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Fruits and vegetables, together called fresh produce, represent an important part of the human diet. 

In recent years, the fresh produce market has experienced rapid growth (Sapers et al. 2006; 

Warriner et al. 2009). Consumers want to lead a healthy lifestyle and this is encouraged by many 

governmental health agency campaigns which recommend to consume at least five daily servings of 

fruit and vegetables (Abadias et al. 2008; Van Boxstael et al. 2012). However, since the mid 1990’s 

foodborne illness outbreaks linked to consumption of fresh fruits and vegetables were documented. 

Such outbreaks can be caused by different microorganisms such as Listeria monocytogenes, Shigella 

flexneri, Campylobacter jejuni, and viruses (hepatitis A and noroviruses), but most identified 

outbreaks were caused by Salmonella and Escherichia coli O157:H7 (E. coli O157:H7). Most of these 

are enteric bacterial pathogens which are traditionally associated with food products of animal 

origin like meat, dairy and eggs. A variety of fresh produce were implicated in outbreak reports: e.g. 

cantaloupe, tomatoes, alfalfa, lettuce, peppers, spinach, raspberry and radish sprouts (Aruscavage et 

al. 2006). Most outbreaks mainly occurred in the USA but also in other countries (Aruscavage et al. 

2006). In the European Union (EU) foodborne verified outbreaks were linked to the consumption of 

vegetables, fruits, berries, juices (and products thereof) (EFSA and ECDC 2012; Van Boxstael et al. 

2012). The impact of such outbreaks can be tremendous and the number of affected persons very 

high. This was illustrated with the German outbreak in 2011 which outnumbered the previous ones 

in both size and severity. The outbreak could, in all probability, be traced back to the consumption of 

fenugreek sprouts contaminated with E. coli O104:H4 grown from seeds imported from Egypt (EFSA 

and ECDC 2011) and had dramatic consequences. More than 50 people died and more than 4000 

were sickened, of whom 852 developed the kidney-damaging complication called hemolytic uremic 

syndrome (HUS) (Mellmann et al. 2011). Besides the very severe consequences for public health also 

a significant economic impact was recorded. Spain, which was first incorrectly linked to the 

outbreak, has claimed losses from at least 51 million euro caused by produce withdrawal and nearly 

200 million euro due to production loss. In addition, all the health care expenditure (such as 

diagnostics, epidemiological analyses, hospitalization, dialysis, future renal organ transplantations) 

must be included as long-term social expenses (Karch et al. 2012).   

Different causes can be assigned for the occurrence of such large-scale outbreaks including 

increased consumption of fresh produce, changes in farming practices such as centralized 

production and most importantly the lack of an inactivation step of the pathogen during production 

as fresh produce are consumed raw. Even if decontamination of produce is attempted by e.g. 

washing with a hypochlorite solution, research shows that these techniques are often not successful 

in removing the pathogens completely (Gomez-Lopez et al. 2008). The understanding of the 
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microbiology of fresh produce and the routes of infection is, therefore, the first essential step to 

effectively elaborate control measures. 

This PhD research studies the survival, attachment and gene expression of the enteric pathogens E. 

coli O157:H7 and Salmonella enterica during butterhead lettuce production. The pathogens E. coli 

O157:H7 and Salmonella were selected because of their strong association with produce-related 

outbreaks (114). Lettuce was taken as model plant for leafy greens which are frequently implicated 

in outbreaks (Rangel et al. 2005). More specifically butterhead lettuce (Lactuca sativa L. var. 

capitata) was chosen because of its economic value for Belgium and the lack of knowledge about 

this typical northern European lettuce crop type regarding contamination with human pathogens. 

The focus lies on contamination of the crop before harvest, also called preharvest contamination. 

This has been less intensively studied in comparison with postharvest contamination. Furthermore, 

it is important to be able to control the food safety risk in the preharvest stage as contamination at 

this stage may spread over a large volume of fresh produce in the postharvest stage during washing, 

mixing of the produce (in fresh-cut processing) or packing (Whipps et al. 2008). Finally, to better 

understand a natural contamination event, not only the behavior of freshly cultured, unstressed 

pathogens but also the behavior of stressed pathogens was investigated. The PhD-study was 

situated within the SALCOSLA project. This project was funded by the Belgian Federal Public Service 

Health, Food Chain Safety and Environment in the period April 2009 to April 2013 in order to gain 

more information on the risk factors for introduction and persistence of enteric bacterial pathogens 

during the Belgian primary production of leafy greens. 

This thesis starts with a general introduction (chapter 1), which contains a short description of the 

outbreaks linked to fresh produce, the pathogens E. coli O157:H7 and Salmonella, the model plant 

butterhead lettuce and the transmission of the pathogens to the vegetable production chain. 

Furthermore, a schematic overview of the existing research about contamination of lettuce with 

enteric pathogens is presented which is used to show where the present PhD research tries to 

contribute to fill the knowledge gaps. In chapter 2, the survival characteristics of E. coli O157:H7 and 

Salmonella on lettuce seeds and seedlings are investigated. The aim of this chapter was to check 

whether contaminated seeds could be a potential contamination source in greenhouse cultivation. 

This chapter shows that both E. coli O157:H7 and Salmonella were able to proliferate on lettuce 

seedlings even after residing for a period of two years on the lettuce seeds. The survival of both 

pathogens introduced by irrigation water on young and nearly mature butterhead lettuce plants is 

studied in chapter 3. Both plant factors, such as crop stage, and cultivation factors, such as 

temperature, relative humidity, and irrigation treatment were investigated. These experiments were 
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conducted with freshly cultured pathogens suspended in a sterile buffer. But in a natural 

contamination event this is, however, unlikely to occur. The pathogens may behave differently in 

case of prior residence in the complex matrix of irrigation water before being transferred to the 

plant leaves. Chapter 4 combines, therefore, research on the survival of the pathogens in five 

different irrigation water samples from Belgian lettuce production sites and the influence of the 

inoculum carrier on the survival of the pathogen on lettuce. Subsequently, the effect of the residing 

time in irrigation water on the attachment of the pathogens on lettuce is described in chapter 5. 

Chapter 6 goes back to the basics. As enteric pathogens on plants are in a completely different 

environment than in the animal bowel, the pathogen needs to use different strategies to survive in 

this specific environment. Whole genome transcriptional profiles were generated from E. coli 

O157:H7 cells inoculated on the leaves of growing butterhead lettuce to reveal which genetic 

underlying mechanisms are necessary for E. coli O157:H7’s survival on plants.   

Finally, the major findings of this work are summarized and the future research perspectives are 

discussed in chapter 7. 

 





 

 

 

 

 

Chapter 1: 

General introduction 
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1.1 Foodborne illness 

Foodborne illness or foodborne disease is defined as any illness that results from the consumption of 

contaminated foods. Contamination of food can be caused by the presence of pathogenic bacteria, 

viruses or parasites or due to the presence of chemicals or natural toxins. This thesis focusses on 

pathogenic bacteria that are together with viruses the dominant cause of foodborne illness 

(Anonymous, 2013a).  

Traditionally, foodborne outbreaks had a local character, people became ill after e.g. a wedding 

reception where contamination of the food occurred shortly before consumption. This kind of 

contamination can usually be attributed to a food handling error such as improper heating or 

interruption of the cold chain. Nowadays, however, large scale outbreaks occur more frequently. 

These outbreaks are often diffuse and widespread, involving many countries, states, even on 

different continents (Tauxe 1997). The root cause is probably the change in the way food is produced 

and distributed nowadays. Throughout the years, food production went through a process of 

intensification and centralization whereas the distribution was globalized. Furthermore, a higher 

proportion of the population is susceptible for foodborne illness since the number of susceptible 

people such as elderly and immunocompromized persons, is increasing. Hotspots of foodborne 

pathogen emergence are concentrated in regions with a high human population density and human 

population growth such as South and Southeast Asia, but also Europe and North America (Figure 1.1) 

(Jones et al. 2008). 

Most of the foodborne pathogenic bacteria are enteric pathogens, causing gastrointestinal diseases. 

Furthermore, the bacteria are zoonotic pathogens which means that they have an animal reservoir 

from which they spread to humans, sometimes by a vector (Zambrana-Torrelio et al. 2012). As a 

consequence, most of the foodborne outbreaks are caused by animal derived products such as meat, 

eggs and dairy. Since 20 years, however, the pathogens have also been detected in new food vehicles 

such as plant derivatives and fresh produce (Tauxe 1997). One of the first evidences for the fact that 

fresh produce could be contaminated with zoonotic enteric pathogens occurred in 1996. 10 000 

Japanese people, the majority being school-age children, were infected with E. coli O157:H7 after the 

consumption of contaminated radish sprouts (Watanabe et al. 1999). Since then, more large spread 

outbreaks with enteric bacterial pathogens on fresh produce were reported. The majority of the 

reported outbreaks occurred in the USA, but similar trends towards an increased health risk related 

to the consumption of fresh produce can be seen in Europe. In the following two paragraphs, the 

foodborne outbreak statistics from the USA and Europe will be discussed in some further detail.  
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Figure 1.1: Relative risk of foodborne emerging infectious disease events, based on Jones et al. (2008). Human population 
density and human population growth, were the most important variables. 

1.2 Outbreaks linked to fresh produce 

1.2.1 USA 

In the USA, data on foodborne outbreaks are collected by the state, local and territorial public health 

agencies. These data are reported on a voluntary basis to the Foodborne Disease Outbreak 

Surveillance System and are analyzed and reported by the Centers for Disease Control and 

Prevention (CDC).  

An analysis based on the data that were reported by the CDC between 2000 and 2008 estimated that 

each year, 31 known foodborne pathogens caused between 6.6-12.7 million illnesses which lead to 

40 000-76 000 hospitalizations and 712-2268 deaths. The majority of illnesses in this period was 

caused by viruses (59%), dominantly norovirus. Although illness caused by viruses often occurs, the 

illness is in general less severe. This can be deduced from the hospitalization rate and death rate 

which were respectively 27% and 12%. Parasites (mainly Toxoplasma gondii), on the opposite, were 

responsible for only 2% of illnesses, but 25% of deaths. But the highest number of deaths and 

hospitalizations (64% each) were caused by bacteria although they were responsible for only 39% of 

illnesses. The most important bacterial pathogens that caused hospitalization were nontyphoidal 

Salmonella spp. (35%) (see also 1.3.2) and Campylobacter spp. (15%). Nontyphoidal Salmonella spp. 

was also responsible for the highest number of deaths (28%), followed by Listeria monocytogenes 

(19%). The incidence of E. coli O157:H7 was much lower (3.8% of the hospitalizations, 1.5% of the 

deaths). This low incidence of E. coli O157:H7 infection is the result of improvements in sanitation at 

slaughter and meat processing plants which were implemented between 1996-1998. Since then a 

decrease with 30-40% of E. coli O157:H7 infections could be seen. Since 2003, however, there has 

only been little progress (CDC 2011f). Similar trends were seen for Campylobacter and Listeria 

infections. This is in contrast with Salmonella infections which are not decreasing (Figure 1.2). 
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Figure 1.2: Relative rates of laboratory-confirmed infections with Campylobacter, Shiga toxin producing E. coli O157:H7 
(STEC O157), Listeria, Salmonella and Vibrio compared with 1996-1998 rates, by year. – Foodborne Diseases Active 
surveillance Network; United States, 1996-2012 (CDC 2012)  

Contaminated meat was the main cause of foodborne outbreaks caused by Salmonella (36%) and 

pathogenic E. coli (46%) between 1996 and 2005. In the same period fresh produce were the second 

most important cause of foodborne outbreaks (16% of the registered outbreaks for Salmonella and 

27% for pathogenic E. coli). Comparative risk assessment based on the analysis of the outbreaks with 

fresh produce that occurred in the USA from 1996-2008 indicates that the highest risk is presented 

for leafy greens and E. coli O157:H7 (EHEC) followed by S. enterica and tomatoes and S. enterica and 

leafy greens (Anderson et al. 2011). This assessment took nine criteria into consideration regarding 

both health impact and consequences of particular pathogens as well as factors related to dose-

response relationships, consumption, prevalence of the hazards and the possibility of growth of the 

hazards during shelf life (Anderson et al. 2011; EFSA and BIOHAZ 2012).  

The first large-scale outbreak in the USA with fresh produce occurred in 2005 and 2006. More than 

450 people from the USA and Canada became ill after the consumption of contaminated tomatoes 

(Bidol et al. 2007). The outbreak strain was isolated from the pond water used to irrigate the tomato 

fields (Greene et al. 2008). In the same period, a large outbreak occurred with E. coli O157:H7 on 

spinach with almost 200 illnesses and 3 fatalities (CDC 2006a). E. coli O157:H7 isolates which were 

isolated from spinach, were also found in wild pig feces, the feces of several cows, and in a stream of 

one of the four spinach farms in the area (Warnert 2007). A third large outbreak with Salmonella 

occurred two years later, this outbreak was initially thought to be associated with tomatoes but later 

linked to peppers (Barton Behravesh et al. 2011). All these outbreaks were typically multistate or 
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multinational outbreaks. An overview of the most important fresh produce related outbreaks with 

enteric bacterial pathogens in the USA is given in Table 1.1. 

Table 1.1: Enteric bacterial pathogen outbreaks linked to fresh produce from 2005-2011 redrafted from Olaimat and Holley 
2012.  

Location Year Pathogen Produce 
Human 
cases 

(deaths) 
References 

USA, Canada 2005 Salmonella Tomatoes 459 (CDC 2007) 

USA 2006 E. coli O157:H7 Spinach 199 (3) (CDC 2006c) 

USA, Canada 2006 Salmonella Fruit salad 41 (Landry et al. 2007) 

USA 2006 Salmonella Tomatoes 183 (CDC 2006b) 

USA 2006 E. coli O157:H7 Lettuce 81 (FDA 2007) 

USA 2006 E. coli O157:H7 Spinach 22 (Grant et al. 2008) 

North America, 
Europe 

2007 Salmonella Basil 51 (Pezzoli et al. 2007) 

USA, Canada 2008 Salmonella Peppers 1442 (2) 
(CDC 2008b; Mody 

et al. 2011) 

USA, Canada 2008 E. coli O157:H7 Lettuce 134 
(Warriner and 
Namvar 2010) 

USA 2008 Salmonella Cantaloupe 51 (CDC 2008a) 

USA, Canada 2008 Salmonella Peanut butter 714 (9) (CDC 2009b) 

USA 2009 Salmonella Alfalfa sprouts 235 (CDC 2009a) 

USA 2010 E. coli O145 Lettuce 26 (CDC 2010a) 

USA 2010 Salmonella Alfalfa sprouts 44 (CDC 2010b) 

USA 2010 L. monocytogenes 
Fresh cut 
produce 
(celery) 

10 (5) (FDA 2010) 

USA 2011 Salmonella 
Alfalfa and 

mixed sprouts 
140 (CDC 2011b) 

USA 2011 Salmonella Cantaloupe 20 (CDC 2011c) 

USA 2011 Salmonella Papaya 106 (CDC 2011d) 

USA 2011 L. monocytogenes Cantaloupe 146 (31) (CDC 2011e) 

USA 2011 E. coli O157:H7 Strawberries 15 (1) (FDA 2011) 

USA 2011 E. coli O157:H7 Lettuce 60 (CDC 2011a) 

 

1.2.2 European Union 

In the European Union, the annual reporting of zoonosis (including foodborne outbreaks), zoonotic 

agents and antimicrobial resistance present in animal populations and in the food chain is mandatory 

(Directive 2003/99/EC). Data has to be collected for Salmonella spp., thermotolerant Campylobacter 

spp., Listeria monocytogenes, Shiga toxin producing Escherichia coli, Mycobacterium bovis, Brucella 
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spp., Trichinella spp. and Echinococcus spp.. Analyzing and summarizing the collected data and 

annual reporting is coordinated by the European Food Safety Authority (EFSA). It has, however, to be 

noted that the foodborne outbreak investigation systems at the national level are not harmonized 

between the 27 Member States. 

Data from EFSA, based on the reported foodborne outbreaks by EU countries, showed that in the 

European Union in 2011, campylobacteriosis was the most commonly reported zoonosis with  

220 209 cases. Salmonella caused the second most infections (95 548 cases) and caused the highest 

number of reported foodborne outbreaks. But the number of Salmonella infections is steadily 

decreasing. It is assumed that this reduction is a result of the successful Salmonella control programs 

in poultry populations. In food, Salmonella is most often detected in meat and meat derivatives, 

mainly in broiler meat (5.9% of the samples) and pig meat (0.7% of the samples), and was present in 

a very low proportion of table eggs (0.1%). The two most common serovars were Salmonella 

Typhimurium and Enteritidis. (EFSA 2013) 

Similar to the USA, the number of Shiga toxin producing E. coli (STEC) cases was much lower. In 2011, 

9485 confirmed STEC cases were reported. This was almost twice as much in comparison with earlier 

years and was a result of the large E. coli O104:H4 outbreak. E. coli O157:H7 is most often detected in 

fresh bovine meat (0.3%). (EFSA 2013) 

EFSA makes a clear distinction between foodborne outbreaks related to food of animal origin (FAO) 

or food of non-animal origin (FoNAO). The definition of the latter is quite broad and includes ‘all food 

derived from plants which are ubiquitous in their distribution providing a major component of almost 

all meals’. This range of foods and food components comprises a wide range of fruit, vegetables, 

salads, seeds, nuts, cereals, herbs, spices fungi and algae, which are commonly consumed in a variety 

of forms. Between 2007-2011, 19 EU countries reported foodborne outbreaks with strong evidence 

that food of non-animal origin was implicated. From 2007-2010 8% of the outbreaks, 16% of the 

cases, 5% of the hospitalizations and 6% of the deaths were caused by outbreaks related to FoNAO. 

When the data from 2011 are taken into consideration, the percentages increase dramatically to 10% 

of the outbreaks, 26% of the cases, 35% of the hospitalizations and 46% of the deaths. These high 

values are associated with the E. coli O104:H4 outbreak in Germany which is believed to be 

associated with sprouted seed consumption. (EFSA and BIOHAZ 2012) 

The highest number of foodborne outbreaks related to FoNAO was reported for the combination 

norovirus and raspberries followed by norovirus and leafy greens eaten raw as salads. The remaining 

most frequently reported combinations were: Salmonella spp. and sprouted seeds, Salmonella spp. 

and leafy greens eaten raw as salads, Bacillus spp. and spices and dry herbs, Shigella spp. and fresh 
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pods, legumes or grain, STEC and sprouted seeds and norovirus and bulb or stem vegetables (Table 

1.2) (EFSA and BIOHAZ 2012).  When the same risk ranking tool as described for USA was used for 

the EU data from 2007-2011, Salmonella combined with leafy greens eaten raw as salads was 

considered to have the highest risk, followed by Salmonella on bulb and stem vegetables, tomatoes 

and melons and pathogenic E. coli on fresh pods, legumes and grain (Anderson et al. 2011). So for 

both USA and the EU, the assessment points towards leafy greens as produce related with the 

highest bacterial pathogen risk. Based on these data, this thesis focusses on pathogenic E. coli, more 

specifically E. coli O157:H7, and Salmonella and leafy greens, with lettuce as model plant. These 

organisms will be discussed in the following sections. 

1.3 Characteristics of the investigated pathogens 

Escherichia coli O157:H7 and Salmonella are Gram-negative bacteria of the Enterobacteriaceae 

family. They are closely related to other important foodborne pathogens such as Yersinia 

enterocolitica, Shigella spp. and Cronobacter spp., and to plant pathogens such as Erwinia spp., 

Pantoea spp. and Pectobacterium spp. which may cause blights, wilts, and soft rots (Butela and 

Lawrence 2010; Fletcher et al. 2013). Salmonella and Escherichia are quite closely related, the two 

genera show about 50% genomic hybridization and probably diverged from a common ancestor 120-

140 million years ago (Madigan et al. 2012).  

Both pathogens are similarly transmitted via the fecal-oral pathway. The bacteria are directly or 

indirectly ingested via fecal material. Subsequently, both species need to survive the very low pH of 

the stomach before entering the intestinal tract. From this point Salmonella preferably colonize the 

small intestine whereas E. coli O157:H7 colonization is located in the large intestine. 

1.3.1 Escherichia coli O157:H7 

1.3.1.1 Taxonomy, characteristics and E. coli pathovars 

Escherichia coli (E. coli) is a Gram-negative, non-sporulating, facultative anaerobe bacillus and a 

member of the family of Enterobacteriaceae. Within this family, the bacterium belongs to the 

coliforms as it is able to ferment lactose rapidly while producing acid and gas. Since the early 1940’s, 

E. coli isolates are classified by serotype as defined by Kaufmann (Achtman and Pluschke 1986). 

Following this system, different E. coli strains can be identified based on the presence of O-antigens 

which are lipopolysaccharides, H-antigens which are flagellar antigens and sometimes the capsular 

antigen K. E. coli strains with the same O-antigen form serogroups, whereas E. coli strains which 

share the same O and H-antigens belong to the same serotype. 

http://en.wikipedia.org/wiki/Enterobacteriaceae
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Table 1.2 Number of outbreaks reported for most frequent combinations of foodborne pathogen and Food of non-animal origin (2007-2011) following EFSA (EFSA and BIOHAZ 2012). 

Foodstuff 
implicated(c) 

Causative agent 
Number of 
outbreaks 

Human 
cases 

Number of cases 
hospitalized 

Deaths 
Number of 
reporting 
countries 

Raspberries Norovirus 27 913 3 0 3 

Leafy greens 
eaten raw as 

salads 

Norovirus 24 657 1 0 3 

Sprouted seeds Salmonella spp. 11 521 76 1 8 

Leafy greens 
eaten raw as 

salads 

Salmonella spp. 7 438 29 0 5 

Spices and dry 
herbs 

Bacillus spp. 7 343 0 0 4 

Fresh pods, 
legumes and 

grain 

Shigella spp. 4 268 3 0 3 

Sprouted seeds STEC 3 3 830 2 381 53 3 

Bulb and stem 
vegetables 

Norovirus 2 18 0 0 2 

 
(a) This table lists all food type and pathogen group combinations for which more than one outbreak assigned to one single product was reported between 2007-2011 with the 
aggregated numbers of human cases, hospitalizations and deaths. Combinations of pathogen and FoNAO type were ranked by the number of outbreaks reported. When the 
same number of outbreaks was reported for more than one combination of pathogen and food type, these combinations were ranked by the number of human cases.  
FoNAO, which may include one or more cooked ingredients (e.g. cooked vegetable salads), (ii) foods which normally are subjected to a processing step which should inactivate 
vegetative cells (e.g. rice, pasta and cereals), (iii) other processed FoNAO, (iv) non-specified fruit or (v) outbreaks where no detailed information was available to be able to 
identify the specific implicated FoNAO were excluded.  
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E. coli is the most predominant aerobic organism in the gastrointestinal tract of warm-blooded 

animals and reptiles (Tenaillon et al. 2010). They are mainly located in the large intestine, especially 

in the caecum and the colon where they reside in the mucus layer that covers the epithelium. The 

bacterium is highly specialized in metabolizing mucus-derived sugars such as gluconate and it is 

excreted in the feces together with the degraded mucus. In humans the concentration per gram of 

feces varies from 107 to 109 colony forming units (CFU) while in domestic animals this is lower (up 

to106 CFU/g feces). E. coli is, therefore, often used as an indicator of fecal pollution (Baylis et al. 

2011). But apart from being a widespread gut commensal, certain isolates have been shown to be 

pathogenic in either animals or humans worldwide. The pathogenic strains have been associated 

with gastrointestinal diseases (diarrhoeagenic E. coli) or extraintestial diseases and have been 

categorized into different pathogenicity groups (pathovars), based on their virulence properties, 

pathogenesis and clinical manifestations. Eight pathovars and their mechanisms of diseases are well 

known and are described in Table 1.3 (Croxen and Finlay 2009). 

This thesis focuses on one of these pathovars, enterohemorrhagic E. coli (EHEC), and more 

specifically on serotype E. coli O157:H7 which is the most common member of the EHEC group. The 

first outbreak caused by E. coli O157:H7 occurred in Oregon and Michigan (USA) in 1982 and was 

related to the consumption of hamburgers in a restaurant chain. In Belgium, the first registered 

outbreak occurred five years later in 1987 (Pennington 2010). Since 1993, after a large multistate E. 

coli O157:H7 outbreak was linked to undercooked ground beef patties sold from a fast food 

restaurant chain, E. coli O157:H7 became broadly recognized as an important human pathogen 

(Behravesh et al. 2012) 

Apart from E. coli O157:H7 four other typical EHEC serotypes exists, namely O26:[H11], O103:H2, 

O111:[H8] and O145:[H28]. Typical EHEC strains produce one or two Shiga toxin types and harbor a 

genomic island called the locus of enterocyte effacement (LEE) (Beutin et al. 2009).   

People infected with EHEC suffer from bloody diarrhea (hemorrhagic colitis) and 10-15% of the 

patients develop hemolytic uremic syndrome (HUS) 5-13 days after the onset of diarrhea 

(Pennington 2010). HUS leads to destruction of red blood cells, acute kidney failure, and a low 

platelet count and is potentially fatal especially for the young, elderly and immunocompromized. It is 

the major cause of acute renal failure in children under five years of age (Caprioli et al. 2005). In EU 

in 2009, 63.2% of the reported HUS cases could be assigned to this age category (EFSA 2011a). 

  

http://en.wikipedia.org/wiki/Acute_renal_failure
http://en.wikipedia.org/wiki/Platelet
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Table 1.3: Overview of the eight pathogenic E. coli pathovars following Croxen and Finlay (2009) (Croxen and Finlay 2009). 

 

Pathovar 
Colonization site in 

the human body 
Illness 

Diarrhoeagenic 
E. coli (DEC) 

enteropathogenic E. coli 
(EPEC) 

small bowel 
diarrhea in infants in developing 
countries 

enterohemorrhagic 
E. coli (EHEC) 

large bowel 
severe gastroenteritis in 
developed countries 

enterotoxigenic E. coli 
(ETEC) 

small bowel travelers’ diarrhea 

enteroinvasive E. coli 
(including Shigella) (EIEC) 

large bowel watery diarrhea 

enteroaggregative E. coli 
(EAEC) 

small bowel, 
large bowel 

persistent watery and mucoid 
diarrhea, travelers’ diarrhea 

diffusely adherent E. coli 
(DAEC) 

small bowel 
 

Extraintestinal 
E. coli (ExPEC) 

uropathogenic E. coli 
(UPEC) 

bladder, kidney, 
bloodstream 

urinary tract infections 

neonatal meningitis 
E. coli (NMEC) 

bloodstream, 
brain 

neonatal meningitis 

 

1.3.1.2 Virulence characteristics 

Infection with E. coli O157:H7 starts with ingestion of the pathogen. In the colon, E. coli O157:H7 can 

attach to hosts intestinal absorptive epithelial cells (enterocytes) by means of fimbrial adhesins, 

which are cellular appendages that are thinner and shorter than flagella. This triggers the expression 

of several virulence genes, grouped together on the locus of enterocyte effacement (LEE) and 

induces the secretion of proteins (effectors) into the cell plasma of the enterocytes through a needle 

like structure, a type III secretion system (T3SS). One of the secreted proteins is the translocated 

intimin receptor (Tir), this protein becomes integrated on the cell surface of the epithelial cell and 

serves as a binding place to a protein in the bacterial cell wall called intimin (Eae). Binding results in a 

cascade of signaling (a.o. mitochondrial-associated protein (Map), and EspF, EspG) and eventually in 

the destruction of the microvilli’s brush border of the enterocyte through the formation of a pedestal 

and in a tight connection between pathogen and the host cell and deregulation of ion exchangers 

(Caprioli et al. 2005; Croxen and Finlay 2009). This combination leads to diarrhea as the destruction 

of the microvilli’s brush border leads to a decrease in water absorption. Furthermore, the effectors 

secreted by the T3SS can affect the ion exchangers such as Cl-OH- (EspG) and Na+OH+ (EspF) and 

misloc  alize the membrane water channels (aquaporins). A combination of these effectors (EspF, 

Map, Tir) also inhibit another major waterpump (sodium-D-glucose cotransporter 1 (SLGT1)) and a 

serotonin transporter involved in uptake of serotonin which needed for intestinal absorption and 

secretion of electrolytes an fluids (Croxen and Finlay 2009; Holmes et al. 2010).  

The key factor in the development of HUS is the production of Shiga toxins (Stx). These toxins, 
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sometimes also called Vero toxins (Vtx), inhibit protein synthesis within eukaryotic cells. Pathogenic 

E. coli which are able to produce these toxins are, therefore, also called Stx producing E. coli (STEC) or 

Vtx producing or Verotoxigenic E. coli (VTEC). E. coli O157:H7 can produce two different Shiga toxins. 

Stx1 is very similar to the type 1 toxin produced by Shigella dysenteriae (this also explains the name 

Shiga toxins) whereas Stx2 is genetically and immunologically distinct, has different variants and is 

more prevalent in hemorrhagic colitis and HUS than Stx1 (Caprioli et al. 2005; Croxen and Finlay 

2009; Pennington 2010).  

The Shiga toxins are not released by a specific secretory mechanism. The toxin genes are encoded on 

bacteriophages, or remnants thereof, which are lysogenized in the bacterial chromosome (Verstraete 

2012). The toxins are released when bacteriophage mediated bacteriolysis occurs in response to DNA 

damage and the SOS response. This is also the reason why treatment with antibiotics is not 

recommended as this may lead to an increased release of the toxins. Shiga toxins consist of an A- and 

B-unit. The B-unit can bind on glycolipid receptors Gb3 that are e.g. present on cells in het human 

intestinal mucosa and the surface of kidney epithelial cells. Binding enables the holoenzyme to enter 

the cytosol and the A-subunit is transported to the cytosol where it is activated by proteolytic 

cleavage. This activated subunit, cleaves off on its turn, a single adenine residue from the 28S rRNA 

of the 60S ribosomal subunit of the host. This results in the inhibition of protein synthesis which 

induces a ribotoxic stress response that can lead to programmed (apoptosis) or unprogrammed 

(necrosis) cell death of the infected cell (Caprioli et al. 2005; Croxen and Finlay 2009; Pennington 

2010; Chekabab et al. 2013).  

Furthermore, E. coli O157:H7 isolates are also characterized by the presence of a virulence plasmid 

pO157 which encodes several other virulence factors. The biological role of pO157 is, however, not 

yet fully understood, but has a role in biofilm development (Lim et al. 2010; Puttamreddy et al. 

2010). A schematic overview of an E. coli O157:H7 infection is presented in Figure 1.4. 

1.3.2 Salmonella 

1.3.2.1 Taxonomy, characteristics 

Salmonella covers a diverse range of bacteria that cause a spectrum of diseases in many hosts 

(Mastroeni and Maskell 2006). The first laboratory confirmed outbreak caused in human occurred in 

1888 when 58 people became ill after the consumption of meat from an emergency slaughtered 

cow. The bacterium was isolated from both the consumed meat and the organs of a man for whom 

the infection was fatal (Bell and Kyriakides 2008). The Salmonella genus is divided in two species: 

Salmonella bongori and Salmonella enterica, which on its turn is divided into 7 subspecies, each with 
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different serovars. A Salmonella serovar is typically (but not always) named after the place of origin, 

such as Salmonella enterica subspecies enterica serovar Tennessee. Serovars names may be 

 

Figure 1.3: Virulence characteristics and pathogenesis of E. coli O157:H7. Binding of E. coli O157:H7 to an 
enterocyte/epithelial cell results in the formation of a pedestal and destruction of the microvilli’s brush border (1) and in 
deregulation of a.o. the water channels and ion exchangers (2). Both events results in diarrhea. Released Shiga toxin binds 
on glycolipid receptors Gb3 that are e.g. present on cells in het human intestinal mucosa and the surface of kidney 
epithelial cells. In the cytosol, the A-subunit is This activated subunit, cleaves off a single adenine residue from the 28S rRNA 
of the 60S ribosomal subunit of the host. This results in the inhibition of protein synthesis which induces a ribotoxic stress 
response that can lead to programmed (apoptosis) or unprogrammed (necrosis) cell death of the infected cell (Caprioli et al. 
2005; Croxen and Finlay 2009; Pennington 2010; Chekabab et al. 2013) (3). Figure partially redrafted and adjusted from 
(Caprioli et al. 2005; Croxen and Finlay 2009) 

abbreviated, by convention, as the genus name and the serovar name, in this case Salmonella 

Tennessee. The most important subspecies is Salmonella enterica subsp. enterica (subspecies I) 

because it is responsible for 99% of human illness caused by Salmonella (Anjum et al. 2005; Lan et al. 

2009). Two serovars, Typhi and Paratyphi, which are mainly found in developing countries cause 

enteric fever and has a high mortality rate (estimates of approximately 200 000 deaths per year) 

(Broz et al. 2012). Together they are called typhoid Salmonella. But most of the serovars cause 

salmonellosis, a disease characterized by diarrhea, fever, abdominal pain, nausea, and sometimes 

vomiting. These strains are also known as nontyphoid Salmonella. Nontyphoid infections are often 

mild, do not require antibiotics and last only a few days. However, in susceptible patients, the 
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infection may be more serious when the bacteria were able to enter the bloodstream or when 

dehydration caused by severe diarrhea becomes life threatening. Salmonellosis has also been 

associated with long term and sometimes chronic diseases such as reactive arthritis (Ohl and Miller 

2001).  

The reservoir of Salmonella is the intestinal tract of domestic and wild animals. The most commonly 

isolated serovar worldwide is serovar Typhimurium and his multidrug resistant DT104 clone which 

carries chromosomally based resistance to ampicillin, chloramphenicol, TMP-SMZ, streptomycin, and 

tetracycline. This is in contrast with Europe where serovar Enteritidis, often related with 

eggs/chicken meat outbreaks, is most frequently isolated (Lan et al. 2009; Schikora et al. 2011). 

1.3.2.2 Virulence characteristics 

Salmonella possesses several virulence genes in order to be able to cope with the defense strategies 

of the host. These genes are grouped in several large regions on the chromosome which are also 

called Salmonella pathogenicity islands. Up to eight pathogenicity islands are known and these are 

just like for E. coli O157:H7, probably horizontally acquired through bacteriophages (Broz et al. 2012). 

Salmonella infection starts with ingestion of the pathogen. After passage through the acidic stomach, 

the remaining pathogens have to compete with the residential microbiota for nutrients and to 

traverse the mucus layer in which several antimicrobial peptides are present. By altering the 

structure of its membrane bound proteins, Salmonella can prevent the binding of those 

antimicrobials which mainly affect its cell wall integrity. Furthermore, Salmonella is also able to react 

with reactive oxygen species generated during inflammation, thereby forming a new respiratory 

electron acceptor. In this way, the pathogens turns the host defense into a growth advantage over 

the resident bacteria (Broz et al. 2012). To attach to the epithelium in the intestine, the pathogen 

uses cellular appendages such as fimbriae, the cell surface polysaccharide O-antigen, and the flagellar 

H-antigen (Madigan et al. 2012). Salmonella employs multiple strategies to establish virulence and 

pathogenesis, for which an initial prerequisite is adherence to the cells. Adherence requires a.o. 

several adhesins and fimbria. The pathogens mainly attach to the microfold cells (M-cells). These 

cells do not possess microvilli but microfolds and they have the function to transport antigens and 

bacteria to the non-intestine side and deliver them via transcytosis to cells of the immune system 

(such as macrophages, dendritic cells, lymphocytes) (Broz et al. 2012; Anonymous 2013b). On the M-

cells, Salmonella is recognized by pattern-recognition receptors which recognize pathogen-

associated molecular patterns (PAMP’s) such as specific lipopolysaccharide (LPS) and flagellin. From 

this point, Salmonella is transported to the non-intestine side. Secondly, Salmonella can also attach 

to and actively invade other epithelium cells by injecting specific effector proteins into the cells by 
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means of a T3SS encoded by pathogenicity island I. Subsequently, effectors (a.o. SopE/SopE2, SopB 

and SipA) are injected and induce rearrangements of the enterocyte’s cytoskeleton with the 

formation of membrane ruffles which enclose the bacterium and internalization as a result 

(endocytosis). Effectors of the first T3SS but mainly a second T3SS induce the transformation of the 

phagosome into a Salmonella containing vacuole (SCV) in which the bacterium can survive and 

replicate. Recently, it was discovered as well that Salmonella can be directly taken up by specific 

dendritic macrophages which are able to disrupt the tight junctions of the epithelial cells (Broz et al. 

2012). On the non-intestine side, the Salmonella bacteria may be taken up by cells of the host’s 

immune defense which normally destroys harmful elements and dead cells (macrophages). Here 

again, Salmonella, is able to enter and to form a vacuole where it is protected and can multiply by 

use of its second T3SS (Broz et al. 2012). The host receptors recognize a.o. these conserved T3SS 

molecules which leads to the expression and secretion of cytokines which amplify the inflammatory 

response with an acute, mucosal gut inflammation as a result (Broz et al. 2012). In the macrophages, 

a.o. pyroptosis, a kind of programmed cell death, is induced which force the protected pathogens to 

be exposed again to extracellular immune defenses. But from this point the pathogen may also 

disseminate through the blood stream accumulating in mesenteric lymph nodes and, ultimately, the 

spleen. Other virulence factors that Salmonella uses are a.o. the production of superoxide dismutase 

in order to quench reactive oxygen species produced by the host, the production of two 

siderophores, enterobactin and salmochelin, in response to iron deprivation (Ibarra and Steele‐

Mortimer 2009). A schematic overview of a Salmonella and E. coli O157:H7 infection is presented in 

Figure 1.4. 



General introduction 

 22 

 
Figure 1.4: Virulence characteristics and pathogenesis of Salmonella. Salmonella can invade the host in at least 3 different 
ways. Through Phagocytosis by an microfold cell (M-cell), by direct uptake by a phagocyte or by active invasion of an 
epithelial cell. In the latter case, effectors of a first T3SS secreted by Salmonella induce the rearrangement of the actin 
skeleton and the formation of membrane ruffles followed by internalization of the pathogen. Effectors of a second T3SS 
induce the transformation of the phagosome into a Salmonella containing vacuole (SCV) in which the bacterium can survive 
and replicate. On the non-intestine side, the Salmonella bacteria may be taken up by macrophages which normally destroys 
harmful elements and dead cells. Here again, Salmonella, is able to enter and to form a vacuole where it is protected and 
can multiply by use of its second T3SS (Broz et al. 2012). In the macrophages, a.o. pyroptosis, a kind of programmed cell 
death, may induced which force the protected pathogens to be exposed again to extracellular immune defenses. Figure 
redrafted and adjusted from (Sansonetti 2004; Croxen and Finlay 2009; Torgersen et al. 2010; Broz et al. 2012, Ibarra, 2009 
#1876). 

1.4 Butterhead lettuce production 

From the leafy vegetables, lettuce (Lactuca sativa, Asteraceae) is considered the most important. It is 

almost exclusively used as a fresh, raw vegetable in salads. The diverse varieties belong to seven 

groups of cultivars: butterhead lettuce, crisphead lettuce (iceberg lettuce), romaine lettuce (cos 
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lettuce), cutting lettuce, stalk (also called stem, Chinese or Asparagus) lettuce, latin lettuce and 

oilseed lettuce (Singh 2006; Křístková et al. 2008). 

Butterhead lettuce (Lactuca sativa L. var. capitata) is the main crop type that is grown in Belgium. 

The crop can be distinguished from other varieties by its heavy crop weight (400-550 g), soft folded 

leaves and closed head formation. It is an important economic crop. The total Belgian production is 

around 100 million heads and the average consumption in Flanders is 2.2 kg per person a year. It is 

the second most exported fresh vegetable after tomatoes (lettuce: ± 60 million euro/year, tomato: ± 

200 million euro/year). The main importers are, in order of importance, Germany, France and The 

Netherlands (Derden et al. 2005). Butterhead lettuce is mainly consumed in the summer and is 

mostly sold as an intact crop but also available as precut bagged lettuce. 

The lettuce production chain starts with growing seedlings in nurseries until the 3-5 leaf stage is 

reached. Subsequently, they are planted in the field or in the greenhouse. In Belgium, butterhead 

lettuce is primarily cultivated in glass-covered greenhouses in Flanders (± 200 ha) (Pauwelyn 2011; 

Platteau et al. 2012). The crop is intensively cultivated in the ground in a continuous monoculture 

system or in crop rotation with tomato (Van Beneden et al. 2009). Seedlings are planted into the 

greenhouse 30 cm apart. Mainly inorganic fertilizer is used and the plants are commonly irrigated 

using overhead sprinkler irrigation with groundwater, pond water or collected rainwater but also tap 

water and water from a stream may be used (Pauwelyn 2011). Average cultivation conditions in 

winter are minimum 10°C at day and 5°C at night, with relative humidity not higher than 80-85%. 

During summer the temperature is on average kept on 10°C at night and 20°C during day, although 

sometimes 25°C is reached. The relative humidity is a bit lower between 70-75% on average (Van 

Laere 2009). The lettuce is mature and ready for harvest 5-12 weeks after planting, depending on the 

cultivation period (Pauwelyn 2011). The harvesting occurs by manually cutting the lettuce crops. The 

crops are subsequently transported on a conveyer belt to the packaging house, sorted (small heads 

and heads showing signs of decay are removed), the outer leaves are removed and the crops are 

rinsed in order to remove dirt, soil and to reduce microorganisms. Subsequently, the crops are 

transported and sold to the auction or directly to the processing industry (Holvoet 2014). 

Alternatively, lettuce is grown in the open field, here, both inorganic or organic fertilizer such as 

manure can be used and irrigation is applied depending on the weather conditions. To a lesser 

extent, lettuce is grown hydroponically. The latter technique gains recently more attention due to 

the fact that production speed is higher (around 30%) and the lettuce crops are cleaner and can be 

sold with intact roots which has a positive influence on the shelf life (Heijboer 2010). 
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1.5 From field to plate: introduction routes of enteric pathogens to 

the vegetable production chain 

Traditionally, the source-sink model describes the genesis of human infections with pathogenic E. coli 

and Salmonella. Following this model, organisms occupy two kinds of habitat, a source and a sink. 

The source, is defined as a high quality habitat that on average allows the bacterial population to 

increase. The sink, is a habitat that is only able to support a population due to immigration from the 

‘source’ population. In some cases, the sink population can be maintained on its own, but only 

transiently, which means that the population is rather small with a high probability of extinction 

(Sokurenko et al. 2006; Pennington 2010). Following this model, domestic animals and wildlife are 

considered as the source of the pathogens and the environment and human as the sink. 

It is usually accepted that enteric bacterial pathogens enter the agricultural environment via animal 

feces (Barak and Schroeder 2012). Feces, on their turn, may contaminate surface water, soil, 

compost, feed, crops and humans. The survival of the pathogen in these matrices is influenced by a 

variety of factors such as bacterial species and strain, the amount of bacteria (inoculum level), 

climatic conditions, competition with natural background microbiota and predation. Consequently, 

large variation in survival rates in these matrices is reported. The knowledge about the survival of the 

pathogens in these matrices are shortly discussed below. A scheme of the possible introduction 

routes of enteric pathogens to the vegetable production chain is shown in Figure 1.5. 

 

Figure 1.5: Scheme of possible introduction routes of enteric pathogens to the vegetable production chain. 
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1.5.1 Ecology and survival in feces, sewage, manure, soil and water 

Contaminated feces may originate from livestock and wildlife but also from humans. They may 

contain between 102-106 CFU/g E. coli and 102-107 CFU/g Salmonella (Himathongkham et al. 1999; 

Tenaillon et al. 2010). Feces may contaminate the produce directly. During a preharvest 

contamination this can be caused through shedding of wild animals. Wild swine and cow feces were 

e.g. probably involved in the E. coli O157:H7 outbreak with spinach, in the USA in 2006 as discussed 

previously (1.2.1). But also smaller animals such as snails and mice, obtain the possibility to spread 

pathogens via defecation (Semenov et al. 2010). Also insects may act as a vector during pre- and 

postharvest processes (Erickson et al. 2010a). In a postharvest situation, produce can be 

contaminated through improper handling by an infected food handler with poor hygiene. Survival in 

feces was mainly tested in lab scale experiments and highly dependent on the initial pathogens level 

and tested conditions. Survival up to almost 2 years was e.g. recorded for E. coli O157:H7 (Kudva et 

al. 1998). As a result, the pathogens may be present in fecally derived material such as manure 

(animal origin), sewage (human origin) and their respective sludge (settled out solid matter) and 

slurry (fluid mixture). Generally, the survival of both pathogens in fecally derived material decreases 

over storage time and is enhanced with aeration and higher temperatures (Whipps et al. 2008). 

Survival rates of more than 4 months were e.g. recorded for both E. coli O157:H7 and Salmonella in 

manure (Franz et al. 2005). These fecally derived materials can be applied on the growing fields as 

fertilizers. But normally, direct contact of manure with vegetables should not occur if either a 

treatment step (e.g. composting, aerobic and anaerobic digestion, drying) or a significant time 

interval between application and crop production is considered. These practices are often regulated 

by governmental agencies (Warriner et al. 2009). In Belgium, the requirements regarding manure 

application are laid down in the IKKB standard (Vegaplan 2013) which is approved and recognized by 

the Belgian food safety agency to encompass all minimum legislative requirements. Manure that is 

intended to be used at the production unit, needs to be of natural origin originating from the own 

production unit, from a third farmer or allowed fertilizer. For fertilizers derived from waste, special 

(regional) guidelines exists with more stringent guidelines for purification sludge. Purification sludge 

cannot be applied on fields with growing potatoes and vegetables or fruits. For orchards there is an 

exception and purification sludge can be applied between harvest and flowering. Furthermore, 

purification sludge must be applied at least 10 months before harvest on grounds on which fruits and 

vegetables which comes in contact with the ground will be grown and which are usually consumed 

raw. The use of sewage sludge on agricultural ground is not allowed in Flanders region. Certification 

to IKKB standard is a prerequisite to be allowed to deliver lettuce crops to the auctions and further 

sales to major retail shops or fresh-cut lettuce processing companies (Holvoet 2014). Manure 
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intended for export, needs to fulfill a.o. European requirements ((EG) 1774/2002) which lay down 

requirements regarding Salmonella (absence in 25g), and Enterobacteriaceae (less than 3 log CFU per 

gram of treated product). The manure must be subjected to a treatment of 1 h at 70°C or an 

equivalent treatment.  

When fecally derived material is not treated or stored properly, pathogens may contaminate the soil 

and subsequently the plants through splashes or via the roots. The survival of E. coli O157:H7 and 

Salmonella in the soil is, similarly to the survival in feces and fecally derived material, mainly tested 

under lab conditions. Here again, highly variable results are recorded. Soil type and physicochemical 

characteristics (pH, exchange capacity, water holding capacity, organic content, nutrient levels, UV) 

could be found as influencing factors. Reduced pathogen survival was e.g. observed in sandy soils in 

comparison with clay soils. Higher temperatures result in increased die-off. Also the method of 

application may influence the pathogen’s survival. For Salmonella, reduced survival was observed 

after surface application of manure in comparison with injection in the soil which is often applied due 

to air pollution problems. For E. coli O157:H7, this application method effect could not be observed 

(Semenov et al. 2009). Furthermore, competition with the background microbiota may reduce the 

survival of the pathogen, whereas protozoa and helminthes may increase the survival (Brandl et al. 

2005a; Gourabathini et al. 2008; Lacharme‐Lora et al. 2009). Interestingly, the presence of plants 

growing in the soil can also enhance survival (Gagliardi and Karns 2002; Semenov et al. 2009) (see 

also 1.6.1). Salmonella sp. has been reported to survive from a few days up to 332 days in manure-

amended soils, whereas the survival of E. coli O157:H7 has been reported from a few days up to 193 

days (Jacobsen and Bech 2011). Confirmed outbreaks related to soil as a vector and reservoir of 

enteric pathogens are, however, scarce. 

But water is considered as the most likely key route of dispersal from the feces to the environment 

and from environment to plants (Barak and Schroeder 2012). Contaminated animal fecal material can 

be deposited directly into surface water or transported into surface water by runoff or through 

leaching through the soil following rain or flood events (Gagliardi and Karns 2000; Barak and 

Schroeder 2012). Contamination trough human feces can be caused by discharge of water from a 

malfunctioning waste water treatment plant. Contaminated irrigation water in his turn, may 

contaminate the soil. Before harvest, water can come in direct contact with crops in two ways: by 

irrigation, and by the often overlooked, pesticide or fertilizer application. After harvest, produce can 

get cross-contaminated during washing.   

Experiments on survival of enteric pathogens in natural waters usually show a decrease in microbial 

concentrations with time, although in some cases an initial increase of pathogen level can be 

observed, especially under warm conditions. Temperature seems to be the most important factor 
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influencing pathogens’ survival but also nutrient, pH, radiation and presence of other micro- and 

macrobiota. An important conclusion made by van Elsas et al. is that with the current state of 

knowledge accurate predictions of the survival patterns for specific pathogens in specific irrigation 

water or microbial reservoirs, cannot yet be made, even though factors of pathogen survival and 

patterns of pathogen microbial population changes in time are generally known (van Elsas et al. 

2010; Pachepsky et al. 2011). Although, irrigation water is generally considered as a potential source 

of contamination, again there are only relatively few confirmed cases from outbreaks resulting from 

contaminated water. Three outbreaks with Salmonella and tomatoes in the USA could be linked to 

contaminated irrigation water. One outbreak occurred in 2002 and two in 2005, the outbreak strains 

were isolated from the ponds that were used to irrigate the fields. The serovar was each time 

Salmonella Newport which suggests that contamination can be persistent. In 2005, Söderstrom et al. 

linked an E. coli O157:H7 outbreak with lettuce in Sweden to irrigation water as well. The lettuce was 

irrigated from a small stream and identical Vero toxin producing E. coli O157:H7 strains were isolated 

from the patients and the cattle at a farm upstream from the irrigation point (Söderström et al. 

2008). Accidental mixing of well water, intended for irrigation, with water from a dairy manure 

lagoon was shown to be the cause of another E. coli O157:H7 outbreak associated with shredded 

lettuce in 2008 in the USA. Furthermore, Salmonella Saintpaul was found in irrigation water and in 

Serrano peppers implicated in an outbreak (Pachepsky et al. 2011). Irrigation water was suspected to 

be the source for a lot of other outbreaks, but, for these outbreaks proof by reisolation of the 

pathogen could not be obtained (e.g. (Ackers et al. 1998; Hilborn et al. 1999)). Although the potential 

for produce contamination from irrigation water has been established, it is still difficult to quantify 

the extent of the problem.  

In Belgium, irrigation water for lettuce production may be pond water, groundwater, tap water, 

water originating from a stream or collected rain water. Furthermore, some processing water may be 

reused as irrigation water: wash water from fruits and vegetables (except for wash water from 

carrots and turnips), water from blanching/sterilization treatments or quick freezing and water used 

to clean sterilization/blanching installation. No requirements are set, but the federal food safety 

agency FAVV recommends to use water only as irrigation water if the water has a maximum load 

below 3 log CFU E. coli/100 ml (Federaal Agenschap voor Veiligheid van de Voedselketen (FAVV) 

2009). For the rinsing water, requirements are defined in the IKKB standard. For vegetables intended 

for direct consumption the last rinse should be performed with water with drinking water quality, the 

previous rinses can be done with so called ‘schoon’ water (maximum 4 log CFU E. coli/100 ml., 

Regulation (EC) No 852/2004). The last rinse of vegetables intended to be processed before 
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consumption should be rinsed with ‘schoon’ water. For sprouts intended for consumption, water 

with drinking quality should be used throughout the whole process.  

1.5.2 Bacterial colonization of plants 

For both pre- and postharvest contamination events, colonization of the plant is a prerequisite. 

Bacterial colonization of plants in general involves different steps: attachment, adaptation, 

proliferation and possibly internalization. Depending on the introduction route, bacteria can be 

found on roots (rhizosphere) and/or leaves (phyllosphere). This thesis focusses on contamination of 

the leaves, as this is the part of lettuce that is consumed. Therefore, the interaction between 

phyllosphere bacteria, also called epiphytes, and the plant will be discussed in further detail. When 

bacteria (commensals, symbionts, plant pathogens or human pathogens) arrive by air, water, or 

another vector on the plant, this results in a random distribution of the bacteria across the leaf 

surface. In order to colonize the leaves, the bacteria need to attach to the plant tissue. This 

attachment process consists of two phases. Initially, reversible attachment occurs and the bacterial 

cells can be removed from the plant by rinsing or a turbulent flow. This initial attachment is mediated 

by basic forces such as the Van der Waals force, electrostatic force and hydrophobic/hydrophilic 

force (Goulter et al. 2009). Then, irreversible attachment may take place, enabled by the use of 

cellular surface structures (such as flagella or fimbriae) or excretion of extracellular polysaccharides. 

Subsequently, the epiphytic bacteria need to adapt in order to survive the large and rapid 

fluctuations in environmental conditions on the leaf such as UV radiation and water availability. They 

can do this by modifying their local environment by enhancing nutrient release from the plant or 

again by producing extracellular polysaccharides. Once established, they will be able to divide and 

form microcolonies which may eventually develop into large aggregates. When high density is 

reached, some of these bacteria (especially plant pathogens but enteric pathogens as well, see also 

1.6.1) may establish internal populations. They can egress again by water-soaking or lesion formation 

(Beattie and Lindow 1999; Lindow and Leveau 2002; Lindow and Brandl 2003; Lindow 2006). In order 

to find out the importance of factors that mitigate or enhance the survival, attachment, 

internalization of enteric pathogens on fresh produce, a lot of research was performed. The present 

knowledge about the interaction of E. coli O157:H7 and Salmonella with plants, more specifically 

lettuce, is discussed in the next section. 
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1.6 Schematic overview of the existing research on the interaction 

between enteric pathogens and lettuce 

1.6.1 Schematic overview 

During the last 20 years, a lot of effort was done to understand the contamination of fresh produce 

with enteric bacterial pathogens. To give an overview of the state-of-the art of the scientific 

knowledge and to be able to discover the research gaps regarding this topic, a literature review, 

which focusses specifically on the contamination of lettuce with E. coli O157:H7 and Salmonella, was 

performed. Therefore, all scientific articles published between 1993 and march 2013 with keywords 

‘E. coli 0157:H7 and lettuce’, ‘Escherichia coli O157:H7 and lettuce’ or ‘Salmonella and lettuce’ were 

exported from the ISI Web of Knowledge Database (http://apps.webofknowledge.com). Reviews, 

studies investigating methodology, monitoring studies, specific outbreak related studies and studies 

only investigating the behavior of non-pathogenic E. coli were not taken into account. This resulted in 

a total of 180 research articles. A total of 28 different research questions were identified (Figure 1.7) 

and for each scientific study the different research questions were inventoried. These questions 

could be divided into questions concerning the influence of bacteriological, plant, environmental or 

processing factors on the survival, attachment and internalization of the pathogen on the crop. 

Furthermore, research could be split up in pre- or postharvest research or a combination of both. The 

data were inventoried in a Microsoft Access database, analyzed in Microsoft Excel and visualized in 

Microsoft Excel (Figure 1.6, Figure 1.7) and Gephi (Figure 1.8). The results are discussed with special 

attention towards preharvest research. As a lot of outstanding research was also performed on fresh 

produce other than lettuce, the most important conclusions of these studies are also mentioned. 

Investigated pathogens 

More studies were performed with E. coli O157:H7 (76.1%) in comparison with Salmonella (39.4%). 

Apart from Salmonella and E. coli O157:H7, the behavior of Listeria monocytogenes (20.5%) and non-

pathogenic E. coli (11.1%) were most frequently examined. Up to four different species could be 

investigated simultaneously.  

Lettuce 

The lettuce cultivars that were investigated were among others romaine lettuce, iceberg lettuce, 

green leaf lettuce, red leaf lettuce, rocket lettuce, mixed lettuce and butterhead lettuce (Figure 1.6). 

Two lettuce varieties were more intensively investigated: romaine lettuce and iceberg lettuce. In 

preharvest research, romaine lettuce and iceberg were equally investigated (in 33.3% vs. 29.3% of 

http://apps.webofknowledge.com/
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the studies) whereas in postharvest studies the main focus lied on iceberg lettuce (22.9 vs. 48.8%). 

Butterhead lettuce was less frequently used (5.3% in preharvest research, 4.1% in postharvest 

research). The difference between different lettuce varieties was investigated in 12.2% of the 

articles, in 22.2% of the studies also other fresh produce such as spinach, tomatoes, basil, apple, etc. 

were investigated together with lettuce.  

 

Figure 1.6: Overview of the investigated lettuce varieties in preharvest (left) and postharvest (right) studies. The numbers in 
the segments of the circles represent the percentage of the studies (77 in total for preharvest, 130 in total for postharvest) 
investigating the particular lettuce crop type. 

Pre- or postharvest contamination event 

The analysis showed that almost two third of the selected articles (57.2%) was focused on 

postharvest contamination processes, 27.8% on preharvest contamination and 15.0% could be 

assigned to both pre- and postharvest research. The latter were mainly research articles in which 

more fundamental questions (such as investigation of the attachment mechanism of the pathogens) 

were treated and which were applicable for both pre- as postharvest contamination events. Only a 

few studies have followed the behavior of the pathogen through the whole production process from 

preharvest until retail and consumption (Oliveira et al. 2011).  

Survival and growth studies 

For preharvest research, the survival and growth studies were the most important (40.3%). In these 

studies, the pathogen level on the plant was monitored during growth of the plants. The main 

bacteriological factor that was investigated was the difference in survival between different 

pathogen species. The influence of different plant factors was the second most important 

investigated factor. Studies were performed on all growth stages of the plant and all kinds of plant 

parts: seeds, seedlings, roots, leaves, fruits. Only a few studies focused on seed as contamination 

source. It was shown that once contaminated lettuce seeds germinated, the pathogens could 

multiply on the seedlings (Wachtel et al. 2002). Moreover, in one study (not included in the analysis) 

on spinach seeds inoculated with high amounts of non-pathogenic E. coli, it was shown that the 
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bacterium could be recovered from the roots and leaves of the plants up to 7-weeks after sowing 

(Warriner et al. 2003a). Much more emphasis laid on rhizosphere contamination through 

contaminated soil or manure. It was shown that the pathogens could persist for long time in the soil 

and, interestingly, survived significantly longer when also plants were growing in the soil (Islam et al. 

2004a). This indicates that vegetation appears to provide a protective environment for the bacteria. 

Furthermore, E. coli O157:H7 seems to be attracted by the root exudate of the plants (Klerks et al. 

2007). Moreover, the pathogens are also able to move on the plant. When high inocula were used, 

plants planted in contaminated soil could harbor pathogens on the aerial parts of the plants up to 

harvest (Islam et al. 2004a; Islam et al. 2004b).  

Survival in the phyllosphere was less intensively studied and seemed to be significantly lower 

compared to the rhizosphere (Warriner and Namvar 2010). The literature analysis showed that when 

high inocula were used to inoculate plant leaves (log 6-8 CFU/g lettuce), a decline of the pathogen 

was often seen, although the pathogen could be detected throughout the cultivation of the plants up 

till harvest (Solomon et al. 2002). When lower, more realistic, inoculum densities were used, the 

results were more variable: growth of the pathogen could be observed on the leaves in favorable 

conditions (Solomon et al. 2003; Brandl and Amundson 2008) but also a decline of the pathogen 

could be observed. Many factors may influence pathogen survival and due to the extensive variance 

in experimental design, it is still not completely clear which combination of factors promote 

growth/no growth of the pathogens on plants. The pathogen survival seems to be different between 

different vegetables but also between lettuce cultivars. Also within one lettuce cultivar variance 

could be observed (Quilliam et al. 2012) and even within one lettuce crop type, the survival could be 

significantly different between different crop stages, leaves and between the ab- and adaxial side of 

the leaf (a.o. (Brandl and Amundson 2008; Zhang et al. 2009)). 

Environmental conditions have an important influence on the survival of the pathogens on fresh 

produce as well. For preharvest research the influence agricultural practices such as light conditions, 

relative humidity, amount of irrigation and irrigation system, (drip, sprinkler), application of nitrogen 

and cultivation system (greenhouse, open field, hydroponics) was investigated. Research, not 

specifically related to lettuce, revealed that higher temperatures such as 30°C might increase the 

competitiveness of the pathogen and thus their survival. Also high relative humidity (Brandl and 

Mandrell 2002) and wounding of the tissue, e.g. made during harvest, could increase the persistence 

of E. coli O157:H7 and Salmonella on the plant (Barker-Reid et al. 2009; Harapas et al. 2010). Similar 

results were found with injuries caused by phytopathogens (Brandl 2008). The majority of the 

preharvest survival studies were performed in the controlled environment of a scientific plant growth 

chamber or in the laboratory (67.3%).  
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Also postharvest research is dominated by survival studies, but the perspective lays dominantly on 

the investigation of the efficacy of sanitation treatment (79.6%) and the effect of storage 

temperature (22.3%). Especially the efficacy of different sanitizers were tested on different lettuce 

varieties or other fresh produce. This focus on decontamination may be explained by the fact that 

most research was done in the USA, where sanitation is routinely used for postharvest cooling water, 

in postharvest treatments and during rehydration at shipping destinations (Suslow 2005). Here again, 

pathogen survival after decontamination seems to be leaf side dependent (Koseki et al. 2003). 

Furthermore, it is generally accepted that decontamination may reduce the pathogen level but not 

eliminate the pathogen completely.  

Attachment studies 

In the attachment studies, factors which influence the ability of the pathogen to attach to a plant 

were investigated. Most attachment studies were more fundamental and could be investigated 

regarding preharvest and postharvest. It was shown that there were differences in attachment 

between the different pathogen species, but also between different strains of the same species. E. 

coli O157:H7 seemed to attach preferentially to cut edges whereas Salmonella seemed to attach 

equally to surface and cut edges (Takeuchi et al. 2000). Also vegetable type and leaf part seemed to 

play an important role (Barak et al. 2008; Patel and Sharma 2010; Kroupitski et al. 2011). Studies with 

mutant bacteria revealed that cell surface components such as cellulose, flagella, pili with Type III 

secretion systems may play a role, although strain variability was observed as well (Barak et al. 2005; 

Jain and Chen 2007; Shaw et al. 2008; Goulter et al. 2010; Patel et al. 2011; Shaw et al. 2011). Studies 

with Salmonella and E. coli O157:H7 showed that in contrast to most phytopathogens, cells do 

probably not associate with biofilm structures but tend to aggregate between the grooves of 

epidermis cells and to leaf structures such as trichomes (Warriner et al. 2003a). Pathogens could also 

be found in the protective niche of the stomata. These natural openings in the leaves, which enable 

gas exchange, are thought to be one of the introduction routes for the pathogens to be established 

in the interior of the leaf (internalization). 

Internalization 

The cells that penetrate the tissue cannot effectively be killed by sanitation, therefore, a lot of effort 

was done to search for the factors which may influence internalization (Takeuchi and Frank 2001). 

Apart from through stomata, the pathogens seems to be able to enter plant tissue through lateral 

junctions of roots and damaged tissue (wounds, cut surfaces) both before and after harvest.  

Very recently, it was also shown that E. coli O157:H7 was able to internalize inside the cell wall of 

epidermal and cortical cells of spinach and Nicotiana benthamiana roots (Wright et al. 2013). 
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Internalization was mainly observed when the plant tissue was inoculated with a high inoculum (≥6 

log CFU/g soil or 6 log CFU/ml water). Studies which use lower inocula could only detect 

internalization sporadically. It also seems that internalization via the roots or seeds is not likely to 

occur when the plants are cultivated in soil systems, this in contrast with hydroponics (Erickson 

2012). Internalization through the rhizosphere is extensively reviewed in Hirneisen et al. (Hirneisen et 

al. 2012).   

One of the processes underlying internalization into the leaves was revealed for Salmonella by 

Kroupitski et al. (Kroupitski et al. 2009). They showed that Salmonella needs to be motile to be able 

to internalize into iceberg lettuce and that attraction to nutrients (mainly fructose) produced by 

photosynthetically active cells was the driving force. But again, lettuce crop type seems to be 

important, these results could not be observed for romaine lettuce (Golberg et al. 2011). 
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Figure 1.7: Overview of the investigated factors in pre- and postharvest studies (n=180). Each bar shows how many times 
each factor was investigated in preharvest and postharvest research respectively. 
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Figure 1.8: Network graph which shows how often two factors were investigated together in one research article. The 
factors are grouped by their factor classes. Each investigated factor class is shown as a node. The lines between the nodes, 
called edges, link two factor classes which were investigated simultaneously in one research article. The thickness of the 
edges represent the number of research papers investigating the link between the two factor classes. On the left side, the 
factors which describe the behavior of the pathogen on the plant (survival, attachment and internalization), on the right 
side the bacteriological, plant, physical, processing and other factors are shown. Sanitation/ decontamination (which is 
classified as a processing factor in Figure 1.7) is shown as a separate node in order to show the importance of this factor in 
the investigated research articles. Green: preharvest research. Red: postharvest research. 
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1.6.2 Research gaps and research goals 

Lack of information about the European vegetable production conditions. 

The majority of the previous research was performed in the USA. Consequently, these studies are 

adjusted to the vegetable production conditions of the USA (Salina Valleys, California) which are 

quite different from the Belgian/European condition regarding lettuce type, production system, 

climatological conditions but also legislation. As this kind of research is relatively new, the majority of 

the preharvest survival studies was performed in the controlled environment of a scientific plant 

growth chamber or in the laboratory (67.3%), with high temperatures and relative humidity 

conditions. Researchers only started recently to mimic the contamination event more closely, 

therefore, only 8.2% of the preharvest studies were performed in the greenhouse, 24% in the open 

field. The climatological conditions in the greenhouse are different from the field. The most 

important difference is that the plants are protected from UV light, which is known to have a 

bactericidal effect. The main focus of the PhD study will, therefore, be on greenhouse production of 

butterhead lettuce, a lettuce type which is a typically greenhouse grown northern European type. 

The emphasis was put on preharvest survival of the pathogen, as there is no possibility to kill the 

pathogen later in the production chain by decontamination. Especially the introduction of the 

pathogen by contaminated seed (Chapter 2) and irrigation water (Chapter 3) will be studied as 

contamination through manure is considered to be less important as inorganic fertilizers are mainly 

used in Belgian greenhouse production. 

Lack of information about the influence of stress that the pathogen likely may encounter in the field 

before contamination of the produce. 

It is remarkable that almost all studies were performed with unstressed pathogens. The pathogens 

were generally grown in nutrient rich broths such as Luria Bertoni broth (LB) or tryptic soy broth 

(TSB) and cultured overnight at 37°C with a few exceptions where the pathogens are grown in a 

minimal medium at lower temperatures (18°C-28°C) e.g. (Cooley et al. 2006; Brandl and Amundson 

2008) (see also 7.6). Consequently, the pathogen is actively growing at the moment that it is 

artificially inoculated into the plant environment (leaves, seed, roots). This is in contrast with the 

general idea that the pathogen is in survival mode before it comes in contact with the plant 

environment (see 1.5). Therefore, efforts will be done to better simulate the stress that the pathogen 

may experience before it comes in contact with the plant environment. The influence on their 

survival (Chapter 4) and attachment (Chapter 5) will be investigated.  
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Lack of information about the underlying genetic mechanism for the enteric bacterial survival in a 

plant environment. 

Finally, the basic mechanisms that the pathogens use to survive in a plant environment are still not 

well understood. Although a restricted number of studies have investigated the molecular 

mechanisms that the pathogens use to survive, attach or internalize on a plant by e.g. gene 

expression studies, mainly postharvest experiments were conducted. The preharvest situation will, 

therefore, be investigated in Chapter 6.  



 

 

 

 

 

Chapter 2: 

Long-term survival of Escherichia coli O157:H7 and 

Salmonella enterica on butterhead lettuce seeds, 

and their subsequent survival and growth on the seedlings  

 

Redrafted from: 

Van der Linden, I., Cottyn, B., Uyttendaele, M., Vlaemynck, G., Maes, M., & Heyndrickx, M. (2013). 

 Long-term survival of Escherichia coli O157:H7 and Salmonella enterica on butterhead lettuce seeds, 
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Abstract 

The long-term survival of enteric pathogens on butterhead lettuce seeds, and their subsequent 

survival and growth on seedlings was investigated. Lettuce seeds were inoculated at a high level with 

two Salmonella enterica and two Escherichia coli O157:H7 strains each (± 8 log CFU/g seed) and the 

survival of the pathogens was monitored over two years using standard plating techniques on 

selective medium. The Salmonella strains (serovars Typhimurium and Thompson) survived 

significantly better on the seeds than the E. coli O157:H7 strains (MB3885 and NCTC12900). When 

individual seeds were tested two years after inoculation, Salmonella was recovered from each 

individual seed, whereas E. coli O157:H7 only from 4% to 14% of the seeds, depending on the 

recovery method. When contaminated stored seeds were germinated and the seedlings examined 

for presence of the pathogens, it was clear that both pathogens were able to proliferate on the 

seedlings. Pathogen counts up to 5.92 log CFU and 4.41 log CFU per positive seedling were observed 

for Salmonella and E. coli O157:H7, respectively. Our study not only confirms the long-term survival 

of enteric pathogens on seeds but also shows that the pathogens maintain their ability to resuscitate 

and proliferate on the seedlings. Seeds or seedlings should be considered as contamination sources 

for the cultivation of leafy vegetables such as butterhead lettuce grown in greenhouses. 

2.1 Introduction 

The ability of enteric pathogens to contaminate nonmeat products is an accepted fact (Holden et al. 

2009). This is shown by the numerous outbreaks with enterohaemorrhagic Escherichia coli (EHEC) 

and Salmonella enterica that have been linked to consumption of contaminated fresh produce such 

as cantaloupe, herbs, lettuce, tomatoes, spinach and sprouts. In the USA, leafy vegetables such as 

spinach and lettuce are the most frequently implicated fresh produce (Rangel et al. 2005) and in 

Europe (EU), at least three E. coli O157 (Welinder-Olsson et al. 2004; Friesema et al. 2008; 

Söderström et al. 2008) and three Salmonella outbreaks (Ward et al. 2002; Horby et al. 2003; Nygård 

et al. 2008) were related to lettuce in the past 12 years. Although contaminated irrigation water and 

manure (specifically for open air cultivation) are important sources for the preharvest contamination 

of lettuce (CFERT 2007; Söderström et al. 2008), contaminated seeds or their seedlings may also be a 

potential transmission route, which may be specifically important for greenhouse crops, but only a 

few studies have focused on it. These studies have investigated (i) the effectiveness of disinfection 

(Warriner et al. 2005; Trinetta et al. 2011) and (ii) the potential of the pathogens on contaminated 

seeds to persist on the mature plants and/or to internalize the different plant parts (Cooley et al. 

2003; Warriner et al. 2003a; Jablasone et al. 2005; Warriner et al. 2005; Habteselassie et al. 2010). 

These studies have shown that both E. coli O157 and Salmonella could be detected on the 
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harvestable plants and in some cases they were also able to internalize into the root tissue.  

Contaminated seeds have also been identified as the main source for outbreaks related to the 

consumption of sprouts and sprouted seeds such as the EHEC-outbreak in Japan in 1996 (Michino et 

al. 1999; Watanabe et al. 1999) and the outbreak in Germany and France in 2011 where E. coli 

O104:H4 was attributed to contaminated fenugreek seeds (EFSA and ECDC 2011; EFSA 2012).  

The effect of sanitation techniques (Bari et al. 2008; Chang et al. 2010; Neetoo and Chen 2010; Zhao 

et al. 2010; Bang et al. 2011a; Bang et al. 2011b; Neetoo and Chen 2011; Nei et al. 2011; Zhang et al. 

2011) or the growth of enteric pathogens during the sprouting process (Howard and Hutcheson 

2003; Jablasone et al. 2005; Singh et al. 2007; Deering et al. 2011; Fransisca et al. 2011) or a 

combination of these approaches (Jaquette et al. 1996; Warriner et al. 2003b; Liao 2008; Fransisca et 

al. 2011) were mainly studied on alfalfa, white radish and mung been seeds and sprouts. Little is 

known, however, on the long-term survival of enteric pathogens on seeds. To our knowledge, only 

few studies reported on the survival of E. coli O157:H7 and/or Salmonella on alfalfa seeds (Taormina 

and Beuchat 1999; Wu et al. 2001; Beuchat and Scouten 2002), and few reports on the survival of 

Salmonella on nuts such as almond and pecans (Beuchat and Heaton 1975; Uesugi et al. 2006; 

Beuchat and Mann 2010). These studies have investigated different factors for the pathogen’s 

survival: the influence of temperature (Beuchat and Heaton 1975; Uesugi et al. 2006), chemical 

treatment (Taormina and Beuchat 1999), inoculum level (Uesugi et al. 2006), the combined effects of 

water activity (Aw), chemical treatment and temperature (Beuchat and Scouten 2002), and detection 

methods (Wu et al. 2001). The studies have shown that E. coli O157:H7 and Salmonella can survive 

for a prolonged period (up to 54 weeks) on seeds and nuts.   

Both cultivar seeds and seeds intended for the production of sprouts may be stored for several years 

before use, e.g the fenugreek seeds from the German and French outbreak in 2011 were imported 

from Egypt in 2009 and 2010 (EFSA and ECDC 2011; EFSA 2012). Therefore, it is important to know 

whether enteric pathogens could also colonize sprouts or seedlings after germination of long-term 

stored seed. To our knowledge only one study has shown that Salmonella, present on naturally 

contaminated alfalfa seeds, is able to resuscitate and grow on the sprouts after eight years of storage 

of the seeds (Fu et al. 2008). However, no information is available on the long-term survival of 

enteric pathogens on butterhead lettuce seeds and it is not known whether E. coli O157 is able to 

colonize sprouts or seedlings after germination of long-term stored seed. The aim of the present 

study is to examine the long-term survival on butterhead lettuce seeds of different strains of enteric 

pathogens (E. coli O157:H7 and Salmonella), and their subsequent survival and growth on their 

seedlings. For this purpose, three methods for the detection of the pathogens from seeds were 

investigated. 
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2.2  Materials and methods 

2.2.1 Bacterial strains and growth conditions 

Two S. enterica (serovar Thompson and Typhimurium) and two enteropathogenic E. coli O157:H7 

strains were used. Salmonella Thompson RM1987N is a spontaneous nalidixic acid-resistant mutant 

of Salmonella Thompson strain RM1987, kindly donated by Dr. Maria Brandl (USDA-ARS, Albany, 

California, USA). Strain RM1987 is a previously described clinical isolate from a patient in a cilantro-

linked outbreak in California (Brandl et al. 2005b). Salmonella Typhimurium PT 120/ad MB4880 (MB 

collection of the molecular bacteriology lab of ILVO-Technology & Food Science Unit, Melle, Belgium) 

was isolated from overshoes at a pig farm in Belgium. E. coli O157:H7 MB3885 was isolated from 

beef carpaccio and kindly donated by the Scientific Institute for Public Health (Brussels, Belgium) and 

E. coli O157:H7 NCTC12900 by Dr. Martin Woodward (Department of Bacteriology, VLA Weybridge, 

New Haw, Addlestone, Surrey KT15 3NB, United Kingdom). Both E. coli O157:H7 isolates lack Shiga 

toxin genes (stx1 and stx2) and were used as non-toxigenic surrogate strains for the Shiga toxin 

producing (STEC) serotype O157:H7 for biosafety reasons. For E. coli O157:H7 MB3885, the absence 

of the stx1 and stx2 genes and the presence of other virulence genes eaeA (intimin), ehx 

(enterohemolysin), espP (extracellular serine protease) and katP (catalase-peroxidase) were 

confirmed by conventional PCR (primers and references see Table 2.1) by Verstraete et al. (2013) 

(Verstraete et al. 2013). E. coli O157:H7 NCTC12900 originated from a verocytotoxigenic strain which 

lost its ability to produce toxin. It was already used in several studies as a surrogate strain (Skandamis 

and Nychas 2000; Dibb-Fuller et al. 2001; Woodward et al. 2003; Vande Walle et al. 2011). The 

strains were streaked from a glycerol frozen stock maintained at −70°C onto a tryptone soy agar 

plate (TSA; Oxoid, Basingstoke, UK) and incubated at 37°C for 24 h. A single colony from the plate 

was transferred to 25 ml of tryptone soy broth (TSB; Oxoid, Basingstoke, UK) in a 50 ml falcon tube 

and statically incubated at 37°C for 24 h. The bacteria were sedimented by centrifugation (5000 × g 

for 20 min at 4°C) and washed twice in sterile 50 mM phosphate buffered saline (PBS) (pH 7.4). Cells 

in the pellet were resuspended in the same amount of sterile PBS. The cell population of the 

inoculum was determined by plating appropriate dilutions in 0.1% peptone in duplicate on xylose 

lysine desoxycholate agar (XLD; Lab M, Bury, UK) for Salmonella and cefixime-tellurite sorbitol 

MacConkey agar (CT-SMAC; Lab M, Bury, UK) for E. coli O157:H7. Obtained plate counts were 7.9 log 

CFU/ml for Salmonella Typhimurium MB4880, 7.8 log CFU/ml for Salmonella Thompson RM1987, 7.7 

log CFU/ml for E. coli O157:H7 MB3885 and 7.4 log CFU/ml for E. coli O157:H7 NCTC12900.  
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2.2.2 Seed testing 

Untreated butterhead lettuce seed (Lactuca sativa L. var. capitata ‘Alexandria RZ’) was obtained 

from Rijk Zwaan Distribution B.V., De Lier, the Netherlands. Prior to inoculation, the seeds were 

tested in triplicate for the presence of Salmonella and/or E. coli O157:H7. Therefore, 4 ml PBS + 

0.02% Tween 20 was added to 0.200 g seeds (~ 200 seeds). The samples were homogenized for 1 min 

at maximum speed (Homex 6, Bioreba, Reinach, Switzerland) in a sterile filter bag (Bioreba, Reinach, 

Switzerland). The seeds were broken down until a homogenous mixture was obtained. One hundred 

microliter of this mixture was plated onto both XLD and CT-SMAC in duplicate. The samples were also 

enriched by adding 1 ml of the homogenized mixture onto 9 ml buffered peptone water (BPW; 

Oxoid, Basinstoke, UK) and incubated at 37°C, 24 h, 200 rpm. The enrichment content was streaked 

on XLD and CT-SMAC and incubated at 37°C, 24 h. 

Table 2.1: Oligonucleotide primers used to confirm the presence/absence of the EHEC virulence genes in E. coli O157:H7 
MB3885 as described by Verstraete et al. (Verstraete et al. 2013). 

Primers (5’ to 3’) Sequence Target gene 
Amplicon 
size (bp) 

Reference 

eaeA-F GTGGCGAATACTGGCGAGACT 
eaeA 890 (Desrosiers et al. 2001) 

eaeA-R CCCCATTCTTTTTCACCGTCG 

espP-F GATTACAGCACGCATTCATGGTAT 
espP 73 (Nielsen and Andersen 2003) 

espP-R TCCAGGCATCCTCAGTGACA 

katP-F GAAGTCATATATCGCCGGTTGAA 
katP 73 (Nielsen and Andersen 2003) 

katP-R GTCATTTCAGGAACGGTGAGATC 

vt1-F ACACTGGATGATCTCAGTGG 
stx1 614 (Desrosiers et al. 2001) 

vt1-R CTGAATCCCCCTCCATTATG 

vt2-F GGCACTGTCTGAAACTGCTCC 
stx2 255 (Leung et al. 2001) 

vt2-R TCGCCAGTTATCTGACATTCTG 

 

2.2.3 Seed inoculation 

Inoculation of the seeds was performed at two different moments. The inoculation with Salmonella 

Typhimurium MB4880 and E. coli O157:H7 MB3885 was performed on September 2009 and the 

inoculation with the other two strains (Salmonella Thompson RM1987N and E. coli O157:H7 

NTCT12900) on February 2011. For both inoculation moments, the same seed batch was used. The 

dry seeds (17 g) were immersed in 85 ml of the appropriate bacterial suspension (1/5 w/v) overnight 

(16 h) at room temperature (~ 21°C) in the biosafety hood. The excess of inoculum was removed with 

a 0.22 µm filter (Bottle Top Filters - 500-ml Capacity, MF75™ Series, Nalgene, USA). The seeds were 
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then spread thinly in sterile petri plates on a sterile filter paper and left to dry overnight (16 h) at 

room temperature (~ 21°C) in the airflow of a biosafety hood. Non-inoculated seeds immersed in 

sterile PBS were used as negative control. After drying, the seeds were stored in the dark in sterile 

petri plates in an incubator at 20 ± 2°C with an average relative humidity of 50 ± 7% for one year (for 

seeds inoculated with Salmonella Thompson RM1987N and E. coli O157:H7 NTCT12900) or two years 

(for seeds inoculated with Salmonella Typhimurium MB4880 and E. coli O157:H7 MB3885). The 

relative humidity and temperature were logged in 30-minute intervals using an EL-USB-2 data logger 

(Lascar Electronics).  

2.2.4 Measurement of bacterial populations on the seeds  

Populations of each pathogen on inoculated seeds were determined directly after inoculation and on 

different sampling times up to two years after inoculation. On each sampling time, three samples of 

0.200 g (~ 200 seeds) were added to sterile filter bags (Bioreba) with 4 ml sterile PBS + 0.02% Tween 

20 and homogenized (Homex 6, Bioreba) as described before. The resulting suspension was serially 

diluted in 0.1% peptone and spread-plated in duplicate onto CT-SMAC or XLD plates, respectively and 

incubated at 37°C for 24 h. At the end of the study, when the detection limit of direct plating method 

was obtained (1.3 log CFU/g seed), presence/absence testing was performed by enrichment of 1 ml 

of homogenized sample in 9 ml BPW incubated at 37°C, 24 h, 200 rpm. Subsequently, isolations and 

serological confirmation were performed as described before and hereafter, respectively. 

2.2.5 Individual seed testing two years after inoculation  

Two years after inoculation of the seeds with Salmonella Typhimurium MB4880 and E. coli O157:H7 

MB3885 (experiment September 2009), three different methods were tested to detect the 

pathogens on the individual seeds. First, 25 seeds were individually placed with sterile forceps in 10 

ml of BPW each, incubated for 24 h at 37°C (200 rpm) and the enrichment was streaked onto the 

appropriate selective media. Second, 25 seeds were individually pushed into selective media with a 

sterile toothpick. The plates were incubated at 37°C for 24 h and screened for presumptive growth 

around the seeds. Third, 25 seeds were individually pushed into TSA with a sterile toothpick. After 

incubation (37°C, 24 h), each seed was removed from the plate with a sterile cork bore and each TSA-

seed plug was added to 10 ml of BPW (37°C, 200 rpm, 24 h). The enrichment was streaked onto the 

appropriate selective media. Recovery of pathogens from seeds was repeated two times within the 

same month (i.e. two years after inoculation). 

2.2.6 Sprouting of the seeds 2 years after inoculation. 

The seeds were sprouted before testing for the presence of the pathogens. Therefore, six sterile filter 

papers (Whatman filters N1, cut in eight pieces) were placed in a petri plate. Each filter paper was 



Long-term survival on seeds 

 

 44 

saturated with sterile distilled water. Care was taken that the filter pieces did not touch each other. 

On each filter, one seed was placed with sterile forceps. The petri plates were wrapped with parafilm 

and placed in the dark at 20°C for three days to enable the seeds to sprout. Then they were placed in 

a growth chamber with a 12 h day-night cycle and a temperature of continuously 20°C. Six seedlings 

per inoculated seed batch were analyzed at days 3, 5, 7 and 11 after germination. For the analysis, 

the seed shell of the seedling was aseptically removed and was pushed into selective media with a 

sterile toothpick. The media were incubated at 37°C for 24 h and checked for presumptive growth 

around the seed shells. The seedling was placed in a sterile filter bag. Two ml of PBS + 0.02% Tween 

20 was added and the sample was homogenized as described before. Appropriate dilutions in 0.1% 

peptone were spread-plated onto selective medium and at the same time enrichment in BPW was 

performed for presence/absence testing after resuscitation. Sprouting of seeds was repeated within 

the same month, two years after inoculation. It was repeated two times with Salmonella 

Typhimurium MB4880 and four times with E. coli O157:H7 MB3885. 

2.2.7 Serological confirmation 

To verify the presence of the inoculated pathogens, colonies isolated from the seed and seedling 

samples were subjected to a serological test (E. coli O157:H7: DR0620, Oxoid, Basingstoke; 

Salmonella: DR1108, Oxoid, Basingstoke). 

2.2.8 Statistical analyses 

Log-transformed data were subjected to statistical analysis software SPSS (IBM SPSS Statistics 19). A 

generalized negative binomial regression was used for the comparison of the reduction rates, one-

way analysis of variance for all other tests. Differences between mean values were considered 

significant at P < 0.05. The linear regression equations of the survival curves were based on the log-

transformed data collected during the first year and calculated using Microsoft Excel 2007. 

2.3 Results and discussion 

2.3.1 Long-term survival of Salmonella and E. coli O157:H7 on lettuce seeds 

Prior to inoculation, neither E. coli O157:H7 nor Salmonella were detected in the used lettuce seed 

samples. After inoculation and drying of the seeds, the pathogen loads ranged between 7.75 to 8.63 

log CFU/g seed. The survival curves of the four strains tested on lettuce seeds together with R2 values 

and the linear regression equations are given in Figure 2.1. The seed batches respectively inoculated 

with Salmonella Thompson RM1987N and E. coli O157:H7 NCTC12900 were stored for 48 weeks, 

whereas the batches respectively inoculated with Salmonella Typhimurium MB4880 and E. coli 

O157:H7 MB3885 were stored for 104 weeks. The survival of the Salmonella strains on the seeds was 
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significantly better than the survival of the E. coli O157:H7 strains (P < 0.0001). After 48 weeks (340 

days), an average decrease of 1.62 log CFU/g seed was seen for the Salmonella Typhimurium strain 

and a decrease of 1.05 log CFU/g seed for the Salmonella Thompson strain. The E. coli O157:H7 

strains MB3885 and NCTC12900 decreased on average with 4.31 log and 4.70 log CFU/g seed, 

respectively. These decreases would correspond with reduction rates of 0.13, 0.09, 0.36 and 0.39 log 

CFU/g seed per month, respectively and were significantly different for E. coli O157:H7 and 

Salmonella (P < 0.0001). After 104 weeks (2 years) (data not shown), the concentration of Salmonella 

Typhimurium strain MB4880 was 7.35 ± 0.06 log CFU/g seed whereas E. coli O157:H7 strain MB3885 

could only be detected after enrichment of the samples (< 1.3 log CFU/g seed). In general, a similar 

survival trend was described by Beuchat and Scouten (2002). Although they used a 1000-times lower 

inoculum and alfalfa seeds instead of lettuce seeds, a 1.23 log CFU/g seed reduction (25°C, aw 40) 

after 52 weeks was observed for Salmonella, and a 3.95 log CFU/g seed reduction (25°C, aw 0.36) 

after 25 weeks for E. coli O157:H7 after retrieval by enrichment. In the present study, higher inocula 

levels up to 8.63 log CFU/g seed were used to allow for quantitatively monitoring the survival of the 

pathogens over a longer period, as well as for recovering the pathogens after seed germination on 

the seedlings without the need for an excessive sample size. Studies are often criticized when using 

‘unrealistic’ high inoculum levels, partially because inoculum effects can sometimes be seen for 

produce surfaces with less survival of the pathogen in case of lower inoculum levels (Richert et al. 

2000). In this way, the behavior of the pathogens at high contamination levels could be different 

from their behavior at low contamination levels. However, this is not always the case. Two other 

studies have investigated the long-term survival of Salmonella on nuts, also stored under dry 

conditions: (i) almonds stored at 23°C ± 3°C, inoculated at levels of 8, 5, 3 and 1 log CFU/almond 

(Uesugi et al. 2006) and (ii) in-shell pecans and pecan nutmeats (Beuchat and Mann 2010) inoculated 

at levels of 6.94 to 6.99 and 1.85 to 1.95 log CFU/g stored at different temperatures. Both studies 

found comparable reduction rates when using different inoculum levels. To our knowledge, there are 

no reports on the survival of E. coli O157:H7 on seeds or nuts in which a possible inoculum effect was 

described. Assuming that the reduction rate of both pathogens on lettuce seeds is independent from 

the initial inoculum level, one could, based on the linear regression equation, estimate the time that 

is needed to render the pathogen undetectable per gram of seeds, for any arbitrarily chosen 

inoculation level. For a more realistic initial inoculum level of e.g. 1 log CFU/g seed, Salmonella 

would, following this assumption, be undetectable after approximately 36.8-38.3 weeks and E. coli 

O157:H7 after 10-11.4 weeks, depending on the strain used. This has also implications for the routine 

detection ability of enteric pathogens on stored seeds.  
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These data are based on the results of artificial inoculation experiments and it cannot be excluded 

that the fate of enteric pathogens naturally occurring on seeds may be different. In a ‘natural’ 

situation, the pathogen is likely been exposed to nutrient scarcity before the seed contamination 

event takes place (e.g. due to survival in irrigation water, dust, plant debris). So, enhanced resistance 

to physical or chemical challenges may occur and influence their survival on the seeds. It was already 

shown that the sensitivity of Salmonella to desiccation due to initial drying of artificially inoculated 

seeds was influenced by the inoculum preparation (bacteria grown on agar or in broth) (Uesugi et al. 

2006). Therefore, it is important for future studies to try to simulate the ‘natural’ contamination 

event, or if possible, to examine the long-term survival on naturally contaminated seeds. In this way, 

mechanisms that possibly influence the survival of enteric pathogens on seeds, can be found. 

 

Figure 2.1: Long-term survival of Salmonella Typhimurium MB4880 (○), Salmonella Thompson RM1987N (□) and E. coli 

O157:H7 strain MB3885 () and NCTC12900 () inoculated at high level (± 8 log CFU/g seed) on lettuce seeds. Results 
shown are the averages of the counts on selective medium of three subsamples, plated in duplicate. Selective medium was 
XLD for Salmonella and CT-SMAC for E. coli O157:H7. 

2.3.2 Individual seed testing two years after inoculation 

Two years after seed inoculation, three different methods were tested for the detection of 

Salmonella Typhimurium strain MB4880 and E. coli O157:H7 strain MB3885 on individual seeds. In a 

first method, the seeds were individually placed in BPW and the enrichment was streaked onto 

appropriate selective media (= seed enriched in BPW). Second, seeds were individually pushed into 

selective medium (= seed in selective medium). And third, seeds were individually pushed into TSA 

and after incubation, a TSA plug with a seed was added to BPW after which the enrichment was 
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streaked onto appropriate selective media (= seed in TSA plug in BPW). The results are shown in 

Table 2.2. For Salmonella, all seeds tested positive with the three methods. Even directly pushing the 

stored seeds into selective XLD revealed the presence of Salmonella for every individual seed. For E. 

coli O157:H7, the highest recovery rate was obtained with the ‘seed in TSA plug in BPW’ method 

(14%), and the lowest with direct enrichment in BPW (4%), though an average recovery of 8.7% was 

generally obtained with all three methods. These results are in accordance with the results of Liao 

and Fett (2003), who have shown that for naturally Salmonella contaminated alfalfa seeds the use of 

two consecutive pre-enrichment steps led to a higher detection rate than a single pre-enrichment. 

The survival rate of the pathogens on the seeds was significantly different between the two 

pathogens with Salmonella demonstrating a better ability for survival on the dry seeds stored at 

ambient temperature.  

Table 2.2: Recovery of Salmonella Typhimurium and E. coli O157:H7 from individual lettuce seeds 2 years after inoculation, 
using different methods of detection. Values are the sum of two experiments with 25 seeds (n=50). 

Detection method 
 

Salmonella  
Typhimurium 

MB4880 

E. coli O157:H7 
MB3885 

seed enriched in BPW 
number of positives 50/50 2/50 

% of positives 100.0 4.0 

seed in selective 
medium 

number of positives 50/50 4/50 

% of positives 100.0 8.0 

seed in TSA plug in 
BPW 

number of positives 50/50 7/50 

% of positives 100.0 14.0 

 

2.3.3 Salmonella and E. coli 0157:H7 on seeds sprouted two years after 

inoculation 

Details of the resuscitation and growth of the pathogens on seedlings of two-year old inoculated 

seeds are shown in Table 2.3. For the Salmonella Typhimurium strain MB4880 inoculated seeds, all 

48 removed seed coats were found positive for Salmonella and the pathogen was able to colonize all 

48 seedlings. A seedling carried on average 4.70 ± 0.50 log CFU of Salmonella with a maximum of 

5.92 log CFU/seedling and a minimum of 3.87 log CFU/seedling. Taking into account that the initial 

load of Salmonella on the seeds before germination averaged about 7.35 log CFU/g seed, (i.e. on 

average 4.35 log CFU per seed) and that the seed coat was removed before the analysis of the 

seedling, it is most likely that Salmonella was able to proliferate on the seedlings. However, the 

numbers of Salmonella did not further increase three days after sprouting (P > 0.05). Several authors 

reported a similar trend for Salmonella on alfalfa seeds at 20-25°C where the highest Salmonella 

density was reached between one and three days after sprouting (Jaquette et al. 1996; Stewart et al. 



Long-term survival on seeds 

 

 48 

2001b; Howard and Hutcheson 2003; Fu et al. 2008; Liao 2008). These data are also in accordance 

with Fu et al. (2008), who have shown that Salmonella could grow on alfalfa sprouts, after storage of 

the naturally contaminated alfalfa seeds for eight years.   

For E. coli O157:H7 strain MB3885 inoculated seeds, 12 of the 96 seedlings (12.5%) were found 

positive. This 12.5% recovery rate was comparable with the detection rate on the seed (TSA plug in 

BPW, 14%). Apparently, a seedling was only found contaminated if the seed coat was found 

contaminated. It is clear from our results that E. coli O157:H7 was able to resuscitate and proliferate 

on the seedlings considering that the average amount per positive seedling was 3.74 ± 0.68 log CFU 

of E. coli O157:H7 (maximum 4.41 log CFU/seedling and minimum 2.71 log CFU/seedling), whereas 

samples of 200 seeds from 2-year old inoculated batches needed to be enriched for detection (< 1.3 

log CFU/g seed). The average E. coli O157 contamination level that was found on the contaminated 

seedlings was approximately tenfold lower than was observed for the Salmonella contaminated 

seedlings (on average 3.74 ± 0.68 log CFU/g versus 4.70 ± 0.50 log CFU/g). This could be due to 

different factors: (i) the contamination level found on the seeds two years after inoculation, hence 

the initial inoculum level before sprouting was lower than for Salmonella. A positive correlation 

between the initial inoculum level for Salmonella on alfalfa seeds and the maximum population on 

sprouts was also reported by Liao (2008). This inoculum dependent phenomenon on sprouts is not 

yet described for E. coli O157:H7 but it is known that E. coli O157:H7 and Salmonella reach similar 

population densities on lettuce sprouts when seeds were inoculated with the same cell density 

(Jablasone et al. 2005). (ii) It is also possible that E. coli O157:H7 cells were more stressed than 

Salmonella cells as already indicated above, resulting in a slower growth rate on the sprouting seeds. 

This hypothesis is supported by the fact that E. coli O157:H7 did not reach its maximum 

concentration 2–3 days after sprouting, as seen for Salmonella in this experiment and reported in the 

literature for E. coli O157:H7 and Salmonella (Jaquette et al. 1996; Stewart et al. 2001a; Stewart et al. 

2001b; Howard and Hutcheson 2003; Liao 2008). Although the highest increase was observed during 

the first three days after sprouting, E. coli O157:H7 was able to increase an extra 0.7-0.8 log CFU per 

positive seedling by day 11 after sprouting.  

Finally, none of the enrichment samples for which no pathogens could be retrieved by means of 

direct selective plating, were positive. This indicates that if Salmonella or E. coli O157:H7 was present 

on a seed, it resuscitated within the first 3 days of sprouting and showed outgrowth to numbers of > 

3 log CFU/seedling.  
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Table 2.3: Resuscitation and proliferation of Salmonella Typhimurium MB4880 and E. coli O157:H7 MB3885 on seedlings 
two years after seed inoculation.  

Pathogen 
Days after 

germination 

Number of 
positive 

seed coats 

Number of 
positive 

seedlings 

Number of 
positive 

enrichments 

Mean log 
CFU/positive 

seedling 
 ± 1 SDa 

Salmonella Typhimurium 3 12/12 12/12 12/12 4.72 ± 0.39 

MB4880 5 12/12 12/12 12/12 4.45 ± 0.42 

 
7 12/12 12/12 12/12 4.71 ± 0.31 

 
11 12/12 12/12 12/12 4.95 ± 0.72 

 
Total 48/48 48/48 48/48 4.70 ± 0.50 

      
E. coli O157:H7 3 4/24 4/24 4/24 3.61 ± 0.76 

MB3885 5 5/24 5/24 5/24 3.47 ± 0.67 

 
7 1/24 1/24 1/24 4.38 

 
11 2/24 2/24 2/24 4.34 ± 0.06 

 
Total 12/96 12/96 12/96 3.74 ± 0.68 

a SD = standard deviation 
 

2.4 Conclusions 

Our study not only confirms the long-term survival of enteric pathogens on seeds (Taormina and 

Beuchat 1999; Beuchat and Scouten 2002) but also shows that both pathogens, after being present 

for two years on the seeds, maintain their ability to resuscitate and proliferate on the seedlings. 

Stored seeds may thus be a contamination source of enteric pathogens for leafy vegetables such as 

butterhead lettuce; because of their principal greenhouse cultivation, this may even be one of the 

major potential contamination sources. More information is needed on the hygiene level of seed 

production practices. On the other hand, germination of seed may be a suitable resuscitation 

method for routine testing of seed batches for the presence of enteric pathogens. 
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Experimental set-up in the growth chamber with young (left) 

and nearly mature plants (right)  
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Abstract 

The survival of Salmonella enterica serovar Thompson and Escherichia coli O157:H7 was investigated 

on growing butterhead lettuce plants in the plant growth chamber and greenhouse. All inoculation 

tests were made under conditions that approximate the greenhouse conditions for butterhead 

lettuce cultivation in Flanders (Belgium). The survival and proliferation of the pathogens on the 

leaves was determined at day 0, 4 and 8 after inoculation using standard plating techniques on 

selective medium. In the growth chamber, the extent to which both pathogens were able to multiply 

on the lettuce leaves was influenced by crop stage and leaf age. On young plants, the older leaves 

supported pathogen survival better. On nearly mature plants, pathogen population sizes were 

significantly higher on the old and young leaves compared with middle-aged leaves (P < 0.001). In the 

greenhouse, the environmental regime with high fluctuations in temperature and relative humidity 

was less conducive for the survival of E. coli O157:H7, though its survival on nearly mature lettuce 

was enhanced by overhead irrigation. The moist conditions between the folded inner leaves are 

likely contributing to the survival of enteric pathogens in the lettuce head. Butterhead lettuce grown 

in greenhouses with a sprinkle irrigation system may present a potential health hazard when 

contaminated near harvest. Experimental design (growth chamber versus greenhouse) largely 

influences enteric pathogen behavior on growing lettuce plants. 

3.1 Introduction 

Governments promote the consumption of fruits and vegetables but at the same time concerns have 

been raised about the food safety of leafy vegetables. Leafy vegetables, such as lettuce, are 

considered by the US Food and Drug Administration as high risk food (Klein et al. 2009). But also in 

Europe various E. coli O157:H7 (Welinder-Olsson et al. 2004; Friesema et al. 2008; Söderström et al. 

2008) and Salmonella outbreaks (Ward et al. 2002; Horby et al. 2003; Nygård et al. 2008) have been 

related to the consumption of lettuce.   

Plant surfaces may become contaminated before harvest. Irrigation water is considered a potentially 

important introduction route and several studies have shown its potential for the transmission of 

enteric pathogens to lettuce plants. However, most of these studies were conducted either under 

laboratory or controlled conditions in growth chambers (Brandl and Mandrell 2002; Solomon et al. 

2003; Aruscavage et al. 2008; Brandl and Amundson 2008; Zhang et al. 2009; Aruscavage et al. 2010; 

Erickson et al. 2010a) or field experiments (Barker-Reid et al. 2009; Erickson et al. 2010b; Harapas et 

al. 2010; Wood et al. 2010; Fonseca et al. 2011). Few studies have compared both types of 

experimental setups. Furthermore, these experiments were often performed with lettuce cultivars 

and environmental conditions typical for the production of leafy vegetables in the United States. 
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This study focused on butterhead lettuce (Lactuca sativa L. var. capitata), an important leafy 

vegetable grown commercially in Northern European countries and regions such as Flanders 

(Belgium) mainly for export. The crop is cultivated in greenhouses in a continuous monoculture 

system using overhead sprinkler irrigation (Pauwelyn et al. 2011), creating conditions that, in case of 

contaminated irrigation water, are likely to deposit enteric pathogens on the lettuce plants. No 

scientific information is available concerning enteric pathogens for this lettuce cultivar in 

combination with its commercial growing conditions.  

The aim of this study was to investigate the effects of leaf age (young, middle-aged, old), crop stage 

(before or after heading) and daily overhead irrigation on the survival of E. coli O157:H7 and 

Salmonella enterica should they be introduced by irrigation water on butterhead lettuce in Northern 

European greenhouses. 

3.2 Material and methods 

3.2.1 Strains and growth conditions 

Salmonella Thompson RM1987N is a spontaneous nalidixic-acid-resistant mutant of a described 

clinical isolate from a patient in a cilantro-linked outbreak (Brandl et al. 2005b) and was kindly 

donated by Dr. Maria Brandl (USDA-ARS, Albany, California, USA). E. coli O157:H7 MB3885 naturally 

lacks Shiga toxin genes (stx1 and stx2) and was used as a non-toxigenic surrogate strain for the Shiga 

toxin producing serotype O157:H7 for biosafety reasons. This strain originates from beef carpaccio 

and was kindly donated by the Scientific Institute for Public Health (Brussels, Belgium). The absence 

of stx1 and stx2 genes and presence of other virulence genes eae (intimin), ehx (enterohemolysin), 

espP (extracellular serine protease) and katP (catalase-peroxidase) were confirmed by conventional 

PCR (Verstraete et al. 2013). Both strains were streaked from a glycerol frozen stock maintained at 

−70°C onto a tryptone soy agar plate (TSA; Oxoid, Basingstoke, UK) and incubated at 37°C for 24 h. 

One colony was transferred to 10 ml of tryptone soy broth (TSB; Oxoid, Basingstoke, UK) and 

incubated at 37°C for 18 h while shaken at 200 rpm.  

3.2.2 Plant growth conditions 

Pelletized butterhead lettuce seeds (Lactuca sativa L. var. capitata ‘Alexandria’) were obtained from 

Rijk Zwaan Distribution B.V., De Lier, the Netherlands. The seeds were sown in ground blocks of 4 x 4 

x 6 cm (seed and cutting compost, Saniflor, Geraardsbergen, Belgium). Two weeks after sowing, the 

seedlings were placed in pots of 13 cm (for the experiments with young plants, 9-leaf stage) or 20 cm 

diameter (for the experiments with nearly mature plants) and grown in the greenhouse at ILVO. For 
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inoculations in the growth chamber, the plants were moved from the greenhouse to the growth 

chamber (Isocab, Harelbeke, Belgium) two days before inoculation and placed in trays with ± 2 cm 

irrigation water. Growth chamber conditions were set at ± 19°C during the day and at ± 12°C at night 

with a relative humidity (RH) of 70-80% and a photoperiod of 14 h. The greenhouse experiment was 

conducted in April 2010 and conditions of RH and temperature were logged in 5-minute intervals 

using an EL-USB-2 data logger (Lascar Electronics, Salisbury, UK) (Table 3.1). 

3.2.3 Plant inoculations and irrigation 

Cells of each strain were washed twice by centrifugation (6000 × g, 15 min) in 50 mM phosphate 

buffered saline (PBS, pH 7.4). The optical density (OD) was measured at 595 nm using a microplate 

reader (Bio-Rad 3550, Richmond, USA) and by using an OD - CFU/ml standard curve, the appropriate 

amount of cells was resuspended in PBS to give 1 x 105 CFU/ml. For each combination of pathogen 

and crop stage, a total of 14 plants were inoculated. Young plants were inoculated by immersion as 

described by Brandl and Amundson (2008). Nearly mature plants were spray-inoculated as 

immersion was not feasible for biosafety reasons. The leaves were sprayed with a hand-held sprayer 

until runoff, which corresponded with approximately 100 ml inoculum per plant. A preliminary test 

was performed to compare both inoculation methods. This test showed similar survival trends of the 

pathogens. The pots were wrapped with plastic film (Saran wrap; Dow chemical company) to prevent 

soil contamination by dripping. Both inoculation methods resulted in a pathogens level of 

approximately 3 x 103 - 104 CFU per gram of leaf tissue as determined by selective plating as 

described hereafter. The control treatment (six plants) consisted of PBS without added inoculum. To 

test the influence of overhead irrigation, half of the plants in each experiment were also watered 

from above with a hand-held sprayer until runoff, whereas the other plants were only watered from 

below. For all experiments, irrigation water from the experimental greenhouse at ILVO was used, 

which originates from groundwater. A chemical analysis of the water was performed by INAGRO 

(Rumbeke-Beitem, Belgium) and ILVO (Merelbeke, Belgium) (Table 3.2). 

Table 3.1: Daily environmental conditions in the controlled environment growth chamber and in the greenhouse during 
inoculation experiments of lettuce with enteric pathogens. 

Experiment  Day/ night Temperature (°C) 
 

Relative Humidity (%) 

 
 

Mean ± Stdev Min Max  Mean ± Stdev Min Max 

Growth chamber - young plants day 18.5 ± 1.1 14.0 21.5 
 

81.4 ± 6.0 64.5 93.0 

 
night 12.0 ± 0.9  11.0 18.0 

 
78.0 ± 6.9 49.0 89.0 

Growth chamber - mature plants day 19.6 ± 0.7 15.5 22.0 
 

69.9 ± 2.8 55.5 80.0 

 
night 12.2 ± 0.9 11.0 16.5 

 
70.7 ± 2.9 56.5 82.0 

Greenhouse - mature plants day 21.1 ± 6.0 7.0 35.0 
 

45.2 ± 14.4 20.0 75.5 

  night 11.9 ± 2.4 7.0 21.0   65.9 ± 6.6 37.0 76.5 
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Table 3.2: Water characteristics of the irrigation water used for the daily overhead irrigation treatment. 

pH EC BOD
a
 COD

b
    

     
  SO4 Cl Fe Mn Mg Ca K Na 

 
µS/cm mg/l O2 mg/l O2 mg/l mg/l mg/l mg/l µg/l µg/l mg/l mg/l mg/l mg/l 

7.46 637 < 5.0 < 25.0 < 5.0 < 5.0 462 148.8 20.0 40. 0 15.1 109.2 8.6 18.4 
a biological oxygen demand 
b chemical oxygen demand 

3.2.4 Measurement of pathogen populations on lettuce leaves 

Before inoculation, the leaves of young plants were labeled from old to young with small pieces of 

tape. Old, middle-aged, and young leaves were numbered 1-3, 4-6 and 7-9, respectively. For 

inoculated nearly mature lettuce heads, the fourth to sixth leaves were sampled as old leaves, the 

12th to 14th leaves as middle-aged, and the leaves enclosed in the head as young leaves. Three 

randomly chosen plants from each treatment (i.e. pathogen – crop stage – irrigation combination) 

were sampled at four and eight days after inoculation, while one plant per treatment was sampled at 

day 0. From each plant, three leaves from each leaf age category were collected using sterile 

instruments. The leaves were cut approximately 1 cm above the soil surface, placed individually in a 

sterile extraction bag with filter (Bioreba, Reinach, Switzerland), and each leaf was weighed. Then, 

PBS with 0.05% v/v Tween 20 was added at 1/1 (w/v) ratio and the sample was ground for ± 15 s at 

maximum speed (Homex 6, Bioreba) until a homogenous mixture was obtained. Tenfold dilutions of 

the resulting suspension were made in 0.1% peptone and spread-plated on xylose lysine 

desoxycholate (XLD, LAB032; Lab M, Bury, UK) overlayed with TSA for Salmonella (XLD-TAL) or 

cefixime-tellurite sorbitol MacConkey (CT-SMAC, Lab 161; Lab M, Bury, UK) overlayed with TSA (CT-

SMAC-TAL). The TAL-method was described earlier for the resuscitation of injured cells (Kang and 

Fung 2000; Qiu and Wu 2007). All plates were incubated at 37°C for at least 18 h. Simultaneously, a 

non-selective enrichment was conducted by adding 1 ml of leaf homogenate to 9 ml of buffered 

peptone water (BPW; Oxoid, Basingstoke, UK) and incubated at 37°C, 200 rpm for 24 h. Only, when 

the plate counts were below the detection limit (< 1.3 log CFU/g), 100 µl of the enrichment culture 

was streaked onto the appropriate selective medium.   

Two different controls were performed to ensure that the inoculated strains and not the indigenous 

bacteria were counted. First, the undiluted leaf homogenate of the control plants was plated onto 

XLD-TAL and/or CT-SMAC-TAL. Second, randomly selected and presumptive non-pathogen colonies 

were subjected to a serological test (E. coli O157:H7: DR0620, Oxoid, Basingstoke; Salmonella: 

DR1108, Oxoid, Basingstoke).  



Survival on butterhead lettuce 

 57 

3.2.5 Statistical analyses 

The data were analyzed in SPSS (IBM SPSS Statistics 19) using a multi-factor analysis of variance 

(linear models) with α = 0.05. The data were normalized by subtracting the mean of the log count at 

day 0 from the mean of the log-transformed values at days 4 and 8. The explanatory fixed variables 

were day (day 4 or day 8), leaf age (young – middle-aged – old) and overhead irrigation treatment 

(with or without). Full factorial design was first performed. If all the interaction terms were not 

significant, a simplified model without interaction could be used with the Scheffé-test as post-hoc 

test. In other instances, Fisher's Least Significant Difference (LSD) post-hoc comparisons were made 

with the combinations of the groups. Values below the detection limit were considered to be at the 

detection limit (1.3 log CFU/g) if the enrichment was positive whereas those testing negative by 

enrichment culture were assigned a value of 0.0 as described by Erickson et al. (2010a).  

3.3 Results 

3.3.1 Survival and growth potential on young plants in the growth chamber 

The results are shown in Figure 3.1. Both pathogens were able to proliferate on lettuce leaves after 

inoculation. For Salmonella, no significant differences were found between the average counts at 4 

and 8 days after inoculation (P > 0.05), whereas for E. coli O157:H7 a slight increase could be 

observed (0.01 < P < 0.05). For both pathogens, no significant differences were identified between 

plants with and without daily overhead irrigation, and survival on the youngest leaves was 

significantly lower than on the middle-aged or oldest leaves (P < 0.001). For Salmonella (Figure 3.1, 

A-C), the viable counts decreased by 1.14 log CFU/g on the young leaves whereas they slightly 

increased on the middle-aged and old leaves by 0.38 and 0.54 log CFU/g, respectively (average of 

days 4 and 8). For E. coli O157:H7 (Figure 3.1, D-F), the same trend was observed but with a greater 

relative increase. On average, the E. coli O157:H7 counts on the young leaves increased slightly (0.40 

log CFU/g) and showed a greater increase on the middle-aged and old leaves (1.86 and 1.99 log 

CFU/g, respectively). At day 8, however, this leaf age effect was no longer measurable for the daily 

irrigated plants inoculated with E. coli O157:H7 (Figure 3.1, F). Generally, the pathogen population 

sizes greatly varied from one leaf to another, even between leaves of the same leaf age class.  
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Figure 3.1: Growth chamber experiment with young butterhead lettuce (9-leaf stage): pathogen population dynamics on 
young, middle-aged and old leaves at 0, 4 and 8 days after inoculation. A-C, population dynamics of Salmonella enterica 
serovar Thompson strain RM1987N. D-F, population dynamics of E. coli O157:H7 strain MB3885. Data are presented as box 
plots. The non-overhead-irrigated plants are represented by white bars; the overhead-irrigated plants are represented by 
hatched bars. A day 0, no distinction between overhead irrigated and non-overhead-irrigated plants was made. The bottom 
and top of the box are the 25

th
 and 75

th
 percentile. The line in the box is the median and the end of the whiskers are the 

minimum and maximum of the data which are not outliers or extremes. Outliers and extremes are represented with an 
asterisk. The data are calculated from the log-transformed values of the pathogen population size per gram tissue of 6 leaf 
samples at day 0 and 9 leaf samples at day 4 and 8. The horizontal line shows the median of the pathogen counts at day 0. 

 

3.3.2 Survival and growth potential on nearly mature plants in the growth 

chamber 

The results are shown in Figure 3.2 (A-B, Salmonella) and Figure 3.3 (A-C, E. coli O157). Leaf age had a 

significant effect (P < 0.001) and overhead irrigation had no effect. Leaf age did not have the same 

effect for nearly mature plants as compared to the young plants: E. coli O157:H7 proliferated on 

young inner leaves and oldest outer leaves (an average increase of 0.67 and 0.28 log CFU/g, 

respectively) and decreased on the middle-aged lettuce leaves (on average -0.76 log CFU/g). This leaf 

age effect was most obvious on day 4 and was no longer observed on day 8 after inoculation. On 

average, the total number of pathogens per plant did not increase significantly during the 8 days in 

the growth chamber. Similar trends were also observed for Salmonella, though this experiment was 

only conducted until day 4 (Figure 3.2 A-B). 
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Figure 3.2: Growth chamber experiment with nearly mature butterhead lettuce: population dynamics of Salmonella 
enterica serovar Thompson strain RM1987N on young, middle-aged and old leaves at day 0 day (A) and day 4 (B) after 
inoculation in the growth chamber. Data are presented as box plots. The non-overhead-irrigated plants are represented by 
white bars; the overhead-irrigated plants are represented by hatched bars. A day 0, no distinction between overhead 
irrigated and non-overhead-irrigated plants was made. The bottom and top of the box are the 25

th
 and 75

th
 percentile. The 

line in the box is the median and the end of the whiskers are the minimum and maximum of the data which are not an 
outlier or extreme. The data are calculated from the log-transformed values of the pathogen population size per gram 
tissue of 6 leaf samples at day 0 and 9 leaf samples at day 4. The horizontal line shows the median of the pathogen counts 
at day 0. 

 

3.3.3 Survival and growth potential on nearly mature lettuce in the greenhouse 

The results are shown in Figure 3.3 (D-F). On average no increase in pathogen counts was observed 

and the survival of E. coli O157:H7 was significantly lower than in the experiment conducted in the 

growth chamber. On day 4, E. coli O157:H7 survived the best (initial inoculum density was retained) 

on young, overhead-irrigated leaves (P < 0.01). Only at day 4, a leaf age effect existed between young 

and middle-aged leaves of the overhead-irrigated plants. On day 8, the E. coli O157:H7 level was 

significantly higher on old leaves of overhead-irrigated plants, whereas an enrichment step was 

needed to detect the pathogen on old leaves of non-irrigated heads (0.01 < P < 0.05). On the middle-

aged leaves, no statistically significant influence of overhead irrigation was observed. The average 

number of E. coli O157:H7 had decreased to 1.54 ± 0.88 log CFU/g for the daily overhead-irrigated 

plants, and to 1.38 ± 0.38 log CFU/g leaf for the non-irrigated plants. In total 13 of the 54 samples 

had to be enriched but in 10 of these 13 samples the pathogen could still be detected. This 

experiment could not be performed for Salmonella for biosafety reasons. 
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Figure 3.3: Preharvest population dynamics of E. coli O157:H7 strain MB3885 on young, middle-aged and old leaves of 
nearly mature butterhead lettuce plants at 0, 4 and 8 days after inoculation in the growth chamber and in the greenhouse. 
A-C, results from the growth chamber experiment. D-F, results from the greenhouse experiment. Data are presented as box 
plots. The non-overhead-irrigated plants are represented by white bars; the overhead-irrigated plants are represented by 
hatched bars. A day 0, no distinction between overhead irrigated and non-overhead-irrigated plants was made. The bottom 
and top of the box are the 25

th
 and 75

th
 percentile. The line in the box is the median and the end of the whiskers are the 

minimum and maximum of the data which are not outliers or extremes. Outliers and extremes are represented with an 
asterisk. The data are calculated from the log-transformed values of the pathogen population size per gram tissue of 6 leaf 
samples at day 0 and 9 leaf samples at day 4 and 8. The horizontal line shows the median of the pathogen counts at day 0. 

 

3.4 Discussion 

In the present study, we looked at plant related factors such as leaf age, crop stage and overhead 

irrigation to see whether these can have a potential influence on the survival of enteric pathogens in 

the phyllosphere of lettuce. In comparison with other studies on the survival of these pathogens on 

fresh produce (Aruscavage et al. 2008; Brandl and Amundson 2008; Erickson et al. 2010a), we used 

growing butterhead lettuce plants. The experiments were performed under the controlled conditions 
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of a growth chamber, but in parallel an experiment in the greenhouse was made to evaluate whether 

the investigated factors are also important under conditions of current practice. 

The experiments in the growth chamber revealed that lettuce leaf age in combination with crop 

stage has an effect on the survival capacity of the pathogen. The first evidence for this phenomenon 

was presented by Brandl and Amundson (2008). The experimental design of our growth chamber 

study was quite similar to theirs, but differed in the used lettuce type (butterhead lettuce with softer 

folded leaves and closed head formation versus romaine lettuce with upright long leaves and semi-

open head formation), lower temperatures (19°C day – 12°C night vs. constantly 28°C), lower RH (70-

80% vs. 100%) and, longer sampling period (8 days vs. 2-3 days). For nearly mature plants, the 

pathogen population dynamics on the leaves at day 4 after inoculation were in agreement with their 

findings. The highest population size of E. coli O157:H7 found on the young inner leaves, which are 

preferably consumed, was on average 1.4 log CFU/g higher than on the middle-aged leaves. 

However, at day 8 after inoculation, when the plants were ready for harvest, this young-leaf effect 

was no longer observed. Brandl and Amundson (2008) reported for young plants as well as for nearly 

mature plants a similar young-leaf effect. In contrast, the population size of the pathogens on young 

plants in our study was on average 1.60 log CFU/g lower compared to the old and middle-aged 

leaves. Our results do not necessarily contradict the findings of Brandl and Amundson (2008), as we 

may have missed the young leaf effect on young plants because of our later sampling of day 4 after 

inoculation. This was as well suggested by an additional experiment that included a sampling at day 1 

after inoculation and whereby growth of the pathogen was noted after one day (data not shown). 

Several factors may explain our different results on young leaves of young plants. During the 8 days 

in the growth chamber, the young leaves became more mature and the nutrient availability may 

have changed, furthermore, changes in the secondary metabolite production may have occurred. 

Brandl and Amundson ascribed the leaf-age dependent growth to the different nitrogen content in 

the exudates from leaves of different ages. The bigger relative change in leaf size of young leaves of 

young plants may also have an effect on the pathogen counts. As an illustration, the average weight 

of the young leaves increased with ± 36% whereas the old and middle-aged leaves of the young 

plants did not grow much. Also, it is likely that in contrast to the folded young leaves of nearly 

mature lettuce, the younger leaves of young plants are more susceptible to desiccation over time 

because they lack protection from other leaves. The observed leaf-age dependent trend may be 

typical for bacteria-plant interaction as Brandl et al. (2008) described similar survival/growth trends 

for the indigenous lettuce bacteria and enteric pathogens. 

Several authors have highlighted the importance of the relative humidity (RH) conditions for survival 

of bacterial pathogens on plants (O'Brien and Lindow 1989; Brandl and Mandrell 2002; Stine et al. 
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2005). It was shown that Salmonella could barely grow on plants that were kept below 40-50% RH 

but that short periods of high RH were sufficient to recover maximum population size on the leaves 

(Brandl and Mandrell 2002). Therefore, we expected that daily overhead irrigation, hence higher 

humidity, could lead to an increased growth of the pathogens on the leaves. However, in the growth 

chamber additional daily overhead irrigation on top of the relative high humidity (70-80%) had no 

effect on the behavior of the pathogens. In the greenhouse, the effect of overhead irrigation was 

only sporadic. The RH was 45% on average during the day with higher values up to 76% measured at 

night, but this did not seem to be sufficient for resuscitation of E. coli O157:H7 on the leaves. The 

plants were daily irrigated in the morning but after two hours most of the water on the leaves was 

already evaporated, therefore, the period of higher relative humidity may not have been long 

enough. If pathogens are internalized into the leaf tissue, the irrigation treatment may have no effect 

as well. This could not be investigated as the used set-up of our study did not allow for making a 

distinction between endo- and epiphytical pathogen populations. 

Furthermore, large fluctuations in temperature were measured in the greenhouse. The influence of 

such fluctuations has not been intensively studied. For natural substrates, Semenov et al. (2007) 

showed that E. coli O157:H7 and Salmonella inoculated in cow manure were very sensitive to 

fluctuating temperatures (Semenov et al. 2007). Future research should be directed to investigate 

the role of environmental fluctuations on plant-pathogen interactions in order to gain better insights 

in the fitness of enteric pathogens on plants grown under commercial conditions. 

3.5 Conclusion 

In this study it was demonstrated that leaf age, crop stage, and experimental design can have an 

important influence on the survival and proliferation of E. coli O157:H7 and Salmonella on 

butterhead lettuce. Greenhouse conditions with high fluctuations in temperature and RH, were less 

favorable for enteric pathogen growth compared to controlled conditions. The impact of daily 

overhead irrigation was only observed in the greenhouse on nearly mature plants, indicating that 

sprinkler irrigation may increase the food safety risk, especially after lettuce heading. 
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Abstract 

It is accepted that irrigation water is a potential carrier of enteric pathogens such as Salmonella and 

E. coli O157:H7 and, therefore, a source for contamination of fresh produce. We tested this by 

comparing irrigation water samples taken from five different greenhouses in Belgium. The water 

samples were inoculated with four zoonotic strains, two Salmonella and two E. coli O157:H7 strains, 

and pathogen survival and growth in the water was monitored up till 14 days. The influence of water 

temperature and chemical water quality was evaluated and the survival tests were also performed in 

water samples from which the resident aquatic microbiota had previously been eliminated by filter 

sterilization. Pathogen’s survival differed greatly in the different irrigation waters. Three water 

samples contained nutrients to support important growth of the pathogens, another enabled weaker 

growth, but for all, growth was only observed in the samples that did not contain the resident 

aquatic microbiota. In the original waters with their specific water biota, pathogen levels declined. 

The same survival tendencies existed in water of 4°C and 20°C, although always more expressed at 

20°C. Low water temperatures resulted in longer pathogen survival. Remarkably, the survival 

capacity of two E. coli 0157:H7 strains differed, while Salmonella Thompson and Salmonella 

Typhimurium behaved similarly. The pathogens were also transferred to detached lettuce leaves 

while suspended in two of the water samples or in a buffer. The effect of the water sample on the 

pathogen's fitness was also reproduced on the leaves when stored at 100% relative humidity. 

Inoculation of the suspension in buffer or in one of the water samples enabled epiphytic growth and 

survival, while the pathogen level in the other water sample decreased once loaded on the leaves. 

Our results show that irrigation waters from different origin may have a different capacity to transmit 

enteric pathogens and an important impact on the fitness of the pathogens to sustain and even grow 

on the leaf surface. 

4.1 Introduction 

Salmonella enterica and Escherichia coli O157:H7 (E. coli O157:H7) are the two most important 

bacterial pathogens associated with foodborne illness caused by the consumption of fresh produce 

(Sivapalasingam et al. 2004). Lettuce is the single most implicated commodity (Rangel et al. 2005). 

Fresh produce may become contaminated at every stage of the production process. But before 

harvest, irrigation water is considered an important introduction route (Nygård et al. 2008; 

Söderström et al. 2008; Gu et al. 2011; Cevallos-Cevallos et al. 2012). Groundwater may become 

contaminated by leaching of material through the soil, originating from e.g. organic manure or feces 

from adjacent fields, whereas pond water may also directly become contaminated by fecal 

deposition (Steele and Odumeru 2004; Nygård et al. 2008; Söderström et al. 2008; Semenov et al. 
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2009; Gu et al. 2012). These different water sources are used for irrigation by Belgian growers that 

produce lettuce in greenhouses. There is, however, a lack of information to which extent the risk for 

contamination of the plant products is comparable between different situations (Holvoet 2014). In 

the present research, the survival capacity of the pathogens in irrigation water samples from five 

Belgian lettuce producing sites was investigated. These waters were characterized and stored at 4°C 

at 4°C (± average minimum winter temperature Belgian surface water) and 20°C (± average 

maximum summer temperature Belgian surface water) (Van Vliet and Zwolsman 2008; Anibas et al. 

2011), with and without addition of four enteric bacterial strains, two Salmonella and two Escherichia 

coli O157:H7 strains. Interaction of the pathogens with the resident aquatic biota and the influence of 

the chemical water quality was studied by comparing the survival of the pathogenic strains in 

previously filter sterilized and untreated water. Pathogen survival was compared in these water 

conditions, but also afterwards when transmitted to leaves, which was tested in a lab scale 

experiment.  

4.2 Material and methods 

4.2.1 Strains and growth conditions 

For the survival experiments in irrigation water, four pathogen strains were used. Salmonella 

Thompson RM1987N, a spontaneous nalidixic acid-resistant mutant of Salmonella Thompson strain 

RM1987, was kindly donated by Dr. Maria Brandl (USDA-ARS, Albany, California, USA). Strain RM1987 

is a previously described clinical isolate from a patient in a cilantro-linked outbreak in California 

(Brandl and Mandrell 2002). Salmonella Typhimurium PT 120/ad MB4880 (MB collection of the 

molecular bacteriology lab of ILVO-Technology & Food Science Unit, Melle, Belgium) was isolated 

from overshoes at a pig farm in Belgium. E. coli O157:H7 MB3885 was isolated from beef carpaccio 

and kindly donated by the Scientific Institute for Public Health (Brussels, Belgium) and E. coli O157:H7 

NCTC12900 by Dr. Martin Woodward (Department of Bacteriology, VLA Weybridge, New Haw, 

Addlestone, Surrey KT15 3NB, United Kingdom). Both E. coli O157:H7 isolates lack Shiga toxin genes 

(stx1 and stx2) and were used for biosafety reasons as non-toxigenic surrogate strains for the Shiga 

toxin producing (STEC) serotype O157:H7. For E. coli O157:H7 MB3885, the absence of the stx1 and 

stx2 genes and the presence of other virulence genes eaeA (intimin), ehx (enterohemolysin), espP 

(extracellular serine protease) and katP (catalase-peroxidase) were confirmed by conventional PCR as 

previously described (Verstraete et al. 2013). E. coli O157:H7 NCTC12900 originated from a 

verocytotoxigenic strain which lost its ability to produce toxin. It was already used in several studies 

as a surrogate strain (Skandamis and Nychas 2000; Dibb-Fuller et al. 2001; Woodward et al. 2003; 

Vande Walle et al. 2011).   



Pathogen survival in irrigation water 

 

 67 

For the experiments with artificially inoculated lettuce, green fluorescent protein (GFP) transformed 

strains were used: Salmonella Thompson RM1987N (Brandl et al. 2005b) and E. coli O157:H7 

MB3885 (own constructs, plasmid pGFP, Clonetech, California, USA). GFP labeled strains were used 

to be able to distinguish the pathogens from the resident aquatic microbiota on the lettuce as 

previously described (a.o. (Brandl et al. 2005b; Franz et al. 2007a; Franz et al. 2007b; Semenov et al. 

2010)).  

All strains were taken from a glycerol frozen stock maintained at −70°C, streaked onto a tryptone soy 

agar plate (TSA; Oxoid, Basingstoke, UK), and incubated at 37°C for 24 h. A single colony from the 

plate was transferred to 10 ml of tryptone soy broth (TSB; Oxoid, Basingstoke, UK) and incubated at 

37°C for 20 h at 200 rpm. The appropriate antibiotic was added to these media when GFP labeled 

strains were used. This was 15 µg/ml gentamicin (G1264, Sigma-Aldrich, S. Louis, MO, USA) for 

Salmonella Thompson RM1987N GFP and 50 µg/ml ampicillin (G9518, Sigma-Aldrich) for E. coli 

O157:H7 MB3885 GFP.  

The stability of the GFP plasmid in the bacteria was examined by tracing the GFP expression as 

previously described (Lapidot and Yaron 2009) but with a few modifications. The GFP labeled 

bacteria were inoculated into TSB broth without antibiotics. Samples of the cultures were diluted 

(1:1000) in fresh medium daily, incubated for 24 h, 200 rpm, 37°C, and transferred again. Plate 

counting on TSA plates with or without antibiotic was performed daily to quantify the functional 

stability of the plasmid. The fluorescence of the colonies was checked under UV light (366 nm). Non-

fluorescent colonies and randomly selected fluorescent colonies were streaked onto the appropriate 

selective medium. This was xylose lysine desoxycholate agar (XLD; LAB032; Lab M, Bury, UK) for 

Salmonella and cefixime-tellurite sorbitol MacConkey agar (CT-SMAC; Lab 161; Lab M, Bury, UK) for 

E. coli O157:H7. The plates were incubated at 37°C for 24 h.  

4.2.2 Irrigation water samples 

Irrigation water was collected (ten-liter samples) at four commercial greenhouses in Belgium where 

lettuce is grown and at the greenhouse complex of ILVO. Three groundwater (GW1-3) samples and 

two pond water (PW1-2) samples were sterilely taken.  

These water samples (untreated) were stored for maximum 24 h at 4°C before the start of the 

experiment. Parallel to this, subsamples were sterilized by passing through a 0.22 µm filter (Bottle 

Top Filters - 500-ml Capacity, MF75™ Series, Nalgene, USA), and stored immediately at -18°C until 

used. Another set of subsamples (1 l) was analyzed by INAGRO (Rumbeke-Beitem, Belgium) and ILVO 

(Merelbeke, Belgium) for the following parameters: electrical conductivity (EC), pH, and 

concentrations of Cl, SO4, NO3, NO2, NH4, Na, K, Ca, Mg, Fe, Mn and Zn. The chemical characteristics 
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of the water samples are presented in Table 4.1. The biological oxygen demand (BOD) and chemical 

oxygen demand (COD) were measured for PW1 and GW1 but the values were below detection (< 5 

mg/l O2 resp. < 25 mg/l O2) The water samples were checked for presence of Salmonella and E. coli 

O157:H7. Therefore, three times 1 ml was enriched in 9 ml buffered peptone water (BPW; Oxoid, 

Basingstoke, UK) and incubated at 37°C, 24 h, 200 rpm. These enrichments were then streaked onto 

the selective media XLD and CT-SMAC. The plates were incubated at 37°C for 24 h and checked for 

presumptive colonies. Presumptive Salmonella-type colonies were observed in GW1 and PW1 but 

the colonies were negative for Salmonella by serological testing (DR1108, Oxoid, Basingstoke).  

Table 4.1: Chemical water characteristics of the five irrigation water samples. 

 

pH-
H2O 

EC    
     

  SO4 Cl Fe Mn Mg Ca K Na Cu Zn NO2 

  
µS/cm mg/l  mg/l  mg/l  mg/l  mg/l mg/l mg/l mg/l mg/l mg/l µg/l mg/l mg/l 

GW1 a 7.45 710 0.383 < 0.22 78.64 51.2 0.52 0.15 15.60 94.30 19.00 29.40 < 0.01 < 0.01 < 0.12 

GW2 a 6.99 1413.0 198.5 < 0.22 340.9 48.8 0.08 0.06 43.50 219.90 58.85 38.00 0.03 0.73 < 0.12 

GW3 a 7.56 698.0 0.9 < 0.3 134.4 42.4 0.02 < 0.01 15.00 102.61 8.25 12.72 < 0.01 0.79 < 0.3 

PW1b 6.91 106 0.278 < 0.22 7.28 7.6 0.14 0.06 2.37 8.77 6.75 4.18 0.01 < 0.01 < 0.12 

PW2b 7.71 651.0 5.2 < 0.22 165.5 46.3 0.02 0.02 14.80 82.65 13.20 29.70 < 0.01 0.01 < 0.12 

a GW = groundwater 
b PW = pond water 

4.2.3 Pathogen inoculation of irrigation water samples 

An overview of the different experimental conditions and used strains is shown in Table 4.2. Freshly 

grown strains were washed twice by centrifugation (13 000 × g, 1 min) and resuspending the pellet in 

distilled water. The optical density (595 nm) of the cultures was measured and the appropriate 

amount of bacterial suspension was added to 720 ml of irrigation water in order to obtain a 

pathogen concentration of approximately 3.5 log CFU/ml. For each experimental condition, twelve 

sterile loosely capped vials (microcosms, Sigma-Aldrich, 60 ml) were filled with 20 ml of inoculated 

water. The vials were statically placed in the dark in a constant temperature of 20°C or 4°C. 

Uninoculated water samples (both untreated and filter sterilized) stored at 20°C and 4°C were used 

as negative controls.  

4.2.4 Quantification of pathogen survival in the irrigation water samples 

Directly after inoculation and 2, 6 and 14 days thereafter, three replicate vials were randomly taken 

from each experimental condition. They were vortexed on maximum speed for 15 s and the 

pathogen level was determined by plating dilutions (in 0.1 % peptone) onto the corresponding 
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selective media XLD or CT-SMAC incubated for 24 h at 37°C and on the non-selective medium TSA 

incubated for 24 h at 42°C. The choice to plate on TSA incubated at 42°C was based on the fact that 

for two water samples (GW1 & PW1), plating on selective medium was impossible due to the 

Table 4.2: Overview of the 4 pathogen strains and 14 variables tested to measure pathogen survival and resident 
heterotrophic bacteria in each irrigation water sample.  

Water 

treatment 

 Inoculation of the water with Storage 

temperature 
of 

inoculated 
water 

Salmonella 
Thypimurium 

MB3885 

Salmonella 
Thompson 
RM1987N 

E. coli 
O157:H7 
MB3885 

E. coli 
O157:H7 

NCTC12900 

Non 
inoculated 

untreated  x x  x 4°C 

filter sterilized  x x  x 4°C 

untreated x x x x x 20°C 

filter sterilized  x x  x 20°C 

 

presence of interfering non-Salmonella black colonies on the XLD-plates. A preliminary test had 

shown that the plate counts on TSA incubated at 42°C were not significantly different from these 

incubated at 37°C while the growth of the natural microbiota was strongly reduced at 42°C. Two 

different controls were performed on the TSA-plates. First, there were no plate counts with the non-

inoculated irrigation water samples, and secondly, randomly selected colonies grown on TSA reacted 

correctly in serological tests for E. coli 0157:H7 (DR0620, Oxoid, Basingstoke) and Salmonella 

(DR1108, Oxoid, Basingstoke). The limit of detection by plating was 0.6 log CFU/ml and achieved by 

plating 0.25 ml on a plate. Samples negative by plating were subjected to an enrichment step in BPW, 

therefore, 1 ml of the sample was added to 9 ml BPW as described above. For the calculations, 

samples positive after enrichment were considered to be at the detection limit of plating (0.6 log 

CFU/ml), samples testing negative after enrichment were assigned a value of 0.0 as described by 

Erickson et al. (Erickson et al. 2010a).  

4.2.5 Quantification of the resident heterotrophic bacteria in the irrigation 

water samples 

For the untreated samples, the heterotrophic count was determined by plating tenfold dilutions onto 

water plate count agar (WPCA, 6 g/l tryptone, 15 g/l bacto agar, 3 g/l yeast extract) and incubated for 

5 days at 20°C. This was done for both the water samples inoculated with a pathogenic strain and for 
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the negative controls. In the first case, the pathogen counts were subtracted from the WPCA counts 

as described previously (Brandl and Amundson 2008). 

4.2.6 Plant growth conditions 

Pelletized butterhead lettuce seed (Lactuca sativa L. var. capitata ‘Alexandria RZ’) was obtained from 

Rijk Zwaan Distribution B.V., De Lier, the Netherlands. The plants were grown in the ILVO greenhouse 

in commercial potting soil (seed and cutting compost, Saniflor, Geraardsbergen, Belgium), in pots of 

20 cm diameter till fully headed, mature plants (approximately 16 weeks). 

4.2.7 Pathogen inoculation of lettuce leaves 

Bacterial inocula were prepared in five hundred ml of untreated groundwater sample 3 (GW3), 

untreated pond water sample 2 (PW2) or phosphate-saline buffer (PBS) (50 mM, pH 7.4) to which 

GFP labelled Salmonella Thompson or E. coli O157:H7 MB3885 (in the same concentrations) were 

added. These suspensions were then immediately applied on plant leaves. Young inner leaves of 

mature lettuce crops were cut approximately 1 cm above the soil surface. For each test combination, 

9 detached leaves were dipped for 3 seconds in the appropriate suspension, allowed to drip off. The 

initial contamination levels were ± 3.5 log CFU/g leaf (see also 4.2.8). The leaves were then placed in 

trays with paper towel (random design), allowed to dry (30 min) in the biosafety cabinet and 

subsequently transferred into plastic boxes that had a 10 cm layer of water in the bottom. The boxes 

were closed with glass plates to reach 100% relative humidity (see picture front page Chapter 4) and 

placed in a growth chamber with a 14/10 h day/night regime at 20°C/12°C. Relative humidity and 

temperature in the boxes were logged every 5 minutes with an EL-USB-2 data logger (Lascar 

Electronics). Pathogen levels on the leaves were followed for three days.  

4.2.8 Quantification of pathogen survival on the lettuce leaves 

Thirty minutes (day 0), and 1 and 3 days after inoculation, three leaves of each test combination 

were randomly selected, individually placed in a sterile extraction bag with filter (Bioreba, Reinach, 

Switzerland), and weighed. After addition of PBS with Tween 20 (0.05% v/v) at a 1/1 (w/v) ratio, the 

leaves were ground for 15 s at maximum speed with a Homex 6 (Bioreba), which generated a 

homogenous mixture. Tenfold dilutions (in 0.1% peptone) of the extracts were plated on TSA 

supplemented with the appropriate plasmid encoded antibiotic. The plates were incubated at 37°C 

for 24 h and the fluorescent colonies were counted under UV light (366 nm). 

4.2.9 Statistical analysis 

The pathogen survival experiments in irrigation water were performed one time, three vials were 

analyzed at each time point for each investigated condition.. A Kruskal Wallis (IBM SPSS Statistics 19) 
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test was performed to determine the overall effects of the plating medium (selective medium XLD or 

CT-SMAC vs. TSA 42°C), filter sterilization treatment and water sample. The influence of the plating 

medium was analyzed using a full factorial negative binomial regression with day and plating medium 

integrated as factors in the regression model for each water sample, strain, filtering treatment and 

temperature combination. The influence of the different treatments on the survival of the pathogens 

in the irrigation water was analyzed by means of a full factorial negative binomial regression with 

day, temperature and filtering treatment integrated as factors in the regression model for each water 

sample and strain combination. The difference in survival between the different strains was analyzed 

using a full factorial negative binomial regression with day and strain as factors for the untreated 

water samples stored at 20°C. Each analysis with the negative binomial regression models started 

with a saturated model and interactions and non-significant main factors were sequentially dropped 

at a significance level of 0.05. The most parsimonious model was used when analysing the data. 

Negative binomial regression was performed using the GENMOD procedure in SAS 9.4. The 

experiments with lettuce leaves were performed twice with three lettuce leave samples on different 

days and with lettuce heads grown different moments. The results were analyzed by day. A non-

parametric Kruskall-Wallis test with pairwise comparison and taking the necessary Bonferoni 

corrections into account, was performed (IBM SPSS Statistics 19). 

4.3 Results 

4.3.1 Pathogen’s survival in irrigation water; influence of water temperature 

and resident aquatic biota.  

Figure 4.1 (A-F) and Figure 4.2 (A-D) show the survival of Salmonella Thompson (ST) and E. coli 

O157:H7 MB3885 (EC) in the five irrigation water samples. The results from the TSA platings at 42°C 

are shown. In general, higher populations of pathogens were recovered from the TSA platings 

compared with the respective selective media (CT-SMAC and XLD). This effect was more often 

observed in water samples stored at 4°C (14/15) in comparison with at 20°C (5/15) (see 

http://studwww.ugent.be/~ivdlinde/Supplemental_information_survival.html). Except for GW3, 

higher pathogen counts were observed at 20°C in filter sterilized water in comparison with untreated 

water and these differences were significant for GW1, PW1 and PW2 (for GW1,PW1 and PW2, EC 

and ST, P<0.0001). The biggest differences between filter sterilization treatment or not were 

observed in PW1, in this water sample both pathogens survived significantly better at 4 and 20°C (ST 

4°C, ST 20°C and EC 20°C, P<0.0001; EC 4°C, P<0.001) in filter sterilized water in comparison with the 

untreated samples stored at the same temperature. The highest pathogen counts were detected in 

water samples that were filter sterilized and stored at 20°C as well. Moreover, in three of these 

http://studwww.ugent.be/~ivdlinde/Supplemental_information_survival.html
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water samples both pathogens were able to grow within the first six days after inoculation (up to 

6.03 log/ml) (GW1, PW1 and PW2). This was not noticed at 4°C. Both pathogens survived in general 

better in untreated water kept at 4°C instead of 20°C, growth was never observed in untreated 

water. 

 

 

Figure 4.1: Survival of E. coli O157:H7 MB3885 (left) and Salmonella Thompson RM1987N (right) in 3 groundwater samples 
with the following treatments: untreated water samples stored at 4°C (full line, ), filter sterilized water samples stored at 
4°C (dashed line, ), untreated water samples stored at 20°C (full line, ), filter sterilized water samples stored at 20°C 
(dashed line, ). The data show the mean of three analyzed vials and are calculated from the log transformed values of the 
pathogen population size. Error bars indicate standard deviations. Different letters indicate significant difference (P < 0.05) 
between means according to negative binomial regression. 
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Figure 4.2: Survival of E. coli O157:H7 MB3885 (left) and Salmonella Thompson RM1987N (right) in 2 pond water samples 
with the following treatments: untreated water samples stored at 4°C (full line, ), filter sterilized water samples stored at 
4°C (dashed line, ), untreated water samples stored at 20°C (full line, ), filter sterilized water samples stored at 20°C 
(dashed line, ). The data show the mean of three analyzed vials and are calculated from the log transformed values of the 
pathogen population size. Error bars indicate standard deviations. Different letters indicate significant difference (P < 0.05) 
between means according to negative binomial regression. 

4.3.2 Pathogen’s survival in irrigation water; comparisons between water 

samples and different strains of each pathogen 

The pathogen’s survival was significantly different between the different irrigation water samples (P 

< 0.001). This was especially clear at 20°C, and less at 4°C. Besides that, irrigation water GW3 showed 

a very different pathogen survival profile. In general, similar survival trends were observed for 

Salmonella Thompson and E. coli O157:H7 MB3885 under the same experimental conditions, 

although some differences could be seen: E. coli O157:H7 MB3885 survived significantly better than 

Salmonella Thompson RM1987N in some test conditions, such as in sterilized GW1 (P<0.001, Figure 

4.1 A-B) and sterilized PW2 at 20°C (P<0.001, Figure 4.2 C-D) and in untreated GW3 at 4°C 

(0.001<P<0.01, Figure 4.1 E-F). To test whether the observed differences were strain specific or 

species specific, the survival of two more strains, Salmonella Typhimurium MB4880 and E. coli 

O157:H7 NCTC12900, was tested in the untreated water samples stored at 20°C. The results are 
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shown in Figure 4.3. The survival of the two Salmonella strains was in general not significantly 

different from each other, whereas for the two E. coli O157:H7 strains a difference in pathogen level 

up to 2.0 log CFU/ml existed when residing in the PW2 water at day 14 after inoculation. In 4 of the 5 

water samples E. coli O157:H7 NTCT12900 survived less well than E. coli O157:H7 MB3885, whereas 

the opposite was observed in GW3.  

Figure 4.3: Survival of Salmonella Typhimurium MB4880 (), Salmonella Thompson RM1987N (), E. coli O157:H7 
MB3885 (□) and E. coli O157:H7 NCTC12900 (○) in untreated irrigation water stored at 20°C. Pathogen suspensions in (A), 
groundwater 1; (B), groundwater 2; (C), groundwater 3; (D) pond water 1 and (E) pond water 2. The data show the mean of 
three analyzed vials and are calculated from the log transformed values of the pathogen population size. Error bars indicate 
standard deviations. Different letters indicate significant difference (P < 0.05) between means according to negative 
binomial regression.  
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4.3.3 The resident background of heterotrophic microorganisms in the 

irrigation water samples 

The population dynamics of the heterotrophic background microbiota are shown in Figure 4.4. The 

initial counts varied from 1.81 ± 0.30 log CFU/ml to 5.00 ± 0.08 log CFU/ml between the different 

irrigation water samples and increased during the 14-days storage experiment. Levels up to 6.98 ± 

0.16 log CFU/ml were observed in GW2 at 4°C at day 14. The increase was faster but not higher at 

20°C (within 2 days) than at 4°C. No statistically significant correlation could be found between the 

growth/die off rate of the pathogens and the heterotrophic background microbiota for any of the 

water samples. Furthermore, the counts of the heterotrophic bacteria in the inoculated water 

samples were not significantly different from the counts of the heterotrophic bacteria in the non-

inoculated irrigation water samples.  

 

Figure 4.4: Plate counts of heterotrophic background microbiota residing in the five irrigation water samples (groundwater 
1 (), groundwater 2 (), groundwater 3 (), pond water 1 (), pond water 2 (○)) stored at 4°C (A) and 20°C (B). The data 
show the mean of three analyzed vials and are calculated from the log transformed values of the heterotrophic background 
population size. Error bars indicate standard deviations. 

 

4.3.4 Pathogen’s survival on butterhead lettuce leaves; influence of the 

inoculum carrier 

The results are shown in Figure 4.5. The preliminary test showed that the GFP plasmid remained 

present in both strains, green fluorescence was detected in more than 99% of the colonies up to the 

end of the test (day 10). When Salmonella and E. coli O157:H7 were suspended in PBS, GW3 or PW2 

as carrier to inoculate lettuce leaves, significantly different concentrations of these pathogens were 

recovered from the leaves (0.01<P<0.05). The highest concentrations were recuperated from leaves 

inoculated with suspensions in PBS, and then followed by the variant in PW2. In contrast, when 
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inoculated in GW3 water, the amount of pathogens on the leaves declined. E. coli O157:H7 MB3885 

and Salmonella Thompson behaved in a similar way.  

Experiment 1: 

 

Experiment 2: 

Figure 4.5: Levels of GFP labeled E. coli O157:H7 MB3885 (A & B) and GFP labeled Salmonella Thompson RM1987N (C & D) 
recovered from lettuce leaves at three time points after inoculation with the pathogens suspended in phosphate buffer-
saline (), pond water 2 (), or groundwater 3 (). Data presented are from 2 independent experiments (experiment 1 :A 
& C; experiment 2 B & D) and are calculated from the log transformed values of the pathogen population size on 3 leaf 
samples and expressed per gram of leaf tissue. Error bars indicate standard deviations. At each day, different letters 
indicate significant difference (P < 0.05) between means of pathogen level according to Kruskall-Wallis non parametric test. 

4.4 Discussion  

This study was conducted to evaluate the extent to which enteric pathogens survive in irrigation 

water from different origin and quality and to have a first estimate of the implication for 

contamination of fresh green produce. We used butterhead lettuce as test plant. Lettuce cultivation 

in greenhouse is common in Belgium and irrigation water reservoirs were sampled on five different 

production sites. In the first part of our study, the survival of E. coli O157:H7 and Salmonella was 

followed in artificially inoculated irrigation water samples from different Belgian lettuce production 

sites. The influence of temperature, presence of resident aquatic biota, chemical water quality or 
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pathogen strain was tested. A schematic summary and tentative interpretation of our results 

performed at 20°C is shown in Table 4.3. 

For natural waters, it is known that temperature has a significant effect on the survival of enteric 

pathogens (Steele and Odumeru 2004) with better survival at lower temperatures (Rice et al. 1992; 

Wang and Doyle 1998). This was also seen in the present experiment in the untreated water samples. 

But in the filter sterilized water samples, the opposite was observed. In three irrigation water 

samples, even growth of the pathogen could be noticed at 20°C. These results are in accordance with 

Vital et al. who have shown that growth of E. coli O157:H7 can be observed in sterilized natural 

freshwater at low carbon concentrations when the initial inoculation concentration is not higher than 

the so-called ‘carrying capacity’ of the water (Vital et al. 2008; Vital et al. 2010). This may also 

indicate that sterilized irrigation water could be a risk factor when the contamination event occurs 

after the sterilization treatment. By comparing the pathogen survival in both filter sterilized and 

untreated water samples, the influence of the presence of the heterotrophic background microbiota 

and the chemical water quality could be determined. In general, the survival of E. coli O157:H7 and 

Salmonella was significantly better in the sterilized water samples. This indicates that for these 

samples, competition with the resident aquatic microbiota may be responsible for the decline of the 

pathogens in the untreated water samples. Bacterial competition is a very complex process of which 

the current state of knowledge of the contributing factors (such as nutrient dynamics, concentrations 

of competing species) is very limited for natural waters (Vital et al. 2008). Furthermore, also the 

presence of protozoa may have influenced the survival of enteric pathogens in irrigation water. 

Ravva et al. has shown that selected types of protozoa preferentially engulf specific isolates of E. coli 

O157:H7 while some protozoa engulf the pathogen in the presence of specific nutrients (Ravva et al. 

2010; Ravva 2013). This may be one of the factors that can explain the pronounced differences that 

were observed for the two E. coli O157:H7 strains, but the hypothesis could not be confirmed as 

protozoal counts were not performed.  
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Table 4.3: Schematic overview results of survival of Salmonella and E. coli O157:H7 in 5 irrigation water samples which were previously filter sterilized or not and subsequently stored at 20°C. 

water 
sample 

Initial level 
resident 

heterotro-
phic 

bacteria  

Endpoint pathogen level Tentative interpretation 

 

 
in presence of 

aquatic biota (in 
untreated water) 

in absence of 
aquatic biota (in 
filter sterilized 

water) 

combination of competitive 
survival and growth and nutrient 

availability 

risk of pathogen 
transfer when 

using non-sterilized 
irrigation water 

risk of pathogen 
transfer in case of 

pathogen 
contamination of 
sterilized water 

PW1 high low very high 
- important pathogen suppression by 

resident aquatic biota 
- nutrients for pathogen growth available 

low very high 

PW2 medium medium very high 
- weaker pathogen suppression by resident 

aquatic biota 
- nutrients for pathogen growth available 

medium very high 

GW1 low high very high 
-very low pathogen suppression (low 

bacterial background load) 
- nutrients for pathogen growth available 

high very high 

GW2 medium low high 

-important pathogen suppression by 
resident aquatic biota 

-limited nutrients for pathogen growth 
available 

-high Zn level 

low high 

GW3 low low low 

-important pathogen suppression but not 
by the resident aquatic biota 

the pathogen does not survive in this 
water, although the bacterial background 

does 
-high Zn level 

low low 
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In two water samples (GW2 and GW3) the pathogen behavior in the untreated samples could not 

(only) be explained by competition with the resident aquatic microbiota. In GW2 the survival of the 

pathogen was significantly better in the sterilized water sample but no growth could be observed, 

and in GW3 no difference in survival was seen between the untreated and filter sterilized water. This 

may indicate that for these water samples also the chemical water quality may have had a significant 

influence on the survival of the pathogen. One of the factors that may explain these results is the fact 

that water samples were characterized by a higher Zn concentration. For GW3 we could show that 

this high concentration originated most likely from galvanized irrigation pipes and irrigation storage 

tank as water which was sampled directly from the borehole reservoir was characterized by a much 

lower Zn concentration. When a survival experiment was conducted with this borehole water 

sample, growth of the pathogen could be observed in the sterilized water sample (Figure 4.6 & Table 

4.4). Toxic effects of zinc on bacteria have been reported (Preston et al. 2000). It was shown that a 

concentration of 0.25 mg/l has a direct toxic effect (20 min) on E. coli and that a longer exposure 

time significantly increases the sensitivity of E. coli to metal pollutants (13). In a similar survival 

experiment as ours, Avery et al. (2008) found a significant negative correlation between the mean log 

CFU E. coli O157:H7 and log Zn concentration. In GW2, very high levels of zinc were found as well, yet 

differences in filtering did change the pathogen survival. This may indicate that the Zn-complex in the 

two water samples was not the same. Furthermore, other toxic chemical elements may have been 

present in GW3 which were not analyzed, or synergistic effects between different chemical elements 

could have occurred (Preston et al. 2000).  

These results (influence competition microbiota, chemical composition) show high similarities with 

the survival of enteric pathogens in various other natural substrates such as manure and slurry 

(Semenov et al. 2007). 

 

Figure 4.6: Survival of E. coli O157:H7 MB3885 in groundwater 3 sampled at the borehole reservoir and at the tap with 
following treatment: untreated borehole reservoir (full line, ), filter sterilized borehole reservoir (dashed line, ), tap 
point untreated (full line, ), filter sterilized tap point (dashed line, ). Only one measurement was performed for each 
time point. Plate count data from TSA-counts. 
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Table 4.4: Metal concentrations measured in borehole reservoir and water taken from tap from groundwater 3 
(independently sampled from the water sample used for the main experiments). 

  Al Ca Fe Mg K Na Co Cr Cu Mn Ni Zn 

  µg/l mg/l µg/l mg/l mg/l mg/l µg/l µg/l µg/l µg/l µg/l µg/l 

borehole reservoir 143.9 99.0 360.0 14.9 8.94 20.1 BD 4.3 11.6 121.9 6.8 60.0 

tap BD 114.6 64.0 13.4 4.42 15.6 BD 0.1 2.8 0.4 0.4 2793.5 

BD = below detection limit 

Large differences could be observed between selective and non selective plate counts for some 

water samples, with lower count on selective medium. This indicates that the pathogens in these 

water samples were in a stressed condition and most likely sublethally damaged (Dinu et al. 2009).  

In the second part of our study, two of the artificially inoculated water samples were used to 

introduce the pathogens onto butterhead lettuce leaves to evaluate their subsequent survival. These 

results were compared with PBS as inoculum carrier which is together with sterile distilled water and 

other standard sterile buffers commonly used. Only few studies have used irrigation water as 

inoculum carrier (Solomon et al. 2003; Barker-Reid et al. 2009), probably because this makes it more 

difficult to repeat the experiment in exactly the same conditions. To our knowledge, only Theofel and 

Harris (2009) and Choi et al. (2011) have investigated the influence of the inoculum carrier on the 

subsequent survival of the pathogen on leafy greens. Theofel and Harris did not find significant 

differences when Milli Q water, 0.1% peptone water, or pond water was used as an inoculum carrier 

to deliver E. coli O157:H7 to fresh-cut lettuce that was subsequently stored at either 5 or 20°C. They 

used an average starting inoculum level (± 3.5 log CFU/g lettuce) which was comparable with ours 

(3.1 ± 0.2 log CFU/g), but the inoculation method was different. They spotted 10 µl inoculum with 6.5 

log CFU/ml in 3-5 drops on 10 g of lettuce whereas we chose to use the dip inoculation method. The 

inoculum density that we used in the present study was on average lower (log 3.5 ± 0.3 CFU/ml) but 

we used a 300 times higher inoculum volume (± 3 ml for 10 g of lettuce). With this inoculation 

method, the pathogen was more evenly distributed on the leaves. This may explain why we were 

able to observe a significant effect of the inoculum carrier, although also other experimental factors 

could have played a role (different strain, lettuce type, storage temperature, etc.). Choi et al. were 

able to see differences in E. coli O157:H7 survival on lettuce when sterile distilled water or peptone 

water as inoculum carrier was used, with better survival with peptone water. They used 100 µl 

inoculum for each leaf and suggested that the organic matter in peptone water protects E. coli 

O157:H7 from environmental stresses and/or provides nutrients to support colonization in an 

environment with 100% relative humidity. In our test, the pathogen’s survival on the plant was 

comparably better when introduced in PBS, but with the current experimental design it was not 

possible to explain whether this effect was due to the absence of resident aquatic microbiota in the 
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sterile buffer, the chemical composition of the irrigation water samples or a combination of these 

factors.  

We chose to perform the experiment with detached butterhead leaves with the same leaf age in 

conditions of high relative humidity in order to keep the variation as low as possible (Brandl and 

Amundson 2008; Theofel and Harris 2009). This is important when small differences in the survival of 

enteric pathogens on fresh produce need to be investigated. But even under these standardized 

conditions, the survival between the different repeats were significantly different although the same 

trends could always be observed: better survival on the lettuce when introduced with PBS as 

inoculum carrier, less survival when introduced with GW3. The tested high humidity conditions 

(100%) are, however, not typical of preharvest conditions. Under drier conditions, it is therefore 

likely that populations of both groups would have declined such as described previously and it would 

have been difficult to discern an effect of the irrigation water quality to the overall pathogen's 

survival (Brandl and Mandrell 2002; Van der Linden et al. 2013). In order to test the hypotheses that 

were put forward in this study and to investigate the impact of the irrigation water quality on enteric 

pathogen’s survival on lettuce under commercial growth conditions in detail, further research is 

required. In such follow up studies a higher number of water samples should be investigated, and the 

experiments should be repeated in time, in order to take the chemical and microbiological variability 

of the water into account. Furthermore, it should be interesting to characterize the nutrient 

availability of the water samples in more detail e.g. by measuring the dissolved organic content 

(DOC) per unit microbial biomass (Franz et al. 2007a; Gu et al. 2012) and to determine the low 

pathogen levels more accurately e.g. by applying the MPN-method. 

4.5 Conclusion 

Our study confirms that the survival of Salmonella and E. coli O157:H7 may vary between different 

irrigation water samples. The individual pathogen’s fitness for leaf colonization seems to be 

influenced by the quality of the irrigation water under conditions of high relative humidity. 
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Abstract 

Attachment of enteric pathogens such as E. coli O157:H7 to fresh produce is a crucial first step for 

contamination to occur and irrigation water is considered a potentially important preharvest 

introduction route. In a natural situation E. coli O157:H7 may be present in the irrigation water for 

some time and may, therefore, be starved. Most research, however, is performed with freshly 

cultured strains. The aim of this study is to examine the behavior of E. coli O157:H7 MB3885 under 

starvation stress in water used for overhead irrigation in the greenhouse and the consequence on its 

subsequent ability to attach to butterhead lettuce leaves. E. coli O157:H7 MB3885 was starvation 

stressed by introducing it at ± 7.5 log CFU/ml into phosphate buffered saline (PBS), sterile distilled 

water (SDW), or irrigation water (IW). The suspensions were stored at 4°C or 20°C, and used after 0, 

2 and 6 days for an attachment assay on butterhead lettuce. E. coli O157:H7 MB3885 levels were 

determined by plating method and live/dead-qPCR technique. A decrease in plate-counts, an 

indicator of stress, was observed for most of the conditions, whereas a die-off, as revealed by the 

live/dead-qPCR-data, was only observed in IW stored at 20°C. Overall, stress appeared to be highest 

in IW and lowest in PBS. The stressed cells were still able to recover, even at 4°C, and to attach to the 

lettuce. Furthermore, our results show that standard laboratory solutions such as PBS and SDW may 

not be the best to simulate stressed cells in irrigation water in which the bacteria may behave 

significantly different. 

5.1 Introduction 

In recent years, different outbreaks with the pathogen Escherichia coli O157:H7 could be related to 

the consumption of fresh produce such as lettuce, baby spinach, fresh herbs etc. (Berger et al. 2010; 

Olaimat and Holley 2012). During primary production, fresh produce can become contaminated with 

pathogens by contact with feces or fecally contaminated run-off water, by contact or splashes from 

soil (when soils are fertilized with untreated manure), by untreated surface or wastewater used for 

irrigation, or pesticide application, or by unhygienic handling by workers during harvest (Olaimat and 

Holley 2012). Contaminated irrigation water is one of the main preharvest introduction routes of 

phytopathogenic bacteria for greenhouse grown produce (Cottyn et al. 2011), and has also been 

suspected as the cause of zoonotic outbreaks in the past (Nygård et al. 2008; Franz et al. 2009).  

When water carrying E. coli O157:H7 is applied to greenhouse-grown leafy vegetables, a first step in 

the contamination process is attachment of the pathogenic bacteria to the leaves. Various studies 

showed that once the pathogens have attached to the leaves, they are very difficult to remove again. 

Normal washing procedures with water, but also using sanitation cannot guarantee safe fresh 

produce (Gomez-Lopez et al. 2008).  
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Efforts have been made to gain insight into the mechanisms that facilitate bacterial attachment to 

plant tissues (e.g. fruit, leafy vegetables, etc.). Mainly Salmonella and E. coli O157:H7 have been 

studied. Generally a two-step model is proposed to explain the attachment of bacterial cells to plant 

tissues. First, reversible attachment occurs and the bacterial cells can be removed by rinsing or a 

turbulent flow. This initial attachment is mediated by basic physical forces (Goulter et al. 2009). 

Then, irreversible attachment can take place. Studies demonstrated that this cannot be explained by 

a single mechanism but that different factors, such as the bacterial strains or species (Takeuchi et al. 

2000; Barak et al. 2002; Ukuku and Fett 2002; 2006), bacterial cell properties (Ukuku and Fett 2002; 

2006; Patel et al. 2011), produce surface (species, crop type, damage) (Seo and Frank 1999; Takeuchi 

et al. 2000; Takeuchi et al. 2001; Boyer et al. 2007; Patel and Sharma 2010; Kroupitski et al. 2011; 

Patel et al. 2011), and environmental conditions (Iturriaga et al. 2003; Hassan and Frank 2004), all 

may have an influence. 

Previous attachment studies were performed with fresh inocula in suspensions of sterile distilled 

water or buffered solutions prepared in the laboratory (Barak et al. 2002; Ukuku and Fett 2002; 

Hassan and Frank 2004; Ukuku and Fett 2006; Boyer et al. 2007; Kroupitski et al. 2011; Patel et al. 

2011). Under natural conditions, however, the pathogens may reside in irrigating water for an 

extended period of time before contamination and attachment to the leaves occurs. It has been 

shown that survival of enteric pathogens in water could lead to starvation stress (Chekabab et al. 

2013). Starvation stress, in turn, leads to a rapid adjustment of the physiology of E. coli O157:H7 

particularly by stress response induction (Allen et al. 2010; Jozefczuk et al. 2010). The general stress 

response regulator, sigma factor RpoS, triggers among others the expression of the filamentous type 

III secretion system, which is needed for the attachment of E. coli O157:H7 (Shaw et al. 2008; Dong 

and Schellhorn 2009). Little is known about the relationship between pathogen attachment and 

starvation (Haznedaroglu et al. 2008). To our knowledge, the effect of starvation on the attachment 

of E. coli O157:H7 to fresh produce has not yet been addressed. 

The aim of this study is to obtain a better understanding of the starvation stress of E. coli O157:H7 

MB3885 in water and its effect on leaf attachment. Attachment of E. coli O157:H7 MB3885 to 

butterhead lettuce discs was examined after exposure to irrigation water for 0, 2 or 6 days at 4 and 

20°C, respectively, and compared to the commonly used laboratory suspensions of E. coli O157:H7 

MB3885 in sterile distilled water (SDW) and sterile phosphate buffered (PBS) saline. 
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5.2 Material and methods 

5.2.1 Bacterial strain and growth conditions 

E. coli O157:H7 MB3885, isolated from beef carpaccio and kindly donated by the Scientific Institute 

for Public Health (Brussels, Belgium) carries the eae-gene and lacks Shiga toxin genes (stx1 and stx2) 

and was used as non-toxigenic surrogate strain for the Shiga toxin producing (STEC) serotype 

O157:H7 for biosafety reasons. The absence of the stx1 and stx2 genes and the presence of other 

virulence genes eaeA (intimin), ehx (enterohemolysin), espP (extracellular serine protease) and katP 

(catalase-peroxidase) were confirmed by conventional PCR by Verstraete et al. (2013). For each 

experiment, the strain was streaked from a glycerol frozen stock maintained at −70°C onto a 

tryptone soy agar plate (TSA; Oxoid, Basingstoke, UK) and incubated at 37°C for 24 h. One colony 

from the plate was transferred to 10 ml of tryptone soy broth (TSB; Oxoid, Basingstoke, UK) and 

incubated at 37°C for 18 h at 200 rpm. Bacteria were washed twice with sterile deionized water 

(SDW) by centrifugation at 13000×g for 1 min. 

5.2.2 Suspension preparation 

The E. coli O157:H7 MB3885 cells were introduced into three types of aqueous solutions. Sterile 

phosphate buffered saline (PBS, pH 7.4) was chosen as it is isotonic to the interior of the bacterial cell 

and sterile distilled water (SDW) was chosen to represent an environment that is hypotonic to the 

bacterial cell. Both types of suspension media are frequently used in attachment studies (Barak et al. 

2002; Ukuku and Fett 2002; Hassan and Frank 2004; Ukuku and Fett 2006; Boyer et al. 2007; 

Kroupitski et al. 2011; Patel et al. 2011) to simulate irrigation water. Finally, irrigation water (IW) (not 

sterile) from the experimental greenhouse of ILVO was collected twice in sterile, pre-rinsed, 1 l 

bottles. A chemical analysis of the irrigation water was performed (Table 5.1). One night before 

inoculation 125 ml of IW, sterile PBS and SDW were put in the dark at 4°C and at 20°C. The E. coli 

O157:H7 pellet was resuspended in SDW, PBS or IW stored at 4°C or 20°C to a final concentration of 

± 7.5 log colony-forming units (CFU) per ml. For each of the two independent repetitions of the 

experiment, 3 aliquots of 37 ml were prepared in 50 ml tubes for each condition, i.e. each 

combination of suspension type and temperature (SDW-4°C, SDW-20°C, PBS-4°C, PBS-20°C, IW-4°C, 

IW-20°C) (Figure 5.1, a). These were stored at 4°C or at 20°C in the dark during the whole 

experiment. Two hours after inoculation (day 0), and 2 and 6 days after inoculation, one tube of each 

condition was divided into 3 aliquots of 12 ml into three 50 ml tubes which were used for the 

attachment assay (Figure 5.1, f) and 2 times 500 µL in two sterile light-transparent 600 µL 

microcentrifuge tubes for the PMA-qPCR (Figure 5.1, b).  
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Figure 5.1: Schematic overview of the attachment assay performed on day 0, this assay was repeated at day 2 and 6. 
Aliquots of 37 ml sterile phosphate buffered saline (PBS), sterile distilled water (SDW) or irrigation water (IW) inoculated 
with log 7.5 CFU/ml E. coli O157:H7 were made an stored at 4°C and 20°C (a). Two times 500 µL were removed for the PMA-
qPCR (b). One vial was treated with PMA and an FTA-strip was dipped for 1 s in the untreated or PMA-treated sample and 
placed in a sterile 1.5 ml microcentrifuge tube (c). A piece of 1 x 1 mm was cut with a scalpel from each FTA-strip (d). Each 
piece was placed in a 0.6 ml microcentrifuge tube and the DNA-extraction was performed as described by the 
manufacturer. These pieces were used for the qPCR (e). The other 36 ml was divided into 3 aliquots of 12 ml which were 
used for the attachment assay (f). Before the attachment assay was performed, the number of culturable E. coli O157:H7 
MB3885 in the suspensions was determined by selective plating (g). Then, four lettuce discs were submerged in 12 ml of 
each suspension and stored for 2 h at 4°C or 20°C respectively (h). Lettuce pieces were removed and the number of CFU/ml 
of E. coli O157:H7 MB3885 in the suspensions was determined again by selective plating (m). The lettuce pieces were rinsed 
twice for 1 min each in 50 ml SDW to remove unattached bacteria (i,j). The discs were transferred into 4 ml PBS + 0.05% 
Tween 20 in sterile filter bags (k) and ground (l). The number of bacteria attached to the lettuce was determined by 
selective plating (n).  
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Table 5.1: Chemical water characteristics of the irrigation water samples used for the two repeat experiments 

 pH-
H2O 

EC Fe Cu Zn Mn Mg Ca K Na    
  NO2    

  SO4 Cl 

 - µS/cm mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l 

Sample 
1 7.47 718.0 0.03 < 0.01 0.18 < 0.01 14.92 110.74 8.56 12.77 1.4 < 0.3 < 0.3 130.3 41.2 

Sample 
2 7.24 675.0 0.04 < 0.01 0.52 0.01 15.08 102.06 8.63 12.57 1.0 < 0.3 < 0.3 133.3 42.7 

EC: electrical conductivity 

 

5.2.3 E. coli O157:H7 MB3885 culturability in the suspensions determined by 

plating technique 

The survival of the pathogen in the suspensions was determined at 0, 2 and 6 days post inoculation. 

Therefore, a 100 µl sample (Figure 5.1, g, 3 tubes per condition) was removed from the tubes before 

the attachment assay was performed, serially diluted in 0.1% peptone water and plated on cefixime-

tellurite sorbitol MacConkey agar with a top layer of TSA (CT-SMAC-TAL) to determine the number of 

colony forming units (CFU) per ml (Figure 5.1, g). This selective plating technique offers the possibility 

for recovery of injured cells as described by Hajmeer et al. (2001). For one of the 2 repetitions, the 

number of CFU/ml of E. coli O157:H7 MB3885 in the suspensions was also determined after the 

attachment assay was performed and the lettuce discs (see section ‘attachment assay’) were 

removed from the suspensions (Figure 5.1, m). 

5.2.4 Plant growth conditions 

Pelletized butterhead lettuce seed (Lactuca sativa L. var. capitata ‘Alexandria RZ’) was obtained from 

Rijk Zwaan Distribution B.V., De Lier, The Netherlands. The plants were grown in pots of 20 cm 

diameter in the experimental greenhouse of ILVO to fully headed, mature plants (16 weeks of age).  

5.2.5 Lettuce leaf discs preparation 

Lettuce leaf discs were prepared as described by Kroupitski et al. (Kroupitski et al. 2011) with some 

adaptations. The outermost leaves of the lettuce crops were removed and the next 2 layers of leaves 

(± leaves 15-20) were detached and used for the experiments. Leaf discs (2.3 cm in diameter) were 

cut using the rounding of an aseptic 50 ml polypropylene tube as a template. Kroupitski et al. (2011) 

have described for Salmonella that the attachment to different leaf regions is highly variable, 

therefore only discs were prepared from the central region of the leaf. From each leaf, one disc left 

and one disc right from the vein was removed (see picture front page Chapter 5).  
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5.2.6 Attachment assay 

The attachment assay was performed as described by Kroupitski et al. (2011) with some minor 

modifications. At day 0, day 2 and day 6, 4 lettuce discs, derived from 4 different leaves from 

different plants were submerged in 12 ml of each inoculum for 2 h at 4°C or 20°C (Figure 5.1, h). 

Lettuce pieces were then rinsed twice for 1 min each in 50 ml SDW to remove unattached bacteria 

(Figure 5.1, i,j). The discs were transferred into 4 ml PBS + 0.05% Tween 20 in sterile filter bags 

(Figure 5.1, k) and ground (Homex 6, Bioreba) until a homogenous mixture was obtained (Figure 5.1, 

l). The bacterial suspension was serially diluted in 0.1% peptone water and the number of CFU was 

determined by plating on CT-SMAC-TAL (Figure 5.1, n).  

5.2.7 PMA-treatment 

From the two 500 µl subsamples which were removed from the suspensions prior to the attachment 

assay (Figure 5.1, b), one was treated with propidium monoazide PMA (Biotium, Hayward, CA) as 

described by Yanez et al. (2011) with some modifications (Figure 5.1, c). Briefly, PMA was dissolved in 

dimethyl sulfoxide (DMSO, Sigma Aldrich) to obtain a stock concentration of 20 mM and stored at -

20°C in the dark. A total of 1.25 µl of PMA solution was added to 500 µl of sample (final PMA 

concentration of 50 µM). After 5 min incubation in the dark (with occasional mixing), samples were 

exposed to light for 5 min using a 650W halogen light source. The sample tubes were placed 

horizontally on ice (to avoid excessive heating during light exposure and to maximize light exposure) 

in a distance of approximately 20 cm from the light source. A PMA-treatment could not be 

performed on the homogenized lettuce leaf solution as this solution was not transparent enough for 

the light exposure step in the protocol. 

5.2.8 DNA isolation 

An FTA-card (Whatman FTA Technology, Whatman International Ltd, United Kingdom) was cut into 

strips of 2 x 30 mm. An FTA-strip was dipped for 1 s in the untreated or PMA-treated sample and 

placed in a sterile 1.5 ml microcentrifuge tube to allow to dry for at least 2 h in a biosafety hood. The 

microcentrifuge tubes with FTA-strips could then be stored in the dark at room temperature. A piece 

of 1 x 1 mm was cut with a sterile scalpel from each FTA-strip (Figure 5.1, d). Each piece was placed in 

a 0.5 ml microcentrifuge tube and the DNA-extraction was performed as described by the 

manufacturer (Whatman FTA Technology, Whatman International Ltd, United Kingdom). Shortly, the 

samples were washed three times with 100 µl FTA-purification reagent, two times with Tris-EDTA 

buffer and dried for at least 1 h in the biosafety hood. These pieces were used in the qPCR (Figure 

5.1, e). 
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5.2.9 Quantitative PCR with untreated and PMA-treated samples (PMA-qPCR) 

The quantification of the strain was based on the detection of the eae-gene. Verstraete (2012) 

designed the eae primers that were used and are listed in Table 5.2. The qPCR assay was carried out 

in a 20 µl volume containing 1 × TaqMan® Environmental Master Mix 2.0 (Applied Biosystems), 

primers and probe with a final concentration of 300 nM of each primer and 100 nM probe and a 

washed FTA-piece. qPCR was performed on a LightCycler® 480 (Roche Diagnostics) using the 

LightCycler® 480 software, with the following amplification program: incubation at 50°C for 2 min to 

eliminate carry-over contamination followed by an initial activation step of the enzyme at 95°C for 5 

min and 40 cycles of 95°C for 15 s and 1 min annealing and elongation at 60°C. White LightCycler® 

480 Multiwell Plate 96 (Roche Diagnostics) were used with the matching LightCycler® 480 Sealing Foil 

(Roche Diagnostics). 

Table 5.2: Primers and probes used for qPCR quantification of E. coli O157:H7 MB3885. Corresponding nucleotide positions 
in sequences of indicated EMBL/Genbank accession numbers are given. 

Primer/ 
probe 

Sequence (5’- 3’) 
Position Accession 

number (5’- 3’) 

Eae-F GGA AGC CAA AGC GCA CAA 1507-1524 AF025311 

Eae-R GGC ICG AGC IGT CAC TTT ATA A 1593-1572 AF025311 

Eae-Pa TAC CAG GCT ATT TTG CCI GCT TAT GTG C 1528-1555 AF025311 
aProbe tagged with black hole quencher (BHQ-1) and a FAM fluorescent label (Eurogentec) 

5.2.10 Control experiments 

As a control it was determined whether the inoculum density influences the attachment ratio of the 

pathogens. Therefore, serial dilutions of freshly grown E. coli O157:H7 MB3885 suspended in sterile 

distilled water were made from log 8 to log 4 CFU/ml. For each dilution, 3 aliquots of 12 ml were 

made in 50 ml sterile polypropylene tubes. These were directly used to perform the attachment 

assay as described above. Negative control experiments were performed with non-inoculated lettuce 

pieces. For these samples, no bacterial growth was observed on the selective medium (CT-SMAC-

TAL). 

5.2.11 Statistical analyses 

Each attachment assay and the control experiments were performed in triplicate. Two independent 

repetitions were performed on different days with different lettuce and suspensions. The 

determination of the pathogen level in the suspensions when the attachment assay was performed 

and the lettuce discs were removed (Figure 5.1, m) was performed for one representative repetition 

(in triplicate). Data were subjected to statistical analysis software SPSS (IBM SPSS Statistics 19. A 

generalized Poisson regression was used for the analysis of the attachment assay, one-way analysis 
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of variance (ANOVA) for the PMA-qPCR results and the resuscitation experiment with Least 

Significant Difference (LSD) test as post-hoc test for the PMA-qPCR. 

5.3 Results 

The survival of E. coli O157:H7 MB3885 was monitored for 6 days in three different suspensions: 

sterile phosphate buffered saline (PBS), sterile distilled water (SDW) and a groundwater irrigation 

water sample (IW) (Figure 5.2, A-C). The suspensions were stored at 4°C or 20°C for up to 6 days and 

were used at days 0, 2 and 6 for an attachment assay on butterhead lettuce discs (Figure 5.2, D-F).  

5.3.1 E. coli O157:H7 MB3885 culturability and survival in the suspensions 

The culturability of E. coli O157:H7 was monitored by a selective plating technique on the 

suspensions before the attachment assay was performed (Figure 5.1, g). The results are presented in 

Figure 5.2 (A-C). For E. coli O157:H7 MB3885 suspended in PBS, no marked decrease in culturability 

could be observed at both 4°C and 20°C after 6 days, whereas this could be seen in SDW and IW. In 

SDW, similar average declines were observed at 4°C (0.64 log CFU/ml, P<0.001) and at 20°C (0.44 log 

CFU/ml; P<0.05), whereas for IW an almost 150 times larger decline was observed at 20°C (2.91 log 

CFU/ml, P<0.001) compared with 4°C (0.74 log CFU/ml; P<0.001).  

A life/dead qPCR with untreated and PMA-treated samples was performed to determine whether the 

observed decreases in plate counts were caused by cell death and/or by inculturability of the 

pathogen (Figure 5.3). qPCR-data only revealed a die-off of E. coli O157:H7 in IW stored at 20°C at 

day 6. For all other conditions, no significant differences in copy number between the untreated and 

PMA-treated samples could be seen. 

5.3.2 Absolute E. coli O157:H7 MB3885 attachment to the lettuce discs 

The attachment of E. coli O157:H7 to lettuce discs was determined by selective plating (Figure 5.1, n). 

The results are shown in Figure 5.2 (D-F). When freshly prepared suspensions (day 0) were used, no 

significant differences in attachment ratio of E. coli O157:H7 MB3885 could be seen between the 

different suspensions, except for E. coli O157:H7 MB3885 suspended in PBS at 4°C which showed on 

average a very slight but significantly lower (0.27 log CFU/g) attachment ratio compared with the 

other conditions. No significant difference in the absolute number of attached E. coli O157:H7 

MB3885 to the lettuce discs could be found when PBS and SDW-suspensions that were stored for 2 

and 6 days at 4°C and 20°C were compared with their the respective suspensions prepared at day 0. 

For E. coli O157:H7 MB3885 suspended in IW, however, a significant decrease in total number of 

attached cells was seen at both 4°C and 20°C for the suspensions stored for 6 days in comparison 

with the freshly cultured cells at day 0 (0.01<P<0.05 and P<0.001 respectively).  
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Figure 5.2: A-C Survival of E. coli O157:H7 MB3885 in the different suspensions stored at 4°C or 20°C; D-F Total number of 
attached E. coli O157:H7 MB3885 to lettuce leaf discs when the attachment assay was performed with E. coli O157:H7 
MB3885 present for 0, 2 and 6 days in the different suspensions. The data represent the average log CFU/ml suspension or 
log CFU/g lettuce and the standard deviation of two independent experiments performed in triplicate. Different letters 
indicate significant difference according to generalized Poisson regression (P < 0.05) in the E. coli O157:H7 MB3885 level 
between the different days in the suspensions at 20°C or 4°C (capital letters, horizontal comparison per temperature), or in 
the E. coli O157:H7 MB3885 level on a certain day, between the different suspensions (lowercase letters, vertical 
comparison). 

 

Figure 5.3: PMA-qPCR results based on the detection of the eae-gene for untreated (black bars, DNA from dead and alive 
cells detected) and PMA-treated (grey bars, DNA from alive cells detected) E. coli O157:H7 MB3885 samples from the 
different 6-days old suspensions stored at 4°C or 20°C. The data represent the average log copy/FTA-piece and standard 
deviation of two independent experiments performed in triplicate. Different letters indicate significant difference (P < 0.05) 
between means according to ANOVA with LSD as Post-Hoc Test. 
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5.3.3 Comparison of the attachment ratio of stressed and freshly cultured E. 

coli O157:H7 MB3885 

To be able to compare the attachment ratio of the stressed E. coli O157:H7 MB3885 cells with 

unstressed cells, suspensions with the same pathogen concentration have to be compared as the 

attachment ratio of the bacteria may be inoculum density dependent. 

Therefore, the relationship between inoculum level of a SDW suspension with freshly cultured E. coli 

O157:H7 MB3885 and its attachment ratio to lettuce was determined (reference line, Figure 5.4). A 

log-log linear relationship with a high correlation (R2 = 0.9986) could be seen. The data of the 

suspensions stored for 6 days were then plotted against this reference line to be able to compare the 

relative attachment of stressed and freshly cultured cells (grey symbols, Figure 5.4). It can be seen 

that some data points (SDW 4°C, IW 4°C) are situated left from the reference line. This indicates that 

for these samples, the pathogens seemed to attach slightly better compared with the freshly 

cultured cells, whereas E. coli O157:H7 MB3885 attachment in IW at 20°C seemed to be less than 

expected. 

Furthermore, the pathogen level in the suspensions was also determined after the attachment assay 

was performed (Figure 5.1, m). Differences could be seen at day 2 (significant increase for SDW 

stored at 4°C at day 2 (0.01< P<0.05), and a decrease for PBS stored at 20°C (0.01< P<0.05)). With 

suspensions stored for 6 days, a significant increase in plate counts could be observed for all the 

suspensions stored at 4°C (0.01< P<0.05) with a maximum observed difference of 0.64 log for SDW, 

while a significant decrease was seen for irrigation water suspensions stored at 20°C (P<0.001). No 

significant differences were observed at day 0. When these plate counts are plotted against the 

reference line, the data fit much better to this line (day 6, white symbols, fig 4, for day 0 and day 2, 

see supplemental information from  

http://studwww.ugent.be/~ivdlinde/Supplemental_information.html 

http://studwww.ugent.be/~ivdlinde/Supplemental_information.html
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Figure 5.4: Comparison of the attachment of E. coli O157:H7 MB3885 present in the different suspensions for 6 days with 
freshly cultured cells. The black line shows the relationship for freshly cultured cells between the pathogen level in a SDW-
suspension and the number of pathogens that were able to attach to lettuce discs. The data of the pathogen counts in 6-
day old suspensions were plotted against this reference line. The pathogen level in the suspensions was determined before 
(grey symbols, see also Figure 5.1, g) and after (white symbols, see also Figure 5.1, m) the attachment assay was performed. 
PBS (○), SDW () and IW (□). Results from one of the two independent repeats shown in Figure 5.2 and 5.3. are shown for 
6 day old suspensions stored at 4°C (A) and 20°C (B)  

 

5.4 Discussion 

The aim of the present study was to investigate whether the efficiency of leaf attachment differs 

between starvation stressed E. coli O157:H7 MB3885 cells and freshly cultured cells. Starvation was 

induced by suspending the pathogens in nutrient poor or nutrient free solutions for up to 6 days.  
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For E. coli O157:H7 MB3885 suspended in PBS, nor the culturability, or survival changed significantly 

during 6 days exposure to PBS at both 4°C and 20°C. With the methods used, indication of stress 

(defined as the change in culturability of the cells) could not consistently be observed in the 

suspensions, although studies using molecular methods have indicated changes in the outer 

membrane proteins (OMP) when E. coli O157:H7 after growth in M9, was starved for 6 days in PBS 

(Muela et al. 1999).  

Attachment to the lettuce leaves was slightly lower for E. coli O157:H7 MB3885 cells exposed to PBS 

at 4°C compared to the other used conditions. Reduced attachment at lower temperatures was 

already described for gram negative bacteria (Fletcher 1977; Takeuchi et al. 2001), however, the 

process seems to be influenced by the type of suspension medium, as this effect could not be 

observed with SDW or IW-suspensions. 

For E. coli O157:H7 MB3885 suspended in SDW or IW at 4°C, a decline in plate counts was observed, 

whereas no significant differences in gene copy number between the corresponding untreated and 

PMA-treated samples could be seen with qPCR. This may indicate that the observed decline by plate 

counts was not caused by cell death, but by inculturability of the cells on the CT-SMAC-TAL plates. A 

gradual loss in culturability was shown to be the first manifestation of cellular stress in the aquatic 

systems (Muela et al. 1999) and may be the precursor of the so called viable but non culturable state 

(VBNC). There are different definitions of this state, but in general it is accepted that bacteria in the 

VBNC state fail to grow on the routine bacteriological media on which they would normally form 

colonies, although they are still alive (Oliver 2000). Despite their typical low levels of metabolic 

activity, VBNC-cells are again culturable upon recovery. Most investigators consider the VBNC state 

to be a response to environmental stress that allows the cell’s survival (Oliver 2010). It is known that 

especially at low temperatures, bacteria may go into the VBNC state (Rigsbee et al. 1997). Also 

Mizunoe et al. (1999) showed that E. coli O157:H7 starts to lose culturability after 5 to 8 days in SDW 

stored at 4°C.  

For the attachment assay at 4 °C, a small increase in culturability of the pathogen after 6-days at 4 °C 

(0.01< P < 0.05) was seen when lettuce leaf discs had been added to the suspensions two hours 

before the attachment assay, this was especially clear in SDW. The observed increase cannot be 

explained by cell growth as E. coli is not able to grow at 4°C, so probably this is recovery due to 

leakage of nutrients or other chemicals such as H2O2 from the leaf discs in the suspension. Kyle et al. 

(2010) have shown that E. coli O157:H7 exhibits enhanced survival in response to H2O2 challenge 

after exposure to Romaine lettuce lysates for 30 minutes. Enhanced resistance against H2O2 may be 

related to recovery from the VBNC-state (Oliver 2005).  
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It has been reported for Listeria monocytogenes and E. coli O157:H7 that the VBNC-status can be 

induced on leafy greens (Dreux et al. 2007a; Dinu and Bach 2011). Our results indicate that stressed 

E. coli O157:H7 MB3885 cells are able to attach to lettuce. Moreover, if the recovery effect is taken 

into account, no differences in attachment can be observed between stressed and freshly cultured 

cells. 

For the attachment assay at 20°C, no significant die-off could be observed in SDW and PBS, whereas 

in IW a die-off and a loss of culturability was observed (P < 0.001). These results were clearly 

different from the results observed at 4°C. It is known that in environmental water samples, the 

microbial background may compete with E. coli O157:H7 for nutrients, but also predators or 

inhibitors such as toxic chemicals (e.g. heavy metals) may be present (Wang and Doyle 1998; Cho and 

Kim 1999; Artz and Killham 2002; Avery et al. 2008). Bacterial competition is higher at ambient 

temperature than at 4°C. The plating technique, however, did not allow us to investigate the effect of 

background microbiota in the inoculated IW sample because the E. coli O157:H7 inoculum level (± 

7.5 log CFU/ml) was much higher than the natural background microbiota present (± 3 log CFU/ml, 

data not shown). Predators such as flagellates were not observed but the water sample was 

characterized by a high Zn-concentration, which can be toxic for bacteria when they are 

metabolically active (Bucheder and Broda 2005; Avery et al. 2008). In general, our results show that 

the behavior of E. coli O157:H7 MB3885 can be totally different in irrigation water compared to SDW 

or PBS.  

In our study we investigated the influence of starvation (induced by suspension in nutrient poor or 

free solutions) and temperature on the attachment ratio of E. coli O157:H7 MB3885 to lettuce leaf 

discs. We have shown that for this strain the attachment ratio for the stressed, but still alive, cells is 

about the same as for the unstressed, freshly grown cells. Strain variation with respect to attachment 

to surfaces is well established for serotype O157:H7 (Rivas et al. 2007; Patel et al. 2011). It is, 

therefore, useful for future research to investigate the possible strain variation in the attachment of 

stressed cells. The results also indicate that standard laboratory solutions such as PBS and SDW may 

not be the best to simulate stressed cells in irrigation water, in which the bacteria may behave 

significantly different. Apart from the live/dead qPCR, other techniques such as microscopy coupled 

with nuclear stains used in live/dead staining assays, e.g. acridine orange could be used as extra 

confirmation. Further investigations are required as well in order to optimize the attachment 

protocol with stressed cells. The  
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Abstract 

Numerous outbreaks with enteric pathogens such as Escherichia coli O157:H7 have been linked to 

consumption of fresh leafy vegetables. While the environmental factors which may influence the 

survival and proliferation of E. coli O157:H7 on growing plants are already intensively studied, little is 

known about the underlying genetic mechanisms. Whole genome transcriptional profiles were 

generated from E. coli O157:H7 cells (isolate Sakai, stx-) inoculated on the leaves of growing 

butterhead lettuce. Four-week old plants were inoculated through spray inoculation and placed in a 

growth chamber at 18°C and 75% relative humidity. One hour and 2 days after inoculation, RNA was 

extracted from the E. coli O157:H7 cells recuperated from the leaves, and as a control, from the 

suspension used as inoculum. The reverse-transcribed DNA was then analyzed on E. coli microarray 

slides (Agilent). A total of 273 E. coli O157:H7 Sakai genes (5.04% of the whole genome) was 

significantly up or down regulated by at least twofold (P<0.01) when the pathogen was associated 

with the lettuce leaves. Almost 40% of these genes were poorly characterized or had an unknown 

function. One hour after inoculation, the majority of the genes with a known function were 

upregulated (71%). These genes were mainly associated with metabolism (e.g. transport and 

metabolism of amino acids) and information storage and processing (transcription, translation, 

repair). At day 2, the known E. coli O157:H7 genes were mainly downregulated (65%) and were 

involved in among others carbohydrate transport, cell wall biogenesis and transcription. 

Upregulation of numerous E. coli O157:H7 genes associated with oxidative stress and antimicrobial 

resistance, including the iron-sulfur cluster and the multiple antibiotic resistance (mar) operon, could 

be observed, whereas the Shiga toxin virulence genes were downregulated. Our findings reveal that 

the pathogen actively interacts with the plant environment by adapting its metabolism and 

responding to oxidative stress. Consequently, the pathogen may have acquired enhanced resistance 

against oxidative stress and cross-protection against various other stresses. On the other hand, a 

decrease in the expression of the Shiga toxin virulence genes was observed. Further research is 

needed to investigate how these adaptations may affect the pathogen’s subsequent survival during 

processing and consumption. 

6.1 Introduction  

Leafy vegetables, such as lettuce, are considered as high risk food since numerous outbreaks with 

enteric pathogens have been linked to consumption of these produce (Klein et al. 2009). Escherichia 

coli O157:H7 (E. coli O157:H7) is one of the pathogens that is frequently involved and is of special 

interest due to the severe consequences of the illness it may cause. Infection may lead to bloody 

diarrhea, and occasionally to kidney failure. Especially young children, elderly and 

http://en.wikipedia.org/wiki/Diarrhea
http://en.wikipedia.org/wiki/Kidney
http://en.wikipedia.org/wiki/Child


Gene expression of E. coli O157:H7 on lettuce 

 

 102 

immunocompromized persons are at higher risk of severe illness. The bacterium can enter the 

agricultural environment via animal feces and is able to enter our food chain from this point by e.g. 

contaminating the irrigation water used for growing crops, the use of untreated or non sufficiently 

treated manure (see also 1.5). A study found that more than 20% of all reported E. coli O157:H7 

outbreaks in the United States were associated with fruits and vegetables, and lettuce was the single 

most frequently implicated commodity (Rangel et al. 2005). As governments promote the 

consumption of a wide variety of fresh fruit and vegetables, it is important that there is no increased 

risk for foodborne infections. Therefore, the understanding of plant-pathogen interactions such as 

initial adherence, invasion and establishment is essential for the development of effective control 

measures. 

Numerous studies have investigated the factors which may influence the preharvest survival, growth 

and attachment of E. coli O157:H7 on growing plants. Mainly the influence of temperature, relative 

humidity, irrigation treatment, UV-radiation, leaf age, crop stage, crop variety, etc. were 

investigated. However, less is known about the underlying genetic mechanisms that E. coli O157:H7 

uses to survive and proliferate on plants. On the plant surface, the pathogen may pass through long-

term stresses that are variable in nature and complexity. In contrast to the intestines for example, 

nutrient scarcity is likely to occur, especially within the phyllosphere. This may enhance resistance of 

the pathogen to physical or chemical challenges and is thus highly relevant to the pathogens 

subsequent behavior during processing and storage of the produce but is not yet intensively 

investigated (Delaquis et al. 2007). 

Gene expression profiling such as microarray technology is one of the techniques used to determine 

which processes are involved in the pathogen response to specific environmental variables. Only a 

few microarray studies were performed on the interaction between E. coli O157:H7 and fresh 

produce. Two studies mainly focused on post-harvest contamination. Kyle et al. (2010) have 

investigated the short term effects of the influence of leaf injuries and damaged leaf tissue on the 

gene expression of E. coli O157:H7 EDL933 on romaine lettuce leaf lysate. Their experiments 

revealed that the available carbohydrates from damaged tissue, activates the carbohydrate transport 

systems in E. coli O157:H7. Furthermore, an upregulation of E. coli O157’s genes associated with 

attachment, virulence, oxidative stress, antimicrobial resistance, detoxification of noxious 

compounds and DNA repair but also an increased resistance to hydrogen peroxide and calcium 

hypochlorite could be observed (Kyle et al. 2010). Fink et al. (2012) have performed a study on the 

gene expression of pathogenic and generic E. coli on harvested, intact lettuce leaves. They have 

studied the midlong term effect (1-3 days) on surface sterilized leaves and observed differences in 

expression between generic E. coli K12 and pathogenic E. coli O157:H7 EDL933. Genes involved in 
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energy metabolism were downregulated whereas genes involved in biofilm modulation and curli 

production were significantly upregulated in E. coli K12 and O157:H7 (Fink et al. 2012). Preharvest 

contamination conditions were also investigated for E. coli K12 and O157:H7 interacting with the 

lettuce rhizosphere (Hou et al. 2012; Hou et al. 2013) but not with the phyllosphere, whereas this is 

important as this is the part of the crop that is consumed. Only recently also a report on the gene 

expression of E. coli O157:H7 on radish sprouts was published (Landstorfer et al. 2014). 

The present study, investigates the gene expression of E. coli O157:H7 Sakai while interacting with 

the phyllosphere of growing butterhead lettuce plants after one hour and 2 days. Special attention 

was paid to the pre-inoculation conditions.  

6.2 Material and methods 

6.2.1 Bacterial strains and culture conditions 

E. coli O157:H7 Sakai strain RIMD 0509952 (Sakai; Stx- Kanr) was used and was previously described 

by Dahan et al. (2004). The Sakai strain was isolated from the Sakai city outbreak in Japan in 1996 

(Michino et al. 1999; Watanabe et al. 1999) and possesses a double stx knockout. A kanamycin 

cassette was inserted into the SmaI site in the stx2A gene, and a 0.6-kb BsiWI fragment, which 

contained the stx1A gene and the upstream region, was deleted (Dahan et al. 2004). Cells were pre-

cultured in 5 ml LB and grown overnight at 37°C, 200 rpm. This culture was 1/100 diluted in pre-

tempered enriched MOPS and grown at 18°C, 200 rpm for 22h to the early stationary phase of 

growth. The OD600 was measured (Genesys 10uv, Thermo Scientific) and the culture was washed with 

sterile 10mM MgSO4 (230291, Sigma-Aldrich, S. Louis, MO, USA) (10 min, 5000×g, 4°C), and re-

suspended in sterile 10mM MgSO4 to an OD600 of 0.5 which corresponded with 8.7 ± 0.1 log CFU/ml 

as determined by plate counting on the selective medium sorbitol MacConkey Agar (SMAC, Sigma-

Aldrich).  

6.2.2 Plant growth conditions 

Pelletized butterhead lettuce seeds (Lactuca sativa L. var. capitata ‘Alexandria’) were obtained from 

Rijk Zwaan Distribution B.V., De Lier, the Netherlands. The seeds were sown in a mixture of peat, 

sand, limestone, perlite, celcote, sincrostart and multicote-4. One week after sowing, the seedlings 

were placed in square pots of 10 cm and grown in the greenhouse at The James Hutton Institute 

(Dundee, UK). Four-week old plants were moved from the greenhouse to the growth chamber 

(Microclima1000, Snijders, Tilburg, The Netherlands) one day before the start of each experiment. 

Growth chamber conditions were set at continuously ± 18°C with a relative humidity (RH) of 75% and 

16/8 hour light/dark cycle. 
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6.2.3 Inoculation of the lettuce plants and measurement of pathogen 

populations on lettuce leaves 

Four-week old lettuce plants (± 9-leaf stage) were spray-inoculated in a biosafety cabinet. A total of 

100 ml inoculum was used to inoculate 16 plants. The pathogen population on the leaves was 

determined in duplicate one hour after inoculation and 1, 2 and 3 days thereafter. For each sample, 1 

g of leaves from 3 lettuce plants was used. The sample was ground aseptically with sterilized sand 

and 2 ml phosphate buffered saline (PBS), using a pestle and mortar. Serial dilutions were made in 

PBS and the appropriate dilutions were plated onto SMAC. Maceration does not recovering all of the 

interacting bacteria, but it is still one of the best methods for direct plate counts (Kisluk et al. 2012). 

6.2.4 Determining the amount of loosely and strongly associated E. coli 

O157:H7 Sakai cells with lettuce 

To determine the amount of loosely associated pathogens, 10 g lettuce leaves from 3 lettuce plants 

were removed with sterile forceps and placed in a sterile beaker with 200 ml sterile PBS. The lettuce 

was cut into pieces of ± 2cm2 with sterile scissors and stirred on a magnetic stirrer for 5 min at level 3 

(Stuart stir UC151). This treatment will be subsequently called ‘gentle wash’. One ml wash water (1 

ml) was taken and the appropriate serial dilutions were immediately plated onto SMAC agar. The 

wash water was decanted and the lettuce was rinsed with 200 ml PBS, poured into a sieve and 

allowed to drip. Then, after adding the lettuce to a fresh beaker, 200 ml PBS and 5 g of sterile glass 

beads with a diameter of 2-3mm were added. The lettuce was stirred for 10 min at level 5 and wash 

water samples were taken to determine the amount of bacteria that were removed (termed ‘strong 

wash’). The beads were added in order to remove the upper cell layers of the lettuce leaves, so that 

the strongly associated and/or some of the internalized bacteria could be removed. The experiment 

was conducted one hour and two days after inoculation in triplicate and was repeated twice. The 

optimal wash protocol to remove the loosely (gentle wash) and strongly associated pathogens 

(strong wash) was determined in a preliminary test (data not shown). 

6.2.5 RNA-extraction 

Samples of 10 g of lettuce from different leaves from 3 lettuce plants was removed with sterile 

forceps. The leaves were prepared, washed (both gentle and strong wash) and rinsed as described 

above, but 200 ml ice-cold RNA-stop wash solution (0.5% phenol pH 4.3, 9.5% ethanol absolute and 

90% PBS) was used instead of PBS. The RNA-extraction was performed on the wash water from both 

washes separately. For each wash treatment, the 200 ml RNA-wash solution was pipetted into four 

50 ml RNAse free polypropylene tubes and centrifuged for 10 min, 4°C, 5000 rpm. The supernatant 

was removed and the pellets were dissolved in 1 ml ice-cold RNA-stop (5% phenol pH4.3, 95% 
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ethanol absolute). These solutions were collected in a 50 ml tube. Subsequently, the empty tubes 

were rinsed with another 1ml of ice-cold RNA-stop and this was also added to the 50 ml tube and 

centrifuged as described above (5 ml in total). The supernatants was removed and the pellet was 

once more washed with 1 ml ice-cold RNA-stop solution. The pellet was stored at -80°C. The bacterial 

pellets were treated with 50 mg/mL of lysozyme (5 min) (Sigma Alrich, L3790). Subsequently, RNA 

was extracted with the Qiagen RNeasy kit with an additional on-column DNase digestion performed 

following the instructions of the manufacturer (Qiagen, Hilden, Germany). A cell pellet of 1 ml of the 

inoculated MgSO4 buffer was made one hour after inoculation following the Qiagen RNeasy protocol 

and also stored at -80°C. RNA-extraction was performed as described for the lettuce wash water 

samples. Total RNA was quantified spectrophotometrically (NanoDrop ND 1000, Thermo Scientific, 

Wilmington, DE) and the quality examined with a Bioanalyzer 2100 (Agilent technologies, Palo Alto, 

CA). The RNA was immediately stored at -80°C. 

6.2.6 Microarray labelling procedure 

A volume of 17.7 µl of total RNA was combined with Enterobacteriaceae specific 10 x 11-mer oligos, 

100ng/μl as described by Fislage et al. (1997) on ice, incubated 10 min at 70°C and cooled on ice 

again. 17.3 μl of a master mix (5x first strand buffer, 9.0 µl; 0.1M DTT, 4.5 µl, 25x aa-dNTP labelling 

mix 1.8µl Superscript RT 2.0µl) was added and the samples were incubated for 2 h at 42°C. 15µL of 

1M NaOH and 15 µl 0.5M EDTA (pH 8.0) was added to hydrolyse the RNA and the samples were 

incubated for 15 min at 65°C. Then 15 µl 1M HCl was added to neutralize the samples. cDNA was 

purified by adding 450µl PB buffer (Qiagen) mix and applied to a Qiagen MinElute column. The 

samples were centrifuged. Centrifugation always occurred at 13 000 rpm for 1 min unless stated 

otherwise. The supernatans was removed and 750 µl filter sterilized phosphate wash buffer (0.25ml 

1M phosphate buffer, 7.7 ml SDW, 42.2 ml absolute EtOH) was added and centrifuged. The 

supernatant was removed and the column spun for 2 min at full speed. The column was transferred 

to a new amber 1.5 ml tube and 10 µl filter sterilized phosphate elution buffer (0.2 ml 1M phosphate 

buffer, 49.8 ml SDW) was added to the center of the membrane, left for one minute at room 

temperature and subsequently centrifuged. This step was repeated with another 10 µl filter sterilized 

phosphate elution buffer. The subsequent reactions were performed in low light and the incubations 

were performed in the dark. Sodium carbonate buffer (2.0 µl, 1M) was added to the purified cDNA 

and mixed. Subsequently, 1.0 µl of the appropriate Cy-dye (GE Healthcare #PA23001, PA25001) (in 

DMSO) was added and incubated for 1 h at room temperature in the dark. The labeled cDNA was 

purified by adding 3.0µl 4.0M hydroxylamine hydrochloride, was mixed and incubate in dark for 30 

min. The volume of each reaction was made up to 100 µl with SDW. 500 µl PB buffer was added, 

mixed and applied to a Qiagen MinElute column and centrifuged. The supernatant was removed and 
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750 µl PE buffer was added and then centrifuged. The supernatant was removed and the tube was 

once more centrifuged. The column was transferred to a new 1.5 ml tube and 10 µl elution buffer 

was added to the center of the membrane and left for 1 min at room temperature and then 

centrifuged. The sample was re-eluted with an additional 10 μl elution buffer into the same tube. The 

Cy3/Cy5 incorporation was estimated by NanoDrop ND 1000.  

6.2.7 Preparation of prokaryotic hybridization samples for Agilent 8 x 15K 

Arrays 

The volume of each labeled cDNA was calculated to give 600 ng and pipetted into a fresh 1.5 ml 

amber tube. Nuclease free water (Sigma-Aldrich) was added up to 20 μl. A volume of 5 μl of Agilent 

10 x Blocking Agent was added to each tube and the samples were denatured at 98°C for 3 minutes 

and cooled to room temperature. 25 μl of 2 x GEx Hybridisation Buffer HI-RPM was added to each 

tube, mixed well by careful pipetting. The tubes were spun for 1 minute at room temperature at 13 

000 rpm and immediately placed on ice and loaded onto the array. Forty microliter of each mix was 

added to the gasket slide and the Agilent array slide was placed on top. The slides were incubated for 

17 hours at 65°C with rotation at 10 rpm in a hybridization oven. Three biological replicates were 

prepared for each time point (1 h and 2 days after inoculation).  

6.2.8 Uninoculated lettuce control 

To check whether the microbial background microbiota on the lettuce may interfere with the micro-

array spots, uninoculated samples were checked for the presence of the gadA gene, a housekeeping 

gene of E. coli. The presence of gadA was checked by conventional PCR. The forward primers was 5’ 

ACCTGCGTTGCGTAAATA and the reverse 5’ GGGCGGGAGAAGTTGATG and were described in (Kim et 

al. 2006). Each PCR reaction consisted of 5 µl GoTaq Buffer Green, 3 µl dNTPs (2.5 mM), 0.2 µl 50 µM 

forward primer, 0.2 µl 50 µM reverse primer, 0.5 µl cDNA, 0.2 µl polymerase and 15.9 µl SDW. The 

reaction mixture was processed in an thermocycler (TProfessional basic Thermocycler gradient, 

Biometra) with the following settings: 2 min at 94°C, 30 cycles: 30 s at 95°C, 30 s at 56.7°C, and 1 min 

at 72°C , followed by a final extension time at 72°C for 7 min. 5 µl of PCR-product was loaded on a 1% 

agarose gel and imaged under UV illumination. The gadA gene was not detected on uninoculated 

lettuce. 

6.2.9 Data analysis 

The data were analyzed using the software Genespring version 7.0 (Agilent/Stratagene). The data 

from all four biological replicates were further tested by a Principal Component Analysis (PCA) on the 
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different conditions (mean centering and scaling). The outliers were removed by filtering on flags 

(present or marginal). The data were normalized to the control samples and the replicates combined.  

Genes showing a greater than 2-fold upregulation or downregulation following Volcano Plot analysis 

(0.01≤P<0.05 or P<0.01) and a raw expression value > 50 were considered to be differentially 

regulated. Comparison of the expression levels was done for the expression after 1 hour (day 0) with 

the inoculated MgSO4 buffer, day 2 with the inoculated MgSO4 buffer and day 2 in comparison with 1 

hour after inoculation (day 0). A False Discovery Rate (FDR) was not conducted at these significance 

levels. 

Subsequently, a single gene list was made as the Agilent array slide contained the genes of 4 

different E. coli strains: the core genome of generic E. coli K12-MG1655, strain specific genes of of E. 

coli O157:H7 EDL933, E. coli O157:H7 VT2-Sakai, and uropathgenic E. coli CFT073. Genes of 

uropathogenic E. coli CFT073 were not taken into consideration. Furthermore, gene sequences of all 

significantly upregulated E. coli K12, E. coli O157:H7 EDL933 and E. coli O157:H7 VT2-Sakai without a 

gene name were looked up on XBase, when duplicates were present in the database, the E. coli Sakai 

gene was kept if possible, if duplicates were present between E. coli K12 and E. coli O157:H7 EDL933, 

the E. coli K12 gene was kept. Unknown E. coli O157:H7 EDL933 were discarded from the list as well. 

This single gene list was used to link the genes with a COG-annotation (https://img.jgi.doe.gov). 

Furthermore, gene lists were made based on the GenProtEC Multifun classes. Therefore, all K12-

genes and E. coli Sakai genes with a gene name that similar to K12 were linked to the following 

classes: class 5 cell processes, class 6.3 pilus, 6.4 flagella and 6.6 ribosomes) 

(http://genprotec.mbl.edu/).  

For the virulence gene list, E. coli O157:H7 Sakai virulence genes as described in Hayashi et al. were 

taken into account and a keyword search was performed on the GIRC-site 

(http://genome.bio.titech.ac.jp/bacteria/o157/search.html) (Hayashi et al. 2001). The keywords that 

were used were: invasion, adhesion, fimbria, effacement, toxin, type III secretion. For each gene list, 

the relative expression levels on day 0 and day 2 were plotted against the MgSO4 control and 

significantly regulated genes were highlighted using Matlab. 

The nucleotide sequence of the significantly regulated unknown genes with and ECs number was 

obtained by XBase search. This nucleotide sequence was blasted in Blast () in order to find out if the 

gene was already known, described in related strains.  

  

https://img.jgi.doe.gov/
http://genprotec.mbl.edu/
http://genome.bio.titech.ac.jp/bacteria/o157/search.html
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6.3 Results and discussion 

In this study, the interaction of E. coli O157:H7 with intact growing young lettuce plants was 

investigated with conventional plate counting technique and microarray technique investigating the 

transcriptional changes in E. coli O157:H7. The results will be discussed and compared with the 

existing literature, in particular with two gene expression studies that are closely related with this 

study and were already described in the introduction. An overview of the main differences between 

the different studies is shown in Table 6.1 (Kyle et al. 2010; Fink et al. 2012).  

Table 6.1: Overview of the main differences between the different gene expression studies with E. coli O157:H7 and fresh 

produce. 

  Kyle et al. 2010 Fink et al. 2012 This study 

Strain E. coli O157:H7 
EDL933 

E. coli K12 MG1655 
E. coli O157:H7 EDL933 

E. coli O157:H7 Sakai 

Growth medium M9-glucose LB MOPS-enriched 

Growth 
temperature E. coli 

28°C 37°C 18°C 

Time points 15 min; 30 min 1 and 3 days 1 h, 2 days 

Lettuce type romaine lettuce green leaf lettuce butterhead lettuce 

Treatment leaf lysate 
supernatant 

surface sterilized leaves 
sodium hypochlorite 

growing plants 

Incubation 
conditions 

 100% RH, 25°C photoperiod 
16 h for 3 days. 

Growth chamber, 18°C , 75% 
RH, photoperiod 16 h for 2 
days. 

Reference control M9-glucose, 28°C LB, 37°C MgSO4 buffer, 18°C 

 

6.3.1 Survival and association of E. coli Sakai on/with growing butterhead 

lettuce 

The survival of E. coli O157:H7 Sakai on young butterhead lettuce during 3 days is shown in Figure 6.1 

A. The pathogen was inoculated at a level of 7.45 ± 0.37 log CFU/g lettuce. This level dropped to 5.02 

± 0.27 log CFU/g after 2 days and the pathogen level did not significantly change anymore at day 3. 

The association of the pathogen to the lettuce was analyzed one hour and two days after inoculation. 

Two different washing steps were performed (gentle wash and strong wash), the results of the 

efficiency of these washing steps are shown in Figure 6.1 B. One hour after inoculation, around 90% 

of the pathogens could be removed from the lettuce with the gentle wash protocol (± 1 log reduction 

on the lettuce), and the subsequent ‘strong wash’ could remove another 90% of the pathogens (± 1 

log reduction). Two days after inoculation of the lettuce, similar results could be seen, although 

higher variation was observed. From the graphs it can be seen that, based on the selective plate 
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counts, the amount of pathogens that could be removed from the lettuce at day 0 with the strong 

wash protocol was similar to the amount of pathogens that could be removed from the lettuce at day 

2 with the gentle wash protocol. For the RNA-extraction, however, only RNA extracted from the 

gentle wash at day 2 contained enough bacterial RNA to be acceptable to perform the microarray. 

Therefore, the microarrays were only performed on the loosely associated (removed by the gentle 

wash) and not on the strongly associated bacteria. These results may be caused by technical 

difficulties as the matrix of the strongly associated bacteria contained a lot of lettuce material, which 

reduced the amount of bacterial RNA that could be extracted. Furthermore, the results may also 

indicate that at day 2 a part of the pathogen population was still alive and metabolically active, but 

not able to grow anymore on selective culture medium. Similar findings were found by Moyne et al. 

(2013). In their growth chamber studies, viable E. coli O157:H7 quantities determined by PMA real-

time PCR were approximately 104 greater than found by colony enumeration one hour after 

introduction onto lettuce plants (30% RH). Also Dinu and Bach (2011) have shown that the viable but 

non culturable (VBNC) response can be induced in E. coli O157:H7 when introduced on lettuce 

leaves. 

6.3.2 Transcriptome of E. coli O157:H7 Sakai on growing butterhead lettuce 

A total of 273 genes (5.04%) of the Sakai genome were induced or repressed by at least twofold 

(P<0.01, raw value > 50 for all treatments) in comparison with the inoculated simulated 

contaminated irrigation water (MgSO4 buffer). There was a clear difference between the functions of 

the genes that were differently regulated after being on the lettuce for one hour and after two days 

(Figure 6.2). One hour after inoculation, 164 of the selected genes were significantly differentially 

regulated, with the majority of the genes induced (71%). The upregulated genes that could be 

assigned to a category of orthologous genes (COG), belonged mainly to transport and metabolism of 

amino acids and inorganic ions on the one hand and transcription, translation, ribosomal structure 

and biogenesis on the other hand. At day 2, 147 genes were significantly differentially regulated with 

the majority of the selected genes (65%) downregulated. E. coli O157:H7 genes that were 

downregulated included those involved in carbohydrate transport and metabolism, cell 

wall/membrane, envelope biogenesis, and transcription. Only 37 of the selected genes were 

significantly up or downregulated at both time points. For almost 40% (39.9%) of the selected genes, 

a COG class could not be assigned or the genes were assigned as poorly characterized or function 

unknown. It is also noteworthy that 23.8 % of the selected genes were E. coli O157:H7 Sakai specific 

genes for which only an ECs number and no gene name was assigned. 
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Figure 6.1: A. Survival of E. coli O157:H7 Sakai on butterhead lettuce. Triplicate samples from 2 independent experiments. 

B. Reduction of E. coli O157:H7 Sakai level 1 hour (black) and 2 days (grey) after inoculation on butterhead lettuce after 

performing gentle and strong wash protocol. 
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Figure 6.2: Overview of the significantly regulated genes (P<0.01, at least 2-fold, raw value >50), classified by COG group (A) 

and COG functional category (B) 

6.3.3 Transcription and translation 

(Figure 6.3, Figure 6.4). Different signals points towards an attempt of the pathogens to proliferate 

on the lettuce one hour after inoculation. For example, the upregulation of the ribosomal related 

genes such as the 30S (e.g rpsU at P<0.01 and rpsJT at P<0.05) and 50S ribosomal subunit proteins 

(rplCM at P<0.05). Furthermore, cell division related genes such as dacA, groS (P<0.01) and mnmG 

(P<0.05) were significantly upregulated one hour after inoculation. Also other genes related to 

transcription and translation such as fis which codes for a DNA-protein which is characteristic for 

cells in the log-phase (Ryan et al. 2004), transcripts coding for among others RNA-helicases (rhlE), 
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translation initiation factor IF-1 (infA), transcription termination (rho), and genes responsible for 

rRNA modification such as methylation of nucleotides (mnmA, rumB, ECs4154) were significantly 

upregulated one hour after inoculation. In contrast, ftsN, an essential cell division protein, was 

significantly downregulated. At day 2, the attempt to proliferation could not be observed anymore. 

Significant downregulation could be seen for all the ribosomal subunit proteins which were 

significantly upregulated one hour after inoculation (rpsUJT, rplCM at P<0.05, compared to their 

expression level one hour after inoculation) and for other ribosomal subunit proteins (rpsFP at 

P<0.01, rpsDIKT, rplKUXY at P<0.05). ftsN was further downregulated as well. These results are in 

agreement with the results from the plate counts for which we saw a decrease of the amount of 

culturable pathogens. Also Fink et al. 2011 observed a decrease in the expression of the E. coli 

O157:H7 ribosomal related genes one and three days after inoculation onto detached lettuce leaves.  

 

Figure 6.3: Relative expression of E. coli O157:H7 Sakai ribosomal related genes one hour and two days after inoculation on 

lettuce plants. A colored line between the control and hour 1 shows that a particular gene was significantly differently 

expressed one hour after inoculation on the lettuce in comparison with the MgSO4 buffer. A colored line between hour 1 

and day 2 shows that the gene expression of a particular gene was significantly different between one hour and two days 

after inoculation. Colored dots at day 2 show the genes which were significantly differently expressed on day 2 in 

comparison with the control. Light green: down regulation at 0.01≤P<0.05, dark green: downregulation at P<0.01, light red: 

upregulation at 0.01≤P<0.05, dark red: upregulation at P<0.01. Grey: no significant difference in expression. Data represent 

the mean of four biological replicates. 
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Figure 6.4: Relative expression of E. coli O157:H7 Sakai genes related with cell division one hour and two days after 

inoculation on lettuce plants. A colored line between the control and hour 1 shows that a particular gene was significantly 

differently expressed one hour after inoculation on the lettuce in comparison with the MgSO4 buffer. A colored line 

between hour 1 and day 2 shows that the gene expression of a particular gene was significantly different between one hour 

and two days after inoculation. Colored dots at day 2 show the genes which were significantly differently expressed on day 

2 in comparison with the control. Light green: down regulation at 0.01≤P<0.05, dark green: downregulation at P<0.01, light 

red: upregulation at 0.01≤P<0.05, dark red: upregulation at P<0.01. Grey: no significant difference in expression. Data 

represent the mean of four biological replicates. 

6.3.4 Stress responsive genes 

(Figure 6.5, Figure 6.6). Almost one third of the upregulated genes belonging to the COG-classes 

amino acid or inorganic ion transport and metabolism were also known to be stress responsive 

genes, some of these genes are also related with drug resistance.  

A first set of genes that was significantly upregulated one hour after inoculation were genes involved 

in Fe-S cluster assembly and repair, i. e. the ironsulfur cluster (iscSRUA-hscBA-fdx). These genes are 

essential for all proteins containing Fe-S clusters which participate in many vital cellular function such 

as DNA repair, transcriptional regulation, nucleotide and amine acid biosynthesis and energy 

metabolism (Schwartz et al. 2000). The iron sulfur cluster, mobilizes Fe and S atoms, which are both 

toxic for the cell in soluble form in the cytosol, assemble them to Fe-S clusters and transport them 

without creating toxic conditions (Fontecave et al. 2005). Contrarily, two other systems with a similar 

function, the suf-system (sulfur assimilation) and the csd-system (cysteine sulfinate desulfinase), 
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were not differentially regulated in our experiment. Expression of the three Fe-S cluster assembly 

operons is regulated by oxidative stress as Fe-S clusters are very sensitive for active oxygen species 

and iron limitation (Schwartz et al. 2000; Hidese et al. 2011).   

Based on our data, there is no indication for iron limitation, as the feb operon (febA) related to iron 

transport was not differentially upregulated. But sulfur depletion may have occurred as the cysteine 

operon (cys) was upregulated at both one hour and two days after inoculation. Cysteine is one of the 

twenty natural amino acids. Together with methionine it is the only amino acid containing sulfur, 

therefore, it serves as a precursor for many forms of reduced organic sulfur which is present in 

cofactors such as thiamin and Fe-S clusters (Hidese et al. 2011). Also some genes of the tau operon, 

which are related to sulfur acquisition were significantly upregulated at either day 0 (tauB at day 0 

and day 2, P<0.05) or day 2 (tauA, P<0.01). Similar results were observed by Fink et al. , they also saw 

that genes involved in Fe-S cluster assembly and repair (isc) were upregulated, whereas similar to our 

experiment, the two other Fe-S cluster related operons suf and csdAE operon were not differentially 

expressed. 

Furthermore, increased expression of several genes involved in multi drug resistance (MDR) and 

response to inhibitory compounds was observed. The marRAB operon was consistently upregulated 

in the pathogen one hour and two days after inoculation, with a higher and significant upregulation 

one hour after inoculation. marA, multiple antibiotic resistance gene A, is one of the transcription 

factors which coordinates the multiple mechanisms that bacteria possess to survive exposure to 

various chemical stresses and antimicrobial compounds. Induction of marA may result in increased 

resistance against a variety of antibiotics such as tetracycline, chloramphenicol, penicillins, 

cephalosporins, rifampin, puromycin, nalidixic acid, fluoroquinolones and oxidative stress (Cohen et 

al. 1993, Wang et al. 2009). The transcription of the marRAB operon is regulated by marR in response 

to a wide variety of compounds such as antibiotics, oxidizing but also to phenolic compounds. 

Furthermore, it has been postulated that plant derived naphthoquinones might be natural inducers 

of marA (Miller and Sulavik 1996 in Randall and Woodward 2002). MarA is an MDR efflux pump. 

Interestingly, different observations suggest a role of MDR pumps in plant/bacteria interactions, 

apart from their role in processes of detoxification of intracellular metabolites, bacterial virulence in 

both animal and plant hosts, cell homeostasis and intercellular signal trafficking (Martinez et al. 

2009). First, the organisms with the largest number of MDR pumps are found in the soil or in 

association with plants (Konstantinidis and Tiedje 2004). Second, Matilla et al. (2007), observed that 

several efflux pumps are induced when P. putida adjusts its genetic program to the colonization of 

roots. Another example is AcrAB-TolC, the most important MDR pump of Enterobacteriaceae. In E. 

coli, expression of this efflux pump is controlled by the quorum sensing regulator SdiA and studies 
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suggest that this pump can efflux E. coli autoinducers, thus contributing to the quorum signal 

response (Rahmati et al. 2002; Yang et al. 2006).  

Also other genes, involved in the degradation of inhibitory phenolic compounds such as 

azoreductases azoR and acpD, were highly upregulated (Liu et al. 2009, Goudeau et al. 2013). AzoR 

was also upregulated in Salmonella when it came in contact with soft rot (Goudeau et al. 2013) and 

was recently reported to be upregulated on radish sprouts (Landstorfer et al. 2014). These last 

authors speculate on a role of this enzyme in detoxification of secondary plant metabolites directed 

against, or modulating, the bacterial microbiome. 

Phenolic compounds such as salicylic acid (SA) can be produced by the plant, these molecules play 

together with jasmonic acid (JA) an important role in protecting the plant from further infection after 

an initial pathogen attack or small injuries. It was already shown on different plants (Arabidopsis, 

Medicago, Tobacco) that the presence of E. coli O157:H7 or Salmonella could induce a SA-dependent 

response in the plant (Schikora et al. 2008; Shirron and Yaron 2011; Seo and Matthews 2012; Roy et 

al. 2013; Jayaraman et al. 2014). Curli and flagella were recognized by the plant defense system and 

a common set of genes was induced in the plant by E. coli O157:H7 and Salmonella (Jayaraman et al. 

2014). Induction of the plant defense system as in response to the presence of E. coli O157:H7 Sakai 

may be the cause of the upregulation of the above mentioned genes, although it cannot be excluded 

as well that unintentionally made small injuries made during transport and handling of the plant 

possibly could have induced the plant defense response as well, although this was prevented as 

much as possible. Upregulation of the mar operon was also described by both Fink et al. when E. coli 

was inoculated on detached lettuce leaves and by Kyle et al. where E. coli O157:H7 was inoculated 

into lettuce lysate. However, Kyle et al. observed a much stronger upregulation due to damage of the 

lettuce tissue.  

Two other homologous transcription factors, soxS and rob are known to regulates a common set of 

genes with marA. These three transcription factors are individually regulated by different systems in 

order to be able to tune the pathogens response to a specific stress, but they have also the potential 

to regulate each other’s expression. In our experiment only the mar operon was significantly up 

regulated where rob and soxS were significantly downregulated (rob: day 2 (P<0.05), soxS: both 1 

hour after inoculation (-2.6) and day 2 (-3.3)). Downregulation of soxS was also observed by Fink et 

al. and Kyle et al.  

In general many other oxidative stress genes were upregulated as well (grxB, yeeE, yjgH, yjgI) 

although the transcripts of the stress related gene regulators rpoS and relA (stringent response) were 
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not significantly induced. Oxidative stress may have been caused by active oxygen species, a 

byproduct of normal aerobic metabolism of the lettuce plant.  

Also cspA, cold shock protein A, was significantly upregulated the first hour after inoculation. This 

gene is the major cold shock protein of pathogenic E. coli. It is an RNA chaperone that binds to single-

stranded RNAs to prevent misfolding due to formation of secondary structures at cold temperatures 

(Duffitt et al. 2011; Kortmann and Narberhaus 2012). Cold shock, however, was prevented as much 

as possible during our experiments as the MOPS inoculum, the MgSO4 buffer and the temperature of 

the growth chamber were incubated or set at 18°C. A plausible explanation for the increase in cold 

shock protein expression is suggested by Lesley et al. who have shown that upregulation of cold 

shock proteins can also be an indication of paused translation as a response on the presence of 

misfolded proteins, a response that is independent of any temperature shifts (Lesley et al. 2002).  

 

Figure 6.5: Relative expression of E. coli O157:H7 Sakai genes related with drug resistance one hour and two days after 

inoculation on lettuce plants. A colored line between the control and hour 1 shows that a particular gene was significantly 

differently expressed one hour after inoculation on the lettuce in comparison with the MgSO4 buffer. A colored line 

between hour 1 and day 2 shows that the gene expression of a particular gene was significantly different between one hour 

and two days after inoculation. Colored dots at day 2 show the genes which were significantly differently expressed on day 

2 in comparison with the control. Light green: down regulation at 0.01≤P<0.05, dark green: downregulation at P<0.01, light 

red: upregulation at 0.01≤P<0.05, dark red: upregulation at P<0.01. Grey: no significant difference in expression. Data 

represent the mean of four biological replicates. 



Gene expression of E. coli O157:H7 on lettuce 

 

 117 

 

Figure 6.6: Relative expression of E. coli O157:H7 Sakai genes related with stress one hour and two days after inoculation on 

lettuce plants. A colored line between the control and hour 1 shows that a particular gene was significantly differently 

expressed one hour after inoculation on the lettuce in comparison with the MgSO4 buffer. A colored line between hour 1 

and day 2 shows that the gene expression of a particular gene was significantly different between one hour and two days 

after inoculation. Colored dots at day 2 show the genes which were significantly differently expressed on day 2 in 

comparison with the control. Light green: down regulation at 0.01≤P<0.05, dark green: downregulation at P<0.01, light red: 

upregulation at 0.01≤P<0.05, dark red: upregulation at P<0.01. Grey: no significant difference in expression. Data represent 

the mean of four biological replicates. 

6.3.5 Carbohydrate transport 

(Figure 6.7). One hour after inoculation, genes essential for the utilization of fructose as a carbon 

source (fruB and fruK) were significantly upregulated. FruAB takes up exogenous fructose, releasing 

the 1-phosphate ester into the cell cytoplasm in preparation for metabolism, primarily via glycolysis 

(EcoCyc 2014). Whereas fruK, phosphorylates fructose 6-phosphate during glycolysis (Anonymous 

2014). The carbon starvation protein (cstA), which is induced by carbon starvation, was 

downregulated one hour and two days after inoculation. 

The uptake of these sugars was only a short term effect as on day two the expression levels did not 

change significantly anymore further upregulation could only be seen for alsC, responsible for the 

uptake of D-allose. Several other carbohydrate transport related genes were downregulated two 
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days after inoculation together with other genes involved in (or predicted to be involved in) sugar 

transport and metabolism (araG, araF, dhaL, dhaM, mak, manX, sfsA, xylH, ytfQ, ytfT, yjfF, ECs5207).  

Upregulation of the carbohydrate system may be explained by the fact that more nutrients are 

available on the lettuce leaves in comparison with the simulated irrigation water. Sucrose is a major 

translocatable product of photosynthesis and the main soluble component of the phloem sap, its 

monosaccharides are glucose and fructose. It was already shown that near the guard cells of leaves, 

up to 150 mM (Lemoine 2000; Kang et al. 2007 in Kroupitski et al. 2009) sucrose can be present. 

Moreover, for Salmonella it was shown that the pathogen is attracted to all three sugars and actively 

moves towards it on lettuce leaves (Kroupitski et al. 2009).  

 

Figure 6.7: Relative expression of E. coli O157:H7 Sakai genes related with carbohydrate uptake one hour and two days 

after inoculation on lettuce plants. A colored line between the control and hour 1 shows that a particular gene was 

significantly differently expressed one hour after inoculation on the lettuce in comparison with the MgSO4 buffer. A colored 

line between hour 1 and day 2 shows that the gene expression of a particular gene was significantly different between one 

hour and two days after inoculation. Colored dots at day 2 show the genes which were significantly differently expressed on 

day 2 in comparison with the control. Light green: down regulation at 0.01≤P<0.05, dark green: downregulation at P<0.01, 

light red: upregulation at 0.01≤P<0.05, dark red: upregulation at P<0.01. Grey: no significant difference in expression. Data 

represent the mean of four biological replicates. 
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6.3.6 Flagella, motility, fimbrial expression, biofilm 

(Figure 6.8, Figure 6.9). Bacterial adherence to host tissues is a complex process and is dependent on 

difference factors: e.g. kind of bacterial strain/species, host tissue and environmental factors (Van 

der Linden et al. 2014). Several authors have already proposed that the presence of flagella and curli 

and the possibility of the bacteria to produce a biofilm may be involved in attachment of enteric 

pathogens to plant tissue.  

Flagella are cellular appendages involved in the motility of the pathogen and were already related to 

be involved in the attachment mechanism of pathogenic E. coli to fresh produce (Xicohtencatl-Cortes 

et al. 2009). Also for Salmonella which is genetically closely related to E. coli, it was shown that the 

presence of flagella could increase the attachment capacity of the bacterium to plant tissue for some 

strains (Berger et al. 2009; Kroupitski et al. 2009). Furthermore, it was also shown that a mutant 

flagella deficient Salmonella strain showed reduced internalization into lettuce leaf tissue compared 

to its wildtype strain (Kroupitski et al. 2009).  

In our study, only a few genes related to flagella, were significantly regulated, with the majority of 

these genes downregulated. Tar, cheA, cheW, and b0374, were significantly downregulated 2 days 

after inoculation. Only fliN, which is responsible for flagellar export, was significantly upregulated 

one hour after inoculation. Taken into account the reduction of cell counts two days after 

inoculation, these findings are in accordance with the results of Jozefzuc et al. and Lemuth et al. who 

observed downregulation of genes assigned to flagella and motility in response to glucose 

deprivation and a variety of stress conditions (cold, heat, oxidative stress, lactose diauxie, and 

stationary phase) (Lemuth et al. 2008; Jozefczuk et al. 2010). As flagella motility requires a steep 

proton gradient between the periplasmatic space and the cytoplasm, both authors hypotize that 

decreased cell motion could be an indication of energy deficiency. Also Fink et al. (2012), who 

investigated the gene expression of E. coli and E. coli O157:H7 on detached lettuce leaves, did not 

observe an induction of the flagellar genes (fli operon). Kyle et al., however, observed an increase in 

E. coli O157:H7 fli genes in response to lettuce lysates, as compared to growth in M9 medium. In 

their experiment, however, nutrient replenishment occurred. This indicates that the influence of 

postharvest practices (e.g. presence of lettuce lysate due to wounding e.g. in fresh cut produce) can 

have a totally different influence on the gene expression of the pathogen.  

Furthermore, flagellin, the protein that is the basic component of the filament of the flagella, is also 

known to be a major PAMP, recognized by plants a.o. (Thilmony et al. 2006). In order not to be 

recognized by the plant, downregulation of genes assigned to flagella may, therefore, be a reaction 

on the PAMP-triggered immunity response of the plant.  
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Also fimbrial expression has already been related to the attachment of enteric pathogens to fresh 

produce (Patel et al. 2011; Saldaña et al. 2011) but their importance seems again to be strain 

dependent (Boyer et al. 2007). Fimbria are filamentous appendages and are supposed to have an 

important role in the invasion of the animal intestine. Curli, a specific type of fimbria, are known to 

mediate binding to proteins and abiotic surfaces, and are also related to biofilm formation (Blomfield 

2007). They were originally identified by their ability to mediate the binding of Congo red and they 

are composed of a major (csgA) and minor (csgB) unit and are expressed in most enterohemorrhagic 

and enterotoxigenic strains, but not in enteroinvasive and enteropathogenic strains (Van Houdt and 

Michiels 2005). In E. coli O157:H7 Sakai chromosome, a total of 14 loci encoding a set of genes for 

fimbrial biosynthesis were identified. Ten of these loci are also conserved or partially conserved in K-

12, four are unique to E. coli O157:H7 Sakai (Hayashi et al. 2001).  

In our study, similarly to flagella related genes, genes related to curli expression (operon csgDEFG 

and csgBAC) were in general not significantly regulated or downregulated e. g. csgA (major subunit 

curli), csgB (nucleator), csgE and csgF (involved in the initiation of curli subunit polymerization) 

(Römling et al. 1998; Keseler et al. 2011). Our results represent only the gene expression of loosely 

associated cells and confirm the results of a study performed by Macarasin et al (2012). In their 

study, curli were shown to be only critical in strong attachment to spinach leaves, whereas loose 

attachment to spinach was not affected by curli expression. The gene expression of strongly 

associated cells could not be investigated in our experiment due to technical limitations. Our results 

differ from the observations of Fink et al. who saw stark upregulation of csgA and csgB on detached 

lettuce leaves one day after inoculation. The expression levels decreased at day 3 but could be up to 

7 times higher in comparison with the control. In their experiments, the pathogens were, however, 

grown at 37°C (18°C in our study), whereas it is known that curli are especially expressed at colder 

temperatures. The temperature shift that occurred in the experiment of Fink et al. (the lettuce was 

kept at 25°C) could possibly explain the upregulation of the curli genes. In our experiment no 

temperature shift occurred and no upregulation could be seen, but we could show that curli were 

initially expressed as the raw value of e.g. csgA gene was higher than 1000. The same authors, 

however, found no significant regulation of the generic E. coli and E. coli O157:H7 csgAB genes on 

lettuce roots although the curli regulator crl was induced in generic E. coli. But they could 

demonstrate that the deletion of the csgA genes (but not of csgB) gene resulted in a reduced 

capacity of generic E. coli to attach to roots (Hou et al. 2013). Curli related genes were also expressed 

during the exponential growth of E. coli O157 EDL933 in radish seedlings (Landstorfer et al. 2014). It 

seems that the role of curli is not yet elucidated.  
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The ability to produce curli seems to be related to the ability of E. coli to produce a biofilm (Vidal et 

al. 1998). bhsA (formerly known as ycfR), biofilm formation through hydrophobicity and stress 

response, was significantly upregulated in our experiment. Upregulation of bhsA, induces repression 

of biofilm formation by increasing indole synthesis. bhsA is upregulated under a variety of stresses 

such as heavy metals, drastic pH changes, temperature shock, sodium, hydrogen peroxide and, in the 

presence of sodium salicylate (Pomposiello et al. 2001; Zhang et al. 2007). Similar to other stress 

related genes, cells confers resistance against these stresses in response to upregulation of this gene 

(Zhang et al. 2007). Upregulation was also observed by Kyle et al. and Fink et al. on lettuce leaves and 

Hou et al. on lettuce roots. The last two authors also showed that a deletion mutant showed reduced 

attachment to both lettuce roots and lettuce leaves. 

 

Figure 6.8: Relative expression of E. coli O157:H7 Sakai genes related with motility and flagella one hour and two days after 

inoculation on lettuce plants. A colored line between the control and hour 1 shows that a particular gene was significantly 

differently expressed one hour after inoculation on the lettuce in comparison with the MgSO4 buffer. A colored line 

between hour 1 and day 2 shows that the gene expression of a particular gene was significantly different between one hour 

and two days after inoculation. Colored dots at day 2 show the genes which were significantly differently expressed on day 

2 in comparison with the control. Light green: down regulation at 0.01≤P<0.05, dark green: downregulation at P<0.01, light 

red: upregulation at 0.01≤P<0.05, dark red: upregulation at P<0.01. Grey: no significant difference in expression. Data 

represent the mean of four biological replicates. 
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Figure 6.9: Relative expression of E. coli O157:H7 Sakai genes related with fimbria one hour and two days after inoculation 
on lettuce plants. A colored line between the control and hour 1 shows that a particular gene was significantly differently 
expressed one hour after inoculation on the lettuce in comparison with the MgSO4 buffer. A colored line between hour 1 
and day 2 shows that the gene expression of a particular gene was significantly different between one hour and two days 
after inoculation. Colored dots at day 2 show the genes which were significantly differently expressed on day 2 in 
comparison with the control. Light green: down regulation at 0.01≤P<0.05, dark green: downregulation at P<0.01, light red: 
upregulation at 0.01≤P<0.05, dark red: upregulation at P<0.01. Grey: no significant differences in expression. Data 
represent the mean of four biological replicates. 

6.3.7 E. coli O157:H7 Sakai virulence genes 

(Figure 6.10). Pathogenic E. coli distinguishes itself from generic E. coli through the presence of 

virulence genes. The Sakai O157:H7 chromosome encodes at least 131 proteins that are assumed to 

have virulence-related functions and that are not present in E. coli K12 (Hayashi et al. 2001). 31 

genes are related to fimbria for which the importance and gene-expression in this study was already 

discussed above. Other virulence genes are encoding other adhesins/invasin like proteins (at least 14 

genes), type III secretions system related proteins and toxin or toxin-like proteins (Hayashi et al. 

2001). 

The type III secretion system encoded by the LEE locus is responsible for the formation of attaching 

and effacing (A/E) lesion. In E. coli O157:H7 Sakai an additional type III secretion system, designated 

ETT2 (E. coli type three secretion 2) was found as well. ler (LEE encoded regulator, ECs4588), a central 

regulator for the genes encoded on the LEE locus was repressed during our experiments (Zhu et al. 
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2006) and consequently most type III secretion system related genes were downregulated, some 

genes, however, were significantly upregulated, SctW/EivE (ECs3732), ECs4558 (escD) and ECs 4580 

(escU).  

In general, the majority of virulence genes were downregulated. The best known virulence factors 

are the Shiga toxins (stx1 and stx2) and to a lesser extent enterohemolysins. On the E. coli O157:H7 

Sakai genome, a gene encoding for the major virulence factor in Clostridium difficile was discovered 

as well, together with two genes coding for toxin like proteins: ECs0542 (not included on micro array) 

and ECs1283. ECs1283 was not differentially regulated in our experiment. 

Shiga toxin I subunit B precursor (ECS2973) and EHEC-hlyA (hemolysin toxin protein) were 

significantly downregulated two days after inoculation (P<0.01). This is in contrast with some post-

harvest results from Carey et al. who showed that the expression of stx1 and stx2 increased on 

postharvest romaine lettuce at 4°C and 15°C, with higher expression values at 4°C. Also Sharma et al. 

could observe increased expression of virulence genes in post-harvest experimental set-up, but they 

observed that at 4°C the expression of the virulence genes decreased, whereas at 15°C, an increase 

in expression could be observed (especially in near ambient conditions compared to modified 

atmosphere packaging). Also Dino and Bach were able to detect small amounts Shiga toxins in an E. 

coli O157 population which was supposed to be in the VBNC-state after inoculation on lettuce leaves 

(Dinu and Bach 2011). It should however be noted that the strain that we used had insertional 

inactivation of the stx genes, their expression could, therefore, not accurately be assessed. eae was 

also found to not be differentially regulated. This is in accordance with Xicohtencatl-cortes et al. 

(2009) who showed that the eae gene was not involved in attachment to fresh produce. Also Noel et 

al. (2010) found that Salmonella motility and animal virulence genes did not contribute significantly 

to fitness of the bacteria inside tomatoes. 

6.3.8 Unknown genes 

Almost 40% of the genes that were differentially regulated at P<0.01 were poorly characterized or 

had an unknown function following COG-classification. As most of the research to determine the 

function of the different E. coli genes was done in conditions which simulates the animal (intestine) 

environment, this may indicate that E. coli uses a specific set of genes to survive in the non-animal 

environment. Interestingly, several of these genes were also Sakai-specific. Seven Sakai-specific 

genes were significantly upregulated and 20 downregulated at P<0.01. By performing a BLAST-search 

on the nucleotide sequences of these genes, the (putative) function of genes with highly similar or 

identical sequences could be found in other E. coli strains. An overview is given in Table 6.1. A 
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selection of these genes is discussed in some further detail and are especially interesting for future 

research. 

ECs4115 is possibly similar to yhcR which is also known as aaeX and seems to be related with biofilm 

formation. The genes in the AaeXAD operon, which are normally not expressed at a significant level 

(Tseng et al. 1999; Van Dyk et al. 2004), were some of the most upregulated genes in a study of 

global gene expression of biofilms of two E. coli urinary tract infection strains grown in human urine 

(Kvist et al. 2008). Furthermore, Monnappa et al. (2013) showed that aaeXAB may be involved in the 

efflux of (even low) concentrations of plant hydrolysate-related phenolics, such as ferulic acid, an 

abundant phenolic phytochemical found in plant cell wall components and vanillic acids (Monnappa 

et al. 2013). 

ECs2526: possibly similar to CorC which is a Mg and cobalt efflux protein. It may be possibly that this 

gene was induced due to the presence of Mg in the MgSO4 buffer. 

Ecs0230 possibly RNA methyltransferase type VI secretion protein. The contributions of T6SSs to 

virulence development are diverse. In cell culture systems T6SSs have been reported to play crucial 

roles in cell adhesion and invasion and intracellular growth but also interbacterial competition 

(Kapitein and Mogk 2013). 
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Figure 6.10: Relative expression of E. coli O157:H7 Sakai genes related with virulence (except for fimbrial genes) one hour and two days after inoculation on lettuce plants. A colored line 

between the control and hour 1 shows that a particular gene was significantly differently expressed one hour after inoculation on the lettuce in comparison with the MgSO4 buffer. A colored 

line between hour 1 and day 2 shows that the gene expression of a particular gene was significantly different between one hour and two days after inoculation. Colored dots at day 2 show the 

genes which were significantly differently expressed on day 2 in comparison with the control. Light green: down regulation at 0.01≤P<0.05, dark green: downregulation at P<0.01, light red: 

upregulation at 0.01≤P<0.05, dark red: upregulation at P<0.01. Grey: no significant difference in expression. Data represent the mean of four biological replicates. 
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Table 6.2: Overview of expression levels of genes encoding for hypothetic Sakai specific proteins at P<0.01 level at day 0 or 
day 2 (significant regulation is shown in bold) 

GeneName 
Foldchange 

Day 0 

Foldchange 

Day 2 
Similarity with known 

gene 

Strain with known 
gene with similar 

sequence 

% of 
similarity 

ECs0073 -2.3 -2.5 

non-LEE-encoded type III 
secreted effector 

Escherichia coli 
O157:H7 str. 

TW14359 

100% 

ECs0230 2.0 3.7 

VCA0109 like protein 

(RNA methyltransferase 

type VI secretion protein) 

Escherichia coli 

O157:H7 str. EDL933 

100% 

ECs0238 -2.4 -4.4 / / / 

ECs0281 -1.9 -2.4 

Putative tail fiber 

assembly protein 

Escherichia coli 

O157:H7 str. EDL933 

100% 

ECs0541 -2.1 -2.7 

PKD domain protein 

 

Escherichia coli 

O157:H7 str. EC4115 

99% 

ECs1125 -1.7 -2.7 

EspF like protein or tir-
cytoskeleton coupling 

protein 

Escherichia coli 

Xuzhou21/ 

Escherichia coli 

O157:H7 str. 

TW14359 

100% / 

100% 

ECs1204 1.7 2.2 

Putative DNA methylase Escherichia coli 

O157:H7 str. EDL933, 

complete genome 

100% 

ECs1238 -2.0 -3.1 / / / 

ECs1239 -1.8 -2.3 / / / 

ECs1246 -2.2 -3.7 / / / 

ECs1445 -1.9 -3.4 / / / 

ECs1567 -2.6 -3.3 

T3SS effector protein 

EspO 

Escherichia coli 

O145:H28 str. 

RM12761 

100% 

ECs1586 -2.9 -4.0 / / / 

ECs2291 -1.6 -2.2 

Lipoprotein ynfC 

precursor 

Escherichia coli 

O157:H7 str. SS17, 

complete genome 

100% 

ECs2473 -2.0 -1.5 Putative lipoprotein   

ECs2526 14.7 8.2 

Mg and Co efflux protein 

CorC 

Escherichia coli 

O157:H7 str. EDL933, 

complete genome 

100% 

ECs3238 -3.8 -6.2 / / / 

  

http://www.ncbi.nlm.nih.gov/nucleotide/47118301?report=gbwithparts&from=1601213&to=1601623&RID=1GDAF10V013
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GeneName 
Foldchange 

 Day 0 

Foldchange 

 Day 2 
Similarity with known gene 

Strain with 
known gene with 
similar sequence 

% of 
similarity 

ECs3250 -2.1 -2.2 

56 bp at 5' side: hybrid 
sensory histidine kinase in 
regulatory system with EvgA 

289 bp at 3’ side predicted 
transporter 

a.o. Escherichia 

coli O157:H7 str. 

EDL933, complete 

genome 

100% 

ECs3772 -2.2 -2.9 / / / 

ECs3966 2.3 3.5 

23S rRNA (guanine-N-2-) -

methyltransferase rlmG 

a.o. Escherichia 

coli O157:H7 str. 

EDL933, complete 

genome 

100% 

ECs4115 7.6 25.8 

similar to yhcR which is also 

known as AaeX 

Escherichia coli 

O157:H7 str. 

EC4115 

100% 

ECs4465 -2.6 -4.4 

Fic family protein Escherichia coli 

O157:H7 str. 

EC4115, complete 

genome 

100% 

ECs4491 3.1 1.8 

Periplasmic septal ring factor 

with murein hydrolase 

activity EnvC 

Escherichia coli 

O157:H7 str. 

EDL933, complete 

genome 

100% 

ECs4537 -2.2 -2.4 

transposase ORF B, IS3 family 

protein 

Escherichia coli 

O55:H7 str. 

RM12579, 

complete genome 

100% 

ECs4816 -2.4 -2.4 / / / 

ECs5266 2.0 2.6 

transposase Escherichia coli 

O157:H7 str. 

EDL933, complete 

genome 

100% 

ECs5291 -1.9 -2.9 

adherence and invasion 

outermembrane protein 

(Inv,enhances Peyer's 

patches colonization) 

Escherichia coli 

O157:H7 str. 

EDL933, complete 

genome 

100% 
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6.4 Conclusions 

The main goal of our research was to investigate the gene expression of E. coli O157:H7 in a 

simulated preharvest contamination event in a greenhouse. The adaptation of the pathogen to this 

new environment was investigated with special interest towards regulation of genes which could 

have a consequence for the pathogens subsequent survival during processing and consumption. 

Furthermore, we tried to distinguish whether loosely vs. strongly associated bacteria adapt in a 

different way to their new environment. 

To simulate a preharvest contamination event in a greenhouse, special attention was paid to the 

culture conditions of the plants and pathogens. Growing, untreated plants were used, grown in the 

greenhouse. The used pathogen strain, E. coli O157:H7 Sakai, was previously related to a fresh 

produce outbreak. Furthermore, the Sakai strain was grown at 18°C, and suspended in a MgSO4 

buffer in order to simulate the suboptimal environmental conditions including unfavorable 

temperature and nutrient limitation which may occur outside the animal host such as in irrigation 

water. This is important as it was recently shown by Seo and Matthews (2014) that the medium 

composition and cultural conditions may have an important influence on the behavior of enteric 

pathogen on plants. In their experiments, the survival of E. coli O157:H7 cells exposed to soil or 

manure exhibited greater survival on plants compared to LB-grown E. coli O157:H7. These 

researchers support, together with others, the hypothesis that the plant-environment, or more 

broadly the non-animal environment, is part of the ecological niche of human pathogens (Schikora et 

al. 2008; Shirron and Yaron 2011; Schikora et al. 2012a; Schikora et al. 2012b; Seo and Matthews 

2012; Jayaraman et al. 2014). Our results seem to support this hypothesis. Firstly, we were able to 

show that some genes could have been induced by chemicals produced by the plant defense 

response, although further research is essential as also other factors may have been responsible for 

this upregulation. Secondly, taken into consideration that the most important E. coli O157:H7 genes 

that are expressed in an animal environment are known, also the fact that almost 40% of the 

significantly differentially regulated genes were poorly characterized or had an unknown function 

support the fact that the pathogen may be genetically adjusted to survive in a non-animal 

environment. Thirdly, the pathogen relied little on its animal virulence genes, as most virulence 

genes were downregulated. Quite some overlap in our results could be observed with Fink et al., the 

most closely related research that could be found, indicating that the adaptation to a plant 

environment seems to be a robust reaction. In both studies especially stress responsive genes were 

upregulated whereas energy metabolism and translation mechanisms were downregulated. Some 

differences could, however, be observed. The most striking difference was the difference in 

regulation of the curli genes. Different culturing conditions of the pathogens and survival trends on 
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the lettuce may be responsible for these observations. A standardized culturing and inoculation 

protocol of the pathogens designed to simulate environmentally stressed cells could avoid such 

problems in the future. Complementary to our research, studies with mutants (knock-out, 

overexpression) and challenging tests such as performed by Kyle et al. and Oliveira et al. should be 

performed as such experiments may reveal to which extent the observed gene expression changes 

have an influence on the subsequent survival, antibiotic and sanitation resistance of the pathogen. 

Kyle et al. were already able to shown that pre-exposure to lettuce lysate increased the gene 

expression of E. coli O157 stress genes and effectively increased their resistance against H2O2 and 

induced cross protection against other sanitizers sanitizers (Kyle et al. 2010). Oliveira et al. did not do 

gene expression experiments, but they showed that it is not straight forward to link the changes that 

occur in Salmonella Typhimurium when a complete contamination event was simulated to their 

behavior in the gastric tract (Oliveira et al. 2011). They simulated subsequent (cross-) contamination 

of the soil and lettuce, followed by packing of the lettuce (modified atmosphere) and storage. 

Consumption of the lettuce was simulated with a simulated gastrointestinal tract system. Although 

the capability of the pathogens to survive simulated gastric fluid slightly increased, and the capability 

to grow in the simulated intestinal fluid increased, the capability of epithelial attachment and 

invasion decreased. As a consequence, the overall survival probability of S. Typhimurium in the 

gastrointestinal tract system was decreased (Oliveira et al. 2011).  

Unfortunately our results only represents the gene expression of the loosely associated pathogens as 

we were not able to extract enough RNA from the strongly associated population. The same 

technical limitations forced us to use high inoculum levels of bacteria, which are much higher than 

can be expected in a natural contamination event and which are also higher than the natural carrying 

capacity of lettuce which is around 6.5 log CFU/g (Williams et al. 2013). As a consequence, we were 

not able to observe growth of the pathogen on the leaf. The nutrients seemed not to be enough to 

sustain the whole population and a decrease of pathogens was observed. Our results should, 

therefore, be interpreted in this context. Further research investigating the gene expression of 

enteric pathogens which are proliferating on living plants and of the strongly associated pathogens is 

challenging due to high amount of RNA that should be obtained, but particularly interesting and to 

the knowledge of the authors not yet investigated. 

Our findings reveal that the pathogen actively interacts with the plant environment by adapting its 

metabolism and responding to oxidative stress. Consequently, the pathogen may have acquired 

enhanced resistance against oxidative stress and cross-protection against various other stresses. On 

the other hand, a decrease in the expression of the Shiga toxin and several other virulence genes was 
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observed. Further research, is needed to investigate how these adaptations may affect the 

pathogen’s subsequent survival during processing and consumption. 
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7.1 Introduction 

The current PhD research was situated within the SALCOSLA project. This project was funded by the 

Belgian Federal Public Service Health, Food Chain Safety and Environment in the period April 2009 to 

April 2013 in order to gain more information on the risk factors for introduction and persistence of 

enteric bacterial pathogens during the Belgian primary production of leafy greens. The request found 

its origin in the increase in foodborne outbreaks linked to fresh produce in the USA (Aruscavage et al. 

2006) and in the fact that in Europe some smaller outbreaks occurred (Van Boxstael et al. 2012; EFSA 

2013). Particular attention was taken to focus the research project towards the Belgian vegetable 

production situation taking into account Belgian local production conditions and lettuce type. 

Butterhead lettuce was chosen because of its economic value for Belgium, with production both in 

open field and greenhouses, and the identified lack of knowledge in peer reviewed literature about 

this typical northern European lettuce type with regard to routes of contamination and potential for 

survival of growth of human enteric bacterial pathogens during primary production. Greenhouse 

butterhead lettuce production was taken as the model production system and Salmonella and E. coli 

O157:H7 as model organisms. 

A first objective within the SALCOSLA project was to determine the contribution of two potential 

contamination routes for introduction of Salmonella and E. coli O157:H7 on the crop during 

butterhead lettuce production in the greenhouse, namely seeds and irrigation water. Therefore, the 

survival of four different pathogen strains was studied i) on lettuce seeds over a period of two years 

and ii) in five different irrigation water samples over a period of two weeks. The survival of 

pathogens in manure, organic fertilizers or their derived organic fertilized soils was not studied, as in 

Belgian greenhouse butterhead lettuce production mainly inorganic fertilizers are used and thus the 

introduction of enteric pathogens via soil is less likely. A study of Holvoet et al. confirmed this and 

also showed that, if organic fertilizers were used, these were commercially available dry pellets 

which were microbiological safe (Holvoet 2014).   

A second objective of the SALCOSLA project was to gain more insight and knowledge about the 

behavior of Salmonella and E. coli O157:H7 on butterhead lettuce during the plant growth cycle. 

Three different aspects were investigated upon introduction of these enteric bacterial pathogens on 

the lettuce crop leaves: survival, attachment and gene expression. The survival of the pathogens on 

butterhead lettuce plants was studied both in the environment of a controlled growth chamber and 

in an actual setting of a greenhouse. The influence of crop stage in the growth cycle, the leaf’s age (or 

position of the leaves in the crop) and the occurrence of an irrigation treatment were taken into 

account. Also the effect of prior residence in irrigation water (and thus the exposure to nutrient 

stress) on the capacity for E. coli O157:H7 to attach onto lettuce leaves was investigated. The 
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attachment of these stressed pathogens was compared with freshly cultured pathogens. 

Furthermore, to improve the understanding about the underlying genetic mechanisms that the 

pathogens use during their survival on these foods of non-animal origin (FoNOA), gene expression 

experiments of E. coli O157:H7 were performed on growing butterhead lettuce plants. 

For this PhD research, the emphasis was put on laboratory based model studies using artificially 

inoculated water, seeds or lettuce plants or leaves to study the behavior of pathogens. This enabled 

to control and standardize the experimental conditions. In addition, the occurrence of natural 

contaminated samples of butterhead lettuce or its initial seedlings or irrigation waters with enteric 

pathogens is expected to be very low as shown in the surveillance study for hygiene indicators and 

enteric pathogens in the Belgian lettuce production as conducted by Holvoet et al. (2014). However, 

in the framework of the current PhD study it was noted that also under conditions of artificial 

inoculation and standardized controlled conditions, studying the behavior of these human enteric 

pathogens is challenging as bacterial behavior is variable under stressed conditions. In addition, 

experiments with growing and respiring plants and leaves or seeds and irrigation water which are 

variable in both biochemical and microbiological composition, are inherently subjected to variability. 

In the present discussion, the implications for research regarding human pathogen on plants and 

more general for food safety are subsequently discussed and the need for standardization of 

laboratory protocols is addressed. 

7.2 Good seed makes a good crop: survival of enteric pathogens on 

lettuce seeds 

In Chapter 2 it was investigated whether contaminated lettuce seeds could be an introduction route 

of human enteric pathogens in the lettuce primary production. It was shown that Salmonella and E. 

coli O157:H7 were able to survive at least for two years on/in lettuce seeds which were stored in the 

dark at 18°C. The survival, as determined by conventional plating, of two tested Salmonella serovars 

was significantly better than two tested E. coli O157:H7 strains. These observations were in 

accordance with previously described results on alfalfa seeds (Taormina and Beuchat 1999; Beuchat 

and Scouten 2002). When the seeds were sown two year after contamination, Salmonella as well as 

E. coli O157:H7 were able to proliferate on the seedlings and grew out to high levels (up to 5.92 log 

CFU/seedling for Salmonella inoculated seeds). These results confirmed for Salmonella, the findings 

of Fu et al. (2008) who had already shown that Salmonella was able to resuscitate on naturally 

contaminated alfalfa seeds when they were germinated after 8 years. Our findings were especially 

important in the context of the so called ‘EHEC crisis’ in Europe in 2011. This outbreak in Germany 

and France, was most probably linked to the consumption of sprouted fenugreek seeds. 
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Epidemiological evidence pointed to contaminated seeds as the cause of the outbreak and it could be 

shown by trace back investigation that the seeds should have been contaminated for at least two 

years. The implicated seeds from the two outbreaks, originated from a common import of seeds 

from Egypt two years earlier (EFSA 2011b). It was, however, at the moment of the outbreak, not yet 

known whether E. coli O157:H7 was able to survive for such a long period on seed and subsequently 

proliferate on the sprouting seeds. So, although it was not the primary goal of the seed experiment, 

our results proved to be valuable as it was shown that long term survival of pathogenic E. coli and its 

subsequent resuscitation and growth during sprouting of seeds is possible. Furthermore, the results 

emphasize the importance of the microbiological quality of the seeds during sprouting seed 

production, and thus also the production of lettuce seedlings commonly used as input for setting up 

lettuce production. 

The main goal of the experiment was, however, to investigate whether seeds should be considered 

as a contamination source of human enteric pathogens for leafy vegetables. Based on our data, we 

could show that seeds, if contaminated, will support long-term survival and are thus a potential route 

for introducing enteric pathogens in the lettuce production process. Furthermore, we showed that 

detection of the potential pathogen contaminating the seeds can be facilitated by sprouting the 

seeds. Seeds themselves have a low water activity which may stress the enteric pathogen of concern 

and may render it hard to get a reliable result of isolation. Prior sprouting of the seeds under 

conditions of ambient temperature and high humidity will promote, as noted in our experiments, 

also growth of Salmonella and E. coli O157:H7 and as such support natural ‘enrichment’ of potential 

low pathogen contamination of seeds and thus be a preferred approach in screening seeds for 

pathogen contamination. This option is also foreseen in EC Regulation nr. 209/2013 regarding the 

microbiological criteria for foodstuff. The regulation was adjusted after the ‘EHEC crisis’ occurred and 

sets requirements for the analysis of seeds to be used for sprouted seeds production: a 

representative subsample of 0.5% of each seed batch composed of subsamples of 50 g, needs to be 

germinated for at least 48 h. And five samples of 25 g of this batch need to be analyzed for the 

presence of Salmonella and Shiga toxin producing E. coli O157, O26, O111, O103, O145 and O104:H4. 

Still the detection of pathogens in sprouted seeds is challenging and not fail-safe due to the growth 

and presence of also high numbers of indigenous microbiota which may interfere with the actual 

isolation of the enteric pathogens in the sprouted seeds (Tzschoppe et al. 2012; Verstraete et al. 

2012). As an alternative to analysis of seeds or sprouted seeds, the EC Regulation 209/2013 also 

mentions the option that 5 samples of 200 ml of the spent irrigation water may be analyzed when an 

appropriate sampling plan is available. As a response on the crisis, also requirements regarding 

registration of sprouting production companies, traceability of the seeds and certification of seeds 
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for sprouted seeds consumption and requirements of good hygienic production were set ((EU) nr. 

852/2004, (EU) nr. 2073/2005, (EU) nr. 209/2013, (EU) nr. 210/2013)). In order to know whether 

similar requirements should be advisable for seeds of other vegetables or fruits intended to be eaten 

raw, more information is required about the current microbiological quality of the seeds and the 

subsequent behavior of the pathogens on the growing plants up to harvest. For this kind of research 

it is important that inoculation levels similar to natural contamination levels are simulated. 

For our experiment, there are some aspects that make it difficult to determine to which extent the 

use of contaminated seed or seedlings at the set-up of the lettuce crop production cycle actually will 

also result in the presence of a contaminated butterhead lettuce crop at harvest. Firstly, in our 

experiment the contaminated seedlings were not further grown to fully mature crops and, therefore, 

the subsequent survival of the pathogens on the seedling throughout the production cycle which 

takes up to 12 weeks depending upon the season, is unknown. There is evidence that generic E. coli 

(inoculated at ± log 7 CFU/g seed) could be detected up to 42 days after sowing of freshly 

contaminated spinach seeds (Warriner et al. 2003a). But on the other hand it was already shown that 

occasional pathogen contamination on leafy greens dies-off during the course of growth of the 

lettuce plant, although this may differ depending upon climatic conditions (Aruscavage et al. 2008; 

Zhang et al. 2009; Wood et al. 2010). Furthermore, it was shown that some indigenous bacteria on 

the plant may show antagonistic activity towards enteric human pathogens and reduce the 

attachment capacity of the pathogens. On the other hand, the indigenous bacteria may also prolong 

the survival of the enteric pathogens on the plants by e. g modifying the tissue (for example by 

increasing the nutrient production of the plant) and supplying a suitable niche (for example by 

producing an polysaccharide matrix) (Cooley et al. 2003; Cooley et al. 2006; Lima et al. 2013). 

Moreover, it needs to be noted that untreated seeds such as used in our experiments are typically 

not used during commercial lettuce production. Instead, fungicide treated coated seeds are used. 

The influence of this fungicide coating may have an impact on the survival of the pathogens on the 

seeds, but is not yet known.  

Last, currently there is little information available about the overall microbial quality or the presence 

of enteric pathogens such as Salmonella or E. coli O157 in lettuce seeds or any other seeds intended 

for vegetable and fresh fruit production. In Belgium, seed producers are only obliged to test the 

microbiological quality of the seeds when they want to export them to countries with specific 

phytosanitary requirements (Federaal Agenschap voor Veiligheid van de Voedselketen (FAVV) 2013) . 

The most actual information about the food safety of butterhead lettuce seedling for Belgium was 

obtained by Holvoet et al. In their study lettuce seedlings and seedling peat-soil were tested for the 

presence of human pathogens (stx genes, Salmonella, Campylobacter) but they did not detect any 
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positive results in any of the 80 samples tested, although occasionally some generic E. coli could be 

enumerated. 

7.3 In deep water? Survival of enteric pathogens in irrigation water  

To test to which extent human enteric pathogens may persist in irrigation water and thus serve as a 

likely route of introduction of pathogens to the lettuce crop , the survival of 4 pathogenic strains (2 E. 

coli O157:H7 and 2 Salmonella serovars) was monitored in samples taken from the water reservoirs 

or groundwater being used for irrigation at four Belgian butterhead lettuce production sites and the 

ILVO greenhouse (Chapter 4). It was shown that during the 2 weeks storage period both temperature 

and microbiological and chemical water quality had an influence on the survival characteristics of the 

pathogens in the irrigation waters. Cold temperature (4°C) enhanced the survival of the pathogens in 

this nutrient poor water, whereas at higher water temperatures (20°C), the natural background 

microbiota and the pathogens were probably more metabolically active so that competition could be 

observed, with less survival for the enteric pathogens. By removing the background microbiota and 

by using lower inoculum levels, we could show that also the chemical composition of the different 

irrigation water samples which were highly different (in particular high Zn levels in one of the water 

samples) could have had an important impact on the survival of the pathogens at 20°C. Still a 

substantial variation in the survival characteristics was observed: in some irrigation water samples a 

decrease of the pathogens could be seen, whereas, in other samples growth of the pathogen could 

be observed. During the experiment only a restricted number of microbiological parameters were 

determined using standard cultural methods, further investigation of the microbiota using also non-

culture based methods as well as a number of biochemical analyses of the irrigation waters is 

warranted in future investigations. 

Based on these results which point to a longer persistence of pathogens at colder temperatures, one 

could hypothesize that a prolonged risk for transfer of enteric pathogens from irrigation water to the 

lettuce crop would occur during colder seasons of the year. Still, the actual occurrence of these 

human enteric pathogens in the irrigation water may be variable and depends upon the actual 

environmental pressures (e.g. the close proximity of livestock which may carry enteric pathogens, 

pastures or wild animal activities (including birds, rodents) (FAO 2003; Brandl 2006; BioHaz 2014) and 

climatic conditions e.g. heavy rainfall may promote introduction of fecal contaminated run-off water 

from nearby fields (Liu et al. 2013). In a recent study from Holvoet et al. it was demonstrated that the 

presence of pathogens in irrigation water samples from Belgian lettuce production farms showed a 

seasonal pattern with more pathogens being present in the water during months with higher 

temperature (Holvoet et al. 2014). So, despite a lower survival of pathogens in irrigation water in the 
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warmer season, the likelihood of introducing pathogens into the irrigation water, in particular 

surface water, seems to be higher during this period.  

In the same study from Holvoet et al. it was demonstrated that enteric pathogens may effectively be 

present in Belgian irrigation water used by lettuce producers (both greenhouse and open field). 

Twenty-five percent of all water samples (30/120) showed to be positive for either Salmonella spp., 

Campylobacter spp. or EHEC (stx and eae genes detected by PCR) during the whole study (1.5 year). 

Mainly Campylobacter was found (35/120). Combined presence of stx and eae genes were detected 

by PCR in 6/120 samples, but a pathogenic E. coli strain could only be isolated from two samples. 

Salmonella was isolated from one irrigation water sample. Especially open well water (21/51 samples 

positive for at least one of the pathogens) was identified as a risk factor, whereas, groundwater was 

found to be less contaminated (3/17 samples).  

In practice, most of the greenhouse lettuce producers have, in contrast to the open field growers, 

implemented a water treatment system which is used to prevent production loss due to plant 

diseases transmitted by irrigation water such as bacterial midrib rot caused by Pseudomonas chicorii. 

The common systems are disinfection through chlorination, hydrogen peroxide or UV-treatment, also 

prior sand filtration is sometimes used. The disinfection system is mostly activated the whole year 

round, although some producers only use it during autumn when the risk for bacterial midrib rot is 

the highest (Cottyn et al. 2009; Holvoet 2014). Holvoet et al. found that when disinfection of 

irrigation water was used, no pathogens were observed in the water sampled at the tap in contrast 

to the water samples at the source (Holvoet 2014). A risk factor for greenhouse lettuce production 

seems, therefore, to be the fact that the water disinfection installation is not always continuously 

used by some lettuce growers. During the period that the water disinfection treatment is not used, 

which is mainly in summer, higher prevalence of pathogens was recorded (Holvoet 2014). During this 

period, pathogens may contaminate produce but may be established inside biofilm in the sprinkler 

tubes as well, causing an potentially dangerous situation of persistent contamination. The 

persistence and even growth of generic E. coli in aluminum sprinkler tubes was already established 

(Pachepsky et al. 2012), although no information could be found about human enteric pathogens. 

Results from Holvoet et al. indicated that human pathogens may actually be present in the irrigation 

water samples, in particular when using surface water or collected rainfall water in reservoirs which 

are vulnerable to ingress of fecal contaminated run-off water. In addition, from results in the present 

PhD study it could be shown that the pathogens’ capacity to survive in the irrigation water samples 

was also highly variable. It seems that the extent to which the occasionally introduced enteric 

pathogen can actually persist and be transferred to the crop when using the irrigation water is also 
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dependent on the specific water composition. Consequently, the presence of human enteric 

pathogens will depend upon the specific lettuce production location, construction of its water system 

and water quality. 

7.4 A bugs life: insights in the behavior of enteric pathogens on 

plants 

The survival of enteric pathogens (Salmonella and E. coli O157:H7) during butterhead lettuce 

production was investigated on young and nearly mature butterhead lettuce plants and the effect of 

overhead irrigation was taken into account (Chapter3). Our results showed that when enteric 

pathogens were artificially introduced on butterhead lettuce plants at a level of 3-4 log CFU/g leaf, 

they were able to survive on the plant leaves. In the growth chamber, growth up to 2 log CFU/g of 

the pathogen could be observed and the pathogen level remained stable between day 4 and day 8 

after inoculation. On the contrary, the pathogen’s survival on lettuce growing in the greenhouse was 

significantly lower. Growth could on average not be observed and the pathogen concentration 

continuously declined, leading to the pathogen no longer being detected in some samples after 8 

days after inoculation (3/54). This decline was to be expected given the higher variation in relative 

humidity and temperature in the greenhouse as opposed to controlled and stable growth chamber 

conditions.  

Pathogen proliferation was more clear during the growth chamber experiments, although it could be 

sporadically observed in the greenhouse as well on individual leaves. Furthermore, the survival of the 

pathogen was dependent of the leaf age. On young plants, greater proliferation of both Salmonella 

and E. coli O157 could be found on middle and old leaves, whereas on nearly mature plants, better 

survival was observed on young (inner) and old (outer) leaves. Probably not only the nutrient 

availability on the leaves determined the survival but also microclimate (e.g. susceptibility for 

dehydration) determined by the position of the leaf in the crop. Eight days after inoculation, the leaf 

age effect (and/or effect of the position of the leaf in the crop) could not be observed anymore. Leaf 

age dependent survival was first demonstrated by Brandl and Amundson (2008) under conditions of 

high relative humidity. Our results confirmed the findings of Brandl and Amundson (2008) but also 

showed that this effect can be surpassed by environmental factors, introducing high variability in 

pathogen survival. Our observations may be useful for the design of a risk based sampling plan. For 

monitoring the hygienic conditions during the whole production cycle, analyzing the outer leaves of 

the crops seems to be interesting. The pathogens survived quite well on these leaves and outer 

leaves received irrigation water during almost the whole production cycle and they make contact 

with the soil. After harvest, sometimes the outer leaves are removed before the lettuce is sold to the 
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auction or wholesaler. For a food safety authorities, inner leaves seems to be more suitable to be 

analyzed as they seem to have the ability to carry the highest pathogen levels and are the soft and 

folded leaves which are preferably consumed.  

Furthermore, we were able to show that overhead irrigation could increase the survival of the 

pathogens in some situations. Increased pathogen survival after overhead irrigation could only be 

observed a few days after the contamination event, on the inner leaves of nearly mature crops in the 

greenhouse. We hypothesize that overhead irrigation could have increased the relative humidity and 

leaf wetness locally in the greenhouse plants, creating more suitable conditions for pathogen 

survival. It was already shown that enteric pathogens present on plants growing at a low relative 

humidity may resuscitate or start to proliferate again after exposure to high relative humidity (Brandl 

and Mandrell 2002). Our findings are important as in Belgium the majority of the lettuce producers 

and all producers of our study apply overhead irrigation with a sprinkler system (Holvoet 2014). 

Overhead irrigation is generally considered to be related with a higher risk for contamination as the 

pathogen comes directly in contact with the edible part of the plants (Gil et al. 2013). To lower the 

risk of pathogen transfer, subsurface or drip irrigation which results in no wetting of the edible 

portions of the plants can be applied (BioHaz 2014). In the growth chamber with a constant high 

relative humidity, overhead irrigation did not influence the survival of Salmonella or E. coli O157:H7 

on young or nearly mature plants, and the survival was in general better than in the greenhouse 

experiment. This confirms that pathogen survival is more likely in periods with high relative humidity.  

In the greenhouse, the environmental conditions are less controlled and more variable results were 

observed which emphasized the difficulty to extrapolate some research findings to actual conditions 

in practice. Follow-up field or greenhouse studies are recommended to make more ‘definite’ 

conclusions and should preferably be performed over different crop production cycles, different 

seasons and if possible different years and with different lettuce varieties. To simulate a natural 

contamination event even better, lettuce could be irrigated with pathogens suspended in different 

types of irrigation water. In fact, our result from the irrigation water study (Chapter 4) shows that the 

irrigation water quality could have an influence on the survival of the pathogen as well. The latter 

experiments were performed on detached lettuce leaves, stored under high relative humidity. No 

information is, however, available for a production situation. Furthermore, other factors may 

influence the pathogen’s behavior as well and could be considered for future experiments e.g. the 

influence of the initial natural microbiota. Indeed, recently a negative correlation could be found 

between the initial natural microbiota and the survival capacity of E. coli O157:H7 (Williams et al. 

2013). Furthermore, evidence was given that the presence of certain bacterial species may reduce 

(e.g. Erwinia) or enhance the risk (e.g. phytopathogens such as Dickeya dadantii) (Goudeau et al. 
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2013; Williams et al. 2013). Also pesticide treatments could be taken into account, it was already 

shown for some pesticide treatments during lettuce production that pathogen survival decreased 

(Guan et al. 2005), whereas, other researchers found that foliar contact application may elevate the 

risk during tomato production (Lopez‐Velasco et al. 2013). This type of research will require a 

separate research project. 

7.5 A dual lifestyle: gut versus environment or how to cope with 

stress 

During the different experiments regarding survival on lettuce seeds, lettuce plants and in irrigation 

water it became clear that there is only a thin line between growth, survival and inactivation of the 

pathogen: the sprouting process of seeds created good conditions for the pathogens to start actively 

growing again on the sprouts after two years of decline on the seeds; removing the background 

microbiota from a water sample could make the difference between pathogen decline or growth; 

and the position of the leaf in the crop on which the pathogen attached determined as well whether 

the pathogen was going to be able to proliferate or not.  

Environmental conditions are in general considered stressful as nutrient deprivation, physical 

stresses such as fluctuations in relative humidity, temperature and chemical stresses (pH, reactive 

oxygen species) are likely to occur. In order to survive such hostile environments, bacteria developed 

survival strategies. These strategies can be basically classified as ’adaptation’ and ‘avoidance’ 

strategies (Dinu et al. 2009). The ‘adaptation’ strategy is based on genetic and/or physiological 

adaptation of the pathogens to enhance tolerance against the stress. The adaptation response that is 

best known is the individual genetic and phenotypic adaptation of bacteria which may be a stress 

specific response or a general response. A specific bacterial stress response enables bacteria to 

protect vital processes, repair damage and restore cellular homeostasis. This response can be evoked 

by different stresses (acid, heat, cold, etc.) and is dependent on the specific stress, although 

overlapping responses are described. A more global stress response adaptation, triggered by the 

alternative sigma factor Rpos may, on the other hand, provide protection from many types of stress 

(Aertsen and Michiels 2004; Dinu et al. 2009). Recently, also the induction in the viable but non 

culturable state (VBNC) and the induction of phenotypic heterogeneity and genetic diversity are 

considered as adaptation strategies to stress (Aertsen and Michiels 2004). A second strategy that the 

pathogens have developed is avoiding the stress. Formation of aggregates in protective niches, 

localization in biofilms, and internalization in plants were already described, but were not specifically 

investigated during our studies (Dinu et al. 2009).  
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A specific experiment, testing the influence of pathogen stress on the pathogen’s attachment to 

leaves was conducted in Chapter 5. A situation in which the pathogens were adapted to stress by 

prior residence in irrigation water at 4°C or 20°C for up to 6 days before getting in contact with 

lettuce leaves was simulated in a lab scale experiment. Attachment to lettuce leaves did not seem to 

be substantially influenced by temperature or residence time in the water. Also during the gene 

expression experiments (Chapter 6) it was noted that attachment-related E. coli O157:H7 Sakai genes 

were not significantly upregulated when the pathogen was present on growing butterhead lettuce.  

Other stress responses could, however, be clearly observed during the gene expression experiment 

in Chapter 6 which investigated the expression of all E. coli O157:H7 Sakai genes after 1 hour and 2 

days residence on young growing butterhead lettuce plants (in the growth chamber at 18°C and 75% 

RH). Plate counts revealed that on the plant, the pathogen was in a survival mode rather than in a 

growth permissive state, an indication of stress. Whereas the gene expression data showed 

increased expression of stress responsive genes: mainly Fe-S cluster related genes and the marRAB 

operon. Fe-S clusters participate in many vital cellular functions such as DNA repair, transcriptional 

regulation, nucleotide and amino acid biosynthesis and energy metabolism (Schwartz et al. 2000). 

The marRAB operon, on the other hand, is involved in multiple mechanisms that bacteria possess to 

survive exposure to various chemical stresses and antimicrobial compounds such as antibiotics 

(Fontecave et al. 2005; Wang et al. 2009). Whatever the underlying cause for this induction of the 

stress genes (e.g. nutrient scarcity, presence of reactive oxygen species or reaction to salicylates 

produced by the plant immunity response), upregulation of these genes is linked with enhanced 

resistance against other stresses such as antibiotics and sanitizers (Pomposiello et al. 2001; 

Fontecave et al. 2005; Wang et al. 2009; Kyle et al. 2010). 

Up to now, only limited attention is given to the induction of stress adaptation of human enteric 

pathogens on plants. Nevertheless, this can have important implications for the subsequent behavior 

of the pathogens throughout the whole production chain. As our gene expression results especially 

describe the gene expression modifications that occur in the loosely associated pathogens when die 

off occurred, this can be interesting for post-harvest research as these are the bacteria that are 

removed after washing of the lettuce, and are subjected to sanitizers in the wash water. Follow-up 

tests should, therefore, reveal which implications these gene expression findings would have in 

practical situations. Can increased resistance be observed to sanitation agents that might be applied 

in washing baths to avoid cross contamination in a post-harvest settings in the fresh-cut industry? 

Does Salmonella react in the same way? If increased resistance against disinfectant agents occurs 

due to adaptive response, the current sanitation experiments reported in peer reviewed literature 
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probably underestimate the effectiveness of the sanitizers as the experiments are usually performed 

with ‘freshly’ inoculated cultures on post-harvest lettuce. 

Induction of cells in the viable but non culturable state is considered as another ‘adaptation’ strategy 

in order to cope with environmental stress. It can be seen as a state of low metabolic activity in 

which the cells do not undergo cellular division, and as a consequence they are not able to grow on 

(non-selective) culturing media such as TSA anymore. VBNC is the subject of intense debate and 

different theories exists for its occurrence. Some investigators see it as a phase before die off. A 

special altruistic hypothesis of this die off theory is the one where cells in the VBNC release organic 

molecules that can be used by the other cells to repair their cell membranes and other damage, 

whereas the VBNC cells die. Others believe that the VBNC cells become again culturable under more 

convenient environmental conditions. Following the scouting theory, VBNC cells wake up from time 

to time to test whether the environmental conditions are already more suitable and subsequently 

wake up the other cells by molecular signaling (Oliver 2005; Barcina and Arana 2009; Dinu et al. 

2009; Epstein 2009). Although the present PhD research was not specifically focused on it, there 

were some indications for the induction of cells into the VBNC state and stronger evidence for the 

formation of sublethally damaged cells on/in seeds, water and lettuce plants. Sublethally damaged 

cells are different from VBNC as they are defined to be able to grow on non-selective medium but 

not on commonly used selective media (XLD or CT-SMAC in our case) (Wu 2008). In general our 

methodology was not specifically adjusted to be able to differentiate between the two statuses. On 

lettuce seeds (Chapter 2) we were able to show that the amount of E. coli O157:H7 detected on the 

lettuce seeds after two years was significantly lower than could be expected based on the 

percentage of contaminated seedlings. Samples of 200 seeds from 2-year old inoculated seed 

batches needed to be enriched for detection (<1.3 log CFU/g seed) whereas 12.5 %of the seeds (and 

thus seedlings) still seemed to be contaminated. Taking into consideration that 1 g of lettuce seeds 

contained approximately 1000 seeds, the samples of 200 seeds should not have been enriched if the 

pathogens were able to grow on the selective medium. Also in irrigation water, significant 

differences in counting results could be seen in some water samples (e.g. up to almost 4 log CFU/ml 

in groundwater sample 3 for E. coli O157:H7) between selective and non-selective medium (Chapter 

3), whereas live/dead qPCR during the attachment experiment showed that after 6 days, a part of 

the population could not be detected with plate culturing technique (selective medium with a 

resuscitation top layer) and pointed towards the presence of VBNC cells (Chapter 5). At the second 

day of the gene expression experiments, we found a higher total RNA content in comparison with 

what could be expected from the plate counts on selective medium (Chapter 6). Plate counting on 
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non-selective plates were however not done, so we could not distinguish between VBNC and 

sublethally injured cells. 

The presence of VBNC and the induction of the VBNC in foods and especially in fresh produce is 

already described (Dreux et al. 2007b; Dinu et al. 2009; Dinu and Bach 2011) and a slight indication 

for its presence was found in the present study. It was also shown that VBNC cells of pathogenic E. 

coli on lettuce were still able to produce Shiga toxins (Dinu and Bach 2011). From our gene-

expression results, however, we noted a down regulation in expression of Shiga toxin genes during 

the pathogen’s decline on the leaf, although this does not necessarily means that Shiga toxins could 

not be produced anymore. The presence of VBNC human enteric pathogens in the fresh produce 

chain, may lead to underestimation of pathogenic bacteria and it is still unclear whether the cells 

may become infective again. The fact that for the detection of VBNC cells mainly molecular or 

microscopical methods are applied using other basic principles of detection than culture methods 

makes the detection and interpretation of findings difficult (Elizaquível et al. 2014). A first method of 

detection is based on the detection of metabolically active cells: mRNA is extracted from the sample, 

cDNA is made for genes of interest and a (quantitative) PCR is conducted. The instability and 

degradation of RNA is, however, still an issue, furthermore, the same problems as with other PCR 

methods occur as discussed below. The other methods are mainly based on the fact that dead cells 

are considered to be membrane compromised and the fact that some dyes may penetrate the intact 

membrane and others not. A drawback of this technique is that not all dead cells are membrane 

compromised e.g. UV-killed cells. Microscopy or flow cytometry methods do use this principle but do 

not provide sufficient specificity or sensitivity to detect specific target organisms as needed in the 

current PhD study. Also quantitative PCR techniques with sample treatment with DNA-binding 

molecules such as propidium monoazide (PMA) or ethidium monoazide (EMA) detect only cells with 

intact membranes. The PMA-method was used in Chapter 5. PCR techniques have also some 

limitations regarding the tested matrix (e.g. inhibitory components) which need to be optimized but 

the main drawback inherent to PCR-based methods is the high limit of quantification: 1 cell per PCR 

reaction corresponds to ca. 1000 cells per g (Elizaquível et al. 2014). To find out the actual 

importance of VBNC human enteric pathogens in the fresh produce chain, further research regarding 

the optimization of the detection of VBNC, detailed knowledge of the prevalence of the VBNC-state, 

and the food safety risk associated with the VBNC response is needed.  

7.6 The need for standardization 

From an historical point of view, mainly two research disciplines started working on research 

regarding human enteric pathogens on plants: i) food safety experts, originally focusing on foods of 
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animal origin were drawn to study foods of non-animal origin and their routes of contamination at 

plant primary production as these type of foods were increasingly implicated in food borne 

outbreaks; ii) plant pathologists or plant physiologists whose initial focus lies on the behavior of plant 

pathogens on crops and who were studying plant-pathogen interactions also expanded their 

expertise to human enteric pathogens. Furthermore, also other disciplines such as water 

microbiologists and soil microbiologists and to a lesser extent veterinary epidemiologists recently 

show interest in this new discipline as this research of food safety of ready-to-eat products of non-

animal origin, freshly eaten as salads, needs a farm to fork approach. 

During the present PhD research a wide variety in research protocols was found during screening the 

peer reviewed literature (see Figure 7.1), making it difficult to decide which protocols needed to be 

preferred to mimic a natural contamination event in the lab which was at the same time suitable to 

control experimental conditions in order to establish statistical exploitation of results and relevant 

findings. Before starting an experiment, the experimental conditions need to be critically evaluated 

and a lot of decisions need to be taken regarding the type and growth stage and cultivation system of 

vegetables to be used, the option of taking detached leaves versus growing crops, the selected 

bacterial strain and prior growth conditions, the environmental factors to be varied or not, the 

detection methods fit for purpose, the number of replicate samples and sampling frequency etc. It 

was already shown that small differences in e.g. inoculation conditions may have substantial 

influence on the subsequent results. E. coli O157:H7 survival at 5°C on cut lettuce was significantly 

better for cultures grown at 15 or 37°C in minimal medium and to late stationary phase in 

comparison with different growth phases cultured in TSB (Theofel and Harris 2009). 
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Figure 7.1: Culturing conditions used in 65 articles regarding preharvest contamination of lettuce with E. coli O157:H7 
and/or E. coli.  

Salmonella displayed higher affinity toward the abaxial side (up) compared to the adaxial side of 

Romain lettuce (Kroupitski et al. 2011), also Salmonella’s survival is considered to be better on the 

abaxial side in comparison with the adaxial side (Zhang et al. 2009), sanitizer’s efficiency was shown 

to be dependent on the inoculation method (dip, spot, spray) with higher efficiency on drop 

inoculated lettuce leaves (Singh et al. 2002). Also for gene expression studies, small differences in 

experimental set-up can induce substantial differences in the results. This type of study typically tests 

a small number of experimental conditions and generate a large number of results (regulation of 

thousands of genes). Each difference in experimental condition may influence the expression of tens 

to hundreds of genes and overlapping reactions may occur. For the gene expression study of Fink et 

al. (2012), which is most closely related to our study, 8 differences in experimental set-up could 

easily be found: growth medium, growth temperature, control condition, E. coli O157:H7 strain, 

lettuce type, lettuce incubation conditions, tested time points, treatment of the leaves (disinfection).  
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As research is advancing, the time is ripe to perform more interdisciplinary experiments such as 

proposed earlier in this discussion: e.g. combining pre- and postharvest set-ups and thus a 

continuous flow of monitoring of pathogens on crops starting from primary production over harvest, 

storage and post-harvest treatments which mimic the commercial production situation as closely as 

possible (Oliveira et al. 2011); research with regard to the behavior of stressed pathogens on plants 

but also investigating the interaction between the plant and the pathogen at the same time (e.g. 

regarding physiological plant defense response) which is to the knowledge of the author not yet 

performed; or research with regard to the interaction between the background microbiota and the 

pathogens by e.g. non-cultivation dependent techniques such as metagenomics (Lopez-Velasco et al. 

2010; Lopez‐Velasco et al. 2011; Lopez-Velasco et al. 2012). These kind of experiments combine, 

however, knowledge of different research fields and are consequently even more complex regarding 

experimental set-up. The use of standardized protocols may facilitate choices for experimental set-

up, increase consistency among studies and enable direct comparison or at least facilitate meta-

analysis.  

A few initiatives were already undertaken to offer a guideline for experimental design related to 

human enteric pathogen on plants. In 2001 a standardization protocol was proposed for testing the 

efficiency of sanitizers in a postharvest set up (Beuchat et al. 2001). Also Sinclair et al. (2012) 

attributed to standardization by describing criteria to select surrogate strains. In 2012 and 2013, 

frameworks were published for designing research studies that would investigate the preharvest 

microbial food safety hazards and control measures of fresh produce related to contamination due to 

contact with agricultural water or soil (Harris et al. 2012; Harris et al. 2013). These two publications 

contained a.o. a list with good, better and best practices, a list with attenuated an nonpathogenic 

surrogates that have already been used in model studies or field based studies and a check list for 

minimal information that need to be provided when publishing. These guidelines offer a lot of 

information and are especially valuable for researchers that are starting to investigate this topic. The 

guidelines are specifically focused on applied research but still offer a lot of choices e.g. regarding the 

inoculum preparation (temperature, medium type, statically incubation or not, suspension medium, 

etc.). This can be backed up by the fact that each particular contamination event has its own 

characteristics which need to be mimicked as good as possible. 

For more fundamental research investigating basic mechanisms such as pathogen attachment, 

biofilm formation, internalization etc. no such guidelines are available. For this particular research a 

model system which describes a confined set of research criteria seems to be an essential 

prerequisite in the opinion of the author. In such an ideal system a well described reference strain for 

different pathogens of interest (e.g. a strain for which the whole genome sequence is known and for 
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which well tested mutants exists) and a well-known model plant species should be chosen. 

Furthermore, conditions regarding bacterial cultivation, method of inoculation, temperature regime 

etc. should be well defined (Seo and Matthews 2014). The proposed model system, should however 

not compromise other research investigating the behavior of other strains, agricultural practices, 

plant varieties etc. By investigating the conditions of interest and incorporating a treatment that 

fulfills the requirements of the model system, scientific value is added as comparison with other 

research studies becomes easier.  

Additionally, a research database (preferably open access) which enable to search for specific 

methodology should be useful as well in order to be able to compare different studies more easily. 

Such a database will also enable researchers to define research gaps more easily, similar to what was 

done in the general introduction in this study. A system such as proposed exists already for classical 

phytopatology research at European level and is implemented by the European and Mediterranean 

plant protection organization (EPPO, www.eppo.int). EPPO is an intergovernmental organization 

responsible for European cooperation in plant health. Its objectives are to protect plants, to develop 

international strategies against the introduction and spread of dangerous pests and to promote safe 

and effective control methods. Therefore, a large number of standards and publications on plant 

pests, phytosanitary regulations, and plant protection products were produced and made available 

on its website. General standards are available in different languages (English, French, sometimes 

Russian) and specific standard can be obtained by EPPO members. Furthermore, the organization 

provides databases with detailed information on the geographical distribution and host plants of 

quarantine pests, online database which provides preferred scientific names, synonyms, common 

names, EPPO codes, and taxonomic relationships of organisms important in agriculture and crop 

protection, online database on diagnostic expertise. Experts from more than 100 diagnostic 

laboratories of the EPPO region have provided details about the pests they can diagnose and the 

methods they use. Furthermore, they developed software for pest risk analysis (EPPO 2014).  

An organization which could have a similar role as EPPO could be the recently proposed research 

coordination network regarding human pathogens on plants (HPOP RCN) (Fletcher et al. 2013). The 

research coordination network was proposed to be involved in defining research priorities, 

collaborations between government, education, economy (agriculture and industry) and science 

(plant pathology, food microbiology and epidemiology). It could, in the opinion of the author, be 

eminently suitable for the development of a model system or comparative research database as well.  
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Fruits and vegetables, together called fresh produce, represent an important part of the human diet. 

However, since the mid 1990’s foodborne illness outbreaks linked to consumption of fresh fruits and 

vegetables were documented. Especially leafy vegetables, such as lettuce, are frequently involved. 

Most identified outbreaks were caused by Salmonella and Escherichia coli O157:H7 (E. coli O157:H7), 

enteric bacterial pathogens which are traditionally associated with food products of animal origin like 

meat, dairy and eggs. Although the problem especially occurs in the USA, also in Europe outbreaks 

occurred. Only recently in 2011, over the course of the project, one of the biggest outbreaks 

occurred in Germany and France. This outbreak, also called ‘EHEC crisis’ could probably be traced 

back to the consumption of fenugreek sprouts contaminated with E. coli O104:H4, a less common 

pathogenic E. coli serovar. The very severe consequences for public health and significant economic 

impact underscored the importance to gain more information on the risk factors for introduction and 

persistence of E. coli O157:H7 and Salmonella during the primary production of fresh produce. 

For this thesis, butterhead lettuce was chosen as model plant because of its economic value for 

Belgium and the lack of knowledge about this typical northern European lettuce type regarding 

contamination with bacterial enteric pathogens. The thesis focused on contamination of the crop 

before harvest, also called preharvest contamination, by using artificial contaminations of seeds, 

irrigation water and growing lettuce plants. Furthermore, to better understand a natural 

contamination event, not only the behavior of freshly cultured, unstressed pathogens but also the 

behavior of stressed pathogens was investigated.  

A first objective was to determine the contribution of two potential contamination routes for 

introduction of Salmonella and E. coli O157:H7 on the crop during butterhead lettuce production in 

the greenhouse, namely seeds and irrigation water. Therefore, the survival of four different 

pathogen strains was studied i) on lettuce seeds over a period of two years and ii) in five different 

irrigation water samples over a period of two weeks. Our results confirmed that both seeds and 

irrigation water may be a potential source of contamination. E. coli O157:H7 and Salmonella were 

able to survive for more than two years on lettuce seeds but also to proliferate on the lettuce 

seedlings even after residing for a period of two years on the lettuce seeds. Salmonella survived 

significantly better on the seeds in comparison with E. coli O157:H7. The pathogens were also able to 

survive in irrigation water, their survival capacity was strain-dependent and varied with storage-

temperature of the water (better pathogen survival at 4°C in comparison with at 20°C). But most 

importantly, our results showed that irrigation water samples from different Belgian lettuce growers 

which showed a high variability in chemical and bacteriological composition, may have a different 

capacity to transmit enteric pathogens to the crops because of a different survival profile of the 

pathogen in each water sample. 
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A second objective was to gain more insight and knowledge about the behavior of Salmonella and E. 

coli O157:H7 on butterhead lettuce during the plant growth cycle. Three different aspects were 

investigated upon introduction of these enteric bacterial pathogens on the lettuce crop leaves: 

survival, attachment and gene expression.   

The survival of the pathogens on butterhead lettuce plants was studied both in the environment of a 

controlled growth chamber and in an actual setting of a greenhouse. The influence of crop stage in 

the growth cycle, the leaf’s age (or position of the leaves in the crop) and the occurrence of an 

irrigation treatment were taken into account. The survival of both pathogens (Salmonella and E. coli 

O157:H7) was investigated on young and mature butterhead lettuce plants and the effect of 

overhead irrigation was taken into account. Our results showed that when enteric pathogens were 

introduced on butterhead lettuce plants, they were able to survive on the plant leaves. Bacterial 

survival and growth rate in association with the lettuce leaves was highly variable and this variation 

was dependent on the crop growth stage and strongly dependent on the environmental conditions, 

especially the relative humidity. The pathogen’s survival on lettuce growing in the greenhouse was 

lower than on lettuce growing in a controlled growth chamber. Daily irrigation of the plant leaves 

had no influence on the epiphytic pathogen populations if the relative humidity was held at 80 %, but 

in greenhouse conditions it significantly prolonged their survival. Highest pathogen levels were 

observed on the inner, folded leaves of nearly mature plants, these are the leaves that are preferable 

consumed.   

Also the effect of prior residence of the pathogens in irrigation water (and thus the exposure to 

nutrient stress) on the capacity for E. coli O157:H7 to attach onto lettuce leaves was investigated. 

The attachment of these stressed pathogens was compared with freshly cultured pathogens. We 

could show that for E. coli O157:H7 the attachment ratio for the stressed, but still alive, cells was 

about the same as for the unstressed, freshly grown cells. The results also indicated that standard 

laboratory solutions may not be the best to simulate stressed cells in irrigation water, in which the 

bacteria may behave significantly differently.   

Furthermore, to improve the understanding about the underlying genetic mechanisms that the 

pathogens use during their survival on fresh produce, gene expression experiments of E. coli 

O157:H7 Sakai were performed when attached to growing butterhead lettuce plants. Our findings 

revealed that the pathogen actively interacts with the plant environment by adapting its metabolism 

and responding to oxidative stress. Consequently, the pathogen may have acquired enhanced 

resistance against oxidative stress and cross-protection against various other stresses. On the other 

hand, a decrease in the expression of the Shiga toxin and several other virulence genes was 

observed. Further research, is needed to investigate how these adaptations may affect the 

pathogen’s subsequent survival and virulence during processing and consumption. 
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Voor een gezonde en evenwichtige voeding wordt de consumptie van groenten en fruit 

aangemoedigd. De laatste jaren wordt evenwel ook een toename vastgesteld in het aantal uitbraken 

geassocieerd met groenten en fruit. De meeste uitbraken werden veroorzaakt door Salmonella en 

Escherichia coli O157:H7 (E. coli O157:H7), twee ziekteverwekkende bacteriën die voornamelijk 

voedselinfecties veroorzaken na de consumptie van besmet voedsel van dierlijke oorsprong zoals 

vlees, eieren en zuivel. 

Hoewel het probleem voornamelijk in de Verenigde Staten voorkomt, komen uitbraken in Europa 

ook steeds meer voor. Heel recent, tijdens het verloop van deze studie, brak één van de grootste 

uitbraken uit in Duitsland en Frankrijk. De uitbraak, die door de media ook wel de ‘EHEC crisis’ werd 

genoemd, was hoogstwaarschijnlijk te linken aan de consumptie van fenegriek scheuten die besmet 

waren met E. coli O104:H4, een minder gekende ziekteverwekkende E. coli serovar. De uitbraak had 

zeer zware gevolgen, zowel voor de volksgezondheid als op economisch vlak en onderlijnde het 

belang om de risicofactoren voor de introductie en overleving van dergelijke ziekteverwekkers in de 

primaire productie van groenten en fruit te onderzoeken. 

Voor deze studie werd kropsla, ook botersla genoemd, gekozen als model plant. Enerzijds omdat het 

gewas economisch belangrijk is voor België en anderzijds omdat er voor deze typische Noord-

Europese slavariëteit nog niet veel kennis is over mogelijke besmetting met deze ziekteverwekkers. 

De focus van het werk lag op het onderzoeken van factoren die besmetting kunnen veroorzaken 

tijdens de teelt van het gewas door gebruik te maken van artificieel besmetten van zaden, 

irrigatiewater of groeiende slaplanten. Anderzijds werd er ook aandacht besteed om een natuurlijk 

besmetting zo goed mogelijk na te bootsten en te begrijpen. Daarom werd ook het gedrag van 

gestresseerde bacteriën onderzocht. 

Een eerste doel bestond erin om na te gaan in hoeverre slazaden en irrigatiewater mogelijke 

insleeproutes vormen voor Salmonella en E. coli O157:H7 gedurende de productie van botersla in de 

serre. Daarom werd de overleving van vier verschillende bacteriële stammen onderzocht i) op 

slazaden gedurende een periode van twee jaar en ii) in vijf verschillende irrigatiewater stalen 

gedurende een periode van twee weken. Onze resultaten bevestigden dat zowel zaden als 

irrigatiewater een mogelijke bron van besmetting kunnen vormen. Zowel E. coli O157:H7 als 

Salmonella waren in staat om gedurende twee jaar te overleven op de slazaden. Wanneer deze 

zaden, na twee jaar, werden gekiemd, waren beide ziekteverwekkers in staat om terug in aantal toe 

te nemen op de kiemplantjes. Salmonella overleefde beter dan E. coli O157:H7 op de zaden. De 

bacteriën waren ook in staat om in de verschillende irrigatiewaterstalen te overleven, hun overleving 

varieerde afhankelijk van de stam en was beter bij lagere temperatuur (4°C) dan bij hogere (20°C). 
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Maar het belangrijkste resultaat was dat de overleving van de pathogeen zeer sterk verschilde tussen 

de verschillende stalen van Belgische slaproducenten. De waterstalen vertoonden een hoge 

variabiliteit in chemische en bacteriologische samenstelling en verschilden sterk in capaciteit om de 

ziekteverwerker over te brengen op de slaplanten omdat het overlevingsprofiel van de pathogeen 

verschillend was in elk waterstaal. 

Een tweede doel van de studie bestond eruit om meer inzicht en kennis te verwerven over het 

gedrag van de twee ziekteverwekkende bacteriën gedurende de groeicyclus van de sla. De bacteriën 

werden op de bladeren van slaplanten aangebracht en vervolgens werden drie verschillende 

aspecten onderzocht: overleving, aanhechting en genexpressie. De overleving van de bacteriën op de 

slaplanten werd zowel in een groeikamer als in een serre onderzocht. De invloed van het 

kropstadium, de ouderdom van de slabladeren (of de positie van de bladeren in de slakrop) en het al 

dan niet irrigeren (op de plant zelf) werd nagegaan op zowel jonge en bijna oogstklare slaplanten. 

Onze resultaten toonden aan dat wanneer de bacteriën op de planten werden geïntroduceerd, ze in 

staat waren om te overleven op de bladeren van de plant. De overleving van de bacteriën en de groei 

van de bacteriën op de slabladeren was zeer variabel en deze variatie hing af van het groeistadium 

van de plant en bleek ook sterk af te hangen van de omgevingscondities, in het bijzonder de relatieve 

vochtigheid. Hierdoor was de overleving van de bacteriën op planten in de serre minder goed dan 

wanneer de planten in een groeikamer met gecontroleerde temperatuur en relatieve vochtigheid 

werden opgegroeid. Dagelijks irrigeren van de planten had geen invloed op de overleving van de 

pathogeen populaties op het blad wanneer de relatieve vochtigheid op 80% werd gehouden, maar in 

de serre kon het de overleving van de bacteriën sterk verlengen. De hoogste niveaus aan pathogenen 

werden bereikt op de binnenste gevouwen blaadjes in de slakrop, dit zijn het blaadjes die het liefst 

geconsumeerd worden. 

Er werd ook nagegaan in hoeverre het verblijf van de pathogenen in irrigatie water (en dus ook het 

blootstellen van de pathogeen aan nutriënten tekort/stress) een invloed heeft op de 

aanhechtingscapaciteiten van E. coli O157:H7 aan slabladeren. We konden aantonen dan de 

aanhechting van levende, maar gestresseerde bacteriën niet substantieel verschilde van 

ongestresseerde bacteriën. De resultaten toonden ook aan dat het gedrag van deze bacteriën in 

standaard laboratorium oplossingen niet altijd het gedrag van de bacteriën in irrigatiewater uit de 

praktijk correct weerspiegelen. 

Ten slotte werd er getracht om een beter inzicht te verwerven in de onderliggende genetische 

mechanismen die de bacteriën gebruiken om te overleven op groenten en fruit. De resultaten van 

deze genexpressie experimenten brachten aan het licht dat E. coli O157:H7 Sakai actief interageert 



Samenvatting 

 

 157 

met de plant door zijn metabolisme aan te passen en door te reageren op aanwezige oxidatieve 

stress. Ten gevolge hiervan is het mogelijk dat de bacteriën een betere resistentie ontwikkelen tegen 

deze stress maar bovendien ook mogelijk kruisresistentie kunnen ontwikkelen ten opzichte van 

andere stressoren. Anderzijds werd er een afname in de expressie van verschillende virulentiegenen 

waargenomen waaronder de Shiga toxines. Verder onderzoek zal moeten uitwijzen in hoeverre deze 

aanpassingen de overleving en virulentie van de ziekteverwekkers gedurende de verwerking en 

consumptie van de sla kan beïnvloeden. 
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