPU (16 cores) with 64 GB of physical memory.
All data was accessible from storage available through a fast GPFS mount
over the Infiniband network. The Delcatty nodes are running Scientific
Linux 6.1 (SL6).

The algebraic operations that are to be performed on the distributed dense
matrices rely on the standard libraries PBLAS [117] and ScaLAPACK [I1§]
as implemented in Intel MKL 11.2. All communication that is required
between the nodes is handled by MPI [116] as implemented in Intel MPI
5.0. The entire code was written in C/C++ and compiled with Intel C++
compiler 15.0. The code makes use of a hybrid MPI/OpenMP parallelism,
which means that each MPI process is mapped to an entire node, while
OpenMP is used to apply each CPU core on the node to perform the tasks
of each MPI process.

143



CHAPTER 7. NEEDLES: GENOMIC PREDICTION WITH M XE INTERACTION

19T 7'6€€ 86£°TS 9 00G°TE 0S1°¢ 01 000052
9'¢l 8298 08921 4 000°GTE 0S1'¢ 00T 000°00T
9'6 €91 19.°6 G 00G°1E 0S1'¢ 01 000°00T
11 G'e9T 88T°¢ q 00G°LGT GLGT 00T 000°00T
8T 9'c 087 € 0GLST GLGT 01 000°00T
1'C 9'¢1 80T q 0GLST GLG'T 01 000°0T
(go) epou (s) worye 90103 s100]J0
Iad Arowowr -19%1 Jod ouwil} (s) -Ioauoo modn JoyIew S109]J0
Eﬂaﬂmﬁz :ﬁg ®w®~®>< @EE :aw\(/ mgoﬂﬁmwﬁ muowﬁw mxz UE@Q@U Eaﬂ@ggoh\wgﬂ mgoﬁﬁ\;@mﬁo

*a[qe} SIY} Ul PIjsSI[ SI pazA[eue s[eLI} [[® JO 1asqns darjejuasatdal e A[UuQ ‘'sa10d NJD 9T YHm

paddinbe yoes sepou Surpnduiod § uo s[erI} peY juaIPIp JO SIsA[eue oy} J0J a3esn LIowoW pue sawljuny :1°, 9[qeL 3

—
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7.3. RESULTS

The results discussed further on are mainly to show the capabilities of our
software and to demonstrate the usefulness of the large-scale analyses that
are enabled by this parallel sparse-dense framework. An overview of the
required wall time and working memory for different sizes of analyses can be
found in Table For each analysis, the starting values of the AI-REML
algorithm were set to 0.001 and convergence was reached when the relative
update of the values of the variance components and the relative update
of the log-likelihood were less than 1%. The largest data set analyzed, in
terms of number of effects included, resulted in a linear mixed model with
100,000 observations, 100 fixed environmental effects, 3150 random genetic
marker effects and 315,000 random MxE effects. The analysis of such a
data set could be performed using four computing nodes, with 16 CPU
cores per node in 3.25 h. The root node, managing all operations on sparse
submatrix A required a maximum peak of 40 GB of virtual memory, while
the other nodes required a maximum of 44 GB of virtual memory. In total,
the analysis thus required 172 GB of memory, while performing the same
analysis without any sparse matrix formalism would require more than 800
GB of working memory. It can also be seen in Table that for a larger
number of observations, the required amount of memory does not change
dramatically. Only the computing time increases because the set-up of the
coefficient matrix takes more time. This is also reflected in the average
wall time per iteration, which does not increase dramatically when more
observations are included, because the set-up of the matrices, except for the
dense submatrix D, is only performed once before the iterative algorithm
starts.

A detailed analysis of the time complexity of the algorithm is outside of the
scope of this paper as the coupling of sparse and dense matrix formalisms and
the several underlying mechanisms of the analysis framework do not allow
for a straightforward conclusion. Nonetheless, when all matrices would be
treated as dense, the time complexity of the algorithm would be cubic with
respect to the number of effects included in the model, as the factorization
and inversion of the coefficient matrix C dominate the computing time of
the algorithm. In Table it is clearly seen that the wall time per iteration
does not scale cubicly with the number of included effects, which is due to
the introduction of the sparse matrix formalism. Factorizing and inverting a
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sparse matrix is no longer only a function of the dimension of the matrix
but it mainly depends on the number of non-zeroes in the factors of the
matrix. As such, it is hard to predict how the wall time per iteration will
increase with an increasing number of effects included in the model, but it
will always stay below the upper bound of a cubic complexity with respect
to the number of effects included in the model.

In the remainder of this paper, marker effects will coincide with QTL effects
because simulated data is used and thus the genotypes for the QTL are
known together with their true effects. Therefore, the marker-by-environment
interaction effects are now referred to as QxE effects as we actually model
the QTL-by-environment interaction effects. Using simulated data makes it
possible to evaluate the prediction accuracy of these QxE effects, because
we know the true values of these effects used to simulate the phenotypic
records.

7.3.1. ACCURACY OF ESTIMATION OF EFFECTS

Instead of looking at the accuracy of estimated breeding values or predicted
phenotypes, which is commonly done in the field of genomic prediction, we
decided to concentrate on the prediction accuracy of the values of the effects.
This is made possible by the fact that simulated data is analyzed, while for
real-life data the true effects of the genetic markers are not known. The
prediction accuracy is measured by the Pearson correlation between the
estimated and the true effects, used for simulating the phenotypic traits.
Being able to estimate these effects correctly might not only result in a
more precise prediction of the phenotypes in certain environments, but
also opens up opportunities for pinpointing highly contributing effects and
detecting variations of these effects under certain environmental conditions.
To obtain some insight into which parameters of a trial set-up influence the
prediction accuracy, a range of multi-environment trials were simulated. An
overview of the different trial set-ups is given in Table Each of these
trials was simulated for RILs with a trait determined by 1,575 QTL and one
determined by 3,150 QTL, to investigate what the impact of the number of
QTL would be on the prediction accuracy.
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The prediction accuracy for the fixed environmental effects was always at
least 0.97, even for the smallest field trial. The results for the other effects
are summarized in Figures[7.4] and [7.5] The estimation of the QTL effects
depends mainly on the total number of observations, regardless of the set-
up of the field trial (Fig.[7.4). For example, the correlations of the QTL
effects for the field trials with in total 100,000 observations for the trait
determined by 3,150 QTL are 0.904 (10 environments, 2,500 RILs/lot), 0.902
(50 environments, 500 RILs/lot) and 0.9 (100 environments, 250 RILs/lot),
resulting in three overlapping points.

On the contrary, the prediction accuracies of the QxE effects are mainly
affected by the field trial set-up and in particular by the number of observa-
tions per environment (Fig. . Given a fixed number of observations per
environment, the prediction accuracies for the QxE effects are somewhat
lower for a lower number of total observations (corresponding to fewer envi-
ronments), which is probably a side-effect of the fact that the overall QTL
effects are also predicted more poorly for these trials. This effect can be
seen in Figure by the small differences in Pearson correlation for 1000
observations per environment, where the highest correlation is found for a
trial on 100 environments (100,000 total observations) and the lowest for a
trial on 10 environments (10,000 total observations).

o % ¥
»

0.8 «

o o

0.6 ® .

0.4
% 1575 QTL

0.2 . #3150 QTL

Correlation between true
and estimated QTL effects
L

100 1,000 10,000 100,000 1,000,000

Observations

Figure 7.4: Pearson correlation between the estimated QTL marker effects and
true QTL marker effects for the different simulated trials in function of the total
number of observations.
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Figure 7.5: Pearson correlation between the estimated QX E effects and true QxE
effects for the different simulated trials in function of the number of observations
per environment.

As already shown theoretically [12], the number of QTL affecting a trait
also plays a major role in the predictive power of the genomic prediction
model. The more QTL affecting a trait, the bigger the training set should
be for accurately predicting the QTL effects (Fig. . For obtaining a
similar prediction accuracy for the QxE effects when the trait is described
by a larger number of QTL, it is again the number of observations per
environment that should be increased (Fig. . To provide a better view
on how well these QxE effects are estimated based on an increasing number
of observations per environment, the estimated QxE effects are plotted in
function of the simulated QXE effects in Figure [7.6] This figure also shows
that for low numbers of observations the QxE effects are mostly ignored by
the linear mixed model, but they gain more impact when more observations
per environment are present in the data.

7.3.2. DETECTING QTL SUSCEPTIBLE TO ENVIRONMENTAL
CONDITIONS

The high prediction accuracies of the QxE effects for the trials with the most
observations per environment triggered the question of how well the model
could identify the QTL that contributed the most in certain environments.
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400, (c) 1000, (d) 2000, (e) 10,000, (f) 25,000
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Therefore, the results of the analysis of the trial with 2,500 RILs per lot,
undergoing 10 rotations, for a simulated trait with 1575 QTL were examined
more thoroughly. The predicted QXE effects in a certain environment for
this trial are plotted in Figure [7.7] From this plot, it can be seen that it is
hard to determine how many QTL should be selected as having an important
environment-dependent effect. A commonly used approach is to select those
with an absolute value greater than a multiple of the standard deviation or
interquartile range. However, this always depends on the interpretation of the
results and the criterion used may have to change for different traits.

To circumvent these potential problems, a parameter-free methodology akin
to machine learning, namely 2-means clustering [146], was used to separate
the QTL with a substantial QxE effect in a specific environment from the
other QTL. The usefulness of this technique for different numbers of QTL
with simulated QXE effects was assessed by producing data sets for a trait
with 1575 QTL where respectively 5, 25, 50, 100 and 250 of these QTL
had environment-dependent effects. After analysis of these data sets and
performing 2-means clustering on the estimated QxE effects, it was seen
that the number of QTL in the cluster corresponding with high absolute
predicted environmental interaction effects was always less than the number
of QTL with a truly simulated QXE effect. This is in accordance with
what is expected as some of these QTL only have a very small simulated
QXxE effect in a certain environment and therefore cannot be detected as
interacting with that specific environment.

Now that a method is available to select the QTL with a high predicted
QXE effect, some measures are presented to quantify how well this selection
corresponds with the underlying truth. The Positive Predictive Value (PPV)
is the relative number of QTL found to have important QXE effects that are
also in the set of QTL with a truly simulated QX E effect. It is thus a measure
for the relevance of the detected QTL with an important environmental
interaction. The True Positive Rate (TPR) is the relative number of QTL
with a truly simulated QxE effect that are also found by clustering the
predicted values for the QxE effects of the QTL. Therefore, it measures
the model’s ability to correctly detect QTL that do have important QxE
effects.

Not only is it important to pinpoint the QTL that have a specific environ-
mental effect, the correct estimation of their mutual ranks is desirable to
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Figure 7.7: Estimated values of the QxE effects for all included QTL in a certain
environment.

enable the selection of the most contributing QTL for a specific environment.
A simple measure is the top 10 rank which states how many of the 10 truly
most contributing QTL in a certain environment are also in the top 10 of the
QTL with the highest predicted QxE effects. For a more complete measure
of the ranking of the QTL, Spearman’s rank correlation is used, which is
the Pearson correlation of the ranks, without taking into account the actual
values of the effects. However, when only a small part of the QXE effects
has a true non-zero value, the Spearman correlation is biased downwards by
the fact that the largest part of the true QxE effects have an equal rank,
while this is not the case for the predicted QxE effects.
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Therefore, the values of the predicted QxE effects for the QTL not selected
by clustering as having a substantial QxE effect were set to zero and the
Spearman correlation was calculated between the new set of predicted QxE
effects and the simulated QxE effects in a specific environment. Although
this already resulted in a reasonably high rank correlation coefficient, this
number still is penalized by comparing the predicted results with an unattain-
able ideal scenario. To enable a comparison of the results of our model with
the best possible results, 2-means clustering was also performed on the simu-
lated QX E effects. The values of the QxE effects for QTL belonging to the
cluster corresponding with the highest environmental interactions remained
unchanged, while the others were set to zero. This corresponds to a scenario
where the QX E effects are estimated correctly and from these estimations
the QTL with a high environmental interaction effect are discriminated from
the others using 2-means clustering. The Spearman correlation between
this set and the new set of predicted values after clustering was calculated,
representing a fair measure of how well the most contributing QTL in a
certain environment can be ranked.

The results of these analyses are summarized in Table [7.3] The raw Pearson
correlation is the same correlation as was used for setting up Figure [7.5] and
is a measure of the accuracy of the predicted values for the QxE effects.
However, it is not robust if outliers are present, which can be seen here by
the somewhat lower correlation for small numbers of QTL with a simulated
QXE effect. This is also one of the reasons why the Spearman correlation is
used as a measure for the accuracy of ranking the QTL in function of their
QXxE effects further on. The high numbers of the PPV for the comparison
with the ground truth are a very reassuring result, stating that if we can
extract QTL that have a substantial QxE effect, these will almost surely
be truly influenced by environmental conditions. In addition, the high top
10 ranks and high PPV for the comparison with the clustered simulated
QXE effects show that those QTL that are found to be have a high QxE
effect are most probably also the QTL with a truly high environment-specific
effect. Furthermore, it can be seen that only less than half of the QTL
with a simulated QXE effect can be extracted, but if we compare with
what can be extracted in the most ideal situation, cfr. clustering on the
simulated QXE effects, between 65% and 75% are also found by our linear
mixed model. Finally, the Spearman correlation between the clustered sets
of true and predicted QXE effects, shows that the model can discriminate
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very well between highly contributing, less contributing and negligible QTL
in a specific environment. This correlation remains fairly constant when
the number of QTL with a simulated QxE effect is changed, with a minor
decrease noted for the highest number of QTL with a simulated QxE
effect.

7.4. DISCUSSION

This paper presented a novel approach of combining sparse and dense matrix
algebra together with distributed computing techniques to enable large-scale
genomic prediction with marker-by-environment interaction. Due to the
increase of genomic data for plants [82], there is a need for a high performance
computing framework that can efficiently make use of a supercomputing
cluster to analyze these future large-scale data sets. To the best of our
knowledge, this is the first attempt of introducing the computing power
of a supercomputing cluster in the field of genomic prediction for plants,
taking into account variations of genetic effects across environments. It
enabled us to analyze data sets with 100,000 observations and more than
300,000 effects in less than four hours, using four computing nodes. Adding
more observations increases the runtime due to a more tedious set-up of
the system of equations, but this runtime can be decreased by using more
computing nodes. The required memory will increase somewhat due to the
fact that Xeny and Zy,e are read in entirely on each node, but due to their
sparse storage format this is not a limiting factor for Needles.

As a first result of the analysis of such large-scale data sets with Needles, it
has been shown that by increasing the number of phenotyped and genotyped
individuals in the training data, the prediction accuracy for the QTL effects
can be increased dramatically. Furthermore, if it is desirable to boost
the performance in a certain type of environments, it is essential to have
as many observations as possible coming from this environment. In this
way, the interactions of the QTL with this environment can be estimated
fairly accurately and it has been shown that when sufficient observations in
this environment are included, the most contributing QTL in this specific
environment can be detected by 2-means clustering on the predicted QxE
effects. This result was at first rather unexpected as BLUP are under the
influence of shrinkage towards zero that is homogeneous across markers [147],
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but apparently it can still identify QTL with a high effect when enough
data is available. It thus enables the selection of crops on these QTL, for
environment-specific plant breeding.

The selection of environment-dependent QTL by 2-means clustering was cho-
sen because it required no prior knowledge about the QxE effects. However,
because of the fact that the data was simulated by QXE effects drawn from
a normal distribution, and it was also assumed so in our linear model, this
information could be included a priori. A more advanced method is known
as Gaussian mixture modeling, where clusters are formed by attributing
values to being drawn from different normal distributions [54]. In our case,
the data is split up into two distributions with a different variance. The
results are not shown here, but the main difference with 2-means clustering
was the fact that the TPR was somewhat higher, meaning that more QTL
with a true QxE effect could be detected in this way. However, the PPV
dropped, making it more unsure that the selected QTL truly had a significant
environmental interaction effect.

The post-processing by 2-means clustering of the QxE effects was proposed
because estimations of all possible markerxenvironment combinations are
available as a result of the analysis. The paper by Heslot et al. is the only
one we found where M xE effects were also modeled explicitly and where an
effort was made to detect QTL with specific environmental variations [127].
However, a Bayesian Lasso approach was used, which made it computation-
ally impractical to model all marker xenvironment combinations together
with the marker effects at once and thus a multi-step approach was needed,
leading to quite a complex procedure. Nevertheless, their results indicated
that QTL with important QxE effects had small main effects, which is in
contrast with assumptions of earlier studies where QxE effects were only
modeled for QTL with a high main effect [I38] [148]. These early studies
were mainly interested in mapping QTL that were stable across environ-
ments and thus obtain better estimates of the global genetic potential of
an individual, regardless of the environment [135, [I37]. However, currently
attention is directed more towards clarifying which QTL are susceptible
to specific environmental covariables such as climatological or soil condi-
tions [127, [I38]. This makes it possible to define certain target populations
of environments (TPE) sharing some of the same environmental covariables
so environmental dependent QTL can be exploited for these TPE [127]. Of
course, the weather, playing an important factor in QTL expression [13§], is
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always partly unpredictable and so information about weather-dependent
QTL can open up a whole new research field of balancing between yield
optimization for a certain weather type and minimizing the risk of yield loss
due to bad weather predictions.

As environments were treated in this study as an abstract concept, they could
easily be defined as a TPE with different (simulated) weather conditions
to obtain estimates of the QXE effects under different weather conditions.
As such, a certain homogeneity is present between environments, resem-
bling the assumptions made in this paper, and it has been shown that
an across-environment model with inclusion of MxE effects then results
in better predictions of grain yield for genotypes already evaluated in a
certain environment than when using a stratified (i.e. within-environment)
analysis [I128]. The same study concluded that for untested genotypes or
uncorrelated environments results were similar for both types of analyses.
However, this could be due to the fact that the number of genotypic lines
evaluated per environment was less than 1,000 and as shown here, this
might have resulted in bad estimates of the MxE effects, leading to an
overestimation of the global marker effects compared to the MxE effects.
Moreover, the number of test environments was small (max. 5), so when
more environments are introduced, chances are greater that there will al-
ways be an environment more correlated with another, and these specific
correlations might be introduced in the analytical model via the covariance
structure of the residual effects and the M xE effects. The comparison of
such an analysis with a stratified analysis might shed more light on the
advantages and disadvantages of a joint analysis of multiple environments
that are only sparsely correlated and it is thus an interesting path for future
research.

The number of observations per environment used in this study might
seem high for realistic scenarios, although some studies have shown that
the number of observations of different genotypic lines should increase to
improve prediction accuracy of complex traits [21), [135]. This also emanates
from our simulation study, showing that for the global marker effects 10,000
RILs needed to be evaluated 4 times to surpass a Pearson correlation
of 0.8 for a trait determined by 3150 QTL. This number is a lot more
than a population of 500 which was suggested by [I38] as a limit where
beyond there would be probably not much to gain. For improving the
prediction accuracy of the QxE effects it is shown that the number of RILs

157



CHAPTER 7. NEEDLES: GENOMIC PREDICTION WITH M XE INTERACTION

evaluated per environment should go well beyond 1,000, what is common
practice in realistic scenarios [127], [128]. When environments are treated
as location X year combinations, it will indeed be hard to obtain more than
1,000 observations per environment. Nonetheless, similar environments
can be clustered together [I49] or environments can be categorized by
some environmental covariates [I32] to increase the number of observations
per environment, which might lead to better prediction accuracies of the
phenotypic traits in certain types of environments.

All these results were based on analyses where the QTL were known and
QTL genotypes were available for all plants. In reality only some of the QTL
are known, and therefore genome-wide SNP sets are used for determining the
genotype of the plants [82]. In the previous Chapter, it was shown that the
prediction of breeding values is a lot harder using SNP markers than when
using QTL markers. This can probably be explained by the fact that most
SNP markers are only in partial linkage disequilibrium with the QTL, and so
it is more difficult to predict their true effects. Future research should clarify
if the use of SNP markers instead of QTL genotypes would have a substantial
effect on the predictive ability of our model, but it is expected that even more
observations are required to detect SNPs that contribute more to a specific
trait in a certain environment. Moreover, the statistical model used in this
study was intentionally kept simplistic, because the emphasis of this research
was to enable the analysis of large-scale data. Using such a simplistic model
was made possible by simulating the data according to the model. In more
realistic scenarios, this model might not obtain the same performance as the
results of this study indicate, but the most important result of this study
is the indication that including more genotypic lines in the analysis leads
to better prediction accuracies of the genetic effects and their interactions
with the environment. A next step to take in the further development of
this analytic framework, is the extension of the underlying model so it can
take into account distinct genetic variances in different environments and
heterogeneous genetic correlations across environments.

Although Needles, a first high performance computing implementation of the
approach described in this paper, seems promising for analyzing large-scale
genomic data sets obtained from multi-environment trials, there are some
side notes to take into consideration. First of all, Needles is optimized
for analyzing data sets with a large number of observations (n) in the
training data, because this does not influence the memory complexity of
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the used model. It is thus not recommended for usage when the number
of observations is several orders of magnitude smaller than the number of
effects to be estimated. Secondly, an important restriction is the fact that
the sparse submatrix cannot be distributed across different nodes. Currently
no libraries are available that are able to compute a selected inverse of a
distributed sparse matrix, which is also one of the reasons why Needles was
developed. When the number of genetic markers and/or the number of
environments becomes large, the memory requirements for storing the sparse
matrix might surpass the available working memory on a single computing
node. Although it was not handled explicitly in this study, there are two
ways of dealing with such a situation. As a first step, one could cluster the
environments in homogeneous subgroups to reduce the number of different
environments [149, [5]. However, when possessing of a large number of genetic
markers, the number of marker-by-environment interaction effects may still
lead to an unduly large sparse submatrix. Most of the time, not all genetic
markers have a variable effect across environments and thus markers can
be preselected by screening simultaneously for a high main effect and for
consistency of these effects across environments [127, [I50]. In this way,
one can reduce the number of marker-by-environment interaction effects
and thus also the dimensionality of the sparse submatrix A. The number
of genetic markers included is then only limited by the characteristics of
the computing cluster, because the dense part can be distributed over the
working memories of all available computing nodes.

The development of Needles is a first step in taking plant genomic prediction
to the next scale. As the cost of genotyping plants decreases and the size
of real-life data sets increases, the efficient use of a supercomputing cluster
becomes a necessity for enabling the analysis of these data sets. Based
on simulated data, it was shown that when a huge amount of training
data is available, QTL effects can be predicted accurately and the QTL
that have a variable effect in specific environments can be identified. As a
further optimization an important next step would be to apply distributed
computing techniques on the factorization and selected inversion of the sparse
submatrix. This could make it possible to use large-scale SNP genotypes
and model marker-by-environment interaction effects for each SNP marker,
making it unnecessary to preselect those markers that could have variable
effects across environments. We believe that by making the source code
open for public, the software can be extended to be used for more complex
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models and thus this initial implementation is a stepping stone for future
large-scale research in plant breeding.
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& (CONCLUSIONS AND FUTURE PROSPECTS

This chapter will review the general conclusions that can be drawn from the
work in this dissertation. Moreover, because this dissertation is at a cross-
point of two research fields, namely genomic prediction and high performance
computing, some future prospects for both areas will be discussed.

8.1. GENERAL CONCLUSIONS

The research presented in this dissertation had as main objective to intro-
duce high performance computing in genomic prediction for animal and
plant breeding. The reasons why this research field could benefit from the
efficient use of a supercomputing infrastructure were explained in the first
part of this dissertation, based on a broad theoretical description of the
statistical methodology behind genomic prediction and its history. Histori-
cally, especially dairy cattle breeders have always made use of innovative
computing methods and facilities to enable the analysis of an ever increasing
number of animals. Before the new millennium, computing power increased
significantly over the years and so common analysis methods could be used
without much adaptation to process ever growing data sets on computers
that became more powerful and yet less costly.

However, starting from the landmark paper of Meuwissen et al. in 2001,
dense genetic marker maps were introduced in genomic prediction, leading to
new computational problems that had to be overcome [14]. This translated
the former sparse mixed model equations, used for estimating the genetic
merit of an individual, to dense mixed model equations, due to the fact
that an effect per genetic marker was estimated. Until 2008, the number
of genetic markers used and the number of genotyped individuals were still
reasonable, making it unnecessary to dramatically change common analysis
methods. But 2008 marked the beginning of the commercial availability of
next-generation sequencing technologies, leading to a gigantic decrease in
cost for genotyping and the availability of a lot more genetic markers. An
illustration of this can be found in Figure where it is seen that starting
from 2008, the cost of genotyping dropped dramatically. Another indication
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of the emerging DNA sequencing technologies are the numerous research
articles from the animal and plant breeding research field, dealing with the
computational implications of the use of dense marker maps, consisting of
many markers [16, 2], 28, 29] [35], 36|, [411, 55|, [70, [71), 109, [130]. 2008 was also
the year that the United States Department of Agriculture officially started
using genomic evaluations based on SNP markers for predicting breeding
values for milk production of US Holsteins. To give an idea about the
increased use of genotypes in these evaluations, in 2009 only 6,508 bulls were
genotyped with SNP chips of 50,000 markers, while in 2011 already 116,980
cows and bulls were genotyped with SNP chips of 50,000 markers, but there
were also already some genotypes available from SNP chips with 700,000
markers [42] [109]. Currently, around 1 million genotypes are available for US
Holsteins, mainly consisting of SNP chips of 50,000 markers, but even whole-
genome sequences are readily available for about 121 Holsteins, consisting
of 28,336,153 SNPs [151], 152].

Cost per Raw Megabase of DNA Sequence

Moore's Law

National Human Genome
Research Institute

genome.gov/sequencingcosts

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Figure 8.1: Illustration of the evolution of the cost of determining one megabase
(Mb; a million bases) of DNA sequence. This cost reflects generating raw, unassem-
bled sequence data. The cost for data analysis, technological developments, in-
formatics equipment and quality assessment is not taken into account. Source:
http://www.genome.gov/sequencingcosts/ [115]
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Figure represents another important evolution, that is the much faster
decrease in cost for genotyping than the decrease in cost for computing
power, based on the famous law of Moore [76]. Therefore, it is of vital
importance that analysis methods are enhanced in such a way that less
computing power is needed for processing data sets of increasing size, or
known reliable methods that have proven to perform well are updated so
they can make efficient use of supercomputing clusters. The second path
has been chosen as the objective for this dissertation, because it can enable
processing data sets growing in number of records and/or in number of
genetic markers. Moreover, newly developed analysis methods may benefit
from the advances made in this research to also exploit high performance
computing whenever necessary. This approach had already been suggested
by Cole et al. in 2012 as the conclusion of a symposium about the processing
and analysis of very large data sets in 2011 [42].

To our knowledge, this dissertation is the first one to investigate the efficient
use of a supercomputing cluster for taking genomic prediction to the next
level. The first achievement, as discussed in Chapter 6, dealt with a model
that is commonly used in animal breeding to predict breeding values of
individuals based on the genotype using a dense marker map. Such a model
results in a completely dense system of equations with the dimensionality
defined by the number of genetic markers. As such, the complexity does
not depend on the number of records or genotyped individuals included
in the analysis, making it extremely useful for analysing data sets that
grow in number of phenotypic records of genotyped individuals with a fixed
number of genetic markers on the DNA sequencing chip. But even when
the number of markers would rise leading to the inability to process data on
the computing platform, the distributed-memory computing method that
was applied in DAIRRy-BLUP makes it feasible to extend the computing
power and storage capacity of the computing infrastructure by adding more
computing nodes to the installed cluster.

The results with this novel implementation confirmed, as already theoretically
shown, that increasing the number of phenotypic records of genotyped
individuals in genomic prediction, significantly improves the prediction
accuracy of the breeding values of the individuals [21], 41]. Increasing the
number of SNP markers only improves the prediction accuracy up to a
certain level, which was also observed in another study [120]. This is most
probably due to the fact that linkage disequilibrium between markers and
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QTL is already captured by sampling the DNA at a certain density and
going beyond this density does not provide a lot more information. Moreover,
it has been shown that effects of markers can be predicted quite accurately
if they truly contribute to the trait when a large number of genotyped
individuals is available. This was shown by treating the simulated QTL
genotypes as marker genotypes and so the results might be poorer for SNP
marker genotypes. Nonetheless, using simulated QTL of which the effect on
the trait is known is the only way of verifying whether these effects can be
accurately predicted.

As a second step, it was tried to resolve a computational burden in plant
breeding when interaction effects between the genotype and the environ-
ment are included. Usually, these interaction effects are accounted for by
calculating an adjusted genotype mean across the environments, which can
then be used to predict breeding values in a second stage [31]. However,
in this dissertation it was chosen to explicitly model marker effects and
their variable effects across the environments (MxE effects). This again
leads to mixed model equations whose dimensionality only depends on the
number of effects and so including more trial records in the analysis does not
lead to computational problems. Moreover, explicitly modelling these MxE
effects may also lead to the discovery of QTL that induce different effects
under varying environmental conditions. However, the explicit modelling
of the MxE effects leads to a dramatic increase in the number of effects
to be estimated, because each marker is coupled once to each environment.
Nonetheless, information on these effects is only sparsely available, because
each observation only comes from a single environment.

The resulting mixed model equations thus are described by a coefficient
matrix that is in essence dense, with a large sparse submatrix. This resulted
in an implementation that was based upon the first distributed-memory im-
plementation for solving completely dense mixed model equations, extended
with the use of a well-performing sparse direct solver, PARDISO [90], to
handle the introduction of the large sparse part in the mixed model equations.
The results of this combined implementation, obtained using simulated data,
showed that QTL effects can again be more accurately predicted when
more records of genotyped individuals are included. Moreover, the results
indicated that for accurately predicting the variable effects of the QTL in
different environments the number of records from different genotypes per
environment must be increased. Furthermore, a post-processing based on
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2-means clustering was presented to enable the identification of environment-
dependent QTL, which performed adequately when the MXE effects were
predicted with a high accuracy.

It might seem a hiatus in this thesis that no benchmarking was performed
comparing the implemented methods with software packages that are already
available and frequently used by animal and plant breeders. Nonetheless,
this decision was made with careful considerations in mind. First of all, it
should be stressed that the use of high performance computing methods only
is beneficial when the data set becomes too large to be analysed on a single
computing node. This has as a consequence that for smaller data sets, other
software packages will probably outperform our implementation, as some
overhead is introduced by enabling the analysis with multiple computing
nodes. Secondly, other software packages are to our knowledge limited in the
number of records they can process, as they are bound by the RAM memory
and number of CPUs available on a single computing node and they can thus
not process the large-scale data sets that are discussed in this thesis. Finally,
the goal of this thesis was to combine the variance component estimation
based on the entire data set combined with the estimation of the different
effects. In practice, other software packages reduce the computational
requirements by estimating the variance components based on a small data
set, which then allows the use of iterative solvers for solving the mixed model
equations for obtaining estimates/predictions of the different effects. It would
thus be unfair to compare the implementations as presented in this thesis
with software packages using small-scale data for which our implementations
are not intended or to compare with software packages that do not estimate
the variance components based on the entire data set.

8.2. FUTURE PROSPECTS IN HIGH PERFORMANCE
COMPUTING

The high performance computing methods used in this dissertation are well
established and commonly used in many research fields. The distributed
computing methods and in particular the dense matrix algebra based on
these distributed computing methods were already conceived in 1992 and
have been further optimised later on [87, [89]. Currently, high performance
libraries are available, optimised for specific types of processors, developed
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by the vendors of these processors. Research is, therefore, more oriented
towards fault tolerance and error detection on large-scale clusters [153] [154]
and towards increased user-friendliness and ease of the application of the
different libraries [155] [I56]. For the scalable dense matrix algebra applied
in this dissertation, there has not been any blocking factor or a point
for improvement that has popped up during the implementation of both
analysing algorithms.

However, for handling the sparse matrix algebra and the combination of
sparse and dense matrix algebra on a distributed system, there are still
some open problems that may deserve some attention in the future. First
of all, although there exists a sparse BLAS library, it does not offer a
functionality for sparse matrix/sparse matrix multiplication. This has been
implemented in the Needles software by means of a naive algorithm, but
has shown to perform quite poorly when matrices grow in size. For instance,
the multiplication of a sparse matrix of size 315,000 x 100,000 with its
transpose, leading to a sparse matrix filled for 0.5% with non-zeroes required
more than 10 minutes to be calculated. There are surely ways for improving
such a sparse matrix-matrix multiplication and it would be practical if
it was introduced in the sparse BLAS library as a standard routine. To
our knowledge there is only a single initiative in trying to optimize sparse
matrix algebra routines, known as Combinatorial BLAS [I57]. This library
even provides functionalities for distributed sparse matrices, which may be
interesting when the sizes of the sparse matrices get even larger. In this
dissertation, it was explicitly chosen to not incorporate the Combinatorial
BLAS due to two reasons. First, the library still seemed premature for use
in our framework and the sparse matrix interface was not compatible with
PARDISO, requiring some transformations for the sparse matrices, which
could lead to suboptimal use of memory. Secondly, our naive implementation
was not the largest bottleneck for the algorithm as the sparse matrix-matrix
multiplication only had to be performed once for such large matrices and
so it did not seem opportune to invest a lot of time in getting to know the
combinatorial BLAS interface.

The largest bottleneck for Needles originated from the multiplication of a
sparse matrix with a distributed dense matrix. Again, there is no standard
interface provided for such multiplications as the sparse BLAS only provides
an interface for the multiplication of a sparse matrix with a dense matrix,
both stored on a single computing node. It was attempted to use this sparse
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BLAS interface, but eventually this option was discarded as it did not provide
the functionalities that were necessary for completing the multiplication. As
elaborated on in Chapter 5, we need to be able to define the multiplication
of certain blocks of the sparse matrix with the blocks that are stored in the
different process memories. This is not possible with the standard sparse
BLAS routines and because it was thought to be inefficient to extract the
blocks from the sparse matrix, a naive algorithm was written to perform
the blockwise sparse matrix block/dense matrix block multiplication. This
algorithm was already parallelised for shared memory processors using
OpenMP, but it still performed quite poorly for large-scale matrices. For
instance, the multiplication of a sparse 315,000 x 100,000 matrix filled
for about 0.5% with non-zeroes with a distributed dense 100,000 x 3, 150
matrix needed about 2.5 hours of computation time using 4 nodes, each
equipped with 16 CPU cores. Fortunately, also this operation had to
be performed only once and the calculation time can be diminished by
employing more computing nodes. Nonetheless, it would be interesting
to have a standard routine available that can cope with such operations,
which might be optimised using a kind of efficient blocking of the non-zero
values in the sparse matrix as in the supernodal multifrontal method for the
factorisation of the matrix.

Another optimisation for the Needles algorithm would be the possibility to
solve a sparse system of equations of which the right-hand side is distributed
across the memories of different nodes. Especially for the calculation of the
Schur complement of matrix A as in Eq. where the matrix equation
AY = B should be solved for Y, with B a dense matrix distributed over
the memories of the involved computing nodes, such a routine would be of
great help. In the current implementation this is resolved by distributing
the dense matrices in a one-dimensional column block cyclic data layout and
solving the matrix equations AY; = B; on the nodes that have the columns
B; of B stored in their local memory. Of course, this implies that sparse
matrix A should be broadcast to all involved computing nodes, which can
lead to some communication overhead. Nevertheless, this approach has been
chosen instead of sending columns of B to the node that stores A, because
the solutions then still had to be sent back to the node that originally stored
those columns of B in its local memory.

There exist sparse direct solvers that can handle distributed right-hand
sides in the matrix equations such as MUMPS [91] and SuperLU [93] and
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they even have the possibility to distribute the sparse matrix as well over
the involved computing nodes. These functions are not yet available in
PARDISO [90], but PARDISO was chosen because it supports the efficient
computation of a selected inverse of a sparse matrix with the Takahashi
equations [104]. To our knowledge there is not yet any software package
available that can compute such a selected inverse for a sparse matrix that
is distributed across the memories of different computing nodes. Such an
implementation would also be of great help for the research conducted in
this dissertation as it would allow for the modelling of many more marker-
by-environment interaction effects as was also discussed in the previous
chapter.

In the current research, all involved matrices were symmetric and positive
definite. However, in more general cases, the coefficient matrix of the mixed
model equations can become semi-positive definite due to linear dependencies
between the equations. For handling singularities in the coefficient matrix due
to numerical rounding errors, PARDISO uses diagonal pivoting or Bunch-
Kaufman pivoting [I58]. But in genomic prediction settings, structural
linear dependencies can be introduced in the mixed model equations due
to overfitting of the fixed effects. Therefore, it might be useful to detect
these linear dependencies prior to solving the mixed model equations. As
such, these linear dependencies can be left out of the equations, reducing the
dimensionality of the coefficient matrix and converting it to a positive definite
matrix. In fact, the current implementation assumes that the coefficient
matrix of the mixed model equations is positive definite and non-singular.
Therefore, it returns an error message whenever a diagonal element of the
Cholesky factors is zero. To overcome this error messages, we can iteratively
leave out the equations that lead to a zero diagonal element in the factors.
For a large number of fixed effects, such iterations may become very time-
consuming and it may lead to a loss of information due to the fact that
more equations than the bare minimum are left out than strictly necessary
to obtain a positive definite coefficient matrix.

To conclude this section, we would like to suggest an idealistic framework
that in our opinion should be the final target in high performance computing.
This framework should be an integrated sparse/dense library or collection
of libraries that consists of highly efficient basic linear algebra operations
(such as the BLAS) and algebraic methods using these basic operations
to compute matrix factorisations, solutions of systems of linear equations,
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matrix inversions and other routines that are available in LAPACK. The
framework should run efficiently on shared-memory processors as well as
on distributed systems. The main difference with the current ScaLAPACK
implementation and its dependencies is the fact that sparse matrix algebra
should be coupled in some way to these existing dense matrix libraries and
ideally, the software package should possess of some heuristic method to
determine whether to treat a matrix as sparse or dense, or whether to split up
a sparse matrix in large dense blocks that are distributed across the memories
of the involved computing nodes. It is beyond our scope to assess the
feasibility of such an approach, but it seems that current developments, like
the PETSc project (Portable, Extensible Toolkit for Scientific Computation),
are orienting towards this integrated approach [159]. However, the PETSc
project does not provide a routine for (selective) inversion and the user still
has to decide whether to treat a matrix as dense or sparse.

8.3. FUTURE PROSPECTS IN LARGE-SCALE GENOMIC
PREDICTION

The methods proposed in this dissertation allow for genomic prediction
based on millions of phenotypic observations from individuals genotyped
for up to 360,000 markers when no interaction effects with the environment
are modelled and up to 3,150 markers when explicit marker-by-environment
interaction effects for 100 environments are modelled. As a first and direct
consequence, it was shown that increasing the number of genotyped indi-
viduals with phenotypic records in the analysis, dramatically improves the
prediction accuracy of the breeding values of the individuals, but also the
actual marker effects can be predicted with better accuracy. It was even
shown that QTL that are dependent on environmental conditions can be
correctly distinguished from those that are stable across environments.

Due to the unavailability of real-life large-scale data sets, all the results
in this dissertation are based on simulated data. The advantages of using
simulated data is that they offer a great versatility in creating very large-
scale populations in different ways, enabling the exploration of scenarios
that are not yet available in real-life data sets, and that it is known which
genetic markers contribute to the trait under study. A disadvantage of
using simulated data is that simulations require certain assumptions, which
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may not be entirely in accordance with reality. In our case, data was
always simulated using the same assumptions as for the analysing method,
probably leading to some overestimation of the prediction accuracies of the
breeding values and the different effects. Nonetheless, as a first validation,
it is vital to test whether at least in the case of using simulations with the
same assumptions as for the analysis, the simulated effects are correctly
retrieved by the analytical model. However, now that this first validation
has led to satisfactory results, it may be tested to what extent the results of
this dissertation hold when real-life data sets are analysed. Unfortunately,
real-life data sets with a comparable size as the data sets processed in
this dissertation are mostly not publicly available, leading this future path
away from the academic world and more towards private institutions and
industry.

Of course, another way for further validation of the obtained results could
be performed by simulating data using more complex models than those
assumed for the analysis. However, the downside of such an approach is that
by introducing more complexity, it is not always certain that reality will
be better approached. In contrast, keeping a simulation simple in nature
usually also does not reflect reality properly, but at least the assumptions
are easily verified due to the simplicity of the model. What could be done
instead of introducing complexity in the simulation model, is simulating
different scenarios that are more practically relevant, perhaps even by using
other distributions than the normal distribution for sampling the values of
the effects. Some scenarios that could be worth evaluating in dairy cattle
breeding are for example:

e Genotype only sires and compare with scenarios where both sires and
cows are genotyped.

e Genotype only certain families, and try to predict breeding values of
the other families.

e Investigate whether it is still necessary to genotype individuals from a
younger generation when genotypes and phenotypes of the forefathers
are already available.

e Apply phenotypic or genotypic selection when simulating future gener-
ations.

e Combinations of the above.
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For all of these scenarios, it can be studied what the effect is of including
more records of genotyped individuals. In a plant breeding perspective,
where environmental interaction effects are taken into account, there are
plenty of scenarios that could be interesting for a specific crop:

e Vary the number of records coming from different environments to

make the data sets more unbalanced.

e Apply heterogeneous variances for the simulated QxE effects in differ-

ent environments.
e Vary the number of records coming from certain genotypes.

e Apply phenotypic or genotypic selection when simulating future gener-
ations.

e Combinations of the above.

Next to validating the approaches used in Chapters 6 and 7, there is of course
still room for improvement of the analytical models and implementation of
these models. Although the results have shown that including more records
of genotyped individuals has a large impact on the prediction accuracy
of the different effects, for some analyses it might be that the number of
genotyped individuals is an order of magnitude lower than the number of
genetic markers. In that case it would be computationally more efficient
to employ the GBLUP methodology, where marker information is used to
deduce correlations between genotyped individuals and the dimensionality
of the mixed model equations is dominated by the number of genotyped
individuals. As such, it could be implemented that the algorithm chooses the
appropriate methodology based on the characteristics of the data set under
study. Moreover, this could open up the path for a combined analysis of
genotyped and ungenotyped individuals, where correlations between the two
and mutual correlations between ungenotyped individuals are based on the
pedigree. This so-called single-step GBLUP (ssGBLUP) has been in use from
2010 and has now even been used for very large-scale genomic predictions [109]
160]. However, although these large-scale genomic predictions involve 570,000
genotyped individuals, only the mutual correlations of a base set of maximum
30,000 animals and the correlations of this base set with the other individuals
in this base set is based on the genotypes, while mutual correlations for
the individuals not included in the base set are only based on the pedigree
information. It might thus be interesting to compare these results with an
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approach where all of the correlations are based on the genotypes. Also, the
memory requirements for the suggested approach were still quite high, making
it perhaps more interesting to apply distributed computing methods.

The models described in Chapters 6 and 7 are admittedly in essence very
simple models, because no correlations were assumed between phenotypic
values or between any of the random effects, and the number of variance
components was low. Nonetheless, such models are commonly used and
provide fairly accurate results compared with more complicated models
[28, 130, [40]. However, there are several options that could be introduced to
enable the analysis of genomic data sets with a greater variety of models.
The most straightforward extension would be to introduce the ability to
provide matrices G or R as input to the program, with R preferably in sparse
format as its dimensionality is defined by the number of observations. This
would mainly have an impact on the set-up of the mixed model equations,
but also on the variance component estimation as the inverse of G should

be calculated for evaluating the score functions.

The step taken from chapter 6 to chapter 7 in view of the model was actually
quite small, as we only introduced one more family of random effects, with
a different variance than the other family of random effects. As the focus
lies on introducing sparse matrix algebra to the existing distributed-memory
framework, the modelling part was kept as simple as possible to avoid
introducing undue complexity. However, now that the computational basics
are implemented, the road is cleared for exploring more complex models with
more random effects. A first improvement could be to enable the modelling
of heterogeneous variances for Mx E effects for different environments. Next
to this extension, more random effects could be modelled, for instance the
environmental effects might be modelled more accurately as random effects
in stead of as fixed effects. Moreover, a complete single-stage approach could
be achieved by enabling the modelling of spatial variations such as block
effects, row and column effects and plot effects. Jarquin even suggested
to replace the environmental effects by environmental covariates, such as
temperature, soil moisture and solar radiation, and model interaction effects
between the markers (or genotypes) and the environmental covariates [132].
This would probably lead to mixed model equations that are less sparse,
but hopefully high performance computing methods will also evolve so
these kinds of mixed model equations could also be processed efficiently on
supercomputing clusters.
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Another approach could be to cluster certain environments based on the
environmental covariates and exploit correlations between the environments
based on the environmental covariates. In this case the sparsity of the
mixed model equations is preserved and still some conclusions can be drawn
about dependency of QTL effects on environmental covariates. Such an
integrated approach creates a lot of opportunities in plant and animal
breeding. Primarily, it enables the detection of QTL that are stable across
environments, which are important to select or create lines that perform
well across different environments. However, QTL with a varying effect
under certain environmental conditions may be exploited for optimising
yield in specific target populations of environments. Such target populations
of environments share some similar environmental covariates, which should
stay more or less constant. Moreover, some QTL are also subject to changing
weather conditions, which may have a huge impact on the yield. Weather
conditions are not always predictable and thus they incorporate uncertainty
in the genomic prediction for target populations of environments. It thus
seems logical that in the future, when more QTL are detected and their
dependency on environmental covariates is better known, genomic prediction
will have to take into account statistical models for balancing between yield
optimisation for a certain weather type and minimising the risk of yield loss
due to bad weather predictions. Due to the many effects that can play a
role in these risk minimisation methods, it is thought that the results of this

dissertation may play a role in the faster development of such analyses.
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A RESULTS FROM LINEAR ALGEBRA

A.1. INVERSE OF A SQUARE BLOCK MATRIX

The inverse M™! of a square n x n matrix M must satisfy the condition
that M—!M = MM ™! = I,,. The columns M_Z1 of M~ can thus be found
by solving the linear system of equations MM*Z1 = e;, with e; a vector with
all elements equal to zero except for the ith element, which is one.

When matrix M and also M ™! are split up in blocks,

A B o [Mu,l) M(m)]

C D

M@ M22)

with A and M@ square invertible nq x nq matrices, D and M2 square
invertible no X no matrices and n = nq + ng, the blocks of the inverse matrix
M~ can be found by solving the linear system of equations:

MG M12) B I, Ony xny
MDD ME2| .

A B
C D

Onz Xni I’n2

Explicitly solving this system of equations can be pulled apart in solving

two independent linear systems of equations. The first one is

{ AM(LQ) + BM(2’2) = On1 Xng (A 1)

cMmB? L DMB? =1,
and because A is invertible, this translates to

M2 — _A-1BM(22)
(D-CA'B)M®? =1,

The final equations for M2 and M(%2) are thus, assuming that D—CA~'B
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is invertible,

)

M2 = —A~'B(D-CA'B)"’
M®? = (D-CA™'B) ™

where M(22) is also the inverse of what is called the Schur complement of
A in M.

The second system can be solved similarly:

AMEY L BMGY =1
. (A.2)
cM®D 4 DM®2D = 0,4y,
M(lvl) — A—l _ A_IBM(271)
(D-CA-'B)M®Y) = —cA~!’ (A.3)

and so the equations for M1 and M@V are thus

M = A1+ AT'B(D-CA'B) 'CA!
M(2’1) - _ (D o CAle)—l CAfl .

To come to these equations we have only made use of the fact that A is
invertible, but when D is also invertible, these systems of equations can also
be solved in another way. The system in Eq. (A.1l) can be solved as

(A-BD 'Cc)M!? = -BD"!
M©22 — D! _p-lom®D '

leading to, assuming that A — BD~'C is invertible,

M1 — — (A -BD'C) 'BD!
M®? —D '+ D 'C(A-BD'C) 'BD!
The system in Eq. (A.2) is then solved as

1

{ (A-BD'C)M" =1, { M) = (A -BD'C)~
1 )

MY — _p-lom®D MY — _D-1C (A-BD"'C)~
where again M1 is the inverse of the Schur complement of D in M
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The previously derived results can be summarised as follows, leading to two
equivalent expressions for the inverse of a block matrix, when both diagonal

blocks are invertible:

A B

-1
B [A—l +A'B(D-CA'B)"'CA™! —A'B(D- CA‘lB)_ll
C D

- (D-cA'B)'CcA™! (D-cA'B)™"

B (A-BD'C)™" - (A-BD"!C)"'BD!
-D'c(A-BD'C)"' D !'+D'C(A-BD!C) 'BD!

A.2. DETERMINANT

Some important basic properties of the determinant of a matrix are:

o I,|=1
o [A= Al
e |AB| = |A||B|, for square matrices A and B of equal dimension.

o [A7! = AL
e |kA| = k™|A]| for any scalar k and square matrix A of dimension n.

The Laplace formula for a determinant of a matrix consists of the sum of
its minors [60]. A minor M; ;) of an n x n matrix A is defined as the
determinant of the (n — 1) x (n — 1) matrix resulting from deleting the ith
row and jth column of A:

n n
A=) (-)MaiMij =Y (~1) ay ;M. (A4)
i=1 J=1

An important result of this formula is that the determinant of the following

1 0,
x Al

with x any vector of dimension n, is equal to the determinant of the square

matrix

n X n matrix A. By induction, this can be extended to any matrix of the
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type

I’ITL Oan
B A |’

with B any matrix of dimension n x m. It was already proven for m = 1, so
if we assume that it was proven for m — 1, then we see that:

det * = det b Tm=d)x =|A],
B A C A

with C the matrix obtained by deleting the first column of B.

Because |M'| = [M|, the previous result is also valid for any matrix of the
type:
1, B
det " =|A].
_Oan A

In a similar way, it can be proven that

A B]
det = det
Om Xn Im_

The determinant of an arbitrary matrix that is split up in blocks can then

be found as

A B
M| = det =|A||D-CA'B|, (A.5)
C D
when A is invertible by acknowledging that M can be decomposed as:
A B| |A Ouxm 1, A~'B
C D| |C I, ||0ux, D-CA'B|’
When D is invertible, it can be analogously derived that
A B
M| = det =|D||A-BD'C|, (A.6)
C D

182



APPENDIX A. RESULTS FROM LINEAR ALGEBRA

Another important theorem for the determinant is Sylvester’s determinant
theorem, stating that for an n x m matrix A and an m x n matrix B:

1, + AB| = |I,, + BA| .

this can immediately be proven by considering the determinant of the block
matrix

I, A
B I,

This determinant can be found by applying Eq. (A.5) as well as Eq. (A.6])
and so

\I,| |I,, — BA| = |I,,| |1, — AB| ,

proving Sylvester’s determinant theorem.

A.3. TRACE

The trace of a square matrix A of dimension n is defined as the sum of its
diagonal values, or more formally

tr(A) = z”: Qi -
i=1
This leads to the following properties which are easily verified
o tr(A') =tr(A).
e tr(A + B) = tr(A) + tr(B).
o tr(cA) = ctr(A)

The trace of a product of an n x m matrix A and an m X n matrix B can
be expressed as:

n n n n

tl"(AB) = Z Z aiyjbjyi = Z Z bj,iam = tr(BA) .

i=1 j=1 j=1i=1
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This cyclic property of a trace is an extension on this result, meaning that

the trace is invariant under cyclic permutations:
tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC) .
The trace can also be expressed in function of the eigenvalues of the matrix

by making use of the Jordan normal form. The Jordan normal form of a

square matrix is

J o --- 0
0 J, --- 0
0 0 - J;

where the J; are called Jordan blocks that are square matrices of the

form
N 1 0]
0 X
1
i 0 0 /\Z_

with the dimension d; of the block the algebraic multiplicity of the eigen-
value A; It can be shown that for each square matrix A there exists an
invertible matrix P such that P~'AP = J [85]. Taking the trace of this

expression:

k
tr(P~'AP) = tr(PP'A) = tr(A) = tr(J) = ) _di);
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A.4. DERIVATION RULES

For a parameter ¢, the derivative of a matrix A with respect to t is the
matrix B with as elements:
8&1'7]'
T o
For an invertible n x n matrix A, we know that AA~! = I, and taking the
derivative of this expression with respect to ¢ leads to

0A OA~1
7A_1 A = Onxn,
ot AT %
and so
OA~1 0A
= _—A1TZ=ATL
ot Ot

The derivative of the determinant requires the definition of the adjugate
matrix adj(A) of a square matrix A of dimension n. This adjugate matrix

has as elements at position (i, j):
adj(A)i; = (—1)™" Mjg

with M;; the (j,7)-th minor of A. Using the expression in Eq. (A.4), the
following equality holds:

Aadj(A) = AL,
and so when A is invertible
adj(A) = |A|A™T.

Another prerequisite is the fact that

9|Al _

da; ; (—1)" M; ; = adj(A)jq

which follows from the expression in Eq. (A.4) and the fact that every minor
M; ; does not depend on a; ;.

The derivative of the determinant of a square matrix A of dimension n with
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respect to a parameter ¢ can then be found by applying the chain rule:

8|A| 8|A\8 i
Zz; Oa;j O 5 ]

daiy
— ZZadj(A)j’i gt’]

j=1i=1

(a2

alA| 0A
at_A’tr<A 875)

So when A is invertible

As a result the derivative of the logarithm of the determinant of an invertible
matrix is

Jlog|A[ 1 J]A]
ot |A| ot

O0A
—tr (A=) .
tr < BN )

A.5. IDEMPOTENT MATRICES

A matrix T is called idempotent when the product of the multiplication
with itself is again itself: TT = T. This leads to the fact that T should be
square. When n x n matrix T is idempotent it can easily be proven that
I, — T is also idempotent:

I,-T)I,-T)=1,-T—-T+TT
=1,-2T+T
~1,-T.

Another important property of idempotent matrices is the fact that their
eigenvalues are 0 or 1. This follows from

Mv = MMv = A\Mv = v = \v,
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with A and v representing each eigenvalue and eigenvector. As such, the
only possible values for A are 0 and 1.

Because it was shown previously that the trace of the matrix is equal to the
sum of the eigenvalues, the fact that the eigenvalues can only be 0 or 1 leads
to the fact that the trace of an idempotent matrix equals its rank:

tr(T) = rank(T).

A.6. QUADRATIC FORMS

A quadratic form is of the form y’Ay, with A generally assumed to be
symmetric. If y is a random vector with expected value p and var(y) =V
then the expected value of y’Ay can be found as:

E(y'Ay) =E (tr (y'Ay)) =K (tr (Ayy'))
E(Ayy')) =tr (AE (yy'))
A(V+pp )) tr (AV) + tr (App')

where we have made use of the fact that the trace of a scalar is equal to
that scalar, tr(E()) = E(tr()) and V = E(yy’) — /.
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Het optimaliseren van de agronomische performantie van planten en dieren is
een proces dat sinds vele eeuwen gaande is en waar nog steeds veel aandacht
aan wordt besteed. De voorbije eeuwen gebeurde deze optimalisatie door
het kruisen van die individuen wiens performantie significant beter was dan
de andere individuen, wat ook wel benoemd wordt als fenotypische selectie.
Op het einde van de 19de eeuw publiceerde Gregor Mendel de welbekende
resultaten van zijn experimenten met doperwten, waaruit hij concludeerde
dat bepaalde eigenschappen kunnen doorgegeven worden naar volgende gene-
raties, afhankelijk van onzichtbare factoren die later genen werden genoemd.
Het duurde echter tot het midden van de 20ste eeuw totdat deze kennis
ook werd toegepast in de plantenveredeling en veefokkerij. Aanvankelijk
werd de genetica van de planten en dieren niet expliciet geéxploiteerd, maar
werden correlaties verondersteld tussen de fenotypische scores van planten
en dieren, gebaseerd op hun onderlinge verwantschap die afgeleid werd van
een nauwkeurig bijgehouden stamboom.

Het begin van het huidige millennium bracht echter nieuwe opportuniteiten
door enkele belangrijk evoluties in de moleculaire wetenschap van de genetica.
De ontdekking van de DNA molecule die de drager is van de genetisch
overerfbare informatie en de studie van zijn chemische opbouw leidde het
tijdperk in van DNA sequencing, die toelaat om bepaalde sequenties van
de DNA molecule te lezen en te ontleden. Al snel werd deze informatie
ook aangewend in de plantenveredeling en de veefokkerij, waarbij getracht
werd om het effect te schatten van bepaalde genetische merkers, i.e. stukjes
DNA sequentie die een grote variabiliteit vertonen in bepaalde populaties,
op een fenotypische score. Initieel werden slechts een beperkt aantal van
deze merkers opgenomen in de analyse, waarbij men vooral als doel had de
plaatsen op het genoom, ook loci genaamd, te ontdekken die een significant
effect hebben op een bepaalde fenotypische eigenschap. Deze loci worden dan
bestempeld als Quantitative Trait Loci (QTL) en tegenwoordig zijn al heel
wat van deze loci bekend. De huidige aanname is echter dat kwantitatieve
eigenschappen zoals bijvoorbeeld de opbrengst van mais niet enkel bepaald
wordt door deze QTL met een significant effect, maar dat het gecombineerd
effect van genetische merkers met een veel kleinere bijdrage aan de eigenschap
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een belangrijke rol kan spelen in de verdere optimalisatie van de performantie
van planten en dieren.

Sinds 2008 zijn daarom al commerciéle DNA chips beschikbaar die tot
50,000 genetische merkers kunnen samplen over het gehele genoom. Deze
genetische informatie wordt gebruikt in de plantenveredeling en veefokkerij
om beslissingen te maken over welke individuen er worden gekruist om
een volgende, meer performante, generatie te bekomen. Dit selectieproces
wordt bestempeld als genoomwijde selectie en het schatten van de genetische
component van de eigenschap onder studie wordt genoomwijde voorspelling
genoemd. Het spreekt voor zich dat de inclusie van dit grote aantal genetische
merkers in de analyse niet enkel leidt tot computationele moeilijkheden,
maar ook dat het intrinsiek moeilijker wordt om al deze effecten correct
te gaan schatten op basis van een beperkt aantal data punten. Daarom
kan een data gedreven aanpak een beter resultaat opleveren in de zoektocht
naar een betere schatting van de verschillende effecten die een rol spelen
bij het determineren van een kwantitatieve eigenschap. Een andere evolutie
die in het voordeel spreekt van een data gedreven aanpak is het feit dat de
kost voor het genotyperen van een individu steeds kleiner wordt door de
voortdurende technologische vooruitgang in dit gebied.

De beschikbaarheid van zulke grootschalige data sets, waar niet enkel het
aantal data punten hoog oploopt, maar waar ook de informatie per data punt
aanzienlijk is, leidt tot computationele problemen bij de analyse van deze data
sets. Er is dus nood aan het mogelijk maken van zulke grootschalige analyses
om de plantenveredeling en veefokkerij naar een volgend niveau te brengen.
Deze dissertatie is er dan ook op gericht om de technologische vooruitgang
uit de computerwetenschappen toe te passen op het onderzoeksgebied van
de genoomwijde voorspelling. De toegang tot krachtige computerclusters
is namelijk tegenwoordig niet enkel weggelegd voor de academische wereld,
maar ook de industriéle sector en zelfs particulieren kunnen gebruik maken
van deze zogenaamde supercomputers. Het efficiént aanwenden van deze
rekenkracht kan een grote invloed hebben op de accuraatheid van schattingen
van genetische effecten op bepaalde eigenschappen van planten en dieren
en kan leiden tot het kweken van gewassen of veesoorten die een optimale
performantie hebben onder bepaalde klimatologische omstandigheden.

Deel T van deze dissertatie is gericht op het schetsen van de historische en
theoretische context van de gevoerde studie. Er wordt eerst een diepgaand
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historisch overzicht gegegeven van de evolutie van genoomwijde voorspelling
en selectie, waarna er dieper wordt ingegaan op enkele belangrijk statistische
bouwstenen die typisch worden gebruikt in het veld van de genoomwijde
selectie. Een eerste belangrijke bouwsteen is het lineaire gemengde model dat
gebruik maakt van effecten waarvan verondersteld wordt dat ze getrokken
worden uit een probabilistische distributie, in deze dissertatie meer bepaald
de normale distributie. Ook wordt aandacht besteed aan het schatten van
de variantie van deze probabilistische distributie op basis van de input data.
Telkens wordt er ook de nadruk gelegd op de computationele aspecten van
het gebruik van deze statistische modellen om een idee te geven wat de oor-
sprong is van de computationele moeilijkheid van genoomwijde voorspelling.
Het eerste deel wordt afgesloten met een overzicht van de aangewende com-
putationele methoden om genoomwijde predictie efficiént te laten uitvoeren
op een hoogperformante rekencluster.

In Deel II worden de geintroduceerde elementen uit Deel I toegepast voor
een applicatie in de veefokkerij en in de plantenveredeling. Eerst worden
gedistribueerde rekenmethoden aangewend om een genetische analyse in
de veefokkerij mogelijk te maken wanneer voor een groot aantal dieren
de genetische informatie beschikbaar is en wanneer het aantal genetische
merkers voor het bekomen van deze genetische informatie drastisch stijgt.
De implementatie van deze methode wordt dan afgetoetst aan de hand van
gesimuleerde data, waaruit blijkt dat het aantal gegenotypeerde individuen
een grote invloed heeft op de accuraatheid van de voorspellingen van de
kweekwaarden van de dieren. Voor de toepassing in de plantenveredeling
worden ook omgevingsfactoren in rekening gebracht en wordt rekening
gehouden met het feit dat bepaalde genotypes een verschillend effect kunnen
hebben onder variérende omgevingsomstandigheden. Daarvoor worden
de methodes aangewend voor de veefokkerij uitgebreid met ijle matrix
algebra, wat het mogelijk maakt om grote data sets op een gecomprimeerde
manier te verwerken. Opnieuw wordt de implementatie van deze methoden
afgetoetst met gesimuleerde data, waarbij de resultaten erop wijzen dat een
groter aantal data punten komende uit een bepaalde omgeving leidt tot een
accuratere voorspelling van de genetische effecten in deze omgeving.

De conclusies van deze resultaten uit de veefokkerij en de plantenveredeling
worden samengevat in Deel III, waar ook enkele toekomstige onderzoeksrich-
tingen worden aangereikt die dit domein nog verder kunnen helpen in de
zoektocht naar de genetische oorsprong van agronomische performantie. Een
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veelbelovend onderwerp, waar deze dissertatie een bijdrage toe kan leveren is
het optimaliseren van genetische lijnen voor bepaalde weersomstandigheden,
waarbij het risico op opbrengstverlies door een verkeerde voorspelling van

het weer moet geminimaliseerd worden.
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