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Scope  

Agricultural plants face a variety of abiotic stresses such as salinity, drought, low and high 

temperatures as well as biotic stresses caused by insects, bacteria, fungi, viruses and 

herbivores. Due to the lack of mobility, plants cannot avoid these unfavorable conditions 

and therefore have developed complex mechanisms to cope with them. One of these 

mechanisms is the synthesis of protein containing carbohydrate binding domains. During the 

last decade, a new group of inducible lectins was discovered. Hitherto, little information is 

known about the possible role of these inducible lectins but the hypothesis has been put 

forward suggesting a physiological role for the inducible lectins when plants are confronted 

with stress. Therefore, the general goal of the work described in this thesis is to study the 

possibility of using some of these inducible lectins for increasing the tolerance of crops 

against stresses.  

Lectins belonging to two families of inducible proteins were selected for this PhD research. 

The first lectin is called Orysata and was discovered in rice seedlings treated with NaCl and 

therefore is known as a stress related protein. Orysata belongs to the family of jacalin-

related lectins. In addition we focused on OrysaEULS2 and OrysaEULD1A belonging to the 

family of EUL-related lectins. OrysaEULS2 represents the S-type containing one EUL domain 

whereas OrysaEULD1A represents the D type with two tandemly arrayed EUL domains. 

The first objective of this work was to characterize the proteins under study; Orysata, 

OrysaEULS2 and OrysaEULD1A. In chapter 2, the focus was on the cloning, the expression 

analysis and the purification for the recombinant proteins using the heterologous system 

Pichia pastoris which allowed us to determine the molecular structure and carbohydrate-

binding specificity of the lectins under study. 

The second objective for this PhD research was to analyze the expression of the stress-

inducible lectins in the plant. Chapter 3A describes the promoter activity for OrysaEULS2 and 

OrysaEULD1A after different abiotic stress treatments using qualitative GUS staining assays 

in plants during different stages of development. In addition, chapter 3B focuses on 

investigation of the expression level for Orysata as well as the whole set of putative EUL 

lectins in rice subjected to some important abiotic and biotic stresses.  
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The third objective of this research was to evaluate the performance of the transgenic lines 

over-expressing Orysata, OrysaEULS2 and OrysaEULD1A under different abiotic and biotic 

stresses. To perform this analysis, Orysata, OrysaEULS2 and OrysaEULD1A were expressed 

ectopically in Arabidopsis plants behind the 35S promoter. In Chapter 4A the performance of 

transgenic Arabidopsis overexpressing each of Orysata, OrysaEULS2 and OrysaEULD1A was 

analyzed after abiotic and biotic stresses. In addition, the Orysata sequence was introduced 

into tobacco. Chapter 4B describes the effect of Orysata against biting-chewing and piercing-

sucking insects when ectopically expressed in tobacco plants. This effect was investigated by 

short term experiments on detached tobacco leaves over-expressing Orysata as well as 

bioassays with an artificial diet containing different concentrations of recombinant Orysata.  
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1.1 Justifications of this PhD research 

1.1.1 Why rice? 

In recent years, rice has become a model system to investigate the impact of abiotic and 

biotic stresses on crops mainly because of the importance of rice for food security, the 

availability of diverse genetic resources for rice, the existence of the full genome sequence, 

and the presence of advanced research tools (Paterson et al., 2005; IRGSP 2005; Xu et al., 

2006). Rice (Oryza sativa L.) is one of the most important food crops in the world supplying 

20% of daily calories to more than 3.5 billion people worldwide (Khush 2013; World Rice 

Statistics, http://www.irri.org). Because rice belongs to the monocot family Gramineae, any 

progress made in rice can be applied to other members of this family especially maize and 

wheat which are also very important for food security.   

1.1.2 Description of the problem  

Abiotic and biotic stresses are the major factors affecting plant growth and crop 

productivity. Owing to their sessile nature, plants have evolved specific adaptive 

mechanisms as a response to environmental stresses. Salinity and drought are the most 

important factors among abiotic stresses. Salinity is one of the most serious factors limiting 

the productivity of agricultural crops (Munns and Tester 2008). On a world scale, more than 

45 million hectares of irrigated land are damaged as a result of high salinity and 1.5 million 

hectares are taken out of production yearly (Munns and Tester 2008). It is estimated that 6% 

of the world’s total land and 20% of the world’s irrigated areas are affected by salinity. 

Drought is a major environmental stress factor that affects the growth and development of 

plants. Drought can be chronic in regions with low water availability or random and 

unpredictable due to changes in the weather conditions. The harmful effect of drought is 

expected to increase because of the climate change and the limited water sources. 

In addition, biotic stresses provoked by fungi, bacteria, viruses, insects,… are also decreasing 

the yield of crops. For instance, 10 to 15% reduction of rice yield was estimated to be due to 

diseases caused by bacterial blight (Xanthomonas oryzae) and fungal blast (Magnaporthe 

oryzae) (Dai et al., 2007). Based on these facts, the identification of stress tolerance genes 

http://www.irri.org/
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and understanding their functions have become the most urgent tasks in order to enable the 

search for new methods to increase the yield of crops under unfavorable conditions.  

The world population is increasing at an alarming rate and it is expected to reach nine billion 

by 2050, but unfortunately the food production is limited. It has been proposed that global 

food production must increase by 70% by 2050 to meet the demand caused by this growing 

population (Godfray et al., 2010). Global rice demand is estimated to rise from 676 million 

tons in 2010 to 763 million tons in 2020 and to 852 million tons in 2035. This is an overall 

increase of 176 million tons in the next 25 years. To reach this high demand, the yield 

potential of rice has to increase from 10 to 12.3 tons per hectare (Khush 2013).  

Conventional breeding approaches have been used to exploit the natural genetic variation 

for improving rice varieties. However, because of the complexity of stress tolerance traits, 

conventional approaches are less effective in connecting tolerance traits to the determinant 

genes that play key roles in the stress response. Therefore, biotechnological approaches 

have to be used with the aim of increasing the crop tolerance against stresses to avoid the 

disaster of hunger. 

 

1.2 Plant lectins  

1.2.1 Historical overview 

Lectins are a class of proteins with a very long scientific history. The lectin story started in 

1888 when Stillmark, in his PhD thesis, linked the toxicity of castor bean (Ricinus communis 

L.) to a proteinaceous haemagglutinating factor which was called ‘ricin’ (Stillmark 1888). The 

term hemagglutinin was first introduced in 1898 as a common name for all plant proteins 

that cause clumping of cells (Elfstrand 1898). In 1907, Landsteiner and Raubitschek reported 

for the first time the presence of nontoxic lectins in the legumes Phaseolus vulgaris (bean), 

Pisum sativum (pea), Lens culinaris (lentil), and Vicia sativa (vetch). Afterwards, certain 

hemagglutinins showed specificity towards erythrocytes of a particular human blood group 

within the ABO system (Renkonen 1948; Boyd and Reguera 1949). The discovery of blood 

group specificity was the direct motive to the introduction of the novel term ‘lectin’ (from 

the Latin verb ‘legere’, which means ‘to select’) (Boyd and Shapleigh 1954).  
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The first definition of lectins was based primarily on their sugar specificity and their ability to 

inhibit the agglutination of cells. According to this concept, lectins were defined as 

“carbohydrate-binding proteins (or glycoproteins) of non-immune origin that agglutinate 

cells and/or precipitate glycoconjugates” (Goldstein et al., 1980). Based on this definition, 

only multivalent carbohydrate-binding proteins can be classified as lectins. In an attempt to 

broaden the definition, Kocourek and Horejsi (1983) modified the definition as “Lectins are 

proteins of non-immunoglobulin nature capable of specific recognition and reversible 

binding to carbohydrate moieties of complex carbohydrates without altering the covalent 

structure of any of the recognized glycosyl ligands”. Afterwards, lectins were redefined as 

“carbohydrate-binding proteins other than antibodies or enzymes” (Barondes 1988). 

However, this definition should not exclude all enzymes since some lectins do have an 

enzymatic part (like type 2 ribosome-inactivating proteins and class I chitinases). At present, 

the definition which is scientifically accepted describes lectins as “all proteins possessing at 

least one non-catalytic domain, which binds reversibly to a specific mono- or 

oligosaccharide” (Peumans and Van Damme 1995). Accordingly, agglutination is no longer 

considered a criterion to classify a protein as a lectin. 

1.2.2 Classification  

All known plant lectins can be classified into 12 families based on their overall structure and 

specificity (Van Damme et al., 2008; 2010; Lannoo and Van Damme 2010). The structure of 

the carbohydrate domain as well as the carbohydrate specificity for each plant lectin family 

are summarized in Table 1.1. 
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Table 1.1 Lectin families based on structural homology of the carbohydrate binding domain  

Lectin family  Structure  Specificity  Example  Localization  

Agaricus bisporus 

agglutinin 

Homodimer/ β-sandwich T-antigen  MarpoABA Nucleocytoplasm  

Amaranthins  Homodimer/   β-trefoil T-antigen and GalNAc Amaranthin Nucleocytoplasm 

Class V chitinase 
homologues with lectin 
activity  

Homodimer/ TIM-barrel High-Man N-glycans RobpsCRA  Vacuole  

Cyanovirins  Homodimer/ Triple-stranded β- 
sheet and a β-hairpin 

High-Man N-glycans Cyanovirin-N Vacuole  

Lectins with EUL domain(s) Homodimer/ Structure 
unknown 

Blood group B oligosaccharides and high-
Man N-glycans  

EEA Nucleocytoplasm 

GNA-related lectins  Different oligomerisation states 

β-barrel 

Man, N-glycans GNA Vacuole 

GNAmaize Nucleocytoplasm 

Jacalin-related lectins Different oligomerisation states 

β-prism 

Gal/T-antigen specific sub-group  Jacalin Vacuole 

Man-specific subgroup  Orysata  Nucleocytoplasm 

Lectins with hevein domains  Different oligomerisation states 

Hevein domain 

(GlcNAcn) Hevein  Vacuole  

Legume lectins  Different oligomerisation states Man/Glc, Gal/GalNAc, (GlcNAcn), Fuc, 
Siaα2,3Gal/GalNAc, complex glycans  

Con A Vacuole  
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β-sandwich 

Proteins with LysM domains  Different oligomerisation states 

β-α-α-β- structure 

(GlcNAcn) CEBiP Vacuole  

Nictaba-like lectins  Homodimer 

Structure unknown 

(GlcNAcn) and N-glycans Nictaba  Nucleocytoplasm 

Ricin-B lectins  Different oligomerisation states 

β-trefoil 

Gal/GalNAC, Siaα2,6Gal/GalNAc Ricin  Vacuole 

Nucleocytoplasm 
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1.2.3 Function of plant lectins  

1.2.3.1 Vacuolar lectins  

To classify a protein as a vacuolar plant lectin, it has to meet several criteria (Van Damme et 

al., 2004b). First, the vacuolar lectins are constitutively expressed at high concentration (0.1-

10% of the total protein) in the seeds and the vegetative tissues suggesting a possible role as 

storage proteins. Second, the expression level of such lectins is not affected by 

environmental stresses but it is considered as a part of the developing program of the plant 

cell. Third, the vacuolar lectins are synthesized on ribosomes attached to the endoplasmic 

reticulum and afterwards they follow the secretory pathway through the Golgi apparatus. 

Eventually, they are located in the vacuoles or are secreted into the extracellular spaces. 

Fourth, these abundant lectins show affinity towards ‘foreign’ glycans (i.e. not occurring in 

plants) pointing at their expected role in the defense system. It has been demonstrated that 

vacuolar lectins such as Concanavalin A (Con A), Galanthus nivalis agglutinin and wheat germ 

agglutinin showed negative effects on the development and survival of phytophagous 

insects belonging to Lepidoptera, Coleoptera, Diptera and Hemiptera (for details see 

Michiels et al., 2010; Vandenborre et al., 2011b).  

It can be concluded that the vacuolar lectins play a storage role under normal growth 

conditions but can be recruited for a defense role in case the plant is attacked by predators. 

1.2.3.2 Nucleocytoplasmic lectins  

Over the last years, evidence has accumulated that plants synthesize well-defined 

carbohydrate-binding proteins in response to several abiotic and biotic stresses such as 

drought, high salt, wounding, treatment with plant hormones, or pathogen attack. The 

discovery of some inducible lectins in rice (Zhang et al., 2000) and tobacco (Chen et al., 2002) 

led to the development of a novel concept for lectin function. Since these inducible lectins 

are synthesized only after exposure to stress conditions, the hypothesis was put forward 

that lectin-mediated protein–carbohydrate interactions in the cytoplasm and the nucleus 

might play an important role in the stress physiology of the plant cell (Van Damme et al., 

2004b; Van Damme et al., 2004a). Taking into consideration that any physiological role of 

plant lectins most likely will rely on their carbohydrate-binding activity, the discovery of the 
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novel stress related lectins provides a strong evidence for the importance of protein-

carbohydrate interactions in plants. Localization studies demonstrated that these so called 

“inducible” lectins are located in the cytoplasm and/or the nucleus of the plant cell and 

therefore they are also called nucleocytoplasmic lectins (Lanno and Van Damme 2010).  

The localization of the inducible lectins inside the plant cell raises the question about their 

putative receptors. Carbohydrates attached to proteins can be classified into two main 

categories: N-glycans, linked to asparagine residues; and O-glycans, linked to the serine, 

threonine and hydroxyproline residues in the protein chain. With the exception of 

nucleocytoplasmic O-GlcNAcylation, protein N- and O-glycosylation typically occur in the 

secretory pathway. Despite the huge progress in glycoconjugate research over the last 

decades, the nucleocytoplasmic side of glycobiology is still poorly understood. The presence 

of most of the inducible lectins in the cytoplasm and the nucleus suggests that the binding 

partners for these proteins might be glycosylated proteins, glycolipids, free sugars or 

polysaccharides and free glycans.  

Higher plants have N-linked glycans ranging from high-mannose to complex N-glycans, with 

one or two terminal Lewis A antennae (Lerouge et al., 1998; Kimura et al., 2005) or contain 

other sugars like fucose and xylose (Gomord et al., 2005). The high-mannose-type N-glycans 

have the same structure in plant and mammalian glycoproteins. In contrast, complex-type N-

glycans are structurally different in plants and mammals. For instance, in plants, the 

proximal N-acetylglucosamine of the core is substituted by an α1,3 fucose rather than an 

α1,6 fucose in mammals, and the β-mannose of the core is substituted by a bisecting β1,2 

xylose in plants, rather than a β1,4 N-acetylglucosamine in mammals. In addition, β1,3 

galactose and fucose α1,4-linked to the terminal N-acetylglucosamine of plant N-glycans 

form Lewis A oligosaccharide structures instead of β1,4 galactose combined with sialic acids 

in mammals. It is worth mentioning here that Blood group B, Lewis X, Lewis Y and 

lactosamine structures are well-studied in higher animals (Stanley et el., 2009), bacteria and 

viruses (Monzavi-Karbassi et al., 2004) but they have never been reported in plants. Free N-

glycans in the cytosol presumably originate from the de novo synthesis or N-glycoconjugate 

degradation (Priem et al., 1993; Nakamura et al., 2008). In 2010, Maeda et al. (2010) 

analyzed the free N-glycans in the intracellular and the extracellular spaces in a rice cell 

suspension culture. The intracellular fraction contained mainly high-mannose type N-glycans 



9 
 

with one GlcNAc residue and but also truncated complex type N-glycans whereas complex 

free N-glycans containing the Lewis A epitope and high-mannose type free N-glycans were 

characterized from the culture medium. In addition, metabolic glycans, such as cytosolic 

heteroglycans resulting from the degradation of leaf starch (Fettke et al., 2009; 2011) or 

other plant polysaccharides could also be a putative target for the lectins in the cytoplasm. 

Based on these observations, it seems reasonable to expect that the biological activity of the 

nucleocytoplasmic proteins relies on their binding to cytoplasmic/nuclear receptors. In 

addition, we cannot exclude the possibility that as a response to external stresses some of 

the inducible proteins are targeted from the cytosol into the apoplast to interact with 

glycolipids in the plasma membrane and other sugar containing structures in the cell wall. 

Specificity studies revealed that Orysata, classified as the first member of the 

nucleocytoplasmic lectins (see section 1.2.5.4), showed strong affinity towards high-

mannose N-glycans (Zhang et al., 2000). Similarly, Nictaba (a nucleocytoplasmic lectin from 

tobacco) reacts well with GlcNAc oligomers but exhibits a higher affinity for high-mannose 

N-glycans (Lannoo et al., 2006a). Based on this observation, the cytosolic N-glycosylated 

glycoproteins might be the glycan-receptors for these lectins. However, most O- and N-

glycosylated proteins known thus far follow the secretory pathway for localization in 

vacuoles and extracellular spaces, but the occurrence of O- and N-glycosylated glycoproteins 

in the cytosol and in the nucleus of plant cells has been reported (Funakoshi and Suzuki 

2009; Schouppe and Van Damme 2011).  Furthermore, we cannot exclude the possiblility 

that the inducible lectins can bind free sugars, polysaccharides, free N-glucans and 

glycolipids and we can also not exclude that these lectins can act through protein–protein 

interactions with non-glycosylated proteins. 

In conclusion, the nucleocytoplasmic lectins can be characterized by different features. First, 

they lack the signal peptide sequence and thus are synthesized on free ribosomes in the 

cytoplasm and finally localize to the nucleus and/or the cytoplasm of the plant cell. Second, 

the inducible lectins are not constitutively expressed but are synthesized in response to 

different stimuli. However, even after induction the expression level of these lectins remains 

low. Third, since they are nucleocytoplasmic proteins, they can interact with plant glycans 

inside these cell compartments.  
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It should be mentioned, however, that some plant species accumulate high concentration of 

proteins that resemble the stress-related lectins. Apparently some of the nucleocytoplasmic 

lectins have evolved through evolution and plants have used the corresponding genes as 

templates for the development of lectins with a storage and/or defence related role (Van 

Damme et al., 2004b). Especially in the family of jacalin-related lectins several examples of 

highly expressed lectins that locate to the cytoplasm have been reported, such as the 

banana (Musa acuminata) fruit lectin (Koshte et al., 1990; Peumans et al., 2000a), the 

Helianthus tuberosus tuber agglutinin (Van Damme et al., 1999) and the Calystegia sepium 

rhizome agglutinin (Peumans et al., 1997). 

1.2.4 Nucleocytoplasmic lectin families  

Until now, six families of nucleocytoplasmic lectins have been described (Table 1.1) (Lannoo 

and Van Damme 2010). These families are: Agaricus bisporus agglutinin, amaranthins, lectins 

with (a) EUL domain(s), GNA-related lectins, jacalin-related lectins and Nictaba-like lectins. In 

this PhD research, we are focusing on the jacalin-related lectins as well as lectins with (a) EUL 

domain(s). Therefore, the following sections give an overview of the most important 

characteristics of these two lectin families. 

1.2.4.1 Jacalin-Related Lectins (JRLs) 

Classification, structure and localization of JRLs 

The family of jacalin-related lectins (JRLs) got its name from jacalin, the trivial name of the 

galactose-binding lectin isolated from jackfruit (Artocarpus integrifolia) seeds (Sastry et al., 

1986). According to their specificity, localization and molecular structure, JRLs are 

subdivided into mannose-specific and galactose-specific lectins (Peumans et al., 2000b). The 

size and conformation of the carbohydrate-binding site is more extended for the galactose 

JRLs due to the cleavage of the lectin protomer into two polypeptide chains [~20 amino acid 

(AA) β and ~130 AA α chains] by the posttranslational excision of a tetrapeptide linker 

(Bourne et al., 2002; Houlès-Astoul et al., 2002). In contrast, mannose JRLs are composed of 

either un-cleaved protomers of approximately 150 AA or protomers comprising two to seven 

tandemly arrayed jacalin domains (Van Damme et al., 2010). Whereas the galactose JRLs are 
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localized in the vacuoles, the mannose JRLs are localized in the cytoplasm and/or the nucleus 

of the plant cell (Peumans et al., 2000b).  

Inducible JRLs 

The first inducible lectin was described in rice seedlings after salt treatment (Claes et al., 

1990). This protein, called Orysata, (see section1.2.5.4) was classified as a mannose-specific 

jacalin-related lectin (Zhang et al., 2000; Hirano et al., 2000). Jasmonate-inducible orthologs 

of Orysata have been identified in Helianthus tuberosus (Heltuba) (Nakagawa et al., 2000), 

Brassica napus (Geshi and Brandt 1998) and Ipomoea batatas (Ipomoelin) (Imanishi et al., 

1997).  

Within the Gramineae family, several inducible proteins with a chimeric form containing a 

jacalin domain fused to an unrelated domain have been identified. One of these proteins is 

specifically expressed during vernalization in wheat (called VER2) (Yong et al., 2003). Using 

sequence information of VER2, a rice cDNA encoding mannose-binding jacalin-related lectin 

(designated OsJAC1) with a disease-response domain in the N-terminal sequence was 

characterized (Jiang et al., 2006). The expression of VER2 protein in rice (OsJAC1) and wheat 

was shown to be jasmonate inducible. In addition, TaJA1, Tritium aestivum jasmonate 1, 

from wheat (Wang and Ma 2005) and HvJRP1, Hordeum vulgare jacalin-related protein 1, 

from barley are considered as homologs to the jasmonate inducible proteins from barley 

collectively called JRP-32, jacalin-related proteins with a molecular mass of 32 kDa, (Ma 

2013). TaHfr-1, Tritium aestivum Hessian fly responsive 1, is a gene that is induced in wheat 

upon infestation by larval feeding of the Hessian fly (Williams et al., 2002). The TaHfr-1 

protein exhibits mannose-specific activity (Subramanyam et al., 2008). Another structurally 

similar protein containing a jacalin domain occurs in maize, where it is known as a β-

glucosidase-aggregating factor (Molina et al., 2004; Kittur et al., 2007). The wide distribution 

of JRLs suggests an important role for lectins from this family. It has been reported that 

overexpression of OsJAC1 in rice suppresses coleoptile and stem elongation, indicating that 

this lectin is important for rice growth and development (Jiang et al., 2007).  
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1.2.4.2 Lectins with EUL domain(s) 

EEA is a structural unit for a new family 

Already in the 1970s it was known that the Euonymus europaeus (spindle tree) contains an 

agglutinin in the fleshy arils surrounding the seeds, referred to as Euonymus europaeus 

agglutinin (EEA) (Petryniak et al., 1977). In 2008, EEA was investigated for the first time at 

the molecular level, resulting in the cloning of the lectin cDNA sequence (Fouquaert et al., 

2008). The EEA cDNA encodes a 17 KDa protein with no signal peptide suggesting that EEA is 

synthesized on free ribosomes. Furthermore, localization analysis revealed that this lectin is 

localized in the cytoplasm and nucleus of the plant cell (Van Hove et al., 2011). Sequence 

comparison revealed that EEA shares high sequence identity (46%) and similarity (62%) with 

some rice proteins induced by ABA and salt treatments, referred to as OSR40 proteins (Oryza 

sativa repeats 40 kDa) (Moons et al., 1997a). These rice proteins are annotated in the 

database as “Ricin-B related lectin domain containing proteins” based on the presence in 

their sequence of two QXW repeats, which are considered typical motifs of the ricin-B 

domain. But according to the BLASTp search there is no significant sequence similarity with 

proteins comprising a ricin-B domain and thus it is questionable whether they can be 

considered as ricin-B family members. Therefore EEA and the OSR40 proteins are now 

classified in a new family of so-called proteins with Euonymus lectin (EUL) domain(s). Since 

then the EUL domain is considered as the prototype for this new lectin family (Fouquaert et 

al., 2009a; Fouquaert and Van Damme 2012).  

Occurrence and classifications of EULs 

Screening on genome and transctiptome levels revealed that proteins with an EUL domain 

are ubiquitous within the Embryophyta, but are not present in other eukaryotes or in 

prokaryotes (Fouquaert et al., 2009a). EUL proteins are widely distributed from monocots 

(rice, maize), to dicots (Arabidopsis, tomato) and the lower plants (Physcomitrella, 

Selaginella).  

Based on the overall domain architecture of all EUL sequences known to date a classification 

system for this lectin family has been proposed (Fouquaert et al., 2009a). According to this 

system, the EUL family can be subdivided into two big classes; the members of the S type 
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comprise a single EUL domain whereas members of the D type containing two tandemly 

arrayed EUL domains (Fig. 1.1). Based on the occurrence of N- and C- terminal sequences, 

the S type can be divided into seven subtypes. Type S0 represents all proteins that consist 

exclusively of EUL domains. Depending on the length of the N-terminal domain three 

different types of EUL proteins can be classified, being type S1 (short N sequence < 50 AA), 

type S2 (medium long 50–100 AA) and type S3 (long N-sequence > 100 AA). Similarly based 

on the length of the C-terminal sequence two additional types are added; type S4 represents 

proteins consisting of a medium long (50-100 AA) unrelated N-terminal sequence, an EUL 

domain, and a short (<50) C-terminal extension whereas type S5 represents proteins 

consisting of a short (<50) unrelated N-terminal sequence, an EUL domain, and a short (<50) 

or medium long (50-100 AA) C-terminal extension. In addition, type Sv (v stands for vacuole) 

consists of an EUL domain preceded by a short unrelated N-terminal sequence containing a 

putative signal peptide.  

Similar to the S type, the D type can be subdivided into five different subtypes based on the 

length of the N-terminal domain preceding the EUL domains and the linker sequence 

between the two EUL sequences. Type D0 groups proteins consisting of two in tandem 

arrayed EUL domains separated by a short (<40 AA residues) linker and without N-terminal 

extension. Type D1 represents all proteins consisting of two in tandem arrayed EUL domains 

separated by a short (<40 AA residues) linker and preceded by a short (15-35 AA residues) N-

terminal extension. Type D2 resembles type D1 but the linker in between the EUL domain is 

longer (>40 AA residues). Type D3 resembles type D1 but the N-terminal sequence is longer 

(> 50 AA residues). Finally, type D4 comprises proteins consisting of two in tandem arrayed 

EUL-related domains (with low sequence similarity to EEA) separated by a short (<40 AA 

residues) linker and without N-terminal extension.  
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Fig. 1.1 Schematic representation of the 12 types of Euonymus-related lectins (EUL). Variability in the N- and C-

terminal sequences, inter-domain linkers is indicated by different lengths and colors. Seq: sequence. Adapted 

from (Fouquaert et al., 2009a). 

 

Inducible EULs  

As mentioned above rice EUL proteins are induced by different stresses including salinity and 

ABA. Therefore, it has been suggested that these EUL proteins are involved in the adaptive 

response to a hyper-osmotic environment (Moons et al., 1997a). Data generated from 

microarrays and proteomics approaches revealed that rice EUL proteins are regulated in 

response to different abiotic and biotic stress conditions (Kawasaki et al., 2001; Dooki et al., 
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2006; Ke et al., 2009; Kyndt et al., 2012).  In silico expression analysis revealed that the EUL 

type S3 from Arabidopsis (being the only type of EUL protein identified in Arabidopsis) is up-

regulated in response to salinity, osmotic stress and after ABA treatment (Fouquaert et al., 

2009a). More evidences have accumulated that EUL proteins are stress related proteins. In 

response to water stress, the expression of a maize EUL homolog was increased (Riccardi et 

al., 2004). In addition, it was shown that the EUL proteins from banana contribute towards 

dehydration tolerance (Carpentier et al., 2007). 

It can be concluded, based on above mentioned data that EULs are proteins that can 

respond to abiotic and biotic stresses. In addition, EULs are synthesized without a signal 

peptide, and therefore they encode nucleocytoplasmic proteins (except type Sv). 

Localization analysis performed in tobacco BY2 cells for EEA (Van Hove et al., 2011), in 

Arabidopsis plants for type S3 (from Arabidopsis) (Van Hove et al., 2011) and in tobacco as 

well as in Arabidopsis plants for type S2 and type D1 from rice (chapter 4A) confirmed the 

nucleocytoplasmic localization for these EUL proteins. Therefore, it has been suggested that 

the EUL domain plays a role in stress related physiological processes (Lannoo and Van 

Damme 2010; Fouquaert and Van Damme 2012). 

1.2.5 Rice lectins 

1.2.5.1 Lectins with hevein domain(s) 

By definition the family of lectins with hevein domain(s) comprises all proteins containing at 

least one hevein domain. The hevein domain is a small 43 AA protein from the latex of the 

rubber tree (Hevea brasiliensis) (Waljuno et al., 1975). Despite its small size, this domain 

possesses a fully active chitin-binding site. 

The so-called rice lectin (Oryza sativa agglutinin, OSA) belongs to the family of lectins with 

hevein domains. This lectin has been detected in the embryo of several species belonging to 

the family Gramineae including Oryza sativa (Peumans and Stinissen 1983). When isolated 

from rice embryos, it preferentially agglutinated trypsin-treated erythrocytes (Tabary et al., 

1984). Inhibition assays revealed that N-acetylglucosamine (GlcNAc) was a potent inhibitor 

for this lectin (Tsuda 1979). Afterwards, it was shown that OSA (38 kDa) contains four 

equivalent saccharide-binding sites and confirmed the reaction with GlcNAc (Tabary et al., 
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1985). According to the cDNA sequence, OSA is synthesized as a pre-pro-protein consisting 

of a 28 residue signal peptide, a sequence of 173 AA with four tandemly arrayed hevein 

domains, and a 26 residue C-terminal pro-peptide with a putative glycosylation site (Wilkins 

and Raikhel 1989). Biosynthesis studies confirmed the co-translational removal of the signal 

peptide and glycosylation of the C-terminal propeptide. After removal of the glycosylated C-

terminal pro-peptide, the protomers of OSA and some other wild rice species are for 50 to 

90% posttranslationally cleaved into two smaller polypeptides of 8 and 10 kDa, respectively. 

As a result, they contain polypeptides of 18 kDa as well as of 8 and 10 kDa (Van Damme et 

al., 1998). It is worth mentioning that the insecticidal activity of OSA was tested against the 

rice brown planthopper (Nilaparvata lugens) in an artificial diet assay, but it exhibited no 

significant antimetabolic effect towards this sap-sucking insect (Powell et al., 1995).   

1.2.5.2 GNA-like lectins 

The mannose-specific G. nivalis agglutinin or GNA was originally isolated from the bulbs of 

snowdrop (Van Damme et al., 1987). GNA-related lectins are synthesized with an N-terminal 

signal peptide and a C-terminal pro-peptide (Van Damme et al., 1991; 1998) and thus 

localize to the vacuoles and/or extracellular spaces. Sequence analysis revealed that GNA 

orthologs lacking the signal peptide are found in wheat, maize (Van Damme et al., 2004a) 

and rice. The GNA ortholog from rice (GNArice) can be considered as a naturally occurring 

nucleocytoplasmic counterpart for the vacuolar GNA. Sequence alignment confirmed that 

GNArice corresponds to the mature GNA polypeptide and contains three fully active 

mannose-binding sites. In contrast to vacuolar GNA, localization analysis revealed that 

GNArice was exclusively located in the nucleus and the cytoplasm (Fouquaert et al., 2007). 

The high sequence identity (37.6%) and similarity (73.4%) with the mature GNA polypeptide 

suggest that the cytoplasmic and vacuolar GNA homologs from plants are evolutionarily 

related (Fouquaert et al., 2007). 

 1.2.5.3 Nictaba-like lectins  

Screening of the annotated genome of Oryza sativa revealed the presence of eleven types of 

Nictaba homologs: five types encode proteins consisting of a single Nictaba domain, three 

types encode chimeric proteins consisting of a Nictaba domain linked to an F-box domain, 

one type encode a protein kinase domain linked to Nictaba and two types contain multiple 
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Nictaba domains (investigated by Sofie Van Holle, unpublished data). These proteins have 

not been investigated in more detail yet. 

1.2.5.4 Jacalin-related lectins 

In the rice genome, multiple genes encoding jacalin-related proteins have been identified 

based on genome-wide approaches (Jiang et al., 2010a). Oryza sativa agglutinin or Orysata is 

the jacalin-related lectin which has received most attention. This lectin was detected in rice 

seedlings after NaCl treatment (Zhang et al., 2000). Sequence analysis revealed that Orysata 

corresponded to a previously described salt-inducible protein (SalT) (Claes et al., 1990). 

Orysata is rapidly expressed in roots and sheaths after exposure of whole plants to salt or 

drought stress, or upon jasmonic acid and abscisic acid (ABA) treatment (Claes et al., 1990; 

Moons et al., 1997b; Garcia et al., 1998; Hirano et al., 2000; De Souza et al., 2003) but 

cannot be detected in untreated plants. Interestingly, the lectin is also expressed in excised 

leaves after infection with an incompatible Magnaporthe grisea race (Kim et al., 2003; 

2004b; Qin et al., 2003; Liao et al., 2009) as well as during senescence (Lee et al., 2001). 

Recently, it has been shown that over-expression of Orysata suppressed the growth of 

invasive hyphae of the fungus Magnaporthe oryzae, the rice blast fungus, and subsequently 

enhanced the resistance of rice plants (Shinjo et al., 2011). 

1.2.5.5 Lectins with EUL domain (s) 

Analyzing the rice genome resulted in the identification of four types of EUL-related lectins 

(Table 3A.1). Among the members of the S type, the EUL type S2 (referred to as OrysaEULS2) 

and the EUL type S3 (OrysaEULS3) were identified. OrysaEULS2 consists of a single EUL 

domain preceded by medium long (56 AA) unrelated N-terminal domain. OrysaEULS3 

resembles the OrysaEULS2 but contains an N-terminal domain with a different and longer 

sequence (117 AA). Similarly, two members were found in the D type. The EUL type D1 

includes two almost identical proteins: OrysaEULD1A and OrysaEULD1B. Both type D1 

proteins are composed of two EUL domains separated by a short linker and preceded by an 

unrelated N-terminal sequence. Similarly, the EUL type D2 (OrysaEULD2) contains two EUL 

domains, but the linker sequence is longer and the N-terminal domain is different 

(Fouquaert et al., 2009a).  
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An extensive screening of the rice expression data reported in literature revealed evidence 

that the EUL types expressed in rice are responsive to stress treatments, as shown by studies 

using proteomics analyses with stress-treated rice tissues (Table 1.2). 
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Table 1.2 Summary of expression data reported for the EUL rice proteins. Up and down indicate the up-regulation and the down-regulation, respectively, of the gene of 

interest in the rice plants compared to the basal level of this gene in the control plants (non-stressed palnts)  

OrysaEULS2 

Tissue  Expression level  Stress  Concentration/time  Reference  

Shoot  Up  NaCl 150 mM/12 h (Moons et al., 1997a) 

Shoot Up ABA 10 to 40 µM/12 h (Moons et al., 1997a) 

OrysaEULS3 

Roots  Up  NaCl  150 mM/48 h (Cheng et al., 2009) 

Panicle Up  NaCl  50 to 75 mM (Dooki et al., 2006) 

OrysaEULD1A 

Root  Up  NaCl 150 mM/24 h (Kawasaki et al., 2001) 

Root  Up  NaCl  100 mM/3 days (Moons et al., 1997a) 

Scutellar tissue Up  ABA 1 µM/3 days (Asakura et al., 2007) 

Shoot  R
2
  Fungi + bacteria Bacteria: OD600=1  (Li et al., 2006) 

Shoot  Down  Insect  10 insects/seedling/72 h (Zhang et al., 2004) 

Root galls  Down  Root knot nematode 250 nematodes per plant/3 days after inoculation  (Kyndt et al., 2012) 

OrysaEULD1B 

Scutellar tissue  Up ABA 1 µM/3 days (Asakura et al., 2007) 
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Root  Up  NaCl  150 mM/2 to 8 h (Moons et al., 1997a) 

Root  Up  ABA 10 to 40 µM/12 h (Moons et al., 1997a) 

Shoot  Up  Fungi + bacteria  Bacteria: OD600=1 (Cheng et al., 2009) 

Shoot  Up  Drought  - (Babu et al., 2002) 

shoot Up  NaCl 140 mM /24 h (Chao et al., 2005) 

Root  Up  NaCl 150 mM/3 h (Kawasaki et al., 2001) 

Root  Up  NaCl  150 mM (Cheng et al., 2009) 

Root  Up  ABA 20 and 100 µM (Moons et al., 1995) 

Transgenic calli  Up  No stress  - (Takahashi et al., 2005) 

Panicle Exp
1
  No stress  - (Tang et al., 2005) 

OrysaEULD2 

Root  Up  Root rot nematode 400 nematodes per plant/3 days after inoculation  (Kyndt et al., 2012) 

Root galls Up  Root knot nematode 250 nematodes per plant/3 days after inoculation  (Kyndt et al., 2012) 

Root galls  Up  Root knot nematode 250 nematodes per plant/7 days after inoculation  (Kyndt et al., 2012) 

1: expressed under normal conditions. 2: regulated.
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1.3 Stresses  

1.3.1 Abiotic stresses 

The term abiotic stress is best defined as any non-living factor exerted by the environment 

on the optimal functioning of plants resulting in altered physiological conditions. The most 

commonly encountered stress factors are salinity, drought, excess water, temperature 

extremes (heat, cold and freezing), radiations (high intensity of ultra-violet and visible light), 

chemicals and pollutants (heavy metals, pesticides, and aerosols), oxidative stress (reactive 

oxygen species, ozone), wind (sand and dust particles in wind) and nutrient deprivation in 

soil (Mahajan and Tuteja 2005). Here, we will give an overview about the two most 

important abiotic stresses with a large negative impact on crop yield and productivity: 

salinity and drought. 

A. Salinity  

A saline soil has an electrical conductivity of the saturated paste extract (ECe) above 4dS/m 

(approximately 40 mM NaCl) (Chinnusamy et al., 2005; Munns 2005). Approximately 20% of 

irrigated areas (45 Mha) for all cultivated plants are estimated to be affected by salinity 

(Negrao et al., 2011). This is particularly serious since irrigated areas are responsible for one 

third of the world’s food production. Plants differ in their ability to cope with salinity and 

according to their tolerance can be divided into two groups: glycophytes and halophytes. 

Halophytes can generally tolerate salt concentrations higher than 20 ds/m (200 mM NaCl) 

(Flowers and Colmer 2008) or even higher. However, most plants are glycophytes and 

cannot tolerate salt concentrations higher than 4dS/m. 

Salinity in a certain area increases when the rate of evaporation far exceeds the rate of 

precipitation. Weathering of rocks also affects salt concentration in the soil. In addition, 

excessive irrigation and fertilizing soils without proper drainage cause increasing salinity year 

by year. In addition to the adverse effect of high salt concentrations to plants, salt can alter 

the basic texture of the soil resulting in decreased soil porosity and consequently reduced 

soil aeration and water conductance. 

Rice is a salt-sensitive crop (Chinnusamy et al., 2005). The threshold for salt stress is 3 dS/m, 

with a 12% reduction in yield, per dS/m beyond this value.  
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A.1 Short term response to salinity  

Na+ ions enter the root cells through the symplastic pathway mediated by cation 

channels/transporters as well as the apoplastic pathway in which Na+ enters the 

transpiration stream (Gao et al., 2007). In rice, the apoplastic pathway is more important 

because rice has limited control of water loss as an aquatic species, and its root anatomical 

development restricts the symplastic pathway (Ranathunge et al., 2004). In addition the 

apoplastic leakage was estimated to be 10 times higher in rice compared to wheat (Garcia et 

al., 1997).  

The impact of salinity on plants can be divided into two effects; a rapid osmotic effect and a 

delayed ionic effect (Munns and Tester 2008). As a consequence of accumulating Na+ ions in 

the root region, the osmotic potential is decreased. Due to the difference between the 

osmotic potential of the cytoplasm inside the root cells and the soil water solution, the 

osmotic effect reveals direct effects on plant root cells. Osmotic stress decreases the water 

availability in the soil and subsequently decreases water uptake by the roots resulting in 

cellular dehydration. This effect is common after all dehydrative stresses (e.g., salinity and 

drought). Accumulation of Na+ ions in the plant cell to toxic levels causes the ionic effect. 

This accumulation happens when the Na+ exclusion mechanisms are not sufficient to keep 

the Na+ ions low inside the cell. 

After exposure to high salinity (NaCl >50 mM), rice plants suffer a rapid and temporary drop 

in stomatal conductance (Moradi and Ismail 2007; Yeo et al., 1991). The same effect was also 

reported for maize (Neuman 1993), wheat and barley (Passioura and Munns 2000). The 

influx of salt into roots activates perception and signaling mechanisms that tend to (1) inhibit 

the entry of further Na+ into the roots, (2) reduce long-distance Na+ transport from root to 

shoot and (3) restore leaf ion homeostasis.  

A.2 Long term response to salinity  

Plants have developed several mechanisms to cope with high Na+ concentration inside the 

cell, in particular osmotic adjustment, exclusion of Na+ ions and production of antioxidant 

metabolites. 
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Osmotic adjustment 

As the Na+ ions accumulate in the apoplastic solution, several mechanisms are triggered to 

protect the cell from dehydration, protein denaturation and destabilization (Yancey et al., 

1982). One of these mechanisms is the accumulation of non-toxic metabolites, known as 

compatible solutes, in the cytoplasm. These compatible solutes adjust the osmotic potential 

between the cytosol and the apoplastic solution. Among the compatible solutes different 

sugars (fructose, glucose and sucrose), complex sugars (trehalose, raffinose and fructans), 

sugar alcohols (mannitol and glycerol), amino acids and derivatives (proline, glycine-betaine, 

and proline-betaine) have been suggested to accomplish this function (Bohnert et al., 1995; 

Flowers and Colmer 2008). In rice, the most remarkably enhanced compatible solute is the 

amino acid proline. It has been shown that proline accumulated in response to salt stress 

especially in tolerant rice genotypes, confirming its protective role against hyper-osmotic 

stress (Demiral and Turkan 2006). On the other hand, the accumulation of compatible 

solutes in the cytoplasm also helps to balance the ion osmotic pressure in the vacuole, 

where Na+ and Cl- are sequestered. 

Exclusion of Na+ ions 

Under normal physiological conditions, plants maintain a relatively high K+ concentration 

and a low Na+ concentration in their cytosol (Binzel et al., 1988). Under salt stress conditions, 

a high cytosolic K+/Na+ ratio is a key feature for maintaining cellular metabolism (Zhu 2003). 

The cytosolic enzymes in both glycophytes and halophytes are sensitive to salt. For plant 

cells, the most important way of keeping the cytosolic Na+ concentration at a low level is to 

minimize Na+ influx into the cytosol, and to maximize the Na+ efflux from the cytosol, either 

into the apoplast or into the vacuole (Nie et al., 1995; Blumwald 2000; Zhu 2001; Qiu et al., 

2004). Although rice is not a good excluder, it still excludes at least 94% of the soil Na+ from 

the transpiration stream (Munns 2005), and there is a strong correlation between exclusion 

capacity and salt tolerance (Lee et al., 2003; Zhu et al., 2004). Once Na+ enters the cytosol at 

a toxic level, plant cells can deal with the internal Na+ by sequestering it either in the 

apoplast or in the vacuole. Vacuolar compartmentalization is an efficient strategy for plant 

cells to cope with salinity stress (Tester and Davenport 2003; Fukuda et al., 2004). In rice, 

salt concentrations in leaves were found to cause different toxicity levels depending on the 
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genotypes (Flowers et al., 1985; Yeo and Flowers 1983; Yeo et al., 1990). These differences 

probably reflect differences in excluding excess Na+ from the cells and/or sequestering the 

ions in vacuoles. 

Production of antioxidant metabolites 

It is well established that many environmental stresses including salinity, drought and high 

temperature cause excessive production of reactive oxygen species (ROS) in the plant cell 

(Ramamurthy and Nina 2003; Bienert et al., 2006; Hong et al., 2009). This accumulation will 

cause oxidative damage to different cellular components including membrane lipids, 

proteins and nucleic acids (Haliwell 1986; McCord 2000; Mittler 2002; Van Breusegem and 

Dat 2006). Salt-induced ROS are predominantly represented by H2O2, both outside and 

inside the cell (Yang et al., 2007; Pang and Wang 2008). Extracellular ROS production 

depends on the activity of NADPH oxidases that contribute to salt stress tolerance in 

Arabidopsis thaliana (Ma et al., 2012). In rice, the production of NADPH oxidase–dependent 

H2O2 emerges within several minutes of salt stress (Hong et al., 2009). To scavenge ROS, 

plants produce enzymatic scavengers like superoxide dismutase, ascorbate peroxidase, 

glutathione peroxidases, glutathione S-transferase and catalase (Mittler 2002). In addition 

the plants up-regulate low molecular mass antioxidants such as ascorbate, tocopherol, and 

carotenoids (Allen 1995). The harmonized activities of the multiple forms of these enzymes 

in different cell compartments, achieve a balance between the rate of synthesis and removal 

of ROS, and maintain hydrogen peroxide at the levels required only for cell signaling (Munns 

and Tester 2008). 

A.3 Salinity effect on whole plant level  

When the tolerance mechanisms of the plant cell are not sufficiently high to exclude salt 

from the transpiration stream, leaves will accumulate salt to toxic levels causing their death. 

Because new leaf growth is supported through the export of carbon from mature leaves, the 

fate of the plant depends on the balance between the rate at which mature leaves die and 

young leaves are produced (Munns and Tester 2008). The ultimate goal of any crop plant 

under stress is to complete the life cycle by reaching successful reproduction. In rice, if the 

stress is severe (NaCl > 100 mM), plants die before maturity but if the stress is less severe 

(NaCl < 50 mM), delayed panicle initiation and flowering have been observed (Grattan et al., 
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2002). Na+ accumulation in the panicle has a negative impact on some yield parameters such 

as tillering, spikelet number and grain weight (Khatun and Flowers 1995). At plant level, an 

improved Na+ partitioning between older tissues/ leaves may protect the developing 

panicles from excessive Na+ accumulation (Mohammadi-Nejad et al., 2010). 

B. Drought  

Drought is a meteorological term and is commonly defined as a period without significant 

rainfall. Generally drought stress occurs when the available water in the soil is reduced and 

atmospheric conditions cause continuous loss of water by transpiration or evaporation. A 

definition of drought generally accepted by plant breeders is “a shortfall of water availability 

sufficient to cause loss in yield” (Price 2002), or “a period of no rainfall or irrigation that 

affects crop growth (Fukai and Cooper 1995).  

Rice is particularly susceptible to drought (Cabuslay et al., 2002; Inthapan and Fukai 1988; 

Lafitte et al., 2007) due to its small root system, rapid stomatal closure and leaf senescence 

during mild water stress (Hirasawa 1999). Most high-yielding rice cultivars developed for 

irrigated conditions are highly susceptible to drought stress as well (Lafitte et al., 2007). 

B.1 Drought effect on stomata 

Stomatal pores are located in the epidermis of plant leaves. They control the uptake of CO2 

required for photosynthesis and the water loss during transpiration (Schroeder et al., 2001a; 

Hetherington and Woodward 2003). The first response of all plants to drought stress is the 

closure of their stomata to prevent the transpirational water loss (MansWeld and Atkinson 

1990). Closure of stomata can be hydropassive resulting from direct evaporation of water of 

the guard cells or hydroactive which is based on metabolic involvement. This hydroactive 

closure mediated by ABA is a common mechanism that plants use to cope with drought 

stress (Schroeder et al., 2001b; Zhu 2002; Fan et al., 2004). Environmental conditions that 

increase the rate of transpiration also result in an increase in the pH of the leaf sap, which 

can promote ABA accumulation and lead to a reduction of stomatal conductance (Wilkinson 

and Davies 2002; Davies et al., 2002). ABA promotes the efflux of K+ ions from the guard 

cells, which results in the loss of turgor pressure leading to stomatal closure. The fact that 

ABA can act as a long distance communication signal between water deficit roots and leaves, 
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inducing the closure of stomata was proposed almost three decades ago (Blackman and 

Davies 1985). 

B.2 Drought effect on photosynthesis 

Drought causes stomatal closure and decreases the chlorophyll content (Lauriano et al., 

2004; Lawlor and Cornic 2002). Subsequently, the rate of photosynthesis is affected and 

severe drought conditions can decrease the activity of Rubisco which in turn results in 

limited photosynthesis (Bota et al., 2004). Decreased CO2 diffusion from the atmosphere to 

the site of carboxylation is generally considered as the main cause for decreased 

photosynthesis under moderate drought stress (Chaves et al., 2009; Flexas et al., 2004; 

Grassi and Magnani 2005). However, it has been also reported that despite a decrease in 

photosynthetic pigments, the photosynthesis light phase remained unaffected under mild 

drought stress (Vandoorne et al., 2012). In all cases, plants respond to drought stress by the 

optimization of CO2 gain through stomatal aperture while minimizing water loss (Price et al., 

2002). The activity of the photosynthetic electron chain is controlled by the availability of 

CO2 in the plant and photosystem II activity often declines in parallel under drought 

conditions (Loreto et al., 1995). Decline in intracellular CO2 levels results in the over-

reduction of components within the electron transport chain and the electrons get 

transferred to oxygen at photosystem I. This generates ROS including superoxide, hydrogen 

peroxide and hydroxyl radicals, and plants need to scavenge ROS species as they might lead 

to photooxidation. ROS accumulation will cause lipid peroxidation in the cell membrane and 

a series of physiological and biochemical changes associated with direct or indirect oxidative 

stress in plants and finally influence yield and seed quality (Jonaliza et al., 2004; Chaves and 

Oliveira 2004). Plants can eliminate the harmful effect of ROS by the synergistic action of 

protective enzymes and the accumulation of non-enzyme substances (Tang et al., 2004; Tian 

et al., 2005).  

Since photosynthesis is inhibited by drought, the grain filling process becomes dependent on 

stem reserve utilization (Blum 2005). Stem reserve is a major resource providing 

carbohydrates and nitrogen for grain filling when the transient photosynthetic source is 

inhibited by stress. Numerous studies have reported that the stem reserve mobilization 

capacity is related to yield under drought stress in wheat (Blum 2005). In rice, the same 
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mechanism was reported to maintain grain yield under drought stress at the grain filling 

stage (Yang et al., 2001a; 2001b; Yang et al., 2002). This drought tolerance mechanism is 

stimulated by a decrease in gibberellic acid concentration and an increase in ABA 

concentration. 

B.3 Role of osmolytes in response to drought  

As a plant detects a water-deficit stress, it accumulates a variety of osmotically active 

compounds such as amino acids, sugars and ions inside its cells, resulting in a lowering of the 

cell osmotic potential (Zhang et al., 1999). As a consequence of this accumulation, the water 

present in intercellular spaces can enter the cell (Nguyen et al., 1997). This so-called osmotic 

adjustment was proposed as a potential factor that could enable plants to maintain turgor 

and survive better at low water status. Osmotic adjustment could contribute to drought 

tolerance via osmolyte accumulation in the roots that would maintain or increase root 

development into deeper soil layers, thereby increasing available water for crop use 

(Manschadi et al., 2006; Sharp et al., 2004). 

B.4 Drought resistance in crops   

Rice, like other crops, can tolerate drought stress using three different strategies: drought 

escape, drought avoidance, or drought tolerance (Zhang 2007). A proper timing of the 

lifecycle, resulting in the completion of the most sensitive developmental stages while water 

is abundant, is considered to be a drought escape strategy (Price et al., 2002, Zhang 2007). 

Avoiding water-deficit stress with a root system capable of extracting water from deep soil 

layers, or by reducing evapotranspiration without affecting yields, is considered as drought 

avoidance (Price et al., 2002, Zhang 2007). Mechanisms such as osmotic adjustment 

whereby a plant maintains cell turgor pressure under reduced soil water potential are 

categorized as drought tolerance mechanisms (Price et al., 2002, Zhang 2007). Drought 

avoidance mechanisms can be expressed even in the absence of stress and are then 

considered constitutive. Drought tolerance mechanisms are the result of a response 

triggered by drought stress itself and are therefore considered adaptative (Hazen et al., 

2005). When the stress is terminal and predictable, drought escape through the use of 

shorter duration varieties is often the preferable method of improving yield potential. 



28 
 

Drought avoidance and tolerance mechanisms are required in situations where the timing of 

drought is mostly unpredictable (Pantuwan et al., 2002). 

B.5 Drought effect on whole plant level 

Drought stress is characterized by diminished leaf water potential and turgor loss, closure of 

stomata and decrease in cell enlargement and growth. Severe water stress may result in the 

arrest of photosynthesis, disturbance of metabolism and finally the death of the plant (Jaleel 

et al., 2008). 

There are three basic drought patterns affecting rice production: early, intermittent and late 

drought stresses (Fukai and Cooper 1995). Early droughts often result in delayed sowing or 

transplanting. Yield reductions from early droughts (occurring during vegetative growth, 

after establishment but before maximum tillering) are often minimal, and result from a 

reduction in tiller numbers (Boonjung and Fukai 1996; Jongdee et al., 2006). Intermittent or 

continuous droughts (occurring between the tillering and flowering stages), may greatly 

reduce yields despite no apparent drought symptoms (such as e.g. leaf rolling), mainly as a 

result of reduced leaf expansion and photosynthesis (Fukai and Cooper 1995). When drought 

occurs during later growing stages (following panicle initiation and especially during 

flowering), it can cause loss of pollen fertility, spikelet death or abortion of newly formed 

seeds (Liu et al., 2006). In addition, drought delays the development of the rice plant 

(Puckridge and O’Toole 1980) and strongly affects morphology (O’Toole and Baldia 1982; 

O’Toole and Cruz 1980; O’Toole and Moya 1981) as well as physiological processes like 

transpiration, photosynthesis, respiration and translocation of assimilates to the grain 

(Turner 1986; Fukai and Cooper 1995). The leaf and root phenology of rice cultivars are 

known to influence their vegetative response to water deficit (Lafitte et al., 2004). 

 

1.3.2 Biotic stresses  

The most common biotic stress factors that plants face are pathogens (viruses, bacteria, and 

fungi), insects, plant-parasitic nematodes, herbivores and rodents (Mahajan and Tuteja 

2005). The discussion below will be limited to the insects and pathogens used in this PhD 

research.  
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A. Insects 

Insects account for a vast majority of animal species on earth. They can be found in almost 

all terrestrial and freshwater habitats, from the driest deserts to freshwater ponds, from the 

canopy of a tropical rainforest to the arctic areas. They affect many aspects of our lives, 

despite their small size. Moreover, crop yield losses due to the attack of various classes of 

insects are a problem worldwide.  

A. 1 Lepidoptera 

Lepidoptera is an order of insects that includes moths and three super-families of butterflies, 

skipper butterflies, and moth butterflies. The order Lepidoptera constitutes one of the four 

largest groups of insects, in terms of their diversity. About 180,000 species have been 

described (Biodiversity Institute of Ontario 2006), but many more remain undiscovered. The 

total number of species is probably between 300,000 and 500,000 (Kristensen et al., 2007).  

The larvae of these insects cause a large destruction to agricultural crops.  

The beet armyworm, Spodoptera exigua (Fig. 1.2a) is a cosmopolitan polyphagous insect. 

The pest has a wide host range of plants such as vegetables and field crops (Senthil-Nathan 

et al., 2008). Armyworm larvae are difficult to control with insecticides once an infestation is 

well established (Wang et al., 2006). 

A.2 Hemiptera 

The group of Hemiptera is the largest and most heterogeneous order of exopterygotes. 

Aphids belong to the superfamily Aphidoidea. Aphids are small, soft-bodied insects with 

long, slender mouthparts with which they pierce stems, leaves, and other tender plant parts 

to suck out plant fluids. Almost every plant has one or more aphid species which occasionally 

feed on it. Aphids cause a direct economic damage on crops and indirect effect by 

transmitting viral diseases (Hogenhout et al., 2008).  

The peach-potato aphid, Myzus persicae (or green peach aphid) (Fig. 1.2b) is known to 

transmit over 100 phytopathogenic viruses among 50 different plant families. Many of its 

hosts include major crops (e.g. sugar beet, beans, brassicas, potatoes, citrus) and on a world-

wide scale this species is considered as the most important aphid pest (Mackauer and Way 

1976). 
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The pea aphid, Acyrthosiphon pisum (Fig. 1.2c) is a non-host-alternating aphid that is 

associated with a wide range of legume species including many important forage and 

vegetable crops (Van Emden and Harrington 2007). Pea aphids consume the nutritive fluid 

transported in the phloem of their host plant. This is done directly by inserting their stylet 

into the phloem tissue. Pea aphids are particularly important as potential migratory pests 

because they have a wide host range and a parthenogenetic reproduction (Losey and 

Eubanks 2000). 

 

Fig. 1.2 Pictures showing (a): the second larval stage of beet armyworm, Spodoptera exigua. (b) the peach-

potato aphid, Myzus persicae. (c): the pea aphid, Acyrthosiphon pisum. 

 

B. Pathogens  

Because of the public availability of the genome sequences of rice (Sasaki et al., 2005) and its 

two major pathogens, Magnaporthe oryzae (Dean et al., 2005) and Xanthomonas oryzae pv. 

oryzae (Lee et al., 2005), the rice blast and bacterial blight pathosystems have become the 
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genetic models for understanding host-pathogen interactions and co-evolution for cereals 

(Nino-Liu et al., 2006).  

B.1 Xanthomonas oryzae 

Bacterial leaf blight of rice, caused by the gram-negative bacterium Xanthomonas oryzae pv 

oryzae, is responsible for huge economic losses. This pathogen is classified as a biotroph 

(Parbery 1996). Bacterial leaf blight is known to occur in all rice growing areas and is 

exceptionally severe in Asia. It is reported to reduce the annual production by as much as 

60% in India and 50% in Japan (http://www.knowledgebank.irri.org). The symptoms in adult 

plants appear as water-soaked yellowish stripes on leaf blades or starting at leaf tips which 

increase in length and width killing the infected leaves. Infected plants produce sterile and 

empty panicles and in severe cases the plant wilts and dies.  

B.2 Magnaporthe oryzae 

Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases in rice 

growing regions worldwide, causing 11-15% yield loss annually (Baker et al., 1997). This 

pathogen is classified as a hemi-biotroph (Parbery 1996). Within the plant cell, the fungus 

faces two different fates. In an incompatible interaction, resistance gene products recognize 

the corresponding avirulence gene products from the invading pathogen and invoke a series 

of defense responses to restrict pathogen growth (Ahn et al., 2005). In a compatible 

interaction, the host plant mobilizes defense responses much later, resulting in visible blast 

lesions (Tucker and Talbot 2001). The blast fungus infects rice plants at all stages and in all 

tissues, such as leaves, stems, nodes, panicles and roots (Wilson and Talbot 2009; Sesma and 

Osbourn 2004). 

B.3 Pseudomonas syringae 

The plant-pathogenic species Pseudomonas syringae is a complex taxon consisting of strains 

with a range of different phenotypic, biochemical, and genetic characteristics, as well as a 

different host range. These gram negative bacteria infect a wide variety of plants and can 

cause necrotic symptoms in leaves, stems and fruits (Rico and Preston 2008). The bacterial 

pathogen Pseudomonas syringae pv. tomato (PstDC3000) is virulent to Arabidopsis plants 

(Whalen et al., 1991).  

http://www.knowledgebank.irri.org/
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C. Glycosylation patterns 

Glycosylation is a post-translational modification that strongly influences protein folding, 

secretion, cellular localization, and biological activity (Helenius and Aeb 2004). It occurs by 

the attachment of a glycan to a protein either at an asparagine residue (N-X-S/T motif, 

where X denotes any amino acid except proline) (Bause 1983), termed N-glycosylation, or at 

a hydroxylysine, hydroxyproline, serine, or threonine, called O-glycosylation (Carraway and 

Hull 1989). Glycan structures are very diverse because of the branched structure, differences 

in glycosidic linkages, heterogeneity in glycan profile for a specific glycoprotein and multiple 

modifications that may occur on specific sugar monomers.  

C.1 Insects  

In insects, the N-linked glycan structures are mainly of the high-mannose or paucimannose 

type but small amounts of complex glycans have been identified. These hybrid and complex 

structures are present in small amounts and often only for a specific developmental stage of 

the insect (Rendic et al., 2008; Tiemeyer et al., 2008). For instance, sialylated glycan 

structures have been reported in Drosophila embryos. The presence of these complex glycan 

structures in the central nervous system (Aoki et al., 2007; Koles et al., 2007) suggests a 

crucial role of these carbohydrate structures in the insect.  

C.2 Pathogens  

In fungi, both N- and O-glycosylation patterns have been reported. The N-glycans are most 

likely of the high-mannose type (Jacobs et al., 2009). O-Mannosylation is commonly found in 

fungi (Strahl-Bolsinger et al., 1999).  

Although bacteria are prokaryotes, it is now established that they possess both N-linked and 

O-linked glycosylation pathways that display many commonalities with their eukaryotic and 

archaeal counterparts (Nothaft and Szymanski et al., 2010). 

1.3.3 ABA as a stress hormone  

ABA is a plant stress hormone and one of the foremost important signaling molecules in 

plants, which plays versatile functions in regulating many developmental processes and 

adaptive stress processes (Santner et al., 2009; Cutler et al., 2010). ABA is accumulated 
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rapidly in response to abiotic stresses and therefore it can mediate many stress responses 

that help the plant to survive. The first prerequisite to perform this job is that ABA 

production should be rapidly triggered by the stress to avoid any inhibition of plant growth 

and functions. The second prerequisite is that ABA should be rapidly degraded and 

deactivated once the stress is relieved allowing normal plant growth and functions to 

resume. 

 Indeed, ABA is an important signal for triggering plant responses to adverse environmental 

conditions during vegetative growth (Leung and Giraudat 1998; Nambara and Marion-Poll 

2005). ABA coordinates many stress responses, including the immediate stomatal closure, 

the osmolyte accumulation and the induction of the synthesis of stress related proteins, 

such as late embryogenesis abundant and heat shock proteins and reactive oxygen 

scavengers. However, whereas many abiotic-stress-inducible genes are controlled by ABA, 

some are not, which indicates that both ABA-dependent and ABA-independent regulatory 

systems are involved in stress-responsive gene expression (Bray et al., 2000; Zhu 2002). 

Moreover, it has recently been shown that ABA applied exogenously at 100 µM 

concentration prior to and during the salt-stress period induced salt tolerance in rice 

(Sripinyowanich et al., 2013). 

The role of ABA in plant innate immunity is still poorly understood. Recently, ABA has 

emerged as a key signaling molecule in plant-pathogen interactions (Asselbergh et al., 2008). 

In this respect, both positive and negative effects of ABA on disease resistance have been 

reported but its effect as a negative regulator of immunity is predominant (Cao et al., 2011; 

Asselbergh et al., 2008). In rice, exogenous ABA can suppress basal immunity to both X. 

oryzae pv. oryzae and M. oryzae. When the infection by these pathogens is established, 

extensive reprogramming of ABA-response and -biosynthesis genes takes place, suggesting 

that these pathogens influence the rice ABA pathway (Jiang et al., 2010b; Koga et al., 2004, 

Yazawa et al., 2012; Xu  et al., 2013). Interestingly, ABA also antagonizes defense against the 

migratory root rot nematode Hirschmanniella oryzae (Nahar et al., 2012). In contrast, ABA 

enhanced the basal resistance against the rice brown spot pathogen Cochliobolus 

miyabeanus by preventing the fungus from hijacking the ethylene pathway (De 

Vleesschauwer et al., 2010). Therefore, ABA appears to play an ambiguous role in the rice 
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immune signaling network, acting either as a positive or as a negative regulator of disease 

resistance.   

 

1.4 Lectins are putative candidates to improve stress tolerance of crops 

Plants have evolved protective mechanisms that allow them to successfully resist 

unfavorable conditions. Current engineering strategies to enhance the tolerance of 

important crops rely on the transfer of one or several genes that are either involved in 

signaling and regulatory pathways, or that encode enzymes present in pathways leading to 

the synthesis of functional and structural protectants, such as osmolytes and antioxidants, or 

that encode stress-tolerance conferring proteins (Wang et al., 2003; Vinocur and Altman 

2005; Valliyodan and Nguyen 2006; Sreenivasulu et al., 2007; Kathuria et al., 2007). Among 

the most important stress-tolerance conferring proteins are the plant lectins. 

In higher plants, there is a group of proteins, called lectin receptor-like kinases (LecRLKs). 

These proteins play a role in stress tolerance of the plant as well as in the growth 

development. The basic structure of LecRLK protein comprises of a lectin and a kinase 

domain, which are interconnected by transmembrane region. Based on a genome wide 

analysis, 173 genes of different types of LecRLKs have been identified within the rice genome 

(Vaid et al., 2012). Multiple lectins have been overexpressed to improve the tolerance of 

crops against abiotic and biotic stresses. Recently, it has been shown that the overexpression 

of these LecRLKs confers tolerance towards stresses e.g. the overexpression of a plasma 

membrane-localized lectin-like protein kinase 1 conferred salinity tolerance of transgenic 

Arabidopsis plants (Huang et al., 2013). 

Furthermore, the insecticidal activity of plant lectins against insects of the orders 

Coleoptera, Diptera, Lepidoptera, and Hemiptera has been studied (Macedo et al., 2003; 

Oliveira et al., 2011; Vandenborre et al., 2011b). Several plant lectins have been used to 

increase the tolerance of the rice plant against the most important biotic factors affecting 

rice yield. Expression of some mannose binding lectins like GNA and Allium sativum leaf 

lectin (ASAL) in rice plants enhanced the tolerance against some sap-sucking insects on rice, 

such as brown planthopper (Nilaparvata lugens) and green leafhopper (Nephotettix 
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nigropictus) (Rao et al., 1998; Saha et al., 2006). Moreover, expressing the garlic leaf lectin 

ASAL in transgenic rice plants also significantly reduced the infection incidence of rice tungro 

diseases; tungro bacilliform virus and rice tungro spherical virus caused by co-infection of 

green leafhopper (Saha et al., 2006). In addition, transgenic rice plants overexpression the 

Pi-d2, a receptor-like kinase protein with mannose specific binding lectin domain, confer 

race-specific resistance to the M. oryzae strain, ZB15 (Chen et al., 2006). 

The discovery of the inducible plant lectins opens the door for the possibility to exploit these 

proteins in increasing the tolerance of crops towards stresses. 
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Chapter 2 

Characterization of the lectins under study expressed in Pichia pastoris 

 

 

 

Chapter 2A 

Expression analysis of the nucleocytoplasmic lectin‘Orysata’ from rice in Pichia pastoris 
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Lasanajak Y, Callewaert N, Van Damme EJM (2011) Expression analysis of the 

nucleocytoplasmic lectin “Orysata” from rice in Pichia pastoris. FEBS J 278: 2064–2079 
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2A.1 Abstract 

The Oryza sativa lectin, abbreviated Orysata is a mannose-specific, jacalin-related lectin 

expressed in rice plants after exposure to certain stress conditions. Expression of a fusion 

construct containing the rice lectin sequence linked to enhanced green fluorescent protein 

(EGFP) in BY2 tobacco cells revealed that Orysata is located in the nucleus and the cytoplasm 

of the plant cell, indicating that it belongs to the class of nucleocytoplasmic jacalin-related 

lectins. Since the expression level of Orysata in rice tissues is very low the lectin was 

expressed in the methylotrophic yeast Pichia pastoris with the Saccharomyces α-factor 

sequence to direct the recombinant protein into the secretory pathway and express the 

protein into the medium. Approximately 12 mg of recombinant lectin was purified per liter 

medium. SDS–PAGE and Western blot analysis showed that the recombinant lectin exists in 

two molecular forms. Far Western blot analysis revealed that the 23 kDa lectin polypeptide 

contains an N-glycan which is absent in the 18.5 kDa polypeptide. Characterization of the 

glycans present in the recombinant Orysata revealed high-mannose structures, Man9-11 

glycans being the most abundant. Glycan array analysis showed that Orysata interacts with 

high-mannose as well as with more complex N-glycan structures. Orysata has potent anti-

human immunodeficiency virus and anti-respiratory syncytial virus activity in cell culture 

compared to other jacalin-related lectins. 
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2A.2 Introduction 

The family of jacalin-related lectins (JRLs) groups all proteins that possess one or more 

domains equivalent to ‘jacalin’, a galactose-binding protein from jack fruit (Artocarpus 

integrifolia) seeds (Sastry et al., 1986). In the last decade many JRLs have been identified 

which resulted in a subdivision of this family into two groups: the galactose binding and the 

mannose binding lectins. In contrast to the galactose-binding JRLs that are synthesized on 

the endoplasmic reticulum and follow the secretory pathway to accumulate in protein 

storage vacuoles, the mannose-binding JRLs are synthesized and located in the cytoplasm 

(Peumans et al., 2000b).  

The very first inducible lectin to be purified and characterized was a mannose-specific JRL 

from NaCl-treated rice seedlings, called Oryza sativa agglutinin or Orysata (Zhang et al., 

2000). Sequence analysis revealed that Orysata corresponded to a previously described salt-

inducible protein (SalT) (Claes et al., 1990) and can be classified in the group of JRLs. Orysata 

cannot be detected in untreated plants but is rapidly expressed in roots and sheaths after 

exposure of whole plants to salt or drought stress, or upon jasmonic acid and ABA treatment 

(Claes et al., 1990; De Souza et al., 2003; Moons et al., 1995). Interestingly, the lectin is also 

expressed in excised leaves after infection with an incompatible Magnaporthe grisea strain 

(Kim et al., 2003; Qin et al., 2003) as well as during senescence (Lee et al., 2001). Since 

Orysata is expressed at very low levels in certain plant tissues and only after exposure to 

stress, the purification of the lectin is cumbersome and requires huge amounts of plant 

material.  

In the last decades the methylotrophic yeast Pichia pastoris has become the leading yeast 

vehicle for the production of a broad range of proteins (Cereghino and Cregg 2000). 

Heterologous protein expression in Pichia is controlled by the alcohol oxidase 1 (AOX1) 

promoter. Expression of the AOX1 gene is tightly regulated and induced by methanol to high 

levels (Elias et al., 1985; Hartner and Glieder 2006). A variety of lectins were among the 

proteins reported to be successfully expressed in P. pastoris. For example, Raemaekers et al. 

(1999) described the successful expression of the legume lectin Phaseolus vulgaris agglutinin 

(PHA) and the GNA-related lectin from snowdrop (Galanthus nivalis agglutinin) in P. pastoris. 

A glucose-mannose-binding legume lectin from the seeds of Canavalia brasiliensis, a 
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homolog of the classical vacuolar Con A was also expressed by the yeast P. pastoris (Bezerra 

et al., 2006). Oliveira et al. (2008) described the expression of the JRL from breadfruit seeds 

(Artocarpus incisa) in Pichia. In 2007 the first nucleocytoplasmic lectin from tobacco 

(Nictaba) related to the Cucurbitaceae lectins was expressed and purified from P. pastoris 

(Lannoo et al., 2007a). More recently, the first nucleocytoplasmic GNA homolog from plants 

(GNAmaize) was expressed in P. pastoris (Fouquaert et al., 2009b).  

In this paper we describe the heterologous expression of Orysata, a JRL from rice. Based on a 

detailed analysis of its sequence, this lectin was predicted to locate to the nucleocytoplasmic 

compartment of plant cells, as shown by expression of a fusion protein in tobacco cells. 

Furthermore, the successful expression of the His-tagged Orysata in the yeast P. pastoris 

allowed purifying sufficient amounts of the lectin to study in detail the molecular structure 

of the protein, its carbohydrate-binding specificity and its antiviral activity. Interestingly, 

antiviral assays showed that Orysata is active against human immunodeficiency virus (HIV) as 

well as respiratory syncytial virus (RSV), indicating that the lectin may qualify as a 

microbicide agent. 

 

2A.3 Materials and methods 

2A.3.1 Construction of the EGFP-fusion vector for expression analysis in tobacco cells 

The coding sequence for Orysata (Genbank accession number CB632549) was amplified by 

PCR using the cDNA clone encoding Orysata as a template. The primers for amplification of 

Orysata were ORY-f1 (5’AAAAAGCAGGCTTCACGCTGGTGAAGATTGGCCTG3’) and ORY-r1 (5’ 

AGAAAGCTGGGTGTCAAGGGTGGACGTAGATGCC3’). The PCR program was as follows: 5 min 

94°C, 25 cycles (15 sec 94°C, 30 sec 65°C, 24 sec 72°C), 5 min 72°C. PCR was performed in a 

50 µl reaction volume containing 40 ng DNA template, 10x DNA polymerase buffer, 10 mM 

dNTPs, 5 µM of each primer and 0.625 U Platinum Pfx DNA Polymerase (Invitrogen) using an 

AmplitronIIR Thermolyne apparatus (Dubuque, Iowa, USA). The PCR product was 1:10 

diluted and used as a template in an additional PCR, using attB-primers EVD 2 

(5’GGGGACAAGTTTGTACAAAAAAGCAGGCT3’) and EVD 4 (5’GGGGACCACTTTGTACAAGAAA 

GCTGGGT3’) in order to complete the attB recombination sites. The reaction mixture was as 
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described for previous PCR. The cycle conditions were as follows: 2 min at 94°C, 5 cycles 

each consisting of 15 sec at 94°C, 30 sec at 50°C, 30 sec at 72°C, 20 cycles with 15 sec at 

94°C, 30 sec at 55°C, 30 sec at 72°C, and a final incubation of 5 min at 72°C. Subsequently, 

the BP reaction was performed using the pDONR221 vector (Invitrogen). After sequencing of 

the resulting entry clone, the LR reaction was done with the pK7WGF2 destination vector 

(Karimi et al., 2002) to fuse Orysata sequence C-terminally to EGFP. Overexpression of EGFP 

alone was achieved using the pK7WG2 destination vector (Karimi et al., 2002).  

Tobacco BY-2 cells were transiently transformed with the EGFP-fusion construct by means of 

particle bombardement and the expression was analyzed by confocal laser microscopy as 

described by Fouquaert et al. (2007).  

2A.3.2 Expression of Orysata in P. pastoris 

The EasySelect Pichia Expression Kit from Invitrogen was used to clone and express Orysata 

in the P. pastoris strain X-33 (Invitrogen, Carlsbad, CA USA). To achieve secretion of the 

recombinant protein into the culture medium, the E. coli/P. pastoris shuttle vector pPICZαB 

containing an α–mating sequence from Sacharomyces cerevisiae was used. This vector 

contains a polyhistidine tag located downstream from the multiple cloning site. The coding 

sequence for Orysata was amplified by PCR starting from the Bluescript vector containing 

the cDNA encoding Orysata (Genbank accession number CB632549) using primers EVD 519 

(5’GGCGGACTGCAGCAATGACGCTGGTGAAGATTGGCCTGT3’) and EVD 518 (5’CCCGCTTTCTAG 

AATAGGGTGGACGTAGATGCCAATTGCG3’). The PCR conditions were: 2 min denaturation at 

94°C, 25 cycles of 15 sec 94°C, 30 sec 55°C, 1 min 72°C, ending with additional 5 min 

elongation at 72°C. The amplified Orysata sequence was cloned as a PstI/XbaI fragment in 

the shuttle vector pPICZαB and transformed in E. coli Top10F cells using heat shock 

transformation. Afterwards, E. coli transformants were selected on LB agar plates containing 

zeocin (25 μg/ml). The plasmids were purified using the E.Z.N.A. Plasmid Mini kit І (Omega 

Bio-Tek, Georgia, USA). Finally, the sequence of the fusion construct was verified by 

sequencing using 5’ and 3’ AOX1 specific primers (forward EVD 21, 5’GACTGGTTC 

CAATTGACAAGC3’ and reverse EVD 22, 5’GCAAATGGCATTCTGACATCC3’), carried out by LGC 

Genomics GmbH, Berlin, Germany. 
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2A.3.3 Pichia transformation and expression analysis on a small scale 

The plasmid DNA from E. coli cells was purified and linearized using the restriction enzyme 

SacI (Fermentas, St Leon-Rot, Germany) with overnight incubation at 37°C. After 

linearization, 10 μg of the expression vector was transformed into the Pichia strain X-33 via 

electroporation (Bio-Rad, Hercules CA, USA) using the following pulse settings: 25 μF, 1.5 kV 

and 200 Ω. Transformants were selected on YPDS plates (1% yeast extract, 2% peptone, 2% 

dextrose, 1 M sorbitol, 2% agar) containing 100 μg/ml zeocin. Genomic DNA was extracted 

from Pichia transformants as reported before (Schroder et al., 2007). The integration of the 

Orysata sequence in the chromosomal AOX1 locus of P. pastoris was confirmed by PCR using 

the AOX1 primers EVD 21 and EVD 22, and the following parameters: 2 min 95°C, 30 cycles 

of 1 min 95°C, 1 min 55°C, 1 min 72°C, ending with an elongation step of 7 min at 72°C. For 

expression analysis, several colonies were inoculated in 5 ml BMGY medium, i.e. 1% yeast 

extract, 2% peptone, 1.34 % yeast nitrogen base with ammonium sulfate and without amino 

acids, 4 x 10-5% biotin, 100 mM potassium phosphate (pH 6.0) and 1% glycerol, and grown 

at 30°C in a shaker incubator at 200 rpm for 24 h. Afterwards, Pichia cells were washed with 

sterilized water and transferred to the BMMY medium (BMGY medium supplemented with 

1% of methanol instead of 1% of glycerol). Induction of the culture was achieved by adding 

100% methanol (2% final concentration) for three successive days once in the morning and 

once in the evening. Protein profiles in the medium and the cell pellet were compared. 

Proteins in the culture medium were analyzed after trichloroacetic acid precipitation (10% 

final concentration) by SDS-PAGE and Western blot analysis. 

2A.3.4 Large scale culture and purification of Orysata 

Transformed P. pastoris X-33 colonies were inoculated into 5 ml BMGY medium and grown 

for 24 h at 30°C in a rotary shaker at 200 rpm. Afterwards, cultures were transferred to 50 ml 

BMGY in 250 ml Erlenmeyer flasks and allowed to grow until the culture reached an optical 

density between 2 and 6 at 595 nm (16 to 24 h). Pichia cells were washed with sterilized 

water and re-suspended in 200 ml of BMMY medium. The culture was allowed to grow for 

72 h in a 500 ml Erlenmeyer flask under the same conditions as before. Every 24 h, 100% 

methanol was added to the culture twice a day as indicated above (2% final concentration). 

After three days of methanol induction, the culture was centrifuged for 10 min at 3,000 g 
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and the supernatant was brought to 80% ammonium sulphate for protein precipitation and 

stored at 4°C until use. Five 200 mL cultures were pooled for one purification of recombinant 

Orysata. Purification of the lectin was achieved in three chromatographic steps. After 

precipitating the protein by centrifugation for 15 min at 5,000 g the resulting pellet was re-

suspended in 150 ml 20 mM 1,3 diaminopropane. After overnight dialysis against 20 mM 1,3 

diaminopropane, the supernatant was loaded on a Q Fast Flow column (GE Healthcare, 

Uppsala, Sweden) equilibrated with 20 mM 1,3 diaminopropane. After washing the column 

with 20 mM 1,3 diaminopropane, elution of the bound proteins was achieved using 100 mM 

Tris-HCl (pH 8.7) containing 0.5 M NaCl. Subsequently, the eluted fractions were pooled and 

imidazole was added to a final concentration of 25 mM. The protein sample eluted from the 

Q Fast Flow column was applied on a Ni-Sepharose column (GE Healthcare) equilibrated with 

start buffer (0.1 M Tris pH 7.0 containing 0.5 M NaCl and 25 mM imidazole) to purify the His-

tagged protein. After washing the Ni-Sepharose column using the start buffer, proteins were 

eluted using the elution buffer (0.1 M Tris pH 7.0 containing 0.5 M NaCl and 250 mM 

imidazole). Finally, fractions eluted from Ni-Sepharose were diluted 5 times with phosphate 

buffered saline (1X PBS: 1.5 mM KH2PO4, 10 mM Na2HPO4, 3 mM KCl, 140 mM NaCl, pH 7.4) 

and applied on a mannose-Sepharose 4B column equilibrated with PBS. After washing the 

column with PBS, the lectin fraction was eluted using 20 mM 1,3 diaminopropane. The purity 

of the protein samples was verified by SDS-PAGE and/or western blot analysis after each 

purification step. 

2A.3.5 N-terminal sequence analysis 

A sample from the affinity purified Orysata was analyzed by SDS-PAGE, electroblotted onto a 

ProBlotTM polyvinylidene difluoride membrane (Applied Biosystems, Foster City, CA, USA) 

and visualized by staining with 1:1 mix of Coomassie Brilliant Blue and methanol. Bands of 

interest were excised from the membrane and the N-terminal sequence determined by 

Edman degradation on a capillary Procise 491cLC protein sequencer without alkylation of 

cysteines (Applied Biosystems). 

 

 



44 
 

2A.3.6 Agglutination assay  

To examine the lectin activity, an agglutination assay was performed using trypsin-treated 

rabbit red blood cells (BioMérieux, Marcy l'Etoile, France). Therefore 10 µl of the purified 

protein (165 μg/ml), 10 µl of 1 M ammonium sulfate and 30 µl of trypsinized erythrocytes 

were mixed in a glass tube. The negative control contained 10 µl PBS, 10 µl 1 M ammonium 

sulfate and 30 µl trypsinized erythrocytes. After a few minutes agglutination was observed 

as clumping of the cells at the bottom of the glass tube. Samples that yielded no visible 

agglutination activity after incubation for 1 h were regarded as lectin negative. Dilution 

series of the lectin were analyzed to determine its agglutination titer. 

2A.3.7 Carbohydrate inhibition test 

Several carbohydrates (mannose, trehalose, glucose, galactose, N-acetylglucosamine 

(GlcNAc) or methyl mannopyranoside, at 0.5 M) and glycoproteins (ovomucoid, asialomucin 

or thyroglobulin, at 10 mg/ml) were used to test the carbohydrate specificity of the 

recombinant Orysata. Therefore 10 µl of the purified lectin were mixed with 10 µl of aliquots 

of a serially twofold diluted carbohydrate or glycoprotein solution. After incubation for 10 

min at room temperature, 30 μl trypsin-treated erythrocytes were added. Agglutination 

activity was assessed visually after incubation for 1h at room temperature.  

2A.3.8 Glycan array screening 

The microarrays are printed as described previously (Blixt et al., 2004) and version 4.2 with 

511 glycan targets was used for the analyses reported here 

(https://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.shtml). 

The printed glycan array contains a library of natural and synthetic glycan sequences 

representing major glycan structures of glycoproteins and glycolipids. Recombinant Orysata 

containing a His tag was purified from P. pastoris and detected using a fluorescent-labeled 

anti-His monoclonal antibody (Qiagen, Valencia, CA). The lectin was diluted to desired 

concentrations in binding buffer (Tris-bufferred saline containing 10 mM CaCl2, 10 mM 

MgCl2, 1% BSA, 0.05% Tween 20) and 70 µl of the lectin solution was applied to separate 

microarray slides. After 60 min incubation under a cover slip in a humidified chamber at 

room temperature, the cover slip was gently removed in a solution of Tris-buffered saline 

https://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.shtml
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containing 0.05% Tween 20 and washed by gently dipping the slides 4 times in successive 

washes of Tris-buffered saline containing 0.05% Tween 20, and Tris-buffered saline. To 

detect bound lectin, the labeled anti-His antibody (70 µl at one µg/ml in binding buffer) was 

applied to the slide under a cover slip. After removal of the coverslip and gentle washing of 

the slide as described above, the slide was finally washed in deionized water and spun in a 

slide centrifuge for approximately 15 sec to dry. The slide was immediately scanned in a 

PerkinElmer ProScanArray MicroArray Scanner using an excitation wavelength of 488 nm 

and ImaGene software (BioDiscovery, Inc., El Segundo, CA) to quantify fluorescence. The 

data are reported as average Relative Fluorescence Units (RFU) of six replicates for each 

glycan presented on the array after removing the highest and lowest values. The results for 

Orysata were compared to the glycan array data obtained for the mannose-binding JRLs 

purified from Calystegia sepium rhizomes (Calsepa), and Morus nigra bark (Morniga M) 

(Nakamura-Tsuruta et al., 2008). 

2A.3.9 Antiviral assays 

Human lymphocyte CEM cells (5 x 105 cells per ml) were suspended in fresh culture medium 

[RPMI-1640 (Gibco, Paisley, UK), supplemented with 10% foetal calf serum, 2 mM L-

glutamine and 0.075% NaHCO3] and exposed to HIV-1(IIIB) (provided by R.C. Gallo at that 

time at the NIH, Bethesda, MD) or HIV-2(ROD) (provided by L. Montagnier at that time at the 

Pasteur Institute, Paris, France) at 100 x the CCID50 per ml of cell suspension. Then, 100 µl of 

the infected cell suspension was transferred to 200 µl-microplate wells, mixed with 100 µl of 

the appropriate dilutions of the test compounds, and further incubated at 37°C. After 4 days, 

giant (syncytium) cell formation was recorded microscopically in the CEM cell cultures, and 

the number of giant cells was estimated as the percentage of the number of giant cells 

present in the non-treated virus-infected cell cultures (~ 50 to 100 giant cells in one 

microscopic field when examined at a microscopic magnitude of 100 x). The 50% effective 

concentration (EC50) corresponds to the compound concentration required to prevent 

syncytium formation by 50%. The 50% cytostatic concentration (CC50) corresponds to the 

compound concentration required to inhibit CEM cell proliferation by 50%. In the co-

cultivation assays, 5 x 104 persistently HIV-1-infected human lymphocyte HUT-78 cells 

(designated HUT-78/HIV-1 (IIIB) were mixed with 5 x 104 human lymphocyte SupT1 cells, 
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along with appropriate concentrations of the test compounds. After 24-36 h, marked 

syncytium formation was reached in the control cell cultures, and the number of syncytia 

was determined under the microscope. The anti-respiratory syncytial virus (RSV strain Long) 

assay was based on inhibition of virus-induced cytopathicity in human cervix carcinoma HeLa 

cell cultures. Confluent cell cultures were inoculated with 100 CCID50 of virus (1 CCID50 

being the virus dose to infect 50% of the cell cultures) in the presence of varying 

concentrations of the test compounds. Viral cytopathicity was recorded as soon as it reached 

completion in the control virus-infected cell cultures that were not treated with the test 

compounds. 

2A.3.10 Molecular modeling and docking 

Homology modeling of Orysata was performed on a Silicon Graphics O2 10000 workstation, 

using the programs InsightII, Homology and Discover (Accelrys, San Diego CA, USA). The 

atomic coordinates of banana lectin complexed to mannose (code 1X1V) (Singh et al., 2005) 

were taken from the RCSB Protein Data Bank (Berman et al., 2000) and used to build the 

three-dimensional model of Orysata. The amino acid sequence alignment was performed 

with CLUSTAL-X (Thompson et al., 1997) and the Hydrophobic Cluster Analysis (Gaboriaud et 

al., 1987) plot was generated by the mobile server at (http://mobyle.rpbs.univ-paris-

diderot.fr/cgi-bin/portal.py?form=HCA) to recognize the structurally conserved regions 

common to Orysata and banana lectin. Steric conflicts resulting from the replacement or the 

insertion of some residues in the modeled lectin were corrected during the model building 

procedure using the rotamer library (Ponder et al., 1987) and the search algorithm 

implemented in the Homology program (Mas et al., 1992) to maintain proper side-chain 

orientation. Energy minimization and relaxation of the loop regions were carried out by 

several cycles of steepest descent using Discover3. After correction of the geometry of the 

loops using the minimize option of TurboFrodo, a final energy minimization step was 

performed by 150 cycles of steepest descent using Discover 3, keeping constrained the 

amino acid residues forming the carbohydrate-binding site. The program TurboFrodo (Bio-

Graphics, Marseille, France) was used to draw the Ramachandran plots (Ramachandran et 

al., 1968) and perform the superimposition of the models. PROCHECK (Laskowski et al., 

1993) was used to check the stereochemical quality of the three-dimensional model: 82.8% 

http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=HCA
http://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py?form=HCA
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of the residues were assigned to the favorable regions of the Ramachandran plot (84.6% for 

banana lectin), except for three residues Ser20, Glu61 and Tyr105, which occur in the non-

allowed region of the plot. Using ANOLEA (Melo et al., 1997a) to evaluate the model, only 7 

residues over 146 (vs. 3 over 137 for the banana lectin 1X1V used as a template) exhibited 

an energy over the threshold value  

The docking of methyl mannose (MeMan) into the carbohydrate-binding sites of Orysata and 

other JRLs was performed with the program InsightII (Accelrys, San Diego CA, USA). The 

lowest apparent binding energy (Ebind expressed in kcal.mol-1) compatible with the 

hydrogen bonds (considering Van de Waals interactions and strong [2.5 Å < dist(D-A) < 3.1 Å 

and 120° < ang(D-H-A)] and weak [2.5 Å < dist(D-A) < 3.5 Å and 105° < ang(D-H-A) < 120°] 

hydrogen bonds; with D: donor, A: acceptor and H: hydrogen) found in the Man-banana 

lectin complex (RCSB PDB code 1X1V) (Singh et al., 2005) was calculated using the forcefield 

of Discover3 and used to anchor the pyranose ring of the sugars into the binding sites of the 

lectin. The position of mannose observed in the Man-banana lectin complex was used as the 

starting position to anchor mannose in the carbohydrate-binding sites of Orysata. Mannose 

(Man) was similarly docked into the saccharide-binding site of Calsepa (RCSB PDB code 

1OUW) (Bourne et al., 2004). Cartoons showing the docking of Man/MeMan in the 

mannose-binding sites of the lectins were drawn with PyMol (http://www.pymol.org).  

2A.3.11 Analytical methods 

The protein content was estimated using the Coomassie (Bradford) Protein Assay Kit 

(Thermo Fischer Scientific, Rockford, IL USA), based on the Bradford dye-binding procedure 

(Bradford 1976). SDS-PAGE was performed using 15% polyacrylamide gels under reducing 

conditions as described by Laemmli (Laemmli 1970). Proteins were visualised by staining 

with Coomassie Brilliant Blue R-250. For western blot analysis, samples separated by SDS-

PAGE were electrotransferred to 0.45 µm polyvinylidene fluoride (PVDF) membranes 

(BiotraceTM PVDF, PALL, Gelman Laboratory, Ann Arbor, MI USA). After blocking the 

membranes in Tris-Buffered Saline (TBS: 10 mM Tris, 150 mM NaCl and 0.1% (v/v) Triton X-

100, pH 7.6) containing 5% (w/v) milk powder, blots were incubated for 1 h with a mouse 

monoclonal anti-His (C-terminal) antibody (Invitrogen), diluted 1/5000 in TBS. The secondary 

antibody was a 1/1000 diluted rabbit anti-mouse IgG labelled with horse radish peroxidase 

http://www.pymol.org/
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(Dako Cytomation, Glostrup, Denmark). Immunodetection was achieved by a colorimetric 

assay using 3,3’-diaminobenzidine tetrahydrochloride (Sigma-Aldrich, St. Louis Missouri, 

USA) as a substrate. For far western blot analysis the blot was incubated with purified 

Nictaba (1 μg/ml, diluted in Tris-HCl pH 7.6) for one hour prior to incubation with the 

primary antibody against Nictaba, the secondary antibody and the detection buffer. All 

washes and incubations were conducted at room temperature with gentle shaking. The N-

glycans of the purified Orysata (16 µg) were released using the on-membrane 

deglycosylation method as described earlier (Laroy et al., 2006). Briefly, the sample was 

incubated for 1 h at 50°C in denaturing buffer (360 mM Tris-HCl, pH 8.6 containing 8 M urea 

and 3.2 mM EDTA) and subsequently loaded on a 96-well Multiscreen-ImmobilonP plate 

containing a PVDF membrane (Millipore). Then, the bound proteins were reduced and 

carboxymethylated using dithiothreitol and iodeacetic acid, respectively. Next, the N-glycans 

were released using PNGaseF (in the negative control we omitted the enzyme). After 

labeling the N-glycans with 8-aminopyrene-1,3,6-trisulphonic acid, the excess of label was 

removed by size-exclusion chromatography using Sephadex G-10. The samples were finally 

reconstituted in 10 µl of ultrapure water and 10 µl of a 1:10 dilution was analyzed by 

capillary electrophoresis on an ABI 3130 DNA sequencer (Applied Biosytems, CA) as 

described (Laroy et al., 2006). To identify the structures, exoglycosidase digests were 

performed overnight at 37°C by adding  66 ng of Trichoderma reseii α-1,2-mannosidase 

(Maras et al., 2000) or 20 mU of jack bean α-mannosidase (Sigma) to 1.5 µl of sample in a 

total reaction volume of 3 µl containing 5 mM NH4Ac, pH 5. 

 

2A.4 Results 

2A.4.1 Orysata is located in the cytoplasmic/nuclear compartment  

Analysis of the amino acid sequence of Orysata (Genbank accession number CB632549) 

using the SignalP 3.0 tool (http://www.cbs.dtu.dk/services/SignalP) indicated the absence of 

a signal peptide, suggesting that the corresponding rice protein is synthesized on free 

polysomes. Furthermore the PSORT program (http://psort.nibb.ac.jp) predicted a subcellular 

localization of Orysata in the cytoplasmic compartment of the plant cell. The localization of 

http://www.cbs.dtu.dk/services/SignalP
http://psort.nibb.ac.jp/
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Orysata was corroborated by expression of an EGFP-fusion construct for the lectin in tobacco 

cells. Therefore the lectin sequence was fused in-frame to the C-terminus of EGFP and the 

fusion protein was transiently expressed in tobacco Bright Yellow-2 (BY-2) cells. Confocal 

microscopy of EGFP-Orysata at different time points after particle bombardment revealed 

that the rice lectin is located in the nucleus and the cytoplasm of the plant cell. No 

fluorescence emission was seen in the nucleolus or the vacuole. A very similar distribution 

pattern was observed at different time points after transformation and fluorescence was 

detectable until approximately 80 h after transformation (Fig. 2A.1).  

A construct for the native 27 kDa EGFP under the control of the 35S promoter was used as a 

control. Expression of this protein in tobacco cells yielded an even distribution of the 

fluorescence pattern over the cytoplasm and the nucleoplasm, including the nucleolus (Fig. 

2A.1). 

 

Fig. 2A.1 Confocal images collected from living, transiently transformed tobacco BY-2 cells expressing free EGFP 

and EGFP-Orysata. Expression of EGFP-Orysata or EGFP was analyzed at different time points after 

transformation. Scale bars represent 25 nm. Cell compartments: n, nucleolus; N, nucleus; m, cell membrane; c, 

cytoplasm; v, vacuole 
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2A.4.2 Purification and characterization of recombinant Orysata expressed in P. pastoris 

Cloning of the coding sequence of Orysata into the E. coli/P. pastoris shuttle vector pPICZαB 

yielded a fusion construct whereby the Orysata sequence was linked to a C-myc epitope and 

a C-terminal histidine tag (Fig. 2A.2). The fusion protein was successfully expressed in the 

Pichia strain X-33. Because of the presence of the α–mating sequence from Sacharomyces 

cerevisiae at the N-terminus of the construct, the recombinant Orysata was secreted into the 

medium. Transformed Pichia colonies that yielded a positive result after analysis of the total 

protein by SDS-PAGE and subsequent Western blot analysis were grown in one-liter cultures. 

Afterwards the recombinant Orysata was purified from the medium using a combination of 

ion exchange chromatography, metal affinity chromatography on a Ni–Sepharose column 

and affinity chromatography on a mannose-Sepharose 4B column. Starting from a one-liter 

culture approximately 12 mg of recombinant protein was obtained. 

SDS-PAGE analysis of the purified Orysata from Pichia revealed two bands of approximately 

18.5 and 23 kDa (Fig. 2A.3A). A very similar result was obtained after Western blot analysis 

and detection of the recombinant proteins using a monoclonal antibody directed against the 

polyhistidine tag (Fig. 2A.3B). The deduced molecular mass of the lower band is in good 

agreement with the calculated molecular mass of Orysata fused to the c-myc epitope and 

the polyhistidine tag (18.46 kDa). 
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MornigaM        MAGTSTNTQTTGTSQTVEVGLWGGPGGNAWDD-GSYTGIREINLSHG----DAIGAFSVI 55 

Calespa         ----------MAVPMDTISGPWGNNGGNFWSF-RPVNKINQIVISYGGGGNNPIALTFSS 49 

Orysata         -------------MTLVKIGLWGGNGGSAQDISVPPKKLLGVTIYSS---DAIRSIAFNY 44 

                                  

 

MornigaM        YDLNGQPFTGPTHPGNEPSFKTVKITLDFPNEFLVSVSGYTGVLPRLATGKDVIRSLTFK 115 

Calespa         TKADGSKDTITVGGGGPDSITGTEMVNIGTDEYLTGISGTFGIY----LDNNVLRSITFT 105 

Orysata         IGVDGQEYAIGPWGGGEGTSTEIKLG---SSEHIKEISGTHGPVY---DLADIVTYLKIV 98 

                    

                    

MornigaM        TNKKTYGPYGKEEGTPFSLP-IENGLIVGFKGRSGFVVDAIGVHLSL 161 

Calespa         TNLKAHGPYGQKVGTPFSSANVVGNEIVGFLGRSGYYVDAIGTYNRH 152 

Orysata         TSANNTYEAGVPNGKEFSIPLQDSGHVVGFFGRSGTLIDAIGIYVHP 145 

Fig. 2A.2 (a) Sequence of recombinant Orysata expressed in Pichia, preceded by an N-terminal signal peptide 

(residues 1 to 89) necessary for secretion and a C-terminal tag containing a c-myc epitope and a (His)6 tag 

(residues 254 to 259). The cleavage sites for the signal peptide are indicated (Kex2 protease site at position 86 

and Ste 13 protease sites at positions 87 and 89). The N-terminal sequence of recombinant Orysata determined 

by Edman degradation is underlined. The putative N-glycosylation site is shown in bold. (b) Sequence alignment 

for the three mannose-binding JRLs from Oryza sativa, Calystegia sepium and Morus nigra. Identical residues 

are shown in white with a black background and similar residues are boxed. The amino acid residues forming 

the monosaccharide-binding site are shown in red 

 

N-terminal sequence analysis of both polypeptides yielded an identical sequence 

EAEAAAMTLVKIGLW. Since the six N-terminal amino acid residues in this sequence 

correspond to the yeast α-mating sequence it can be concluded that part of the signal 

peptide sequence was not cleaved properly (Fig. 2A.2). Detailed analysis of the amino acid 

sequence for Orysata revealed the presence of a putative glycosylation site NNT (Fig. 2A.2). 

Far western blot analysis whereby the blotted proteins were incubated with the N-glycan 

binding lectin Nictaba (Lannoo et al., 2007a) revealed interaction of Nictaba with the Orysata 

polypeptide of appr. 23 kDa, suggesting that this polypeptide is glycosylated (Fig. 2A.3c). 
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Indeed, only one polypeptide band of 18.5 kDa remains after removing the N-glycans of 

Orysata using peptide N-glycosidase F (PNGaseF) treatment (Fig. 2A.3d). Subsequent N-

glycan analysis (Fig. 2A.4) revealed that the carbohydrate structures are high-mannose 

(Man9-11) glycans which are typically produced by wild-type P. pastoris (Jacobs et al., 2009). 

Molecular modeling of the mature Orysata sequence with an N-glycan at the position of the 

putative N-glycosylation site revealed that the glycan is located at the opposite side of the 

carbohydrate-binding site and hence is unlikely to interfere with the carbohydrate-binding 

properties of the lectin (Results not shown). 

 

Fig. 2A.3 Crude protein extract from the medium of Pichia cell culture and purified Orysata were analyzed by 

SDS-PAGE (a), Western blot analysis with a monoclonal anti-His antibody (b), Far western blot analysis using 

Nictaba (1 μg/ml) (c) and PNGase F treatment (d). Samples are loaded as follows: lane M1: protein ladder 

(increasing MW: 10, 17, 26, 34, 43, 55, 72, 95, 130, 170 kDa), lane M2: unstained protein ladder (increasing 

MW: 14.4, 18.4, 25, 35, 45, 66.2, 116 kDa) (Fermentas, St. Leon-Rot, Germany), lanes 1 and 4: crude extract 

from Pichia cells expressing Orysata (15 μg), lanes 2 and 5: purified recombinant Orysata (2.5 μg) analyzed in 

the presence of mercaptoethanol and lanes 3 and 6: purified recombinant Orysata (2.5 μg) analyzed in the 

absence of mercaptoethanol. Lanes 7 and 8: positive controls (Nictaba), lane 9: recombinant Orysata (2.5 μg), 

lane 10: pure Orysata (2.5 μg), lane 11: pure Orysata (2.5 μg) digested with PNGase F (3.8 IUB mU), lane 12: 

positive control RNase B (2.5 μg) and lane 13: RNase B (2.5 μg) digested with PNGase F (3.8 IUB mU) 
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Fig. 2A.4 Identification of the N-glycans present on recombinant Orysata. N-glycans were released using 

PNGaseF (c) and to identify aspecific peaks (*) we also omitted the enzyme as a negative control (b).  Alpha-1,2-

mannosidase (d) and a broad-specific α-mannosidase (e) were added to the PNGaseF treated Orysata to 

identify the N-glycan structures. The result of a malto-dextrose reference is also given (a). Sugar code used: 

green circles indicate mannose residues, red circles are α-1,2-mannoses that cannot be cleaved by the α-(1,2)-

mannosidase due to steric hindrance. Blue squares indicate N-acetylglucosamine residues and yellow circles 

indicate galactose residues as suggested by the Consortium for Functional Glycomics 
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2A.4.3 Agglutination activity and carbohydrate-binding properties of recombinant Orysata 

To study the biological activity of the recombinant lectin expressed in Pichia, the 

recombinant Orysata was tested for agglutination activity towards rabbit erythrocytes. 

Agglutination was observed after adding the red blood cells to the purified lectin, the 

minimal concentration of lectin necessary to obtain agglutination activity being 5 µg/ml 

whereas it was 0.12 μg/ml for the native Orysata (Zhang et al., 2000). Preliminary 

carbohydrate inhibition assays revealed that the agglutination activity of the recombinant 

Orysata was similar to that of the native lectin in that the agglutination of rabbit 

erythrocytes was inhibited by mannose, methyl α-mannopyranoside and trehalose (Table 

2A.1). Several glycoproteins also inhibited the agglutination activity of recombinant Orysata, 

though at higher concentration than required for inhibition of the native lectin. 

More detailed carbohydrate-binding studies were performed using a screening of the lectin 

on a glycan array (Table 2A.2). The carbohydrate-binding properties of recombinant Orysata 

were investigated on glycan array v4.2, and compared to the sugar binding specificities of 

two other mannose-binding JRLs from Calystegia sepium and Morus nigra, further referred 

to as Calsepa and Morniga M, respectively (Fig. 2A.2b). On a first sight all three JRLs show 

similar interaction patterns with the glycan array (Fig. 2A.5). All lectins react with both high-

mannose and complex N-glycans. However, more detailed analyses of the glycan array data 

show that Orysata and Morniga M show a higher reactivity towards high-mannose N-

glycans, compared to Calsepa, which interacts primarily with galactosylated and sialylated 

biantennary complex N-glycans.  
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Table 2A.1 Comparison of the carbohydrate-binding specificities of native and recombinant Orysata. IC50 is the 
inhibitory concentration required to give a 50% inhibition of the agglutination of trypsin-treated rabbit 
erythrocytes at a lectin concentration of 12 µg/ml. The results for native Orysata are taken from (Zhang et al., 
2000) 

 IC50 

 Native Orysata Recombinant Orysata 

Sugar   

   Mannose      12 mM      50 mM 

   Trehalose      12 mM      25 mM 

   Methyl α-mannopyranoside      12 mM      25 mM 

Glycoprotein   

   Thyroglobulin     2 µg/ml   60 µg/ml 

   Ovomucoid     8 µg/ml 250 µg/ml 

   Asialomucin 250 µg/ml 500 µg/ml 
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Table 2A.2 Comparative analysis of glycan array results for Orysata, Morniga M and Calsepa. The glycan with the highest relative fluorescence unit (RFU) is assigned a value 

of 100. The rank is the percentile ranking. 
a
: no reactivity

 
 

  Orysata 25 
μg/ml 

Morniga M 50 
μg/ml 

Calsepa  50 
μg/ml 

Glycan 
no 

Structure  RFU Rank RFU Rank RFU Rank 

360 Galα1-3Galβ1-4GlcNAcβ1-2Manα1-3(Galα1-3Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-
4GlcNAcβ1-4GlcNAcβ-Sp20 

42939 100 29317 76 18912 86 

212 Manα1-6(Manα1-3)Manα1-6(Manα1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 41305 96 31139 81 6814 31 
342 Manα1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc-Sp12 34647 81 33653 87 10507 48 
321 Galβ1-3GlcNAcβ1-2Manα1-3(Galβ1-3GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-

4GlcNAcβ-Sp19 
34083 79 28240 73 12119 55 

56 Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-
6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp13 

32258 75 33609 87 19389 88 

361 Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 31759 74 35422 92 11095 51 
305 GlcNAcβ1-2Manα1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-

4GlcNAcβ-Sp12 
30801 72 30973 80 7586 35 

399 Galα1-4Galβ1-3GlcNΑcβ1-2Manα1-3(Galα1-4Galβ1-3GlcNΑcβ1-2Manα1-6)Manβ1-
4GlcNΑcβ1-4GlcNΑcβ-Sp19 

29008 68 25848 67 5930 27 

358 Fucα1-2Galβ1-4GlcNAcβ1-2Manα1-3(Fucα1-2Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-
4GlcNAcβ1-4GlcNAcβ-Sp20 

28743 67 19812 51 8588 39 

316 Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-
4GlcNAcβ1-4GlcNAcβ-Sp12 

28510 66 33022 86 14593 67 

51 GlcNAcβ1-2Manα1-3(GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 27612 64 29277 76 6775 31 
346 Galβ1-4GlcNAcβ1-2Manα1-3Manβ1-4GlcNAcβ1-4GlcNAc-Sp12 27579 64 37958 98 13309 61 
458 Galβ1-4GlcNAcβ1-6(Galβ1-4GlcNAcβ1-2)Manα1-6(Galβ1-4GlcNAcβ1-2Manα1-

3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp19 
27178 63 30338 79 11613 53 

53 Galβ1-4GlcNAcβ1-2Manα1-3(Galβ1-4GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-
4GlcNAcβ-Sp12 

26984 63 31648 82 13724 63 

393 Galβ1-4GlcNAcβ1-2Manα1-3(GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc-Sp12 26515 62 24029 62 11719 53 
52 GlcNAcβ1-2Manα1-3(GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp13 26286 61 38115 99 15111 69 
345 Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3Manβ1-4GlcNAcβ1-4GlcNAc-Sp12 25287 59 33568 87 18242 83 
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323 Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-3Galβ1-4GlcNAcβ1-2Manα1-
6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 

25059 58 32351 84 15692 72 

49 Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 24991 58 38600 100 12609 58 
343 Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAc-Sp12 24979 58 29082 75 12118 55 
317 Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3(GlcNAcβ1-2Manα1-6)Manβ1-4GlcNAcβ1-

4GlcNAcβ-Sp12 
24343 57 24806 64 12033 55 

418 GlcNAcβ1-2Manα1-3(GlcNAcβ1-2(GlcNAcβ1-6)Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-
Sp19 

23801 55 23280 60 a a 

425 Galβ1-3GlcNAcβ1-2Manα1-3(Galβ1-3GlcNAcβ1-2(Galβ1-3GlcNAcβ1-6)Manα1-
6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp19 

23714 55 16526 43 5874 27 

315 Neu5Acα2-3Galβ1-4GlcNAcβ1-2Manα1-3(Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-
6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 

23432 55 24349 63 1325 6 

368 Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-2Manα1-3(Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ1-
2Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp20 

23094 54 30841 80 5745 26 

50 Manα1-3(Manα1-6)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp13 21861 51 34978 91 21918 100 
213 Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAcβ-Sp12 21621 50 26316 68 7179 33 
477 Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAcβ-Sp19 21471 50 28412 74 2475 11 
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Fig. 2A.5 Comparative analysis of binding of recombinant Orysata, Morniga M and Calsepa on the 

glycan array. Panels a-c show interaction of recombinant Orysata (25 μg/ml), Morniga M (50 μg/ml) 

and Calsepa (50 μg/ml), respectively. The complete primary data set for each protein is available on 

the website of the Consortium for Functional Glycomics (www.functionalglycomics.org). Sugar code 

used: Green circles indicate mannose residues, yellow circles indicate galactose residues, blue squares 

indicate N-acetylglucosamine residues, purple diamonds indicate sialic acid residues and red triangles 

indicate fucose  

 

2A.4.4 Antiviral activity of recombinant Orysata, compared to Calsepa and Morniga 

M 

The three JRLs were evaluated for their antiviral activity against HIV-1(IIIB) and HIV-

2(ROD) in CEM cell cultures (Table 2A.3). The 1,3/1,6-mannose-specific 

Hippeastrum hybrid agglutinin (HHA) was included as a control since it showed 

significant activity against HIV (Balzarini  2006) and other viruses. Orysata efficiently 

http://www.functionalglycomics.org/
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suppressed HIV infection at a 50% effective concentration of 1.7 to 5.6 µg/ml, 

corresponding to a concentration which is ~ 10-fold higher than required for HHA. In 

contrast, Calsepa was marginally inhibitory against HIV-1 (EC50: 100 µg/ml). 

Morniga M could not be evaluated at compound concentrations higher than 4 µg/ml 

due to cytotoxicity in the cell cultures at a concentration of  20 µg/ml.  

The lectins have also been investigated for their inhibitory activity against syncytia 

formation between persistently HIV-1(IIIB)-infected HUT-78/HIV-1 cells and 

uninfected Sup T1 cells. The three lectins prevented giant cell formation at 18 to 38 

µg/ml by 50%. This concentration proved to be 10- to 20-fold higher than required 

for HHA under similar experimental conditions (Table 2A.3). Interestingly, when 

exposed to RSV-infected HeLa cell cultures, Orysata and Calsepa (EC50: 1.6-2.1 µg/ml) 

but not Morniga M and HHA (EC50:  20 µg/ml) efficiently inhibited viral infection. 

Table 2A.3 Inhibitory activity of the lectins against HIV-1 and HIV-2 in human T-lymphocyte (CEM) cell 

cultures and against syncytium formation between HUT-78 ⁄ HIV-1 and Sup T1 cells. EC50 is the 

effective concentration or the concentration required to protect CEM cells against the 

cytopathogenicity of HIV by 50% or to prevent syncytia formation in co-cultures of persistently HIV-1-

infected HUT-78 cells and uninfected Sup T1 lymphocyte cells 

Compound EC50 (µg/ml) 

 HIV-1(IIIB) HIV-2(ROD) HUT-78/HIV-1 + Sup T1 

Orysata 1.7 ± 0.14 5.6 ± 3.7 38 ± 6.7 

Calsepa 100 >100 26 ± 10 

MornigaM >4 >4 18± 4.0 

HHA 0.17 ± 0.021 0.49 ± 0.47 1.7 ± 0.8 

 

2A.4.5 Molecular modeling of carbohydrate-binding sites 

Although the three Man-specific JRLs Orysata, Morniga M and Calsepa accommodate 

both Man and MeMan in a very similar way (Fig. 2A.6 panels a, d and g), they display 

a rather different affinity towards more complex saccharides as shown from the 

reported glycan array experiments (Table 2A.2) and the anti-HIV activity (Table 2A.3). 

In this respect, Orysata resembles Morniga M, since both lectins predominantly 

interact with high-mannose N-glycans, whereas Calsepa exhibits a higher affinity for 
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complex N-glycans. These discrepancies most probably depend on differences in the 

shape and size of their carbohydrate-binding cavities. The carbohydrate-binding 

cavity of Man-specific JRLs (Calsepa, Morniga M, Orysata) consists of three loops L1, 

L2 and L3 containing two conserved Gly (L1) and Asp (L3) residues and two other 

variable residues (Thr134 and Leu135 in Orysata, Phe150 and Val151 in Calsepa, 

Tyr141 and Tyr142 in Morniga M) that also belong to loop L3 (Fig. 2A6 panels c, f and 

i). Depending on the bulkiness of loop L2, the carbohydrate-binding cavity of the 

lectins exhibits considerable differences in shape and size (Raval et al., 2004; Van 

Damme et al., 2007a). Orysata and Calsepa exhibit a crescent-shaped binding-cavity 

largely open at both extremities, and thus can accommodate extended 

oligosaccharide chains (Fig. 2A.6 panels b and e). The binding site of Morniga M 

possesses a totally different shape due to the bulkiness of loop L2 which closes up 

the cavity at one extremity and considerably decreases its size (Fig. 2A.6e). However, 

the carbohydrate-binding cavity of Morniga M remains largely open at the opposite 

extremity which should allow α3-O-linked saccharides to interact with the lectin but 

prevent the correct accommodation of α1-O-linked saccharides.  
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Fig. 2A.6 Molecular modeling of the carbohydrate-binding sites of Orysata, Calsepa and Morniga M. A, 

d, g: Network of hydrogen bonds anchoring Man to the saccharide binding sites of Orysata (a), 

Calsepa (d) and Morniga M (g). Hydrogen bonds are represented in blue dotted lines. Aromatic 

residues that create a stacking interaction with the sugar are colored orange. B, e, h: Topography of 

the saccharide binding cavity at the surface of the Orysata (b), Calsepa (e) and Morniga M (h) 

protomers. Cavities are delineated by red dotted lines and the curved blue arrows indicate the overall 

orientation of the cavities. C, f, i: Ribbon diagrams at the top of the Man-binding lectins showing the 

overall topography of the carbohydrate-binding sites of Orysata (c), Calsepa (f) and Morniga M (i). L1, 

L2 and L3 correspond to the loops forming the carbohydrate-binding cavity of the lectins. Strands of 

β-sheet participating to the binding cavities are numbered. Molecular modeling was performed by 

Prof Pierre Rougé, Toulouse, France 
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2A.5 Discussion 

This paper describes the characterization of Orysata, a mannose-binding JRL from 

rice (Oryza sativa) expressed in P. pastoris. Recombinant Orysata was successfully 

expressed in Pichia strain X-33 with the addition of a signal sequence for secretion of 

the recombinant protein into the medium. Approximately 12 mg of the recombinant 

lectin was purified from the medium of a one-liter culture (BMMY, pH 6) induced 

with methanol for 72 h. Compared to the yield reported for other recombinant 

lectins that were expressed extracellularly in Pichia, the amount of lectin obtained 

for Orysata is considered to be rather low. However, it should be mentioned that the 

yield obtained for the nucleocytoplasmic lectin from tobacco was even lower, being 

only 6 mg/l (Lannoo et al., 2007a). To our knowledge only one JRL has been 

previously expressed in Pichia. The galactose-binding lectin frutalin from breadfruit 

seeds was successfully expressed at 18-20 mg/l (Oliveira et al., 2008). Much higher 

yields of recombinant protein can be obtained when Pichia cultures are grown in a 

bioreactor under controlled conditions, as reported for the recombinant lectins from 

Aleuria aurantia (67 mg/l) (Amano et al., 2003), snowdrop (80 mg/l) (Baumgartner et 

al., 2003) and the bean lectin PHA-E (100 mg/l) (Baumgartner et al., 2002). 

After purification, two molecular forms of the lectin were detected by SDS-PAGE and 

Western blot analysis. Edman degradation revealed them to have identical N-

terminal sequences, suggesting that the higher molecular weight fraction might be 

glycosylated. Indeed a careful analysis of the amino acid sequence revealed one 

putative N-glycosylation site at position 102 of the mature Orysata sequence (NNT). 

Far Western blot analysis using Nictaba, a lectin with well-defined specificity towards 

high-mannose and complex N-glycans (Lannoo et al., 2006a), confirmed that the 23 

kDa polypeptide for Orysata is glycosylated whereas the 18.5 kDa polypeptide is 

unglycosylated, indicating that the recombinant Orysata obtained from the Pichia 

culture is partially glycosylated. This result was further confirmed by PNGaseF 

treatment of the recombinant Orysata which resulted in a shift of the 23 kDa 

polypeptide to 18.5 kDa. In this respect it should be mentioned that the JRL frutalin 

was also partially glycosylated after secreted expression in Pichia with a very similar 
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size difference between the glycosylated and the non-glycosylated lectin 

polypeptides (Oliveira et al., 2008). Furthermore N-terminal sequence analysis of 

recombinant Orysata showed that the processing of the α-mating sequence was not 

fully completed. It has been reported before that cleavage of EA repeats by Ste13 

protease is an inefficient process, but these repeats are necessary to enhance proper 

function of the Kex2 protease (Sreekrishna et al., 1997). In the case of Nictaba and 

frutalin incomplete processing of the signal peptide was also reported (Oliveira et al., 

2008; Lannoo et al., 2007a). The uncleaved part of the α-mating sequence at the N-

terminus as well as the histidine tag at the C-terminus of the recombinant lectin 

apparently do not influence the biological activity of Orysata, since the recombinant 

lectin reacted with carbohydrate structures and agglutinated red blood cells.  

Molecular cloning and characterization of the lectin from rhizomes of Calystegia 

sepium (abbreviated as Calsepa) unambiguously showed that some JRLs show 

specificity towards mannose (Van Damme et al., 1996). Since then the family of JRLs 

is subdivided in two classes of lectins with preferential specificity towards galactose 

(as in the case of jacalin) and mannose (as in the case of Calsepa). In the last decade 

several so-called mannose-binding JRLs have been identified and characterized from 

different plant species (Van Damme et al., 2008). Structural analyses as well as 

detailed studies of the carbohydrate-binding properties have shown that both the 

galactose-binding and the mannose-binding JRLs are polyspecific lectins with a 

preference for galactose and mannose, respectively (Bourne et al., 2004; Rougé et 

al., 2003). Analysis of the carbohydrate-binding specificity of three mannose-binding 

JRLs on the glycan array revealed differences in their specificity. Clearly Orysata and 

Morniga M interact much better with high-mannose binding glycans compared to 

Calsepa. These results are in agreement with the analyses of the sugar binding 

specificity of Morniga M and Calsepa by frontal affinity chromatography where it was 

shown that although Morniga M and Calsepa both react with high-mannose 

structures (especially of Man2-6 type), Calsepa showed a much better interaction 

with complex N-glycans with bisecting GlcNAc (Nakamura-Tsuruta et al., 2008). 

Although the frontal affinity chromatography indicated that Morniga M and Calsepa 

did not react with tri- and tetra-antennary glycans, some interactions with these 
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glycan structures have been observed on the array. Molecular modeling studies 

suggest subtle differences in the carbohydrate-binding sites of JRLs. The shortening 

of the carbohydrate-binding cavity in Morniga M could account for the differences in 

specificity of the different Man-specific JRLs towards extended oligosaccharide 

chains, e.g. the α1-O-linked, α3-O-linked and α6-O-linked oligosaccharides.  

Until now especially mannose-binding lectins belonging to the group of GNA-lectins 

such as snowdrop (GNA) and amaryllis (HHA) lectin have been shown to exhibit 

significant activity against HIV as well as some other viruses such as hepatitis C virus 

(Botos and Wlodawer 2005; Balzarini  2006; Bertaux et al., 2007). Since very little is 

known with respect to the antiviral activity of JRLs the anti-HIV activity of three 

mannose-binding JRLs was tested and compared. Detailed analysis showed that 

Orysata has potent anti-HIV and anti-RSV activity. Only recently the mannose-

binding JRL isolated from the fruit of banana Musa acuminata BanLec was also 

reported to exhibit potent anti-HIV activity (Swanson et al., 2010). It was shown that 

HHA and BanLec interact with gp120 and can inhibit HIV replication. It is intriguing, 

however, to notice that the 1,3/1,6-mannose-specific HHA is 10- to 20-fold more 

inhibitory to HIV but more than 10-fold less inhibitory to RSV than Orysata. This may 

point to subtle differences in carbohydrate recognition of both lectins, and is in 

agreement with the modeling and glycan arrays suggesting that Orysata also 

recognizes complex-type glycans in addition to high-mannose type glycans. Although 

the nature of the glycans on the envelope of RSV are not unambiguously 

determined, they most likely predominantly consist of complex-type glycans since 

mannose-specific lectins such as GNA and HHA have never found to be endowed 

with significant anti-RSV activity in cell culture. Taken all data together, the lectin 

may qualify as a microbicide candidate agent since it not only blocks T-cell infection 

by cell-free HIV but it also prevents virus transmission (syncytia formation) between 

HIV-infected cells and uninfected cells. However, additional studies are required to 

further explore the microbicide potential of Orysata. 

Expression of the low abundant rice lectin Orysata in Pichia allowed comparing its 

biological activity to that of other JRLs such as Calsepa and MornigaM which are 
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expressed in high amounts in plants. Glycan array analyses confirmed earlier reports 

on the polyspecificity of Calsepa and MornigaM (Bourne et al., 2004; Rougé et al., 

2003). Data from molecular modelling suggest that subtle differences in the 

carbohydrate-binding site of the different JRLs could explain the different 

specificities and antiviral activities of the JRLs under study. 
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Chapter 2 

Characterization of the lectins under study expressed in Pichia pastoris  

 

 

 

 

 

 

Chapter 2B 

Expression analysis of a type S2 EUL-related lectin from rice in Pichia pastoris 

Redrafted from: 

Al Atalah B, Rougé P, Smith DF, Proost P, Lasanajak Y, Van Damme EJM (2012) 

Expression analysis of a type S2 EUL-related lectin from rice in Pichia pastoris. 

Glycoconjugate J 29: 467–479 
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2B.1 Abstract 

Rice (Oryza sativa) expresses different putative carbohydrate-binding proteins 

belonging to the class of lectins containing an Euonymus lectin (EUL)-related domain, 

one of them being OrysaEULS2. The OrysaEULS2 sequence consists of a 56 AA N-

terminal domain followed by the EUL sequence. In this paper the original EULS2 

sequence and some mutant forms have been expressed in Pichia pastoris. 

Subsequently the recombinant proteins were purified and their carbohydrate 

binding properties determined. Analysis of the original protein on the glycan array 

revealed interaction with mannose containing structures and to a lesser extent with 

glycans containing lactosamine related structures. It was shown that mutation of 

tryptophan residue 134 into leucine resulted in an almost complete loss of 

carbohydrate binding activity of OrysaEULS2. Our results show that the EUL domain 

in OrysaEULS2 interacts with glycan structures, and hence can be considered as a 

lectin. However, the binding of the protein with the array is much weaker than that 

of other EUL-related lectins. Furthermore, our results indicate that gene divergence 

within the family of EUL-related lectins lead to changes in carbohydrate binding 

specificity.  
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2B.2 Introduction  

In 2008 sequencing of the cDNA clone encoding the EEA from spindle tree led to the 

discovery of a new lectin motif in plants (Fouquaert et al., 2008). Since then, the 

Euonymus europaeus lectin (EUL) domain is considered as the prototype for a new 

lectin family (Fouquaert et al., 2009a). Screening of the available genome and 

transcriptome data revealed the broad distribution of the EUL lectin domain in the 

plant kingdom. A classification system for proteins containing one or more EUL-

related lectin domains was proposed based on the architecture of the EUL domain in 

the different protein sequences (Fouquaert et al., 2009a). According to this 

classification, some EUL sequences comprise a single EUL domain preceded by 

variable and unrelated N-terminal domain, whereas other EUL proteins are 

composed of two EUL domains arrayed in tandem and separated by a linker 

sequence. In rice, four different types of EUL proteins have been identified: 1) a 

single-domain protein with a medium long unrelated N-terminal sequence (type S2, 

referred to as OrysaEULS2), 2) a single-domain EUL protein with a long unrelated N-

terminal sequence (type S3, OrysaEULS3), 3) two two-domain proteins with a short 

linker (type D1, OrysaEULD1A, and OrysaEULD1B), and 4) one two-domain protein 

with a long linker sequence (type D2, OrysaEULD2) (Fouquaert et al., 2009a).  

The OrysaEULS2 protein, originally named as OSR40g3, was first reported in the 

shoots of rice seedlings subjected to salt stress and ABA treatment (Moons et al., 

1997a). The protein is encoded by a gene annotated under two accessions; 

Os07g0684000 (National Center for Biotechnology Information [NCBI] annotation) 

and Os07g48500 (The Institute for Genomic Research annotation). OrysaEULS2 is 

annotated as a ‘ricin B-related lectin domain containing protein’ because it has two 

QXW repeats (which is typical for ricin-B domain), but according to the BLASTp 

search there is no significant sequence similarity with proteins comprising a ricin-B 

domain and thus it is questionable whether it can be considered as a ricin-B family 

member (Fouquaert et al., 2008). According to the classification of plant lectins 

proposed by Fouquaert et al. (2009a) this protein belongs to the group of chimeric 

EUL proteins and consists of an EUL domain preceded by a 56 unrelated AA 

sequence, and can be grouped as a type S2 EUL-related lectin. The purification of 
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OrysaEULS2 is cumbersome because the protein is expressed at very low levels even 

after the plant was subjected to stress. In an attempt to gain more information on 

the carbohydrate binding properties of OrysaEULS2 the presumed carbohydrate-

binding domain of this protein was recombinantly expressed in the heterologous 

expression system Pichia pastoris. In the last decade this expression system has 

become a pioneer biological tool to produce proteins of interest (Cereghino and 

Cregg 2000; Macauley-Patrick et al., 2005; Daly and Hearn 2005). The expression of 

the recombinant proteins is controlled by the AOX1 promoter and tightly induced to 

high levels by methanol (Elias et al., 1985; Hartner and Glieder 2006). Several 

nucleocytoplasmic lectins from tobacco (Nictaba), maize (GNAmaize), rice (Orysata) 

and Arabidopsis thaliana (ArathEULS3) have been expressed successfully in P. 

pastoris (Lannoo et al., 2007a; Fouquaert et al., 2009b; Al Atalah et al., 2011 see 

chapter 2A; Van Hove et al., 2011).  

In this paper we describe the expression and purification of the EUL domain from 

OrysaEULS2, further referred to as EULS2, in P. pastoris. In an attempt to unravel 

which amino acids are required for the carbohydrate binding activity of EULS2 a 

three-dimensional model was made for EULS2, and compared to the models for EEA 

and the EUL domain within ArathEULS3. The molecular structure, biological activity, 

putative carbohydrate binding site and specificity of the EULS2 domain and its 

mutants have been investigated. These data will allow us to get better insights into 

the physiological role and importance of the OrysaEULS2 protein in carbohydrate-

mediated stress responses.  

 

2B.3 Materials and methods 

2B.3.1 Hydrophobic cluster analysis and molecular modeling 

Hydrophobic Cluster Analysis (HCA) (Treiber et al., 2008) was performed to assess 

the conserved secondary structural features (essentially strands of β-sheet) along 

the amino acid sequences of the EEA and the EUL domains of Arabidopsis 

(ArathEULS3) and rice (OrysaEULS2). HCA plots were generated using the HCA server 
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(http://mobyle.rpbs.univ-paris-diderot.fr). Molecular modeling was performed with 

the YASARA Structure program (Krieger et al., 2002) running on a 2.53 GHz Intel core 

duo Macintosh computer. All protein models were built from the X-ray coordinates 

of the holotoxin from Bacillus sphaericus (RCSB PDB code 2VSE) (Gaboriaud et al., 

1987), which was used as a template. The toxin shares acceptable percentages of 

identity (~ 20%) and homology (~ 50%) with all EUL proteins and allowed to build an 

accurate three-dimensional model for the three EUL lectins. PROCHECK (Laskowski et 

al., 1993) was used to assess the geometric quality of the three-dimensional models. 

As an example, about 80% of the residues of the modeled EEA protein were correctly 

assigned on the best allowed regions of the Ramachandran plot, the remaining 

residues being located in the generously allowed regions of the plot except for Phe32 

and Lys75 (in EEA) which occur in the non-allowed region (result not shown). 

Cartoons were drawn with PyMOL (http://www.pymol.org) and YASARA. 

Electrostatic potentials were calculated (Nicholls et al., 1991) and displayed with 

GRASP using the parse3 parameters (Gilson and Honig 1987). The solvent probe 

radius used for molecular surfaces was 1.4 Å and a standard 2.0 Å-Stern layer was 

used to exclude ions from the molecular surface. The inner and outer dielectric 

constants applied to the protein and the solvent were respectively fixed at 4.0 and 

80.0, and the calculations were performed keeping a salt concentration of 0.145 M. 

2B.3.2 Expression of EULS2 and its mutant forms in P. pastoris 

The EasySelect Pichia Expression Kit from Invitrogen was used (Invitrogen, Carlsbad, 

CA USA) to clone and express the EUL domain from OrysaEULS2 and its mutant 

forms. Therefore the coding sequence for the EUL domain (amino acids 57-204 of 

the full OrysaEULS2, Genbank accession number AK072989) was amplified from the 

pFLCI vector (obtained from the Rice Genome Resource Center, Ibaraki, Japan) by 

PCR using primers EVD 574 and EVD 514 (Table 2B.1). The mutant forms were 

created by using reverse primers containing several point mutations (Table 2B.1). 

Cloning and transformation procedure is described in sections 2A.3.2 and 2A.3.3.  
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Table 2B.1 PCR scheme and primer sequences. Nucleotides that have been mutated are shown in red  

Construct  PCR/ 

Template  

Direction  Primer 

name  

Primer sequence 5’ to 3’ 

Original 

S2d 

PCR1/pFL

CI vector 

Forward  EVD 574 GGCGGAGAATTCACCATGGTGTACTGCCGG

GCG AACCCGAA 

Reverse  EVD 514 CCCGCTTTCTAGAATGTAGTAGGGCTGGATC

TTCCAGCGC 

Mutant 1 

W changed 

to L  

PCR2/pFL

CI vector 

Forward  EVD 574 Above  

Reverse1  EVD 639  GTAGTAGGGCTGGATCTTCCAGCGCTGGTT

GTCGCCCTCGCACAACTTCCA 

PCR3/PCR

2  product 

Forward  EVD 574 Above  

Reverse 2 EVD 514 Above  

Mutant 2  

W changed 

into L and 

N into S 

PCR4/PCR

2 product 

Forward  EVD 574 Above  

Reverse1  EVD 640  GTAGTAGGGCTGGATCTTCCAGCGCTGGCT

GTCGCCCTC 

PCR5/PCR

4 product  

Forward  EVD 574 Above  

Reverse 2 EVD 514 Above  

Mutant 3 

W changed 

into L, N 

into S and 

Q into L 

PCR6/PCR

4 product  

Forward  EVD 574 Above  

Reverse  EVD 641 GTAGTAGGGCTGGATCTTCCAGCGCAGGCT

GTCGCCCTC 

PCR7/PCR

6 product 

Forward  EVD 574 Above  

Reverse 2 EVD 514 Above  

AOX1 primers  Forward  EVD 21 GACTGGTTCCAATTGACAAGC 

Reverse  EVD 22 GCAAATGGCATTCTGACATCC 
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2B.3.3 Expression analysis of the recombinant proteins 

Performed like explained in sections 2A.3.3 and 2A.3.4. Through the purification 

procedure, the mannose-Sepharose 4B column was not used. Instead thyroglobulin 

column was used to further purify the recombinant proteins.  

2B3.4 Purification of the recombinant proteins 

Purification of the native EULS2 and its mutant forms was achieved as described in 

the section 2A.3.4. Starting from a 1 l culture 4 to 6 mg of recombinant EULS2 was 

obtained. 

2B.3.5 N-terminal sequence analysis 

N-terminal sequencing was conducted as mentioned in the section 2A.3.5.  

2B.3.6 Agglutination assay  

The biological activity for the recombinant proteins was examined by performing an 

agglutination assay using trypsin-treated rabbit red blood cells (BioMérieux, Marcy 

l'Etoile, France). The procedure is explained in the section 2A.3.6.  

2B.3.7 Carbohydrate inhibition test 

To test the carbohydrate specificity of the recombinant proteins, a procedure 

explained in section 2A.3.7 was followed. The concentration required to inhibit the 

agglutination of trypsin-treated rabbit erythrocytes was estimated at a lectin 

concentration of 100 µg/ml. 

2B.3.8 Glycan array screening  

The microarrays are printed as described previously (Blixt et al., 2004) and version 

5.0 with 611 glycan targets was used for the analyses reported here 

(https://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.

shtml). The printed glycan array contains a library of natural and synthetic glycan 

sequences representing major glycan structures of glycoproteins and glycolipids. 

Recombinant EULS2 and its mutant forms containing a His tag were purified from P. 

pastoris and detected using a fluorescent-labeled anti-His monoclonal antibody 

https://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.shtml
https://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.shtml
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(Qiagen, Valencia, CA). Since the 488-labeled anti-His did not show binding (data not 

shown), detection of the immune complex with alexa488-labeled mouse anti-His was 

amplified using an Alexa633-labeled goat anti-mouse IgG. In addition to any 

amplification coming from the additional antibody binding the Alexa633 label is 

approximately 10 times more sensitive than the Alexa488 label. The lectin was 

diluted to desired concentrations in binding buffer (Tris-bufferred saline containing 

10 mM CaCl2, 10 mM MgCl2, 1% BSA, 0.05% Tween 20, pH 7.5) and 70 µl of the lectin 

solution was applied to separate microarray slides. After 60 min incubation under a 

cover slip in a humidified chamber at room temperature, the cover slip was gently 

removed in a solution of Tris-buffered saline containing 0.05% Tween 20 and washed 

by gently dipping the slides 4 times in successive washes of Tris-buffered saline 

containing 0.05% Tween 20, and Tris-buffered saline. To detect bound lectin, the 

labeled anti-His antibody (70 µl at one µg/ml in binding buffer) was applied to the 

slide under a cover slip. After removal of the coverslip and gentle washing of the 

slide as described above, this process was repeated with Alexa633 labeled goat anti-

mouse IgG (Invitrogen, Eugene, OR) and the slide was finally washed in deionized 

water and spun in a slide centrifuge for approximately 15 sec to dry. The slide was 

immediately scanned in a PerkinElmer ProScanArray MicroArray Scanner using an 

excitation wavelength of 633 nm and ImaGene software (BioDiscovery, Inc., El 

Segundo, CA) to quantify fluorescence. The data are reported as average Relative 

Fluorescence Units (RFU) of six replicates for each glycan presented on the array 

after removing the highest and lowest values.  

2B.3.9 Analytical methods 

All analytical methods used in this study are described in section 2A.3.11. 
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2B.4 Results 

2B.4.1 Three-dimensional models for EEA and EUL domains in OrysaEULS2 and 

ArathEULS3 

Alignment of the protein sequences encoding EEA, ArathEULS3 and OrysaEULS2 

revealed 66% sequence similarity in their C-terminal EUL domain. Both ArathEULS3 

and OrysaEULS2 contain an unrelated N-terminal domain which is absent from EEA 

(Fig. 2B.2b). Molecular modeling was performed for the EUL domains in all three 

proteins using the three-dimensional structure of the holotoxin from B. sphaericus 

(2VSE). In spite of the rather moderate percentages of identity (~ 20%) and similarity 

(~ 50%) between the three EUL domains and the holotoxin, the HCA plots revealed a 

closely related overall fold for all these proteins. Accordingly, the three-dimensional 

models built for all EUL proteins exhibited a very similar β-trefoil fold consisting of 

three bundles of β-sheet organized around a pseudo three-fold symmetry axis (Fig. 

2B.1a) and are nicely superposable (Fig. 2B.1b). This β-trefoil structure is reminiscent 

to that found in ricin-B and other lectins from the ricin-B family (Van Damme et al., 

2001). EUL domains in both EEA (Cys16) and the ArathEULS3 (Cys57) contain a single 

Cys residue, whereas EULS2 contains three Cys residues (Cys3, Cys100, and Cys135), 

respectively, that are too far from each other to create intra-chain disulphide bonds.  
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Fig. 2B.1 Legend on next page 
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Fig. 2B.1 a. Ribbon diagram of EEA showing the three bundles of β-sheet in different colors (orange, 

green, magenta) associated to the extended loops (indicated by stars) forming the three lobes of the 

β-trefoil. b. Superposition of the three models for EEA and the EUL domains of ArathEUL3 and 

OrysaEULS2 showing a similar three-dimensional fold. Panels c, f and i show ribbon diagrams of EEA 

(c), and EUL domains of ArathEUL3 (f) and OrysaEULS2 (i). The strands of β-sheet and the loops and 

coil regions are colored red, green and cyan, respectively. N and C indicate the N-terminal and C-

terminal ends of the polypeptide chain. The amino acid residues predicted to form a carbohydrate-

binding site in a loop located at the C-terminal end of the polypeptide chain are represented in cyan 

sticks and labelled (according to the sequence). Panels d, g and j show the mapping of the 

electrostatic potentials on the molecular surface of EEA (d), EUL domain of ArathEULS3 (g) and 

OrysaEULS2 (j). Electropositively and electronegatively charged regions are colored blue and red, 

respectively; neutral regions are colored white. The stars indicate the localization of the putative 

carbohydrate-binding sites. Panels e, h and k show an enlarged view of the carbohydrate-binding sites 

of EEA (e), EUL domains of ArathEUL3 (h) and OrysaEULS2 (k). The four amino acid residues forming 

the carbohydrate-binding sites are represented in sticks and labelled (according to the built three-

dimensional models). The loop masking Asn139 residue in the EUL domain from OrysaEULS2 is 

indicated by a star. Molecular modeling was performed by Prof Pierre Rougé, Toulouse, France 

 

2B.4.2 Prediction of putative carbohydrate binding site  

Based on the comparison of the three EUL lectins and the C-terminal domain of 

some  bacterial lectins of the ricin-B family and, especially the HA33/A protein from 

C. botulinum (PDB code 1YBI) (Arndt et al., 2005), a putative carbohydrate-binding 

site consisting of four well conserved residues (Glu124, Trp143, Asn148, Gln149 for 

EEA; Asp119, Trp141, Asn146, Gln147 for the EUL domain in ArathEULS3 from 

Arabidopsis, and Asp112, Trp134, Asn139, Gln140 for the OrysaEULS2 from rice) was 

predicted to occur at the C-terminal end of each of the EUL domains (Fig. 2B.1c,f,i). 

These extremely conserved carbohydrate-binding sites appear as a charged groove 

as shown from the mapping of the electrostatic potentials on the molecular surface 

of the lectins (Fig. 2B.1d,g,j). Another aromatic residue located in the vicinity of the 

putative carbohydrate-binding site, e.g. Tyr147 in EEA and Trp132, Trp139 in the EUL 

domains of ArathEULS2 and OrysaEULS3 respectively (Fig. 2B.2), could also 

participate in stacking interactions that often reinforce the binding of a simple sugar 

to the carbohydrate-binding site of plant lectins (Van Damme et al., 2007a). 

However, a careful examination of the exposure of the residues forming the 

carbohydrate-binding sites revealed some discrepancies among the three models, 

depending on the conformation of a loop located in the close vicinity of the site. In 

the EUL domain of OrysaEULS2, the loop extends on the Asn139 residue in such a 
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way that this residue, which plays a crucial role in the binding of saccharides by 

lectins of the ricin-B family, becomes almost completely buried (Fig. 2B.1k). In this 

respect, OrysaEULS2 readily differs from EEA and ArathEULS3, since in the latter 

lectins the corresponding Asn residue remains fully exposed (Fig. 2B.1e,h).  

 

 

 

 

OrysaEULS2      ------------------------------------------------------------ 

ArathEULS3      MEHHHQHHRHHQRDDGEDDRQSFGVPPPHVDAPPQPHGLYQSQPHFDPYAPTPQAPAPYR  

EEA             ------------------------------------------------------------ 

                                                                             

OrysaEULS2      ------------------------------------------------------MDFYGR  

ArathEULS3      SETQFEPHAPPPYRSEPYFETPAPPPSFGHVSHVGHQSPNESYPPEHHRYGGYQQPSNSL  

EEA             ------------------------------------------------------------  

OrysaEULS2      REQYGGYGGYGGGGALATPGYAPAAPYGMSQVSIEGNGCGRTLPPQPTVKVYCRANPNYA 10 

ArathEULS3      LESHGDHSGVTHVAHHSSNQPQSSSGVYHKPDENRLPDNLAGLAGRATVKVYSKAEPNYN 17 

EEA             -------------------------------------MASTIIATGPTYRVYCRAAPNYN 23 

                                                              .* :**.:* ***  

OrysaEULS2      MTARNGAVVLAPANPKDEYQHWIKDMRWSTSIKDEEGYPAFALVNKATGQAIKHSLGQSH 70 

ArathEULS3      LTIRDGKVILAPADPSDEAQHWYKDEKYSTKVKDADGHPCFALVNKATGEAMKHSVGATH 77 

EEA             MTVGKGVAFLAPIDETNELQYWYKDDTYS-YIKDEAGLPAFSLVNKATGLTLKHSNHHPV 82 

                :*  .* ..*** : .:* *:* **  :*  :**  * *.*:******* ::***   .  

OrysaEULS2     PVRLVPYNPEVMDESVLWTESRDVGNGFRCIRMVNNIYLNFDAFHGDKYHGGVRDGTDIV 130 

ArathEULS3     PVHLIRYVPDKLDESVLWTESKDFGDGYRTIRMVNNTRLNVDAYHGDSKSGGVRDGTTIV 137 

EEA            PVKLVTYNPNVVDESVLWSQADDRGDGYSAIRSLTNPASHLEAAPLNDWS---YNGAIIM 139 

               **:*: * *: :******::: * *:*:  ** :.*   :.:*   :.      :*: *: 

                   ▼    ▼▼ 
OrysaEULS2      LWKWCEGDNQRWKIQPYY- 148 

ArathEULS3      LWDWNKGDNQLWKIFPF-- 154 

EEA             GGVWIDAYNQQWKIEPHTG 158 

                   * .. ** *** *.   

 

Fig. 2B.2 (a) Sequence of recombinant EULS2 expressed in Pichia, preceded by an N-terminal signal 

peptide (residues 1 to 89) necessary for secretion and a C-terminal tag containing a c-myc epitope and 

a (His)6 tag (residues 259 to 264). The cleavage sites for the signal peptide are indicated (Kex2 

protease site at position 86 and Ste 13 protease sites at positions 87 and 89). The N-terminal 

sequence of recombinant EULS2 determined by Edman degradation is underlined. (b) Sequence 

alignment for OrysaEULS2, ArathEULS3 and EEA. Amino acid residues suggested to be important for 

the formation of the carbohydrate binding site are indicated in green and bold. Mutated residues are 

indicated by arrows. Trp 132 for OrysaEULS2 and Trp 139 for OrysaEULS3 are shaded in grey and 

yellow, respectively. The unrelated N-terminal sequences in OrysaEULS2 and ArathEULS3 are shown 

in red and italics. Residues indicating the start of the EUL domain in the three proteins are underlined. 

*: identical residues, colon (:) similar residues and dot (.) nearly similar residues 

M
1

RFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNSTNNGL

LFINTTIASIAAKEEGVSLEKRE
86

A
87

EA
89

EFTM
93

VYCRANPNYAMTARNGAVVLAPANPKDEY

QHWIKDMRWSTSIKDEEGYPAFALVNKATGQAIKHSLGQSHPVRLVPYNPEVMDESVLWTESRD

VGNGFRCIRMVNNIYLNFDAFHGDKYHGGVRDGTDIVLWKWCEGDNQRWKIQPYYILEQKLISE

EDLNSAVDH
259

HHHHH
264

* 

a 

b 
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2B.4.3 Purification and characterization of the recombinant proteins from P. 

pastoris 

Mutational analysis was conducted to validate the putative carbohydrate binding site 

in the EULS2 domain of OrysaEULS2. Therefore some amino acids predicted to be 

part of the carbohydrate binding site were mutated (Fig. 2B.2b). In mutant form 1, a 

point mutation was introduced into the coding sequence of EULS2 to replace Trp134 

(Trp190 in full protein sequence) by leucine. A second point mutation involving the 

change of Asn139 (Asn195 in full protein sequence) into serine was introduced in the 

coding sequence of mutant form 1, resulting in mutant form 2. To construct mutant 

form 3, Glu140 (Glu196 in full protein sequence) was mutated into leucine starting 

from the coding sequence of mutant form 2. As a result mutant forms 2 and 3 

contain two and three amino acid changes, respectively. 

The coding sequences for the native EUL domain from OrysaEULS2 and all mutant 

forms were cloned into the P. pastoris expression vector pPICZαA downstream from 

the α-mating sequence from Saccharomyces cerevisiae (for secretion) and upstream 

from the c-myc epitope and a C-terminal polyhistidine tag (His tag). The resulting 

cassettes were electroporated into Pichia strain X-33. Transformed colonies were 

grown in 1 liter cultures and subsequently recombinant proteins were purified using 

several chromatographic steps. Approximately 4 to 6 mg was purified for EULS2 and 

its mutant forms from the medium of 1 L Pichia culture induced with methanol for 

three days. The partially purified EULS2 was also retained on a column with 

immobilized thyroglobulin. 

As shown by SDS-PAGE analysis (Fig. 2B.3a), the molecular mass of the recombinant 

proteins is approximately 20.5 kDa. This result is in a good agreement with the 

calculated molecular mass from the primary sequence together with the C-terminal 

c-myc and His tags. In addition, western blot analysis using a monoclonal antibody 

directed against the His- tag confirmed this result (Fig 2B.3b). Edman degradation of 

the recombinant EULS2 domain yielded the sequence EAEAEFTMVYXRANPNYAMT 

and revealed that part of the signal peptide was not completely cleaved (Fig. 2B.2a), 

resulting in a polypeptide with a calculated molecular mass of 20.7 kDa. 
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Fig. 2B.3 Purified EUL domain from OrysaEULS2 and its mutant forms were analyzed by SDS-PAGE (a) 

and Western blot analysis with a monoclonal anti-His antibody (b). Samples are loaded as follows: 

lane 1: protein ladder (increasing molecular mass: 10, 17, 26, 34, 43, 55, 72, 95, 130, 170 kDa) 

(Fermentas, St. Leon-Rot, Germany), lane 2: EUL domain from OrysaEULS2, lanes 3-5: mutant forms 1-

3. Approximately, 1.5 µg of each protein was loaded in (a) and 0.5 µg in (b) 

 

2B.4.4 Biological activity and carbohydrate binding specificity of the recombinant 

proteins 

The biological activity for the recombinant proteins was investigated using 

agglutination tests with rabbit erythrocytes. Agglutination of red blood cells was 

observed for the EULS2 after 30 min, the minimal protein concentration for 

agglutination being 54 µg/ml. No agglutination activity was seen for any of the three 

mutant forms. Inhibition assays showed that agglutination of erythrocytes by the 

recombinant EUL domain from OrysaEULS2 was inhibited by some carbohydrates 

[mannose (50 mM) and methyl α-mannopyranoside (100 mM)] and glycoproteins 

[thyroglobulin (100 µg/ml), ovomucoid (200 µg/ml) and asialomucin (100 µg/ml)]. 

More detailed data were obtained by screening the labeled proteins on the glycan 

array.  

The interactions of EULS2 and its mutant forms at 200 µg/ml with glycans on the 

array are shown in Fig. 2B.4. The interaction of the protein with the array was 

relatively weak compared to other related lectins such as EEA (Fouquaert et al., 

2008) and ArathEULS3 (Van Hove et al., 2011). The data in Fig. 2B.4 were obtained 
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using a secondary antibody labeled with Alexa633, which is 10 times more sensitive 

than the normally used Alexa488 label. Nevertheless, there was sufficient binding of 

the wild type lectin (Fig. 2B.4a) to discern some specificity since it has been 

demonstrated that lectin binding to the array measured as RFU is directly related to 

the relative binding strength of the interaction (Smith et al., 2010).  The strongest 

binding glycans are summarized in Table 2B.2 and indicate that EULS2 exhibits 

selectivity toward the high-mannose N-linked glycans, especially Man3GlcNAc2 

(glycans #51 and 52) with somewhat lower binding to Man5GlcNAc2 (#217), 

Man6GlcNAc2 (#216), Man7GlcNAc2 (#211), Man8GlcNAc2 (#212), and 

Man9GlcNAc2 (#213). Interestingly, no binding was observed by the lectin to the 

high-mannose structures without the chitobiose core including Man3 (#214), Man5 

(#215 and 315), Man8, (#316), and Man8, (#317) (data not shown in Table 2B.2) 

indicating the binding required the chitobiose core. All mutant forms of EULS2 

showed a strongly reduced binding (at least 10-fold lower) to the glycan array (Fig. 

2B.4b-d). 
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Fig. 2B.4 Comparative analysis of the glycan array binding of the recombinant EUL domain from 

OrysaEULS2 (a) and mutant forms 1-3 (b-d) tested at 200 μg/ml. The complete primary data set for 

each protein is available on the website of the Consortium for Functional Glycomics 

(www.functionalglycomics.org)

http://www.functionalglycomics.org/
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Table 2B.2 Overview of the top 30 glycans interacting with the EULdomain from OrysaEULS2. Lactosamine structures are underlined. Terminal GlcNAc is shown in italic. The 

glycan with the highestrelative fluorescence unit (RFU) is assigned a value of 100. The rank is the percentile ranking. Similar glycan structures are grouped together and 

ordered in a descending way according to the RFU% in each group 

Glycan no Structure RFU% 

 N-linked high-mannose glycans (in bold)  

51 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 100.0 

50 Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 99.8 

217 Mana1-6(Mana1-3)Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 50.5 

216 Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 49.9 

211 Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 35.6 

212 Mana1-2Mana1-6(Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 34.1 

213 Mana1-2Mana1-6(Mana1-2Mana1-3)Mana1-6(Mana1-2Mana1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 13.6 

314 Mana1-6Manb-Sp10 13.1 

 Lactosamine related structures (underlined)  

404 Gala1-4Galb1-3GlcNAcb1-2Mana1-6(Gala1-4Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 19.7 

319 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 16.6 

459 Galb1-4GlcNAcb1-6(Galb1-4GlcNAcb1-2)Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 16.5 

320 Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 15.1 

54 Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 14.2 

364 Gala1-3Galb1-4GlcNAcb1-2Mana1-6(Gala1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 13.6 
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325 Galb1-3GlcNAcb1-2Mana1-6(Galb1-3GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 13.1 

543 Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-3Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp24 12.7 

362 Fuca1-2Galb1-4GlcNAcb1-2Mana1-6(Fuca1-2Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp20 11.7 

55 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 11.5 

 Mannose /Lactosamine hybrid structures  

346 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 26.4 

398 GlcNAcb1-2Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 22.8 

352 Mana1-6(Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 12.3 

309 Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 17.1 

350 Galb1-4GlcNAcb1-2Mana1-3Manb1-4GlcNAcb1-4GlcNAc-Sp12 17.0 

399 Galb1-4GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 14.9 

347 Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAc-Sp12 14.2 

321 GlcNAcb1-2Mana1-6(Neu5Aca2-6Galb1-4GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 11.7 

 GlcNAc related structures  

53 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp13 33.7 

52 GlcNAcb1-2Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp12 22.6 

422 GlcNAcb1-2(GlcNAcb1-6)Mana1-6(GlcNAcb1-2Mana1-3)Manb1-4GlcNAcb1-4GlcNAcb-Sp19 15.0 
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2B.5 Discussion  

In an attempt to gain more information on the carbohydrate-binding properties of the 

extended family of EUL proteins in rice we selected the OrysaEULS2 protein as a model. This 

protein is of particular interest because expression of the protein is specifically induced after 

stress treatment of rice plants; in particular NaCl and ABA treatment enhance the expression 

of the lectin (Moons et al., 1997a). Since inducible lectins are expressed in response to (a) 

biotic stress factor (s), it is believed that these lectins are involved in stress signaling (Van 

Damme et al., 2004b). In this paper we describe the expression of the EUL domain from 

OrysaEULS2 in P. pastoris. Recombinant EULS2 was secreted in the medium and purified 

successfully using different chromatographic steps, including an affinity chromatography on 

immobilized thyroglobulin, suggesting its binding to glycan structures.  

After purification one polypeptide of approximately 20 kDa was detected by SDS-PAGE and 

western blot analysis. Edman degradation for the native EULS2 yielded an amino acid 

sequence corresponding to the N-terminus of the EULS2 domain containing five residues of 

the Saccharomyces signal peptide used to secrete the recombinant protein into the medium. 

Incomplete processing of the α-mating sequence has been reported before (Lannoo et al., 

2007a; Al Atalah et al., 2011 see chapter 2A; Oliveira et al., 2008). The EA repeats are 

necessary for the function of Kex2 protease but removing them with the Ste 13 protease has 

been shown to be an inefficient process (Sreekrishna et al., 1997). The recombinant EULS2 

protein agglutinated rabbit red blood cells, albeit at a rather high protein concentration of 

54 µg/ml. Since the specific agglutination activity of EEA required only 1.7 µg/ml, it can be 

concluded that the agglutination activity of EULS2 is low. Nevertheless the protein was 

bound to a thyroglobulin column and its agglutination was inhibited by mannose, methyl α-

mannopyranoside and some glycoproteins. Previous data have clearly shown that most plant 

lectins show a much better interaction with glycans or more complex sugars, rather than 

monosaccharides (Van Damme et al., 2007a). Carbohydrate-binding activity of EUL domain 

from OrysaEULS2 was further confirmed by glycan array analyses showing interaction of the 

protein especially with high-mannose N-glycans and to a lesser extent with N-glycans 

containing lactosamine structures (Galβ1-3GlcNAc and Galβ1-4GlcNAc). Therefore it can be 

concluded that the OrysaEULS2 protein is a functional carbohydrate binding protein. 
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A three dimensional model was built for the EUL domain in OrysaEULS2 and compared to the 

EUL domain in ArathEULS3 and EEA. The EUL domains in all three proteins showed three 

bundles of β-sheet forming a β-trefoil fold. Despite the strong resemblance in overall fold 

between the three proteins, there are also clear differences in the overall structure and the 

charge distribution on the protein surface. In particular the positioning of Asn139 in the EUL 

domain from OrysaEULS2 could influence the carbohydrate binding properties of this 

protein. Previously it was shown that the hydrogen bond network anchoring galactose to 

both carbohydrate binding sites of the ricin-B chain predominantly involves O3 and, to a 

lesser extent, O4 of the sugar. An Asn residue creates a hydrogen bond with O3 of galactose 

which reinforces the binding of this oxygen to the lectin (PDB code 2AAI) (Rutenber et al., 

1991). An Asn residue also occurs in the carbohydrate binding sites of the ricin-B domain of 

Streptomyces olivaceoviridis xylanase (PDB code 1ISZ) (Fujimoto et al., 2002) and the C-

terminal domain of the HA33/A protein from Clostridium botulinum (PDB code 1YBI) (Arndt 

et al., 2005), which similarly participate in the binding of the sugar. Residues Asn148 of EEA 

and Asn146 of the EUL domain in ArathEULS3, which occupy a similar position in the 

respective lectins, could also contribute to the binding of the sugars to the active 

carbohydrate binding sites. However, the corresponding Asn139 in the EUL domain from 

OrysaEULS2 is apparently masked by an extended loop that protrudes in the vicinity of the 

carbohydrate binding site, and thus this residue should no longer be available for a hydrogen 

bond interaction with the sugar. According to this structural discrepancy, the EUL domain in 

OrysaEULS2 is predicted to display a weaker carbohydrate-binding capacity, compared to the 

EEA and ArathEUL3 lectins, which is in agreement with the low specific agglutination activity 

observed for EULS2. Possibly this loop can also be (partly) responsible for some of the 

changes in specificity between the different EUL lectins. 

To validate our proposed model for the EUL domain in OrysaEULS2 and especially the 

position of the carbohydrate binding site, three mutant forms were created, expressed in 

Pichia and the mutant proteins were purified. All three mutants clearly showed a reduced 

binding to the glycan array since the glycan interaction measured as relative fluorescence 

units was approximately 10 times lower compared to the native protein. This is also in 

agreement with the absence of agglutination activity for the mutant proteins. 
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Due to the low binding of recombinant EUL domain from OrysaEULS2 with the array it is 

difficult to interpret the results for the different mutants quantitatively. In any case reduced 

binding was observed for all mutants indicating that the mutation of a single residue (Trp134 

as in mutant 1) already affected the carbohydrate-binding properties of the EUL domain. The 

importance of Trp for the configuration of a functional carbohydrate binding site was 

reported for many lectins belonging to different lectin families (Schouppe et al., 2010). The 

results obtained with the other mutants do not allow us to conclude if the additional 

mutation of residues Asn139 and Gln140 yielded a stronger reduction of the carbohydrate 

binding activity.  

Several nucleocytoplasmic lectins have been identified in rice, among which multiple 

putative lectins with EUL domains and one jacalin-related lectin, Orysata. The latter protein 

has been characterized in detail and its carbohydrate binding properties were investigated 

using the glycan array technology. Orysata shows affinity towards high-mannose and 

complex N-glycans (Al Atalah et al., 2011; see chapter 2A). The proteins reacts equally well 

with both types of glycans. A closer investigation of the carbohydrate specificity of Orysata 

also revealed that among the complex N-glycans interacting with Orysata there are several 

glycans containing lactosamine structures. In this respect the specificity of Orysata 

resembles that of the EUL domain within OrysaEULS2. However, it should be mentioned that 

OrysaEULS2 reacts much better with the high-mannose structures compared to the more 

complex structures.  

OrysaEULS2 belongs to the family of EUL-related lectin since its EUL domain shows 46% 

sequence identity to the sequence of EEA. It was previously reported that the specificity of 

EEA is directed towards two major groups of glycans, being the blood type B (Galα1–

3(Fucα1–2) Galβ1–4GlcNAc) oligosaccharides and N-linked high-mannose glycans (Fouquaert 

et al., 2008). Since the fluorescence units for the high-mannose N-glycans were roughly 10-

fold lower than for the blood group B oligosaccharides it was concluded that EEA has a much 

higher affinity for the blood group B substances. A comparative analysis of the glycan array 

data for EEA and the recombinant EUL domain from OrysaEULS2 suggests the opposite 

binding pattern for OrysaEULS2 in that the interaction with high-mannose N-glycans is much 

better than with complex structures. However, it should be mentioned that the binding of 

OrysaEULS2 with the array was much weaker than for EEA. 
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Recently another lectin from the family of EUL-related lectins was analyzed on the glycan 

array. ArathEULS3 from Arabidopsis thaliana belongs to the group of S3 type EUL proteins 

which is ubiquitous in the plant kingdom, and therefore more widespread than the EULS2 

type. Both the full protein ArathEULS3 and its EUL domain were expressed in Pichia and the 

recombinant proteins were analyzed on the glycan array. Both proteins yielded similar 

results and reacted with glycans containing one or more Lewis X (Galβ1-4(Fucα1-3) GlcNAc), 

Lewis Y (Fucα1–2Galβ1–4(Fucα1–3)GlcNAc) or lactosamine motifs (Van Hove et al., 2011). 

Both for ArathEULS3 and EEA there is evidence that lactosamine structures in both N- and O-

glycans will react with these lectins, whereas in EULS2 and Orysata only lactosamine 

structures in N-glycans were reactive. 

From the comparative analysis between EEA, OrysaEULS2 and ArathEULS3, belonging to the 

type S0, type S2 and type S3 class of EUL-related lectins, respectively, it is clear that even 

though these three lectins belong to the same family, their specificity has evolved in a 

different way. Our results indicate that gene divergence within the family of EUL-related 

lectins lead to changes in carbohydrate binding specificity. Previously it was also shown that 

gene divergence within the legume lectin family (Loris et al., 1998), the jacalin-related lectins 

(Rougé et al., 2003) and the GNA-related lectins (Fouquaert et al., 2009b) has resulted in 

changes in carbohydrate-binding specificity. Furthermore evidence also shows that ricin-B 

domains display considerable plasticity in their carbohydrate-binding specificity. For 

instance, the type 2 ribosome-inactivating protein from Dutch Iris exhibits specificity 

towards Gal/GalNAc but also towards mannose, indicating that ricin-B domain can also 

accommodate mannose (Hao et al., 2001). Similarly the carbohydrate-binding module of 

xylanase 10A from Streptomyces lividans which shows structural similarity to the ricin-B 

domain cannot only bind lactose and galactose but also interacts with the polysaccharide 

xylan (Notenboom et al., 2002). Structural evidence suggests that subtle changes in the 

amino acids building the carbohydrate-binding site or surrounding the site can provoke 

changes in its specificity (Van Damme et al., 2007a). Hence one should be very careful when 

trying to predict the carbohydrate-binding properties of lectins. 

Blood group B, Lewis X, Lewis Y and lactosamine structures are well-studied in higher 

animals (including human beings) (Stanley et al., 2009), bacteria and viruses (Preston et al., 

1996; Wang et al., 2000; Monzavi-Karbassi et al., 2004). However, in plants only the Lewis A 
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(Galβ1-3(Fucα1-4) GlcNAc) motif has been identified (Leonard 2002; Melo et al., 1997b; Dam 

et al., 2011). At present very little is known about the distribution and physiological 

importance of lactosamine related structures in plants. Therefore, more research is needed 

in order to elucidate the importance of the carbohydrate-binding activity for the 

physiological role of OrysaEULS2. 
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Chapter 2 

Characterization of the lectins under study expressed in Pichia pastoris 

 

 

 

 

 

 

Chapter 2C 

Characterization of a type D1A EUL-related lectin from rice expressed in Pichia pastoris 

Redrafted from: 

Al Atalah B, Vanderschaeghe D, Bloch Y, Proost P, Plas K, Callewaert N, Savvides SN, Van 

Damme EJM (2013) Characterization of a type D1A EUL-related lectin from rice expressed in 

Pichia pastoris. Biol Chem, in press 
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2C.1 Abstract  

OrysaEULD1A is one of the five EUL genes determined in rice (Oryza sativa) which encode 

putative carbohydrate-binding proteins belonging to the Euonymus lectin (EUL)-related 

family. The OrysaEULD1A sequence comprises two almost identical EUL domains (91% 

sequence similarity and 72% sequence identity) separated by a 23 AA linker domain and 

preceded by an 19 AA N-terminal sequence.  In the present study, OrysaEULD1A domain 1, 

OrysaEULD1A domain 2 and the full OrysaEULD1A were expressed in Pichia pastoris. After 

purification of the recombinant proteins, their carbohydrate binding specificity was analyzed 

and compared. All recombinant proteins agglutinate red blood cells indicating that the full 

OrysaEULD1A and its domains are true lectins. Multi-angle light scattering analysis showed 

that the protein corresponding to EULD1A domain 1 is mainly monodiperse. On the contrary, 

recombinant OrysaEULS2 is polydisperse. Interestingly, all recombinant lectins showed clear 

specificity towards galactosylated structures. Our results indicate that although the amino 

acids, responsible for the formation of the carbohydrate binding site, are identical for all EUL 

proteins, they show different carbohydrate specificities. This promiscuity of the 

carbohydrate-binding site is most probably due to the gene divergence which took place 

within the EUL family. 
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2C.2 Introduction  

Since the discovery of these stress inducible lectins, at least six carbohydrate binding 

domains have been identified within the group of nucleocytoplasmic plant lectins (Lannoo 

and Van Damme 2010). Of particular interest are the Euonymus lectin sequences which are 

present in all sequenced genomes. The EEA was cloned a few years ago (Fouquaert et al., 

2008). Since then EEA has become the prototype of a new family of proteins referred to as 

the Euonymus lectin-related (EUL) family, grouping all proteins with one or more EUL-related 

sequences. In silico screening for available genomes and transcriptomes revealed that the 

EUL family is omnipresent in the plant kingdom (Fouquaert et al., 2009a). Based on the 

architecture of the EUL domain identified in different protein sequences, a classification 

system was elaborated (Fouquaert et al., 2009a). Most EUL sequences consist of a single EUL 

domain preceded by a variable and unrelated N-terminal domain. However some EUL 

sequences contain two in tandem arrayed EUL domains separated by a linker sequence, 

preceded by an unrelated N-terminal domain which can vary in length. These proteins with a 

single EUL domain and with two (double) EUL domains are referred to as the type S and the 

type D, respectively. Based on the length of the N-terminal domains, the presence of a C-

terminal unrelated domain and the length of the  linker sequence separating the EUL 

domains more subtypes can be distinguished (for more details see Fouquaert et al., 2009a).  

In rice, four types of EUL proteins have been identified (Fouquaert et al., 2009a, Fouquaert 

and Van Damme 2012; Al Atalah et al., 2013 see chapter 3A).  Two proteins with a single EUL 

domain preceded by an unrelated N-terminal domain are classified as type S2 (OrysaEULS2) 

and type S3 (OrysaEULS3). Both sequences differ from each other in the length and the 

sequence of the N-terminal domain. Furthermore the rice genome harbours three 

sequences with tandem arrayed EUL domains, referred to as type D1 and D2, differing from 

each other in the sequence and the length of the linker sequences between the two EUL 

domains. Within the type D1 two almost identical sequences can be distinguished. The 

corresponding proteins are called OrysaEULD1A and OrysaEULD1B.  

Until recently, only few reports provided evidence that EUL sequences encode true lectins, 

particularly OrysaEULS2 from the monocot Oryza sativa (Al Atalah et al., 2012; see chapter 

2B), ArathEULS3 from the dicot Arabidopsis thaliana (Van Hove et al., 2011) and PhypaEULS3 
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from the lower plant Physcomitrella patens (Fouquaert and Van Damme 2012) have been 

characterized in some detail. Although the EUL domain sequence is quite conserved, the 

carbohydrate-binding sites have evolved to recognize different glycan structures. Whereas 

EEA exhibits specificity towards blood-group B related structures, OrysaEULS2 shows affinity 

against high-mannose N-glycans (Al Atalah et al., 2012; see chapter 2B).  ArathEULS3 and 

PhypaEULS3 display a clear preference for galactosylated epitopes (Fouquaert and Van 

Damme 2012).  

OrysaEULD1A is composed of a 22 AA unrelated N-terminal domain and two almost identical 

EUL domains separated by a 19 AA linker sequence. To gain more knowledge about the 

physiological role of OrysaEULD1A, it is a prerequisite to prove its biological activity. Since 

OrysaEULD1A is expressed at very low concentrations it is impossible to purify reasonable 

amounts of the protein from rice plants. Furthermore it would be a challenge to separate 

the different EUL types. To overcome this problem, the D1A sequence was expressed in 

Pichia pastoris under the control of the AOX1 promoter, known to induce high levels of 

protein after treatment with methanol (Hartner and Glieder 2006). In recent years, multiple 

nucleocytoplasmic lectins have been successfully expressed and purified from P. pastoris 

(Lannoo et al., 2007a; Fouquaert et al., 2009b; Al Atalah et al., 2011 see chapter 2A; Van 

Hove et al., 2011; Al Atalah et al., 2012 see chapter 2B; Stefanowicz et al., 2012).  

In this study, we characterized for the first time an EUL protein of the type D consisting of 

two EUL domains. The full sequence of OrysaEULD1A as well as its individual EUL domains, 

OrysaEULD1A domain 1 and OrysaEULD1A domain 2 (further referred to the full EULD1A, 

EULD1A domain 1 and EULD1A domain 2, respectively) were expressed in P. pastoris. 

Afterwards, the molecular structure and biological activity of the recombinant proteins was 

characterized, and compared to other EULs which have been reported previously.    

 

2C.3 Methods and materials 

2C.3.1 Expression of EULD1A and its domains in P. pastoris 

Expression for the full EULD1A, EULD1A domain 1 and EULD1A domain 2 sequences was 

conducted following the EasySelect Pichia Expression Kit from Invitrogen (Invitrogen, 
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Carlsbad, CA USA). Therefore, the coding sequence for full EULD1A (Genbank accession 

number AK103324) as well as the sequence encoding EULD1A domain 1 and EULD1A domain 

2 were amplified from the pFLCI vector (obtained from the Rice Genome Resource Center, 

Ibaraki, Japan) by PCR using different sets of primers: EVD 515 / 5’GGCGGAGAATTCACCATG 

TTTGGGTTCGGGCACCACCAC3’ and EVD 716 /5’CCCGCTTTCTAGAATCAATGCAATGCAGCTCCC 

CCTCCCCGGAATCGA3’ to amplify the full EULD1A, EVD 515 and EVD 644 /5’CCCGCTTTCTAGA 

ATGGTGGCGGCGCCGGGGGAGGAGGAGT3’ to amplify EULD1A domain 1, EVD 645 /5’GGC 

GGAGAATTCGGCGCCGCCACCGCCTGCACCATCGGCG3’ and EVD 516 /5’CCCGCTTTCTAGAATC 

CAGGGGAGGATCTTCCAGCGCTG3’ to amplify EULD1A domain 2. The following PCR 

conditions were used: 2 min denaturation at 94°C, 25 cycles of 15 sec 94°C, 30 sec 60°C, 1 

min 72°C, ending with an additional 5 min elongation at 72°C. EcoRΙ and XbaΙ cleavage sites 

were added at the 5’ and 3’ ends, respectively, of the PCR primers to allow cloning of the 

amplified fragments into the pPICZαA vector. Sequence analysis of the cloned fragments was 

performed using the primers EVD 21 5’GACTGGTTCCAATTGACAAGC3’ and EVD 22 

5’GCAAATGGCATTCTGACATCC3’ located on the vector (carried out by LGC Genomics, Berlin, 

Germany). Subsequently, the pPICZαA vector harboring each of the constructs was 

transformed into the Pichia strains X-33 and KM71H as described previously (Al Atalah et al., 

2012; see chapter 2B). This vector contains the α–mating sequence that enables secretion of 

the recombinant proteins into the medium which in turn allows easy purification. This vector 

also contains a polyhistidine tag which allows detection of the recombinant proteins as well 

as purification by metal affinity chromatography. After Pichia transformation, several 

colonies per construct were tested for EUL expression and the colonies that yielded the 

highest expression were selected to grow larger Pichia cultures following the procedure 

described by Al Atalah et al. (2011; see chapter 2A), except that Pichia cells were grown and 

expression was induced at 22°C instead of 30°C.  

2C.3.2 Purification of the recombinant proteins 

Purification of the recombinant proteins was performed as explained in section 2A.3.4 

without using the mannose-Sepharose 4B column. The Coomassie Protein Assay Kit (Thermo 

Fischer Scientific, Rockford, IL USA) was used to measure the protein concentration following 

the Bradford dye-binding procedure (Bradford, 1976). After each purification step, the purity 
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of the protein samples was checked by SDS-PAGE (Laemmli 1970) and/or western blot 

analyses as described by Al Atalah et al. (2012; see chapter 2B).  

2C.3.3 N-terminal protein sequencing  

The recombinant proteins were sequenced as described in the section 2A.3.5. 

2C.3.4 Agglutination assay  

To investigate the biological activity for the recombinant proteins agglutination assays were 

performed using trypsin-treated rabbit red blood cells (BioMérieux, Marcy l’Etoile, France). 

The procedure explained in 2A.3.6 was followed.  

2C.3.5 Carbohydrate inhibition assay 

The carbohydrate specificity for each of the proteins under study was analyzed by 

carbohydrate inhibition assays, using several sugars (mannose, methyl α-mannopyranoside, 

trehalose, glucose, galactose, GlcNAc, GalNAc, methyl α-galactopyranoside and lactose at 

0.5 M) and glycoproteins (thryoglubulin, ovomucoid, asialomucin, mucin and fetuin at 10 

mg/ml). The concentration required to inhibit the agglutination of trypsin-treated rabbit 

erythrocytes was estimated at a lectin concentration of 20 µg/ml for the full EULD1A and the 

EULD1A domain 2 as well as 100 µg/ml for the EULD1A domain 1 and OrysaEULS2.  

2C.3.6 Protein deglycosylation  

Recombinant proteins for full EULD1A and EULD1A domain 1 were digested with N-

glycosidase F (PNGase F). Briefly, 2 µg recombinant proteins for each sample were mixed 

with 1x denaturation buffer (0.5% SDS and 0.04 M dithiothreitol) in a volume of 10 µl. The 

samples were boiled at 100°C for 10 min and afterwards cooled down. To start the digestion, 

the denatured samples were mixed with 2 µl of 10x reaction buffer (0.5 M sodium 

phosphate pH 7.5), 2 µl 10% NP-40 and 5.5 µl pure water to adjust the volume into 20 µl. 

Finally, 0.5 µl of PNGase F was added to each sample and all samples were incubated at 37°C 

for 4 h. RNAseB (2 µg) was used as a positive control. After digestion, protein samples were 

analyzed by SDS–PAGE.   
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2C.3.7 Multi-angle light scattering analysis (MALLS)  

Molecular masses were determined by MALLS. One hundred µl protein samples (0.5 mg/ml) 

were separated using a HPLC system (Agilent 1260 Infinity) coupled to a size-exclusion 

column (Wyatt WTC 030S5) equilibrated with 20 mM DAP (pH 8.5) running buffer and eluted 

at 0.5 ml/min. The in-line MALLS setup consisted of an UV-detector (Shimadzu SPD-10A), a 

miniDAWN TREOS MALLS detector (Wyatt) and a T-rEX refractive index detector (Wyatt) 

(thermostated at 25°C). Data analysis was carried out using the ASTRA 6 software (Wyatt), a 

refractive index increment (dRI) of 0.185 ml/g was used for the protein concentration and 

consequent molecular mass determination. 

 

2C.4 Results  

2C.4.1 Cloning and expression of the recombinant proteins in P. pastoris 

Due to the high sequence identity between the two EUL domains PCR amplification of the 

full EULD1A sequence was complicated in that two PCR fragments corresponding to the full 

EULD1A sequence and the EULD1A domain 1 sequence were always amplified. To overcome 

this problem, a reverse primer was designed in the 3’ un-translated region of the OrysaD1A 

sequence and a point mutation was created in the stop codon. As a consequence the original 

stop codon was mutated into a Ser residue and the coding sequence was extended (11 AA at 

protein level) with a sequence unrelated to the EUL sequence, allowing designing a specific 

primer to amplify the full EULD1A sequence (Fig. 2C.1).  

Sequences encoding full EULD1A, EULD1A domain 1 and EULD1A domain 2 were cloned 

under the control of the methanol-inducible AOX1 promoter present in the pPICZαA 

expression vector. The coding sequence was cloned in-frame with the yeast α-factor mating 

signal sequence at the N-terminus and with a c-myc epitope followed by a polyhistidine tag 

at the C-terminus (Fig. 2C.1). Afterwards, the expression cassettes were introduced into the 

Pichia strains X-33 and KM71H by electroporation. Expression for each of the proteins under 

study was first investigated by performing small scale induction experiments at 30°C. 

However, western blot analysis revealed no expression of the protein for the full EULD1A 

sequence in none of the tested Pichia strains.  At 30°C the expression for the EULD1A 
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domain 1 was very faint whereas the expression for the EULD1A domain 2 sequence was 

moderate. In an attempt to increase the expression levels of the recombinant proteins, the 

Pichia cultures were grown at 22°C and methanol-induced expression was also conducted at 

22 C°. At this temperature, the full EULD1A sequence yielded good expression in both Pichia 

strains but expression was higher in the KM71H strain compared to the X-33 strain (Results 

not shown). Furthermore, the expression of the EU1D1A domain 1 and EULD1A domain 2 

sequences was also considerably enhanced, with no difference in growth and protein 

expression between both strains. Based on these results, the KM71H strain was selected for 

expression of the full EULD1A sequence and the X-33 strain was used for the expression of 

the individual EUL domains. Finally, all recombinant proteins were purified from the Pichia 

culture medium by means of ion exchange and metal-affinity chromatography. Starting from 

1 l culture, the yield of purified protein was 1 mg for the full EULD1A construct, 3 mg for the 

EULD1A domain 1 and 0.5 mg for the EULD1A domain 2 constructs.  
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EFTMFGFGHHHNQAPAAPSDPNQIFKIFCRANENYCLTVRDSAVVLAPVNPKDEHQHWFKDM

RFSTKVKDGEGMPAFALVNKATGLAVKHSLGQSHPVKLVPFNPEYEDASVLWTESKDVGKGF

RCIRMVNNTRLNLDAFHGDKDHGGVRDGTTVVLWEWCKGDNQSWKILPWGPEAHSSSPGAAT

ACTIGGVSVHTVRVFSAAGEDYCLTVRNGTACLAPKNPRDDYQHWIKDMRHSNKIRDEEGYP

AFALVNKVTGEAIKHSTGQGHPVKLVPYNPEYQDESVLWTESKDVGKGFRCIRMVNNIYLNF

DAFHGDKDHGGIHDGTEIVLWKWCEGDNQRWKILPWSIPGRGSCIALILEQKLISEEDLNSA

VDHHHHHH 

 

EFTMFGFGHHHNQAPAAPSDPNQIFKIFCRANENYCLTVRDSAVVLAPVNPKDEHQHWFKDM

RFSTKVKDGEGMPAFALVNKATGLAVKHSLGQSHPVKLVPFNPEYEDASVLWTESKDVGKGF

RCIRMVNNTRLNLDAFHGDKDHGGVRDGTTVVLWEWCKGDNQSWKILPWGPEAHSSSPGAAT

ILEQKLISEEDLNSAVDHHHHHH 

 

EFGAATACTIGGVPVHTVRVFSAAGEDYCLTVRNGTACLAPKNPRDDYQHWIKDMRHSNKIR

DEEGYPAFALVNKVTGEAIKHSTGQGHPVKLVPYNPEYQDESVLWTESKDVGKGFRCIRMVN

NIYLNFDAFHGDKHGGIHDGTEIVLWKWCEGDNQRWKILPWILEQKLISEEDLNSAVDHHHH

HH 

Fig. 2C.1 Sequences for the full EULD1A (a), EULD1A domain 1 (b) and EULD1A dpmain 2 (c) expressed in P. 

pastoris. Residues sequenced by Edman degradation are underlined. The putative glycosylation site is indicated 

in bold. Amino acid mutated (accidently) by Taq DNA polymerase enzyme is shaded in grey (the original amino 

acid is proline). The Serine residue resulting from the mutation of the stop codon is shown in bold and 

underlined. Extra amino acids added to the C-terminus of the full D1A sequence are shaded in grey and the 

font is shown in white. The myc epitope is shaded in black and the font is shown in white. The polyhistidine tag 

is shown in italics 

 

2C.4.2 Characterization of the recombinant proteins 

 SDS-PAGE analysis of the recombinant proteins purified by affinity chromatography on a 

nickel column, followed by concentration of the protein by anion exchange chromatography, 

yielded three polypeptides of approximately 45, 42 and 15 kDa for the full EULD1A protein 

(Fig. 2C.2a, lane 4). A very similar pattern was observed after western blot analysis using a 

monoclonal antibody specifically directed against the polyhistidine tag (Fig. 2C.2b, lane 4). 

a 

b 

c 
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However, it should be mentioned that the 42 kDa polypeptide was hardly visible on gel and 

on blot. Taken into account the calculated molecular mass of the full protein including the c-

myc and His tags (42.672 kDa), the size of the 42 protein band would be expected. The 

identity of the protein bands was confirmed by Edman degradation which yielded EFTMFGF. 

The smallest polypeptide of 15 kDa most probably corresponds to a degradation product, as 

confirmed by N-terminal protein sequencing. 

The recombinant protein corresponding to EULD1A domain 1 yielded two polypeptides of 26 

and 23 kDa. Again the lower polypeptide can hardly be detected on a coomassie stained gel 

or on western blot (Fig. 2C.2a, b, lane 2). Taking into account the additional tags present on 

the recombinant protein, its mass was calculated as 23.448 kDa. Protein sequencing 

revealed identical sequences for both polypeptides, being EFTMFGFGHHHNQAP. This 

sequence is identical to the N-terminus of the OrysaD1A sequence or the D1A domain. 

The recombinant protein for EULD1A domain 2 yielded one clear polypeptide of 22 kDa, 

which is in good agreement with the calculated mass for the protein (21,379 kDa) (Fig. 2C.2a, 

b, lane 3). Edman degradation yielded the sequence EFGAATAXTIG, which corresponds to 

the N-terminal sequence of EULD1A domain 2. 

 

Fig. 2C.2 SDS-PAGE (a) and Western blot analysis (b) of purified full EULD1A, EULD1A domain 1 and EULD1A 

domain 2. Samples are loaded as follows: lane 1: protein ladder (increasing molecular mass: 10, 17, 26, 34, 43, 

55, 72, 95, 130, 170 kDa) (Fermentas, St Leon-Rot, Germany), lane 2: EULD1A domain 1, lane 3: EULD1A domain 

2, lane 4: full EULD1A. ►: indicates the position of the un-glycosylated polypeptides. Approximately, 1 µg of 

each protein was loaded in (a), 0.5 µg for EULD1A domain 2 and 0,2 µg for each of full D1A and EULD1A domain 

1 were loaded in (b) 
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EULD1A domain 1 was further characterized by SEC-MALLS. Low sample recovery was 

observed due to interaction with the stationary phase of the SEC-column, this resulted in 

lower quality measurements. The eluting fraction shows a single broad peak on the SEC 

profile containing a monodisperse region with a molecular weight (MW) of 35.1 kDa (± 

9.0%). The remainder of the peak is polydisperse with maximal MW of around 70 kDa. In 

addition, OrysaEULS2 was also characterized by SEC-MALLS. This protein elutes as two 

peaks. The largest molecular species has a MW of 60.5 kDa (± 12.2%) and the second smaller 

molecular species has a MW about half that [33.9 kDa (± 14.4%)].  

2C.4.3 Glycosylation analysis  

A close investigation of the OrysaD1A sequence revealed the presence of a putative 

glycosylation motif NNT located within the EULD1A domain 1 (Fig. 2C.2a, b). As a result 

expression of the full EULD1A sequence or its corresponding EULD1A domain 1 could result 

in (partial) glycosylation of the secreted proteins. To determine if these recombinant 

proteins are N-glycosylated, they were digested with PNGase F. Subsequent SDS-PAGE 

analysis revealed a shift of the protein polypeptide corresponding to the full protein by appr. 

23 kDa. Similarly PNGase F treatment of the recombinant protein corresponding to EULD1A 

domain 1 also reduced its molecular mass, resulting in one polypeptide of 3 kDa after 

removal of the N-glycan (Fig. 2C.3).   

 

Fig. 2C.3 Legend on next page 
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Fig. 2C.3 Deglycosylation of the recombinant full EULD1A and EULLD1A domain 1. Samples are loaded as 

follows: lane 1: protein ladder (increasing molecular mass: 10, 17, 26, 34, 43, 55, 72, 95, 130, 170 kDa) 

(Fermentas, St Leon-Rot, Germany), lane 2: full EULD1A treated with PNGase F, lane 3: full EULD1A without 

treatment, lane 4: EULD1A domain 1 treated with PNGase F, lane5: EULD1A domain 1 without treatment, lane 

6: RNAseB treated with PNGase F, lane 7: RNAseB without treatment. The protein band corresponding to 

PNGase F is indicated with an asterisk. The arrow depicts the shift of the band after PNGase F treatment. In 

each well, 2 µg protein was loaded 

 

2C.4.4 Agglutination activity and specificity of the recombinant proteins  

The biological activity for the different recombinant proteins under study was investigated 

by agglutination assays using trypsin-treated rabbit red blood cells. Using twofold serial 

dilutions, the lowest concentration of the purified protein needed for agglutination was 

determined, being 7 µg/ml for the full EULD1A, 52 µg/ml for EULD1A domain 1 and 8 µg/ml 

for EULD1A domain 2.  

Carbohydrate inhibition assays revealed that the agglutination of rabbit erythrocytes mixed 

with the recombinant proteins was best inhibited by the sugars: galactose (50 mM), GalNAc 

(50 mM), methyl α-galactopyranoside (50 mM) and lactose (0.5 mM). Among the 

glycoproteins tested, only asialomucin (500 µg/ml) and mucin (1000 µg/ml) inhibited the 

agglutination of the different proteins at similar concentrations. No inhibitory effect on 

agglutination was observed for any of the other sugars tested including mannose, methyl α-

mannopyranoside, GlcNAc, glucose and trehalose, nor for the glycoproteins ovomucoid, 

thyroglobulin and fetuin. 
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Table 2C.1 Comparison of the carbohydrate specificity of EUL proteins from rice. -: no inhibition of 

agglutination. IC50 is the inhibitory concentration required to give a 50% inhibition of the agglutination of 

trypsin-treated rabbit erythrocytes at a lectin concentration of 20 µg/ml for the full EULD1A and the EULD1A 

domain 2 as well as 100 µg/ml for the EULD1A domain 1 and OrysaEULS2 

 IC 50 

 EULD1A EULD1A domain 1 EULD1A domain 2 EULS2 
domain 

Sugars (mM)        

Mannose  - - - 50 

Methyl α-mannopyranoside  - - - 100 

Galactose  50 50 50 - 

GalNAc  50 50 50 50 

Methyl α-galactopyranoside  50 50 50 50 

Lactose  0.5 0.5 0.5 0.5 

GlcNAc  - - - - 

Glucose  - - - - 

Trehalose  - - - - 

 

Glycoproteins (µg/ml) 

Ovomucoid   - - - 200 

Thyroglobulin  - - - 100 

Asialomucin  500 500 500 100 

Mucin  1000 1000 1000 500 

Fetuin  - - - - 
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2C.5 Discussion 

Screening of the available genome sequences from plants revealed that the EUL domain is 

widespread in terrestrial plants, ranging from flowering plants to spermatophyte, ferns, 

mosses and liverworts. The EUL domain sequence is quite conserved and can be retrieved 

from all completed plant genomes, suggesting some physiological importance for this class 

of proteins. A more detailed analysis of the EUL sequences revealed that EUL sequences 

from dicot species usually contain one single EUL domain which most often is preceded by 

an unrelated N-terminal sequence. However, a search for EUL domains in monocotyledons 

revealed that these monocot species express a set of single-domain EUL sequences, but in 

addition also have two-domain EUL sequences. Similar to other grass species the rice (O. 

sativa) genome contains at least 5 EUL sequences with different domain architecture. 

Until now only two single EUL domain sequences have been studied in some detail for their 

carbohydrate binding properties, in particular the S3 type protein from Arabidopsis (Van 

Hove et al., 2011) and the S2 type from rice (At Atalah et al., 2012). Here we describe for the 

first time the characterization of a EUL-related protein composed of two almost identical 

(91% and 72% sequence similarity and identity at amino acid level, respectively) EUL 

domains. The full EULD1A sequence from rice as well as its individual EUL domains EULD1A 

domain 1 and EULD1A domain 2, have been successfully expressed in P. pastoris. On 

average, the yield obtained for the recombinant proteins can be considered low compared 

to the yield reported previously for some other plant lectins (Al Atalah et al., 2011 see 

chapter 2A; Lannoo et al., 2007a). However a yield of 0.5-3 mg recombinant protein per liter 

is comparable to the yield obtained for OrysaEULS2 (4-6 mg/l, Al Atalah et al., 2012; see 

chapter 2B). Protein expression of the full EULD1A or its EUL domains was achieved by 

growing Pichia cultures at 22°C, a temperature considerably lower than the temperature of 

30°C which is usually recommended. Lowering the temperature considerably increased the 

expression level of the proteins. Low temperature reduces the rate of protein synthesis and 

this will give enough time for the nascent peptides to fold properly. Previously, several 

heterologous proteins were expressed successfully in P. pastoris at low temperatures 20-

22°C (Murasugi et al., 2001; Jahic et al., 2003; Murasugi and Tohma 2003). All D1A 

sequences were cloned behind the α-mating sequence of Saccharomyces, resulting in 

secretion of the recombinant proteins into the medium. Although this secretion facilitates 
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purification of the protein it also caused N-glycosylation of the full EULD1A as well as the 

EULD1A domain 1. Judging from the SDS-PAGE and the western blot analysis it was clear 

almost all recombinant proteins were glycosylated since the unglycosylated polypeptide was 

hardly visible (Fig. 2C.2 lanes 2, 4). PNGase F digestion and glycan analysis confirmed the 

glycosylation of the recombinant protein.  

Judging from the ability of the full EULD1A to agglutinate rabbit erythrocytes and bind 

carbohydrate structures, it can be concluded that this recombinant protein is a functional 

lectin. Interestingly, both individual EUL domains of the full EULD1A were also active. The 

protein concentration needed to agglutinate rabbit red blood cells was very similar (7 and 8 

µg/ml) for the full EULD1A and the EULD1A domain 2, but was higher for the EULD1A 

domain 1 being 52 µg/ml. These agglutination titers are similar to the ones reported before 

for OrysaEULS2 (54 µg/ml, Al Atalah et al., 2012; see chapter 2B) and PhypaEULS3 (92 µg/ml, 

Fouquaert and Van Damme 2012). The high concentration required for the EULD1A domain 

1 might be explained by the results of the MALLS analysis which showed that most of this 

protein was monodisperse (35 KDa) and some was polydisperse (70 KDa).  On the contrary, 

most of the OrysaEULS2 was polydisperse (60 KDa) and some was most likely monodisperse 

(33.9 kDa). These results are in a line with the fact that gene divergence within the EUL 

family led to differences in specificity and most likely a different function. Agglutination of 

the recombinant protein for OrysaEULD1A was inhibited by different sugars and 

glycoproteins. Interestingly, the full EULD1A, EULD1A domain 1 and EULD1A domain 2 

showed a very similar carbohydrate-binding specificity directed towards galactose related 

sugars or galactose containing glycoproteins (Table 2C.1). Mannose or related compounds 

were unable to inhibit the agglutinations caused by full EULD1A or its domains. On the 

contrary, mannose or related compounds inhibited the agglutination caused by OrysaEULS2 

(Table 2C.1) but not by PhypaEULS3 (Fouquaert and Van Damme 2012).  Furthermore, 

galactose related sugars or galactose containing glycoproteins inhibited the agglutination 

caused by both lectins. These results clearly indicate that the carbohydrate-binding 

properties of OrysaEULD1A are very different from these of OrysaEULS2 and similar to 

PhypaEULS3.  

The promiscuity of the EUL domain has been reported before in a previous paper where 

three different proteins containing a single EUL domain were compared for their 
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carbohydrate-binding properties. Most probably the differences in specificity related to 

small changes in the amino acid sequences, especially amino acids located in the vicinity of 

the carbohydrate-binding site. Previously sequence comparison and molecular modeling of 

the EUL sequence suggested that, the putative carbohydrate binding site of the EUL domain 

consists of four residues Aspartic acid, Tryptophan, Asparagine and Glutamine (Al Atalah et 

al., 2012; see chapter 2B). Sequence alignment of the C-terminal sequence of all EUL 

domains present in the rice genome indicates that the residues predicted to be part of the 

carbohydrate-binding site are identical for all EUL domains in rice (Fig. 2C.4 in red). 

Nevertheless it was shown for some of these sequences that they encode EUL proteins with 

different carbohydrate binding properties. Some subtle amino acid changes can be observed 

in the sequence alignment, suggesting that these amino acid substitutions might be 

important. It has been suggested that Tryptophan 35 (Fig. 2C.4), located in the vicinity of the 

carbohydrate-binding site for OrysaEULS2, might participate in stacking interactions that 

often reinforce the binding of a simple sugar to the carbohydrate binding site of plant lectins 

(Al Atalah et al., 2012 see chapter 2B; Van Damme et al., 2007). Furthermore, observations 

suggest that some loops created during protein folding might influence the carbohydrate 

binding specificity of the protein by changing the binding site or weakening its reactivity. For 

instance in the case of OrysaEULS2, there is a loop that covers the Asparagine residue (Fig. 

2C.4, N 42) of the binding site, making it impossible for this residue to contribute to the 

binding of sugar residues (Al Atalah et al., 2012; see chapter 2B). Genome sequence analyses 

combined with transcriptome analyses provided evidence that through evolution lectin 

domains have been used as building blocks to create new chimeric proteins with multiple 

domains and with multiple activities. The question rises why plants evolved proteins with 

multiple lectin domains. It has been suggested before that plants used domain duplication 

followed by divergent evolution as a mechanism to generate multispecific lectins to adapt to 

various environmental stresses (Jiang et al., 2010a). Evidence shows that through evolution 

domain duplications can result in alteration of the lectin specificity of the individual lectin 

domains, as previously also shown for the group of legume lectins, jacalin-related lectins and 

GNA-related lectins (Loris et al., 1998; Raval et al., 2004; Van Damme et al., 2007). For 

instance the single-domain GNA-related lectins show exclusive specificity towards mannose 

but domain duplication events also yielded lectins that exhibit a more complex specificity 

(Van Damme et al., 2007b). 
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Furthermore it is clear that in the case of rice this plant species accumulates multiple lectin 

genes. Over the last 5 years at least 8 (Jiang et al., 2010a) types of lectin domains have been 

reported in rice, most of which can be considered as stress inducible lectins. The jacalin-

related lectin Orysata and the EUL-related lectin OrysaEULS2 have both been shown to 

exhibit specificity towards mannose (Al Atalah et al., 2011; 2012; see chapters 2A and 2B 

respectively). This report yields evidence that at least OrysaEULD1A is directed towards 

galactosylated carbohydrates. It can be envisaged that from a plant point of view it is 

advantageous to possess a set of carbohydrate binding domains with variable specificities, 

enabling the plant to bind a multitude of carbohydrate structures which are present either 

as free molecules or attached to glycoproteins inside the plant cell. 

 

                1                15                       35       42                                     

S2 domain       FRCIRMVNNIYLNFDAFHGDKYHGGVRDGTDIVLWKWCEGDNQRWKIQPY-Y 

S3 domain       FRCIRMVNNIYLNFDALHGDKDHGGVRDGTTLVLWEWCEGDNQRWKIVP--W 

D1A domain1     FRCIRMVNNTRLNLDAFHGDKDHGGVRDGTTVVLWEWCKGDNQSWKILP--W 

D1A domain2     FRCIRMVNNIYLNFDAFHGDKDHGGIHDGTEIVLWKWCEGDNQRWKILP--W                 

D1B domain1     FRCIRMLNNIRLNFDAFHGDKDHGGVHDGTTIVLWEWAKGDNQCWKILP--W 

D1B domain2     FRCIRMVNNIYLNFDALHGDKDHGGVRDGTTVALWKWCEGDNQRWKIVP--W 

D2 domain1      FRCIRMVNNIYLNLDAFHGDKSHGGVHDGTTVVLWEWCKGDNQCWKILP--W 

D2 domain2      FRCVRMVNNIYLNFDAFHGDKDHGGVHDGTTVVLWEWCKGDNQRWKILP--W 

                ***:**:**  **:**:**** ***::*** :.**:*.:**** *** *  : 

EEA             YSAIRSLTNPASHLEAAPLN---DWSYNGAIIMGGVWIDAYNQQWKIEPHTG 

                : .:* :.*   :::*   :   .   :*: :    * . . ** *** * 

 

Fig. 2C.4 Sequence alignment of ~50 amino acids located at the C-terminus of EUL domains in rice. Residues 

expected to form the carbohydrate-binding site are shown in bold and red. Green asterisks, colons and dots 

indicate the sequence identity and similarity among the EUL domains. Black asterisks, colons and dots show the 

sequence identity and similarity between the rice EUL domains and EEA 
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Chapter 3 

Promoter and Q PCR analysis of EUL lectins from rice 

 

 

 

 

 

 

 

 

Chapter 3A 

Promoter analysis for three types of EUL-related rice lectins in transgenic Arabidopsis 

 

Redrafted from: 

Al Atalah B, Fouquaert E, Van Damme EJM (2013) Promoter analysis for three types of EUL-

related rice lectins in transgenic Arabidopsis. Plant Mol Biol Rep 31: 1315–1324 
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3A.1 Abstract  

In this study, the promoter activity for three types of Euonymus-related lectins (EUL) from 

rice, further referred to as OrysaEULS2, OrysaEULS3 and OrysaEULD1A was analyzed. In silico 

promoter analyses showed that the EUL promoters from rice contain next to the typical 

promoter elements some motifs that are considered to be stress responsive elements. 

Furthermore Arabidopsis thaliana plants were transformed with a promoter::GUS construct 

for each of the proteins under study. Subsequently, one-insertion homozygous lines were 

selected and analysed for GUS activity. Experiments were performed under normal growth 

conditions or after application of different stress conditions, in particular treatments with 

150 mM NaCl, 100 mM mannitol and 100 µM ABA for 24 h. GUS activity was detected with 

the OrysaEULS3 and OrysaEULD1A promoters especially in the cotyledons and the young 

true leaves, respectively, but not with the OrysaEULS2 promoter. The activity of OrysaEULS3 

and OrysaEULD1A promoters was increased after ABA and mannitol treatments but 

decreased after NaCl treatment.  We hypothesize that the Euonymus-related rice proteins 

have a role in sensing and responding to external stresses as well as in the growth of the 

plant.  
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3A.2 Introduction   

Since the molecular cloning of the Euonymus europaeus lectin (Fouquet et al., 2008), the 

Euonymus lectin (EUL) domain is considered as the prototype for a new lectin family 

(Fouquaert et al., 2009a; Fouquaert and Van Damme 2012). The EUL sequence is well 

conserved and can be retrieved from all completely sequenced plant genomes (Fouquaert et 

al. 2009a). Hence, the EUL domain is widespread within the plant kingdom. Furthermore, 

expression analyses revealed that EUL domains are present in many stress response proteins 

suggesting a role of this lectin domain in stress signalling. In rice, several types of EUL 

proteins have been identified (Table 3A.1). The EUL type S2 (referred to as OrysaEULS2) 

consists of a single EUL domain preceded by medium long unrelated N-terminal domain. The 

EUL type S3 (OrysaEULS3) resembles the type S2 but contains an N-terminal domain with a 

different and longer sequence. The EUL type D1 from rice includes two almost identical 

proteins: OrysaEULD1A and OrysaEULD1B (Fig. 3A.1). Both D1 proteins are composed of two 

EUL domains separated by a short linker and preceded by an unrelated N-terminal sequence. 

Similarly the EUL type D2 (OrysaEULD2) contains two EUL domains but the linker sequence is 

longer and the N-terminal domain is different (Fouquaert et al., 2009a) (Fig. 3A.1). OrysaEUL 

proteins have been described previously as OSR40 (Oryza sativa repeats 40 kDa) proteins 

responsive towards salt and ABA treatments in shoot and root tissues of rice seedlings 

(Moons et al. 1997a, Kawasaki et al., 2001) as well as in the panicles of the adult plant (Dooki 

et al., 2006).  

Abiotic stresses such as salinity and drought are considered as a serious threat to agricultural 

production (Boyer 1982; Mittler 2006), decreasing the average yields for most major crops 

by more than 50% (Bray et al., 2000). More than 20% of mass land and almost 50% of the 

irrigated lands are affected by salinity (Bray et al., 2000). Rice is one of the most important 

crops providing food for more than half of the world population, but unfortunately its yield 

is decreased 50% under moderate salt conditions (Zeng et al., 2002). Furthermore, drought 

is the major environmental constraint reducing the productivity of rice in rainfed areas 

(Farooq et al., 2009; Serraj et al., 2009). Because the world population will reach 9 billion in 

2050 the demand for food production is increasing (Godfray et al., 2010; Tester and 

Langridge 2010) but at the same time the arable land is decreasing due to severe 

environmental changes. It is therefore a big challenge to satisfy this huge demand for food 
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and feed, and thus researchers are attempting to understand the physiological response of 

rice (and other crops) towards stress conditions in order to enhance the tolerance of these 

crops towards biotic and abiotic stresses, and as a consequence increase their yield.  

Recently the rice EUL proteins OrysaEULS2, OrysaEULS3 and OrysaEULD1A have been 

expressed in Pichia pastoris and purified (Al Atalah et al., 2012 see chapter 2B, unpublished 

data). It was shown that these EUL proteins are true lectins and can interact with different 

carbohydrate structures.  The Arabidopsis system has been extensively used as a model to 

investigate the promoter activity mainly because of the ease of transformation, growth and 

analysis.  Several promoters from rice have been successfully investigated in Arabidopsis 

thaliana (Shiyou et al., 2007; Ya-Qin et al., 2007; Yang et al., 2012). In this work, the 

promoter activity for OrysaEULS2, OrysaEULS3, and OrysaEULD1A was investigated under 

normal plant growth conditions and after stress treatment of Arabidopsis thaliana harboring 

a promoter::β-glucuronidase (GUS) construct. Our data show differential expression of the 

three promoter sequences and contribute to a better understanding of the role of 

nucleocytoplasmic plant lectins in stress tolerance. 

 

Table 3A.1 Overview of EUL-related lectins from rice 

Schematic 
representat
ion 

Lectin terma  Old termb  Accession numbers of target genes 

Locus IDc  MSU IDd NCBI IDe  

 
OrysaEULS2  OSR40g3 Os07g0684000 LOC_Os07g48500 AK072989 

 
OrysaEULS3 r40c1 Os01g0104400 LOC_Os01g01450 CB681539 

 
OrysaEULD1A OSR40g2 Os07g0683900 LOC_Os07g48490 AK103324 

 
OrysaEULD1B OSR40c1 Os03g0327600 LOC_Os03g21040 AK069815 

 
OrysaEULD2 OSR40c2 Os07g0683600 LOC_Os07g48460 OSJNBa0060

O17.11 

: EUL domain. , , ,  : Unrelated N-terminal domains. : Inter-domain linker. 
a
: (Fouquaert 

et al., 2009a). 
b
: (Moons et al., 1997a). 

c
: The Rice Annotation Project Database (Tanaka et al., 2008). 

d
: Rice 

Genome Annotation Project (Ouyang et al., 2007). 
e
: National Center for Biotechnology Information. 
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OrysaEULS2     MDFYGRREQYGGYGGYGGGGALATPGYAPAAPYGMSQVSIEGNGCGRTLPPQP------- 53 

OrysaEULS3     MEFPHRHHHHGHRGDDDDDDRRRHPAPAPAYGHDSAPPPGPYGQAPPPADPYARHPPSHD 60                                                                   

OrysaEULD1A    MFGFGHHHNQAPAAPSDPN---------QIFKIFCRANENYCLTVRDSAVVLAPVNPKDE 51 

OrysaEULD1B    MFGFGHHGHHGQDQPPQHHGGGGGGAHQPTFKIFCRADEGYCVAVREGNVVLAPTNPRDE 60 

OrysaEULD2     MFSHHGHGHGQYQPPATGPQHE------PTFKIFCRADEGYCLTVRHDAVVLAPTNPRDD 54 

                                             *******:*.**::**.. *****.**:*:                                         

 

OrysaEULS2     ------------------------------------------------------------ 

OrysaEULS3     YAHPPPAYGGGGYGNVVHVSHEVSDHQRPTPHYGGSEYISPVQETRPYHGGGGAPPV--- 117 

OrysaEULD1A    HQHWFKDMRFSTKVKDGEGMPAFALVNKATGLAVKHSLGQSHPVKLVPFNPEYEDASVLW 111 

OrysaEULD1B    HQHWYKDMRFSAKIKDEEGNPAFALVNKATGLAIKHSLGQGHPVKLAPFNPEYPDESVLW 120 

OrysaEULD2     CQHWYKDMRHSTRVKDEEGHPAFALVNRATGLAVKHSLGQSHPVKLVPYNPEYQDESVLW 114 

                ***:****.*:::** ** *******:*****:******.*****.*:**** * **** 

OrysaEULS2     ------------------------------------------------------------ 

OrysaEULS3     ------------------------------------------------------------  

OrysaEULD1A    TESKDVGKGFRCIRMVNNTRLNLDAFHGDKDHGGVRDGTTVVLWEWCKGDNQSWKILPWG 171 

OrysaEULD1B    TESGDVGKSFRCIRMLNNIRLNFDAFHGDKDHGGVHDGTTIVLWEWAKGDNQCWKILPWG 180 

OrysaEULD2     TESKDVGHGFRCIRMVNNIYLNLDAFHGDKSHGGVHDGTTVVLWEWCKGDNQCWKILPWG 174 

               *** ***:.******:**  **:*******.****:****:*****.*****.******                                                  

 

OrysaEULS2     ------------------------------------------------------------  

OrysaEULS3     ------------------------------------------------------------ 

OrysaEULD1A    PEAHSSSPGAATACTIGGVPVH-------------------------------------- 193 

OrysaEULD1B    DEAYAGGSANAPRGGNEP------------------------------------------ 198 

OrysaEULD2     PEAYAPPPPPAYGHQAYPPPPPNREPGHGYHPAPAFYPPQPPPSHDEPGYGYRPPPVGPP 234 

                                                                              

 

OrysaEULS2     ----------------TVKVYCRANPN-YAMTARNGAVVLAPANPKDEYQHWIKDMRWST 96 

OrysaEULS3     ----------------THRIYCKAGEDNYSLAVRDGKVCLVRSDRDDHTQHWVKDMKYST 161 

OrysaEULD1A    ----------------TVRVFSAAGED-YCLTVRNGTACLAPKNPRDDYQHWIKDMRHSN 236 

OrysaEULD1B    ----------------TVRIFCKADEG-FSVTVRGGSVCLAPTNPRDEYQHWIKDMRHSN 241 

OrysaEULD2     GAGYGNRLPRALASEPTVRILCRADEA-YSLTVRNGAVCLAPTNPRDDFQHWVKDMRHST 293 

                                 * :: . *.   :.::.*.* . *.  :  *. ***:***: *. 

 

OrysaEULS2     SIKDEEGYPAFALVNKATGQAIKHSLGQSHPVRLVPYNPEVMDESVLWTESRDVGNGFRC 157 

OrysaEULS3     RVKDEEGYPAMALVNKATGDALKHSIGQSHPVRLVRYNPEYMDESVLWTESRDVGSGFRC 221 

OrysaEULD1A    KIRDEEGYPAFALVNKVTGEAIKHSTGQGHPVKLVPYNPEYQDESVLWTESKDVGKGFRC 296 

OrysaEULD1B    SIKDEEGYPAFALVNRVTGEAIKHSQGEGHPVKLVPYNPGYQDESVLWTESRDVGHGFRC 301 

OrysaEULD2     SIKDEEGYPAFALVNKATGEAIKHSLGQSHPVRLVPYNPEYLDESVLWTESKDVGHGFRC 353 

                ::*******:****:.**:*:*** *:.***:** ***   *********:*** **** 

 

OrysaEULS2     IRMVNNIYLNFDAFHGDKYHGGVRDGTDIVLWKWCEGDNQRWKIQPYY 204 

OrysaEULS3     IRMVNNIYLNFDALHGDKDHGGVRDGTTLVLWEWCEGDNQRWKIVPW- 268 

OrysaEULD1A    IRMVNNIYLNFDAFHGDKDHGGIHDGTEIVLWKWCEGDNQRWKILPW- 343 

OrysaEULD1B    IRMVNNIYLNFDALHGDKDHGGVRDGTTVALWKWCEGDNQRWKIVPW- 348 

OrysaEULD2     VRMVNNIYLNFDAFHGDKDHGGVHDGTTVVLWEWCKGDNQRWKILPW- 400 

               :************:**** ***::*** :.**:**:******** *:  

 

Fig. 3A.1 Amino acid sequence alignment of rice EUL proteins. This alignment was performed only for the EUL 

domains. Identical amino acids within the EUL domains are indicated by asterisks and similar residues by dots 

or colons. EUL domains are shaded in yellow. N-terminal sequences are shaded in grey. Inter-domain linkers 

are shaded in green 

 

3A.3 Materials and methods 

3A.3.1 Plant material and growth conditions 

Arabidopsis thaliana ecotype Columbia (Col-O) (Lehle Seeds, Round Rock, Texas, USA) was 

used in this investigation. To set up the in vitro culture, dry seeds were surface sterilized in 

70% (v/v) ethanol for 2 min and afterwards for 10 min in 5% (v/v) NaOCl. After rinsing the 

seeds thoroughly with sterile distilled water they were germinated on a filter paper put on 

top of solid Murashige and Skoog (1962) medium (MS) (4.3 g/l MS micro and macro 
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nutrients containing vitamins (Duchefa, Haarlem, The Netherlands), 30 g/l sucrose, pH 5.7 

(adjusted with 0.5 M NaOH) and 8 g/l plant agar (Duchefa)). To synchronize the germination, 

Arabidopsis seeds were kept in the dark at 4°C for 3 days. Afterwards, all plates were moved 

to a growth chamber at 22°C with a 16/8 h light/dark photoperiod. Three weeks later, 

Arabidopsis plantlets were transferred to artificial soil (Jiffy-7, columnar diameter 44 mm, AS 

Jiffy Products, Drobak, Norway) and allowed to grow into adult plants.    

3A.3.2 Preparation of Promoter::GUS constructs  

Genomic DNA was prepared from the shoots of 5-day old rice seedlings using the protocol 

described by Lannoo et al. (2006b). Promoter sequences for OrysaEULS2, OrysaEULS3 and 

OrysaEULD1A were obtained from the Osiris promoter database (Morris et al., 2008). To 

amplify these promoter sequences from genomic DNA, two nested PCR reactions were 

performed using different sets of primers (Table 3A.2). The non-complete attB sequences 

were completed by an additional PCR reaction using the primers EVD 2 and EVD 4 (Table 

3A.2). In order to investigate these promoter sequences, they were cloned into the 

destination vector: pKGWFS7.0 (Karimi et al., 2002) following the Gateway Cloning 

technology (Invitrogen, USA) by conducting two consecutive reactions referred to as the BP 

and LR reaction, as described before (Al Atalah et al., 2011; see chapter 2A). As such, the 

GUS gene was cloned under the control of each of the promoters under study. 

Promoter::GUS constructs were introduced in Escherichia coli top10F cells using heat shock 

transformation. All constructs were sequenced after the BP reaction using the primers Donr-

F and Seql-E (Table 3A.2) (achieved by LGC Genomics, Berlin, Germany). 
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Table 3A.2 Primer sequences used in this study 

Promoter 
construct/PCRa  

Forward primer/ name and sequence  
(5’ to 3’) 

Reverse  primer/ name and sequence 
(5’ to 3’) 

OrysaEULS3/1 EVD570/CTTTGTCTCTCTTATCTTCTCC
C 

EVD572/ATGAGGGAACTCCATGATGGA 

OrysaEULS3/2 EVD571/AAAAAGCAGGCTTCTCTTCTC
CCTTTTGCTATCTCTA 

EVD573/AGAAAGCTGGGTGCATGATGGA
TGGATTTGGGGG 

OrysaEULS2/1 EVD659/CACATGCCCACAAACGAGCC
ATAG  

EVD661/TACTGCTCGCGCCGCCCGTAAAA 

OrysaEULS2/2 EVD660/AAAAAGCAGGCTTCAAACGA
GCCATAGTGCCCGTCCG   

EVD/662AGAAAGCTGGGTGTCGCGCCGC
CCGTAAAAGTCCAT  

OrysaEULD1A/1 EVD663/CTGCTCCAACGTCCACAAACT
CCA 

EVD665/TGCCTGGTTGTGGTGGTGCCCG
A 

OrysaEULD1A/2 EVD664/AAAAAGCAGGCTTCACAAAC
TCCACAGGACAACCTA  

EVD666/AGAAAGCTGGGTGTGGTGGTGC
CCGAACCCAAACAT 

Completing the 
attB sequence 

EVD2/GGGGACAAGTTTGTACAAAAAA
GCAGGCT 

EVD4/ACCACTTTGCTCAAGAAAGCTGGG
T  

Sequencing 
primers  

Donr-F/TCGCGTTAACGCTAGCATG Seql-E/GTTGAATATGGCTCATAACAC 

a: 1: first nested PCR, 2: second nested PCR 

 

3A.3.3 Arabidopsis transformation with promoter::GUS constructs 

The binary expression vector was extracted from E. coli top10F cells after LR reaction and 

transformed into the Agrobacterium strain GV3101 by electroporation using the following 

pulse conditions: 2 kV, 25 µF and 200 Ω using the Gene PulserR (BioRad, Hercules, CA, USA). 

Several colonies were tested after selection on YEB (consisting of 5 g/l beef extract, 5 g/l 

peptone, 5 g/l sucrose, 1 g/l yeast extract and 15 g/l bacteriological agar) medium containing 

spectinomycin (50 µg/ml). One positive colony was chosen to transform 6-week old 

Arabidopsis plants using the floral dip transformation method (Clough and Bent 1998). T0 

seeds were selected on MS medium containing kanamycin (50 µg/ml) following the 

procedure described by Harrison et al. (2006) and afterwards several independent lines were 

tested at DNA level. To select for one-insertion lines, a protocol adapted from Jain et al. 

(2006) and Giri et al. (2011) was used. Briefly, 100 T1 seeds were sown on MS medium 

containing kanamycin and then lines which met the ratio 3:1 (survival:dead) were 

considered as one-insertion lines. T2 seeds were harvested individually for 10 sub-lines per 

construct and sown on MS containing kanamycin. T3 seeds were harvested from the sub-

lines which showed 100% survival and were considered as homozygous. Afterwards, seeds 



116 
 

 

from homozygous sub-lines were pooled for each construct. In this investigation, T3 seeds 

(homozygous one-insertion lines) were used to investigate the activity of OrysaEULS2, 

OrysaEULS3 and OrysaEULD1A promoters.  

3A.3.4 Stress treatments 

Five, ten and fifteen-day old Arabidopsis seedlings expressing the GUS gene under the 

control of one of the EUL promoters were exposed to salt (150 mM), mannitol (100 mM) and 

ABA (100 µM)  by transferring the filter paper on which the plantlets were grown to new 

plates containing several filter papers immersed in MS with the indicated stress factors. 

Seedlings were kept on this medium for 24 h. GUS staining was analysed and compared for 

seedlings grown on MS plates and seedlings subjected to stress treatments. Three 

independent lines for each construct were used in this analysis. Seedlings expressing the 

GUS gene under the 35S cauliflower mosaic virus promoter were kept on the MS medium 

and served as a positive control.   

3A.3.5 Qualitative GUS assay 

To perform the histochemical staining of β-glucuronidase, a protocol adapted from Jefferson 

(1987) as described by Delporte et al. (2011) was followed. GUS assays were performed 

during different stages of plant development under different growth conditions. Three 

seedlings were analysed for each treatment. The staining procedure was performed on the 

whole seedling in the first three stages of development and on detached parts (roots, leaves, 

stems, flowers and siliques) for developmental stages 4 and 5.  

3A.3.6 Bioinformatics analysis  

DNA fragments containing approximately 1900 bp upstream from the start codon were 

considered to have the near full length promoter sequence for each gene under study. To 

investigate the presence of putative stress regulatory cis-elements, all promoter sequences 

were analysed using the publicly accessible database PLACE (Higo et al., 1999). The plant 

promoter database (Shahmuradov et al., 2003) was used to check for the typical promoter 

elements including CAAT, TATA boxes and transcription start site (TSS). In this database, 

different nucleotide matrices were built from several species including rice and by 

comparing these matrices with our promoter sequences, the typical promoter elements 
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were determined. Using the Osiris promoter database (Morris et al., 2008), the 5’ 

untranslated region was determined for each promoter sequence under study. The 

nucleotide A in the start codon (ATG) is designated as +1.  

 

3A.4 Results 

3A.4.1 In silico promoter sequence analysis  

All promoter sequences under study were searched for the typical promoter elements and 

the TSS (Suppl. File 3A.1). The TSS in the promoter sequences of OrysaEULS2, OrysaEULS3 

and OrysaEULD1A is located at positions -107, -1075 and -76, respectively. Several TATA and 

CAAT boxes were identified in each promoter sequence but the boxes closest to the TSS and 

not located in the 5’ untranslated region were considered as active elements. The TATA box 

is located at positions -127/-132, -1198/-1203 and -104/-109 in the OrysaEULS2, OrysaEULS3 

and OrysaEULD1A promoter sequences, respectively. The CAAT box is detected at positions -

144/-147, -1179/-1182 and -379/-382 in the promoter sequences of OrysaEULS2, 

OrysaEULS3 and OrysaEULD1A, respectively. Since all promoter sequences contain the 

typical promoter elements, they are expected to represent active promoters. 

The presence of stress regulatory elements in the promoter sequences of OrysaEULS2, 

OrysaEULS3 and OrysaEULD1A was analyzed using the PLACE database. Eleven groups of 

putative stress elements were identified (Suppl. File 3A.2). Nine stress elements were 

detected in all three promoter sequences though with different frequencies. Based on the 

frequency of occurrence they were divided into three classes. The first class with high 

frequency elements contains only light responsive elements, the second class groups 

medium frequency elements (13> freq >7) including ABA and gibberellin responsive 

elements, and the third class contains low frequency elements (freq 1-5) including salt, 

drought, cold, freezing, pathogen and anaerobic responsive elements (Fig. 3A.2). Auxin and 

brassinosteroid responsive elements were found only in the OrysaEULS3 promoter sequence 

at a low frequency (freq 2) (Fig. 3A.2). The frequency of occurrence for each stress element 

was modified by subtracting the value reflecting that this motif can occur only by chance. 
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Fig. 3A.2 Chart showing the frequencies of stress elements in the promoter region of the lectins under study 

 

3A.4.2 GUS Expression patterns for EUL promoters in Arabidopsis 

Transgenic Arabidopsis lines expressing promoter::GUS fusion constructs for the promoter 

sequences from OrysaEULS2, OrysaEULS3 and OrysaEULD1A were generated and a 

comparative analysis of the promoter activity for each of the EUL genes was made using GUS 

activity staining of plant tissues. Histochemical staining of the different Arabidopsis 

transgenic lines yielded different GUS staining patterns. Five developmental stages were 

analyzed starting with 1) 5 day old (excluding the vernalization period) seedlings having the 

fully open cotyledons and the emergence of the first 2 true leaves, 2) 10 day old seedlings 

with 6 true leaves, 3) 15 day old plants with 8 true leaves, 4) 32 day old adult flowering 

plants and 5) 43 day old adult plants harboring pre-mature and some dry siliques. The 

promoter GUS activity was examined under normal growth conditions (for all five 

developmental stages) as well as under different stress conditions (during the first three 

plant stages), including 150 mM salt, 100 mM mannitol, and 100 µM ABA treatments. These 

stress conditions were selected taken into account previous reports showing that the rice 
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EUL proteins are responsive to salt and ABA (Moons et al., 1997a; Kawasaki et al., 2001), as 

well as the occurrence of putative stress response elements for ABA, salt and drought in the 

promoter sequences. Seedlings harboring a GUS construct under the 35S promoter were 

used as a positive control during all experiments at several developmental stages of the 

plant (Suppl. Fig. 3A.1). 

3A.4.2.1 OrysaEULS2 promoter activity 

In spite of the presence of the typical promoter elements in the OrysaEULS2 promoter 

sequence (Suppl. File 3A.1), no GUS expression was observed for the OrysaEULS2::GUS 

promoter construct neither under normal growth conditions nor under any of the stress 

treatments (Suppl. Fig. 3A.2). 

3A.4.2.2 OrysaEULS3 promoter activity 

Different GUS staining patterns for the OrysaEULS3 promoter were observed during 

development of A. thaliana transgenic lines.  In plant stage 1 a strong GUS staining was 

present in the hypocotyl and the petioles of the cotyledons of Arabidopsis seedlings grown 

under normal conditions. GUS activity was also seen in the cotyledons as well as in the 

trichomes of the true leaves but not in the leaf tissue (Fig. 3A.3a1).  OrysaEULS3 promoter 

activity was similar in seedlings subjected to stress treatments, but the GUS staining was 

reduced especially in response to NaCl treatment (Fig. 3A.3d1). The GUS staining of 

trichomes was not apparent after ABA and NaCl treatment (Fig. 3A.3c1 and 3d1 respectively) 

but was still present after mannitol treatment of the seedlings (Fig. 3A.3b1).  

In plant stage 2, GUS activity for the OrysaEULS3 promoter was clearly reduced in the 

hypocotyl, the petioles of the cotyledons of the control plants. GUS staining was observed in 

the trichomes as well as on the attachment site of the trichomes on the leaves. Low GUS 

staining was present in the laminae of the true leaves (Fig. 3A.3a2). OrysaEULS3 promoter 

activity was clearly observed in seedlings subjected to mannitol and ABA treatments, but 

was almost absent in NaCl treated seedlings (Fig. 3A.3b2, c2, d2).  

Plantlets of stage 3 grown under normal conditions showed OrysaEULS3 promoter activity in 

the hypocotyl, the petioles of oldest true leaves, at the base of the youngest leaves but not 
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in the cotyledons and the trichomes (Fig. 3A.3a3). All stress treated plants showed lower GUS 

activity of OrysaEULS3 promoter compared to the control plants (Fig. 3A.3b3, c3, d3).  

Plant stages 4 and 5 showed GUS activity for the OrysaEULS3 promoter in the flowers and 

the pre-mature siliques, but not in the mature siliques or the seeds (Fig. 3A.3a4,5). At this 

stage no staining was observed in the leaves, stems or roots (Suppl. Fig. 3A.2b). 

OrysaEULS3 promoter activity was never observed in root tissues for none of the plant 

stages and treatments tested.   

 

Fig. 3A.3 Legend on next page 
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Fig. 3A.3 Histochemical analysis of the GUS reporter gene under the control of OrysaEULS3 promoter in 

Arabidopsis plants. GUS expression was analyzed under normal growth conditions (MS) (a) and after stress (100 

mM mannitol (b), 100 µM ABA (c) and 150 mM NaCl (d)) treatment for 24 h. Pictures represent one transgenic 

line during different developmental stages, but are representative for all transgenic lines tested. 

Developmental stages: 1, stage 1, 5-day old seedling; 2, stage 2, 10-day old seedling; 3, stage 3, 15-day old 

seedling; 4, stage 4, flowering plant and 5, stage 5, flowering plant with immature and mature siliques. I►: 

hypocotyl, II►: petiole, III►trichomes. Images were taken using a Nikon eclipse TE2000-e epi-fluorescence 

Microscope (Nikon Benelux, Brussels, Belgium) 

 

3A.4.2.3 OrysaEULD1A promoter activity 

OrysaEULD1A::GUS promoter activity showed different GUS staining patterns compared to 

those observed for the OrysaEULS3::GUS construct. In plant stage 1, GUS staining was 

detected in the first 2 emerging true leaves under normal growth conditions as well as under 

all stress treatments tested (Fig. 3A.4a1, b1, c1, d1). Unlike for the OrysaEULS3::GUS 

construct, no OrysaEULD1A::GUS expression was observed in the cotyledons, nor in the 

hypocotyl or in the trichomes. The intensity of the GUS staining was increased after mannitol 

and ABA treatments and decreased after NaCl treatment (Fig. 3A.4b1, c1, d1 ).  

Similar to plant stage 1, GUS activity was confined to the true leaves in plant stage 2, but no 

staining was present neither in the cotyledons, nor in the hypocotyl or the trichomes (Fig. 

3A.4a2, b2, c2, d2). There was no clear difference between the GUS staining patterns 

observed for the plants grown under normal conditions and the plants subjected to ABA (Fig. 

3A.4a2 and c2 respectively). Although the GUS staining was similar for plantlets grown on MS 

medium and plants subjected to mannitol treatment (Fig. 3A.4a2 and b2), the GUS staining 

was slightly reduced in response to NaCl treatment (Fig. 3A.4d2). GUS activity for the 

OrysaEULD1A promoter in root tissue (in the tip of the lateral roots) was only observed after 

plants were subjected to mannitol treatment (Fig. 3A.4b2). 

In plant stage 3, the GUS expression was very low and confined to the youngest true leaves. 

Similar results were observed for all growth conditions (Fig. 3A.4a3, b3, c3, d3).  

During plant stages 4 and 5 GUS activity was observed in the flowers and the pre-mature 

siliques, but not in the mature siliques or the seeds (Fig. 3A.4a4,5), nor in leaf, stem or root 

tissues (Suppl. Fig. 3A.2b).  
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Fig. 3A.4 Histochemical analysis of GUS activity under the control of OrysaEULD1A promoter in Arabidopsis 

plants.  GUS expression was analyzed under normal growth conditions (MS) and after 24 h stress (100 mM 

mannitol, 100 µM ABA and 150 mM NaCl) treatment. Pictures represent one transgenic line during different 

developmental stages, as in figure 3A.3.  Images were taken by a Leica microscope (Leica, Nussloch, Germany) 

 

 

3A.5 Discussion 

During the last decade several inducible plant lectins have been reported (Zhang et al., 2000; 

Chen et al., 2002; Lannoo et al., 2006a; Imanishi et al., 1997; Nakagawa et al., 2000; Yong et 

al., 2003). Most of these lectins were not detected in plant tissues grown under normal 

conditions, but lectin expression was increased considerably after the application of some 

stress factor. Nevertheless the inducible lectins are still expressed at low concentrations in 

response to abiotic and biotic stresses. Therefore, the hypothesis has been put forward that 

these lectins might play an important role in plant stress physiology (Van Damme et al., 

2008). In an attempt to gain more knowledge and understanding how EUL lectin expression 

levels change in response to external stresses, the promoter activity for some EUL lectins 

from rice was analyzed in this study.  

In silico analysis revealed that the 1900 bp sequences preceding the OrysaEULS2, 

OrysaEULS3 and OrysaEULD1A coding sequences contain multiple typical promoter elements 
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(Suppl. File 3A.1) and thus these promoter sequences were considered to be functional. 

Analysis of these promoter sequences for putative stress regulatory elements, allowed the 

identification of 11 stress elements, nine of which were present in all promoter sequences 

under study (Suppl. File 3A.2). These nine stress elements were further subdivided into 3 

classes based on the frequency of their occurrence in the promoter sequence (Fig. 3A.2). 

Based on these observations, several stress treatments were selected for this study: ABA 

related stress elements (class 2) were present at medium frequency, whereas putative 

elements previously attributed to NaCl and mannitol responses (class 3) were found with 

low frequency. ABA, salt and mannitol treatments have been studied intensively in plants 

since they are known to be important for salinity and drought tolerance of plants. Increased 

ABA levels have been shown to regulate plant adaptation to environmental stresses (like 

drought and salinity) (Zhu 2002; Nambara and Marion-Poll 2005; Cutler et al., 2010; 

Hirayama and Shinozaki 2010). In addition, both salt and drought stresses are considered as 

serious problems for crop production, and therefore are of considerable interest for plant 

research aiming at developing plants that can cope with these stress factors. 

 

To study the effect of the selected stress treatments on the promoter activity of the EUL 

lectins, transgenic Arabidopsis lines harboring the promoter::GUS constructs were generated 

for the different EUL lectins. Subsequently, histochemical GUS staining allowed analyzing 

promoter activity during development of plants grown under normal growth conditions as 

well as in plants treated with ABA, salt or mannitol. Although the OrysaEULS2 promoter 

sequence contained all the promoter elements necessary for a functional promoter, no 

expression was observed for the OrysaEULS2 promoter::GUS fusion construct under any of 

the conditions tested. This result is in a good agreement with the very low frequency (freq 1) 

of salt and drought elements in the OrysaEULS2 promoter (Fig. 3A.2). In contrast the 

OrysaEULS3 and OrysaEULD1A promoter GUS fusion constructs showed clear but different 

GUS staining patterns. When plants were grown under non-stressed conditions in MS 

medium, GUS staining directed by the OrysaEULS3 promoter was clear in the seedlings, in 

particular the hypocotyl, the petioles, the cotyledons, the true leaves and the trichomes 

showed a clear blue staining (Fig. 3A.3). In contrast, GUS activity controlled by the 

OrysaEULD1A promoter was confined to the young true leaves (Fig. 3A.4). Since the GUS 

staining analysis was performed qualitatively and the activity of the promoters under study 
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was weak, it is hard to draw conclusions about their activity. However, some differences 

were observed between plants grown under stress treatments and the control. After NaCl 

treatment a fainter blue staining was seen in the plants harboring the OrysaEULS3 promoter 

GUS as well as the OrysaEULD1A GUS constructs. A reduced GUS activity was observed 

especially in plant stages 1 and 2. After mannitol and ABA treatments, the promoter activity 

was increased in plant stage 1 for OrysaEULD1A. OrysaEULS3 promoter activity was 

increased in stage 2 after mannitol and ABA treatments especially in the petioles and the 

lamina of the cotyledons as well as in the hypocotyl. The activity of OrysaEULS3 and 

OrysaEULD1A promoter in young tissues in particular the cotyledons and the true leaves, 

respectively, suggested a possible role in expansion and cell division during the early stages 

of tissue development. Both the OrysaEULS3 and OrysaEULD1A promoter sequences showed 

similar GUS staining of the flower tissues and immature siliques but not in the mature 

siliques nor in the seeds (Fig. 3A.3a4,5, 4a4,5) pointing towards a possible role for OrysaEULS3 

and OrysaEULD1A in flower and silique development. 

 

Although the dicot species Arabidopsis thaliana is often used as a model plant for 

promoter::GUS studies, mainly because of the ease of transformation, growth and analysis, 

it is known that promoter elements from monocot species might not be recognized. For 

instance, it was shown that the rice YY2 promoter shows different GUS staining patterns in 

Arabidopsis and rice plants, in that the complete anthers showed GUS activity in Arabidopsis 

plants whereas the GUS staining was confined to the tapetum tissue in rice plants (Kuriakose 

et al., 2009; Khurana et al., 2013). Therefore we cannot exclude that the promoter activity of 

these GUS constructs transformed in rice might yield additional data.  

We hypothesize that EUL proteins fulfill a physiological role in sensing and responding to 

different stresses as well as in the developmental stages of the plant. Further work is 

required to investigate this hypothesis, e.g. by overexpressing the EUL proteins and 

analyzing the effect of these proteins under normal growth as well as under different stress 

conditions.  Similarly, knockout lines in one or more EUL genes can be investigated to study 

the impact of EUL expression on growth and development of the rice plant. 
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Chapter 3 

Promoter and Q PCR analysis of EUL lectins from rice 

 

 

 

 

 

 

 

 

Chapter 3B 

Responsiveness of EUL-related rice lectins towards important abiotic and biotic stresses 

Manuscript submitted   

Al Atalah B, De Vleesschauwer D, Xu J, Fouquaert E, Höfte M, Van Damme EJM (2013) 

Responsiveness of EUL-related rice lectins towards important abiotic and biotic stresses.  
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3B.1 Abstract  

In the rice genome, there are 5 genes encoding putative carbohydrate-binding domains 

belonging to the Euonymus lectin (EUL)-related domain family. In this study, the expression 

level of all these EUL domains was investigated under different stresses and compared to the 

expression level of Orysata, a well known stress related lectin. Q-PCR was conducted on rice 

seedlings exposed to abiotic stresses, particularly 150 mM NaCl, 100 mM mannitol, and 100 

μM ABA as well as biotic stresses being Xanthomonas oryzae (Xoo) and Magnaporthe oryzae 

infections. All EUL proteins were up-regulated after ABA and NaCl treatments in the roots 

whereas the expression level was less and more variable in the shoots. All abiotic stresses 

induced Orysata in both tissues except mannitol treatment which did not show an effect in 

the roots. Proteins from the D type were up-regulated after Xoo infection except for 

OrysaEULD1A which was down-regulated. In addition, some of the EUL proteins were down-

regulated by Magnaporthe, particularly OrysaEULS3, OrysaEULD1A and OrysaEULD2 

indicating that this pathogen is targeting them. Interestingly, Orysata was up-regulated after 

Xoo and down-regulated after Magnaporthe infections. Our results show that rice expresses 

multiple carbohydrate-binding proteins in response to several abiotic and biotic stress 

conditions. We hypothesize that the Euonymus-related proteins fulfill a role in sensing and 

responding to these stresses. 
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3B.2 Introduction   

One family of inducible lectins that is ubiquitous in plants comprises all proteins related to 

the Euonymus europaeus lectin (EUL) (Fouquaert et al., 2009a). Though the EUL domain is 

quite well conserved, the carbohydrate-binding domain is promiscuous in that it shows 

interaction with different carbohydrate structures depending on the species and the type of 

protein under study (Fouquaert and Van Damme, 2012).  

In rice, four different types of EUL proteins have been identified (Fouquaert et al. 2009a; 

Fouquaert and Van Damme 2012). Both the S2 and the S3 types are composed of a single 

EUL domain preceded by a variable N-terminal sequence. Only one protein was identified 

belonging to each of the S types, referred to as OrysaEULS2 for type S2 and OrysaEULS3 for 

type S3, respectively. In addition two D type proteins consisting of two EUL domains 

separated by a linker sequence and preceded by an N-terminal sequence were found. The 

size of the linker and N-terminal domains differs in case of the D1 and D2 types. Two almost 

identical proteins referred to as OrysaEULD1A and OrysaEULD1B belong to the D1 type, 

whereas one protein was classified as a D2 type, namely OrysaEULD2 (Fouquaert et al., 

2009a; Al Atalah et al., 2013 see chapter 3A).    

Rice (Oryza sativa L.) is a cereal crop that feeds half of the population on earth and provides 

(together with wheat and maize) 50% of the total consumption of calories (Maclean et al., 

2002). Changes in the global climate increase the temperature and the atmospheric CO2 

levels, and alter the rainfall patterns. Due to these changes, abiotic stress (drought, salt, high 

temperature…) is considered the most harmful factor for growth and productivity of crops 

worldwide. Therefore, abiotic stress is conceived the primary cause of crop loss, reducing 

average yields by more than 50% for most major crops (Bray et al., 2000; Boyer and 

Westgate 2004; Rodríguez et al., 2005). In addition to abiotic stress,   biotic stresses 

provoked by fungi, bacteria, viruses, insects,… are also decreasing the yield of crops. For 

instance, 10 to 15% reduction of rice yield was estimated to be due to diseases caused by 

bacterial blight (Xanthomonas oryzae), blast (Magnaporthe oryzae), sheath blight 

(Rhizoctonia solani), and rice tungro bacilliform virus (Dai et al., 2007). Based on these facts, 

Identifying stress tolerance genes and understanding their functions have become the most 

urgent tasks in order to increase the yield of crops under unfavorable conditions.  
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In the present study, the expression profile for the whole set of EUL proteins from rice was 

analyzed under different abiotic and biotic stress conditions. To do this, qRT-PCR was 

performed to measure the relative expression level of the EUL genes after different stress 

treatments. Quantitative RT-PCR has become a pioneer technology to measure the gene 

relative expression, because of its rapidity, accuracy and sensitivity (Gingeras et al., 2005; 

Nolan et al., 2006; Van Guilder et al., 2008). In addition, qRT-PCR is considered the most 

appropriate method to confirm or confute data generated by large scale microarrays (Wang 

et al., 2006b). The data for the different EUL sequences under study have been compared to 

the expression pattern of a previously identified stress related rice lectin belonging to the 

family of jacalin-related lectins (Claes et al., 1990, Garcia et al., 1998, Zhang et al., 2000). Our 

findings can contribute in deciphering the possible role of the inducible EUL lectins under 

stress conditions.  

 

3B.3 Materials and methods 

3B.3.1 Plant material  

Oryza sativa cv Nipponbare were obtained from the National Rice Research Centre (Genetic 

stock Oryza collection, Stuttgart, USA). To set up the in vitro culture, the seeds were de-

husked and surface sterilized in 70% (v/v) ethanol for 5 min and subsequently in 5% (v/v) 

NaOCl for 30 min. Afterwards the seeds were extensively washed with sterile water.   

3B.3.2 Abiotic stress assays 

Ten seeds were sown in a jar (9 cm diameter) containing 100 ml solid Murashige and Skoog 

(1962) medium (MS) (4.3 g/l MS micro- and macronutrients containing vitamins (Duchefa, 

Haarlem, The Netherlands), 30 g/l sucrose, pH 5.7 (adjusted with 0.5 M NaOH), and 8 g/l 

plant agar (Duchefa)). The jars were kept at 28°C, 16 h light / 8 h dark cycle. 

Five ten day old rice seedlings were transferred to a jar with 100 ml liquid MS containing the 

desired stress factor (150 mM NaCl, 100 mM mannitol or 100 µM ABA). Five seedlings were 

transferred to MS and used as a negative control. Two jars were used for each treatment. 

The stress treatment was applied for 6 h under the conditions mentioned above. Afterwards, 
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the shoots and the roots for 10 plants per treatment were separated and immediately frozen 

at – 80°C. 

3B.3.3 Biotic stress assays   

Rice seeds (japonica cultivar Nipponbare) were surface sterilized with 1% NaOCl for two min, 

rinsed three times with sterile, demineralized water and incubated on wet sterile filter paper 

for five days at 28° C. In case of Xanthomonas oryzae bioassays, germinated seedlings were 

transferred to sterilized vermiculite supplemented with half strength Hoagland solution (Xu 

et al., 2013). Two weeks later, the plants were transferred to plastic containers containing 

modified Hoagland solution (Xu et al., 2013) and grown for another three weeks under 

growth chamber conditions (28°C, relative humidity: 60%, 12/12 light regime). Seedlings 

used for Magnaporthe oryzae inoculations were grown in perforated plastic trays (23 by 16 

by 6 cm) filled with commercial potting soil (Structural; Snebbout, Kaprijke, Belgium) that 

had been autoclaved twice on alternate days for 21 min. 

3B.3.3.1 Xanthomonas assay  

 Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99 (Philippine race 6) (Song et al., 1995) 

was cultured on Sucrose Peptone Agar (SPA) medium at 28°C. To perform the assay, a single 

colony was transferred to liquid SP medium and grown for 48 h at 28°C. Six week old plants 

were inoculated by clipping the fifth and sixth stage leaves with scissors and dipping them in 

a solution of Xoo cells in water (1 x 109 CFU.ml-1). Inoculated plants were kept in a dew 

chamber (≥ 92% relative humidity; 28°C) for 24 h and thereafter transferred to greenhouse 

conditions for disease development. Leaf samples were collected 2, 4 and 8 days post-

inoculation (dpi) and frozen at -80°C until use. 

3B.3.3.2 Magnaporthe assay  

Inoculations with Mo were performed exactly as described in De Vleesschauwer et al. 

(2009). Briefly, leaves of 4-week-old plants (5-leaf stage) were evenly sprayed with a M. 

oryzae spore suspension containing 5 x 104 conidia.ml-1. Inoculated plants were incubated at 

high relative humidity (≥ 92% relative humidity; 28°C) for 24 h and, thereafter, returned to 

growth chamber conditions for disease development. Six days post inoculation, inoculated 

leaves were found to display many sporulating blast lesions, confirming the effectiveness of 
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the pathogen inoculation. Leaf samples of mock and pathogen-inoculated plants were 

collected at 1 and 2 dpi and frozen at -80°C until further use. 

 3B.3.4 RNA extraction and cDNA synthesis 

Total RNA was extracted from rice roots and shoots after each abiotic treatment and from 

the infected leaves after each biotic treatment using the RNeasy Plant Mini Kit (QIAGEN, 

Valencia CA, USA) following the manufacturer’s instructions. After DNase Ι treatment 

(ThermoScientific, Erembodegem, Belgium), the cDNA was synthesized using the M-MLV 

Reverse Transcriptase Kit (Invitrogen, Carlsbad, CA, USA). Briefly, in a total volume of 26 µl, 2 

µg of DNase Ι treated RNA were mixed with 2 µl of 2 µM oligo-dT and 2 µl of 10 mM dNTP. 

After incubation for 5 min at 65°C all samples were cooled down immediately. Subsequently 

the samples were mixed with 8 µl of the 5x first strand buffer and 4 µl of 0.1 M 

dithiothreitol. After 2 min incubation at 37°C, 2 µl M-MLV reverse transcriptase (200 U/µl) 

was added. After incubation for 50 min at 37°C all samples were transferred to 75°C for 15 

min to stop the reaction. Finally, water was added to each sample to reach the 

concentration of 20 ng/µl. To check the quality of the cDNA, a standard RT-PCR using a pair 

of reference gene primers (Suppl. Table 3B.1) was performed and the amplicons were 

visualized on a 1.5% agarose gel (Invitrogen). 

3B.3.5 Quantitative RT-PCR  

The SensiMixTMSYBR No-ROX Kit (BIOLINE, London, UK) was used to perform the qRT-PCR 

reactions. In each reaction, 10 µl of 2 x SensiMix, 1 µl cDNA (20 ng/µl), 1 µl of 10 µM from 

each primer and 7 µl water were mixed in a total volume of 20 µl. All reactions were 

performed in the Rotor-Gene 3000 (Corbett Life Science, Qiagen, Venlo, The Netherlands) 

using Rotor Discs (Qiagen), and the results were generated by the Rotor-Gene 6 software. 

The thermal profile consisted of 10 min at 95°C as a pre-denaturation step, 45 cycles of 25 

sec at 96°C, 25 sec at 60°C, and 20 sec at 72°C.  To test the amplicon specificity, a melting 

curve was generated by increasing the temperature from 72°C to 95°C. The relative 

expression level of the target genes under stress conditions were compared with the control 

by using the REST 384 software (Corbett Research, (Pfaffl et al. 2002)). This software allows 

determining the statistical significance of the results and compared the relative expression 

between a sample and a control group. Primers for qRT-PCR were designed by primer 3.0 
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software: http://frodo.wi.mit.edu/ (Suppl. Table 3B.1) to amplify <150 bp amplicons. Three 

independent biological replicates were used for the abiotic assays as well as the 

Xanthomonas assay whereas two biological replicates were performed for the Magnaporthe 

assay. Three and two technical replicates were used for the abiotic and biotic assays, 

respectively. 

 

3B.4 Results 

The qRT-PCR technology was performed to compare and quantify the relative expression 

levels for the whole set of EUL proteins from rice under normal growth condition as well as 

after several abiotic and biotic stresses. The fold change for all treatments is shown in Suppl. 

Table 3B.2. 

3B.4.1 EUL expression patterns in response to abiotic stresses 

Ten day old seedlings were exposed for 6h to several abiotic stress conditions including NaCl 

(150 mM) to mimic salinity stress, mannitol (100 mM) to mimic drought stress and ABA (100 

µM). The effect of the different stresses on the expression level of the different rice EULs 

was analyzed. The data were normalized by including two stably expressed reference genes, 

namely expressed protein (EXP, LOC_Os03g27010) (Kyndt et al., 2012) and the eukaryotic 

initiation factor 5C (EIF5C, LOC_Os11g21990.1) (Narsai et al., 2010) (Suppl. Table 3B.1). 

Orysata, which belongs to the jacalin-related lectin family, was first described as a salt 

inducible protein (Claes et al., 1990). Since Orysata has been reported to be expressed in 

response to salt or drought stresses as well as jasmonic acid and ABA treatment (Zhang et 

al., 2000; De Souza et al., 2003), the expression of Orysata was also included in the abiotic 

stress experiments as a positive control. Furthermore the expression levels for the EUL 

lectins and Orysata have been compared.  

After ABA treatment, all EUL proteins under study were up-regulated significantly in the root 

tissues (Fig. 3B.1a), but only the relative expression levels for OrysaEULS2, OrysaEULD1A and 

OrysaEULD2 were up-regulated significantly in the shoots (Fig. 3B.1b). Furthermore, the 

expression levels of OrysaEULS3 and OrysaEULD1B in the shoots were not affected by ABA 

treatment (Fig. 3B.1b, Suppl. Table 3B.2 respectively). Similarly the expression of Orysata 

http://frodo.wi.mit.edu/
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was significantly up-regulated in roots and shoots after ABA stress. Interestingly, all tested 

rice lectins showed higher relative expression levels in the root compared to the shoot 

tissues in response to ABA treatment (Fig. 3B.1).  

Quantitative analyses of lectin expression in plants subjected to NaCl stress revealed that the 

relative expression levels for all EUL proteins as well as Orysata were up-regulated 

significantly in the root tissues (Fig. 3B.1a).  In the shoots, similar to the expression pattern 

for Orysata the expression of all EUL D types (OrysaEULD1A, OrysaEULD1B and OrysaEULD2) 

was up-regulated significantly (Fig. 3B.1b) whereas the expression of the S type EULs 

(OrysaEULS2 and OrysaEULS3) showed no response to NaCl (Fig. 3B.1b, Suppl. Table 3B.2).  

In contrast to ABA and NaCl, the mannitol treatment provoked less effect on the expression 

of the rice lectins. The expression pattern of the EUL proteins was not significantly changed 

neither in the root nor in the shoot tissues (Fig. 3B.1, Suppl. Table 3B.2). Only the expression 

level of Orysata was up-regulated significantly in the shoot tissues (Fig. 3B.1b) whereas it 

was not regulated in the root tissues.  
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Fig. 3B.1 Expression analyses of rice lectins under different abiotic stress conditions. Relative expression level 

for all proteins under study in root (a) and shoot (b) tissues are shown. Quantitative RT-PCR was performed on 

RNA extracted from shoot and root tissues of 10-day old rice seedlings grown in MS medium (control) or 

treated for 6 h with 150 mM NaCl, 100 mM mannitol or 100 µM ABA. Gene expression levels were normalized 

using two internal reference genes: EXP (LOC_Os03g27010) and EIF5C (LOC_ Os11g21990,1). Bars represent 

means and standard error of three biological replicates, each containing a pool of 10 plants per treatment. 

Asterisks indicate statistically significant differences of expression in comparison with the control. EULS2: 

OrysaEULS2; EULS3: OrysaEULS3; EULD1A: OrysaEULD1A; EULD1B: OrysaEULD1B; EULD2: OrysaEULD2 
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3B.4.2 EUL expression patterns in response to infection assays 

For the biotic stress assays, the fifth and sixth stage leaves of susceptible rice plants were 

infected with the pathogens Magnaporthe oryzae and Xoo, respectively. Similar to the 

abiotic stress experiments, the data were normalized by using two reference genes. For the 

Xoo experiment we selected the reference genes EXP and EIF5C. However, since these 

references genes were not stable after Magnaporthe infection, other reference genes were 

used to normalize the data obtained from the Magnaporthe experiment namely, Eukaryotic 

elongation factor 1-alpha (EEFa1, LOC_Os03g08020.1) and ubiquitin 5 (UBQ5, 

LOC_Os01g22490.1) (Jain et al., 2006) (Suppl. Table 3B.1). In both sets of experiments, clear 

disease symptoms were observed starting 4 dpi, indicating that pathogen inoculation was 

successful. Since the pathogen Mo can infect the rice plant faster compared to the pathogen 

Xoo, samples were collected 1 and 2 dpi after Mo infection whereas the sampling time was 

2, 4 and 8 dpi for Xoo infection. 

After Xoo infection, the expression levels for OrysaEULD1B, OrysaEULD2 and Orysata were 

up-regulated significantly 4 and 8 dpi whereas they were not affected 2 dpi (Fig. 3B.2a, 

Suppl. Table 3B.2). Among the EUL type D, OrysaEULD1A was the only protein that showed 

down-regulation of its expression, being significant 8 dpi whereas the expression was not 

regulated 2 and 4 dpi (Fig. 3B.2a). No significant changes in the expression for the S type 

EULs were observed (Fig. 3B.2a, Suppl. Table 3B.2).  

The relative expression for the rice lectins was totally different after Magnaporthe infection. 

At 1 dpi a significant down-regulation of the expression was observed for most of the 

proteins under study. Particularly, the expression level of OrysaEULS3 was down-regulated 

significantly 1 dpi but not affected 2 dpi whereas OrysaEULS2 was not regulated after all 

tested time points (Fig. 3B.2b). After 1 dpi, the relative expression was down-regulated 

significantly for OrysaEULD1A and not affected for OrysaEULD1B 1 dpi whereas there was no 

significant regulation for both proteins 2 dpi (Fig. 3B.2b, Suppl. Table 3B.2). In spite of the 

fact that the expression level for OrysaEULD2 was down-regulated significantly 1 dpi, it was 

up-regulated significantly 2 dpi (Fig. 3B.2b). In addition, the expression pattern for Orysata 

showed significant down-regulation at all tested time points (Fig. 3B.2b).   



136 
 

 

 

Fig.3B.2 Expression profile for all EUL lectins as well as Orysata after biotic infections. The relative expression 

for all tested proteins is shown in panel (a) after Xoo infection and in panel (b) after Magnaporthe orysae 

infection. Bars represent means and standard error of three biological replicates for Xoo and two biological 

replicates for Magnaporthe. To normalize the data obtained after each treatment, genes EXP 

(LOC_Os03g27010) and EIF5C (LOC_Os11g21990,1) were used to for Xoo treatment and genes Eukaryotic 

elongation factor 1-alpha (EEFa1, LOC_Os03g08020.1) and ubiquitin 5 (UBQ5, LOC_Os01g22490.1) were used 

for Magnaporthe. Asterisks indicate statistically significant differences of expression in comparison with the 

control. EULS2: OrysaEULS2; EULS3: OrysaEULS3; EULD1A: OrysaEULD1A; EULD1B: OrysaEULD1B; EULD2: 

OrysaEULD2 
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3B.5 Discussion  

Inducible EUL lectins are of much interest because these carbohydrate-binding proteins are 

present in all terrestrial plants and their expression is enhanced in response to different 

stress situations (Imanishi et al., 1997; Zhang et al., 2000; Chen et al., 2002; Lannoo et al., 

2006a). Recently, the hypothesis has been put forward that inducible lectins might play a 

role in the stress physiology of plant cells (Van Damme et al., 2008). As a result of exposure 

to different abiotic and biotic stresses, potential yields of economically important crops 

(including rice) are lost yearly (Mittler and Blumwald 2010, Seo et al., 2011). Since rice is 

both a model and a crop plant, it provides an excellent system to study the effect of stress 

on growth and yield under field as well as under laboratory conditions.  

On a global level, a major limitation of crop production is imposed by different abiotic and 

biotic stresses resulting in 30%–60% yield losses each year (Dhlamini et al., 2005). Among 

the abiotic stresses, salinity and drought have received a lot of attention. Salinity adversely 

affects both the quantity and the quality of the crop yield (Gepstein et al., 2006; Blumwald 

and Grover 2006; Hauser et al., 2011). Drought is the most important limiting factor for crop 

production in many regions of the world (Bouman et al., 2005; Passioura 2007; Witcombe et 

al., 2008). For the biotic stresses, bacterial leaf blight caused by Xoo as well as rice blast 

caused by Magnaporthe oryzae, give rise to devastating crop losses in rice (Baker et al., 

1997; Talbot et al., 2003; Sana et al., 2010). Additionally, ABA is a plant stress hormone and 

one of the most important signaling molecules in plants. It is well known that ABA plays a 

key role in regulating many developmental and adaptive processes after abiotic stresses 

(Meng et al., 2009; Santner et al., 2009; Cutler et al., 2010) as well as biotic stresses 

(Asselbergh et al., 2008; Cao et al., 2011). Taking into account these facts several stresses 

were selected for investigation in this study. Salinity and drought were chosen to represent 

abiotic stresses, whereas Xoo and Magnaporthe were selected for the biotic assays. In 

addition ABA was included due to its importance in responsiveness to both abiotic and biotic 

stresses.   

To improve crop yield, it is necessary to understand the response mechanism of plants to 

abiotic and biotic stresses with the ultimate goal of improving crop performance under these 

unfavorable conditions. The present study investigates the expression profile for the whole 
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set of EUL proteins under several abiotic and biotic conditions in an attempt to gain better 

knowledge about their physiological importance. Recently, it was shown that the EUL 

domain from OrysaEULS2 (Al Atalah et al., 2012; see chapter 2B), the full protein of 

OrysaEULD1A and each of its domains (see chapter 2C) can be considered as true lectins 

since they can specifically interact with carbohydrate structures. The question rises why rice 

expresses multiple EUL type lectins. 

3B.5.1 Responsiveness towards abiotic stresses 

Since the Ct values for OrysaEULS2 are ~25 in the shoot tissues and ~31 in the root tissues, it 

can be concluded that the expression of this protein was low in the shoots and even lower in 

the roots compared to the expression of the reference genes (Ct value ~20). This observation 

may explain why no GUS activity was detected when the GUS gene was expressed under the 

control of the OrysaEULS2 promoter sequence in Arabidopsis (Al Atalah et al., 2013; see 

chapter 3A). Quantitative PCR analysis after stress treatment with ABA for 6h revealed that 

OrysaEULS2 expression was significantly up-regulated 1.7 fold in the shoots (Fig. 3B.1b). 

Furthermore, the up-regulation of OrysaEULS2 was observed in the roots after ABA (2.8 fold) 

and salt (4 fold) treatments (Fig. 3B.1a). Our findings match earlier results which showed 

that OrysaEULS2 was up-regulated in the shoots after ABA and salt treatments (Moons et al., 

1997a). Furthermore, OrysaEULS2 was not detected in the roots under normal growth 

conditions by RNA gel blot hybridization or under mild salt (100 mM for 3 days) by two 

dimensional blot analyses (Moons et al., 1997a) which is in good agreement with the very 

low expression levels observed in our study (Ct values ~31).  

OrysaEULS3 expression was not changed in the shoots but was up-regulated significantly in 

the roots after application of ABA (2.4 fold) and salt (1.2 fold) stresses (Fig. 3B.1a, b 

respectively). The GUS staining patterns for the promoter of OrysaEULS3 showed down-

regulation of the promoter activity in the shoots after salt treatment when tested in 

Arabidopsis (Al Atalah et al., 2013; see chapter 3A). The up-regulation of OrysaEULS3 

expression in the roots after salt treatment was also inferred from the microarray data by 

Cheng et al. (2009). In addition, this protein was reported to be up-regulated in rice panicles 

in response to salt stress (Dooki et al., 2006).  
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In our qPCR analysis, OrysaEULD1A was up-regulated significantly in the shoots and the 

roots after treatment of the plantlets with ABA and salt (Fig. 3B.1). Relative expression levels 

for OrysaEULD1A were up-regulated by a factor of 1.2 and 1.9 in the shoots and roots, 

respectively, after ABA treatment whereas salt treatment resulted in 1.3 and 1.4 fold up-

regulation in the shoots and the roots, respectively (Suppl. Table 3B.2). Mannitol treatment 

caused no significant effect on the expression level of OrysaEULD1A neither in the root nor 

in the shoot tissues (Fig. 3B.1, Suppl. Table 3B.2). The expression level of OrysaEULD1A is 

somewhat higher in the roots compared with the shoots in response to ABA and salt 

treatments. Our results are consistent with some data reported previously. OrysaEULD1A 

was detected by two-dimensional protein blot analysis from root extracts of rice seedlings 

exposed to mild salt stress (100 mM NaCl) for 3 days, (Moons et al., 1997a). Microarray data 

revealed that OrysaEULD1A was up-regulated almost 1.6 fold in the root of Pokkali, a rice 

salt tolerant variety, seedlings after salt treatment (150 mM) for 24 h (Kawasaki et al., 2001). 

Furthermore, OrysaEULD1A was reported as an ABA inducible protein in scutellar tissues of 

rice seedlings (Asakura et al., 2007).  

As for the expression of OrysaEULD1B, it was up-regulated significantly 4.2 and 2.7 fold after 

ABA and salt treatments respectively in the root tissues (Fig. 3B.1a) whereas it was up-

regulated significantly only in response to salt application in the shoots. Surprisingly and 

unlike OrysaEULD1A, OrysaEULD1B showed no expression change in the shoots after 

applying ABA exogenously. Our results are consistent with several reports showing that 

OrysaEULD1B can be considered as a stress responsive protein. OrysaEULD1B expression 

was shown to be up-regulated at high levels in the roots of seedlings after salt (Moons et al., 

1997a, Kawasaki et al., 2001, Cheng et al., 2009) and ABA treatments (Moons et al., 1995, 

1997). In addition, EST sequences encoding OrysaEULD1B have been obtained from libraries 

generated from the leaves (but not in the roots) of one month old drought-stressed 

seedlings from indica rice (Babu et al., 2002). Indeed, none of the EULs showed any 

responsiveness towards mannitol which was used to mimic drought. OrysaEULD1B was also 

up-regulated in the shoots of 12 day seedlings exposed to 140 mM of NaCl for 24h (Chao et 

al., 2005). Furthermore, OrysaEULD1B was reported as an ABA inducible protein in scutellar 

tissues of rice seedlings (Asakura et al., 2007).  
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Similar to OrysaEULD1A, OrysaEULD2 was up up-regulated significantly 1.9 and 2.2 fold after 

ABA treatment; 2.6 and 1.9 after salt treatment in the roots and the shoots, respectively (Fig. 

3B.1).  

Our qPCR results showed that Orysata was up-regulated in the shoots significantly by 2.2, 

1.9 and 2.5 fold after ABA, salt and mannitol treatments, respectively. A marked increase of 

the relative expression level of Orysata was observed in response to ABA treatment since 

lectin expression was up-regulated significantly by 21 fold in the roots. In addition Orysata 

was up-regulated in the roots 4 fold in response to salt treatment (Fig. 3B.1a). These 

observations are in good agreement with different reports in literature. Claes et al. (1990) 

have shown that Orysata expression was up-regulated in the sheath and the lamina of 8 day 

seedlings exposed to 1% NaCl for 7 days as well as in the sheath and the root (but not in the 

lamina) after 20 µM ABA treatment for 3 days. Furthermore, Orysata was also expressed in 

the sheaths of plants treated with NaCl and ABA (De Souza et al., 2003). Orysata was also up-

regulated in leaf segments from rice seedlings treated with ABA for 8 h under light at 30°C 

(Jiang et al., 2010b).   

3B.5.2 Responsiveness towards biotic stresses 

Our expression data revealed that OrysaEULS2 expression was not significantly changed 

upon Xoo and Mo treatments (Fig 3B.2 a, b respectively), suggesting that this protein might 

not be involved in the plant response to both pathogens. Conversely, the expression of 

OrysaEULS3 was 4.5-fold down-regulated at 1 dpi after Mo infection (Fig. 3B.2b) whereas it 

was not significantly altered after Xoo infection (Fig. 3B.2a, Suppl. Table 3B.2). Down-

regulation of OrysaEULS3 triggered by Mo but not Xoo may suggest a specific role of this 

protein in resisting fungal pathogen attack. Supporting this hypothesis, OrysaEULS3 was 

previously also shown to be specifically up-regulated during incompatible, but not 

compatible, interactions of rice with the fungal brown spot pathogen Cochliobolus 

miyabeanus (Van Bockhaven et al., 2011). 

Compared to the S type EULs, proteins belonging to the D type class of EULs tended to 

respond more strongly to pathogen attack. Both Mo and Xoo infection caused a 4.2 fold and 

2.7 fold repression of OrysaEULD1A at 1 dpi and 8 dpi, respectively. These results are in 

good agreement with other reports describing the down-regulation of this protein as a result 
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of microbial attack or herbivore infestation. Feeding experiments with the brown 

planthopper (a piercing-sucking insect) revealed that OrysaEULD1A expression was down-

regulated in both the brown planthopper-resistant rice variety B5 and the brown 

planthopper-susceptible variety MH63 (Zhang et al., 2004). In addition, OrysaEULD1A 

expression was down-regulated 1.8 fold in the galls of 12-day-old rice roots after 7 days 

inoculation of root knot nematode (Meloidogyne graminicola) (Kyndt et al., 2012). Opposite 

to OrysaEULS3, OrysaEULD1A may therefore be involved in regulating basal plant defense 

responses that are effective against a wide variety of attackers. 

Contrary to OrysaEULD1A, OrysaEULD1B expression remained stable after Mo infection, 

whereas it was strongly induced in response to Xoo infection, showing an approximate 2- 

and 9-fold up-regulation at 4 and 8 dpi, respectively. Such activation in response to Xoo 

infection was also observed for OrysaEULD2, which corroborates earlier findings reporting a 

5-fold induction in the galls of 12-day-old rice roots at 7 days after inoculation with the root 

knot nematode (Meloidogyne graminicola) (Kyndt et al., 2012). In addition, the levels of 

OrysaEULD2 were increased 1.9 fold in the roots of 12-day-old rice seedlings inoculated with 

the root rot nematode (Hirschmanniella oryzae) (Kyndt et al., 2012). However, following Mo 

inoculation, we found OrysaEULD2 expression to be significantly down-regulated at 1 dpi 

and up-regulated at 2 dpi. Such opposite expression pattern in response to Xoo and Mo 

infection was also seen for Orysata, the transcription of which was consistently down-

regulated after Mo infection but strongly up-regulated at 4 and 8 days post Xoo inoculation.  

One possible explanation to reconcile these apparently conflicting observations is that 

OrysaEULD2 and Orysata may fulfill antagonistic roles in resistance to Mo and Xoo, acting as 

either a positive or negative regulator of plant immunity depending on the type of attacker 

encountered. However, given the strong overlap in rice defenses against Mo and Xoo and 

the large number of plant resistance elicitors capable of inducing resistance against both 

pathogens (De Vleesschauwer et al., 2013; Van Bockhaven et al., 2013), this scenario 

appears rather unlikely. Therefore, rather than pointing to a dichotomous role in Mo and 

Xoo resistance, down-regulation of OrysaEULD2 and Orysata in Mo-inoculated plants may 

suggest that Mo is actively interfering with the expression of these proteins in order to 

counteract the buildup of plant resistance. In other words, it is not unlikely that pathogens 

such as Mo are targeting plant lectins as a virulence strategy. Supporting this view, Mo has 
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been shown repeatedly to induce rice disease susceptibility by targeting specific plant 

proteins through means of hitherto specialized effector proteins (Kawano and Shimamoto, 

2013; Liu et al., 2013). Moreover, it was already shown that over-expression of Orysata 

suppressed hyphal growth of Mo and subsequently enhanced the resistance of rice plants, 

thus linking Orysata to plant immunity (Shinjo et al., 2011). Testing the disease resistance of 

rice plants with increased or reduced expression of EUL and/or Orysata and assessing the 

impact of purified proteins on fungal biology will be of particular help in further elucidating 

the immune-regulatory role of these proteins.   

3B.5.3 Speculation on the physiological role of EULs 

The physiological role of plant lectins most likely relies on their specific carbohydrate-binding 

activity and specificity. Inducible lectins (including the EUL family) are up-regulated upon 

exposure to different stresses. Based on these facts, the concept was developed that lectin-

mediated protein-carbohydrate interactions play an important role in the stress physiology 

of the plant cell. Our data clearly indicate that rice expresses multiple carbohydrate-binding 

proteins in response to different stresses. Whereas Orysata is known to specifically 

recognize and bind mannose containing glycan structures (Al Atalah et al., 2011; see chapter 

2A), the carbohydrate-binding properties of the EUL proteins are more diverse, in that 

different EUL sequences will recognize different carbohydrate structures (Fouquaert and Van 

Damme 2012). It is known that e.g. OrysaEULS2 will react with oligomannosidic structures, 

but will also recognize more complex carbohydrate structures containing lactosamine and 

GlcNAc structures (Al Atalah et al., 2012; see chapter 2B).  Preliminary data for OrysaEULD1A 

indicate that this protein reacts with galactosylated structures. 

It is generally accepted that plants can change their gene expression and protein 

accumulation in response to biotic and abiotic stresses. The root is usually the first plant 

organ that senses salt stress. Some salt stress-responsive genes were found to be mainly, or 

more strongly, induced in roots than in other organs (Yan et al., 2005). The EUL proteins are 

expressed at higher levels in the roots compared to the shoots in response to different stress 

treatments. At present we can only speculate about the physiological relevance of the 

carbohydrate-binding activity of the different EUL lectins in planta, but similar to what is 

known for Orysata (Shinjo et al., 2011), it is assumed that these lectins could play an 
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important role in signaling processes as a result of biotic or abiotic stress responses. To our 

knowledge this is the first paper dealing specifically with the regulation of EUL lectins after 

abiotic and biotic stresses. The quantitative data obtained from our qRT-PCR analyses clearly 

establish EUL lectins as a family of stress-related proteins and suggest that they might play a 

widespread role in the signal transduction circuitry determining plant stress tolerance or 

susceptibility. Future work will be focused on unraveling the mode of action and 

physiological importance of EUL proteins under various stress conditions, using transgenic 

rice lines with increased or reduced expression of EULs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



144 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 
 

 

 

 

 

 

 

 

 

 

Chapter 4 

Performance of transgenic lines over-expressing OrysaEULS2, OrysaEULD1A and Orysata 

after biotic and abiotic stress application 

 

 

 

 

 

 

 

 

 

Chapter 4A 

Can EUL proteins from rice increase the stress tolerance of Arabidopsis plants? 
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4A.1 Abstract  

Plants synthesize tiny amounts of inducible lectins in response to environmental stresses. 

One family of these proteins groups is the Euonymus-related lectins (EUL) which is widely 

distributed within the plant kingdom. In the present research, two of the EUL proteins, 

OrysaEULS2 and OrysaEULD1A as well as Orysata, a protein belonging to the jacalin-related 

lectin family were investigated for their contribuation to the stress tolerance of the plant. All 

genes encoding the proteins under study were cloned behind the 35S promoter and 

transformed into Arabidopsis plants. Subsequently, the performance of several one-insertion 

homozygous transgenic lines was analyzed in response to different stresses including NaCl, 

mannitol (drought), ABA and Pseudomonas infection. These experiments were performed on 

different developmental stages of transgenic Arabidopsis particularly, the germination stage, 

seedlings as well as the adult plants. Transgenic Arabidopsis over-expressing OrysaEULS2 and 

OrysaEULD1A showed hypersensitivity of ABA on germination level. Plants showed short 

stem height in the early stages of development and bolted earlier compared to the wild 

type. Only after moderate mannitol treatment, the transgenic lines showed a better 

responsiveness compared to the control plants. On adult level, transgenic plants harboring 

the proteins under study enhanced the tolerance against salinity and drought. After 

Pseudomonas infection, only OrysaEULD1A conferred tolerance to the transgenic 

Arabidopsis plants. Localization studies revealed that OrysaEULS2 and OrysaEULD1A are 

localized to the nucleus and the cytoplasm of the plant cell. Our findings indicate that EUL 

proteins can confer tolerance to Arabidopsis plants against environmental stresses and 

hence can be used to increase the tolerance of crops to cope with external stress factors. 
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4A.2 Introduction  

Since the world population will reach more than 9 billion in 2050 (Godfray et al., 2010; 

Tester and Langridge 2010), it is a major challenge to satisfy the increasing demand for food 

production. Abiotic stresses, especially salinity, drought, temperature and oxidative stress, 

together with the biotic stresses have a crucial impact on the productivity and yields of 

crops. As sessile organisms, plants are continuously threatened by different biotic and 

abiotic stress factors and therefore have evolved sophisticated mechanisms to face these 

threats. Hundreds of genes respond to stress at transcriptional and translational level (for 

reviews see Cushman and Bohnert 2000; Sreenivasulu et al., 2004; Yamaguchi-Shinozaki and 

Shinozaki 2005; Umezawa et al., 2006). Understanding the functions of these stress-

inducible genes will give the chance to reveal the mechanisms that plants trigger to tolerate 

stresses.  

Transgenic plants open the door to improve crop tolerance to abiotic and biotic stresses. 

These transgenic strategies most often rely on the transfer of one or several genes that are 

involved in signaling and regulatory pathways or that encode proteins which confer stress 

tolerance (Wang et al., 2003; Vinocur and Altman 2005; Valliyodan and Nguyen 2006; 

Sreenivasulu et al., 2007; Kathuria et al., 2007). Among these stress related proteins is a 

group of proteins called lectins. Plant lectins are a complex and heterogeneous group of 

carbohydrate-binding proteins that specifically recognize and bind to carbohydrate 

structures (Van Damme et al., 2008). In the last decade, accumulating data have 

demonstrated that plants synthesize low amounts of lectins in response to abiotic and biotic 

stresses (Van Damme et al., 2004a; Lannoo and Van Damme 2010). These inducible lectins 

are synthesized on free ribosomes and locate to the nucleus and/or the cytoplasm of the 

plant cell (Van Hove et al., 2011, Al Atalah et al., 2011 see chapter 2A). The physiological 

importance of these inducible plant lectins remains ambiguous. However, they are 

suggested to be involved in defense and have a role in signal transduction in response to 

stress factors (Van Damme et al., 2004a; Van Damme et al., 2008). Until recently, six classes 

of inducible lectins have been reported (Lannoo and Van Damme 2010). 

One class of inducible lectins is the group of Jacalin-related lectins (JRL) which comprises all 

proteins that have one or more domains similar to jacalin, a protein isolated from Artocarpus 
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integrifolia (Bunn-Moreno and Campos-Neto 1981). The majority of the JRLs are mannose-

specific lectins, but some of them show specificity towards galactose related structures 

(Peumans et al., 2000b). The responsiveness of mannose-binding JRLs towards stress has 

been reported in Arabidopsis (Chisholm et al., 2001), wheat (Subramanyam et al., 2008; Ma 

et al., 2010), barley and rice (Qin et al., 2003). In 2008, a new group of inducible lectins was 

discovered after cloning of the Euonymus europaeus agglutinin. Since then this lectin is 

considered as the prototype for the class of so-called Euonymus-related lectins (EUL) 

(Fouquaert et al., 2008). Based on the extensive screening of all available genomes and 

transcriptomes, proteins with one or more EUL domains were identified throughout the 

plant kingdom (Fouquaert et al., 2009a). Similar to JRLs, EUL proteins were also shown to be 

stress related in Arabidopsis (Fouquaert et al., 2009a), banana (Carpentier et al., 2007), 

maize (Riccardi et al., 2004) and rice (Moons et al., 1997a; Kawasaki et al., 2001; Dooki et al., 

2006; Cheng et al., 2009; Kyndt et al., 2012). 

In the present study, the physiological importance of several inducible lectins from rice, 

including Orysata, belonging to the jacalin-related family as well as OrysaEULS2 and 

OrysaEULD1A, representing the single EUL domain and the double EUL domain proteins, 

respectively, was investigated in response to different stresses. Coding sequences for each 

of the proteins under study were cloned after the 35S promoter and transformed into 

Arabidopsis plants. Subsequently, one-insertion homozygous lines were selected and 

exposed to different abiotic and biotic stresses. A comparison was made between the 

transgenic plants grown under normal conditions and stress conditions, as well as with wild 

type plants. Our investigation suggests that OrysaEULS2, OrysaEULD1A as well as Orysata are 

stress-related proteins that can be used to improve the stress tolerance of crops.  

 

4A.3 Methods and materials  

4A.3.1 Plant material and growth conditions 

Arabidopsis thaliana ecotype Columbia (Col-0) (Lehle Seeds, Round Rock, Texas, USA) was 

used for stable transformation. Sterilization of the seeds and growth conditions were as 

described in section 3A.3.1. For the homozygous lines, the seeds were sown on MS plates 
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whereas MS plates with kanamycin (50 µg/ml) were used for the heterozygous lines. To 

grow plants in vitro, round (9 cm diameter) and square plates (12 x 12 cm) were used. For 

each round plate, 25 ml MS (for the MS composition see section 2A.3.1) was poured and 40 

ml MS was used for each square plate (the square plates were only used for root growth 

assays). For the in vivo culture, seeds were sown first on round plates and after two weeks 

Arabidopsis plantlets were transferred to artificial soil (Jiffy-7, columnar diameter 44 mm, AS 

Jiffy Products, Drobak, Norway). Unless it is mentioned otherwise, Arabidopsis plants were 

watered on Mondays and Thursdays by adding 2 L for each tray and the water was drained 

after 30 min. To synchronize the germination, Arabidopsis seeds were kept in the dark at 4°C 

until day 3. When counting the days, the day of sowing was designated as day 0.  

For transient transformation, seeds from Nicotiana benthamiana were sown directly on soil 

and kept at 28°C, 16/8 light/dark cycle. Tobacco plants were watered once a week.  

4A.3.2 Construction of vectors expressing the lectins under the 35S promoter, and N- and 

C- EGFP fusion constructs 

Expression constructs were prepared as explained in sections 2A.3.3 and 2A.3.4. To prepare 

the 35S::constructs, the following primers were used to add the non-complete attB 

sequences to the flanking regions of the coding sequences encoding the proteins under 

study: EVD 545 5’AAAAAGCAGGCTTCACCATGACGCTGGTGAAGATTGGCCT3’ and EVD 546 

5’AGAAAGCTGGGTGTCAAGGGTGGACGTAGATGCCAATTGC3’ to clone Orysata; EVD 541 5’AA 

AAAGCAGGCTTCACCATGGACTTTTACGGGCGGCGCGA3’ and EVD 542 5’AGAAAGCTGGGTGT 

CAGTAGTAGGGCTGGATCTTCCAGCG3’ to clone OrysaEULS2; EVD 543 5’AAAAAGCAGGCTTCA 

CCATGTTTGGGTTCGGGCACCACCA3’ and EVD 563 5’AGAAAGCTGGGTGTGCAATGCAGCTCCCC 

CTCCCCGGAAT3’ to clone OrysaEULD1A. All lectin sequences were cloned after the 35S 

promoter in the expression vector pK7WG2.0 (Karimi et al., 2002) allowing the sequences to 

be translated as proteins without any tags. To prepare the N- and C-terminal EGFP fusion 

constructs, the following primers were used to add the non-complete attB sequences: EVD 

541 (above) and EVD 702 5’AGAAAGCTGGGTGGTAGTAGGGCTGGATCTTCCAGCG3’ to prepare 

the OrysaEULS2::EGFP construct; EVD 543 (above) and EVD 839 5’AGAAAGCTGGGT 

GCAATGCAATGCAGCTCCCCCTCCCCGGAATCGA3’ to prepare the OrysaEULD1A::EGFP. A point 

mutation was created in the reverse primers EVD 702 and 839 to inactivate the stop codon 
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allowing the translation of the chimeric proteins. For the construct::EGFP, the expression 

vector pK7FWG2 was used whereas the expression vector pK7WGF2 was used for the 

EGFP::construct. 

4A.3.3 Agrobacterium transformation  

For stable transformation, the binary vectors were mobilized into the Agrobacterium strain 

GV301 by electroporation as described in section 3A.3.3, whereas the C58C1-Pmp90 strain 

was transformed by tri-parental mating as described in section 4B.3.3. 

4A.3.4 Transient transformation of N. benthamiana and microscopic analysis 

Four week old healthy plants were used for the transient transformation. The Agrobacterium 

strain C58C1-Pmp90 was grown in 5 ml YEB (consisting of 5 g/l beef extract, 5 g/l peptone, 5 

g/l sucrose, 1 g/l yeast extract and 15 g/l bacteriological agar) medium containing 

spectinomycin (50 µg/ml) and gentamycin (20 µg/ml) at 28°C for two days in the dark. After 

centrifugation of 2 ml of the Agrobacterium culture for 10 min at 7000 g, the cells were 

washed twice using the infiltration buffer [containing 50 mM MES, 2 mM Na2HPO4 and 0.5% 

(w/v) glucose, adjusted to pH 5.6 using 1 M NaOH]. Then, the cells were re-suspended in the 

infiltration buffer containing 100 μM acetosyringone and the OD600 was adapted to 0.1. 

Using 1 ml syringes, the Agrobacterium solution was injected in the lower epidermis cells of 

the tobacco leaves (4 injection points per leaf, 2 leaves per plant). Afterwards, the plants 

were watered and kept under normal growth conditions as mentioned above. Two days post 

injection; the infected areas for each leaf were mounted on a microscopic slide and analyzed 

under the confocal microscope (Nikon Instruments, Badhoevedorp, The Netherlands) using a 

60x objective lens. Images were processed with ImageJ (http://rsbweb.nih.gov/ij/).  

4A.3.5 Stable transformation of A. thaliana  

Floral dip transformation of A. thaliana was performed as mentioned in section 3A.3.3 and 

was used to introduce the constructs of interest into the Arabidopsis genome.  

4A.3.6 Selection for one-insertion homozygous lines expressing the native constructs  

One-insertion homozygous lines expressing the native constructs were generated as 

explained in section 3A.3.3.  

http://rsbweb.nih.gov/ij/
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4A.3.7 Localization studies with transgenic Arabidopsis expressing the EGFP fusion 

construct 

After floral dip transformation, the transformants were selected on MS medium plates 

containing kanamycin (50 µg/ml) following the fast selection procedure as described by 

Harrison et al. (2006). Positive transformants were allowed to grow into adult plants. After 

one month, one rosette leaf per line was mounted on a microscopic slide and analyzed using 

the confocal microscope (see section 4B.3.4). 

4A.3.8 Preparation of crude extracts and western blot analysis 

Crude protein extracts from the transgenic heterozygous (generation 1 = T1) and 

homozygous (T3) lines expressing the native constructs were performed by crushing 3 

rosette leaves in an eppendorf tube using a micro-pestle after adding 100 µl of 20 mM un-

buffered 1,3-diaminopropane. Afterwards, extracts were centrifuged at 13,000 g for 5 min. 

Subsequently, the lectin concentration was measured as mentioned in section 4B.3.4 and 

western blot analysis was performed as described in section 4B.3.6 except that the anti-

OrysaEULS2 antiserum [produced by Thermo scientific by injecting two rabbits with 

recombinant EUL domain from OrysaEULS2 (Al Atalah et al., 2012; see chapter 2B)] was used 

as the primary antibody to detect OrysaEULS2 and OrysaEULD1A expression in the 

transgenic lines. Similarly the anti-Orysata antiserum [produced by Thermo scientific by 

injecting two rabbits with recombinant Orysata (Al Atalah et al., 2011; see chapter 2A)] was 

used to detect the expression of Orysata. 

4A.3.9 Stress treatments  

Three homozygous transgenic lines for each lectin construct as well as wild type plants were 

used in all stress assays as well as for the morphometric analysis. Particularly lines 4, 11 and 

13 for Orysata (designated as Orysata (4), Orysata (11) and Orysata (13)); lines 3, 9 and 11 

for OrysaEULS2 (designated as OrysaEULS2 (3), OrysaEULS2 (9) and OrysaEULS2 (11)) and 

lines 5, 7 and 13 for OrysaEULD1A (designated as OrysaEULD1A (5), OrysaEULD1A (7) and 

OrysaEULD1A (13)) were tested. Plants were subjected to different stresses being 100 and 

150 mM NaCl, 50 and 100 mM mannitol and 50 and 100 µM ABA for abiotic stresses. In 

addition, transgenic lines were exposed to the bacterial strain Pseudomonas syringae. The 
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data generated after each stress treatment were compared for the transgenic lines and the 

wild type plants. 

4A.3.9.1 Morphometric analysis for the transgenic lines 

The morphometric analysis was conducted under normal growth conditions. At the bolting 

time (when 50% of seedlings start bolting), the number of rosette leaves as well as the 

length, width and the petiole length of the largest rosette leaf were measured for each line. 

At day 35, the height of the primary inflorescence was measured for each plant. When 50% 

of the siliques were dry, we stopped watering the plants and let them dry. Finally, the seeds 

for each line were harvested and weighed. All the measurements were performed for 17 

plants per transgenic line per construct.  

4A.3.9.2 Germination assays 

The germination rate for all transgenic seeds as well as the wild type seeds was estimated 

under above mentioned (abiotic) stress conditions. For each line 25 seeds were sown on MS 

plates containing the desired stress factor (NaCl, mannitol and ABA) and three replicates 

were performed for each treatment. At day 6, the number of germinated (when the radicles 

had emerged) seeds was counted.  

4A.3.9.3 Root length assays with seedlings 

To perform the root length assays, 48 seeds per construct were sown in square plates 

containing 1.2% MS agar. Individual seeds were sown on four lines allowing 3 cm space 

between the lines. Afterwards, the plates were kept vertically in the growth incubator. At 

day 6, twelve seedlings were transferred into new square plates containing the desired 

concentration for each stress factor. In each plate, the seedlings were put on two lines. 

Subsequently, the plates were incubated vertically in the growth incubator. At day 16, 

pictures were taken for all plates. The length of the roots was measured by ImageJ software 

and the seedlings were weighed.  

4A.3.9.4 Assays on adult plants 

For the drought assay, the water was stopped for 12 days starting from day 26. The plants 

that survived were scored 6 days after re-watering.  
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For the NaCl assay, the plants were watered with water containing increasing concentrations 

of NaCl ranging from 100 mM (moderate stress) until 300 mM (severe stress) starting from 

day 28 every second day. Each salt concentration was used to water the plants twice. At day 

38, the plants were watered with normal water. At day 42, the healthy plants were scored 

(plants were considered healthy if they had less than 3 yellowish or dry leaves).  

Twelve plants were used for each transgenic line or the wild type, and the whole experiment 

was repeated 3 times.  

4A.3.9.5 Pseudomonas assays  

Pseudomonas syringae pv. Tomato strain DC3000 was used to infect the Arabidopsis plants. 

A protocol adapted from Pieterse et al. (1996) was followed. Briefly, the bacteria were 

grown for 2 days in 5 ml King’s B medium [50 g/l peptone, 1.5 g/l KH2PO4, 1.5 g/l 

MgSO4.7H2O, 1% (v/v) glycerol, pH 7.2 adjusted with 0,5 M NaOH] at  28°C, 200 rpm. 

Afterwards, the OD600 was adapted to 0.6 – 1.0 (OD 1 corresponds to 5 x 108 cfu /ml) and the 

bacterial culture was shaken for 30 min. The cells were collected by centrifuging at 2500 g 

for 10 min, and re-suspended in 10 mM MgSO4. The solution was diluted to OD600 0.05 

(corresponding to 2.5 x 107 cfu /ml) and 0.05% (final concentration) Silwet-77 was added. 

For the mock treatment, 10 mM MgSO4 with 0.05% Silwet-77 was used. 

The transgenic lines as well as the wild type plants were grown at 22°C with 12 dark/12 light 

cycle. For each line 17 plants were used for the Pseudomonas treatment as well as the mock 

treatment. This experiment was performed once. 

To perform the infection assay, the plants were covered with saran wrap one day before the 

infection and plenty of water was added to open the stomata. The plants were sprayed with 

bacterial solution until run-off and covered with saran wrap for 2 days. Afterwards, pictures 

were taken for all plants 6 days after spraying and the healthy plants (containing less than 3 

leaves with clear symptoms) were scored.  

4A.3.10 Statistical analysis  

All data are expressed as means ± SE or as percentages. To separate the means statistically, a 

two-tailed T test was applied using the Prism version 5 (GraphPad, La Jolla, CA). 
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4A.4 Results 

4A.4.1 Localization analysis in tobacco and Arabidopsis  

Microscopic analysis of tobacco leaves transiently transformed with a construct expressing a 

fusion protein of the lectin and EGFP revealed that OrysaEULS2 and OrysaEULD1A are 

located in the nucleus (including the nucleolus) and the cytoplasm of the parenchyma cells 

which is in good agreement with the absence of the signal peptide in both protein 

sequences. This result was observed for the constructs EGFP::OrysaEULS2, 

OrysaEULD1A::EGFP and EGFP::OrysaEULD1A (Fig. 4A.1a). However, no fluorescence was 

detected for the construct OrysaEULS2::EGFP.  

Very similar results were obtained after stable transformation of Arabidopsis (Fig. 4A.1b).  

Fluorescence was detected in the nucleus (including the nucleolus) and the cytoplasm for 

the transgenic lines expressing the fusion constructs OrysaEULS2::EGFP and 

OrysaEULD1A::EGFP, but not for the constructs containing EGFP in front of the lectin 

sequence.  
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Fig.4A.1 Microscopic analysis for OrysaEULS2 and OrysaEULD1A constructs fused to EGFP. Pictures were taken 

after transient tobacco transformation (a) and after stable Arabidopsis transformation (b). Scale bars represent 

50 µm. N: nucleus; C: cytoplasm. 

 

4A.4.2 Expression of the native constructs in transgenic Arabidopsis  

Using the Gateway technology the coding sequences of Orysata, OrysaEULS2 and 

OrysEULD1A were cloned under the control of the 35S promoter. After transforming the 

binary vectors harboring each of the lectin constructs into Arabidopsis plants, several 

independent lines (T1 lines) were analyzed at protein level (data not shown). Similarly the 

homozygous lines (T3 lines) were also checked by western blot analysis (Fig. 4A.2). The 

detection of a 23 kDa polypeptide (the exact size is 22.8 kDa) for OrysaEULS2, a 38 kDa 

polypeptide (the exact size is 38.5 kDa) for OrysaEULD1A and a 15 kDa polypeptide (the 

exact size is 15.2 kDa) for Orysata confirmed that our proteins were successfully expressed in 

the transgenic Arabidopsis lines. 
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Fig. 4A.2 Western blot analysis of transgenic Arabidopsis lines expressing Orysata, OrysaEULS2 and 

OrysaEULD1A. Protein extracts were loaded following the following order: lane 1: wild type plant; lane 2: 

recombinant Orysata; lanes 3-5: Orysata T3 lines 4, 11 and 13; lane 6: recombinant EUL domain from 

OrysaEULS2; lanes 7-9: OrysaEULS2 T3 lines 3, 9 and 11; lanes; lane 10: recombinant OrysaEULD1A; lanes 11-

13: OrysaEULD1A T3 lines 5, 7 and 13. In each lane 25 µg total protein was loaded for leaf extracts. 

Approximately 100 ng of the purified recombinant proteins (expressed in Pichia pastoris) were used as positive 

controls. M: protein ladder (Fermentas, St Leon-Rot, Germany). One, two and three dots refer to 17, 26 and 43 

kDa sizes, respectively.  

 

4A.4.2 Morphometric analysis under normal growth conditions 

Various phenotypic features were analyzed to study the effect of overexpression of the 

genes of interest in Arabidopsis plants. The homozygous transgenic Arabidopsis plants 

exhibited pleiotropic effects at several stages of development. At bolting time, transgenic 

lines Orysata (4), Orysata (11), OrysaEULS2 (3), OrysaEULS2 (9) and OrysaEULD1A (13) 

showed a significantly increased number of rosette leaves. In addition, the length, the width 

and the petiole length of the largest rosette leaf were also increased (Fig. 4A.3 a, b, c and d 

respectively). Those transgenic lines (Orysata (4), Orysata (11), OrysaEULS2 (3), OrysaEULS2 

(9) and OrysaEULD1A (13)) which showed increased biomass before bolting were 

significantly shorter (measured as height of the plant) at day 35 compared to the wild type 

plants (Fig. 4A.3e) and their bolting was delayed 5-10 days compared to the control plants 

(Fig. 4A.3g). In contrast, line OrysaEULS2 (11) which had significantly smaller rosette leaves 

was significantly taller compared to the wild type plants and it bolted 4 days earlier in 

comparison with the control (Fig. 4A.3). Interestingly, transgenic lines with increased 

biomass yielded a lower amount (measured by weight) of seeds compared to the wild type 

plants (Fig. 4A.3f). On the contrary, transgenic lines Orysata (13), OrysaEULS2 (11) and 
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OrysaEULD1A (5) with a size of rosette leaves comparable to the wild type plants gave a 

similar amount of seeds (Fig. 4A.3f). 

 

Fig. 4A.3 Legend on next page 
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Fig. 4A.3 Phenotypic analysis for the transgenic lines under normal growth conditions. At the bolting time the 

number of rosette leaves (a), the length (b), the width (c) and the petiole length (d) of the largest rosette leaves 

as well as the height of the primary inflorescence at day 35 (e), the weight of the seeds (f) and the bolting time 

(g) are shown. Bars in panels (a) to (e) represent the mean measured for 17 plants ± SE. No statistical analysis 

was performed in panels (f) and (g) because the bars represent a pool of all plants (n=17). In panel (e), the 

OrysaEULS2 (3) was not included because it did not yet shoot at day 35 (the shooting was at day 40).  WT: wild 

type, Ory: Orysata; S2: OrysaEULS2 and D1A: OrysaEULD1A, numbers between brackets indicate different 

transgenic lines. Asterisks refer to significant differences in comparison with the control at P-value < 0.05 

 

4A.4.3 Performance of seedlings for different transgenic lines in response to stress factors 

The germination rate for the transgenic lines was estimated under different levels of abiotic 

stress as well as under the normal growth conditions. Under normal conditions, the seed 

germination was lower for all EUL lines tested but germination was not affected for the 

Orysata lines (Fig. 4A.4).  

After the NaCl treatments, the germination of the Orysata lines was comparable to the wild 

type plants, but the OrysaEULS2 lines showed a significantly lower germination rate on 

medium containing 100 mM NaCl but a comparable germination to the control after 

treatment with 150 mM NaCl (Fig. 4A.4). The application of mannitol resulted in a 

significantly lower germination rate for two lines of Orysata (Orysata (11) and (13)), but only 

for Orsyata 11 this response was significant for both mannitol concentrations tested. 

Similarly two transgenic lines of OrysaEULS2 (OrysaEULS2 (9) and (11)) showed a decreased 

germination rate after mannitol treatments at both concentrations (Fig. 4A.4). When 50 µM 

ABA was applied, seed germination was lower only for Orysata line 13 whereas all 

OrysaEULS2 lines showed a significantly reduced germination rate. When the ABA 

concentration was increased to 100 µM also the Orysata lines showed a comparable 

germination to the wild type plants but only for OrysaEULS2 line 11 the germination was 

decreased significantly. Interestingly, all abiotic stresses severely suppressed the 

germination rate for all OrysaEULD1A lines (Fig. 4A.4).   
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Fig.4A.4 Germination rate of transgenic lines under different levels of abiotic stress. Bars represent means ± SE 

based on three independent replicates, 25 seeds per replicate. WT: wild type, Ory: Orysata; S2: OrysaEULS2 

and D1A: OrysaEULD1A, numbers between brackets indicate different transgenic lines. Asterisks indicate the 

significant differences in comparison with the control at P-value < 0.05 

 

To observe the effect of different abiotic stresses on seedling growth of the transgenic lines 

and the wild type plants, the root length as well as the weight of the seedlings were 

determined.  
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Fig. 4B.5 Performance of the transgenic lines on seedling level.  Bars represent means ± SE for the root length 

(a) and the weight (b) of 12 seedlings under all tested conditions. WT: wild type, Ory: Orysata; S2: OrysaEULS2 

and D1A: OrysaEULD1A, numbers between brackets indicate different transgenic lines. Asterisks indicate the 

significant differences in comparison with the control at P-value < 0.05 
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Under normal growth conditions, the root length for all transgenic lines was significantly 

shorter compared to the control except for Orysata (13) (Fig. 4A.5a). Only Orysata (13) 

developed longer roots compared to the wild type after NaCl treatments whereas the root 

length for all other transgenic lines was comparable to that of the wild type plants (Fig. 

4A.5a). In addition, Orysata (13), all OrysaEULS2 lines and OrysaEULD1A (5) had longer roots 

compared to the control after moderate (50 mM) mannitol treatment but all lines showed 

comparable root length except for OrysaEULS2 (3) and OrysaEULD1A (5) which developed 

shorter root length in comparison with the wild type plants (Fig. 4A.5a).  After ABA 

treatment, only Orysata (13) had longer roots compared to the control whereas OrysaEULS2 

(11), OrysaEULD1A (5) and OrysaEULD1A (7) had shorter roots compared to the wild type 

seedlings.  

The weight of the seedlings expressing Orysata was higher compared to that of the wild type 

plants grown under normal conditions whereas all seedlings from the transgenic lines 

expressing EULS2 and EULD1A showed lower weight (Fig. 4A.5b). After 100 mM NaCl 

treatment all Orysata lines together with OrysaD1A (7) and OrysaEULD1A (13) yielded a 

higher weight for the seedlings and similarly only lines 4 and 11 from Orysata as well as lines 

7 and 13 from OrysaEULD1A showed higher seedling weight compared to the control plants 

after 150 mM NaCl treatment (Fig. 4A.5b). In addition, lines 3 and 9 from OrysaEULS2 

showed a lower weight when severe NaCl stress (150 mM) was applied. After moderate (50 

mM) mannitol treatment, all transgenic lines yielded seedlings with a higher weight 

compared to the wild type plants except for OrysaEULD1A (7) which showed a comparable 

weight to the control (Fig. 4A.5b). When seedlings were treated with a higher concentration 

of mannitol, lines 11 and 13 from Orysata, lines 9 and 11 from OrysaEULS2 and OrysaEULD1A 

(5) still showed a higher weight compared to seedlings of the wild type plants. After 50 µM 

ABA treatment, only seedlings of OrysaEULD1A (5) showed a higher weight compared to the 

control whereas seedlings from OrysaEULS2 lines 3 and 11 had higher weight after 100 µM 

ABA application (Fig. 4A.5b).  
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4A.4.4 Performance of adult plants from different transgenic lines in response to drought 

and NaCl 

To elucidate the performance of transgenic lines overexpressing Orysata, OrysaEULS2 and 

OrysaEULD1A under drought and NaCl stress, assays were also performed on adult plants. All 

transgenic Orysata lines showed a significantly higher number of survived plants compared 

to the wild type plants after a drought period of 12 days as well as after 300 mM NaCl 

treatment (Fig. 4A.6).  In the drought assay, transgenic lines 3 and 9 for OrysaEULS2 as well 

as lines 7 and 13 for OrysaEULD1A performed better compared to the wild type plants. After 

NaCl application, only OrysaEULS2 (9) and OrysaEULD1A (5) showed a significantly higher 

number of healthy plants compared to the control whereas the survival of OrysaEULD1A (7) 

plants was lower in comparison to the wild type plants (Fig. 4A.6). 

 

Fig. 4A.6 Drought and NaCl stress assays on adult plants. Bars represent means ± SE based on three replicates 

with 12 plants per replicate. WT: wild type, Ory: Orysata; S2: OrysaEULS2 and D1A: OrysaEULD1A, numbers 

between brackets indicate different transgenic lines. Asterisks refer to significant differences in comparison 

with the control at P-value < 0.05 

 

4A.4.5 Responsiveness of different transgenic lines to Pseudomonas infection  

To determine whether the transgenic lines overexpressing Orysata, OrysaEULS2 and 

OrysaEULD1A are more tolerant towards biotic stress, a bacterial pathogen Pseudomonas 
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syringae (PstDC3000), which is virulent to Arabidopsis (Whalen et al., 1991), was selected. 

Infection symptoms of PstDC3000 were observed on all transgenic lines from Orysata and 

OrysaEULS2 as well as on wild type plants on day 6 after infection of the plants. In contrast, 

35% and 47% of OrysaEULD1A lines 5 and 13, respectively, remained healthy whereas the 

infection symptoms were seen on all OrysaEULD1A plants of line 7 (Fig. 4A.7). However, 

these findings have to be confirmed by repeating this experiment. 

 

 

Fig. 4A.7 Pseudomonas infection symptoms on transgenic lines as well as on the wild type plants. Four week 

old plants were infected with Pseudomonas syringae strain DC3000 and pictures were taken 6 days after 

spraying 
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4A.5 Discussion  

Several lectins have been described as stress related proteins (Zhang et al., 2000; Chen et al., 

2002; Lannoo et al., 2006b; Yong et al., 2003). Since these lectins are expressed at low 

concentrations even after application of the stress factor, it has been suggested that these 

inducible lectins might play a signaling role when the plant is subjected to stress (Van 

Damme et al., 2008).  

Rice is a very important crop because it feeds half of the world population and it serves as a 

crop model. In an attempt to increase the tolerance of rice (as a model for cereal crops) 

against the most important abiotic and biotic stresses, the effect(s) of overexpression of one 

lectin belonging to the jacalin-related family and two lectins belonging to the EUL family 

were investigated on plant performance in stress conditions. Several reports in literature 

have shown that overexpressing stress related genes from rice in Arabidopsis can increase 

their tolerance to abiotic and biotic stresses. For example, overexpression of topoisomerase 

6 homologs (Jain et al., 2008), OsSMCP1 encoding a small protein with a single C2 domain 

(Yokotani et al., 2009) and OsMSR2 encoding a novel calmodulin-like protein gene (Xu et al., 

2011) yields Arabidopsis lines with a better performance in stress situations. In this study, 

Orysata, OrysaEULS2 and OrysaEULDA1 were ectopically expressed in Arabidopsis and 

subjected to various abiotic and biotic stresses. These stresses were applied during seed 

germination, but also on the seedling and the adult stages. The performance of the 

transgenic lines was variable most probably due to the position effect of the transgenes in 

the Arabidopsis genome. However, despite this variability, some of the transgenic lines 

clearly increased the tolerance of the Arabidopsis plants towards abiotic and biotic stresses 

especially when stress was applied to adult plants (Figs. 4A.6 and 4A.7).  

None of the proteins under study has a clear nuclear localization signal. Localization studies 

revealed that OrysaEULS2 and OrysaEULD1A are located to the nucleus (including the 

nucleolus) and the cytoplasm of the plant cell which is in agreement with the observation 

that both proteins are synthesized without a signal peptide. This localization pattern was 

previously also reported for EEA, the prototype of the EUL family, and the EUL type S3 from 

Arabidopsis (Van Hove et al., 2011). 
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The performance of all transgenic lines in the different growth and stress experiments was 

summarized in Table 4A.1. Morphometric analysis revealed that transgenic lines which 

developed a higher biomass in the early stages of development finally yielded plants that 

were shorter, showed a delayed flowering time and yielded less seeds (Fig. 4A.1, Table 4A.1). 

The short stature of the transgenic lines might be due to investing more energy to over-

express the transgene compared to being used for the overall growth of the host plant.  Only 

transgenic lines expressing OrysaEULS2 developed less biomass, had a longer stem and 

flowered earlier compared to the wild type plants. The overexpression of the different 

lectins under study produced pleiotropic effects on the growth and development of 

transgenic Arabidopsis plants, including a short(er) stature, more expanded leaves and 

earlier bolting. These observations suggested a possible role of these lectins in different 

developmental processes including flowering. Indeed, earlier studies on the promoter 

activity of OrysaEULD1A also suggested a role of the lectin in the expansion and cell division 

during the early stages of tissue development as well as in flower and silique development 

(Al Atalah et al., 2013; see chapter 3A). Similar pleiotropic phenotypes have previously been 

reported after overexpression of the topoisomerase 6 subunit A homolog from rice (Jain et 

al., 2008). 

Under normal growth conditions, all transgenic lines expressing EULs showed a lower 

germination rate compared to the wild type plants whereas the germination rate for all 

Orysata transgenic lines was comparable to that of the control plants. As a response to 

different abiotic stresses, the seed germination for all transgenic lines was inhibited 

suggesting a stress hypersensitivity of the transgenic plants (Fig. 4A.4) especially for the lines 

expression OrysaEULD1A and to a lesser degree for the lines expressing OrysaEULS2 as well 

as Orysata (Table 4A.1). Transgenic lines overexpressing OrysaEULS2 and OrysaEULD1A 

exhibited hypersensitivity to ABA during seed germination, dwarfed in the early stages of 

growth and bolted earlier compared to the wild type plants (Table 4A.1). These phenotypes 

have been reported previously for the Arabidopsis lines that overexpress well-known ABA-

dependent genes like DREB2A, a drought responsive element B2A (Sakuma et al., 2006) and 

AtMYB44, a transcription factor related to stress response (Jung et al., 2008) suggesting a 

possible role for OrysaEULS2 and OrysaEULD1A in ABA-mediated responses to abiotic 

stresses such as drought and salinity. These results are in line with other reports showing 
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that overexpression of genes, conferred an increased sensitivity to ABA on seed germination 

and post germination stages, could increase stress tolerance e.g. CAZFP1, a pepper zinc-

finger protein gene (Kim et al., 2004a), OsbZIP23, a member of the basic leucine zipper 

transcription factor family (Xiang et al., 2008) and OsMSR2 (Xu et al., 2011). However, no 

hypersensitive effect was observed on seed germination of the Orysata lines indicating a 

possible role of this lectin in non ABA- mediated responses to drought and salinity. 

Root elongation is a good indicator for salinity and drought tolerance in plants (Maiti 2012a; 

2012b; 2012c). On seedling level, moderate concentrations of mannitol caused a positive 

effect on both root elongation and the weight of the seedlings for all OrysaEULS2 lines as 

well as one line for Orysata and OrysaEULD1A. In contrast, most of the transgenic lines 

showed increased tolerance towards drought and salinity when tested on adult level (Fig. 

4A.6). It is generally accepted that plants normally show different tolerance levels in 

different developmental stages. In literature several proteins have been shown to enhance 

stress tolerance especially on seedling level (Jain et al., 2008; Xu et al., 2011). 

After Pseudomonas infection, only lines 5 and 13 from OrysaEULD1A showed tolerance 

symptoms (Fig. 4A.7). These two transgenic lines also showed increased tolerance towards 

drought and salinity suggesting a possible role for this lectin in signaling after biotic and 

abiotic stresses. This dual tolerant role against abiotic and biotic stresses was reported by 

overexpressing some stress related signaling factors such as pepper CAZFP1 (Kim et al., 

2004a) and barley HvRAF (Jung et al., 2007) which conferred tolerance to both stresses in 

Arabidopsis.  

It can be concluded that the lectins under study can confer tolerance to drought and salinity. 

Based on our results we hypothesize that the EUL lectins might be involved in ABA-mediated 

responsiveness towards abiotic and biotic stresses. Conversely, Orysata caused tolerance to 

Arabidopsis plants via ABA non-dependent reactions towards abiotic stresses.  

Arabidopsis was used in our study as a heterologous system for overexpression of the lectins 

mainly because of the ease of plant transformation, growth and analysis. Although several 

stress related rice genes have been successfully tested in Arabidopsis plants, showing 

increased tolerance towards stresses when the proteins were overexpressed in Arabidopsis, 

we cannot exclude that different results might be obtained if our lectins are overexpressed 
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in rice plants. Differences in stress tolerance have also been reported between rice and 

Arabidopsis plants overexpressing the Arabidopsis DREB1A. Overexpression of DREB1A in 

Arabidopsis resulted in improved tolerance to drought, salinity and freezing stress but with 

severe plant growth retardation under normal conditions of growth (Kasuga et al., 1999). On 

the other hand, overexpression of the same gene in rice plants improved tolerance to 

drought and salinity but only to a very little extent to cold stress (Oh et al., 2005). 

Furthermore, overexpression of some stress related genes from rice conferred resistance 

towards abiotic stresses when expressed in the homologous (rice) and the heterologous 

(Arabidopsis) plant systems such as OsiSAP8, a member of stress associated proteins 

(Kanneganti and Gupta 2008). 

It is also noteworthy that in vivo plants are usually exposed to different stresses 

simultaneously and therefore there is a need to analyze the performance of transgenic lines 

when multiple stress factors are applied.   

 

 

 

 

 

 

 

 

 

 

 

 



168 
 

 

Table 4A.1 Performance of the transgenic lines under all tested conditions compared to the wild type. ~: wild 
type or comparable to the wild type; + and -: higher and lower compared to the wild type, respectively. WT: 
wild type, Ory: Orysata; S2: OrysaEULS2 and D1A: OrysaEULD1A, numbers between brackets indicate the 
different transgenic lines. 

Experiment  Creterion  Wt  Ory(4) Ory(11) Ory(13) S2(3) S2(9) S2(11) D1A(5) D1A(7) D1A(13) 

Morphometric 
analysis  

Leaf number  ~ + + ~ + + ~ ~ ~ + 

Leaf length  ~ + + ~ + + - ~ ~ + 

Leaf width  ~ + + ~ + + - ~ ~ + 

Petiole length  ~ + + ~ + + - ~ ~ + 

Height  ~ - - - - - + ~ - - 

Seed weight  ~ - - ~ - - ~ ~ - - 

Bolting time  ~ + + ~ + + - ~ + + 

Germination No stress ~ ~ ~ ~ - - - - - - 

100 mM NaCl ~ ~ ~ ~ - - - - - - 

150 mM NaCl ~ ~ ~ ~ ~ ~ ~ - - - 

50 mM 
Mannitol 

~ ~ - - ~ - - - - - 

100 mM 
Mannitol 

~ ~ - ~ ~ - - - - - 

50 µM ABA ~ ~ ~ - - - - - - - 

100 µM ABA ~ ~ ~ ~ ~ ~ - - - - 

Root length 
/seedlings 

No stress ~ - - ~ - - - - - - 

100 mM NaCl ~ ~ ~ + ~ ~ ~ ~ ~ ~ 

150 mM NaCl ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

50 mM 
Mannitol 

~ ~ ~ + + + + + ~ ~ 

100 mM 
Mannitol 

~ ~ ~ ~ - ~ ~ - ~ ~ 

50 µM ABA ~ ~ ~ + ~ ~ - - - ~ 

100 µM ABA ~ ~ ~ + ~ ~ ~ ~ ~ ~ 

Seedling weight 
/seedlings  

No stress ~ + + + - - ~ ~ - - 

100 mM NaCl ~ + + + ~ - ~ - + + 

150 mM NaCl ~ + + ~ - - ~ + + - 

50 mM 
Mannitol 

~ + + + + + + + ~ + 

100 mM 
Mannitol 

~ - + ~ - + + + - ~ 

50 µM ABA ~ ~ ~ ~ - ~ - + - - 

100 µM ABA ~ ~ - - + - + - - + 

Abiotic assays 
/adult plants 

Drought  ~ + + + + + ~ ~ + + 

NaCl  ~ + + + ~ + ~ + - ~ 

Biotic assay 
/adult plants 

Pseudomonas 
infection 

~ ~ ~ ~ ~ ~ ~ + ~ + 
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Chapter 4 

Performance of transgenic lines over-expressing OrysaEULS2, OrysaEULD1A and 

Orysata after biotic and abiotic stress application 

 

 

Chapter 4B 

Insecticidal activity of Orysata, a jacalin-related lectin from rice, against biting-

chewing and piercing-sucking insects 

 

Manuscript submitted  

Al Atalah B, Smagghe G,  Van Damme EJM (2013) Insecticidal activity of Orysata, a 

jacalin-related lectin from rice, against biting-chewing and piercing-sucking insects.  
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4B.1 Abstract  

In the past two decades research has focused on the insecticidal activity of lectins 

with affinity towards mannose, particularly lectins with a GNA domain. The present 

study reports the insecticidal activity of Orysata, a lectin from rice with mannose 

specificity, belonging to the family of jacalin-related lectins. So far, only two reports 

have described an effect for jacalin-related lectins. The effect of Orysata was 

investigated against three important pest insects in agriculture: the beet armyworm 

Spodoptera exigua Hübner (Lepidoptera: Noctuidae), and two aphid pests: peach-

potato aphid Myzus persicae Sulzer and pea aphid Acyrthosiphon pisum (Hemiptera: 

Aphidoidea).  

Bioassays with S. exigua and M. persicae were performed using detached leaves 

from transgenic tobacco lines overexpressing Orysata. The expression levels ranged 

between 38-71 µg/g FW, corresponding with 0.6-1.1% of total soluble protein. 

Intoxicated larval stages of S. exigua revealed significant mortality, and reductions in 

larval weight and a retardation of development. Similarly, feeding on leaves 

expressing Orysata at ≥57 µg/g caused 63% mortality of the peach-potato aphids. 

When pea aphids were fed on an artificial diet supplemented with different amounts 

of recombinant Orysata, mortality was high at relatively low lectin concentrations, 

the estimated 50% lethal concentration being 79 µg/ml.  

In conclusion, our results demonstrated that the jacalin-related lectin Orysata is 

posing a strong insecticidal activity, suggesting that it can be considered as a 

valuable candidate to be used as a control agent against both biting-chewing and 

piercing-sucking pest insects.  
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4B.2 Introduction  

The Oryza sativa agglutinin, abbreviated as Orysata, was the first inducible mannose-

binding jacalin-related lectin detected in rice seedlings after NaCl treatment (Zhang 

et al., 2000). Recently, Orysata was shown to be located in the nucleus and the 

cytoplasm of the plant cell. SDS⁄PAGE and western blot analysis showed that the 

recombinant lectin exists in two molecular forms: a 23 kDa lectin glycosylated 

polypeptide and an 18.5 kDa unglycosylated polypeptide. Glycan array analyses 

revealed that Orysata interacts with high-mannose as well as with more complex N-

glycan structures (Al Atalah et al., 2011; see chapter 2A). 

The harmful effect of chemical insecticides on non-target organisms and the 

environment urged researchers to develop alternative compounds through the 

application of genetic engineering technologies (Ranjekar et al., 2003). The 

production of these so-called bio-insecticides is often based on the ectopic 

expression of genes encoding e.g. toxins, such as the bacterial delta-endotoxins from 

Bacillus thuringiensis (Sharma et al., 2004). Despite the successful use of this new 

bio-insecticide several drawbacks were also raised in the past few years. Among 

them are the safety concern for the consumers (Shelton et al., 2002) and the 

growing resistance of insects to the genetically modified crops (Sanchis and Bourguet 

2008). Furthermore, Bacillus toxins do not affect sucking pest insects such as mirids, 

thrips, bugs, hoppers and aphids, and thus cannot be used to target a large part of 

the insect population (Malone et al., 2008). To overcome these problems, 

researchers focus on getting a better understanding of plant defense mechanisms. 

Indeed, plants develop complex defense mechanisms that allow them to successfully 

tolerate unfavorable conditions, including attack by insects. Therefore, the best 

option to enhance the tolerance of important crops is the use of insecticidal plant 

proteins, such as protease inhibitors and lectins, through transgenic-based pest 

control strategies (Jouanin et al., 1998). 

Since insect glycans are mostly of the high-mannose type (Aoki et al., 2007; 

Schachter 2009), mannose binding lectins have received a lot of attention. In the 

past two decades the insecticidal properties of several lectins with mannose 

specificity were investigated in detail, in particular lectins with a carbohydrate 

recognition domain similar to the Galanthus nivalis (snowdrop) agglutinin 
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(abbreviated as GNA) (Van Damme et al., 1987). GNA itself was shown to exhibit 

insecticidal activity towards hemipterans, such as Myzus persicae (Hilder et al., 1995; 

Down et al., 2006) and Acyrthosiphon pisum (Rahbé et al., 1995), but also towards 

Lepidopterans, such as Lacanobia oleracea (Fitches et al., 2004). Similarly, the leaf 

and bulb lectins from garlic (Allium sativum L.) were shown to have insecticidal 

properties against the cotton leafworm Spodoptera littoralis (Sadeghi et al., 2007). 

Insect bioassays with the glucose/mannose-binding legume lectin Con A showed an 

effect against the pea aphid A. pisum (Sauvion et al., 2004a,b).  

Next to plant lectins with a GNA domain or a legume lectin domain, other 

carbohydrate-binding domains with specificity towards high-mannose N-glycans are 

present especially within the family of lectins with a jacalin domain. Although all 

these lectins recognize mannose they definitely differ in the three-dimensional 

structure of the carbohydrate recognition domain, and hence in their fine specificity 

towards sugars. Due to the lack of available proteins, very few studies have been 

performed for the insecticidal activity of mannose-binding jacalin-related lectins. In 

the current study, the objective was to analyze the insecticidal activity of Orysata, a 

jacalin-related lectin from rice, against three important pest insects in agriculture 

with one biting-chewing Lepidopteran and two piercing-sucking aphids: the beet 

armyworm (Spodoptera exigua), the peach-potato aphid (M. persicae) and the pea 

aphid (A. pisum). Therefore, Orysata was overexpressed constitutively in tobacco 

plants under the control of cauliflower mosaic virus 35S promoter. Subsequently, 

bioassays with S. exigua and M. persicae were conducted on detached leaves from 

different transgenic lines as well as from wild type plants. In parallel experiments 

were performed with an artificial diet containing increasing concentrations of the 

purified recombinant Orysata. Our results point at the possibility of using Orysata as 

a pest control agent against biting-chewing and piercing-sucking insects.  

 

 

4B.3 Methods and Materials 

4B.3.1 Plant material and growth conditions  

Nicotiana tabacum L. var. Samsun (NN) was used in this study. To obtain an in vitro 

culture of tobacco, dry seeds were surface sterilized in 95% ethanol (v/v) for 5 min 
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and subsequently in 5% NaOCl (v/v) for 15 min followed by thorough rinsing using 

sterile water. Afterwards, the sterilized seeds were sown on Murashige and Skoog 

(1962) medium (MS) (4.3 g/l MS micro- and macronutrients containing vitamins 

(Duchefa, Haarlem, The Netherlands), 30 g/l sucrose, pH 5.7 (adjusted with 0.5 M 

NaOH), and 8 g/l plant agar (Duchefa)) in glass jars (10 cm diameter). Plants aged 

four to five weeks were used for leaf disc transformation.  

For the insect bioassays the sterilized seeds from wild type plants and different 

independent transgenic lines (further referred to as lines 5, 8, 10, 11 and 13) were 

sown on MS medium (containing 100 µg/ml kanamycin for the transgenic lines) in 9 

cm petri dishes. After two weeks, 20 plants for each line were transferred to pot soil 

(20 cm diameter pots). All plants were grown in a growth chamber at 25°C with a 

16/8 h light/dark photoperiod. Plants aged six weeks (and older) were used for the 

bioassays. 

 

4B.3.2 Binary vectors construction  

The coding sequence for Orysata (GenBank accession number CB632549) was 

amplified by PCR using the cDNA clone (provided by Arizona Genomics Institute: 

University of Arizona, Tucson, USA) encoding Orysata as a template. In order to 

achieve constitutive expression of Orysata the sequence was cloned in the 

expression vector PK7WG2.0 (Karimi et al., 2002) following the Gateway technology 

(Invitrogen, Carlsbad CA, USA) as described before (Al Atalah et al., 2011; see 

chapter 2A). Briefly, the attB sequences were added to the flanking regions of the 

Orysata coding sequence by conducting two consecutive PCR reactions using the 

primers EVD 545 5’AAAAAGCAGGCTTCACCATGACGCTGGTGAAGATTGGCCT3’  /EVD 

546 5’AGAAAGCT GGGTGTCAAGGGTGGACGTAGATGCCAATTGC3’ for the first PCR 

reaction and EVD 2 5’GGGGACAAGTTTGTACAAAAAAGCAGGCT3’ /EVD 4 5’ACCACTTT 

GCTCAAGAAAGCT GGGT3’ for the second PCR reaction. Afterwards, the BP reaction 

was performed to clone the Orysata sequence into the entry vector pDONR221 

(Invitrogen). Subsequently, cloning of the sequence was confirmed by sequencing 

the inserted fragment using the primers Donr-F 5’TCGCGTTAACGCTAGCATG3’ and 

Seql-E 5’GTTGAATATGGCTCATAACAC3’ (performed by LGC Genomics, Berlin, 

Germany). Finally, the LR reaction was performed to clone the coding sequence of 
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Orysata under the control of 35S cauliflower mosaic virus promoter in the 

destination vector. 

4B.3.3 Tobacco transformation  

The binary vector carrying the 35S::Orysata construct was mobilized into the 

Agrobacterium strain LBA4404 by tri-parental mating, using a protocol adapted from 

Hoekema et al. (1983). This method was carried out using Escherichia coli top10F 

cells harboring the 35S::Orysata construct (spectinomycin resistant) as the donor 

strain, E. coli DH5α with HB1001 pAK2013 (kanamycin resistant) as the helper strain 

and Agrobacterium tumefaciens LBA4404 (gentamycin resistant) as the recipient. 

Transformants were selected on YEB medium (consisting of 5 g/l beef extract, 5 g/l 

peptone, 5 g/l sucrose, 1 g/l yeast extract, and 15 g/l bacteriological agar) containing 

50 µg/ml spectinomycin and 20 µg/ml gentamycin. Afterwards, the presence of 

35S::Orysata construct was confirmed by PCR analysis (using primers EVD 545/EVD 

546) on the plasmids extracted from several transformants. The LBA4404 strain 

carrying the 35S::Orysata construct was used to transform tobacco following the leaf 

disc transformation procedure (Horsch et al., 1985). Selection of transgenic plantlets 

was conducted on MS-medium containing 300 mg/l kanamycin and 100 mg/l 

carbenicillin. 

 

4B.3.4 Preparation of crude extracts 

Using a mortar and pestle, tobacco leaves were crushed in 20 mM un-buffered 1,3-

diaminopropane using 0.5 ml buffer per g fresh weight (FW) as described previously 

(Sadeghi et al., 2009a). Afterwards, extracts were transferred to eppendorf tubes 

and centrifuged for 5 min at 13,000 g using a table micro-centrifuge and then the 

supernatant was transferred into new tubes. Subsequently, the protein content of 

the leaf extract was estimated using the Coomassie (Bradford) Protein Assay Kit 

(Thermo Fischer Scientific, Rockford, IL, USA) based on the Bradford dye-binding 

procedure (Bradford 1976) using a plant lectin (Robinia pseudoaccacia agglutinin) as 

a standard. Finally, the extracts were stored at -20°C until use.  
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4B.3.5 PCR analysis 

PCR analysis was performed on tobacco generations 0 and 1 (T0 and T1). The 

genomic DNA was extracted from tobacco leaves of independent transgenic lines as 

well as from wild type plants following the cetyl trimethyl ammonium bromide 

method as described previously (Lannoo et al., 2006a). To check the quality of the 

genomic DNA, the Nictaba (Nicotiana tabacum agglutinin) sequence was amplified 

using the primers EVD 1 5’AAAAAGCAGGCTTCACCATGCAAGGCCAGTGGATAGCCGC3’ 

and EVD 3 5’AGAAAGCTGGGTGTTAGTTTGGACGAATGTCGAAGCC3’. To confirm the 

presence of the Orysata sequence in the transgenic lines, PCR was conducted using 

Orysata specific primers (EVD 545/EVD 546). The following conditions were used: 2 

min at 94°C followed by 25 cycles of 15 sec at 94°C, 30 sec at 55°C and 60 sec at 

72°C, and a final incubation for 5 min at 72°C. The PCR amplified fragments were 

visualized on a 1.5% agarose gel (Invitrogen). Only those T0 lines whose genomic 

DNA yielded a PCR fragment of the correct size were allowed to grow into adult 

plants and produce seeds.  

4B.3.6 Western blot analysis 

Protein analysis was conducted on leaf material of T0 and T1. Crude extracts were 

separated by SDS–PAGE using 15% acrylamide gels under reducing conditions as 

described by Laemmli (1970). Subsequently, the protein samples were electro-

blotted onto polyvinylidene fluoride (PVDF, 0.45 µm) transfer membranes 

(BiotraceTMPVDF, PALL, Gelman Laboratory, Ann Arbor, MI, USA). The blots were 

blocked in Tris buffered saline (TBS: 10 mM Tris, 150 mM NaCl and 0.1% (v⁄v) Triton 

X-100, pH 7.6) containing 5% (w/v) milk powder for 1 h. After blocking, blots were 

incubated for 1 h with a rabbit anti-Orysata antiserum as primary antibody 

[produced by Thermo scientific based on injecting two rabbits with recombinant 

Orysata (Al Atalah et al., 2011; see chapter 2A)], diluted 1⁄1000 in TBS. The 

secondary antibody was a 1/5000 diluted rabbit anti-mouse IgG labeled with 

horseradish peroxidase (Thermo scientific). Immuno-detection was achieved by 

placing the blots in the detection buffer consisting of 0.1 M Tris-HCl pH 7.6 

containing 0.7 mM 3,3-diaminobenzidine teterahydrochloride (Sigma-Aldrich, St 

Louis, MO, USA) and 0.01% (v/v) H2O2. All washes and incubations were conducted 

at room temperature with gentle shaking. 
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4B.3.7 Semi-quantification of Orysata content in transgenic lines 

Agglutination assays were performed to semi-quantify the lectin content in the 

transgenic lines used in this study. Rabbit erythrocytes were prepared as described 

previously (Van Damme et al., 1987). Agglutination assays were performed in small 

glass tubes by mixing 10 μl protein extract for each transgenic line (or the wild type 

plant), 10 μl of 1 M ammonium sulphate and 30 μl of a 10% suspension of trypsin-

treated rabbit erythrocytes. Agglutination was assessed visually after incubation for 

45 min at room temperature. Based on a serially diluted solution of purified 

recombinant Orysata of known concentration, the minimum concentration that still 

caused agglutination was determined (Al Atalah et al., 2011; see chapter 2A) and 

used to estimate the absolute lectin content in the extracts. The semi-quantification 

was performed on three plants randomly chosen for each line and the whole 

experiment was repeated twice with different batches of plants. 

 

4B.3.8 Insect rearing  

The larval stages for the beet armyworm (S. exigua) were reared on an agar-based 

artificial diet (Hakim et al., 2006). Peach-potato aphids (M. persicae) were selected 

from a continuous stock colony maintained on wild type tobacco plants in the 

Laboratory of Agrozoology at Ghent University, Belgium (Shahidi-Noghabi et al., 

2009). Pea aphids (A. pisum) were maintained on young broad bean plants (Vicia 

faba L) (Sadeghi et al., 2009b). To synchronize the age of the nymphs, mature aphids 

were put on a bean plant. After 24 h, all neonate nymphs were used in the bioassay 

as described before (Sadeghi et al., 2009c). Before and during the bioassays, all 

insects were maintained in growth chambers at 25 ± 2°C with 65 ± 5% relative 

humidity and a 16/8 h light/dark photoperiod. 

 

4B.3.9 Insect bioassays on detached leaves 

Bioassays with S. exigua and M. persicae were performed on detached leaves from 

five independent heterozygous transgenic lines (from T1), and the wild type plants as 

a control.  

For the Spodoptera bioassay, cages were constructed using polyethylene containers 

(9 cm in diameter, 3 cm in height) as described by Sadeghi et al. (2007). Detached 
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leaves were placed in the experimental cages. Subsequently, 10 newly ecdysed 2nd 

instar larvae of S. exigua were placed on the leaf in each cage. Three cages were 

used per line and the whole experiment was repeated three times. Several 

parameters were scored daily during 12 days; the larval mortality, the development 

(the number of larvae for each instar) and the larval weight starting from the third 

instar. Fresh tobacco leaves were placed once every 2 days during the first half of the 

experiment and daily during the second half of the experiment, and excrements 

were removed from the cages daily.  

For the M. persicae bioassay, the effect of Orysata on the mortality of the peach-

potato aphid nymphs was estimated as described before (Hilder et al., 1995). The 

detached leaves were placed upside down on water saturated cotton wool in a 

plastic petri dish (15 cm diameter). Afterwards, wet papers were placed on the edges 

of each leaf to create a walking area for the aphids. In each plate 6 nymphs were put 

on the leaf and 2 plates were made for each tobacco line. The whole experiment was 

performed twice and the data for each experiment were accumulated. During three 

consecutive days the nymphal mortality of the aphids was scored. 

 

4B.3.10 Insect bioassays on artificial diet 

A standard diet previously developed for A. pisum (Febvay et al., 1988) was used as 

the basal food for the aphids. A procedure described by Sadeghi et al. (2009c) was 

followed to prepare and handle the liquid diet as well as the feeding apparatus used 

to feed the aphids. Under sterile conditions, 150 µl of the artificial diet was put 

between two parafilm layers to form a feeding sachet. To analyze the effect of 

Orysata on the neonate nymphs, several concentrations of the recombinant lectin 

(22, 126, 213 and 637 µg/ml) were used. Since the recombinant Orysata was 

dissolved in 20 mM un-buffered diaminopropane, an artificial diet supplemented 

with relevant volumes of this buffer was used as a control. At day 0, 10 neonate 

nymphs were transferred onto the artificial diet and during three consecutive days, 

the mortality was scored and the dead insects were removed daily. For each lectin 

concentration, three replicates were carried out. 
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4B.3.11 Statistical analysis 

Data were expressed as mean ± standard error (SE). For the agglutination assay, data 

from the two biological replicates were accumulated. Percentage reduction in weight 

of the larvae was calculated using the formula: % weight reduction = [(C–T)/C] * 100, 

where C = weight of larvae feeding on control leaves and T = weight of larvae feeding 

on transgenic leaves (Huang et al., 2006). All decimal percentages and numbers were 

rounded to the nearest integer. The 50% lethal concentration (LC50) together with 

the 95% confidence limits and the R2 of the sigmoid curve fitting were determined 

using the non-linear regression analysis in Prism version 5 (GraphPad, La Jolla, CA). 

To separate the means statistically, a two-tailed T test was applied using the Prism 

version 5. For bioassays on detached leaves, differences of the means between the 

transgenic lines and the wild type plants were considered significant at a P-value = 

0.05 or 0.01.  

 

4B.4 Results  

4B.4.1 Expression of Orysata in transgenic tobacco 

Using the Gateway technology the coding sequence of Orysata was cloned into a 

binary vector so that the lectin sequence was under the control of 35S promoter. 

After mobilizing this binary vector carrying the 35S::Orysata construct into 

Agrobacterium, it was transferred to tobacco (N. tabacum cv Samsun NN) by means 

of leaf disc transformation. Several independent T0 lines were screened for the 

presence of the Orysata sequence at DNA level. Furthermore expression of the lectin 

was also analyzed at protein level. Only those transformants that showed good lectin 

activity were allowed to grow into adult plants and produce seeds. In the T1 

generation, the integration of Orysata sequence in the genome as well as the 

expression of the lectin was checked for three randomly chosen plants (Fig. 4B.1a, 

b). Amplification of a 468 bp fragment after PCR analysis confirmed the presence of 

the Orysata coding sequence in the tobacco genome. Furthermore, the detection of 

a 15 kDa polypeptide (the exact size is 15.2 kDa) after western blot analysis 

confirmed that Orysata is successfully expressed in transgenic tobacco.  

The Orysata content in the leaves of the transgenic lines under study was assessed 

semi-quantitatively using agglutination assays with rabbit erythrocytes. The highest 
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lectin content was observed in transgenic lines 8 and 11, being 71 ± 7.7 µg/g FW 

(1.1% of total soluble protein) and 57 ± 16.3 µg/g FW (0.9% of total soluble protein), 

respectively. In contrast the lectin content was lower and comparable in transgenic 

lines 5, 10 and 13, being 46 ± 7.7, 40 ± 8.3 and 38 ± 4.9 µg/g FW, respectively 

(corresponding to approximately 0.6% of total soluble protein).  

 

 

Fig. 4B.1 Analysis of the transgenic lines at DNA and protein level. Panel (a) represents gel pictures 

after PCR analysis on genomic DNA extracted from 3 randomly chosen plants per line using Orysata 

specific primers. Lanes 1-3 represent tobacco line 5; lanes 4-6 represent line 8; lanes 7-9 represent 

line 10; lane 10: wild type plant; lanes 11-13 represent line 11; lanes 14-16 represent line 13; lane 17: 

shows the Nictaba fragment amplified from wild type plant. To show the size of PCR amplicons, Mass 

RulerTM DNA Ladder Mix (Fermentas) was used. Expected sizes: 468 bp for Orysata and 684 bp for 

Nictaba. Panel (b) represents blot pictures after western blot analysis on protein samples extracted 

from 3 randomly chosen transgenic plants per line. Lanes 18-20 represent tobacco line 5; lanes 21-23 

represent line 8; lanes 24, 27 and 28 represent line 10; lane 25: recombinant Orysata as a positive 

control; lane 26: wild type plant, lanes 29-31 represent line 11; lanes 32-33 represent line 13. Protein 

ladder (Fermentas, St Leon-Rot, Germany) was used in the blots. In each well, 30 µg protein was 

loaded from the crude extract and 75 ng from the recombinant lectin. Expected sizes: 15.2 kDa for the 

native Orysata, 18.5 and 23 kDa for the recombinant Orysata 
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4B.4.2 Effect of Orysata on S. exigua larval stages fed on transgenic lines 

4B.4.2.1 Lethal effects on S. exigua larvae  

To examine the lethal effect of Orysata on the larval stage, the mortality of larvae 

was assessed after feeding S. exigua on detached leaves from five independent 

transgenic lines expressing different levels of Orysata (Fig. 4B.2). Compared to wild 

type plants all transgenic lines caused higher larval mortality at 7, 9 and 12 days but 

only the larval mortality caused by line 11 was significantly different. After 7 days of 

feeding on line 11 the larval mortality was increased (29%) compared to feeding 

assays on the wild type plants (8%, P-value < 0.01). The larval mortality continued to 

be significantly higher (P-value < 0.05) on line 11, being 36% compared to 11% for 

the wild type plants on day 9. On day 12 larval mortality increased to 38% on line 11 

compared to 14% for the wild type plants.  

 

 

Fig. 4B.2 Larval mortality of S. exigua after feeding on detached leaves from five transgenic lines 

expressing Orysata. The larval mortality % after 7, 9, 12 days is shown. Bars represent means ± SE 

based on three independent replicates. One and two asterisks indicate the significant differences in 

comparison with the control at P-value < 0.05 and < 0.01, respectively 

 

 



182 
 

 

4B.4.2.2 Sub-lethal effects on weight and development of S. exigua larval stages 

To analyze the sub-lethal effect of Orysata on S. exigua larvae, the weight was 

determined after 7, 9 and 12 days. A significant reduction in weight was observed for 

the second instar larvae fed with some of the transgenic lines (Fig. 4B.3). After 7 

days, the weight of larvae fed on transgenic line 8 (39%, P-value < 0.01) and 

transgenic line 11 (51%, P-value < 0.01) was significantly reduced compared to larvae 

fed on the wild type plants. Similarly, a strong reduction in larval weight was also 

recorded for transgenic lines 8 and 11 after 9 days. After 12 days, the reduction of 

larval weight was still significant for the larvae fed on transgenic line 8 (49%, P-value 

< 0.05) and transgenic line 11 (47%, P-value < 0.01) compared to larvae fed on wild 

type leaves but for larvae fed on lines 5, 10 and 13, there was no significant weight 

reduction compared to the ones fed on the wild type plants.  

Besides a strong weight reduction, retardation in larval development was also 

observed in response to feeding the larvae on detached leaves from the transgenic 

lines when compared to the control plants (Fig. 4B.4). After 7 days, 66% of larvae fed 

on wild type plants reached the fourth instar. However this percentage was much 

lower for larvae fed on leaves from the transgenic lines. Larvae fed on leaves of 

transgenic line 11 showed a significant reduction of 17% (P-value < 0.05) for fourth 

instar at day 7. With lines 8 and 11, at day 12 the percentage of fifth instar larvae 

was significantly reduced (P-value < 0.01) being 53% and 41%, respectively, 

compared to the wild type plants (94%). Lines 5, 10 and 13 showed no significant 

reduction in the number of larvae in the fourth instar (at day 7) and in the fifth instar 

(at day 12) compared with the larvae fed on control plants. 
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Fig 4B.3 Bioassay of S. exigua on transgenic lines. The effect of five transgenic lines expressing Orysata 

on the larval weight of S. exigua is shown after 7, 9, and 12 days. Bars represent means ± SE (of the 

average weight of one larva) based on three independent replicates. One and two asterisks indicate 

the significant differences in comparison with the control at P-value < 0.05 and < 0.01, respectively 

 

 

 

 

Fig 4B.4 Effect of Orysata on the development of S. exigua larvae. Larvae were fed on transgenic lines 

as well as the wild type plants. The percentages of instar 3 (L3) and instar 4 (L4) after 7 days as well as 

of instar 4 and instar 5 (L5) after 12 days are shown 

 

 

4B.4.3 Effect of Orysata on M. persicae fed on transgenic lines 

To analyze the lethal effect of the lectin for M. persicae, aphids were fed on the 

transgenic plants expressing Orysata. After three days the nymphal mortality was 
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analyzed. Mortality on the transgenic lines 8 (50%) and 11 (63%) was significantly 

higher compared to the control plants (13%) at P-value < 0.05 (Fig. 4B.5). Transgenic 

lines 5, 10 or 13 showed no significant difference in nymphal mortality compared to 

the wild type plants. 

  

Fig 4B.5 Nymphal mortality of M. persicae after feeding on detached leaves from five transgenic 

tobacco lines over-expressing Orysata and from the wild type plants. Bars indicate the means ± SE of 

nymphal mortality after 3 days based on two independent replicates. One asterisk indicates the 

significant differences in comparison with the control at P-value < 0.05 

 

 

4B.4.4 Insecticidal effect of Orysata on A. pisum fed on artificial diet 

Neonate (<24 h) nymphs of A. pisum were fed on an artificial diet containing 

increasing concentrations of recombinant Orysata, ranging from 22, 126, 213 to 637 

µg/ml. To test the insecticidal activity and determine the 50% lethal concentration of 

Orysata, the mortality of neonate nymphs was calculated. After 3 days, the mortality 

reached 23% in the assay with 22 µg/ml Orysata and this percentage increased up to 

100% when 637 µg/ml Orysata was applied (Fig. 4B.6). The LC50 value was calculated 

to be 79 µg/ml (95% confidence limits: 54 to 117 µg/ml and R2 = 0.88).  
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Fig 4B.6 Dose response curve of the nymphal mortality of A. pisum caused by feeding on recombinant 

Orysata for 3 days. Data are expressed as means ± SE based on three replicates with a total of 30 

nymphs tested per concentration 

 

 

4B.5 Discussion  

Many of the classical lectins that accumulate in the vacuole are abundant proteins 

and have been shown to play a role in plant defense against pathogens and 

predators (Michiels et al., 2010; Lam and Ng 2011; Vandenborre et al., 2011b). In the 

last two decades several of these abundant plant lectins have been studied for 

insecticidal activity. Since N-linked glycan structures of the high-mannose type are 

most abundant in insects (Aoki et al., 2007; Schachter 2009), the focus of the studies 

with insects was largely on mannose-binding lectins.  

At present, only few jacalin-related plant lectins have been studied for their activity 

on insects. Heltuba (Helianthus tuberosus agglutinin from Jerusalem artichoke) and 

HFR1 (Hessian fly responsive protein 1 from soft wheat) are inducible lectins with 

mannose specificity belonging to the family of jacalin-related lectins. Ectopically 

expressed Heltuba in tobacco provoked a decrease in the development and 

fecundity for the peach-potato aphid (M. persicae) (Chang et al., 2003). When 
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applied into the diet HFR1, recombinantly expressed in E. coli, showed strong 

insecticidal activity on the larval stage of the fruit fly (Drosophila melanogaster) 

(Subramanyamet al., 2008). In the present study, transgenic tobacco lines 

overexpressing a jacalin-related lectin from rice called Orysata were generated and 

challenged with a biting-chewing pest insect, S. exigua, and two piercing-sucking 

aphids, M. persicae and A. pisum. The bioassays with S. exigua and M. persicae were 

performed on detached leaves taken from the transgenic tobacco lines expressing 

Orysata whereas the assay with A. pisum was performed using an artificial diet 

containing increasing concentrations of the purified recombinant Orysata.  

Using agglutination assays the lectin content in the different transgenic lines was 

calculated. A variable expression for Orysata was observed, with lectin 

concentrations ranging from 38 (line 13) to 71 µg/g FW (line 8). Different copies of 

the transgene as well as its integration position in the plant genome might be 

responsible for the differential expression profile of Orysata in the different 

transgenic tobacco lines.  

The beet armyworm S. exigua is a dangerous pest because it has a wide range of 

hosts and damages important cultivated crops such as beet, tomato, cotton, corn, 

soybean, peanut, and pepper (Moulton et al., 2000; Senthil-Nathan et al., 2008). 

Once an infestation is well established, the armyworm larvae are difficult to control 

with insecticides (Wang et al., 2006a). Feeding of 2nd instar larvae of S. exigua on 

transgenic lines expressing Orysata revealed a significant lethal effect for transgenic 

line 11, causing 38% larval mortality compared to 14% in the control after 12 days 

(Fig. 4B.2). Although the transgenic lines showed limited lethal effects on larval 

mortality, they did cause clear sub-lethal effects on the larval weight and 

development. Throughout the experiment, tobacco lines 8 and 11 showed a 

significant reduction in larval weight compared to the control treatment, being 49% 

and 47%, respectively, after 12 days (Fig. 4B.3). Similarly, the number of fifth instar 

that evolved on transgenic lines 8 and 11 was significantly reduced after 12 days 

being 53 and 41%, respectively, compared to 94% on the wild type plants (Fig. 4B.4). 

Our results showed a clear correlation between the expression level of Orysata in 

the transgenic line and the insecticidal effect, since lines 8 and 11 with the highest 

concentration of Orysata (71 and 57 µg/g FW, respectively) always showed 
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significant differences compared to the wild type plants. Transgenic lines 5, 10 and 

13 with lower lectin content showed no significant differences in larval mortality, 

weight reduction or development retardation. Sub-lethal effects on larval weight 

reduction and development retardation were previously also reported for mannose-

binding lectins of the GNA type. The mannose-binding lectin from leek (APA, Allium 

porrum agglutinin) showed significant larval weight reduction of S. littoralis fed on 

transgenic tobacco lines (expressing APA with a concentration ranging from 23 to 91 

µg/g FW), being 15 to 27% compared to the control after 11 days (Sadeghi et al., 

2009b). In addition, the mannose-binding lectins from garlic leaves (ASAL Allium 

sativum leaf agglutinin) and bulbs (ASAII Allium sativum bulb agglutinin II) had a 

significant negative effect on the larval weight of S. littoralis fed on transgenic 

tobacco expressing ASAL and ASAII, being 42% and 30% respectively after 5 days 

(Sadeghi et al., 2008b). Only 23% reduction in weight was observed for the tomato 

moth L. oleracea when fed on excised leaves of transgenic potato expressing GNA 

(0.07% of total soluble protein) (Fitches et al., 1997). Compared to our data, the sub-

lethal effects caused by Orysata were stronger than the effect of the GNA-related 

lectins.  

Peach-potato aphid M. persicae is an important polyphagous pest in agriculture. This 

pest causes damage to crops by direct feeding and it also serves as a vehicle for 

more than hundred plant viruses in about thirty different families including many 

major crops (Kennedy et al., 1962). Similar to the caterpillar assay, transgenic lines 8 

and 11 (expressing the highest concentration of Orysata) showed a significant 

reduction of the nymphal mortality after 3 days, being 50% and 63%, respectively 

compared to 13% for the wild type plants (Fig. 4B.5). This early deleterious effect on 

the aphid nymphs reflects a strong activity of Orysata. In general, the inhibitory 

effect of mannose-binding lectins such as GNA and ConA caused a reduction in 

fecundity and retarded development of the aphid nymphs when tested in tobacco 

(Hilder et al., 1995; Zhang et al., 2007), wheat (Stoger et al., 1999), potato 

(Gatehouse et al., 1999) and maize (Wang et al., 2005). However, the survival of the 

aphids fed on transgenic tobacco expressing Heltuba was not significantly affected 

after 11 days whereas the fecundity of the aphids was negatively affected (Chang et 

al., 2003). None of the transgenic lines expressing ASAL (at 0.02-0.03% of total 
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soluble protein) or ASAII (at 1.48-2.21% of total soluble protein) had any effect on 

nymphal survival of M. nicotianae after 7-8 days (Sadeghi et al., 2007). Later, 

transgenic plants expressing ASAL and ASAII did show a significant effect on the 

reproduction capacity of the resulting adults. Similarly, GNA expressed ectopically in 

maize (at 0.13-0.28% of total soluble protein) had no significant effect on the corn 

leaf aphid (Rhopalosiphum maidis) survival after 16 days but it showed a significant 

reduction in fecundity (Wang et al., 2005). However, when ASAL was expressed in 

chickpea plants (0.08-0.38% of total soluble protein), it showed negative effect on 

the cowpea aphid (Aphis craccivora) survival after 3 days (Chakraborti et al., 2009). 

Based on these observations, it can be concluded that Orysata has a fast and 

significantly negative effect on the survival of nymphs whereas most tested GNA-

related mannose-binding lectins (when ectopically expressed) showed no effect on 

nymphal (or adult) survival for sap-sucking insects.  

The pea aphid A. pisum is a cosmopolitan pest which damages the legume species 

including the forage and vegetable crops (Van Emden and Harrington 2007). 

Recombinant Orysata, expressed and purified from Pichia pastoris (Al Atalah et al., 

2011; see chapter 2A), was tested at different concentrations supplemented into the 

artificial diet (Fig. 4B.6). The low LC50 value being 79 µg/ml, indicates that Orysata 

had a strong negative effect on A. pisum compared with other mannose-binding 

lectins. After 3 days, the LC50 for the aphids fed on medium containing GNA was 350 

µg/ml and for the Alium sativum agglutinin (ASA) an LC50 value of 700 µg/ml was 

calculated. When 800 µg/ml lectin was supplemented to the artificial diet, the 

mortality was 76% for the GNA treatment, whereas 64% mortality was observed in 

the ASA treatment and only 12% mortality after APA treatment (Sadeghi et al., 

2009b). In contrast 77% and 100% mortality was recorded when 213 µg/ml and 637 

µg/ml, respectively, of recombinant Orysata was applied in the diet.  

In rice there are two major pests, the rice brown plant hopper (Nilaparvata lugens) 

and the rice green leafhopper (Nephotettix nigropictus). These sap-sucking insects 

cause severe physiological damage to the rice plant and serve as vectors for different 

viruses including the tungro bacilliform virus, the grassy stunt virus and the ragged 

stunt virus (Saxena and Khan 1989). Bioassays based on artificial diet highlighted the 

toxicity of plant lectins against these insects (Powell et al., 1993), GNA being the 
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most toxic lectin decreasing brown plant hopper survival by 50% at a concentration 

of 200 µg/ml (Powell et al., 1995). In addition, GNA expressed in the transgenic rice 

plants decreased survival and overall fecundity of the insects, retarded insect 

development, and had a deterrent effect on brown plant hopper feeding (Rao et al., 

1998). Furthermore, transgenic rice expressing ASAL reduced the survival and 

fecundity of brown plant hopper to 36% and 32%, respectively. Similarly, the survival 

and fecundity of green leafhopper were down to 40.5% and 29.5%, respectively, 

compared to control plants (Saha et al., 2006). 

Our findings demonstrated that Orysata has strong insecticidal activity against both 

biting-chewing and piercing-sucking pest insects. We believe therefore that Orysata 

can help rice to cope with insect attack. However, the concentration of Orysata in 

rice is very low, reaching 1 µg/g FW of rice leaves exposed to 0.1 M NaCl whereas it 

was estimated to be 1000 times lower in the control plants (Zhang et al., 2000). Since 

mannose-binding lectins showed strong insecticidal activity towards brown plant 

hopper and green leafhopper, Orysata might be considered a good candidate to be 

introduced into transgenic rice to provide resistance against these sap sucking 

insects. Furthermore, Orysata provides a biological alternative to chemical 

insecticides using a transgenic based approach.  
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Chapter 5 

General conclusions and perspectives   
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5.1 Inducible plant lectins 

The discovery of the inducible plant lectins (Van Damme et al., 2004 a) directed our 

attention towards a study of the physiological role of these lectins in plants. 

Interestingly these inducible lectins are expressed in response to several stress 

conditions, such as drought, high salt, wounding, hormone treatment, and pathogen 

attack (Lannoo and Van Damme 2010; Vandenborre et al., 2011b; Jiang et al., 

2010a). Since the lectin expression is up-regulated after stress treatment, the 

hypothesis was put forward that the inducible lectins might have a role in the stress 

physiology of the plant cell (Van Damme et al., 2004 b, 2008, 2011).  

Rice (Oryza sativa L.) is one of the most important food crops in the world supplying 

20% of daily calories to more than 3.5 billion people worldwide (Khush 2013; World 

Rice Statistics, http://www.irri.org). As for other crops, rice production is adversely 

affected by a wide range of abiotic and biotic stresses and this in turn is threatening 

the food security on a global scale. 

In rice, several lectins belonging to different families are regulated after abiotic and 

biotic stresses (This work, Jiang et al., 2010a). The main goal of this PhD research was 

to study the possibility of exploiting some of these inducible rice lectins to improve 

the tolerance of crops against external stresses. Lectins from two families were 

selected for this study, in particular, Orysata a lectin discovered in rice seedlings 

exposed to NaCl treatment (Zhang et al., 2000) belonging to the jacalin-related 

family as well as OrysaEULS2 and OrysaEULD1A, both lectins classified in the family 

of EUL-related lectins (Fouquaert et al., 2009a). 

5.2 Characterization of proteins under study  

The first objective of this work was to characterize Orysata, OrysaEULS2 and 

OrysaEULD1A. In chapter 2, the molecular structure, biological activity and 

carbohydrate binding specificity for all proteins under study were analyzed in detail. 

Because the inducible proteins are expressed at low concentrations, it is very 

difficult to purify sufficient amounts of the lectin directly from the plant tissues. To 

overcome this problem, Pichia pastoris was used as a heterologous system to 

http://www.irri.org/
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produce the recombinant proteins. The carbohydrate binding specificity was refined 

for Orysata (chapter 2A) and the EUL domain of OrysaEULS2 (chapter 2B) using a 

glycan array and revealed that Orysata and OrysaEULS2 showed high affinity towards 

high-mannose structures. In plants, the N-glycans present on glycoproteins are rich 

in mannose residues (Man5-9GlcNAc2) but also contain other sugars like fucose and 

xylose (Gomord et al., 2005). In order to get deeper insight about the possibility for 

our proteins to bind to plant glycoproteins, it would be interesting to analyze our 

recombinant proteins on a plant glycan array which has been recently become 

available (Pedersen et al., 2012).  

Recently, evidence has accumulated that environmental stresses such as salinity, 

drought, cold stress, or exposure to metals such as cadmium and zinc can change the 

protein glycosylation patterns (Komatsu et al., 2009; Štefanić et al., 2012) indicating 

the important role for glycoproteins in response to external stresses. The most 

common type of glycosylation on nucleocytoplasmic proteins is the addition of O-

GlcNAc which is present in many different proteins located in the nucleus, nuclear 

pore complexes, cytosol and cytoskeleton (Lefebvre et al., 2010; Olszewski et al., 

2010). Inducible lectins most probably interact with glycans present in the nucleus 

and the cytosol. These glycans are present either in a free form as a consequence of 

degradation of mis-folded proteins or in a bound form when they are attached to the 

surface of lipids and proteins residing in the same compartment. Therefore, we 

suggest analyzing the interaction of the rice lectins with the intracellular free N-

glycans reported from rice cells (Maeda and Kimura 2006; Maeda et al., 2010). 

Analyses can be done with glycans obtained from cells grown under normal 

conditions as well as under stress conditions. This analysis will shed the light on the 

glycosylation changes and their role in the response to stress treatments. 

Chapter 2B describes the construction of a three dimensional model built for the EUL 

domain in OrysaEULS2 . Mutational analysis revealed the importance of a tryptophan 

residue located in the predicted carbohydrate binding site as an essential residue for 

the carbohydrate activity of the EUL domain from rice. These results have to be 

confirmed experimentally by X-ray crystallography which is a strong method to 

determine the three-dimensional structure of proteins. To perform this analysis the 
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expression of the EUL domain from OrysaEULS2 in P. pastoris can be scaled up which 

will allow obtaining sufficient amounts of ultra-pure protein for crystallization. 

Resolving the three dimensional structure will be beneficial to determine the overall 

structure of the EUL domain in general and the carbohydrate binding site in 

particular.  

Although amino acids predicted to be responsible for the formation of the 

carbohydrate binding site are identical for all EUL domains in rice (Fig. 2C.4), their 

fine carbohydrate binding specificity is different. Whereas OrysaEULS2 showed 

affinity to high-mannose structures (chapter 2B), OrysaEULD1A exhibited clear 

preferences towards galactosylated structures (chapter 2C). It is therefore important 

to perform mutational analysis by altering one or a few amino acids located in the 

vicinity of the carbohydrate binding site to explore which of these amino acids are 

responsible for the promiscuity of the sugar specificity of the EUL domain.   

Until now no binding partners have been reported in rice for our proteins. Searching 

well known rice networks such as Database of Interacting Proteins in Oryza Sativa 

(DIPOS, http://csb.shu.edu.cn/dipos/?id=5) and Oryza sativa Protein-Protein 

Interactions Network (PRIN, http://bis.zju.edu.cn/prin/) yielded no results. However, 

to gain better insight into the physiological importance of our proteins, it is very 

important to identify their receptors in the nucleus and the cytoplasm since our 

proteins are localized to both cell compartments (chapter 4A). To perform this 

analysis, the recombinant proteins can be used as baits to catch the putative 

interacting partners through the application of pull down or co-immunoprecipitation 

assays. Afterwards, these binding partners can be characterized at the biochemical 

level and identified by amino acid sequencing and/or mass spectrometry.  

5.3 Functional analyses under stress conditions 

The second objective of this work was to analyze the expression of the 

carbohydrate-binding proteins from rice in the presence of stress applications. In 

chapter 3, this goal was covered through investigating the promoter activity for the 

EUL genes under study (chapter 3A), and conducting Q-PCR experiments to study the 

http://csb.shu.edu.cn/dipos/?id=5
http://bis.zju.edu.cn/prin/
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expression of all studied proteins (chapter 3B) in the presence or absence of 

different stress treatments.    

It is generally accepted that plants show different levels of sensitivities towards 

stress factors based on the developmental stage as well as the intensity of the stress 

that was applied. The promoter activity for OrysaEULS2 and OrysaEULD1A was 

analyzed during the seedling stage and after stress treatment at only one 

concentration for each stress factor. Therefore, it would be interesting to extend the 

promoter::GUS experiments by analyzing the GUS activity for more developmental 

stages and under weak, moderate as well as strong levels of stresses. In addition, 

analysis of GUS expression under the control of OrysaEULS2 and OrysaEULD1A 

promoters can be investigated in rice plants to study the promoter activity in their 

original genetic context. At a later stage, several deletions of the EUL promoters can 

be analyzed in an attempt to determine the most important stress responsive 

elements in these promoter sequences.   

Our Q-PCR results indicate that rice expresses multiple lectins in response to the 

most important stresses that the rice culture is confronted with in its natural habitat. 

The up-regulation of EUL expression by 1 to 3 fold after application of abiotic 

stresses suggests a possible role for these proteins in stress signaling. Therefore, it 

would be very beneficial to complete this research by identifying the putative 

interacting partners. Tandem affinity purification (TAP) is an efficient system for 

protein complex purification and protein interaction identification (Xu et al., 2010). 

Purification of protein complexes by TAP was demonstrated to be effective in rice 

(Rohila et al., 2006). Hence, TAP constructs can be cloned and transformed into rice 

cells (or plants) to identify the binding partners for our proteins. In a further step, 

the interaction between the EUL-related proteins and these interacting partners 

should be confirmed by an independent technique, such as e.g. bimolecular 

fluorescence complementation (Kerppola 2008) where each of the proteins of 

interest and its putative partner can be fused to a non-functional half of a reporter 

protein. If the interaction occurs, the reporter protein will regain its activity, allowing 

us to visualize the interaction with the lectin partner.  
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OrysaEULS2 and OrysaEULD1A are encoded by sequences containing an N-terminal 

unrelated sequence next to the EUL domains. One can speculate that after 

translation into a chimeric protein this N-terminal domain might have a role in 

protein-protein interaction. Indeed after performing BLAST 

(http://blast.ncbi.nlm.nih.gov/) searches with these N-terminal domains (including 

also the linker sequence for OrysaEULD1A), several hits have been retrieved. Some 

of these hits were annotated in the NCBI database as stress related proteins in Zea 

mays and Triticum aestivum. As such, TAP should also be performed to determine 

protein partners for these N-terminal protein domains.  

To show the importance of the protein-carbohydrate interaction involving EUL-

related proteins, it would be interesting to use the EUL mutant protein, deficient in 

carbohydrate binding activity as a tool for some functional analyses and localization 

studies. Therefore native and mutant lectin constructs can be transformed into rice 

cells and their functionality can be compared under normal as well as under stress 

conditions. Furthermore, the localization patterns for both constructs can be also 

compared. 

Q PCR analyses after biotic stress assays showed that some of the EUL proteins as 

well as Orysata are putative targets for rice pathogens (especially Magnaporthe 

oryzae). It is well known that ABA is a key signaling molecule in plant-pathogen 

interactions (Xu et al., 2013). This ABA signaling provoked by the pathogen 

suppresses salicylic acid (SA) and/or ethylene (ET) signaling pathways and 

consequently alleviates rice defense responses (Bailey et al., 2009; Jiang et al., 

2010b). Therefore, it would be interesting to test the expression and regulation of 

our proteins after SA and ET treatments. 

5.4 Tolerance towards abiotic and biotic stresses 

The third objective of this research was to evaluate the performance of transgenic 

lines over-expressing Orysata, OrysaEULS2 and OrysaEULD1A under different abiotic 

and biotic stresses.  
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In chapter 4A the performance of transgenic Arabidopsis overexpressing the 

proteins under study was analyzed after abiotic and biotic stress application. Our 

results showed that some of the transgenic lines altered the overall growth of 

Arabidopsis plants and conferred tolerance of the plant towards the stress 

treatment. As a consequence, it would be interesting to overexpress our proteins in 

their homologous background (rice) and study the effect of overexpression of the 

lectins under stress conditions. Constitutively active promoters are not always 

desirable because overexpression of a transgene may compete for energy and 

building blocks for synthesis of proteins that are also required for plant growth 

under normal growth conditions (Kathuria et al., 2007). Several inducible and / or 

tissue specific promoters are available and have been studied in rice, which provides 

a way to express the transgene very specifically in the target tissue of interest. 

Expression of genes for stress tolerance could be engineered by deploying stress-

inducible promoters. Many such promoters have been studied in rice (summarized in 

Kathuria et al., 2007). As such, our lectins can be expressed under the control of one 

of the stress inducible promoters in order to develop more efficient tolerant rice 

lines.    

Chapter 4B describes the role of Orysata as a mannose binding lectin against biting-

chewing and piercing-sucking insects when ectopically expressed in tobacco plants. 

Our results revealed that Orysata shows lethal as well as sub-lethal effects on the 

larval stages of Spodoptera exigua through reduction of larval weight and 

retardation of larval growth. Since the last instar larvae have to reach a certain fresh 

weight before entering the pupal stage (Davidowitz et al., 2003), it is important to 

study the effect of Orysata on pupation. Several reports in literature showed the 

abnormalities induced by some lectins on pupa as well as adult insects (Sadeghi et 

al., 2009a). Hence it will also be interesting to find out if Orysata will interfere with 

pupal development.  

Although the aphid experiments were only performed on a short term they already 

showed some clear effect of Orysata on the survival of nymphs of Myzus persicae 

and Acyrthosiphon pisum. It will also be interesting to investigate the effect of 

Orysata on the fecundity and the adult survival through performing long term 
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experiments. All our experiments were conducted in vitro; it would be interesting to 

extend these analyses to evaluate the effect of Orysata in vivo. Finally, to continue 

this research, we suggest investigating the effect of Orysata on some important rice 

pests, such as the rice brown plant hopper (Nilaparvata lugens) and the rice green 

leafhopper (Nephotettix nigropictus). Initially these analyses could be performed on 

an artificial diet and later this lectin can be introduced into rice plant. Afterwards, 

the effect of Orysata expressed in rice can be evaluated in vitro and in vivo.  

Until now, no EUL-related lectin has been tested for insecticidal activity. Hence it is 

important to test some EUL lectins against insects in short as well as long term 

experiments. This investigation could be interesting for the analysis of yet another 

lectin that preferentially interacts with mannose (e.g. OrysaEULS2), but could also be 

extended to other EULs interacting with galactose structures (e.g. OrysaEULD1A). 

5.5 Mode of action of nucleocytoplasmic lectins 

At present we can only speculate on the possible mode of action of the 

nucleocytoplasmic lectins in response to abiotic stresses since no potential receptors 

have been identified yet in the plant cell. After exposure of rice plants to stress 

conditions, a stress signal will be transmitted to the nucleus and will be recognized 

by some stress responsive elements present in the promoter sequences of the 

lectins under study, which in turn will influence the expression level of these lectins. 

Taking into account that the lectin sequences do not contain a signal peptide it is 

reasonable to assume that the lectins are synthesized on free ribosomes in the 

cytoplasm. It was unambiguously shown that the different EUL rice lectins as well as 

Orysata are partially translocated to the nucleus. Judging from the research work 

with ArathEULS3 from A. thaliana evidence has also been obtained for transport of 

the EUL lectin to the plasma membrane and the cell wall (J. Van Hove, unpublished 

data). Because of their carbohydrate binding activity these lectins can interact with 

different glycoconjugates, including glycoproteins, glycolipids, free glycans and 

polysaccharides forming lectin-glycoconjugate complexes. Since the different EULs 

and Orysata clearly differ from each other in their carbohydrate binding specificity 

multiple interactions can take place. The complexes formed might be part of a signal 
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transduction or regulatory mechanism recruited by the plant cell to cope with the 

stress effect.  

The latter assumption is reasonable at least for the nucleocytoplasmic lectins that 

occur in very low concentrations in the cell. However, as mentioned before some 

nucleocytoplasmic lectins are present at high concentrations in storage tissues, such 

as the Calystegia sepium rhizomes and Helianthus tuberosus tubers. These storage 

tissues are a rich source of polysaccharides, in particular starch and other sugars like 

glucose, sucrose and fructose in Calystegia and inulin, a polymer of the 

monosaccharide fructose, in Helianthus. At present we cannot exclude that one of 

these polysaccharides (or simple sugars) represent the real target of the lectins 

which are present in these storage tissues. Until now, very few data are available 

describing the mode of action of nucleocytoplasmic plant lectins against biotic 

stresses such as fungi, bacteria and viruses. Plant lectins might have a role in the 

recognition of the pathogen by interacting with the glycan structures present on the 

surface of these pathogens, and this recognition might trigger some pathways that 

could help the plant to cope with pathogen attack. Bacterial glycoconjugates, such as 

lipopolysaccharides from the outer membrane of Gram-negative bacteria and 

peptidoglycan from both Gram-positive and Gram-negative bacteria (Erbs., 2008; 

Molinaro et al., 2009) as well as fungal glycoconjugates such as oligosaccharides 

derived from the polysaccharides chitin and glucan of the cell wall (Shibuya and 

Minami 2001) have been found to act as elicitors of plant innate immunity. 

Therefore, these bacterial and fungal glycoconjugates might represent the real 

targets for the nucleocytoplasmic lectins during the recognition process.  

Binding studies using glycan arrays have shown that several nucleocytoplasmic 

lectins have a strong affinity for high-mannose glycans that are frequently present on 

insect proteins. These glycans structures occur on many digestive enzymes or 

transport proteins secreted in the midgut of insects or proteins embedded in the 

epithelial cell membrane. Therefore, these glycoproteins are potential targets for 

plant lectins. Indeed, it has been shown that ferritin (an important protein for iron 

transport) acts as a target site for the mannose binding snowdrop lectin (GNA) in the 

midgut of the cotton leafworm Spodoptera littoralis (Sadeghi et al., 2008a) and in the 
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midgut of the rice brown planthopper Nilaparvata lugens (Du et al., 2000). In 

addition, a membrane-bound aminopeptidase enzyme, a glycoprotein rich in 

mannose residues, was also targeted by both GNA and ConA (jackbean lectin) 

(Cristofoletti et al., 2006). Furthermore, the chitin microfibrils of the peritrophic 

membrane (Hakim et al., 2010) of the insect midgut might be a target for  Nictaba 

(the leaf lectin from Nicotiana tabacum) since this nucleocytoplasmic lectin 

specifically interacts with oligomers of GlcNAc and chitin (Vandenborre et al., 

2010a). Therefore, plant lectins probably act on insects through the interaction with 

multiple target glycoproteins (Vandenborre et al., 2010b). This is true for pest insects 

such as beetles, aphids and caterpillars, and for non-target insects such as 

honeybees (Vandenborre et al., 2011a). Secreted glycoproteins that are targeted by 

plant lectins in the midgut will tend to cluster, resulting in large complexes with a 

molecular size that is too big to pass through the peritrophic membrane. These 

macromolecular insect protein-lectin complexes may prevent larval enzymes to 

diffuse back across the peritrophic membrane for being recycled in the digestive 

system, resulting in leakage of digestive enzymes. Obviously, this will have a negative 

impact on the nutritional system of the insect.     

In conclusion, the first objective of this PhD research representing the 

characterization of Orysata, OrysaEULS2 and OrysaEULD1A was achieved. Our results 

showed for the first time that the EUL proteins are true lectins with a promiscuous 

carbohydrate-binding specificity. The second objective, namely the expression 

analysis of the EUL proteins as well as Orysata in response to stress treatments was 

also accomplished. Based on our results, it can be concluded that rice expresses 

multiple carbohydrate binding proteins in response to external stresses. We 

hypothesize that our proteins play a role in sensing the external stress and behave as 

stress signaling elements. In addition, some of our proteins are targeted by rice 

pathogens suggesting a very important role for these proteins in pathways required 

during defense aginst these pathogens. The third objective of this study namely, 

evaluation of the performance of transgenic lines over-expressing Orysata, 

OrysaEULS2 and OrysaEULD1A under different abiotic and biotic stresses was also 

achieved to a large extent, but need to be extended in the future. We could show 
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that over-expression of our proteins confers Arabidopsis plants tolerance against 

some environmental stresses. Taking all these results together, we believe that this 

work contributed significantly to a better understanding of the role of inducible 

lectins from rice in the stress physiology of the plant. This understanding will help in 

unrevealing the mechanisms and pathways that inducible nucleocytoplasmic lectins 

are involved in and in turn can be used to improve the stress tolerance of crops. 
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Summary  

Plant lectins group all proteins that possess at least one non-catalytic domain which 

recognizes and binds reversibly certain carbohydrate structures. These 

carbohydrate-binding proteins are widespread in the plant kingdom. In the past, 

research was focused on lectins that are expressed at high concentrations especially 

in storage tissues where they locate in the vacuolar or extracellular compartment of 

the plant cell. For many of these lectins it was shown that they play a role in plant 

defense. During the last decade evidence has accumulated that plants also 

synthesize certain carbohydrate-binding proteins after exposure to a variety of 

abiotic and biotic stresses. These “inducible” proteins are present in the nucleus and 

the cytoplasm of the plant cell. Consequently, the inducible proteins are suggested 

to be involved in the carbohydrate-protein interactions taking place inside the plant 

cell and therefore fulfill a signaling role in stress physiology.  

In the frame of this PhD thesis, several inducible proteins of rice were selected. 

Oryza sativa agglutinin abbreviated as Orysata, is an inducible protein that belongs 

to the family of jacalin-related lectins. Orysata consists exclusively of the jacalin 

domain with a molecular weight (MW) of 15.2 KDa. This lectin was detected in rice 

seedlings after exposing them to NaCl treatment. In addition to Orysata, two 

proteins belonging to the family of EUL-related lectins were investigated. 

OrysaEULS2 represents the S type of the EUL family and consists of an EUL domain 

preceded by a 56 AA unrelated N-terminal sequence with a total MW of 22.7 kDa. 

OrysaEULD1A represents the D type of the EUL family and consists of two almost 

identical EUL domains (91% sequence similarity and 72% sequence identity) 

tandemly arrayed, separated by a 23 AA linker domain and preceded by an 19 AA N-

terminal sequence with a total MW of 38.5 kDa.  

In the first chapter, an overview of current literature on lectinology and the role of 

lectins in response to the most important abiotic and biotic stresses is given.  

To study the possibility of using the selected proteins in increasing the stress 

tolerance of crops, we first had to characterize the lectins. Chapter 2 describes the 

characterization of Orysata, OrysaEULS2 and OrysaEULD1A. Since the inducible 
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proteins are expressed at very low concentrations and only after the application of 

stress, it is difficult and in most cases even impossible to purify sufficient amounts of 

these proteins from plant tissues. Therefore, the heterologous system, Pichia 

pastoris, was used to express all proteins under study. Subsequently the 

recombinant proteins were purified using a combination of ion exchange 

chromatography and metal affinity chromatography on a Ni–Sepharose column. In 

chapter 2A, glycan array analysis showed that Orysata interacts with high-mannose 

as well as with more complex N-glycan structures. In chapter 2B, a three-

dimensional model was constructed for the EUL domain within OrysaEULS2. 

Subsequently, mutation analysis for some important amino acids revealed that the 

tryptophan residues play a role in the formation of the carbohydrate binding site. 

OrysaEULS2 shows affinity towards high-mannose structures as concluded from 

glycan array analysis and thus it was proven for the first time that OrysaEULS2 is a 

true lectin. In chapter 2C, OrysaEULD1A was shown to have lectin activity since it 

agglutinated red blood cells and its carbohydrate binding activity was directed 

towards galactose related compounds.  

To gain more knowledge with respect to the promoter sequences of the EUL lectins, 

the promoter activity of OrysaEULS2 and OrysaEULD1A was investigated. In chapter 

3A, the GUS gene was cloned under the control of each of the EUL promoters and 

transformed into Arabidopsis plants. The GUS staining pattern was analyzed after 

different abiotic stress treatments and during several developmental stages. GUS 

activity was detected for the OrysaEULD1A promoter in the young true leaves but 

not for the OrysaEULS2 promoter. It was shown that the activity of OrysaEULD1A 

promoter was increased after ABA and mannitol treatments but decreased after 

NaCl treatment.  

To further investigate the role of the EUL proteins, Q-PCR experiments were 

conducted on rice seedlings exposed to several abiotic and biotic stresses (chapter 

3B). The Q-PCR analysis revealed that the expression of the whole set of rice EUL 

genes is stress related. After ABA and NaCl treatments, all EULs as well as Orysata 

were up-regulated in the roots. A more variable expression was observed in the 

shoots after biotic stress treatments. In response to Xanthomonas oryzae infection, 
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only EULs from the D type (except OrysaEULD1A) as well as Orysata were up-

regulated at 4 and 8 dpi, whereas no effect was observed on the expression of EULs 

from the S type. Furthermore, our results showed that Magnaporthe oryzae targeted 

the expression of some of the EULs, in particular OrysaEULS3, OrysaEULD1A and 

OrysaEULD2 as well as Orysata.  

In an attempt to analyze the possibility that EULs (and Orysata) might increase the 

tolerance against abiotic and biotic stresses, the lectins under study were over-

expressed and the performance of the transgenic lines overexpressing the lectins 

was investigated after different selected stresses. Chapter 4A describes the 

overexpression of Orysata, OrysaEULS2 and OrysaEULD1A in Arabidopsis plants and 

the selection of one-insertion homozygous lines. Since plants show different levels of 

tolerance based on the stress intensity and the developmental stage, the 

experiments were performed during different developmental stages in particular 

germinated seeds, seedlings and adult plants subjected to moderate and severe 

levels of stress. Our results indicate that the lectins under study can confer tolerance 

to drought and salinity especially on the adult plants. In chapter 4B, the coding 

sequence of Orysata was expressed constitutively in tobacco plants. Afterwards, five 

heterozygous lines were challenged against biting-chewing (Spodoptera exigua) and 

piercing-sucking (Myzus persicae and Acyrthosiphon pisum) insects. Transgenic 

tobacco lines overexpressing Orysata induced mortality and caused reductions in 

larval weight as well as a retardation of the development of S. exigua. In addition, 

Orysata showed lethal effects on nymphal survival of M. persicae and A. pisum. Our 

findings demonstrated that Orysata has strong insecticidal activity suggesting a 

possible role for this lectin as a control agent against both biting-chewing and 

piercing-sucking pest insects.  

In chapter 5, the results of the whole PhD research are concluded and perspectives 

to continue the work are proposed.  Overall, this PhD research considerably 

increased our understanding on the role of the nucleocytoplasmic lectins in response 

to external stresses. Our results point out that Orysata, OrysaEULS2 and 

OrysaEULD1A can confer tolerance against some important abiotic and biotic 

stresses that crops normally encounter. Despite that, further work is still needed to 
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confirm the role of these lectins in the response to stress treatments and investigate 

the possibility for using these lectins to help crops cope with external stresses 

through the application of transgenic based strategies.  
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Samenvatting 

Plantlectines omvatten alle eiwitten die minstens één niet-katalytisch domein 

bezitten dat bepaalde koolhydraatstructuren kan herkennen en er op reversibele 

wijze mee kan binden. Deze koolhydraat-bindende eiwitten zijn wijdverspreid in het 

plantenrijk. In het verleden was het onderzoek toegespitst op lectines die 

voornamelijk in opslagweefsels in hoge concentraties tot expressie gebracht worden, 

en zich daar in de vacuole of het extracellulair gedeelte van de plantencel bevinden. 

Voor vele van deze lectines is aangetoond dat ze een rol spelen in de verdediging van 

de plant. In de loop van het laatste decennium  werd aangetoond dat planten ook 

bepaalde koolhydraat-bindende eiwitten synthetiseren na blootstelling aan 

verschillende vormen van abiotische en biotische stress. Deze “induceerbare” 

proteïnen bevinden zich in de nucleus en het cytoplasma van de plantencel. 

Bijgevolg wordt vermoed dat deze induceerbare proteïnen een rol spelen in de 

koolhydraat-eiwit interacties die plaatsvinden in de plantencel en dus een 

signaalfunctie vervullen in de stressfysiologie. 

In het kader van dit doctoraatsproefschrift werden verscheidene induceerbare 

proteïnen geselecteerd. Oryza sativa agglutinine, afgekort Orysata, is een 

induceerbaar proteïne dat behoort tot de familie van jacaline-gerelateerde lectines. 

Orysata bestaat enkel uit het jacaline domein met een moleculaire massa van 15.2 

kDa. Dit lectine werd gedecteerd in rijstzaailingen na blootstelling aan NaCl 

behandeling. Naast Orysata, werden twee eiwitten onderzocht die behoren tot de 

EUL-gerelateerde familie. OrysaEULS2, met een totaal moleculair gewicht van 22.7 

kDa, vertegenwoordigt het S-type binnen de EUL familie en bestaat uit één EUL 

domein dat voorafgegaan wordt door een 56 aminozuren (AZ) lange, ongerelateerde 

N-terminale sequentie. OrysaEULD1A vertegenwoordigt het D-type binnen de EUL 

familie en bestaat uit twee bijna identieke EUL domeinen (91% sequentiegelijkenis 

en 72% sequentieïdentiteit) die in tandem gepositioneerd zijn, worden gescheiden 

zijn door een 23 AZ lang verbindingsdomein en worden voorafgegaan door een 19 AZ 

lang N-terminale sequentie. De  totale moleculaire massa van OrysaEULD1A 

bedraagt 38.5 kDa. 
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In het eerste hoofdstuk wordt een overzicht gegeven van de huidige literatuur in 

verband met lectinologie en de rol van lectines in de respons op de meest 

belangrijke abiotische en biotsche stressvormen.  

Om de mogelijkheid te bestuderen om de geselecteerde eiwitten in te zetten om de 

stresstolerantie van voedselgewassen te verhogen, werden eerst de lectines 

gekarakteriseerd. Hoofstuk 2 beschrijft de karakterisatie van Orysata, OrysaEULS2 en 

OrysaEULD1A. Aangezien de induceerbare proteïnen slechts op een heel laag niveau 

tot expressie komen en bovendien alleen na toediening van stress, is het moeilijk en 

in de meeste gevallen zelfs onmogelijk om voldoende hoeveelheden van deze 

eiwitten uit plantenweefsels te isoleren. Daarom werd het heterologe 

expressiesysteem Pichia pastoris gebruikt om alle bestudeerde eiwitten tot expressie 

te brengen. Vervolgens werden de recombinante eiwitten opgezuiverd door gebruik 

te maken van een combinatie tussen ion-uitwisselingschromatografie en metaal 

affiniteitschromatografie. In hoofdstuk 2A toonde glycaan array analyse aan dat 

Orysata interageert met mannose-rijke en meer complexe N-glycaanstructuren. In 

hoofstuk 2B werd een drie-dimensioneel model geconstrueerd voor het EUL domein 

van OrysaEULS2. Vervolgens toonde mutatie-analyse van enkele belangrijke 

aminozuren aan dat de tryptofaan residu’s een belangrijke rol spelen in de vorming 

van de koolhydraatbindingsplaats. Uit de glycaan array analyse werd besloten dat 

OrysaEULS2 affiniteit vertoont tegenover mannose-rijke structuren en bijgevolg 

werd voor de eerste keer bewezen dat OrysaEULS2 een echt lectine is. In hoofdstuk 

2C, werd aangetoond dat OrysaEULD1A lectine activiteit vertoont, aangezien het 

rode bloedcellen agglutineert. De koolhydraatbindingsactiviteit was gericht tegen 

galactose-gerelateerde verbindingen.  

Om een beter inzicht te verwerven in de promoter sequenties van de EUL lectines, 

werd de promoteractiviteit van OrysaEULS2 en OrysaEULD1A onderzocht. In 

hoofdstuk 3A, werd het GUS gen gekloneerd onder de controle van elk van de EUL 

promoters en getransformeerd in Arabidopsis planten. Het GUS kleuringspatroon 

werd geanalyseerd na verschillende abiotische stress behandelingen en gedurende 
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verscheidene ontwikkelingsstadia. GUS activiteit werd gedetecteerd voor de 

OrysaEULD1A promoter in de jonge echte bladeren, maar dit was niet het geval voor 

de OrysaEULS2 promoter. Verder werd aangetoond dat de activiteit van de 

OrysaEULD1A promoter steeg na ABA en mannitol behandeling, maar daalde na een 

NaCl behandeling. 

Om de rol van de EUL proteïnen verder te onderzoeken, werden qPCR experimenten 

uitgevoerd op rijstzaailingen die werden blootgesteld aan verscheidene vormen van 

abiotische en biotische stress (Hoofdstuk 3B). De qPCR analyse toonde aan dat de 

expressie van de hele set EUL genen uit rijst stress-gerelateerd is. Na ABA en NaCl 

behandelingen, werd de expressie van alle EULs alsook Orysata opgereguleerd in de 

wortels. Een meer variabele expressie werd vastgesteld in de scheuten na abiotische 

stress behandelingen. In de respons tegen Xanthomonas oryzae infectie, werden 

alleen EULs van het D type (behalve OrysaEULD1A) alsook Orysata opgereguleerd op 

4 en 8 dagen na infectie, terwijl geen effect werd waargenomen op de expressie van 

de S-type EULs. Bovendien toonden onze resultaten aan dat Magnaporthe oryzae de 

expressie van sommige EULs beïnvloedde, in het bijzonder OrysaEULS3, 

OrysaEULD1A en OrysaEULD2 alsook Orysata.  

In een poging om de mogelijkheid na te gaan dat EULs (en Orysata) de tolerantie van 

planten tegen abiotische en biotische vormen van stress kunnen verhogen, werden 

de onderzochte lectines tot over-expressie gebracht en werden de prestaties van 

deze transgene overexpressie-plantenlijnen onderzocht na blottstelling aan 

verschillende vormen van stress. Hoofstuk 4A beschrijft de overexpressie van 

Orysata, OrysaEULS2 en OrysaEULD1A in Arabidopsis planten en de selectie van 

homozygote lijnen met één insertie. Aangezien planten verschillende niveau’s van 

tolerantie vertonen, gebaseerd op de intensiteit van de stress en het 

ontwikkelingstijdstip, werden de experimenten uitgevoerd gedurende verschillende 

ontwikkelingsstadia. In het bijzonder kiemings-, zaailing- en volwassen stadia werden 

onderworpern aan matige en zware stressniveau’s. Onze resultaten tonen dat de 

onderzochte lectines tolerantie tegen droogte en zout kunnen bieden, vooral aan de 

volwassen planten. In hoofdstuk 4B, werd de coderende sequentie van Orysata 

constitutief tot expressie gebracht in tabaksplanten. Nadien werden vijf 
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heterozygote lijnen getest tegen bijtend-kauwende (Spodoptera exigua) en stekend-

zuigende (Myzus persicae en Acyrtosiphon pisum) insecten. Transgene tabaksplanten 

die Orysata tot overexpressie brengen, induceerden sterfte en veroorzaakten 

vermindering in het larvale gewicht en groeivertraging bij S. exigua. Daarnaast 

vertoonde Orysata dodelijke effecten op nymfen van M. persicae en A. pisum. Onze 

bevindingen toonden aan dat Orysata een sterke insecticidale activiteit vertoont, 

wat een mogelijke rol van dit lectine als een beschermingsmiddel tegen zowel 

bijtend-kauwende als stekend-zuigende plaaginsecten suggereert. 

In hoofdstuk 5 worden de resultaten van het hele doctoraatsproefschrift besloten en 

worden perspectieven om het werk verder te zetten voorgesteld.Globaal genomen 

heeft dit doctoraatsproefschrift ons inzicht in de rol van de nucleocytoplasmatische 

lectinen in de respons tegen externe vormen van stress aanzienlijk vergroot. Onze 

resultaten wijzen erop dat Orysata, OrysaEULS2 en OrysaEULD1A tolerantie kunnen 

bieden tegen de meest belangrijke vormen van abiotische en biotische stress die 

gewassen normaal ondervinden. Niettegenstaande is er meer onderzoek nodig om 

de rol van deze lectines in de respons tegen stressbehandelingen te bevestigen en de 

mogelijkheid te onderzoeken om via toepassing van transgenese-gebaseerde 

strategiën deze lectines in te zetten in de bescherming van voedselgewassen tegen 

externe vormen van stress. 
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Suppl. File 3A.1 Promoter sequences for OrysaEULS2, OrysaEULS3, and OrysaEULD1A. Different 

promoter elements are indicated. In red: start codon. In green: TATA box. In yellow: CAAT boxes. 

Underlined: 5’ untranslated regions. In grey: transcription start site (TSS). The nucleotide A in the start 

codon (ATG) is designated as +1 

 

OrysaEULS2 promoter 
  

-1913 ATAGTGTTACGCTAAAGCATGCCCACATGCCCACAAACGAGCCATAGTGC  

-1863 CCGTCCGAGAGAGAGAGAGAGAGAGAGCGGGGGGATAGGGAGAGGAGAGG  

-1813 AGAGGAGAGGTGGAGGTGTGAAGGGAGAAGATGAGTCCCACCTTTTTTTT  

-1763 CCTTACCGGATGCAACTTAACCATAGTGGAAAAAACCGGACCGGTAGATG  

-1713 ACCCAGTCACCCTTCTGGTTCACCGGTCTCGGACAGTTTGACCATGAACC  

-1663 AGCCGATCGAACCGCAGTTTACTAAGTGCATGCATGTAACGTATGTATTT  

-1613 CAATGCTAACACATACTCCATCCGTTTCAAAATGTTTGACACCGTTGACT  

-1563 TTTTAGCACATGTTTGACCGTTCGTCTTATTCAAAAAAATTATGAAATAT  

-1513 GTAAAACTATATGTGTACATGAGAGTATATTTAACAATAAATCAAATGAT  

-1463 ATGAAAAGAATAAATAATTACTTAATTTTTTTAAATAAGACGAATGATCA  

-1413 AACACGTACTAAAAAGTCAACGGTGTCAAACATTTTGAAACGGAGAGAGT  

-1363 ACATCCGATTGGTAGGATGGCCACGGGAGTTGCCATGCATCCCATTGACC  

-1313 AGGGATGAACCGGCCATCGTGTGGCCCATTCATTCATTGACTTGCCTTAG  

-1263 TCCGGCTGGACCAAAGGCGGTTTATTGCCCGGTTCATCACAAAACCGGCC  

-1213 GCCAACCTCTGGTTCCGATTTTTTTCCGGTTAAACTGTCAGTCCGTTCCA  

-1163 GTTTTTTTTCCACTATGCAATTAACGCCATGTTGTAGAAAACCACCGTAC  

-1113 AACTTGCCAATAAGGTAGCTTCCTTCTTCTTTCTTTTTTTTTTTTGAGAA  

-1063 CTAGGTTAGCTTCCTTCTAGAGCTCCTTGTACGACCTCGTTGGAAAACTC  

-1013 ATTGTTGGACCTAATTCATCACTCTTTTTATTTCAAACTAAAGGGTTTCC  

-963  TTTTTAGACTTTTCTAATTGTTCCAAACTAATAGAGGTGGCATCAATCAA  

-913  ATTTGCTCTTTCTTGTCCTATCTAAGAGTATCTTGATGAAACTCTTATCT  

-863  TTATCGACTTTCGTAATCAAAATTTTAGTTTTTTCAAGCTGCTCAATGGT  

-813  CACTTTACGACATGATTAGTGTTATGCTCGGTATTATTGTAGTTGAGGGA  

-763  GAATAAGTGTAACTTCCGTTCATGATCGGCCCGTTAAGAATTTAGACCCA  

-713  TTAGTCCCACCCCCAACTCCCTTTTCTTTTCTTCCTTTTTGGCCAAATTT  

-663  TCAAATTTCTGGTGGATACACTGCACGCCCGGGGAATTTTCTGTCGAAAA  

-613  ATTGTATAGGTAATCCCTAATAAATTTCTAAATGTGCTTGGCTGATTCCT  

-563  TTTCTTCTCGATCGATCCCGTTATTCCTTTTTAATCTTTTCTTGTGCGGA  

-513  ATTGCAGCACTTTTTCTCTGCTTGATCACAACGCAGCAAGGACATGAGAA  

-463  TACGTGAGATTCTCCGGGCGATGGAGCTGCACCGTGTGCTTTGCTATCGT  

-413  CTCGCGTCGCGCTCGCCTGCAATAATACGGCAGCCAGATCGAGATGGTTC  

-363  CCAAAACGACTAGAAACGGAATCACGTAAAGCACCATGGATGGATGGAAT  

-313  CACCTTTTCCCCAGGAAAGCGCAAGTGTGGAATGGCATCATCTATCCTAC  

-263  CAAGTTCCTAAGCCCCTGACCATGCAGTGCACGAATAATGCACATCGATC  

-213  AGCTATCTAGAGAGAGAGAGAGAGAGAGAGAGAGAGATAGATAGCATCTC                

-163  GATCAGTGCTACTGATCAATCGATCATCCCCTATAAATCCCCCATCCCAT  

-113  TGCCATGCATAGAGGCAGCACATCAACGATCGAACGAACAACGCACTCTG  

-63   CAGCTAGCTATACAATCTCTGTTTAATTAGCTAGGTAGCTAGCGAGTCAT  

-13   AAATCAAGAAGCCATGGACT  
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OrysaEULS3 promoter 
 

-1911 ATCCTCGAGGGGAAGGGCCCAGAGCTTCTAATCCTACACGGCAACAACAC 

-1961 TTTATACTTGTGTATAATTTCTCTTCGTTTCTGAGTTCATGGCTATCTTT 

-1811 GTCTCTCTTATCTTCTCCCTTTTGCTATCTCTATATTTGTGATTGCCATG 

-1761 GAAATACAGAAGACGAGGGGCCGCTGATGTATTGACTTGTGAGTTCTAGT 

-1711 TTGGGGGCTTTCGTTTGCAAGGATTTTCATTTGATTGATCTTCTTGATTT 

-1661 GTTATTTTGGATCGAAGCTGGCTACCTTCATGCCGTGTTGCATACCATAC 

-1611 TTCAGTCTGGTCGGTCAGACCGATGATCGAGACCGAAGTATCGATTAACC 

-1561 GAACTTTCGGTTTGTATATCTGTGAGGACAAGTTCTGTCATCAATTCAAA 

-1511 ATGTTAACATAATAAATTGTGTTAAAATTATTGCTAAAATTCTGTGAAAA 

-1461 TTGTCCTAAATATTGTGTTCTGTCAACTTTTACAAAATTTGTCAACATTT 

-1411 AACTTGAAATACGCACAAATTTAACTTGGAACATGTCCAGTGTTGATGCC 

-1361 AAAATTATTGATTTCAATAGTAGGGGTATATTTGTCCATTCACCACACAT 

-1311 TTAACACCGTTACCATGAGTTAACAGAGTAGAGGCAGACGGCTGCTTCAC 

-1261 TTAAAAAGTAGGGGCAAAATCACAAACCCAAAAAACAGGAGCAAAATCAT 

-1211 AATTAAACTATAAAATAATGGTAGGAACACAATTACCCTAGTTTCTACTA 

-1161 GTATTACTCATGAAATTACATACAGAAATTCTTGTATATTTTATTTTAGT 

-1111 TACATATATAAGACATATACGCGCATACTCCACCCAGATACATCTCTCTA 

-1061 ATAACACATGCTTAAAAGATACGAAAACCAGCAACTCACTATGGGAATGT 

-1011 CTAGATCGACTTTAAACGTCTGAAATCACTTTTCTATTTCATTGTGTGAT 

-961  AATGTAATATTTCTCACAACCATTTACTATTAAACAAAGTTCCTTCTTTT 

-911  CAAAATGGCTCAACAATAAATTATTCTAGCTAACAACAAAAATCATAATA 

-861  TATATATCATAAAAAATATCTAGTATCACTTATTTGCTTATTTGTTATTC 

-811  ACTCGTTTGAATCAAATGTTAGAGTACTCTATGATATTAAAAGATATTGT 

-761  GGGACAATTTGTACAAGCGGCAAAAGCAATAGTGGGACGGTAGATTGGCT 

-711  GTCATCGTCACTACATAATTTCAAAGGAGTACAGAAAGGGTAGCATAGAT 

-661  ATTTAAAATCGAGGAAATACGAATGGCTGATTATTTTAGACGTGTTTAGG 

-611  GGTGAATTTGGATTGATTTAGATGTTGATGGTGTGAATAACCCCAAGTTG 

-561  CAGGGATGGCAATGGGGCCCCGTTCCCCGTCACCCGGTGGGGAATTCCTC 

-511  TACTAGGGTGCCAAAACAGGAGAGAAATAATCCCCATGGGGATGTTAACG 

-461  GGCGAAATTCATACCCATCGGGTGAGCGGGGATGGGGACCCGGTAACTGC 

-411  CTGCCTGTCATGTGGGTCCTATCTTTCTCACACACATATAGCCTGTGTGT 

-361  ACGTCTATTTCTTCAAGCAAGGAGACTAGCTAGCTAGTTACTCCACATCT 

-311  GTATCTGTACGCATGCAAAGTAAACTAGTCCTATTTATTTGTAAATCGTG 

-261  TGTCTCGTTCTCGTCGATCTCCATCCTAGCACTGTGATAGCTCATGCTTG 

-211  GATTGAGGGATTGATTGATTTCTTCTCTGAACTTTTTGTGATTGAGCCCA 

-161  CTGTAACTGTAGCGATTACCGGGGGTATTATGGGCCGTGGGTACCCGCGC 

-111  GGGGCCGGGGACGGGACGGGAGACCCAATCATAAATTGGAGGCGCCGGCC 

-61   ATCTCTCCTCTAGACCTCCTGACTCTAATAAATCTCCTCCATTCCCCCAA 

-11   ATCCATCCATCATGGAGTTC 
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OrysaEULD1A promoter 

 

-1896 CAATTTAGCAAATGCAACATCATCTGCTCCAACGTCCACAAACTCCACAG 

-1846 GACAACCTACACATAGCAATTACTACTCCTAATTGTAAGGTGAGTTTAAG 

-1796 GACAGGCTTCACCTACTCCTCTAAAGTTATCACTGGTTATTTATAAGCTC 

-1746 TCTACAAAAGATCTATGTCAGTATATTTTCCTACTTAGAAGGTATTAAAT 

-1696 GAAGAGAGAGAGTAAAGCTATCTACTAACTTAGAGATAATCTATAGAGAA 

-1646 AAACGAGGCAATGCATGAGAGAGCTATAGATACAAATGTAGACATACTAT 

-1596 TAAGGTGGTTTACTATTAATCGAGTCTATTGCTGAGATGTATATGTTTTA 

-1546 TAGAGAGTACCTTATTTTACCATTGCGGGAGCTATAAGGGTAGAACGGTT 

-1496 GAAACAACGGTACTATACTACTACAAACCAGCAACGCGTTGCTATCTGCA 

-1446 CAGCACTCCAAATGTTCGCGAAAACTTGACTTGTTTTCGTTTGAGAAAGT 

-1396 TAAAGAGTCGAAACTTTTCATCCTGACAAGTTGAGAGAGTAGTACGTGAC 

-1346 AACAAAAATCAAAGGGAGATGCATGTAGCTAACCCGTTTTCTGCCTGCTG 

-1296 CATTGTTGTTAAGCACAACAACAAAGCTTAAGCCTGTAAAAGCATTGCAA 

-1246 AAGGCAGGCGACGCGTCGATTAATTAGGTGTTGAAATCTGGAACGTTCTT 

-1196 GGCCATACAGGCGCTGCGTGGCCGTGATATAGAGCAGCTTGCCGGGTAAA 

-1146 AAGATTATTCTCTTATCAGTTAACAACTTTTTTACCACCTTTCATGCATC 

-1096 ATGCATCATTCAGGTCAGATTAGATGTGCTCATTGGAAACGGACAGGGAT 

-1046 GATCGAACCATCCATCCATGGGCGATCCATGGTGATTCAGAAAAGTAAAA 

-996  CTGCCTTTGTTTCTTGTGTAGCACAGGGATGCAAACGTACAAAACGACCG 

-946  TCACAAGGGTCATCTCTAGCTGGAATCACATCTCTTAGCTTGTTTTATGG 

-896  ATTTGCGTCAGGTGCACGCTTCAATCCTGGGCCACGGCATGCATTTCGAT 

-846  CACCTCGTCCTTCGTGGCGACATACCTTTCGATTTTGGGGAAAACAATGG 

-796  TCGAAATTCCCGGACAATGGAAAGCGAGCAAGCAGCATCTCTCTTTGTTC 

-746  TTTTCTTAAGCAAAGATTGTTTTTTTCCCCTTAATTTTTATTTCGGGTGA 

-696  AAGAGTTTATGCTTTTCTGAAAAAGAAAGTGTTGTTTTACAAGTTGGAAG 

-646  GGATCCACATTCTCTATCATAATGGCAGCACTACCATTACAAGCACTGAC 

-596  GTGTGGAACAATAGGAGTATATGACCCACATACCTGTCACGGTAATGGTA 

-546  GTGATATTATGTTATCCGGTTGTAAGAAATCAGGCTGCTCCAAAAATACT 

-496  CAATGAAGTTGGTGTACTGCTCTAGTCTTCCACTGAGTAAGTAGAGCAAT 

-446  TAACTGTGCACCAGTAATCAAATCTTTGCATTTACTCGCACATTTAGTAA 

-396  TGCAAATCTCAGCACAATGAATTACTGGTACTAGCATCCAAGTCAAGTTC 

-346  ATGGAACCGAATCTGAGAGTACATTAAACACCAAAGATATATCATATCAT 

-296  ATCAAATATTCAAATCAAACGGCTAGAATGCAAAACATACACGCACGCAT 

-246  GTCACGCGTTTGAGCCAGTCGAGGACCACCGGTGGGCCCAGCTGTCAGCG 

-196  AACGTGGGAGTTGGCACAGGAGAGCGCGTCATCGAGCCGAGCCGATCGAT 

-146  CAGTGGGTGAGGGTGAGAGTGGCCGGCCTTGGCCTTCTATAAAACGTGGC 

-96   ACCTCTCGCTCCTCCTCGCATCATCGCTCGCAGTCGCAGCACAAAAACAT 

-46   TTCTCTCGCGAGTCGCGAGTTGCACCGATCGAATTAAGGGTCGAAGATGT 
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Suppl. File 3A.2 Stress regulatory elements in the promoter region of OrysaEULS2, OrysaEULS3 and 

OrysaEULD1A. In silico promoter analyses were performed using the PLACE database. Frequency 

refers to the number of times each core sequence is present in the promoter region. S2: OrysaEULS2; 

S3: OrysaEULS3 and D1A: OrysaEULD1A. Promoter elements related to certain stresses are indicated 

in different colors. 

Light  Drought  Cold  ABA Gibberellin  Salt 

Pathogen  freezing Anaerobic Auxin brassinosteroid  
 

Stress regulatory elements  

Function  Element  Element core 

sequence  

Frequency  * + 

S2 S3 D1A 

Response to light MYCCONSENSUSAT CANNTG 1 3 5 6 Both  

GATABOX GATA 3 6 4 1 Both  

GT1CONSENSUS GRWAAW 12 0 6 1 Both  

SORLIP1AT GCCAC 2 0 4 1 Both  

IBOXCORE GATAA 0 0 1 1 Both  

Response to drought MYCCONSENSUSAT CANNTG 1 3 5 6 Both  

DRE2COREZMRAB17 ACCGAC 0 1 0 4 Mono   

DRECRTCOREAT RCCGAC 0 1 0 3 Both   

Response to cold  MYCCONSENSUSAT CANNTG 1 3 5 6 Both  

DRE2COREZMRAB17 ACCGAC 0 1 0 4 Mono  

DRECRTCOREAT RCCGAC 0 1 0 3 Both  

Response to ABA MYCCONSENSUSAT CANNTG 1 3 5 6 Both   

WRKY71OS TGAC 7 3 8 2 Both  

RYREPEATVFLEB4 CATGCATG 2 0 0 1 Both  

ARFAT TGTCTC 0 2 0 3 Both  

DRE2COREZMRAB17 ACCGAC 0 1 0 4 Mono  

AGCBOXNPGLB AGCCGCC 0 0 0 2 Both  
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Response to 

gibberellin 

WRKY71OS TGAC 7 3 8 2 Both  

GARE2OSREP1 TAACGTA 1 0 0 1 Mono  

CAREOSREP1 CAACTC 1 1 2 1 Mono  

MYBGAHV TAACAAA 0 2 0 1 Both  

GARE1OSREP1 TAACAGA 0 1 0 1 Mono  

Response to salt DRE2COREZMRAB17 ACCGAC 0 1 0 4 Mono  

DRECRTCOREAT RCCGAC 0 1 0 3 Both  

AGCBOXNPGLB AGCCGCC 0 0 0 2 Both  

MYCCONSENSUSAT CANNTG 1 3 5 6 Both  

Response to 

pathogen  

BIHD1OS TGTCA 1 3 4 1 Mono  

Response to freezing  MYCCONSENSUSAT CANNTG 1 3 5 6 Both  

Response to 

anaerobic conditions  

ANAERO3CONSENSUS TCATCAC 2 0 0 1 Both  

ANAERO2CONSENSUS AGCAGC 1 1 3 1 Both  

ANAERO1CONSENSUS AAACAAA 0 1 1 1 Both  

Response to auxin ARFAT TGTCTC 0 2 0 3 Both  

Brassinosteroid ARFAT TGTCTC 0 2 0 3 Both  

*: Times repeated in different stresses. +:  Element was found only in sequences from monocotyledonous (Mono) 

plants or in sequences of both dicotyledonous and monocotyledonous (Both) plants 
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Suppl. Fig 3A.1 Histochemical analysis of GUS activity in Arabidopsis seedlings harboring a 35S 

promoter::GUS construct. Images were taken using a Nikon eclipse TE2000-e epi-fluorescence 

Microscope (Nikon Benelux, Brussels, Belgium) and a Leica microscope (Leica, Nussloch, Germany) 

 

 

 

Suppl. Fig. 3A.2 Histochemical analysis of GUS activity in Arabidopsis seedlings.  No GUS staining was 

detected for Arabidopsis plants harboring the OrysaEULS2 promoter. Non-treated and stress-treated 

plant tissues did not show any GUS activity. Some representative pictures are shown for each plant 

stage (a). GUS staining was absent in the leaf, stem and root samples analyzed for developmental 

stages 4 and 5 of Arabidopsis plants expressing each of the EUL promoter constructs. Some 

representative pictures are shown for Arabidopsis plants harboring the OrysaEULD1A promoter at 

developmental stage 5 (b). Images were taken using a Nikon eclipse TE2000-e epi-fluorescence 

Microscope (Nikon Benelux, Brussels, Belgium) and a Leica microscope (Leica, Nussloch, Germany) 
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Suppl. Table 3B.1 Table showing all PCR primers used in this study 

Primers  Name and sequence  (5’ to 3’) Name and sequence (5’ to 3’) 

Gene of 
interest   

Forward  Reverse  

OrysaEULS2 EVD898/AGCAGTACGGCGGGTATG EVD899/GTTCCCCTCGATGCTCAC 

OrysaEULS3 EVD896/CTTCCCACGACTACGCTCA 
EVD897/GTACTCGGATCCACCGTAGT
G 

OrysaEULD1A 
EVD902/GAGGCACAGCAACAAGATC
A 

EVD903/CTCTGGGTTGTAGGGAACCA 

OrysaEULD1B 
EVD1089/CCGTGATCTGTGGAGTTG
G 

EVD1090/GCAGGACTCGAGAAAACG
AC 

OrysaEULD2 
EVD1091/TCGAGAGACCGTCAACAA
AA 

EVD1092/GGACACGCAACAGTAACAC
G 

Reference 
genes  

Forward  Reverse  

EXP 
(LOC_Os03g27
010) 

EVD910/TGTGAGCAGCTTCTCGTTTG EVD911/TGTTGTTGCCTGTGAGATCG 

EIF5C (LOC_ 
Os11g21990,1 

EVD912/CACGTTACGGTGACACCTTT
T 

EVD913/GACGCTCTCCTTCTTCCTCAG 

UBQ5 (LOC_ 
Os01g22490.1)        

CTTAGGCGTAGGCTCCTGTTC AGAGGTGATGCTAAGGTGTTCA 

EEF1a (LOC_ 
Os03g08020.1) 

GGCTGTTGGCGTCATCAAGA CCGTGCACAAAACTACCACTT 

Positive 
control gene 

Forward  Reverse  

Orysata  
EVD966/CGAAATAATGTTCCATGGT
GTT 

EVD967/TGTACTACGGATCGGTGCAA 

PR1A (LOC_ 
Os07g03710.1) 

EVD1109/CGTACGTATGCTGGTGAG
AA 
 
 

EVD1110/CTAAGCAAATACGGCTGAC
AGT 
 
 

cDNA quality   Forward  Reverse  

Ubiquitine5 
(AK061988) 

EVD635/ACCACTTCGACCGCCACTAC
T 

EVD636/ACGCCTAAGCCTGCTGGTT 
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Suppl. Table 3B.2 The fold change for genes under study after all treatments. Plus (+) and minus (-) 

signs represent up-regulation and down-regulation, respectively. Significant differences are indicated 

in bold.  

Assay Abiotic 

Tissue Shoot Root 

Treatment ABA NaCl Mannitol ABA NaCl Mannitol 

OrysaEULS2 +1.73 -1.25 +1.40 +2.76 +4.09 -1.31 

OrysaEULS3 -1.10 -1.21 -1.16 +2.43 +1.21 -1.04 

OrysaEULD1A +1.23 +1.27 +1.04 +1.92 +1.40 +1.12 

OrysaEULD1B +1.25 +2.96 -1.02 +4.17 +2.74 -1.05 

OrysaEULD2 +1.92 +2.59 +1.00 +2.22 +1.90 +1.04 

Orysata +2.16 +1.90 +2.50 +20.97 +4.03 +1.18 

Assay Biotic 

Treatment Xanthomonas Magnaporthe 

Time point 2 dpi 4 dpi 8 dpi 1 dpi 2 dpi 

OrysaEULS2 -1.04 -1.30 -1.41 -1.76 -1.21 

OrysaEULS3 -1.07 -1.10 +1.15 -4.46 -1.73 

OrysaEULD1A +1.05 -1.06 -2.71 -4.20 -1.10 

OrysaEULD1B +1.06 +2.14 +9.35 -1.27 +1.01 

OrysaEULD2 +1.00 +2.57 +5.01 -2.41 +1.87 

Orysata -1.06 +3.53 +4.62 -5.11 -5.45 

PR1A +3.30 +1.39 +1.63 +5.88 +53.91 
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