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1.1 Nematodes and plant parasitic nematodes 

1.1.1 General introduction to nematodes 

“If all matter in the universe except the nematodes were swept away, our world would still be 

dimly recognizable. We would find mountains, rivers, lakes and oceans represented by a film 

of nematodes as well as the location of towns and various plants and animals since there 

would be a corresponding massing of certain nematodes” ----Cobb, 1915 

There are nearly 20,000 described nematode species classified in the phylum Nematoda 

(round worms), they are thought to have evolved from simple animals some 400 million years 

before the "Cambrian explosion" (Poinar Jr, 1983). Nematodes are multicellular animals, in 

size they range from 0.3 mm to over 8 m, but most of nematodes are microscopic, and they 

are invisible by naked eyes. Nematodes are extremely abundant and diverse, only insects ex-

ceed their diversity. They are evolutionarily related to insects as they also undergo four molts 

from juvenile to the adult phase. Most nematodes are free-living and feed on bacteria, fungi or 

protozoa, some are animal parasites, and some are plant parasitic nematodes (PPNs, around 

15% of the described species). The dynamics, activity and different feeding types of free liv-

ing nematodes are good environmental indicators to detect for environmental disturbance and 

also contribute to food web interactions and ecosystem processes, such as the cycling of ni-

trogen and carbon. In addition, free-living nematodes help microbial colonization of sub-

strates and mineralization of the soil nutrients. Animal parasitic nematodes were first de-

scribed in ancient Chinese scientific literature as early as 2700 B.C. (Maggenti, 1981). Asca-

ris lumbricoides is the largest intestinal roundworm infection of humans worldwide and caus-

es a disease known as ascariasis. The first described plant parasitic nematodes (PPN) were 

discovered in wheat seeds by Needham (1744). Although PPN feed on all parts of the plant, 

including roots, stems, leaves, flowers and seeds, most of them attack roots. They pierce plant 

cell walls with a specialized spear called stylet and withdraw the cell nutrient as food. PPN 

are recognized as major agricultural pathogens as they can cause plant damage ranging from 

negligible injury to total destruction of plant materials (Fig 1.1). The severity of plant injury 

resulting from nematode activity depends on several factors such as the combination of plant 

and nematode species, soil types, and culture practices etc.  

1.1.2 Plant parasitic nematodes 

The infraorder Tylenchomorpha comprises the largest and economically most important 

group of plant parasitic nematodes. 

http://en.wikipedia.org/wiki/Ascariasis
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Based on the parasitic strategies, PPN can be classified into 2 major groups: Ectoparasitic 

nematodes and endoparasitic nematodes, each group can be further divided into migratory or 

(semi) sedentary plant parasitic nematodes according to their feeding strategies. 

 

Fig 1.1 Estimation of potential global nematode damage in billions of dollars based on a 1987 yield 

loss survey (Sasser & Freckman, 1987). Reproduced from McCarter (2009). 

Ectoparasitic nematodes 

An evolutionary study of PPN based on ribosomal DNA indicated that within the Tylenchids, 

migratory ectoparasitic feeding is an ancestral trait for all major PPN (Bert et al., 2011). Ec-

toparasitic nematodes remain outside of the plant tissue during all their life stages and use 

their stylet to puncture plant cells and feed on the cytoplasm. The longer the stylet, the deeper 

the nematode can feed. For example, Tylenchorhynchus only feeds on root hairs or/and epi-

dermis cells. The damage caused by ectoparasitic nematodes is usually limited to necrosis of 

the cells. However, some of them, such as Longidoridae and Trichodoridae, are vectors for 

plant viruses (Decraemer et al., 2006). 

Migratory endoparasitic nematodes 

Species of migratory plant endoparasitic nematodes are included in three nematode families, 

Pratylenchidae, Anguinidae, and Aphelenchoididae. Species of Pratylenchidae inhabit primar-

ily cortical cells in roots and other below-ground tissues, whereas species in the other two 
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families parasitize the above- ground parts of plants. All life stages of migratory plant endo-

parasitic nematodes can be found in the soil or in plant tissues. They feed and reproduce dur-

ing migration between or through plant cells. All plant endoparasitic nematodes secrete en-

zymes to degrade host tissues, some of them induce hormone imbalance that causes swelling 

of the tissue, and some induce lesions. Bursaphelenchus xylophilus is a migratory endopara-

sitic nematode that feeds on living trees as well as on fungi, which supports the hypothesis 

that plant feeding nematodes evolved from those feeding on fungi. Next to direct damage by 

migratory endoparasitic nematodes, they can also act as a vector for bacterial or fungal patho-

gens, and increase plant susceptibility to other pathogens (Moens & Perry, 2009,  Jones et al., 

2005). 

Sedentary endoparasitic nematodes 

The most evolved and damaging nematodes in the world have a sedentary endoparasitic life 

style. This type of feeding has evolved three times independently, in which, false root-knot 

nematodes (Nacobbus) and the cyst-forming nematodes (Heterodera spp. and Globodera spp.) 

most likely evolved from migratory ectoparasitic nematodes, while root-knot nematodes 

(Meloidogyne spp.) appear to have evolved from migratory endoparasitic nematodes (Bert et 

al., 2011). Sedentary nematodes are obligate biotrophs, i.e., they can only feed on living plant 

cells.  

Sedentary nematodes invade root tissues soon after hatching and then establish a permanent, 

stationary feeding location. Females do not move from that site for the rest of their life. The 

host range of root-knot nematodes encompasses more than 3,000 plant species and it is the 

economically most important genus; the cyst nematodes are the second major group of im-

portant plant-parasitic nematodes (Karssen et al., 2006, Turner et al., 2006). Second stage 

juveniles (J2) of both the root-knot and cyst nematodes are attracted to plant roots, and accu-

mulate at the region of cell elongation just behind the root tip. After penetration, J2 of root-

knot nematode migrate intercellularly to the root tip and turn around when they get to the root 

apex. Subsequently, J2 move back up in the vascular cylinder over a short distance, where 

they become sessile in the vascular tissue of the zone of elongation. However, J2 of cyst nem-

atodes move intracellularly through cortical cells until they reach the pericycle and proceed to 

select a suitable feeding site. Both of them penetrate the roots and migrate by the combination 

of physical damage via thrusting of the stylet and breakdown of the cell wall by secreting 

degrading enzymes (Turner et al., 2006, Karssen et al., 2006, Gheysen et al., 2006). A root-

knot nematode selects 2–12 cells to initiate its feeding sites, those cells enlarge and are con-

verted into multinucleate cells through synchronous nuclear divisions without cell division, 

and the feeding sites formed by root-knot nematodes are called giant cells (Fig 1.2A). Hyper-
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plasia and hypertrophy of the surrounding cells lead to the formation of the typical root gall 

(Jones & Payne, 1978, Gheysen et al., 2006). Unlike root-knot nematodes, a cyst nematode 

selects one plant cell, plasmodesmata are widened by plant enzymes, then the cell walls are 

opened and adjacent protoplasts fuse, hundreds of adjacent cells incorporate to form the feed-

ing sites for cyst nematodes: syncytium (Fig 1.2B, Gheysen & Fenoll, 2002). The mechanism 

of feeding site formation is not fully understood, however, it is clear that secretions from 

pharyngeal glands of nematodes play an important role in this process. For instance, the effec-

tor 19C07 from Heterodera schachtii was reported to interact with Arabidospsis auxin influx 

transporter LAX3 (Lee et al., 2011), and manipulate auxin influx in syncytia, thereby facili-

tating their development (Davis et al., 2000, Gheysen & Fenoll, 2002, Vanholme et al., 2004, 

Gheysen et al., 2006, Hamamouch et al., 2012). 

After establishing a suitable feeding site, J2 undertake further feeding. Then they stop feeding 

and molt three times to undergo morphological changes to become pyriform-shaped adults 

(Fig 1.3B). A female root-knot nematode secretes a gelatinous matrix into which she extrudes 

a large number of eggs. The life cycle of a mitotic parthenogenic root-knot nematode is illus-

trated in Figure 1. 4. 

Cyst nematodes do feed during J3 and J4 stages. The adult female of cyst nematodes is char-

acterized by the tanning and drying (cutinization) of the body wall following fertilization and 

production of embryonated eggs (Karssen et al., 2006, Turner et al., 2006).  

Above-ground symptoms of infection with sedentary endoparasitic nematodes include sup-

pression of shoot growth, nutritional deficiencies such as chlorosis, temporary wilting and 

reduction of crop yields. In addition, infection by root-knot nematodes and cyst nematodes 

increases host susceptibility to other pathogens and nematodes (Bridge et al., 2005).  

Nematode under study: Meloidogyne graminicola  

Rice is the most widely consumed staple food for a large part of the world's human population, 

especially in Asia. However, pests and diseases are serious problems in rice production. The 

soil borne diseases, especially those caused by plant parasitic nematodes, are becoming more 

economically significant since water saving systems have been increasingly implemented (De 

Waele & Elsen, 2007). More than 200 species of plant-parasitic nematodes have been report-

ed to be associated with rice (Prot, 1994). Among these, the rice root-knot nematode, 

Meloidogyne graminicola is globally considered as the major nematode causing problems in 

rice production systems. M. graminicola was first described as a new species infecting grasses 

and oats in the USA in 1968 (Golden & Birchfield, 1968). Since then, it has been reported to 

have a broad host range including Oryza sativa, Alopecurus sp., Avena sativa, Beta vulgaris, 

http://en.wikipedia.org/wiki/Staple_food
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Brachiaria mutica, Brassica juncea, Sphenoclea zeylanica, Spinacia Oleracea and Triticum 

aestivum etc. (Dutta et al., 2011). It has been found mainly on rice in South and Southeast 

Asia but also in South Africa, United States, Colombia, and Brazil (De Waele & Elsen, 2007). 

In recent years, it has become a pathogen in wheat in Nepal, India, Pakistan and Bangladesh 

in the rice-wheat production system (Pokharel et al., 2007, Culman et al., 2006, Sharma-

Poudyal et al., 2003, Sharma, 2001). 

Second stage juveniles of M. graminicola cannot invade rice roots when the soil is under 

flooded conditions, but after draining off water, it can quickly infect host tissues (De Waele & 

Elsen, 2007). Yield damage of M. graminicola is greater under non-flooded, upland condi-

tions with less water than in lowland conditions. Under simulated upland conditions, yield 

losses from M. graminicola ranged from 20% to 80% (Plowright & Bridge, 1990, Prot & 

Matias, 1995, Tandingan et al., 1996), and in simulations of intermittently flooded rice, yield 

losses due to M. graminicola ranged from 11% to 73% (Soriano et al., 2000).   

Like all root-knot nematodes, the J2 of M. graminicola are attracted to the roots and penetrate 

the roots just behind the root tip. When J2 settle down and start to feed, giant cells (Fig 1.2A) 

are formed as a food source for the nematodes, meanwhile, neighboring cells start to divide 

and give rise to a typical hook-like gall in the root tips (Fig 1.3A), which is known as root-

knots. J2 moult three times to become swollen females, which lay their eggs in a gelatinous 

matrix inside the roots (Fig 1.3B). In most of the cases, females go through parthenogenesis 

without fertilization by males (Dutta et al., 2012). Completion of the life cycle from J2 to the 

second-generation J2 at 29/26 °C (day/night) under non-flooded conditions was 20 days 

(Fernandez et al., 2013). 

The seriously impaired roots caused by M. graminicola infection lead to poor absorption of 

water and nutrients from the soil, and as a consequence, plant growth is stunted, leaves are 

chlorotic and plants mature early. When studying the effect of the soil type on M. graminicola 

infection, Soriano et al. (2000) found that nematodes in sandy loam soil caused more severe 

damage to plant growth than in clay loam soil.  

There are not many options to control M. graminicola, continuous flooding appears to be 

effective (Kinh et al., 1982), when the rice crop is flooded early and kept flooded until a late 

stage of development (Garg et al., 1995, Soriano et al., 2000). By amending the soil with 

application of mass culture of two nematophagous fungi (Arthrobotrys oligospora and Dac-

tylaria eudermata), Singh et al. ( 2007 ) found that the number of root galls to be reduced by 

86.9% and 81.1%, and number of females by 94.2% and 91.7%, respectively. Resistant culti-

vars hold out the most promising and effective control for root-knot nematodes, and Oryza 
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glaberrima and Oryza longistaminata have proved to be resistant to M. graminicola (Soriano 

et al., 1999, Plowright et al., 1999). 

 

Fig 1.2 Nematode feeding sites (NFS). (A) Giant cells in rice roots caused by the rice root-knot nema-

tode. (B) Syncytium in potato roots caused by the potato cyst nematode. Reproduced from (Haegeman 

et al., 2012). 

 

   

Fig 1.3 (A) Rice roots infected by M. graminicola.  (B) Females of M. graminicola inside galls. Em: 

egg mass; Fb: Female body; Fs: Feeding site  

      

A B 



          

Chapter 1                                                                                             General  introduction                                                                                                                                       

13 
 

 

Fig 1.4 Life cycle of a mitotic parthenogenetic root-knot nematode. (a) Longitudinal section of a root 

tip showing second-stage juveniles (J2) (stained with acid fuschin) turning around at the root meristem 

to migrate into the vascular cylinder. (b) Typical symptoms (i.e. galls) on tomato roots. (c) Longitudi-

nal section of an infested root showing a mature female and five giant cells (∗) constituting the nema-

tode feeding site. Reproduced from Castagnone-Sereno et al. (2013).  

1.1.3 Management and control of plant parasitic nematodes 

Prevention 

Prevention should be the first line of management. This strategy keeps nematode populations 

from infected sites away from clean sites. It involves certification of plant propagation mate-

rials, restricting nematode dissemination, cleaning machinery and irrigation water (Perry & 

Moens, 2006). 

Chemical control 

Chemical control consists of two broad methods: fumigants and non-fumigant nematicides. 

Fumigants perform best control in soils where there is adequate moisture. The high efficacy is 

related to their high volatility at ambient temperatures. The gas diffuses through the spaces of 

soil particles, and nematodes in between the spaces are killed. Non-fumigant nematicides are 

relatively easy to apply, the products are as granules or liquids, and they can be directly ap-

plied to the soil surface. The active ingredients are then released and spreaded by rainfall or 

irrigation. However, all nematicides are eventually degraded and when they are flushed 
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through the soil, it causes problems to groundwater or other soil organisms. In addition, some 

of them are also toxic to humans, and are expensive to develop. Because of the high and non-

specific toxicity, and the public concerns about food safety and the adverse impact on the 

environment, the use of nematicides is becoming more and more restricted (Haydock et al., 

2013). 

Cultural control 

Cultural control of nematode problems encompasses crop rotation, fallow, multiple cropping, 

soil amendment, flooding, weed control, and use of natural enemies (Perry & Moens, 2006) . 

Plant resistance 

Resistant plants are defined as “plants that can reduce pathogen growth and do not have the 

ability to allow pathogen reproduction” (Gururani et al., 2008). Resistant varieties can be 

obtained by crossing naturally existing resistance or suitable genetic materials into commer-

cial varieties. Or by genetic engineering which directly integrate a desired trait (i.e. resistance 

gene) into another plant genome by using biotechnology. 

1.2 Plant innate immune system 

Plants are subjected to attack by an armada of different microbial pathogens and parasites. 

During evolution, plants have developed a powerful immune system to arm with their attack-

ers. The initial obstacle for the phytopathogens is plant pre-existing defence, such as structur-

al barriers, including the plant cell wall, spines, wax on cell surface; or antimicrobial toxins. 

Once attackers are able to overcome the constitutive defence layers, they still face plant innate 

immunity which is triggered by two levels of microbial recognition. The first branch of plant 

immunity occurs at the plant cell surface. Pathogen- or Microbial-associated molecular pat-

terns (PAMPs/MAMPs) such as fungal chitin, bacterial flagellin or bacterial lipopolysaccha-

rides are conserved molecular signatures in many microbes. They are perceived by plant 

transmembrane pattern recognition receptors (PRRs), resulting in activation of multiple 

downstream defence signaling events to achieve a basal level of resistance, this immunity is 

called PAMP-triggered immunity (PTI) (Fig 1.5, Chisholm et al., 2006, Spoel & Dong, 2012). 

PTI leads to physical isolation of the pathogens through producing ion fluxes, callose, phenol-

ics and active oxygen production, as well as activation of a downstream mitogen activated 

protein kinase cascade, transcriptional changes and production of pathogenesis-related (PR) 

proteins and phytoalexins (Spoel & Dong, 2012). The best characterized PAMP in plants is 

the bacterial elicitor flagellin, which is recognized in the plant model Arabidopsis thaliana by 

leucine-rich repeat receptor-like kinases (LRR-RLK), FLAGELLIN-SENSING 2 (FLS2). 



          

Chapter 1                                                                                             General  introduction                                                                                                                                       

15 
 

FLS2 directly binds to flg22 and interacts with brassinosteroid receptor BRI1-associated re-

ceptor kinase 1 (BAK1) to trigger the basal defence signaling (Chinchilla et al., 2007, Zipfel, 

2008). In the model monocot rice (Oryza sativa), the rice homologue OsFLS2 has been 

demonstrated to act as a functional fagellin receptor (Takai et al., 2008), and a variety of dif-

ferent PAMPS have been shown to be active in rice, including bacterial lipopolysaccharides 

(Desaki et al., 2006) and chitin (Kishimoto et al., 2010).  

During evolution, adapted pathogens acquired the ability to secrete effectors directly into the 

plant cell to circumvent PTI. In turn, through co-evolution with pathogens, plants have devel-

oped intracellular immune receptors known as resistance (R) proteins that can directly or indi-

rectly recognize pathogen effector molecules which are termed avirulence (Avr) proteins, 

resulting in activating effector triggered immunity (ETI, Fig 1.5, Jones & Dangl, 2006, Spoel 

& Dong, 2012). ETI is a faster and stronger version of PTI that typically associates with pro-

grammed cell death of the infected cells, this hypersensitive response (HR) limits pathogen to 

the initial infected point and restricts access to water and nutrients. ETI also leads to the pro-

duction of antimicrobial molecules, and massive generation of ROS, leading to local re-

sistance to the pathogen (Greenberg & Yao, 2004, Glazebrook, 2005). Most R genes encode 

nucleotide-binding leucine-rich repeat (NB-LRR) proteins (Collier & Moffett, 2009). NB-

LRR proteins can recognize diverse pathogen effectors and activate similar local and systemic 

defence responses, which involves hormone networks, ROS-generation, and gene expression. 

LRR-mediated disease resistance is effective against obligate biotrophs, and hemibiotrophic 

pathogens but not against necrotrophs ( Fig 1.5, Jones & Dangl, 2006 ).  

There are two ways that effectors can be recognized by R genes, direct recognition and indi-

rect recognition (Jones & Dangl, 2006, Spoel & Dong, 2012). Direct recognition happens if 

one effector is recognized by a corresponding NB-LRR protein. For instance, Amrita, a Mag-

naporthe  grisea effector, is recognized directly by the rice NBS-LRR protein PITA and this 

induces a Pi-ta-mediated defence response, such as cell death to stop the spread of M. grisea 

(Jia et al., 2000). However, for many R genes in plant genomes, this gene for gene model 

cannot explain the broad immune capacity of plants; therefore, the “guard hypothesis” was 

proposed and proven (Jones & Dangl, 2006). Several R proteins recognize type III effectors 

indirectly, as they “guard” self-proteins which are perturbed or modified by pathogen effec-

tors, and then R protein activation is triggered (Jones & Dangl, 2006 ). The best studied R 

proteins guarded cellular target is the Arabidopsis thaliana protein RPM1-INTERACTING 

PROTEIN4 (RIN4). Without pathogen challenge, R proteins will detect unmodified RIN4, 

and will maintain in an inactive state. Once a pathogen such as Pseudomonas syringae attacks, 

and injects effector molecules into the plant cell, the RIN4 will be phosphorylated by a certain 
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kinase, the modified RIN4 will be detected by R proteins and this leads to their activation and 

triggers effector-triggered immunity (McHale et al., 2006). 

 

 

Fig 1.5 A zig-zag model illustrates the quantitative output of plant immune system. Adapted from 

Jones and Dangl (2006). PRR: Pattern recognition receptor, CC-NB-LRR: Coiled-coil-nucleotide-

binding site-leucine-rich repeat. 

Nematode resistance genes 

A few nematode resistance genes have been mapped and cloned from agronomically im-

portant crops like potato, tomato, beet, pepper, soybean and cereals. Some examples are illus-

trated in this section. 

The first cyst nematode resistance gene identified was Gpa2 from Solanum tuberosum (Van 

Der Vossen et al., 2000). This NBS-LRR gene contributes resistance of potato to the cyst 

nematode Globodera pallida. Additionally, another R gene Hero against potato cyst nema-

tode from tomato confers high level of resistance to another potato cyst nematode Globodera 

rostochiensis and partial resistance to Globodera pallida.   

The first root-knot nematode resistance gene Mi1 was identified from tomato, there are three 

homologues, Mi-1.1, Mi-1.2 and one pseudogene (Rossi et al., 1998, Vos et al., 1998). Mi-1.2 

belongs to an NBS-LRR super family of R genes and not only exhibits resistance to root-knot 

nematodes but also to potato aphid and whitefly Bemisia tabaci (Rossi et al., 1998, Vos et al., 

1998, Nombela et al., 2003, Goggin et al., 2006). In addition, an Mi-1 gene homolog Rpi-blb2 
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gene from Solanum bulbocastanum confers a broad spectrum resistance against Phytophthora 

infestans in potato (Vossen et al., 2005). 

There are two major types of resistance responses in the incompatible plant-nematode interac-

tions related to R genes. The first type is characterized by a rapidly induced hypersensitive 

response in the early stage of feeding site formation accompanied by the accumulation of 

phenylpropanoid compounds, necrosis, and subsequently feeding site development will be 

arrested (Table 1.1A, Bakker et al., 2006). 

Another type is HR-independent response, which is characterized by degeneration of feeding 

cells at the late stages of the infection process. At the initial stage, there is no difference in 

feeding site morphology between compatible and incompatible interactions, however, during 

a later stage, the feeding cells in the resistant plants contain less dense cytoplasm and more 

vacuoles compared to the feeding cells in susceptible plants. Moreover, there are also no clear 

connections with surrounding cells, in the end, feeding cells become necrotic and degenerate, 

resulting in less developed females (Table 1.1B, Bakker et al., 2006). 

The resistance mechanism of some R genes against cyst and root-knot nematode infection is 

summarized in Table1.1, adapted from Bakker et al. (2006). 

Table 1.1A Overview of the reported mode of actions of plant resistance genes against nematodes. 

Those R genes rapidly induce HR responses in the early stage of feeding site formation. 

 

Table 1.1B Overview of the reported mode of actions of plant resistance genes against nematodes. 

Those R genes induce the degeneration of feeding cells at the late stages of the infection process, and 

they do not induce HR responses. 

Host plant                  Nematode                         R gene                         Reference 

Tomato                       M. incognita                                 Mi1                     (Paulson & Webster, 1972) 

                                                                                                                     (Riggs & Winstead, 1959) 

Potato                         G. rostochiensis                              H1                     (Rice et al., 1985) 

Soybean                     H. glycines                                         ?                      (Mahalingam & Skorupska, 1996) 

Soybean                     H. glycines                                         ?                      (Endo, 1991) 

Pepper                       M. incognita                                   Me3                     (Bleve-Zacheo et al., 1995) 

Arabidopsis               H. glycines                                    Non-host               (Grundler et al., 1997)  

Wheat                        H. avenae                                         ?                         (Bleve-Zacheo et al., 1995) 

Host plant                 Nematode                        R gene                                Reference 

Wheat                           H. avenae                                  ?                                      (Williams & Fisher, 1993) 

Barley                          H. avenae                                Ha2, Ha3                           (Seah et al., 2000) 
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1.3 Molecular aspects of nematode and plant interactions 

1.3.1 Nematode genes involved in parasitism 

The compounds that are secreted by a nematode into the host tissues in order to promote para-

sitism and subsequently alter plant physiology are considered as nematode effectors. They 

have evolved specifically or may have been modified from other successful pathogens (Davis 

et al., 2000). The main source of the effectors is from one dorsal gland (DG) and two subven-

tral glands (SVG), which are the transcriptionally active pharyngeal glands (pharyngeal gland: 

large secretory cell, having enzymatic functions and variable secretory activities). The secre-

tions enter the nematode stylet, and are injected into plant cells in order to establish parasitism. 

Although effector proteins are mainly produced from the pharyngeal glands, proteins from 

amphids (amphids: invaginations of cuticle in the anterior of nematodes, chemosensory or-

gans) and epidermis also play a role in the parasitic process (Jones et al., 2000, Semblat et al., 

2001). Cuticle associated molecules may be essential for nematodes to avoid host defence, 

and the compounds secreted by amphids may be involved in perception of environmental 

stimuli, or may act as signaling molecules during the interaction with host plants (Curtis, 

2007, Perry, 1996, Semblat et al., 2001).  

Degradation of the plant cell wall by nematodes during penetration and migration 

The plant cell wall represents a formidable barrier to plant parasitic nematodes, both for those 

that the bodies remain outside cells (ectoparasite) or those that need to penetrate and migrate 

in plant roots (endoparasite). It is a thick and rigid structure; the major carbohydrates making 

up the plant primary cell wall are cellulose, hemicellulose and pectin. The nematodes can 

disrupt the plant cell wall with their stylet in combination with pharyngeal gland secretions to 

mediate penetration and migration through plant tissues (Sijmons et al., 1994, Hussey et al., 

1998). Lots of evidence demonstrates that nematodes secrete cell wall degrading enzymes to 

assist in this process. Smant et al. (1998) identified two beta-1, 4-endoglucanases (EGase) 

which belong to family 5 of the glycosyl hydrolases from two cyst nematode species: Glo-

bodera rostochiensis and Heterodera glycines, respectively. In situ hybridization showed the 

four EGases are expressed in the SVG. This was the first example of non-symbiotic degrada-

tion of cellulose in plant cell wall by an animal (Smant et al., 1998). The cyst nematode 

Sugar beet                   H. schachtii                             Hs1pro−1                           (Yu, 1984) 

Pepper                        M. incognita                             Me1                                    (Bleve-Zacheo et al., 1998) 

Common bean           H. glycines                                  ?                                        (Becker et al., 1999) 

Tobacco                    M. incognita, M. acrita                ?                                       (Powell, 1962) 

Potato                       G. pallida                                   Gpa2                                   (Goverse et al., 2001) 

Potato                       G. pallida,  G. rostochiensis      Grp1                                   (Rice et al.,1987) 
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EGase was remarkably similar to bacterial members of glycosyl hydrolase family 5 (GHF5) 

(Henrissat & Bairoch, 1996), which was the first evidence of genes acquired through horizon-

tal gene transfer (HGT) from prokaryotes to eukaryotes (Davis et al., 2000, Keen & Roberts, 

1998, Smant et al., 1998, Gogarten et al., 2002, Jones et al., 2005, Haegeman et al., 2011). 

Since then, many endoglucanase genes from other PPN species have been identified (Davis et 

al., 2008, Haegeman et al. 2012, Davis et al., 2011). Most of those endoglucanases belong to 

GHF5. Interestingly, the endoglucanases present in Bursaphelenchus xylophilus belong to 

GHF45, which show highest homology to fungal sequences. This is logic because these en-

doglucanases could have been obtained from fungi by HGT since B. xylophilus is a fungal 

feeder (Kikuchi et al., 2004). 

Besides endoglucanases, other cell wall degrading enzymes that act on other sugar polymers 

as well as other proteins without any hydrolytic activity, including expansin and cellulose 

binding proteins, have also been identified in plant parasitic nematodes, a more detailed de-

scription of those proteins from different PPN are can be found in Davis et al. (2011) and 

Haegeman et al. (2012). 

Effectors involved in feeding site formation and host defence suppression 

While many parasitism genes that are expressed in the subventral glands (SVG) produce pro-

teins that assist in penetration and migration, the dorsal gland (DG) cell is more active during 

and after establishing the feeding cells. Many stylet secretions from cyst and root-knot nema-

todes contain effectors that are active during the sedentary phase of parasitism, either for 

feeding site induction or for suppressing host defence. They are produced in the DG or in both 

DG and SVG. In the following paragraphs, some effectors involved in feeding site formation 

and host defence suppression are being described as examples. 

Among pharyngeal gland genes from the root-knot nematode Meloidogyne javanica, one 

clone that codes for a potentially secreted chorismate mutase (CM) was characterized 

(Lambert et al., 1999). Later on, CM was found to be produced by a broad range of PPN as an 

effector. CM is a key regulatory enzyme in the shikimate pathway in plants and bacteria, and 

except it, there are no other enzymes from this pathway present in PPNs (Haegeman et al., 

2012). The authors hypothesized that CM from nematodes might play an essential role in 

nematode parasitism on plants, however, it is still not clear how. Meloidogyne javanica 

chorismate mutase 1 (MjCM-1) has been shown to lower indole-3-acetic acid (IAA) by caus-

ing a competition for the common substrate chorismate, resulting in an alteration of choris-

mate-derived metabolites and plant cell development (Doyle & Lambert, 2003). Recently, it 

was found that Cmu1, a constitutively active chorismate mutase secreted by Ustilago maydis 

is taken up into the cytosol of its host maize cells and competes with the endogenous SA bio-
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synthesis pathways for chorismate. This results in limiting defence responses triggered by 

salicylic acid. Therefore, it was suggested that chorismate mutase could modulate auxin levels 

or salicylic acid mediated defences of the host (Djamei et al., 2011). 

Secretory peptides that shared homology to a C-terminal motif of the CLAVATA3/ESR-

related (CLE) family in Arabidopsis thaliana were identified from the parasitic stage of soy-

bean cyst nematode Heterodera glycines (Wang et al., 2001, Olsen & Skriver, 2003, Gao et 

al., 2003), and more recently from Heterodera schachtii and the potato cyst nematode Glo-

bodera rostochiensis (Wang et al., 2011, Lu et al., 2009, Patel et al., 2008). Expression of the 

peptide from H. glycines in Arabidopsis thaliana can rescue the A. thaliana (At) clv3-1 mu-

tant. The intriguing similarity between host and parasitic sequences could be an example of 

adaptive molecular mimicry, although the biological function of these peptides mimics in 

feeding cell formation is unclear at present. CLAVATA3 (CLV3) is known to be involved in 

cell-fate determination in meristem formation, and those peptides possibly trigger develop-

mental changes necessary for syncytium formation (Olsen & Skriver, 2003, Wang et al., 2005, 

Replogle et al., 2011, Replogle et al., 2013, Mitchum et al., 2008). A root-knot nematode 

gene, 16D10, which is expressed in the subventral gland cells, encodes a 13 amino acid secre-

tory peptide that has some homology to the C-terminal CLE motif of plant CLE peptides 

(Huang et al., 2003). However, it cannot rescue clv3 mutant phenotypes in A. thaliana (Huang 

et al., 2006b). Transgenic plants with RNA silencing against this peptide exhibited a broad 

root-knot nematode resistance (Huang et al., 2006a). However, the real function in parasitism 

is still unknown. Cyst and root-knot nematodes probably target similar plant processes to 

initiate and maintain feeding sites. Nevertheless, they apply different molecular means to 

accomplish their goals, as illustrated in the case for CLE peptides (Mitchum et al., 2013). 

Being biotrophic pathogens, sedentary nematodes have to keep their feeding sites alive and 

functional for all the developing stages. In order to achieve this successful interaction, root-

knot and cyst nematodes need to suppress host defence. To date, no nematode proteins or 

cuticle compounds triggering PTI have been identified. Mi-CRT (CRT: calreticulin) from M. 

incognita was demonstrated to suppress PTI. Mi-CRT overexpression in A. thaliana sup-

pressed the induction of defence marker genes and callose deposition after treatment with the 

pathogen-associated molecular pattern elf18 (Jaouannet et al., 2013). At present, there are few 

nematode effectors that have been linked experimentally to ETI. The best example of nema-

tode effectors linked to ETI is the Gp-RBP-1 SPRYSEC gene from Globodera pallida (Sacco 

et al., 2009). Transient co-expression of Gp-RBP-1 together with the nematode resistance 

gene Gpa2 (CC-NB-LRR) triggered HR response in plant leaves (Smant & Jones, 2011, 

Rehman et al., 2009). Another example is the root-knot nematode gene Mi-Cg1 which ap-

pears to be involved in triggering an immune response in tomato plants carrying the Mi-1.2 
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resistance gene (Goggin et al., 2006, Gleason et al., 2008). Researchers found that continu-

ously culturing an avirulent strain of M. javanica carrying Cg1 on resistant tomato carrying 

Mi-1.2 would result in the loss of Cg1 and M. javanica becoming virulent. Silencing the Cg1 

gene in the avirulent strain by RNA interference conferred virulence to this strain on tomato 

carrying Mi-1.2, thus, implying a role of Cg1 in triggering Mi-1 mediated resistance. The 

mechanism behind the interaction of Cg1 with the Mi-1.2 protein is currently unknown 

(Hewezi & Baum, 2013, Gleason et al., 2008).  

Through the approach of transcriptomic and genomic sequence mining of nematodes, large 

panels of candidate effectors have been identified, some of them used to protect the nema-

todes during migration, some involved in ubiquitination, and some targeting plant signaling 

pathways (Mitchum et al., 2013, Haegeman et al., 2012, Smant & Jones, 2011, Quentin et al., 

2013, Gheysen & Mitchum, 2011). Transcriptomic studies of the pharyngeal glands combined 

with genome studies will truly expand our understanding of effector repertoires and their var-

iability among genera, species and pathotypes. The approaches that allow high-throughput 

interactor screens, such as yeast two-hybrid analyses, in planta bimolecular fluorescence 

complementation (BiFC), will help to study the function of those effectors in parasitism 

( Mitchum et al., 2013). 

1.3.2 Plant genes involved in feeding site formation 

As biotrophic pathogens root-knot and cyst nematodes induce remarkable reprogramming of 

(un)differentiated root cells during their feeding site formation, induction and suppression of 

host genes seem to be essential to establish this long-term interaction with plants. 

The role of plant hormones in nematode feeding sites 

Many genes differentially expressed in response to nematodes are involved in the hormone 

pathways. Plant hormones are not only involved in feeding site formation, but also in plant 

defence. Biotrophs need to manipulate the balance between their own feeding site develop-

ment and suppression of plant defence. The major hormonal changes occurring in nematode 

feeding site (NFS) and surrounding tissues deduced from the expression of hormone biosyn-

thesis and degradation genes, and hormone responsive genes were summarized minutely by 

Kyndt et al. (2013a). In the following paragraphs, some examples are described.  

Previous studies have revealed that auxin accumulated in galls and feeding cells of root-knot 

and cyst nematodes (Karczmarek et al., 2004, Grunewald et al., 2009). Further examination 

of the role of auxin in feeding cell development by using auxin transport and signaling mu-

tants has shown that there is significantly less infection by both root-knot and cyst nematodes 

in those mutants compared to control plants (Grunewald et al., 2009, Goverse & Bird, 2011). 
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These results suggest that auxin plays an important role in NFS formation and maintenance, 

and further assists nematode development.  

Ethylene (ET) is significantly attenuated in the gall tissue and feeding sites at early time 

points (Kyndt et al., 2013a). However, functional analysis of Arabidopsis transgenics over-

producing ET resulted in more cyst nematodes in plant roots, and histological analysis 

showed the enlargement of the syncytia in ET-overproducing plants (Wubben et al., 2001, 

Goverse et al., 2000).  

As seen in Figure 1.6, the defence related hormone salicylic acid (SA) was strongly attenuat-

ed in 3 days after inoculation (dai)  galls in rice (Kyndt et al., 2012a) and in Arabidopsis 

(Barcala et al., 2010). This may be due to root-knot nematodes strongly suppressing plant 

defence. However, in the case of cyst nematodes, the SA pathway genes were up-regulated in 

the surrounding tissue of syncytia at early time points, the damage to the cells during cyst 

nematode intracellular migration probably contributes to the up-regulation of defence related 

genes. 

The role of other hormones involved in NFS has been illustrated very minutely in the follow-

ing reviews: Kyndt et al. (2013a) and Goverse & Bird (2011). 

 

Fig.1.6 Schematical representation of the transcriptional changes in plant hormone pathways upon 

nematode infection in a compatible interaction with plant roots and in isolated nematode feeding sites. 

Activation or repression is shown in comparison with the corresponding uninfected root tissue, and is 



          

Chapter 1                                                                                             General  introduction                                                                                                                                       

23 
 

illustrated as big or small lettering, respectively. For hormones not indicated on the graph the data are 

contradictory, or no data are available. Reproduced from Kyndt et al. (2013a). Reference: (1) (Ithal et 

al., 2007a) (2) (Goverse et al., 2000) (3) (KARCZMAREK et al., 2004) (4) (Grunewald et al., 2009) (5) 

(Barcala et al., 2010) (6) (Hutangura et al., 1999) (8) (Lohar et al., 2004) (9) (Ithal et al., 2007b) (10) 

(Alkharouf et al., 2006) (11) (Kyndt et al., 2012a) (12) (Jammes et al., 2005) (13) (Glazer et al., 1985) 

(14) (Ibrahim et al., 2011) (15) (Hermsmeier et al., 2000) (16) (Ali et al., 2013) 

Plant cell cycle genes in nematode induced feeding sites 

Root-knot and cyst nematodes feed for a long period from the feeding sites they formed, 

which have high metabolic activity. As seen by a dense cytoplasm, multiple enlarged nuclei, 

and small vacuoles. Activation of the cell cycle has been demonstrated to be crucial for nor-

mal feeding site development and subsequent nematode growth and reproduction (de Almeida 

Engler et al., 1999, Van de Cappelle et al., 2008). Functional analysis of endoreduplication 

related genes demonstrated their strong implication in endoreduplication process taking place 

in giant cells and syncytia. A reduction in feeding-cell size, severely impaired nematode mat-

uration and reproduction were observed in plants in which the cell endocycle was inhibited. 

Not only endoreduplication, but also mitosis plays an important role in feeding cell formation. 

Mitosis occurs in giant cells for getting abundant nuclei and also in surrounding cells prior to 

incorporation into syncytia. When mitosis was blocked by oryzalin, giant cells were less 

dense compared to untreated ones and a large number of nematodes failed to mature. Similar-

ly, treated syncytia were narrow compared to untreated ones and with slightly fewer mature 

females. Manipulation of the precise balance between mitosis and endoreduplication in feed-

ing cells is crucial for nematode survival and reproduction (de Almeida Engler & Gheysen, 

2013). 

Besides cell cycle activation, plant cytoskeleton remodeling also occurs in feeding site for-

mation, it has been discussed by de Almeida Engler & Favery (2011), Kyndt et al. (2013a), 

and Caillaud et al. (2008). 

A global view on the changes in gene expression in feeding sites 

To study the alteration of plant organ development such as changes in cell cycle, hormone 

regulation, and cell wall architecture by nematode infection, and to get a global view of tran-

scriptome changes during feeding cell formation in compatible or incompatible interactions, 

tools including cDNA subtraction, promoter–β-glucuronidase fusions, in situ hybridizations, 

(in situ) reverse-transcription polymerase chain reaction (RT-PCR), and microarrays have 

been exploited (Gheysen et al., 2006).  
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However, as giant cells and syncytia make up only a small fraction of the root cells, the anal-

ysis of gene expression only at the feeding cells is required. Laser capture microdissection 

(LCM) which originally was developed as an effective tool for the isolation of individual cells 

in mammalian systems (Bonner et al., 1997, Emmert-Buck et al., 1996), allows to isolate and 

clone mRNA populations from individual target cells within complex tissues. This technique 

coupled with microarray was successfully employed for capturing giant cells and syncytia. 

Data generated by this combination provide us a deep understanding of the plant genes truly 

involved in feeding site formation or maintenance (Klink et al., 2007, Ithal et al., 2007b, 

Portillo et al., 2009, Fosu-Nyarko et al., 2009, Barcala et al., 2010, Portillo et al., 2013, Klink 

et al., 2010, Damiani et al., 2012). 

More recently, the deep sequencing technology RNAseq was successfully applied to study the 

transcriptome reprogramming in rice roots caused by nematodes (Kyndt et al., 2012a). 

RNAseq allows identification of novel transcripts which are not covered in microarrays. 

Through analyzing the local transcriptional changes in rice roots upon Meloidogyne gramini-

cola and Hirschmanniella oryzae (root rot nematode) infection, the authors found genes in-

volved in metabolic pathways and nutrient transport to be enhanced in the induced root gall. 

However, genes participating in local defence were suppressed. For example, the antimicrobi-

al peptide OSTHI7 was strongly down-regulated in 3dai galls. The migratory Hirschmanniel-

la oryzae, on the other hand, induce programmed cell death and oxidative stress, and obstruct 

the normal metabolic activity of the root. The different cellular responses in plants to the two 

distinct feeding behavioral nematodes provide an unprecedented insight into the compatible 

interaction between nematodes and plant roots (Kyndt et al., 2012a). 

1.4 Induced resistance  

After plants are exposed to certain biotic or abiotic stimuli, they can express an enhanced 

defensive capacity to subsequent pathogen infections, and this resistance is commonly re-

ferred to as induced resistance (IR). This enhanced state of resistance is effective against a 

broad range of pathogens and parasites, including fungi, bacteria, viruses, nematodes, parasit-

ic plants, and even insect herbivores (Choudhary et al., 2007). 

Induced resistance is a form of resistance caused by activating the host’s own genetically 

programmed defence pathways, leading to a fast and strong response upon pathogen infection 

(Hammerschmidt, 2007). Defence responses can be activated, or primed for rapid activation, 

in locally infected sites or in systemic tissues. Induced resistance can be split broadly into 

systemic acquired resistance (SAR), induced systemic resistance (ISR), BABA-induced re-

sistance (BABA-IR) and wound induced resistance (WIR). 
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1.4.1 Systemic Acquired Resistance  

The first detailed description of systemic acquired resistance was tobacco mosaic virus (TMV) 

induced resistance in tobacco (Ross, 1961). A zone surrounding TMV caused lesions on a 

hypersensitive host became highly resistance to subsequent inoculation of the same leaf and 

even extended to distant upper leaves, resulting in much smaller, and occasionally fewer le-

sions. This resistance is referred to as systemic acquired resistance (SAR, Ross, 1961). Sub-

sequent work has shown that systemic induction of disease resistance in plants by necrotizing 

pathogens is a general phenomenon, and occurs in many di- and mono-cotyledonous species 

(Hammerschmidt, 1995, Sticher et al., 1997). 

SAR refers to the enhanced resistance that occurs against a broad and distinctive spectrum of 

pathogens, and is triggered by pathogen- induced localized necrosis. The inducing necrosis is 

either part of the HR or a symptom of disease (Durrant & Dong, 2004, Maleck & Dietrich, 

1999). Within a few hours of the localized necrosis, the plant begins to express a subset of 

pathogenesis related genes both locally and systemically, and the signal molecule salicylic 

acid plays an important role in this process (Antoniw & White, 1980, Van Loon, 1985, 

Gaffney et al., 1993).  

The SAR state is activated by many microbes that cause tissue necrosis but it can also be in-

duced by exogenous application of SA or its functional analogs INA (2,6-dichloroisonicotinic 

acid), BTH (benzo (1,2,3) thiadiazole-7-carbothioic acid S-methyl ester) (Ryals et al., 1996, 

Sticher et al., 1997). Both INA and BTH induce a broad spectrum resistance and PR gene 

expression in the same way as biological inducers of SAR, they interact with the SAR signal 

pathway either at or downstream of the site of SA, since both of them induce SAR in SA defi-

cient plants (Shah, 2003, Delaney, 2010). 

Signals in Systemic Acquired Resistance 

SAR has been studied extensively in the two dicot models tobacco and Arabidopsis. The on-

set of SAR is accompanied by the increased accumulation of the signaling hormone salicylic 

acid (Yalpani et al., 1991). The first insight that SA might participate in SAR came from ex-

periments by White. By exogenous injection of acetylsalicylic acid (aspirin) or SA into tobac-

co leaves, they reported induced resistance to subsequent infection by TMV and accumulation 

of PR proteins (White, 1979). Since then, SA has been proven as an essential signal for SAR 

across a range of plants, although the mechanisms by which SA induced SAR might differ 

(Conrath et al., 2006, Durrant & Dong, 2004). Further support for the importance of SA for 

SAR came from studies with mutants and transgenic plants that exhibit altered levels of SA. 

Removal of SA in transgenic tobacco and Arabidopsis plants that produce the bacterial SA-

degrading enzyme salicylate hydroxylase (NahG) which converts SA to catechol results in 
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more susceptibility to subsequent disease challenge and these plants are unable to mount an 

SAR response after biological induction (Gaffney et al., 1993, Ryals et al., 1996). NONEX-

PRESSER OF PR GENES 1 (NPR1) is a transcription factor activator that is present in the 

cytosol in an oligomeric form in the absence of SA, when SA accumulates in the cytosol, 

NPR1 is monomerized and enters the nucleus to interact with transcription factors, leading to 

PR gene activation (Mou et al., 2003). Its expression is likely mediated by WRKY transcrip-

tion factors, as mutation of the WRKY binding sites (W-boxes) in the NPR1 promoter abol-

ished its expression (Yu et al., 2001). Plants overexpressing NPR1 did not contain enhanced 

SA levels or increased PR gene expression. However, more rapid or higher induction of PR 

genes was observed in these over-expressing lines after pathogen attack (Cao et al., 1998, 

Friedrich et al., 2001).  

SAR was first detected 2–3 days after primary virus infection and reached a maximum after 7 

days, demonstrating that plants require time to generate, transport and deliver the long-

distance signal that induces resistance in the upper leaves (Ross, 1961). Recently, Park and 

co-workers provided evidence that methyl salicylic acid (MeSA), rather than SA, functions as 

the critical mobile signal by grafting experiments in tobacco. MeSA esterase, which converts 

MeSA back into SA, is required for signal perception in systemic tissues (Park et al., 2007). 

However, although A. thaliana mutants that lack salicylic acid methyltransferases failed to 

accumulate MeSA, they could still activate SAR, and it has been found that most of the Me-

SA produced by A.thaliana during infection is evaporating as a volatile (Attaran et al., 2009). 

Hence, there must be other molecules also serving as SAR signals. Indeed, besides MeSA, 

several other mobile SAR signals have been discovered in Arabidopsis, such as glycerol-3-

phosphate (Chanda et al., 2011), azelaic acid (Jung et al., 2009), dehydroabietinal 

(Chaturvedi et al., 2012). Those diverse signals are highly condition dependent, the network 

between those signals is considered as a safety mechanism to prevent cost-intensive immune 

response in different defence systems (Dempsey & Klessig, 2012).  

Compared with dicots, the knowledge of SAR in monocots is scarce. In rice, five NPR1-like 

genes have been identified, among which OsNPR1 (also called OsNH1) is the closest AtNPR1 

homolog (Yuan et al., 2007). Over-expression of endogenous OsNPR1 resulted in an en-

hanced resistance to Xanthomonas oryzae pv. oryzae and the blast fungus Magnaporthe ory-

zae in rice (Yuan et al., 2007). Transgenic rice plants expressing NahG increased the suscep-

tibility against Magnaporthe grisea (Yang et al., 2004), although PR gene expression profiles 

were not changed. Rice has high basal levels of free SA that are only weakly responsive to 

pathogen attack, however, SA plays an important role to modulate redox balance and protects 

rice plants from oxidative damage caused by aging, pathogen attack, or abiotic stress (Yang et 

al., 2004). 



          

Chapter 1                                                                                             General  introduction                                                                                                                                       

27 
 

The WRKY family of transcription factors has been suggested to play an essential role in 

controlling defence gene regulation through the W-box motif in their promoter regions 

(Rushton et al., 1996, Eulgem et al., 1999, Maleck et al., 2000). Rice has a large WKRY tran-

scription factor family; OsWRK45 has been shown to be transcriptionally up-regulated after 

SA and BTH treatments. BTH induced resistance against Xanthomonas oryzae pv. oryzae and 

Magnaporthe oryzae but is compromised in OsWRKY45 knockdown rice. OsWRKY45 over-

expressing rice plants show an excellent resistance to both of these pathogens, although not to 

the sheath blight pathogen Rhizoctonia solani (Shimono et al., 2012, Shimono et al., 2007, 

Takatsuji et al., 2010). Meanwhile, most genes up-regulated by BTH treatment are regulated 

by OsWRKY45 and many are directly associated with plant defence (Takatsuji et al., 2010). 

All the results suggest that OsWRKY45 plays an important role in SA mediated plant defence. 

Epistasis analysis revealed that WRKY45 is involved in a signaling pathway downstream of 

SA but independent of OsNPR1 in the SA conduit (Shimono et al., 2007).  

Application of SA against plant-parasitic nematodes 

Many studies have been carried out to investigate the role of SA against plant-parasitic nema-

todes. Foliar application of BTH to glasshouse Cabernet sauvignon grapevines caused a sig-

nificant reduction in mature females and egg deposition in root-knot nematode species (Owen 

et al., 2002). Similarly, foliar spray of SA to okra and cowpea 24h before inoculation with M. 

incognita reduced nematode infestation (Nandi et al., 2003), and the same result was also 

observed upon the foliar application to tomato against M. incognita (Zinovieva et al., 2011). 

Moreover, soil-drench with SA markedly reduced M. incognita reproduction (less than 50% 

that of untreated plants) on susceptible tomato roots, and this treatment caused a long-lasting 

induction of plant defence as even the infestation by the second generation of the nematode 

was inhibited (Molinari & Baser, 2010). It has also been shown that SA plays a critical role in 

the defence response mediated by the Mi-1 root-knot nematode resistance gene. Tomato 

plants carrying the Mi-1 gene and expressing the NahG gene, partially lost the resistance 

against root-knot nematodes (Branch et al., 2004) and aphids (Li et al., 2006b). When sup-

plied with BTH, the resistance was completely restored (Branch et al., 2004). Exogenous 

application of BTH on the shoots of Oryza sativa L. cv. Nipponbare induced a systemic de-

fence in rice against root-knot nematode M. graminicola, and NahG transgenic rice plants had 

slightly more galls compared to wild type (Nahar et al., 2011). Similarly, INA and BTH on 

tomato only induced minor defence responses against M. javanica, with slightly lower gall 

numbers observed.  

Besides conferring resistance to root-knot nematodes, evidence has been found that SA and 

related chemicals can also confer resistance to cyst nematodes. Kempster et al. (2001) found 
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that applying SA and BTH induced clover resistance against Heterodera trifolli. Similarly, 

Wubben et al. (2008) found that SA-deficient mutants exhibited increased susceptibility to H. 

schachtti, and SA-treated wild type Arabidopsis showed decreased H. schachtii infection.   

PR proteins 

Pathogenesis-related (PR) proteins are small proteins with antimicrobial activities, found to 

be inducible by infection with various types of pathogens in many plant families. Most PRs 

are induced in various tissues in response to the signaling compounds salicylic acid, jasmonic 

acid, ethylene or abscisic acid. Abiotic stresses can also elicit defence-related protein induc-

tion, as in the case of osmotic stress, cold stress, or wounding (Horvath et al., 1998, Ponstein 

et al., 1994, Xu et al., 1994). Some PRs have been found to be expressed in a developmental-

ly controlled, organ-specific manner in healthy plants (Van Loon et al., 2006).  

PRs have a dual cellular localization – vacuolar and apoplastic. Most acidic PR proteins are 

located in the intercellular spaces, whereas basic PR proteins are predominantly located in the 

vacuole (Van Loon et al., 2006). 

1.4.2 Induced Systemic Resistance  

Colonization of plant roots by some soil microbes, such as plant growth-promoting rhizobac-

teria (PGPR) or endophytic fungi (PGPF), can directly promote plant growth by competition 

for nutrients with soil-borne pathogens, making nutrients available for the plant, improving 

plant nutrient uptake and photosynthesis (Spaepen et al., 2009, Trillas & Segarra, 2009), via 

repression of soil-borne pathogens by the production of siderophores or antibiotics and im-

proving plant stress tolerance (De Vleesschauwer & Höfte, 2009). These beneficial microor-

ganisms can indirectly reduce plant disease through activating the plant to better defend itself, 

termed as induced systemic resistance (ISR) (Kloepper et al., 1992, Van Loon et al., 1998). 

ISR was first described in 1991. Van Peer et al. (1991) discovered that resistance can be in-

duced by the rhizobacterium Pseudomonas sp. strain WCS417r against Fusarium spp. in car-

nation (Van Peer et al., 1991), and simultaneously, Wei et al. (1991) reported that  some se-

lected PGPRs were shown against the same fungus in leaves of cucumber. Meanwhile, anoth-

er research group independently demonstrated that rhizosphere Pseudomonas spp. could also 

induce disease resistance in the common bean against the halo blight bacterial pathogen 

(Alstrom, 1991). 

Initially, ISR was known to be triggered by PGPR and particularly by Pseudomonas spp. and 

Bacillus spp. (Van Wees et al., 2008, Kloepper et al., 2004). Recent studies have shown that 

ISR can also be elicited by mycorrhizal fungi (Trillas & Segarra, 2009, Pozo & Azcon-
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Aguilar, 2007). ISR has been reported in many different plant–pathogen systems (Shoresh et 

al., 2010, Van Oosten et al., 2008, Van Loon et al., 1998, Zehnder et al., 1997). Various ben-

eficial microorganisms are known to induce ISR in monocots (Balmer et al., 2013). The po-

tential resistance induced by PGPR in monocots depends on the host-PGPR combination and 

on the type of attackers. For example, Psedomonas aeruginosa 7NSK2 and Serratia plymu-

thica IC1270 induce resistance against Magnaporthe oryzae in rice, but they enhance disease 

severity caused by Rhizoctonia solani (De Vleesschauwer et al., 2006). 

Recognition 

It is plausible that activation of ISR is based on host recognition by the beneficial microbes 

through microbe-associated molecular patterns (MAMPs). These compounds include cell 

surface molecules, such as flagellin and lipopolysaccharides, or secreted metabolites like si-

derophores, antibiotics, biosurfactants and even volatile organic compounds (De 

Vleesschauwer & Höfte, 2009, Van Wees et al., 2008). In some cases, plant immunity is trig-

gered by certain MAMPs but in other cases, the same MAMPs are not recognized. For in-

stance, in tomato the P. putida WCS358 siderophore pseudobactin 358 triggers systemic re-

sistance, but Tn5 transposon mutant defective in biosynthesis of the fluorescent siderophore 

pseudobactin does not. In bean, however, the same mutant is as effective as the wild-type 

strain (Meziane et al., 2005). 

There are diverse MAMPs that have been identified as ISR elicitors in monocots as well. For 

example, siderophores and antibiotics produced by Pseudomonas strains, such as pseudobac-

tins and pyocyanin, are important defence elicitors in rice against M. oryzae (De 

Vleesschauwer et al., 2008). The literature about the various MAMPs identified in the estab-

lished monocot ISR pathosystems has been reviewed comprehensively by Balmer et al. 

(2013). 

Signaling pathways involved in Induced Systemic Resistance 

MAMPs of beneficial microbes are recognized by the plant immunity system and ultimately 

result in an enhanced defensive capacity of the plant. Although the signaling pathway is initi-

ated in roots, the effects are also present in the aerial part. This suggests an extensive coordi-

nation between the plant and the beneficial organism and signaling routes involved in ISR 

would play an essential role (Knoester et al., 1999, Pieterse et al., 1998). In the past decade, 

research on the defence-signaling pathways that are activated by beneficial microorganisms 

revealed that ethylene and jasmonic acid (JA) are often the central players in the regulation of 

ISR (De Vleesschauwer & Höfte, 2009, Van Wees et al., 2008). ISR triggered by PGPR and 

PGPF was shown to be blocked in JA-and/or ethylene signaling mutants of Arabidopsis 
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(Hossain et al., 2008, Korolev et al., 2008, Stein et al., 2008). For instance, both the JA-

response mutant jar1 and the ET-response mutant etr1 were incapable to develop ISR against 

P. syringae pv. tomato upon colonization of the roots by WCS417r bacteria (Pieterse et al., 

1998). Surprisingly, the endogenous levels of JA or ET do not appear to alter during induction 

of resistance by WCS417r in Arabidopsis wild type (Pieterse et al., 2000). In addition, JA- 

and ET-regulated genes were not up-regulated either (Van Wees et al., 1999). Nevertheless, 

JA- and ET-responsive gene expression is enhanced after pathogen infection relative to non-

induced plants (Pozo et al., 2008). Moreover, in ISR-expressing plants the capacity to convert 

1-aminocyclopropane-1-carboxylate (ACC) to ethylene was significantly enhanced, providing 

a greater potential to produce ethylene upon pathogen attack (Hase et al., 2003, Pieterse et al., 

2000). Therefore, the sensitivity to JA and ET is likely to be boosted as a result of ISR. 

WCS374r-elicited ISR against M. oryzae in rice was completely abolished in an ethylene-

insensitive OsEIN2 antisense line and JA-deficient mutant hebiba. However, it is maintained 

in NahG transformants, suggesting that in the rice- Magnaporthe oryzae pathosystem, 

WCS374r-mediated ISR derives primarily from JA/ET-driven effects (De Vleesschauwer et 

al., 2008).  

Although WCS417r-mediated ISR was maintained in SA non-accumulating Arabidopsis 

NahG transformants (Pieterse et al., 1996, Van Wees et al., 1997), and ISR was suggested to 

be mediated by an SA-independent resistance mechanism, it is becoming increasingly clear 

that not all rhizobacteria-triggered ISR is mediated by JA/ET. Several examples of PGPR and 

PGPF that trigger ISR in an SA-dependent manner have been documented as well (Van Wees 

et al., 2008, Van Loon et al., 2006, De Meyer et al., 1999, Audenaert et al., 2002, Ryu et al., 

2003, Barriuso et al., 2008). Moreover, some PGPR or PGPF induced ISR in monocots is also 

depending on SA (Molitor et al., 2011, Balmer et al., 2013). 

More and more examples of PGPR and PGPF induced ISR in different plant species have 

been shown to be depending on NPR1, with ISR abolished in npr1 mutants (Van Loon & 

Bakker, 2006, Pieterse et al., 1998, Van Wees et al., 2008). Hence, NPR1 was supposed to 

play a pivotal role in reaching the induced state not only in SAR but also in ISR.  

Transcriptome analysis of Arabidopsis root tissue during colonization by P. fluorescens 

WCS417 revealed a differential expression of 94 genes locally in the roots (Verhagen et al., 

2004). Among those genes, the MYB family transcription factor, MYB72 appeared to be spe-

cifically up-regulated in the roots upon recognition and plays an important role in ISR onset 

not only induced by beneficial bacteria but also by beneficial fungi (Verhagen et al., 2004, 

Segarra et al., 2009, Van der Ent et al., 2008). T-DNA knockout mutants myb72-1 and 

myb72-2 are incapable of mounting ISR against a set of pathogens, indicating that MYB72 is 
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essential to establish broad-spectrum ISR. However, MYB72 over-expressors do not show 

enhanced levels of disease resistance (Van der Ent et al., 2008), demonstrating that it is not 

sufficient for ISR induction, probably acting in concert with other signaling components. 

Yeast two-hybrid analysis revealed that MYB72 physically interacts in vitro with the ETH-

YLENE INSENSITIVE3 (EIN3)-LIKE3 transcription factor EIL3, linking MYB72function to 

regulation of the ethylene-dependent signaling pathway (Van der Ent et al., 2008). 

Transcriptome analysis of ISR-expressing leaves in plants of which the roots were treated 

with WCS417 or other beneficial microbes revealed that the systemic changes in gene expres-

sion are either relatively mild or not directly induced (Verhagen et al., 2004, Van Wees et al., 

2008). However, subsequent infection with a pathogen led to an augmented expression of a 

large number of genes in ISR expressing plants compared to control plants (Van Wees et al., 

1999, Verhagen et al., 2004, Cartieaux et al., 2008, Ahn et al., 2007). This enhanced defen-

sive capacity without direct induction of defence responses in the absence of pathogens is 

called priming (Conrath et al., 2002, Conrath et al., 2006). Primed plants have an enhanced 

capacity to rapidly and effectively mount defence responses to biotic and abiotic stress 

(Conrath et al., 2006). 

In Arabidopsis, rhizobacteria-mediated ISR is often associated with priming for enhanced 

expression of JA/ET regulated genes and reinforcement of the cell wall at the site of pathogen 

attack (Van Oosten et al., 2008, Ahn et al., 2007, Verhagen et al., 2004, Van der Ent et al., 

2008, Cartieaux et al., 2008, Van Wees et al., 1999). MYC2, a well-known player in JA regu-

lated signaling (Lorenzo et al., 2004), was found to be an important regulator of priming dur-

ing ISR induced by different microbes (Pozo et al., 2008). Research has shown that MYC2 

transcription factor binding sites are over-represented in the promoters of priming-responsive 

genes in ISR-expressing plants and the myc2 mutant was unable of mounting WCS417-ISR 

against P. syringae and  Hyaloperonospora  arabidopsidis (Pozo et al., 2008).  

In addition, an enhanced deposition of callose-rich papillae is observed upon infection by the 

oomycete H. arabidopsidis in WCS417-pretreated plants (Van der Ent et al., 2008). Besides 

forming a physical barrier, defence molecules such as H2O2, phenylalanine ammonia-lyase 

(PAL), phenolics, and various proteins and glycoproteins with hydrolytic and antifungal 

properties, as well as diverse secondary metabolic products are also accumulating at the sites 

of infection after pre-treatment with PGPR (Chen et al., 2000, Van Loon et al., 1998). 

A model for ISR is illustrated in Figure 1.7 
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Fig 1.7 Model for the ISR signaling pathway. Recognition of MAMPs of beneficial rhizosphere-

colonizing microorganisms leads to a local activation of the transcription factor MYB72 in the roots. 

Subsequently, MYB72 putatively interacts with the transcription factor EIL3. Downstream of, or in 

parallel with MYB72/EIL3, a so far unidentified ET signaling component is required in the roots for 

the onset of ISR in the leaves. The ISR signal transduction cascade requires NPR1, probably in the 

systemic tissue. Systemically, induction of ISR is associated with priming for enhanced expression of a 

set of JA-responsive and/or ET-responsive genes and increased formation of callose-containing papil-

lae at the site of attempted pathogen entry. Attack by pathogens or insects, as depicted on the right side 

of the figure, activates defence responses in the plant, which is accelerated in ISR-primed plants. 

Adapted from Van Wees et al. (2008).  

Application of PGPR, PGPF and ISR signaling molecules against plant parasitic nematodes 

Plant-parasitic nematodes co-exist in the rhizosphere with biologically diverse bacterial or 

fungal communities. The best studied PGPR to affect parasitic nematode infection on plants 

are Bacillus spp., Pseudomonas fluorescens and Rhizobium etli (Tian et al., 2007, Racke & 

Sikora, 1992, Sikora, 1992). The mechanisms of PGPR to reduce the plant parasitic nematode 

population include direct toxicity by production of antibiotics, competition for space and nu-

trients, alteration of root exudate patterns, production of repellent substances to affect nema-

tode attraction and promote plant growth (Sikora et al., 2007).  

The first report of the involvement of rhizobacteria-mediated ISR in nematode control was by 

Hasky-Günther and Sikora (1995), who reported the involvement of ISR as a mechanism in 
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the control of G. pallida by Bacillus Sphaericus B43 and Rhizobium etli G12 on potato. Later 

on, many research groups studied ISR by PGPR using the split-root system. When PGPR was 

applied on one side of the roots, there was a lower number of juveniles penetrating the other 

side of the roots as well as a lower rate of reproduction (Hasky-Günther & Sikora, 1995, 

Hasky-Günther et al., 1998, Mahdy et al., 2001, Mahdy et al., 2000, Schafer, 2007). These 

effects may be due to the PGPR fortifying the physical and mechanical strength of the host 

cell wall, or the accumulation of defence chemicals (Van Loon et al., 1998, Siddiqui & 

Mahmood, 1999, Ramamoorthy et al., 2001). 

Some commercial biofertilizers, such as Equity, BioYield, and AgBlen, are mainly composed 

by different PGPRs. Greenhouse studies found that those biofertilizers induce significant 

reductions in M. incognita eggs per gram of root, juvenile nematodes and galls per plant on 

tomato (Sikora et al., 2007, Burkett-Cadena et al., 2008).  

Arbuscular mycorrhizal (AM) fungi are also well known PGPF to control plant parasitic nem-

atodes. They can decrease nematode infestation as well as reproduction (Pinochet et al., 1996, 

Siddiqui & Mahmood, 1999). They show similar modes of action as PGPR, such as competi-

tion in the rhizosphere at infection sites in the host, direct toxicity, alteration of root exudates 

to repel nematodes and induction of plant systemic resistance (Hol & Cook, 2005, De La Peña 

et al., 2006, Schafer, 2007).  

Here we present some representative examples associated with PGPR/PGPF and ISR signal 

molecules showing induced plant resistance against plant parasitic nematodes (Table 1.2). 

Table 1.2 Summary of the defence mechanisms associated with PGPR/PGFR and JA/ET. 

Resistance-inducing agent Host 

plant 

PPN Reference 

Agrobacterium radiobacter Potato Globodera pallida (Hackenberg et al., 1999) 

Bacillus sphaericus B43 

Agrobacterium radiobacter G12 

Potato Globodera pallida (Hasky-Günther et al.,1998) 

Serratia marcescens Tomato Meloidogyne incognita (Almaghrabi  et al, 2012) 

Bacillus amyloliquefaciens Tomato Meloidogyne incognita (Burkett-Cadena et al.,2008) 

Bacillus subtillis Tomato Meloidogyne  incognita (Adam et al., 2014) 

Serratia marcescens Tomato Meloidogyne incognita (Almaghrabi et al.,2013) 

Pseudomonas fluorescens  Sugar beet Heterodera schachtii (Oostendorp & Sikora,1989) 

Pseudomonas fluorescens Rice Hirschmanniella oryzae (Swarnakumari et al., 1999) 

Pseudomonas aeruginosa IE-6S+ 

 & P. fluorescensCHA0 

Tomato Meloidogyne javanica (Siddiqui & Shaukat, 2003) 

Rhizobium etli, Bacillus sphaericus 

B43  

Potato Globodera pallida 

Meloidogyne incognita 

(Siddiqui & Shaukat, 2003) 
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Priming for enhanced defences and its potential in agriculture 

More and more research has found induced resistance responses to be frequently associated 

with a primed state in which the plants are able to respond more rapidly and/or more robustly 

when re-exposed to biotic or abiotic stress. This unique physiological state is called “priming” 

(Conrath, 2011, Conrath et al., 2006, Conrath et al., 2002). Priming can be elicited by 

beneficial microorgamisms, necrotizing attackers, herbivores, MAMPs, pathogen-derived 

effectors, and many various natural and synthetic compounds (Heil & Bueno, 2007, Frost et 

al., 2008, Conrath et al., 2006). 

Although the molecular basis of cell priming is unclear, recent research has suggested that 

dormant mitogen-activated protein kinases accumulate in primed plants and this phenomenon 

was linked to enhanced PAL1 and PR1 defence gene activation (Beckers et al., 2009). More-

over, defence related transcription factors (Segarra et al., 2009) and secondary metabolites 

such as azelaic acid (Jung et al., 2009) and volatile organic compounds (Van der Ent et al., 

2009) are all potentially crucial in the priming mechanism. 

The continuous activation of defence reactions was shown to reduce plant fitness such as 

growth and fruit or seed set under pathogen-free conditions (Goellner & Conrath, 2008). The 

trade-off dilemma between disease resistance and costs of defence activation can probably be 

overcome by priming. Compared to direct induction of defence, primed plants causes less 

fitness costs (van Hulten et al., 2006). When attacked by pathogens, it has even been demon-

Bacillus cereus S18 Tomato Meloidogyne incognita 

Meloidogyne  javanica 

(Reitz et al., 2000) 

 

Rhizobium etli G12 Vegetables Meloidogyne incognita 

/M.javanica/M.arenaria 

(Mahdy et al., 2001) 

Rhizobium etli G12 Sugarbeet Heterodera schachtii (Mahdy et al., 2001) 

Rhizobium etli G12 Potato Globodera pallida (Mahdy et al., 2001) 

Pseudomonas fluorescens Pf1 Tomato Meloidogyne incognita  (Santhi & Sivakumar, 1995) 

Pseudomonas chitinolytica Tomato Meloidogyne  javanica (Spiegel et al., 1991) 

Rhizobium etli G12 Potato Globodera  pallida (Reitz et al., 2000) 

Glomus versiforme Grapevine Meloidogyne incognita (Li et al., 2006a) 

Scutellospora castanea  

Glomus spp.  

Ammophila 

arenaria 

Pratylenchus penetrans (De La Peña et al., 2006) 

Glomus intraradices Grapevine Xiphinema index (Hao et al., 2012) 

 Glomus mosseae Banana Radopholus  similis (Elsen et al., 2003) 

Glomus coronatum Tomato Meloidogyne  incognita (Diedhiou et al., 2003) 

Scutellospora heterogama Sweet 

passion 

fruit 

 

Meloidogyne incognita 

 

(Anjos et al., 2010) 

Glomus mosseae  Tomato Meloidogyne incognita 

Pratylenchus penetrans 

(Vos et al., 2012) 

JA Tomato Meloidogyne incognita 

Meloidogyne arenaria 

(Fujimoto et al., 2011) 

MeJA/ET Rice Meloidogyne graminicola (Nahar et al., 2011) 
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strated to provide plants with a fitness benefit under conditions of pathogen attack (van Hul-

ten et al., 2006, Walters & Fountaine, 2009, Walters et al., 2008). Hence, priming offers a 

smart, effective, and realistic option for effective plant protection, and provides broad-

spectrum resistance. It could be a valuable tool for sustainable crop protection.     

1.4.3 BABA-Induced Resistance  

In addition to induced resistance by the above-described biological agents, there are various 

chemicals that can biologically mimic the induced resistance phenomena. Many of those 

chemicals are endogenous plant compounds, or functional analogues thereof, such as SA, 

BTH, INA, JA, MeJA and azelaic acid. An exception to this rule is β-aminobutyric acid (BA-

BA), a non-protein amino acid that rarely occurs in nature (Jakab et al., 2001, Cohen, 2002). 

The only report of BABA in connection to plants describes its presence in root exudates of 

tomato plants grown in solarized soil (Gamliel & Katan, 1992). BABA is a potent inducer of 

resistance in plants with a broad-spectrum activity. It is not only effective against biotic stress, 

but also against some types of abiotic stress (Cohen, 2002, Jakab et al., 2001, Jakab et al., 

2005, Zimmerli et al., 2008, Pastor et al., 2013). BABA is a racemic mixture of the R and S 

enantiomers, but only the R form is effective in inducing plant resistance. BABA has been 

tested repeatedly in vitro on many plant pathogens, where it has been shown that it is not di-

rectly toxic to microorgamisms (Cohen, 2002, Jakab et al., 2001). In vivo toxicity can also be 

ruled out, since experiments using C
14

-labeled BABA clearly demonstrated that the substance 

is not metabolized by the plant and stays active (Cohen & Gisi, 1994). Intriguingly, BABA 

has an instantaneous effect even when applied post-infection, and still provides effective dis-

ease control. This feature bears a significant advantage over BTH since BTH can only work 

prior to the presence of the disease. Moreover, a curative effect of BABA application has also 

been reported in some pathosystems (Oostendorp et al., 2001). Therefore, BABA seems to 

have a high potential to play a role in sustainable disease management in the field. Indeed, 

several successful evidences come from greenhouse and field tests on the efficacy of control 

against different pathogens by foliar application or soil drench of BABA or BABA in combi-

nation with fungicides (Reuveni et al., 2001, Andreu et al., 2006, Altamiranda et al., 2008). 

BABA has been shown to move systemically through the plant (Walters et al., 2005, Cohen, 

2002, Jakab et al., 2001). In Arabidopsis, BABA was much better tolerated when applied to 

the roots than sprayed on the leaves. Spraying BABA at higher concentrations on the leaves 

induced necrosis in tobacco (Siegrist et al., 2000, Cohen & Gisi, 1994). Nevertheless, Cohen 

and Gisi (1994) commented on the fact that only 36% of the applied BABA was taken up by 

the roots, in contrast to a 90% uptake through cut ends of petioles. They proposed that (i) the 

roots are partially impermeable to BABA; (ii) there is a limitation due to the transport capaci-

ty of a transporter; (iii) there exists a competition between amino acids and BABA for the 



          

Chapter 1                                                                                             General  introduction                                                                                                                                       

36 
 

same transporter. BABA was found to induce the stress-induced morphogenic response 

(SIMR) which is also observed when plants are exposed to high concentrations of amino ac-

ids. However, this BABA-mediated SIMR was inhibited by L-glutamine. The authors sug-

gested the possibility that BABA shares a common transporter with L-glutamine, and BABA 

may be thus inhibited to translocate into the cell in the presence of excess levels of L-

glutamine. This hypothesis still needs to be proven (Wu et al., 2010). 

The remarkably wide range of effectiveness of BABA-induced resistance suggests that multi-

ple resistance responses are involved. Some research has shown BABA-induced resistance in 

certain pathosystems is independent of the known defence signaling cascades, such as SA, ET, 

or JA, suggesting an additional mechanism of protection. However, BABA-induced resistance, 

just like SAR and ISR, is frequently associated with priming for various pathogen induced 

defence responses (Van der Ent et al., 2009, Cohen, 2002, Conrath, 2011, Conrath et al., 2006, 

Conrath et al., 2002). In the following sections, BABA-induced resistance to plant pathogens, 

insects, and abiotic stresses, as well as the mode of actions in some selected pathosystems will 

be summarized (Table 1.3). BABA-induced resistance against plant parasitic nematodes will 

be reviewed as well. Finally, the mode of action of BABA induced resistance according to the 

established studies will be discussed in a more detail. 

BABA-induced resistance against plant parasitic nematodes 

A number of studies have demonstrated that BABA-IR can provide control against nematodes. 

The first study of BABA-IR against PPN was carried out by Oka et al (1999). Application of 

BABA to tomato plants, either as a soil drench or a foliar spray, reduced root-galling and 

numbers of eggs produced by M. javanica, decreased the number of second stage juveniles 

penetrating plant roots and the size of adults. In addition, BABA treated giant cells were small 

and vacuolated. BABA also induced resistance against M. javanica by post-treatment after 

nematode inoculation. Soil drench of 0.25mM BABA to tomato plants together with M. ja-

vanica inoculation also reduced galls, egg masses and reproduction rate. Moreover, seeds 

treatment with BABA (0.25mM) plus later soil drench enhanced BABA-IR compared to soil 

drench alone (Fatemy et al., 2012). Treated seeds alone induced resistance against M. javani-

ca as well (Mutar & Fattah, 2013). Treatment with 40mM BABA on tomato seeds for 30, 60 

and 120 minutes all caused significant reduction in nematode infestation and a lower average 

of the root gall index (Mutar & Fattah, 2013). The effect of BABA in the development and 

reproduction of another root-knot nematode M. chitwoodi was also assessed in tomato plants. 

Conversely, foliar application of 20mM BABA two days before inoculation with M. chit-

woodi was not effective in reducing nematode penetration or reproduction in tomato plants. 

The authors discussed that the contrasting data may be due to differences in the method of 



          

Chapter 1                                                                                             General  introduction                                                                                                                                       

37 
 

delivering the treatments and the concentrations used, and would also depend on the host and 

the pathogen (dos Santos et al., 2013). Sahebani & Hadavi (2009) showed BABA treated 

tomato plants generate reactive oxygen species (ROS) and the enzymes related to their me-

tabolism, the maximum level of ROS was observed at five days after BABA treatment. Addi-

tionally, BABA treated cucumber roots induced high level of H2O2 and total phenolic com-

pounds, together with enhanced  activities of peroxidase, polyphenol oxidase and catalase 

compared to non-treated roots (Sahebani et al., 2011). Therefore, ROS production and phe-

nolic compound accumulation in BABA treated roots may contribute to BABA-IR against 

nematodes in tomato and cucumber. Pre-treatment with BABA as a soil drench of 2mM sig-

nificantly reduced the number of galls and egg masses induced by M. javanica in mung bean 

plants (Ahmed et al., 2009). BABA-induced resistance was shown not only to be functional in 

dicots but also in monocots. On wheat, foliar sprays  and soil drenches with  BABA induced 

resistance against the cyst nematodes H. avenae and H. latipons, as well as root-knot nema-

tode Meloidogyne sp. (Oka & Cohen, 2001). On pineapple, foliar sprays of 20mM BABA 

were effective against M. javanica (Chinnasri et al., 2006). 
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Table 1.3 Pathosystems in which local and systemic resistance were induced by BABA. 

Plant  Protection against                                               Mode of action Reference 

Arabidopsis    

 

 

 

Alternaria brassicicola 

 

Alternaria brassicicola 

Plectosphaerella cucumerina 

 

Plectosphaerella cucumerina 

 

Pseudomonas syringae 

Hyaloperonospora Arabidopsis 

 

Pst DC3000 

 

 

Drought stress tolerance 

 

Thermotolerance 

 

 

Botrytis cinerea 

 

 

Peronospora parasitica 

 

Pst DC 3000 

 

Potassium stress 

 

Accumulation of Abscisic acid (ABA), ABI1 gene and callose deposition. 

 

Soil drench: ABA dependent callose accumulation but JA, ET, SA independent. 

 

 

Soil drench: Callose accumulation and primed plants induction indolic metabolite (indole-3-carboxylic acid). 

 

Soil drench: Primed plants showed faster and higher accumulation of transcripts of defence-related genes in the SA 

pathway. Primed state is transferred to descendants.  

  

Soil drench: Direct and primed up-regulation of SA responsive genes. Inhibits Arabidopsis response to the bacterial 

effector coronatine. 

 

Soil drench: Primed plants enhanced ABA accumulation and accelerated stress gene expression, stomatal closure. 

 

Soil drench: BABA medicated accumulation of ABA transcription factors but no activation of ABA response genes, 

acts via activation of HSP101. Ethylene, SA independent.  

 

Soil drench: Accumulation of PR1 but not PDF1.2. Inactive in plants with impaired SAR pathway but still active in 

plants impaired in JA and ET pathways. 

 

Soil drench: Callose deposition, formation of trailing necrosis and hypersensitive response, independent of SAR, 

JA/ET signaling pathway.  

Soil drench: Dependent on SAR pathway but not JA/ET. 

 

Seedlings soaking: Enhancing low K+ stress tolerance by increasing K+ uptake partially via modulation of K+ uptake 

genes. 

(Flors et al., 2008) 

 

(Ton &Mauch‐Mani, 2004) 

 

 

(Gamir et al., 2012) 

 

(Slaughter et al., 2012) 

 

 

(Tsai et al., 2011) 

 

 

(Jakab et al., 2005) 

 

(Zimmerli et al., 2008) 

 

 

(Zimmerli et al., 2001) 

 

 

(Zimmerli et al., 2000) 

 

 

 

(Cao et al., 2008) 
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Cadmium stress Seedlings soaking: Against cadmium stress via glutathione dependent pathway. (Cao et al., 2008) 

Potato 

 

 

 

 

 

 

 

 

Phytophthora infestans 

 

 

 

 

Fusarium sulphureum 

 

 

Spray: cDNA-AFLP showed transcript derived fragments involved in signaling, cell wall strengthening and synthesis 

of antimicrobial compounds increased compared to non-induced plants. 

Soil drench: BABA-IR requires SA but not oxylipins.  

Spray: Increase phenol and phytoalexin content. 

 

Scrawled BABA on potato slices: BABA increased the activities of peroxidase (POD), polyphenoloxidase (PPO) and 

phenylalanine ammonialyase (PAL), and accumulated lignin, flavonoids and phenolics in slices. 

(Li et al., 2009) 

 

(Eschen-Lippold et al., 2010) 

(Olivieri et al., 2009) 

 

(Yin et al., 2010) 

 

Tomato 

 

 

 

Phytophthora infestans  

 

Botrytis cinerea 

 

Clavibacter michiganensis ssp.  

 

Pst DC 3000 

 

Meloidogyne  javanica 

 

 

 

Spray: Accumulation of PR proteins, β-1,3 glucanase and chitinase. 

 

Seed treatment: Priming defence. 

 

Spray: Higher activity of PAL, peroxidase and accumulation of H2O2. 

 

Spray: Synergistic effect with salt stress through induced H2O2 generation and guaiacol peroxidase activity. 

 

Spray or soil drench: small and vacuolated giant cells. 

Seed treatment plus soil drench: Significantly reduced the numbers of galls and egg masses compared to control. No 

study on resistance mechanisms. 

Seed treatment alone: Significant reduction in nematode infestation and a lower average of the root gall index. No 

study on resistance mechanisms. 

Soil drench: Induction of ROS and accumulation of phenolic compounds 

(Cohen et al., 1994) 

 

(Worrall et al., 2012) 

 

(Baysal et al., 2005) 

 

(Baysal et al., 2007) 

 

(Oka et a., 1999) 

(Fatemy et al., 2012) 

 

(Mutar & Fattah, 2013) 

 

Sahebani & Hadavi (2009) 

Tobacco  Tobacco Mosaic Virus 

 

 

Potassium deficiency  

Spray: Cell death, HR, superoxide and hydrogen peroxide, a local and systemic increase of SA and PR-1a, NahG 

transgenic plants donot induce resistance after BABA application. 

 

Spray: Increased K+ uptake partially via ROS-dependent mechanism. 

 

(Siegrist et al., 2000) 

 

 

(Jiang et al., 2012) 

Cucumber  Pseudoperonospora cubensis  Leaf disc soaking: Accumulation of callose and cell death, production of reactive oxygen intermediates. Degenerated (Walz & Simon, 2009) 
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& Colletotrichum lagenarium 

 

Meloidogyne  javanica 

primary hyphae. 

 

Soil drench: Induction of phenolic compounds. 

 

 

(Sahebani et al., 2011) 

Brassica juncea Alternaria brassicae 

 

Spray: Enhanced expression of PR proteins but independent of SA and JA accumulation. 

 

(Kamble & Bhargava, 2007) 

Pepper  

 

 

Phytophthora capsici Spray: Accumulation of β-1,3-glucanase, chitinase isoforms and SA. 

Spray: Formation of electron-dense wall appositions, degeneration of hyphal mitochondrial structure. 

(Hwang et al., 1997) 

(Lee et al., 2000) 

Pea 

 

 

 

Uromyces pisi 

 

Spray: Increased phenolic contents. 

 

Spray: 2-DE analysis found BABA-IR via phenolic biosynthesis pathway. 

 

(Barilli et al., 2010) 

 

(Barilli et al., 2012) 

Wheat  

 

 

Desiccation  Soil drench: Triggers ABA accumulation, leads to stomata closure, reduced ROS and increased antioxidant defence 

enzymes. 

 

(Du et al., 2012) 

Citrus 

 

 

Diaphorina citri  

 

Penicillium digitatum 

 

Soil drench & spray: Primed plants accumulate higher PR2 (beta-1, 3-glucanase). 

 

Apply on fruit peel surface: high concentration direct antifungal activity, induction of chitinase and PAL activities. 

(Tiwari et al., 2013) 

 

(Porat et al., 2001) 

Lettuce Bremia lactucae 

 

Spray: Induced rapid encasement of pathogen with callose and accumulation of H2O2 in penetrated cells. 

 

Post infection application (dpi) soil drench and spray: 1dpi application induced HR, 2dpi: encasement of haustoria 

with callose, 3 and 4dpi: H2O2 accumulation. 

 

(Cohen et al., 2010) 

 

(Cohen et al., 2011) 
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Grapevine  Plasmopara viticola 

 

 

 

 

 

Spray: ROS production contributes to BABA-IR. 

 

Soil drench: Primed accumulation of stilbene phytoalexins and increase in transcripts of genes involved in phenylpro-

panoid pathway. 

 

Soil drench: Induced callose deposition, lignin formation around infection sites, defence mechanisms depending on 

phenylpropanoids and JA pathway. 

(Dubreuil-Maurizi et al., 2010) 

 

(Slaughter et al., 2008) 

 

 

(Hamiduzzaman et al., 2005) 

Apple  Erwinia amylovora Spray: Induced free SA level. (Hassan &Buchenauer, 2007)  

Mung bean Meloidogyne  javanica 

 

Soil drench: Significantly reduced number of galls and egg masses. No study on resistance mechanisms. (Ahmed et al., 2009) 

Wheat  Heterodera avenae 

Heterodera latipons 

Meloidogyne sp. 

 

Soil drench or foliar spray: Significantly reduced the number of cysts and egg masses. No study on resistance mecha-

nisms. 

(Oka & Cohen, 2001) 

pineapple Meloidogyne  javanica Foliar spray: Reduced egg masses production up to 64% compared to control. No study on resistance mechanisms. (Chinnasri et al., 2006) 
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Mode of action of BABA-induced resistance 

The mechanism of BABA-IR is diverse. BABA induces a variety of physical and biochemical 

defence mechanisms as well as defence signaling pathways (Table 1.3). The differences in the 

mode of action are largely depending on host-pathogen interactions. It appears that the mech-

anism of BABA-IR is pathosystem-specific (Cohen, 2002, Jakab et al., 2001). 

Treatment with BABA has been reported to lead to induction of pathogenesis-related proteins 

(Cohen, 2002, Jakab et al., 2001). However, the accumulation of PR-proteins varies depend-

ing on the host-pathogen system and the mode of application. For example, it seems that sola-

naceous plants (i.e. tomato, pepper, and tobacco) may respond to BABA by accumulating of 

PR proteins without pathogen challenge, whereas in crucifers (i.e. Arabidopsis and Cauli-

flower), PR protein accumulation is only induced after pathogen infection (Cohen, 2002). 

Cohen & Gisi (1994) demonstrated that the accumulation of PR proteins without pathogen 

challenge was only found when BABA was sprayed on tobacco leaves, but neither with soil 

drench nor stem injection. However, all the application methods resulted in BABA-IR re-

sistance in tobacco against Peronospora tabacina, indicating there are other mechanisms 

beyond PR protein accumulation that are responsible for BABA-IR in this tobacco- Perono-

spora tabacina interaction. Indeed, except PR protein accumulation, foliar spray of BABA 

sometimes induces the formation of small necrotic spots, which resembles the spots initiated 

by microbes during hypersensitive response (HR). Localized necrosis leads to the formation 

of reactive oxygen species, lipid peroxidation, phytoalexins, induction of callose and lignin 

around the lesions, which will contribute to BABA-induced resistance against pathogens 

(Cohen, 2002).  

In tobacco, BABA was no longer able to protect NahG transgenic plants against TMV 

(Siegrist et al., 2000), which indicates that BABA induced resistance against TMV in tobacco 

is SA-dependent. However, NahG tobacco plants challenged with downy mildew showed no 

difference in protection by BABA compared to wild type plants (Cohen, 2001). In addition, in 

Arabidopsis, priming by BABA against the bacterial pathogen Pseudomonas syringae pv. 

Tomato DC3000 and the fungal pathogen Botrytis cinerea depends on an intact SA signaling 

pathway, but is independent of a functioning JA/ET pathway, as in the Arabidopsis-Botrytis 

cinerea interaction, PR-1 was strongly potentiated but not JA marker gene PDF1.2 (Zimmerli 

et al., 2000, Zimmerli et al., 2001). Accordingly, Tsai et al. (2011) demonstrated that BABA-

IR against Pst DC3000 on Arabidopsis induced either direct or primed up-regulation of SA 

responsive genes, and partially relies on suppression of the plant response to the bacterial 

effector coronatine (Tsai et al., 2011). In accordance with the above-mentioned observations, 

a quantitative PCR based genome-wide screen for BABA responsive transcription factor (TF) 
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genes revealed an enhanced expression of SA-regulatory TFs, such as WRKYs in BABA-IR 

of Arabidopsis against Pst DC3000 (Van der Ent et al., 2009). Yet, BABA-IR against the 

oomycete pathogen Hyaloperonospora parasitica was expressed in Arabidopsis genotypes 

impaired in either the SA, ET, or JA signaling pathway (Zimmerli et al., 2000). Moreover, 

BABA-IR against two necrotrophic fungi Alternaria brassicicola and Plectosphaerella cucu-

merina were unaffected in Arabidopsis mutants impaired in camalexin synthesis, JA sensitivi-

ty, ethylene sensitivity and SA signaling (Ton & Mauch‐Mani, 2004). Cytological investiga-

tions at sites of attempted penetration by those pathogens demonstrated the augmentation of 

callose-rich papillae (Zimmerli et al., 2000, Ton & Mauch‐Mani, 2004). The correlation of 

primed deposition of callose and BABA-IR was revealed in experiments with the callose syn-

thesis inhibitor 2-deoxy-D-glucose (2-DDG). 2-DDG significantly reduces BABA-induced 

protection against A. brassicicola, suggesting a critical role for callose in BABA-induced 

protection against this necrotrophic pathogen (Ton & Mauch‐Mani, 2004). Moreover, the 

callose synthesis mutant pmr4-1 failed to express BABA-IR against P. cucumerina. Hence, 

callose seems crucial for the BABA-IR protection against these two nectrophic pathogens 

(Ton & Mauch‐Mani, 2004). The possibility of an involvement of abscisic acid (ABA) in 

BABA-IR of callose formation was investigated by two Arabidopsis ABA signaling mutants, 

aba5-1 and abi4-1. Priming for enhanced papillae formation by BABA after P. cucumerina 

infection was absent in the mutants. In addition, exogenous application of ABA mimicked the 

effect of BABA with respect to increased formation of callose-rich papillae and resistance to 

fungal ingress, indicating that ABA could be involved in the enhancement of callose deposi-

tion upon infection and BABA-IR in this pathosystem (Ton & Mauch‐Mani, 2004). This hy-

pothesis is further substantiated by experiments from the characterization of mutants impaired 

in BABA-induced sterility (ibs) (Ton et al., 2005). Arabidopsis becomes female-sterile when 

treated with high doses of BABA due to the induction of high levels of callose in the ovules 

(Jakab et al., 2001). Three ibs mutants were identified in a mutagenesis screen. ibs2 and ibs3 

mutants were found to be reduced in the ability to express BABA-IR against H. parasitica 

and salt stress (Ton et al., 2005). Isolation and subsequent characterization of the two T-

DNA–tagged ibs mutants found that the ibs2 mutant carries a T-DNA insertion in the 5’-

untranslated region of the AtSAC1b gene encoding a polyphosphoinositide phosphatase (PI), 

mutant ibs3 is affected in the regulation of the ABA1 gene encoding the ABA biosynthetic 

enzyme zeaxanthin epoxidase. These findings further strengthen the conclusion that PI- and 

ABA-dependent signaling regulate BABA-mediated priming for augmented callose deposi-

tion (Ton et al., 2005). However, BABA-IR in grapevine (Vitis vinifera) against downy mil-

dew (Plasmopara viticola) through the potentiation of callose formation seems dependent on 

JA signaling, but not ABA (Hamiduzzaman et al., 2005). 
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These characteristics of BABA-IR suggest that BABA not only mimics SAR-related priming 

by potentiating SA-inducible defences, but also primes pathogen-induced deposition of cal-

lose-containing papillae, BABA-IR requires intact biosynthesis and perception of ABA or JA 

(Ton & Mauch‐Mani, 2004, Hamiduzzaman et al., 2005, Van der Ent et al., 2009). Moreover, 

treatment with the priming agent BABA triggers a faster stomatal closure upon abiotic stress 

conditions (Jakab et al., 2005). All the observations suggest the mechanism of BABA-IR is 

diverse, depending on the specific plant and microbe interaction, as well as on environmental 

factors. 

1.4.4 Wound-Induced Resistance 

Upon mechanical damage or leaf-attack by herbivores, plants also activate their defences in 

un-infested leaves (Orians, 2005), an effect that is referred to as wound- induced resistance 

(WIR). Cell signalings of WIR are generated after perception of extracellular signals from 

herbivores such as fatty acid–amino acid conjugates (FACs), subsequently, these initial cues 

are transmitted within the plant by signal transduction pathways that include calcium ion flux-

es, and phosphorylation cascades, then lead to release of linolenic acid from the chloroplast 

cell membrane in the end (Howe & Jander, 2008). They are subsequently regulated by 

jasmonates (Howe & Jander, 2008) that accumulate both locally and systemically in response 

to wounding (Glauser et al., 2008). Systemin, a plant peptide hormone, is thought to be repre-

senting the primary wound signal in some solanaceaous plants. It is a 18-amino acid peptide 

derived from a 200-amino acid precursor prosystemin that has been originally discovered in 

tomato (Pearce et al., 1991). This peptide acts at or near the local site of wounding, increasing 

JA-synthesis above the threshold that is required for the systemic response in tomato (Ryan & 

Pearce, 2003). Hence, systemin is thought to locally potentiate the synthesis of JA, whose 

recognition in distal leaves is linked to octadecanoid signaling (Ryan & Pearce, 2003). In 

addition to release direct defence-related compounds after wounding, such as phytoalexins, 

plants also rely on indirect protection which is afforded by herbivore-induced plant volatiles 

and extrafloral nectar that attract natural enemies of the herbivore (Kessler & Baldwin, 2002). 

Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore 

attack which include terpenes, green leafy volatiles, ethylene, and other volatile organic com-

pounds (Arimura et al., 2005). HIPVs were reported to attract natural enemies and repel ovi-

positioning of herbivores, and activation or priming of intra- plant defence signaling events. 

Moreover, HIPVs have been demonstrated to prime nearby plants for enhanced direct and 

indirect defence responses in both laboratory and field conditions (Dicke et al., 2009, Kessler 

& Halitschke, 2007). HIPVs not only work above ground but also below ground, for example, 

HIPVs may attract the specialist parasitoids of root-feeding larvae and entomopathogenic 

nematodes (Heterohabditis megidis) (Van Tol et al., 2001, Neveu et al., 2002). Extrafloral 
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nectarines (EFNs) are specialized nectar-secreting organs, which become active after herbi-

vore attack, and increase nectar secretion which mainly comprise of carbohydrates and pro-

teins (Bentley, 1977). These secretions are believed to function as an indirect anti-herbivore 

defence by attracting predators of those herbivores. 

Events associated with induced resistance phenomenon in plants described in this section are 

summarized in Figure 1.8. 

 

Fig1.8 Induced resistance phenomena in plants. Modified from Goellner & Conrath (2008). 

1.5 Engineering of disease resistant plants 

Traditionally, plant resistance is achieved by conventional plant breeding, which means new 

varieties of plants are bred by combining the favorable traits from parent plants but exclude 

their undesirable traits by back-crossing to one of the parental plant over a number of genera-

tions. Conventional breeding, however, does not allow insertion of exogenous genes from 

unrelated species, and is in general time-consuming. A large number of pathogenic strains 

have outpaced the development of new resistant plant varieties using conventional plant 

breeding strategies. Genetic engineering has been promoted for the past three decades as a 

solution for these problems. Genetic engineering is a technology that introduces new genetic 
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elements directly into a cell’s genome. The key difference between genetic engineering and 

conventional breeding is that instead of randomly mixing genes in conventional breeding, 

genetic engineering is done by directly inserting a specific gene which is associated with a 

desirable trait into a new plant variety. A well-known example is the worldwide grown bio-

tech Bt (Bacillus thuringiensis) corn, which contains genes from a soil bacterium, Bacillus 

thuringiensis and provides resistance against the European corn borer (Ostrinia nubilalis) 

(Ostlie et al., 1997). 

Introducing R genes is at the frontier of engineering disease resistance, as a strategy in creat-

ing durable disease resistance. Compared with traditional breeding this not only reduces the 

time,  but it also allows multiple R genes to be transferred at the same time and introduced 

into sexually incompatible species, which was previously impossible by breeding (Gilbert et 

al., 2006).  

The constitutive production of antimicrobial proteins in transgenic plants, including the path-

ogenesis-related (PR) proteins, provided a new approach for the first generation transgenic 

disease resistant plants. The effect of these proteins is direct, furthermore, in most cases, only 

a single gene is necessary to produce the antimicrobial agent (Collinge et al., 2010). Overex-

pression of an intracellular chitinase and an extracellular β-1,3 glucanase together resulted in 

a synergistic effect in reducing disease better than when deployed singly, as in carrot 

(Melchers & Stuiver, 2000), tobacco (Zhu et al., 1994), and tomato (Jongedijk et al., 1995). 

Other PR or antimicrobial proteins, for instance, osmotin and thaumatin- like proteins, thio-

nins and defensins,  expressed in various transgenic plants have also been shown to delay 

disease development or reduce disease severity (Chan et al., 2005, Thomma et al., 2002, 

Bohlmann & Broekaert, 1994). 

The increasing knowledge on immunity-related signal transduction pathways provides new 

opportunities to manipulate plant disease resistance. Genes encoding key signaling compo-

nents such as hormones, defence modulators and transcription factors can be introduced into 

target plants, where they can activate a complete battery of defence responses and could pro-

vide broad-spectrum resistance (Mourgues et al., 1998, Stuiver & Custers, 2001). A typical 

example for the potential use of these genes is NPR1. Over-expression of NPR1 enhances 

disease resistance levels against a broad range of pathogens in Arabidopsis, without any ad-

verse plant phenotypes (Cao et al., 1998). Over-expression of Arabidopsis NPR1 in wheat led 

to resistance against Fusarium graminearum (Makandar et al., 2006), furthermore, when in-

troducing the same gene into carrot plants, it enhanced resistance against a broad range of 

pathogens including biotrophic and nectrophic fungi and a foliar bacterial pathogen (Wally et 
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al., 2009). Transgenic rice over-producing its own OsNPR1 acquired high levels of resistance 

to Xanthomonas oryzae pv. oryzae (Chern et al., 2005).  

1.5.1 Engineering plants for nematode resistance 

Plant-nematode parasitism is one of the most destructive and uncontrollable biotic stress on 

crops, and the effect on agriculture is severe (Fig 1.1). Management of nematode parasitism is 

therefore imperative. Integrated use of chemicals, resistant crop varieties and cultural and 

biological practices provide the most successful management strategies. However, these ap-

proaches have left much to be desired. Chemical control dependent approaches are under 

heavy international regulation as they have many environmental and health concerns, and 

they furthermore impose an additional financial burden on growers. Crop rotation as a strate-

gy also has a limited utility against parasitic species with a cosmopolitan host range, such as 

the root-knot nematode, which may potentially parasitize up to 3,000 plant species (Abad et 

al., 2003). Therefore, the most cost effective and sustainable strategy for limiting crop dam-

age by plant parasitic nematodes is the use of resistant plants. Naturally occurring resistance 

has been exploited successfully in a number of crop species by conventional breeding. How-

ever, due to the many drawbacks caused by conventional breeding described above, biotech-

nology- derived crops with nematode resistance will be a promising alternative approach as 

an integrated management strategy to control plant parasitic nematodes (Atkinson et al., 2003, 

Thomas et al., 2006). There have been some excellent reviews about engineered nematode 

resistance over the past years (Atkinson et al., 2003, Thomas et al., 2006). 

There are essentially three approaches for engineering resistance against plant-parasitic nema-

todes: transgenic expression of natural resistance genes; targeting and disruption of the nema-

todes, and attenuating feeding site formation (Thomas et al., 2006). 

Transgenic expression of natural resistance  

Transgenic expression of natural R genes into susceptible but agronomically important crops 

is a promising approach to generate nematode resistant plants. Many R genes have been iden-

tified and used in conventional breeding programmes for a number of crops (Table1.1). With 

genetic engineering, it is possible to rapidly transfer these genes to elite cultivars or other 

plant species (McDowell & Woffenden, 2003). 

To date, however, there has been limited and variable success with transgenic expression of R 

genes against nematodes. It seems that transgenic resistance is much more likely to result 

after intra-specific transfers than after inter-specific ones (Fuller et al., 2008). For example, 

transfer of the NBS-LRR gene Hero into a susceptible tomato cultivar conferred comparable 

resistance to Globodera species to that seen in an introgressed Hero line. Nevertheless, no 
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significant resistance was achieved in transgenic potato expressing the same construct 

(Sobczak et al., 2005). Attempts to transfer Mi-1.2 mediated root-knot nematode resistance 

from tomato to tobacco have been unsuccessful (Rossi et al., 1998). Recently, however, the 

tomato Mi1 gene has been introduced into a root-knot nematode susceptible cultivar of lettuce 

(Lactuca sativa) resulting in transgenic lines resistant to M. incognita (Zhang et al., 2010). 

Potential disadvantages of transgenic R-genes include limitations on the range of nematode 

species (a small subset of parasites is recognized), limited R genes available and the likeli-

hood of rapid resistance breaking and selection of virulent species or pathotypes (Starr et al., 

2002). Such a situation occurred in the United Kingdom where the widespread use of potato 

cultivars carrying the H1 resistance gene successfully controlled G. rostochiensis in potato 

but led to an increase in the prevalence of another potato cyst nematode G. pallida (Lilley et 

al., 2011). 

Disruption of nematode target genes 

Antifeedant/Nematicidal Proteins 

The most extensively studied approach for engineering resistance against plant parasitic nem-

atodes is the expression of proteinase inhibitors (PIs) in plant roots. Proteinase inhibitors are 

present in a range of proteinase classes and are widely expressed throughout the plant king-

dom, they are often induced after wounding and herbivore attacks. Most of the naturally oc-

curring PIs have been shown to be detrimental to feeding nematodes, reducing their growth 

and fecundity (Lilley et al., 2011). Correspondingly, proteinase genes and their digestive ac-

tivity have been identified in plant parasitic nematodes (da Rocha Fragoso et al., 2009, 

Fragoso et al., 2005). Therefore, inhibition of protease activity might be expected to have a 

broad effect across many plant-parasitic nematodes including both migratory and sedentary 

parasites (McCarter, 2009). Cysteine proteinase inhibitors, termed cystatins, have received the 

most attention due to their successful applications. Multiple studies have demonstrated that 

transgenic expression of a modified version of a rice cystatin , Oc-1∆D86, can interfere with 

nematode reproduction (Atkinson et al., 2003, Lilley et al., 2011). In tomato hairy roots, ex-

pression of Oc-1∆D86 using the cauliflower mosaic virus promoter resulted in significantly 

smaller female G. pallida after 6 weeks of infection when compared to control roots (Urwin 

et al., 1995). Oc-1∆D86 expressed in transgenic Arabidopsis plants considerably reduced the 

size of female H. schachtii and M. incognita relative to controls, with growth arrested prior to 

egg-deposition (Urwin et al., 1997). Potato plants expressing Oc-1∆D86 from the cauliflower 

mosaic virus promoter which were challenged with potato cyst nematode Globodera pallida 

in a field trial resulted in a decrease in cyst number by 55–70% (Urwin et al., 1995). Trans-

genic plants of four elite African rice varieties constitutively expressing the modified 
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OcI∆D86 displayed 55% resistance to M. incognita (Vain et al., 1998). Interestingly, full 

resistance to G. pallida was achieved in the United Kingdom field by introduction of Oc-

IΔD86 into natural partially resistant potato cultivars (Urwin et al., 2003). One key feature of 

cystatins for successful nematode control is that they are relatively small proteins (~11 kD), 

which will not be excluded by the feeding tube of sedentary endoparasitic nematodes that has 

been reported to restrict the size of molecules entering the intestine (Böckenhoff & Grundler, 

1994). 

Silencing essential nematode genes  

Host-generated RNA interference (RNAi) targeting a nematode gene displays an efficient 

strategy to silence essential genes and hence to control the infection (Gheysen & Vanholme, 

2007, Lilley et al., 2007). Although it is not clear if the target transcript suppression observed 

arises from ingestion of plant derived siRNAs or dsRNA that is subsequently processed by 

the nematode, some proof-of-concept studies have shown extremely promising results. The 

first study of host delivered RNAi was in tobacco plants expressing dsRNA of Meloidogyne 

genes encoding a splicing factor and a component of a chromatin remodeling complex (Yadav 

et al., 2006). Transgenic plants expressing both hairpin (a sequence of RNA that makes a 

tight hairpin turn) constructs displayed much fewer nematodes and galls and lacked detectable 

transcripts for the targeted genes in the nematodes (Yadav et al., 2006). A high level of re-

sistance to root-knot nematodes was also achieved by targeting a parasitism gene 16D10 ex-

pressed in the subventral gland cells of M. incognita in Arabidopsis (Huang et al., 2006a). 

Transgenic Arabidopsis revealed a 63–90% reduction in the number of galls, an overall de-

crease in gall size and a corresponding reduction in total egg production, compared to control 

vector-transformed lines. Importantly, the high degree of homology between the 16D10 se-

quences of different Meloidogyne species led to broad-range resistance against M. incognita, 

M. javanica, M. arenaria and M. hapla.  

A number of studies have now demonstrated that hairpin RNAs expressed in the model plant 

Arabidopsis can only partially reduce transcript abundance of targeted parasitism genes of H. 

schachtii (Patel et al., 2008, Patel et al., 2010, Sindhu et al., 2009).  Furthermore, a large var-

iation in the infection results were observed by different research groups between and even 

within transgenic lines (Sindhu et al., 2009, Kyndt et al., 2013b). One of the possible reasons 

is due to the promoter methylation in transgenic plants when plants detect exogenous genes 

“invading’ (Kyndt et al., 2013b). 

 

 

http://en.wikipedia.org/wiki/RNA
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Disruption of sensory function 

Lectins, or agglutinins, are ubiquitous proteins present in both plants and animals that recog-

nize and reversibly bind specific mono- or oligosaccharides (Van Damme et al., 1998). Ex-

pression of snowdrop lectin (GNA) directed by the CaMV35S promoter in potato, oilseed 

rape and Arabidopsis confers partial resistance to cyst and root-knot nematodes (Burrows et 

al., 1998, Burrows & De Waele, 1997, Ripoll et al., 2003). It is thought that the lectin may 

bind glycoproteins in the amphidial secretions and interfere with the nematode sensory per-

ception and its ability to establish feeding cells (Thomas et al., 2006). 

Targeting the nematode feeding site 

In case of endoparasitic nematodes, an alternative strategy to target the nematode directly is to 

disrupt the nematode feeding sites. Transcriptional analysis of feeding sites provides key in-

sights into the physiological process and cellular structure in feeding sites, which will offer an 

advanced knowledge for engineering plants targeting nematode feeding sites. However, this 

approach would require a promoter that would become active specifically in NFS (i.e. a cell 

death gene, or a phytotoxic gene), it would be active in NFS but would have minimal or no 

overlap in other cell tissue. Fortunately, more and more plants with fully sequenced genome, 

well developed microarrays or RNA-seq techniques, and successfully identified feeding site 

expression transcripts, will offer the wealth of resources for identifying promoters that are 

much more active in NFS than in other plant tissues (Atkinson et al., 2003, McCarter, 2009, 

Thomas et al., 2006). 

1.6 Plant thionins  

After contact with pathogens, plants produce many biological active compounds, including 

small peptides, which present direct antimicrobial properties against pathogens. Those com-

pounds are called antimicrobial peptides. They are considered to play an important role in 

plant defence (García-Olmedoet al., 1998, Castro & Fontes, 2005). Among plant antimicrobi-

al peptides, thionins were the first whose activities against plant pathogens were studied in 

vitro (Garcia-Olmedo et al., 1992, De Caleya et al., 1972). 

Plant thionins are included in the pathogenesis-related proteins as the PR-13 group (Epple et 

al., 1995). They are small (about 5KDa), cysteine-rich, and usually basic. They are found in 

monocots (grains), eudicots including dicotyledonous (mistletoes and Pyrularia pubera), and 

rosids (Stec, 2006). Most thionins present toxic effects against bacteria, fungi, yeast and ani-

mal cells (Bohlmann and Apel, 1991, Florack & Stiekema, 1994, Bohlmann 1994). 
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1.6.1 Biochemical properties of thionins 

The mature thionins are generally 45-47 amino acids long and can be classified into at least 

five types (I-V). Type I thionins (purothionins) were initially identified from wheat grain 

endosperm. They have 45 amino acid residues, eight of which are in the central disulfide loop, 

they are highly basic and contain no negatively charged residues (García-Olmedo et al., 1998). 

The second type is represented by thionins identified from leaves of Pyrularia pubera and of 

barley (Vernon et al., 1985, Bohlmann & Apel, 1987, Gausing, 1987). Type II thioins have 

four disulphide bridges at the same positions as type I thionins, but they are less basic and 

with some negatively charged residues (Garcia-Olmedo et al., 1992). Type III thionins were 

isolated from stems and leaves of mistletoe species (Loranthaceae). They have three disul-

phide bridges and contain fewer basic residues. Their sequences have 46 residues and nine of 

them are in the central disulphide loop (Samuelsson & Pettersson, 1970, Romagnoli et al., 

2003, Pal et al., 2008, Bhave & Methuku, 2011). The type IV thionin, crambin, isolated from 

seeds of Crambe abyssinica, is 46 amino acids long, with an overall neutral charge and three 

disulphide bonds (Vanetten et al., 1965, Bhave & Methuku, 2011). Type V thionins are quite 

divergent, the second and eight cysteines of type I thionins are missing in this type and thus, a 

new bridge is formed between the unmatched cysteines. Type V thionins are also neutral, they 

have been identified in a cDNA library derived from developing kernels of wheat and Ae-

gilops species (Castagnaro et al., 1992 , Castagnaro et al.,1995). 

The three-dimensional structure of thionins has been studied in both crystallized form and in 

solution (Hendrickson & Teeter, 1981, Brunger et al., 1987). The three dimensional structure 

of type I, III and IV are similar in shape, and it resembles the Greek letter γ. It is comprised of 

two antiparallel α-helices in the long arm and two short β strands (β-sheet). The groove be-

tween the α-helices and β-sheets contains the Tyr13 residue. The plasma membrane interac-

tion with Tyr13 may be associated with cell content leakage, which is the main mechanism of 

the toxicity against yeast, mammal, fungal and bacterial cells (Carrasco, 1981).  

1.6.2 Antimicrobial activities of thionins  

The toxicity of thionins to bacteria, yeast, fungi (De Caleya et al., 1972), cultured mammalian 

cells (Nakanishi et al., 1979, Carrasco et al., 1981), and insect larvae (Kramer et al., 1979) 

has been investigated for several decades. Toxicity was observed when the barley endosperm 

thionin was injected intravenously or intraperitoneally to mice, guinea pigs and rabbits, but 

not upon oral administration (Coulson et al., 1942, García-Olmedo et al., 1989). Insect larvae 

were sensitive to different endosperm thionins when the proteins were administered through 

the hemocoel but not when incorporated in the food (Kramer et al., 1979). 
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The necessity of the Tyr13-residue for toxicity was verified in crambin. Crambin is non-toxic, 

and Tyr13 is not there but instead, it is Phe13, which proves the importance of Tyr13 in tox-

icity (Stec, 2006). Pore or water channel formation or disturbance of membrane organization 

is hypothesized as the causes of cell lysis, and the conserved Cys are also needed for toxicity 

and stability of the peptides (Thevissen et al., 1996, Oard, 2011, Majewski & Stec, 2010, 

Hughes et al., 2000, Llanos et al., 2006). 

A study of the effects of α-hordothionin on the membranes of Fusarium culmorum indicated 

that thionins caused Ca
2+

 influx and K
+
 efflux in the fungal hyphae (Thevissen et al., 1996). 

The toxic effect not only alters the balance of Ca
2+

 and K
+
, it also induces the linkage of 

phosphate ions, nucleotides, amino acids, and inhibits the incorporation of sugars (Garcia-

Olmedo et al., 1992, Bohlmann & Apel, 1991). Apart from alteration of membrane permea-

bility, Carrasco et al. (1981) demonstrated that the barley endosperm thionins inhibit the syn-

thesis of DNA, RNA and proteins in cultured mammalian cells. 

1.6.3 Implication of thionins in plant defence 

Plant thionins are synthesized as preproteins consisting of a signal sequence, a thionin domain 

and an acidic domain. Thionins are secreted into vacuoles, protein bodies, extracellular spaces, 

and the plant cell wall (Bohlmann and Apel, 1991). Several reports on transgenic plants ex-

pressing thionin genes have shown that those transgenic plants were more resistant against a 

wide range of fungal or bacterial pathogens.  

Overexpression of a hordothionin gene from barley in tobacco conferred resistance to Pseu-

domonas syringae (Carmona et al., 1993), and enhanced resistance to Fusarium oxysporum 

was observed in transgenic Arabidopsis thaliana plants that overproduced its endogenous 

thionin THI2.1 (Epple et al., 1998). Iwai et al. (2002) showed that heterogeneous expression 

of an oat cell wall-bound thionin gene in rice made the plants more resistant to two major 

seed transmitted phytopathogenic bacteria, Bukholderia plantarii and Bukholderia glumae. 

Transgenic tobacco expressing a β-hordothionin gene showed resistance to Botrytis cinerea 

and Pseudomonas solanacearum (Charity et al., 2005). Tomato plants expressing an Ara-

bidopsis thionin THI2.1 showed enhanced resistance to bacterial wilt and Fusarium wilt dis-

eases. Overexpression of a thionin gene from barley in sweet potato gave resistance to black 

rot disease caused by Ceratocystis fimbriata (Muramoto et al., 2012). Moreover, enhanced 

resistance to gray mold (Botrytis cinerea) was observed in transgenic potato plants expressing 

thionin genes isolated from Brassicaceae species (Hoshikawa et al., 2012). However, no stud-

ies on transgenic plants with RNA interference or knock-out of thionin genes have been re-

ported. 



 Chapter 1                                                                                                       General introduction 

53 
 

Plant thionin genes are not only induced by pathogens and wounding (Ebrahim-Nesbat et al., 

1989, Ebrahim-Nesbat et al., 1993, Epple et al., 1995, Lee et al., 2000, Vignutelli et al., 

1998), they are also induced by chemicals or phytohormones. Barley leaf thionin genes can be 

induced by jasmonic acid (Andresen et al, 1992), INA (Wasternack et al., 1994), and salicy-

late (Kogel et al., 1995). However, Arabidopsis thionin gene THI2.1 was only induced by 

methyl jasmonate and INA but not by salicylate (Epple et al., 1995, Holger et al., 1998, Al-

berto et al., 1998). A pepper thionin gene, Cathion1 was strongly induced by treatment with 

ethephon or methyl jasmonate, weakly by salicylic acid and benzothiadiazole (Lee et al., 

2000). Kitanaga et al. (2006) found that rice thionin gene expression was positively regulated 

by jasmonic acid, gibberellins and brassinosteroids. A microarray data of rice cDNA showed 

that OsTHI2 was up-regulated in 30-day-old calli after a 3-day-treatment with either 50µM 

abscisic acid or 50µM gibberellin acid (Yazaki Junshi et al., 2003). 

A few researchers have studied the spatial expression patterns of thionin genes. Barley thionin 

genes are mainly expressed in seed endosperm (Ponz et al., 1983) and leaves (Holger et al., 

1987). Arabidopsis THI2.1 is constitutively expressed at very high levels in flowers and si-

liques. A weak GUS expression was seen in the apical region and young leaf primordia in 12 

and 13-day-old seedlings. However, no GUS expression was detectable in 9-day-old seedlings 

(Alberto et al., 1998). Transcripts of endogenous rice thionin genes (several homologous 

genes) were found to be abundant in coleoptiles (4-day-old) and rare in roots, but not detecta-

ble at all in leaf blade and panicle (2-month-old) using northern blot analysis (Iwai et al., 

2002). 

The expression pattern of different rice thionin genes in rice tissues, as obtained by Gene-

vestigator analysis (Hruz et al., 2008), is presented in addendum Figure A1. The distribution 

of thionin gene expression in rice is quite diverse, and they are expressed in different tissues. 

Generally, rice thionin genes from chromosome 6 are mainly expressed in root tips, radicles, 

roots and coleoptiles. 
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2.1 Problem statement  

Rice is the staple food of over half the world's population. It is the predominant dietary energy 

source for 17 countries in Asia and the Pacific, 9 countries in North and South America and 8 

countries in Africa (Gelman & Choi, 2008). More than 75% of the rice production comes 

from irrigated lowland (Tuong and Bouman 2003). However, fresh water is becoming a pre-

cious commodity due to the increasing consumption from household, industry, and agriculture 

(Molden et al., 2007). Therefore, scientists are now seeking new rice production systems that 

can cope with water scarcity. Aerobic rice is a new production system where adapted rice 

varieties are grown in non-puddled, non-flooded, and non-saturated fields (Tuong and Bou-

man, 2003). Aerobic rice genotypes can reduce water requirements for rice production as 

much as 50% in comparison with lowland rice (Huaqi et al.  2002). However, if continuously 

cultivated with aerobic rice, a yield reduction has been observed. The rice root-knot nematode 

Meloidogyne graminicola is considered one of the possible causes of these yield reductions 

(De Waele et al., 2013). The use of nematicides is becoming more and more restricted due to 

the environmental concerns. Hence, plant resistance or tolerance to M. graminicola damage is 

essential. Although resistance to M. graminicola has been identified in Oryza longistaminata 

and Oryza glaberrima (Soriano et al., 1999, Plowright et al.,1999), it is taking time to transfer 

these resistance properties into cultivated O. sativa by conventional breeding (Bridge et al., 

2005). Genetic engineering has many advantages to the traditional breeding, it can introduce a 

broader and more diverse range of genes into one plant species, and generally, it has minimal 

effect on beneficial soil microbes (Wally & Punja, 2010, Gurr & Rushton, 2005, Liu et al., 

2005). On the other hand,  plants can exhibit a fast and strong defence response upon patho-

gen infection when they are appropriately stimulated by inducing agents (Hammerschmidt, 

2007). This induced resistance responses can be activated or primed not only in locally infect-

ed sites but also can establish immunity in systemic tissues (Van der Ent et al., 2008). How-

ever, in contrast to knowledge on foliar pathogens and dicots, still relatively little is known 

about the defence responses of monocots, such as rice, against plant parasitic nematodes. Ex-

ploring rice-nematode interaction provides an opportunity to study the defence mechanisms in 

the root system of this model monocot plant. Furthermore, increasingly available in silico data 

offer a holistic approach to elucidate a large set of differentially expressed genes participating 

in plant response upon invasion by nematodes. Such genes can eventually serve in the devel-

opment of resistant rice cultivars by genetic engineering or other breeding methods. From a 

practical point of view, genetic engineering of plants for disease control, induced resistance 

by inducing agents, and analysis of transcriptome changes in nematode feeding sites or galls, 

will supply effective and advanced approaches in plant defence research in the interaction 

between root-knot nematodes and rice. 
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2.2 Objectives and thesis outline 

We sought to provide primary evidence for improvement of defence to the root-knot nema-

tode Meloidogyne graminicola in rice. In particular, the objectives of this work were: 

    (i) To assess whether overexpression of rice endogenous thionin genes can enhance plant 

defence against root-knot nematode M. graminicola and to study the regulation of rice thionin 

gene expression by defence-related hormones. 

    (ii)  To evaluate whether BABA can trigger defence in rice, a monocot system, against the 

root-knot nematode M. graminicola and gain insights into the mechanisms of this kind of 

induced resistance. 

    (iii) To advance our knowledge of the transcriptome in giant cells formed by M. graminico-

la in rice roots at different time points and to compare the transcriptional changes in giant 

cells and in galls. 

The first research part of this work, chapter 3 is dedicated to the role of rice thionins in modu-

lating rice defence against M. graminicola. The role of plant thionin genes was explored ex-

tensively in past decades, however, the role of thionin genes against plant parasitic nematodes 

has never been investigated. In this chapter, rice thionin genes were functionally tested for 

their putative role in rice resistance against the root-knot nematode M. graminicola. In addi-

tion, the interaction between thionin genes and hormone signal pathways was analyzed as 

well. 

In the second part of this work, covering chapter 4, the focus is shifted to the phenomenon of 

BABA-induced resistance in rice. Although many studies have shown BABA-IR against a 

wide range of plant parasitic nematodes, very few researches were conducted on analyzing 

the mechanisms behind BABA-IR against nematodes, especially using monocots as hosts. 

The effectiveness of BABA-IR against the root-knot nematode M. graminicola and the asso-

ciated mechanisms using different biosynthesis and signaling mutants were investigated. Fur-

thermore, a histochemical and microscopical investigation of the defence reactions in BABA-

IR was performed.  

In the third part of this work, chapter 5, the transcriptome changes in giant cells induced by M. 

graminicola in rice roots was performed, by using RNAseq after laser capture microdissection 

of these cells. Knowledge of genes involved in feeding site formation will provide an alterna-

tive approach in plant defence against sedentary nematodes. The possible roles of some dif-

ferentially expressed genes were addressed in this chapter. 
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Finally, in chapter 6, I briefly recapitulate the results and discuss the applications of this work 

and future prospects. 
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Abstract 

Thionins are pathogenesis-related proteins that are thought to be involved in plant defence. 

However, rice thionin genes are strongly suppressed in galls induced by the root-knot nema-

tode Meloidogyne graminicola. Here, we present data of an in-depth analysis of the expres-

sion pattern of different rice thionin genes in galls at different time points after inoculation. 

Moreover, the expression of rice thionin genes was observed to be differently induced by 

defence-related hormones. Transgenic lines of Oryza sativa cv. Nipponbare overproducing 

endogenous OsTHI7 results in decreased susceptibility to M. graminicola and enhanced toler-

ance to Pythium graminicola infection.  

3.1 Introduction 

In nature, plants are attacked by a diverse range of pathogens and herbivores, which cause 

major yield reduction. However, plants have evolved sophisticated strategies to protect them-

selves from disease and herbivore feeding. As soon as a pathogen is recognized, plants initiate 

rapid defence responses, activating signaling pathways and accumulating pathogenesis- relat-

ed (PR) proteins (Goodman & Novacky, 1994, Fritig et al., 1998, Durrant & Dong, 2004). 

Most of those PR proteins having antimicrobial activity are of low molecular weight (5KDa-

75KDa), basic or acidic and highly resistant to proteases. PR proteins generally have a dual 

cellular localization, apoplastic or vacuolar or both (Edreva, 2005, Dixon et al., 1991). To 

date, at least 17 distinct families of PR proteins have been recognized based on their serologi-

cal relatedness, biological activities, and amino acid sequences (Van Loon et al., 2006). In 

rice, only PR1, PR8 and PR10, have been reported to be induced following bacterial and fun-

gal infection (Mitsuhara et al., 2008, Kim et al., 2008, Park et al., 2004). Some PR genes are 

regulated differently depending on the pathogen species (Chen & Ronald, 2011). The family 

of PR13, known as thionins, is a group of anti-microbial peptides. They are generally 45-47 

amino acids long, usually basic, cysteine-rich with a molecular weight of about 5KDa. Thio-

nins are synthesized as much larger preproproteins, including a signal peptide, a basic mature 

thionin domain and a long acidic domain. The 6-8 cysteines in mature thionin form disulphide 

bridges (Bohlmann & Apel, 1991, Stec, 2006). A major feature of thionins is their wide range 

of toxic effects on different biological systems. Most studied thionins are toxic to bacteria, 

fungi, yeast, and various mammalian cell types in vitro.  The toxic effects seem to be based 

on destruction of the organization of cell membranes by the interaction with negatively 

charged phospholipids. This causes a disturbance of the Ca
2+

 or K
+
 balance, and results in 

leakage of proteins, nucleotides, and other components (Bohlmann & Apel, 1991, Terras et 

al., 1995, Thevissen et al., 1996). In addition to the damage on pathogen membranes, Garcia-

Olmedo et al. (1983) demonstrated an inhibitory effect of thionins on microbial protein syn-
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thesis. Thionin genes are not only induced by pathogen attack in plants, but are also regulated 

by chemical inducers, such as heavy metals (Fischer et al., 1989), jasmonic acid or methyl 

jasmonate (Andresen et al., 1992, Epple et al., 1995, Vignutelli et al., 1998, Lee et al., 2000, 

Kitanaga et al., 2006), 2,6-dichloroisonicotinic acid (Wasternack et al., 1994), salicylic acid 

(Kogel et al., 1995, Lee et al., 2000), ethylene (Lee et al., 2000), gibberellin acid and 

brassinolide (Kitanaga et al., 2006). Further support for a role of thionins as defence peptides 

comes from studies where exogenous or endogenous thionin genes are overexpressed in 

plants. Overexpression of plant thionin genes leads to enhanced resistance against a broad 

range of bacterial and fungal pathogens (Bohlmann & Broekaert, 1994, García Olmedo et al., 

1998, Epple et al., 1997, Iwai et al., 2002, Holtorf et al., 1998, Chan et al., 2005, Hoshikawa 

et al., 2012, Muramoto et al., 2012, Shirasawa-Seo et al., 2002). Although plants possess 

protective mechanisms against their pathogens, their defensive network is not infallible. To 

successfully infect a plant, pathogens have evolved virulence molecules. For example, effec-

tors secreted from pathogens can overcome, manipulate or suppress host defence and help to 

establish compatible interactions (Van Loon et al., 2006, Nomura et al., 2005). Oryza sativa 

is susceptible to a variety of pathogens, and among which are plant parasitic nematodes. 

Based on scientific and economic importance, a list of the top 10 plant parasitic nematodes 

was put forward, and root-knot nematodes (RKN) were in the first position (Jones et al., 

2013). The rice root-knot nematode Meloidogyne graminicola is becoming the most damag-

ing nematode since the rice production from traditional paddy system has shifted to water-

saving systems (Tandingan et al., 1996, Soriano et al., 2000, Bridge et al., 2005, De Waele & 

Elsen, 2007, Dangal et al., 2009). Yield losses of up to 87% have been reported (Jones et al., 

2013). Infective second stage juveniles (J2) penetrate the roots and migrate intercellularly 

towards the root apex, and then they make a U-turn and move upwards in the vascular bun-

dles to the differentiation zone, where they settle down and initiate permanent feeding sites. 

These large, multinucleated, metabolically active giant cells are the nutrient source from 

which the nematode feeds for the remainder of its sedentary life (Gheysen & Mitchum, 2011, 

Kyndt et al., 2013a). Due to hyperplasy and hypertrophy of the surrounding cells, galls are 

appearing, typically hook-formed in the case of M. graminicola. During the infection process, 

root-knot nematodes secrete a cocktail of compounds, containing effectors and other chemi-

cals, in order to establish a successful compatible interaction (Gheysen & Mitchum, 2011, 

Kyndt et al., 2013a). A previous transcriptome study of 3 days post inoculation (dpi) and 7dpi 

galls upon M. graminicola infection in rice revealed that, instead of up-regulation as could be 

expected for PR proteins upon pathogen infection, most rice thionin genes on chromosome 6 

were down-regulated in galls (Kyndt et al., 2012a, Table 3.1). Moreover, thionin genes on 

chromosome 6 were also attenuated in roots at 2dpi after Pythium graminicola infection (De 

Vleesschauwer et al., unpublished data). This might be the consequence of M. graminicola or 
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Pythium graminicola suppression of plant defence, indicating that rice thionins on chromo-

some 6 might be resistance factors against M. graminicola and Pythium graminicola. To test 

this hypothesis, we first examined the expression pattern of three rice thionin genes from 

chromosome 6 in different developmental stages of galls by qRT-PCR as well as by promot-

er-GUS analyses.  Subsequently, OsTHI7 was overexpressed in O. sativa cv. Nipponbare to 

test its effect on M. graminicola and Pythium graminicola. Finally, the regulation of three rice 

thionin genes in response to plant defence related hormones was studied by qRT-PCR and 

promoter-GUS analyses.  

3.2 Results 

3.2.1 The response of thionin genes upon Meloidogyne graminicola and Pythium gramini-

cola infection 

The expression profile of thionin genes in RKN-infected galls (Kyndt et al., 2012a) and giant 

cells (GC, Ji et al., 2013, chapter 5) as well as the whole roots in the case of infection with the 

oomycete Pythium (De Vleesschauwer et al., unpublished data ) was compared with their 

corresponding uninfected control tissues. Table 3.1 shows the Log2FC value of thionin genes 

in these infected tissues compared to the control. In GCs, OsTHI21 located on chromosome 2 

and OsTHI26 /OsTHI29 on chromosome 3 are induced at both time points as well as in the 

combined dataset (7dpi and 14dpi) when compared with uninfected vascular cells. However, 

thionin like peptides, mainly on chromosome 7, are suppressed in GCs at 7dpi and 14dpi, 

although the suppression at 7dpi is not significant. In whole galls, nevertheless, the transcripts 

of thionins are rather suppressed at both 3dpi and 7dpi in comparison with uninfected root tips. 

The suppression is mainly seen for the thionin genes from chromosome 6, like for instance 

OsTHI1, OsTHI2, Oshi3, OsTHI5, OsTHI6, OsTHI7, OsTHI8 and OsTHI9. Correspondingly, 

those genes are also strongly suppressed in Pythium graminicola -infected root tissue. 

As 15 out of 40 annotated thionin genes are located on chromosome 6, and most of them are s

uppressed in galls as well as in roots infected by Pythium. We decided to focus on the thionin 

genes from chromosome 6. Due to the high similarity in coding sequences and untranslated re

gions among those genes, it is very difficult to separate the expression of OsTHI3, OsTHI5, O

sTHI6, OsTHI7 and OsTHI9 by primer design for qRT-PCR with DNA-binding dyes, therefor

e, we only studied the expression of OsTHI1 (LOC_Os06g31280), OsTHI2 (LOC_Os06g318

00), and OsTHI7+6 (combined, LOC_Os06g32160 + LOC_Os06g32020) in further investigat

ions. Due to high homology, the primer pair designed for OsTHI7 potentially also binds to Os

THI6. Hence, we consider the gene expression data recorded by this primer pair as a combinat

ion of the expression pattern of both genes OsTHI7 and OsTHI6. 
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Table 3.1 Differential expression patterns (log2FC) of rice thionin genes in M. graminicola infected 

giant cells (Ji et al., 2013; chapter 5) and galls (Kyndt et al., 2012a) at different time points after infec-

tion, as detected by mRNA-seq, and in Pythium graminicola infected roots at 2dpi as detected by mi-

croarray (De Vleesschauwer et al., unpublished data), in comparison with the uninfected control tissue. 

*:p≤0.1; **:p≤0.05.  Down- regulated genes, green; up-regulated genes, red. NE: not expressed in this 

tissue 

 

3.2.2 Rice thionin genes are suppressed at early time points in galls induced by M. gram-

inicola  

In order to analyze the expression of rice thionin genes in more detail during the compatible 

interaction between M. graminicola and O. sativa, the expression of OsTHI1, OsTHI2 and 

OsTHI7+6 in galls and corresponding uninfected root tips (as control) was investigated by 

qRT-PCR (Fig 3.1). The gene expression analysis was done at 4 time points which are repre-

senting the whole life cycle of M. graminicola. All thionin genes are strongly suppressed in 

galls compared to control root tips until 7dpi. Even at 14dpi, OsTHI7+6 appears still sup-
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pressed in galls, although it is not significant. However, OsTHI1 and OsTHI2 are strongly 

induced at 14dpi.  

Fig 3.1 Relative expression levels of three rice thionin genes in M. graminicola induced galls compared 

to non-inoculated root tips at different time points after inoculation (dpi). Gene expression level was 

normalized using three internal reference genes, OsEXP and OsUBQ5 and OseIF5C. Bars represent 

mean expression levels ±SE from 2 independent biological and three technical replicates each contain-

ing a pool of 8 plants. Data was obtained using REST2009 software. Significant differential expression 

(P≤0.05) in comparison with un-inoculated root tips (control expression level = 1) is indicated with 

asterisks. The black horizontal line shows the expression level in the untreated control plants (set at 1). 

The qRT-PCR data (Fig 3.1) confirms and extends the transcriptome analysis of M. gramini-

cola induced galls (Kyndt et al., 2012a), showing that OsTHI7+6 is strongly and consistently 

suppressed in this compatible interaction. Hence, we selected OsTHI7 as a candidate for fur-

ther study. First, OsTHI7-promoter::GUS lines were generated and analyzed. In uninfected 

rice seedlings, GUS is only localized in the root tips meaning that OSTHI7 is expressed in the 

distal end of rice roots (Fig 3.2 E and F). The spatio-temporal localization of GUS in M. 

graminicola induced galls was also analyzed. GUS intensity is gradually lower during the 

development of galls (Fig 3.2 A-D). We further investigated the GUS expression in giant cells 

by cross sectioning of 7 dpi galls and corresponding root tips. As seen from Figure 3.3, there 

is nearly no GUS activity (pink staining, by dark field microscopy) was observed in 7dpi gi-

ant cells, but the pink stain was shown in control root tip sections.      
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Fig 3.2 Spatio-temporal localization of GUS in Meloidogyne graminicola induced galls and in root tips 

of an uninfected POsTHI7::GUS line. (A) 2dpi (B) 3dpi (C) 7dpi (D) 14dpi E and F: un-inoculated 

root tips corresponding to the 7 and 14 dpi time points. Three independent lines were observed with 

similar results. GUS staining (blue) from one line was represented. Scale bar: 200µm  
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Fig 3.3 Thin section of 7dpi gall and corresponding root tip from the same line of POsTHI7::GUS as in 

Fig 3.2. GUS staining (pink color) was visualized by dark field microscopy. (A) 7dpi gall section (B) 

root tip section. *: giant cell, scale bar: 100µm. 

In conclusion, qRT-PCR data and histochemical analysis of GUS activity in POsTHI7::GUS 

lines showed that under normal growth conditions OsTHI7 shows a root tip-specific expres-

sion pattern, and it is suppressed in giant cells and galls induced by M. graminicola. 

3.2.3 Overexpression of OsTHI7 decreases plant susceptibility against M. graminicola  

To find out whether OsTHI7 can protect rice against M. graminicola infection, 30 independ-

ent T0 OsTHI7 overexpression lines were generated, all the lines look phenotypically normal. 

The transformation was validated by PCR (data not shown) and semi-quantitative RT-PCR 

(Fig A5.A). The same vector, without insert, was also transformed to yield control plants. 

Three T1 hemizygous OsTHI7 overexpression lines with single insertion (tested by segrega-

tion analysis) and good expression (Fig A5.B) were used in an infection experiment. As con-

trols, one empty vector line and the wild type (cv. Nipponbare) were included. These three 

transgenic lines as well as the empty vector line look phenotypically normal (Fig A3). It has 

been demonstrated before that trans-gene or epigenetic effects of the transformation process 

can disrupt the homeostasis of a plant cell and lead to the expression of defence related pro-

teins (Epple et al., 1997, Mittler et al., 1995, Herbers et al., 1996). However, in our case the 

expression of PR1a and PR1b is not changed in uninfected transformed plants compared to 

empty vector and Nipponbare control (Fig A5.B). 

Two weeks after inoculation with M. graminicola, root and shoot length, number of galls, and 

different stages of nematodes were evaluated. At this time point, the root length of these five 

lines was not significantly different (Fig A4), however, the shoot length of the three overex-

pression lines was significant higher than the wild type plants Nipponbare (Fig A4). The 

number of galls was not significantly different in the OsTHI7-overexpression lines compared 

to control plants (Fig 3.4A). However, there was a significant reduction in the number of fe-

males and total nematodes per gall (average 39.2% reduction, Fig 3.4B) in the overexpression 

plants. Moreover, the galls in the control plants were relatively bigger than in the overexpres-

sion plants (Fig 3.4C).  
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Fig 3.4 OsTHI7 overexpressing plants exhibit reduced susceptibility to M. graminicola. Data obtained 

14 days after inoculation (14dpi). (A) The number of galls in overexpression (OX2, OX19 and OX22) 

and control (Nipponbare and Empty Vector) plants. (B) The different developmental stages of M. 

graminicola within the galls in overexpression (OX2, OX19 and OX22) and control (Nipponbare and 

Empty Vector) plants. (C) Representative root system 14 days after infection with M. graminicola in 

different lines. 1. Empty Vector, 2. Nipponbare, 3. OX 19  and 4. OX2. Scale bar: 1mm. Bars represent 

means and ±SE of galls or nematodes per plant (n = 8). Different letters indicate statistically significant 

differences (Duncan’s multiple range test with P≤ 0.05). a/b indicates the significant differences in J2 

stage; A/B indicates the significant differences in J3+J4 stages. α/β indicates the significant differences 

in females, and θ/ε indicates the significant differences in the total of the infected nematodes. Data 

represent one of three independent experiments with similar results. The data obtained from the other 

two replicates are shown in addendum Fig A6. Vec: transgenic line containing an empty vector. 

3.2.4 Overexpression of OsTHI7 enhances plant tolerance to Pythium graminicola 

Since OsTHI7 was also suppressed by the virulent oomycete Pythium graminicola, as shown 

by a microarray study (Table 3.1, De Vleesschauwer et al., unpublished data). We tested the ef-

fect of one overexpression line (OX22) after infection with Pythium graminicola to elucidate 

whether OsTHI7 can also protect rice from other root pathogens. Seven days after Pythium 

infection, roots of wild type Nipponbare, empty vector and OsTHI7-overexpression plants all 

developed typical brown necrotic patches, and roots were stunted. There were no significant 

differences in disease index scores and disease rates of the root systems of controls and over-

C 
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expression plants (data not shown). However, shoots of the OX22-line appeared significantly 

healthier than the control lines, and with a higher shoot length and a lower disease index score 

(Fig 3.5). 
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Fig 3.5 Susceptibility towards Pythium graminicola in OsTHI7 overexpression line (OX22) in compar-

ison with control (Nipponbare and Empty Vector) plants. OX22 enhanced rice shoot tolerance to root 

pathogen Pythium graminicola infection. Data obtained 7 days after infection. (A) The 0-to-V disease 

rating in control and overexpression plants. (B) The shoot length per plant. (C) Representative pictures 

were taken at the moment of disease scoring. Statistical analysis for disease rating was done using 

Mann Whitney test (P≤0.05). Statistical analysis for shoot length was done using Duncan’s multiple 

range test P≤0.05. Bars represent means and ±SE from one biological replicates (6≤n≤12). Different 

letters indicate statistically significant differences. The data obtained from the other replicate are shown 

in addendum Fig A7.  Vec: transgenic line containing an empty vector 

3.2.5 OsTHI7 is localized in the secretory pathway in rice cells 

As proteins within cells are spatially organized according to their roles, the study of protein 

subcellular localization is important to elucidate protein function. In order to further investi-

gate the function of OsTHI7, a construct containing OsTHI7 fused with GFP under the con-

trol of the maize ubiquitin promoter was transformed into rice plants and used to study the 

subcellular localization of OsTHI7. The leaves and roots of one week old PUbi::OsTHI7-

GFP transgenic seedlings (T1) were viewed using a confocal microscope. As shown in Figure 

3.6A, GFP (green color) was detected in punctuate structures in stomatal guard cells. These 

punctuate structures are likely Golgi bodies/or vesicles, and the bright spots (green color dots) 

are probably the result from aggregation of several Golgi bodies (Jung et al., 2012). In roots, 

GFP was observed at the periphery of root cells (Fig 3.6B), however, the exact location is not 

clear.  

 

C 



     Chapter 3                                                                                       The role of rice thionins 

74 
 

Analysis of the OSTHI7 sequence by TargetP (Emanuelsson et al., 2000) and SignalP 

(Petersen et al., 2011) indicates that the peptide is likely to be secreted to the extracellular 

compartment (score 0.894), and sequence alignment with other known thionin peptides also 

indicates that OSTHI7 has a signal peptide (data not shown). Therefore, the GFP in the root is 

probably in the extracellular space. The protoplasts (big circle filled with green color and big 

circle in bright field) isolated from transgenic rice leaves showed that this peptide was located 

in the central vacuole since GFP expressed nearly in the whole protoplast (Fig 3.6C). The 

bright green dots in the protoplast are probably some cell orgenalles or the aggregations of 

this peptide, but this needs to be confirmed by markers. 

        

 

Fig 3.6 Confocal microscope images of different rice tissues expressing the OsTHI7-GFP under control 

of the ubiquitin promoter (Pubi::OsTHI7-GFP), similar observations from two different T1 lines. (A) 

In leaves of rice plants. Scale bar: 10 μm. (B) In roots of rice plants. Scale bar: 10 μm. (C) In leaf pro-

toplasts of rice. Scale bar: 5 μm. A fluorescence pattern of GFP in the protoplast was targeted to a cen-

tral vacuole. Yellow arrows indicate the observations described in the text. 

Taken together, the results suggest that OsTHI7 is following in the secretory pathway, but 

whether it is secreted to the extracellular space or stays in the vacuole needs to be further 

investigation.  

3.2.6 Rice thionin genes respond differently to plant hormones  

Previous studies have shown that many PR-genes including plant thionin genes respond dif-

ferentially to phytohormones (Bohlmann et al., 1998; Lee et al., 2000; Iwai et al., 2002; 

Kitanaga et al., 2006; Sels et al., 2008; Bari & Jones, 2009; Yazaki et al., 2003). Initial pre-

dictions using PLANT CARE indicated several hormone-related cis-elements in the promoter 

GFP GFP Bright field Bright field 

http://www.ncbi.nlm.nih.gov/pubmed?term=Kitanaga%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=17031029
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region of rice thionin genes (Table A1). Thefore, the expression pattern of these three thionin 

genes upon hormone treatments was investigated further by qRT-PCR. 

Figure 3.7 shows that the root expression of the three thionin genes responds differently to 

plant hormone application. After 6 and 24 hours of ABA treatment, all thionin genes are sig-

nificantly up-regulated; OsTHI1 shows consistent induction at all the tested time points (Fig 

3.7A). These results indicate that these thionin genes could be involved in the ABA mediated 

defence pathway. In the case of MeJA treatment, OsTHI1 is responsive to MeJA at all-time 

points. OsTHI2 and OsTHI7+6 are up-regulated after 6h treatment but then attenuated gradu-

ally. After 72h treatment, mRNA levels of both genes were significantly down-regulated, 

which could be the result of feedback effects and/or modulation by crosstalk with other plant 

hormones. Upon BTH treatment, OsTHI7+6 was persistently induced at all the investigated 

time points, while OsTHI1 showed a very minor induction after 6h BTH treatment. OsTHI2 

was not significantly altered by this treatment (Fig 3.7C).  
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Fig 3.7 Analysis of the expression level of  thionin genes in rice roots after root soaking in (A) 50 µm 

ABA, (B) 100 µm MeJA and (C) 250µm BTH for 6h, 24h and 3days. Gene expression level was nor-

malized using three internal reference genes, OsEXP, OsUBQ5 and OseIF5C.  Bars represent mean 

expression levels ±SE from 2 independent biological and three technical replicates, each containing a 

pool of 8 plant roots. Data was obtained using REST2009 software. Significant differential expression 

(P≤0.05) is indicated with asterisks in comparison with untreated control roots. The black horizontal 

line shows the expression level in the untreated control plants (set at 1). 

For further validation of qRT-PCR data, GUS activity was studied in a POsTHI7::GUS line 

after 6h and 3 days phytohormone treatments. All the experimental conditions were the same 

as in the qRT-PCR assays. Our results in Figure 3.8G and H show that the untreated transgen-

ic OsTHI7-Promoter::GUS line reveals consistent GUS staining only in the roots tips, which 

confirmed our previous observation that under normal growth conditions, OsTHI7 is confined 

to root tips. The POsTHI7::GUS line showed increased level of GUS-staining throughout the 

whole root system after 6h continuous ABA treatment. Apparently less GUS was detected in 

the root tips and proximal part of the roots after 3 days compared to 6h ABA treatment (Fig 

3.8, A and B). In case of MeJA treatment, GUS induction was observed after 6h treatment but 

after 3days, there was nearly no GUS detected (Fig 3.8, C and D). Upon treatment with BTH, 

more GUS was localized throughout the root and not only in the root tip as in the control 

treatment (Fig 3.8, E and F). The results from our qRT-PCR and GUS-assays illustrate that 

rice thionin genes are hormone inducible. 

 

(C) 
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Fig 3.8 Analysis of GUS activity in one POsTHI7::GUS line after phytohormone treatment for 6h and 

3 days.  Plant roots upon 50µm ABA treatments (A) and (B), 100µm MeJA treatments (C) and (D), and 

250µm BTH treatments (E) and (F). (G) and (H): control roots. Scale bar: 0.5mm.  
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 3.3 Discussion 

Thionins, identified as antimicrobial peptides and pathogenesis-related proteins, have been 

studied for decades (Edreva, 2005, Bohlmann & Apel, 1991), and many have shown that 

transgenic plants with enhanced thionin gene expression are more resistant to different fungal 

and bacterial pathogens (Bohlmann & Broekaert, 1994, García Olmedo et al., 1998). Endo-

sperm thionins of wheat are not only toxic to bacteria, yeast and fungi in vitro, but also show 

cytotoxic effects on insect larva (García Olmedo et al., 1989). However, until now, there is no 

data on the effect of thionins towards nematodes. Furthermore, although there are a large 

number of thionin genes in the rice genome, there is no in vivo or in vitro research on the 

functional analysis of rice thionins.   

In this study, the role of rice thionin genes in rice defence against root-knot nematodes was 

studied. Fifteen out of forty annotated thionin genes are on chromosome 6, and the coding 

sequences as well as amino acid sequences are highly similar. Probably the thionin genes on 

chromosome 6 have evolved through gene duplication, a process which has been shown to be 

very important for living organisms to get novel genes and to defend themselves against new 

pathogens (Martin & McInerney, 2009). To get more insight into the functions of rice thio-

nins, we selected three rice thionin genes from rice chromosome 6 for further study, based on 

the available information from previous studies (Kyndt et al., 2012a). First, the expression of 

these thionin genes in root galls caused by M. graminicola was studied using qRT-PCR. Due 

to the high homology, it was impossible to design specific primer pairs for OsTHI7 and Os-

THI6 to be used in SYBR-Green qRT-PCR. Nevertheless, in the future, using fluorescent 

reporter probes might provide a solution for this problem. Four time points were chosen for 

this analysis. 2dpi and 3dpi are the time points when M. graminicola establishes a feeding site, 

7dpi is a crucial time for nematode development, and 14dpi is almost the final time in the life 

cycle when the females start to produce eggs. Results show that OsTHI7+6 is consistently 

down-regulated in galls at all the evaluated time points, although at 14dpi, the suppression is 

not significant. The observations are remarkably similar to the report of Kyndt et al. (2012a). 

OsTHI1 and OsTHI2 are both strongly down-regulated in 2, 3 and 7dpi galls, but considerably 

up-regulated at 14dpi. Most probably this induction is too late to provide effective plant de-

fence. Down regulated thionin genes were also observed in M. incognita infected rice roots 

and after application other biotic stress which explored by Genevvestigator (Hruz et al., 2008). 

Suppression of thionin peptides was reported in the compatible interaction of barley with a 

virulent strain of Erysiphe graminis f. sp. Hordei compared to uninfected leaves, nevertheless, 

in an incompatible interaction, the level of thionins was not changed or slightly enhanced 

compared to control leaves (Ebrahim-Nesbat et al., 1993). These studies could indicate that 

the suppression of thionin genes is somehow contributing to a successful infestation. Since 
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OsTHI7+6 is consistently down-regulated, we decided to study OsTHI7 by genetic engineer-

ing for further elucidation of the role of OsTHI7 in defence of rice against M. graminicola. 

The study of GUS activities in POsTHI7::GUS plants shows that OsTHI7 is weakly ex-

pressed at the root-tip. This peptide may have some functions to protect the fragile root tips 

from certain soil pathogens or insect infestation. However, as we know that the toxicity of 

PR-proteins is generally dose dependent (Stec, 2006) and cultivar Nipponbare is susceptible 

to M. graminicola, probably the endogenous OsTHI7 level in the root tip is not strong enough 

to protect roots from M. graminicola infection. Alternatively, in our study, it has been shown 

that M. graminicola can strongly suppress thionin gene expression, which may avoid it to 

reach the toxic thionin dose for M. graminicola. Contrary to our observations, Iwai et al. 

(2002) detected no thionin gene expression at all in 2 weeks old rice roots, although they 

found the expression of endogenous thionin genes (several homologous genes) in coleoptiles 

of 4-day old plants using northern blot. This difference may be due to the different methodol-

ogies or materials. The qRT-PCR results were confirmed by the PsOsTHI7::GUS assays, 

where we additionally observed that there is nearly no GUS activity in 7dpi giant cells, 

whereas this gene is expressed in uninfected root sections. This result is also consistent with 

our study on giant cell transcripts by mRNA Seq ( Ji et al., 2013). 

 Next, we overexpressed OsTHI7 in the susceptible cultivar Nipponbare. All of the tested 

three OsTHI7-overexpression lines showed less infection by M. graminicola. The enhanced 

resistance of the transgenic lines is probably due to a direct toxic effect of OSTHI7 to M. 

graminicola. Although we have not shown OSTHI7 has a toxic effect on nematodes, this 

peptide has all the characteristics which are important for toxicity (Bohlmann & Apel, 1991, 

Stec, 2006). It is basic and contains Tyr13 and Lys1, two residues that are determining toxici-

ty by altering the permeability of cell membranes in various organisms, such as in cultured 

mammalian cells or fungal cells (Stec, 2006). When the roots were infected with Pythium 

graminicola, the shoots of OX22 also showed a significantly lower disease score and disease 

symptoms compared to control plants. In contrast, there were no significant differences on the 

length or disease symptoms in roots. These results indicate that this overexpression line is 

more tolerant to Pythium graminicola infection. However, the mechanism of the enhanced 

tolerance to Pythium infection is unclear.  

 Initial predictions by PSORT indicated that OSTHI7 has a large chance to be transported into 

the secretory pathway since it contains a predicted signal peptide. Our subcellular localization 

study shows that OSTHI7 is most probably translocated in the secretory pathway. However, 

the real localization still needs to be confirmed by co-localization with markers or by identifi-

cation of the peptide in extracellular fluid. Previous studies have shown that the seed thionin 

and leaf thionin of barley were present in cell walls and vacuoles, respectively (Garcia-
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Olmedo et al., 1992, Bohlmann & Apel, 1987, Reimann-Philipp et al., 1989, Iwai et al., 

2002). It has been shown that tobacco PR-1 protein and designated p14 protein of tomato, 

which is related to the PR-1 basic isoform of tobacco, were in two distinct locations: extracel-

lular spaces or vacuoles (Vera et al., 1989, Dixon et al., 1991).  The extracellular and vacuo-

lar localization of OSTHI7 suggest that this peptide probably also has a dual localization. This 

localization may allow a direct toxic effect of OSTHI7 on M. graminicola, either by interact-

ing with the external cuticle or by ingestion. Colgrave et al. (2010) reported that cyclotides, 

small disulfide-rich proteins having anti-microbial activity and insecticidal activity via disrup-

tion of cell membranes, had a toxic effect on the gastrointestinal nematode Haemonchus con-

tortus of sheep, acting via its cuticle. Nevertheless, the exact mechanism of OSTHI7 de-

creased the susceptibility of rice plants against M. graminicola needs to be further studied.  

Phytohormones not only coordinate all aspects of plant growth and development, but also 

modulate numerous stress or defence related responses in plants, such as the expression of PR 

proteins (Pieterse et al., 2009, Pieterse et al., 2012, Agrawal et al., 2000). To understand the 

regulation of rice thionin genes by phytohormones, accumulation of the three thionin tran-

scripts in rice roots was assessed after BTH, MeJA and ABA treatment to plant roots. The 

results revealed that all the transcripts were up-regulated by the three hormones at 6h, the 

earliest time-point in our test. The induction of the three rice thionin genes by treatment with 

BTH, MeJA and ABA at 6h indicates that those thionins genes may function as early defence 

genes. Our results demonstrate that OsTHI1, OsTHI2 and OsTHI7+6 are involved in ABA 

mediated defence response. ABA has been shown to play an important role in plant responses 

to abiotic and biotic stress (Wan & Li, 2006, Chinnusamy et al., 2008, Cramer et al., 2011). 

Yazaki et al. (2003) reported that OsTHI2 was up-regulated in 30-day-old calli after a 3-day-

treatment with either 50µM ABA or 50µM gibberellin acid. The presence of the ABRE motif 

in the promoter regions of these thionin genes suggests that they might be regulated directly 

by ABA through ABRE. It has been reported that exogenous application of MeJA to rice 

leaves significantly enhanced defence against M. graminicola in roots (Nahar et al., 2011). 

The consistent induction of OsTHI1 and the short-term effect on OsTHI2 and OsTHI7+6 up-

on MeJA treatment might contribute in part to the MeJA induced resistance against M. gram-

inicola. When plants were treated with BTH, OsTHI7+6 was induced dramatically. Nahar et 

al. (2011) reported that, although less strong than JA and ET, exogenous application of BTH 

induced a systemic resistance in rice roots to M. graminicola. Taken together with our infec-

tion experiments, these results indicate that OsTHI7 may participate in the MeJA and SA 

mediated resistance against M. graminicola. Although in our qRT-PCR OsTHI7 and OsTHI6 

could not be distinguished, the expression of OsTHI7+6 in our qRT-PCR study upon hor-

mone treatments was consistent with the expression of GUS in the POsTHI7::GUS line, 
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which indicates that OsTHI7 and OsTHI6 are regulated in a similar way or maybe that Os-

THI6 is not expressed.  Moreover, there is a high similarity in the promoter sequences of Os-

THI7 and OsTHI6 (98% identity).  

Our results showed that some phytohormone responsive rice thionin genes do not have the 

known hormone related cis-acting elements in their promoter region, while some having spe-

cific hormone related cis-elements were not regulated by this specific phytohormone. This 

suggests that there are complex regulation networks between rice thionins and phytohormone 

signaling, and that they may for instance, be indirectly regulated by phytohormones (Liu et al., 

2009). The differential expression pattern of the four thionins upon hormone treatments indi-

cates that, although there are high similarities in amino acid sequences among the thionin 

peptides, the response of the thionins to different stress may be different and diverse, as a 

consequence of evolution.  

3.4 Conclusions 

In this study, three thionins genes were shown to be locally down-regulated by rice root-knot 

nematode infection. Overexpression of OsTHI7 lead to a lower number of nematodes in the 

transgenic plants demonstrating that OsTHI7 may act as a defence gene in vivo against M. 

graminicola. However, more research needs to be done to study the mechanisms behind the 

induced resistance and the effect needs to be tested in the field. Moreover, the resistance to 

other plant parasitic nematodes or other pathogens still needs to be explored in the future. 

Furthermore, rice thionin genes, at least OsTHI1, OsTHI2 and OsTHI7+6 are regulated dif-

ferently by plant defence- related hormones. This indicates that those thionin genes may be 

involved in different signal transduction pathways, and each of them has specific roles.  

3.5 Materials and methods 

Plant material and growth conditions 

Seeds of O. sativa cv. Nipponbare (GSOR-100; Genetic stocks oryza Collection, Washington 

DC, USA) were germinated on wet filter paper for 3 days at 30°C and then transferred to SAP 

substrate (Reversat et al., 1999) in PVC (polyvinyl-chloride) tubes and further grown at 26°C 

under a 16h/8h light regime at a relative humidity of 70-75%. 

Nematode infection assay 

The M. graminicola culture was provided by Prof. Dirk De Waele (Catholic University Leu-

ven, Belgium) and was originally isolated in the Philippines. M. graminicola was maintained 

on O. sativa cv. Nipponbare in potting soil under the same temperature/light conditions as 

described above, and the nematodes were extracted using a modified Baermann funnel. Four-
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teen-day-old rice plants were inoculated with about 250 second-stage juveniles of M. grami-

nicola per plant or mock inoculated with water. To test thionin expression by qRT-PCR, 2dpi, 

3dpi, 7dpi and 14dpi galls and corresponding root tips were collected and kept in -80°C for 

RNA extraction. For the infection experiment on transgenic plants, the infection level of the 

plants was evaluated at 14dpi by counting the number of galls and nematodes per plant. To 

visualize the galls and nematode developmental stages, roots were stained with acid fuchsin 

as described by Nahar et al. (2011). 

Pythium graminicola bioassay 

Pythium graminicola strain PB912 132 culture, inoculation and disease recording were ac-

cording to Van Buyten and Höfte (2013). Pythium graminicola strain PB912 132 (Van Buy-

ten and Höfte, 2013), isolated from a diseased aerobic rice field in Los Banos, The Philip-

pines, and was cultivated on potato dextrose agar at 28°C (PDA; Difco Laboratories). The 

husks of Oryza sativa cv. Nipponbare seeds were removed and seed surfaces were sterilized 

by 6% sodium hypochlorite for 20min, and subsequently rinsed three times with sterile water. 

Sterilized seeds were grown in square petri dishes (12x12cm) on standard strength Gamborg 

B5/1% plant agar medium at 28°C (day)/26°C (night) under 12-h photoperiod. Four days after 

germination, T1 seedlings were inoculated with PDA agar plugs containing Pythium gramini-

cola strain PB912 132 in between each two plants. Control samples were mock-inoculated 

with the same size of PDA agar plugs. Disease symptom was only recorded on successful 

transformed T1 plants (checked by RT-PCR on leaves). Disease symptoms on rice shoots 

were rated on the basis of a disease severity scale: score 0, healthy shoots; I, shoot length 

more than 50% of the control, green culm and few yellow or brown spotted leaves; II, shoot 

length more than 34% of the control, slightly yellowing culm and yellow or brown spotted 

leaves; III, shoot length less than 34% of the control, slightly yellowing culm and yellow or 

brown spotted leaves; IV, shoot length less than 34% of the control, yellow culm and yellow 

or brown leaves; V, shoot length less than 34% of the control, brown, dried-out culm and 

leaves.  

Hormone treatment 

5-day old seedlings were grown hydroponically in 50% Hoagland solution. After 5 days, 

Hoagland was supplemented with methyl Jasmonate (MeJA, 100µm, sigma-Aldrich NV/SA 

Bornem, Belgium), abscisic acid (ABA, 50µm, Sigma-Aldrich NV/SA Bornem, Belgium) or 

Benzo-1, 2, 3-thiadiazole carbothioic acid S-methyl ester (BTH, 250µm, Syngenta crop pro-

tection, Brussels, Belgium) solutions, which were prepared in 50% Hoagland solution and 

pure 50% Hoagland solution was used as control. The concentrations used have been opti-
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mized before (Nahar et al., 2011, Nahar et al., 2012). After transfer to the hormone solution, 

root samples were collected at 6h, 24h and 72h for RNA extraction to study thionin gene ex-

pression. Two biological replicates, each composed of a pool of 8 individual plants, were 

taken. 

Semi-quantitative RT-PCR and quantitative real-time PCR  

RNA extraction and cDNA synthesis were performed and analyzed as described by Kyndt et 

al. (2012b). Semi-quantitative RT-PCR was used to detect the expression levels of OsTHI7 in 

different overexpression lines on T0 generation. LOC_Os03g27010 (encoding an ‘Expressed’ 

protein) was used as internal control. qRT-PCR was performed and analyzed as described in 

Nahar et al. (2011) on T1 generation plants. The primer sequences used for RT-PCR and 

qRT-PCR are listed in Table 3.2. In all qRT-PCR experiments, expression of both OsTHI7 

and OsTHI6 was detected simultaneously, as these two transcript sequences (including un-

translated region) are highly similar and hence it was difficult to design gene specific primers 

in SYBR-Green qRT-PCR  

Table 3.2  List of primers used in this study. 
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Gene isolation, vector construction and rice transformation 

The OsTHI7 genomic DNA sequence including two introns (737 bp),  the OsTHI7 genomic 

DNA lacking the stop codon (709 bp) and the DNA sequence upstream of the OsTHI7 start 

codon (1994 bp) were amplified separately using PCR from O. sativa cv. Nipponbare. The 

primer sequences are provided in Table 3.2. The vector construction was performed by Gate-

way
R
cloning (Life Tech). Vector PMBb7Fm21GW-UBIL was used for OsTHI7 overexpres-

sion and OsTHI7::GFP fusion, and pBGWFS7,0 was used for promoter-GUS line construc-

tion. Both vectors were obtained from Plant Systems Biology (VIB, Belgium). All the insert-

ed sequences were sequenced before introduction into Agrobacterium.  

The binary vectors were introduced into Agrobacterium tumefaciens EHA105 cells using tri-

parental mating. Transformed cells were selected on YEB agar plates (5g/L beef extract, 5g/L 

peptone, 1g/L yeast extract, 5g/L sucrose) containing spectinomycin (100µg/ml). Rice trans-

formation was done according to an in-house protocol based on the protocols of Zhang et al. 

(1997), Hiei et al. (1994), Paine et al. (2005). Transformed calli were selected using 50µg/ml 

glufosinate (Sigma, Belgium), and the regenerated rice plants were grown in a growth cham-

ber under 16/8 h of light/dark, 26°C and 70-75% relative humidity. As a control, transgenic 

lines containing the PMBb7Fm21GW-UBIL vector without insert (empty vector) were gener-

ated. 

Segregation analysis was done on seventy T1 seedlings by selection on 8mg/L Basta, and 

results were analyzed with the Chi Square test (P=0.05). Three overexpression lines and one 

promoter GUS lines with a 3:1 segregation were used for further experiments. One line trans-

formed with the empty vector was used as control. 

Histological analysis of OsTHI7 promoter::GUS activity  

Histochemical GUS activity of whole seedlings was carried out as described by Delporte et al. 

(2011) with a few modifications. After reaction, the samples were washed several times using 

70% ethanol and stored in 100% ethanol for a few days to wash out the excess dye and chlo-

rophyll. Before transfer to microscopic slides, seedlings were incubated in lactic acid to clear 

the plant material, GUS staining was observed under a binocular microscope (Leica, S8APO, 

Germany). 

Embedding for transverse sections  

After GUS staining, galls and root tips were first rehydrated in 50% ethanol for 2h and 30% 

ethanol for 2h, and then incubated in water overnight. The rehydrated materials were fixed in 

2% glutaraldehyde in 1x PIPES buffer and dehydrated in a series of ethanol solutions and in 
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absolute ethanol overnight. After dehydration, samples were infiltrated in Technovite 7100 

(Heraeus Kulzer, Belgium) overnight. Afterwards, the samples were embedded in Technovite 

7100 and solified at 37°C for two days. After polymerization, samples were sectioned in 

10µm in a Leica RM2265 motorized rotary microtome (Leica microsystems, Nussloch, Ger-

many) and GUS staining was observed in dark field using a binocular microscope (Leica, 

S8APO, Germany).  

Subcellular Localization 

Leaves and roots were collected from one week old transgenic PUbi::OsTHI7-GFP plants, 

and cut into 1cm pieces, then directly mounted onto slides with a drop of glycerol. Protoplasts 

were extracted from 10 day old leaves cut into about 0.5mm strips using sharp razors. The 

strips were immediately transferred into enzyme solution (1.5% Cellulase RS, 0.75% Macer-

ozyme R-10, 0.6 M mannitol, 10 mM MES at pH 5.7, 10 mM CaCl2 and 0.1% BSA) and 

incubated for 5 hours with 50 rpm shaking in the dark. By the end of the enzyme digestion, 

the solutions were shaken by hand for several seconds to release protoplasts to the enzyme 

solution. The digestion was terminated by adding an equal volume of W5 (154 mM NaCl, 125 

mM CaCl2, 5 mM KCl and 2 mM MES at pH 5.7) solution. The protoplasts were collected by 

centrifugation at 1000 rpm for 3 min. After discarding the supernatant, the pellets were re-

suspended in 50 μl W5 solution to be ready for microscopical analyses. The microscope pic-

tures were taken using a Nikon A1R confocal system, mounted on a Nikon Ti microscope 

body. 

The prediction of the subcellular localization of OSTHI7 was performed by using the soft-

ware Signal P and Target P. The full length of the peptide (135 amino acids) was subjected to 

the search. 

Statistical analysis 

Data obtained from qRT-PCR was analyzed using the software Rest 2009. All other statistical 

analyses were performed using the software SPSS (version 21). The normality of data was 

checked by the Kolmogorov-Smirnov test of composite normality (α = 0.05). Homogeneity of 

variance was checked by the Levene test (P ≤0.05). Then analysis of variance (one-way 

ANOVA) and multiple comparisons of differences between treatments was performed (Dun-

can’s multiple range test, P≤0.05).  Pythium disease rate was analyzed by the non-parametric 

tests Mann Whitney (P≤0.05)  
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Abstract 

The non-protein amino acid β-aminobutyric acid is known to protect plants against various 

pathogens. The mode of action is relatively diverse and specific in different plant-pathogen 

systems. To extend the analysis of the mode of action of BABA to plant parasitic nematodes 

in monocot plants, we evaluated the effect of BABA against the root-knot nematode (RKN) 

M. graminicola in rice. BABA-treatment of rice plants inhibits nematode penetration and 

resulted in delayed nematode and giant cell development. BABA-induced resistance (BABA-

IR) was still functional in mutants or transgenics which are defective in salicylic acid (SA) 

biosynthesis and response, or abscisic acid (ABA) response. Pharmacological inhibition of 

jasmonic acid (JA) and ethylene (ET) biosynthesis showed that JA and ET are also not needed 

for BABA-induced resistance against rice RKN. However, histochemical and biochemical 

quantification and quantitative real-time reverse transcription-polymerase chain reaction 

(qRT-PCR) data indicate that BABA protects rice against RKN through the activation of 

basal defence mechanisms of the plant such as ROS accumulation, lignin formation and 

callose deposition. 

4.1 Introduction 

The non-protein amino acid β-aminobutyric acid (BABA) has been shown to induce 

resistance against a wide range of pathogens. It is not only effective against biotic stress fac-

tors, but also some types of abiotic stress (Cohen, 2002, Jakab et al., 2001, Jakab et al., 2005, 

Zimmerli et al., 2008, Pastor et al., 2013). The mechanisms of BABA-IR are diverse and they 

appear pathogen-system specific (Cohen, 2002, Jakab et al., 2001). In tobacco, BABA was no 

longer able to protect plants against Tobacco Mosaic Virus (TMV) in plants overexpressing 

the NahG gene, which decreases endogenous SA levels (Siegrist et al., 2000). This indicates 

that BABA-IR against TMV in tobacco is SA-dependent. In addition, in Arabidopsis, priming 

by BABA against the bacterial pathogen Pseudomonas syringae pv. Tomato DC3000 and the 

fungal pathogen Botrytis cinerea depends on an intact SA signaling pathway, but is independ-

ent of a functional JA/ET pathway (Zimmerli et al., 2000, Zimmerli et al., 2001). However, 

NahG tobacco plants challenged with downy mildew showed no difference in protection by 

BABA compared to wild type plants (Cohen, 2001). BABA-IR against the oomycete patho-

gen Hyaloperonospora parasitica was still active in Arabidopsis genotypes impaired in either 

the SA, ET, or JA signaling pathway (Zimmerli et al., 2000). Moreover, BABA-IR against 

two necrotrophic fungi Alternaria brassicicola and Plectosphaerella cucumerina were unaf-

fected in Arabidopsis mutants impaired in camalexin synthesis, JA sensitivity, ethylene sensi-

tivity and SA signaling (Ton & Mauch‐Mani, 2004). Cytological investigations at sites of 

attempted penetration by those pathogens demonstrated the augmentation of callose-rich pa-
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pillae (Zimmerli et al., 2000, Ton & Mauch‐Mani, 2004), and the plant hormone ABA seems 

to play an important role in the BABA-primed callose deposition in Arabidopsis (Ton & 

Mauch-Mani, 2004). BABA-IR in lettuce against the oomycete Bremia lactucae also worked 

through a rapid encasement of the primary invading structures of the pathogen with callose 

and H2O2 accumulation (Cohen et al., 2010). In BABA-treated grapevine leaves, a strong 

ROS production was specifically observed in response to downy mildew Plasmopara viticola 

(Dubreuil-Maurizi et al., 2010). However, BABA-treated sunflower inoculated with Puccinia 

helianthi (Amzalek & Cohen, 2007) showed no microscopic cellular responses. 

A number of studies have demonstrated that BABA-IR can provide control against plant para-

sitic nematodes. The first study of BABA-IR against plant parasitic nematodes was carried 

out by Oka et al (1999). Application of BABA to tomato plants, either as a soil drench or a 

foliar spray, reduced root-galling or numbers of eggs produced by M. javanica (Oka et al., 

1999). Pre-treatment with BABA as a soil drench of 2mM significantly reduced the number 

of galls and egg masses induced by M. javanica in mung bean plants (Ahmed et al., 2009). 

BABA-induced resistance was shown not only to be functional in dicots but also in monocots. 

On wheat, foliar sprays and soil drenches with BABA induced resistance against the cyst 

nematodes H. avenae and H. latipons, as well as RKN Meloidogyne spp. (Oka & Cohen, 

2001). On pineapple, foliar sprays of BABA were effective against M. javanica (Chinnasri et 

al., 2006). However, there is nearly no research on the molecular mechanisms of BABA-IR 

against plant parasitic nematodes. In the present study, we show that soil drenching with BA-

BA is actively inducing resistance against RKN parasitism in rice roots. Studies with mutants 

or inhibitors point out that SA, JA and ET are not required for BABA-IR against RKN, while 

ABA might play a minor role. Instead, histochemical and cytological investigation of the 

defence reactions demonstrated that the basal defence of rice is enhanced with boosted hydro-

gen peroxide, lignin and callose accumulation in the BABA treated plants. Our data favor a 

model in which BABA induced resistance against M. graminicola acts through augmenting 

multiple facets of the plant basal defence independent of the SA, JA and ET pathways. 

4.2 Results 

4.2.1 BABA induces resistance against RKN in rice, by inhibiting nematode penetration 

and delaying nematode and giant cell development 

BABA induces resistance against M. graminicola in rice 

To determine if BABA can be used as an elicitor to induce rice resistance against the RKN, 

the effect of rice root susceptibility to M. graminicola was investigated after BABA treatment 

(Fig 4.1A). Compared to control plants pre-treatment with BABA resulted in a significantly 
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lower number of females per plant. This indicates that BABA is an excellent inducer of rice 

defence against M. graminicola.  

BABA-treated plants attract similar amounts of infective juveniles compared to control plants 

In order to obtain a more detailed understanding of BABA-induced resistance against M. 

graminicola, we continued to study at which infection stages the induced resistance is func-

tional. Second stage juveniles (J2) in the soil are attracted to the root tips according to molec-

ular signals coming from plant roots (Curtis et al., 2009). We examined whether there is a 

difference in attraction of J2 in BABA versus control (water-treated) roots. Nine hours after 

initiation of the attraction assay, the number of nematodes within 1mm of the root tips was 

counted. The result in Figure 4.1B shows that there is no significant difference (p > 0.05) in 

number of J2 close to root tips of BABA-treated and control roots. From this data we can 

conclude that BABA does not influence nematode attraction to the roots. 

BABA-treated plants have lower M. graminicola penetration  

To further evaluate the active phase of BABA induced resistance against M. graminicola, the 

number of J2 inside roots was counted 50 hours after inoculation. As Figure 4.1C shows, 

BABA-treated plants exhibit significantly fewer number of J2 (p<0.05). This result illustrates 

that BABA induced resistance starts to be functional at the penetration stage. This effect 

could not be caused by toxicity effects of BABA on nematodes, since the nematode mobility 

is not impaired when J2 were incubated in BABA solution for 72 hours (data not shown). 

BABA-treatment of the plants delays M. graminicola development  

The developmental stages of M. graminicola in BABA treated plants were also recorded six-

teen days after infection (dpi) and compared with control plants at this time point (Fig 4.2). 

The experiment was split in two parts: (i) pre-treatment: treatment with BABA (Fig 4.2A) for 

one day and then subsequently inoculated with RKN and (ii) post-treatment: pre-inoculation 

of RKN and two days later treated with BABA for two days (Fig 4.2B). At 16dpi, remarkably 

fewer and smaller females (p<0.05) were recorded in BABA treated roots in both experiments. 

The majority (87-94%) of nematodes in control plants had developed into females at 16dpi, 

however, much lower percentages of females were observed in BABA treated plants, with 

only about 52% and 9%, respectively, in pre-or post-treatment. Besides less females in BABA 

treated roots, the total number of nematodes in pre-treatment is significantly lower, which 

again confirms that fewer nematodes penetrate BABA-treated roots. The post-treatment has 

even a stronger effect on BABA induced resistance against RKN, as a large portion (91%) of 

nematodes remains in the juvenile stages. A slightly lower number of nematodes was also 
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observed in the post-treatment experiment, although one would expect that the nematodes had 

already entered the root system before the chemical was ap plied (at 2 dpi). Figure 4.2C 

shows representative galls at 16dpi in the control and BABA-treated plants. A delay of nema-

tode development was clearly seen in BABA treated plants; the majority of the nematodes in 

the control plants were producing egg masses, while nematodes in BABA-treated plants were 

still in juvenile stages. 

 

    

    

 

(A) 

(B) 
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Fig 4.1 (A) Plants were soil drenched with 3.5mM BABA or water one day before RKN infection. 

Sixteen days after infection, females per plant were recorded. (B) Analysis of BABA-induced re-

sistance against RKN on the stage of attraction. Plants were soil drenched with 3.5mM BABA or water 

one day before RKN infection. The number of J2 close to the root tips (about 1mm) were recorded at 

9h after initiation of the experiment. (C) Effects of BABA on invasion of M. graminicola to rice plants. 

Plants were soil drenched with 3.5mM BABA or water one day before RKN infection. Number of 

nematodes was recorded 50 hours post infection. Bars represent means and ±SE of nematodes per plant 

(n = 8). Different letters indicate statistically significant differences (P≤0.05). Data represent one of 

two (B) or three (A and C) independent experiments with similar results. The data from other replicates 

are represented in addendum Fig A9. 
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Fig 4. 2 Effects of DL-β-amino-n-butyric acid (BABA) on the development of M. graminicola in rice 

plants. (A) Pre-treatment of BABA: Plants were soil drenched with 3.5mM BABA or water one day 

before inoculation. Two days after inoculation, SAP was washed away from the roots and the plants 

were transferred to Hoagland solution for another 14 days. (B) Post-treatment of BABA: Two days 

after M. graminicola infection, roots were washed and transferred to 3.5 mM BABA solution or water 

for two days, subsequently, plants were transferred to pure Hoagland solution for another twelve days. 

Bars represent means and ±SE of nematodes per plant (n = 8). Different letters indicate statistically 

significant differences (P≤0.05). a/b indicates the significant differences in J2 stage; A/B indicates the 

differences in J3+J4 stages. α/β indicates the significant differences in females, and θ/ε indicates the 

significantly differences in all infected nematodes. Two independent experiments were conducted with 

similar results.  The data obtained from the other replicates are shown in addendum Fig A10. (C) De-

veloping RKN inside root galls at 16dpi, visualized with acid fuchsin, giant cells (GC), nematodes (N), 

and egg masses (E). Left: control; Right: roots treated with 3.5mM BABA. Scale bar = 500µm.  

The data presented in Figure 4.2 demonstrate that BABA is a strong inducer of plant defence 

against rice RKN. BABA treatment of plants not only impedes rice RKN penetration, but also 

inhibits their development.  

Histological response of giant cells in BABA-treated rice roots  

Both BABA-treated and control plants formed giant cells after 7 days of M. graminicola in-

fection (Fig 4.3A). Although the giant cells are still enlarged cells with dense cytoplasm, mul-

tiple nuclei and thickened cell walls, they appear smaller and deformed in comparison with 

control giant cells. Probably these cells are not metabolically active enough to supply suffi-

cient nutrients for nematode development. Correspondingly, nematode development at 7dpi 

was severely disrupted in the galls (Fig 4.3B).  
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Fig  4.3 (A) Morphology of giant cells induced by RKN at 7dpi in water (control, left) and BABA-

treated rice roots (right). Scale bar = 50µm.  (B) Developing RKN inside 7dpi galls, visualized with 

acid fuchsin. Giant cells (GC); Nematodes (N). Scale bar = 1mm. 

(A) 

(B) 
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4.2.2 The expression of hormone-related genes in BABA-induced resistance against the 

rice RKN 

To determine whether plant defence hormones are involved in BABA-induced resistance 

against M. graminicola, the expression of several hormone synthesis and response genes was 

investigated using qRT-PCR at different time points after BABA treatment, and different time 

points after inoculation with nematodes (Fig 4.4). 

To check the importance of the SA pathway in BABA-induced resistance against M. gramini-

cola, an SA biosynthesis gene (OsICS1) and a signaling gene (OsWRKY45) as well as the SA 

inducible gene OsPR1b were evaluated. OsICS1 is the rice isochorismate synthase, the first 

catalytic enzyme in the production of salicylic acid from chorismate during plant defence 

(Wildermuth et al., 2001). OsICS1 is significantly repressed in roots infected with M. grami-

nicola at 1dpi and 3dpi, also when BABA is applied to the roots. However, the transcript lev-

els of OsICS1 do not significantly change in BABA- treated/uninoculated roots. OsWRKY45 

is known to be a key regulator in the SA signaling pathway and involved in BTH induced 

resistance to Magnaporthe grisea and Xanthomonas oryzae pv. oryzae (Shimono et al., 2007, 

Shimono et al., 2012). Although the expression level of OsWKRY45 is repressed in M. grami-

nicola infected roots, its expression level is significantly up-regulated in BABA-treated in-

oculated and uninoculated roots at all the tested time points. 

OsPR1b is generally seen as an SAR marker gene, it has been shown to be pathogen-

inducible in rice after blast fungus and bacterial blight infection (Mitsuhara et al., 2008). The 

transcript of OsPR1b is significantly up-regulated after M. graminicola infection at time 2 and 

time 3, but it does not respond to BABA treatment. 

The JA biosynthesis gene OsAOS2 (Mei et al., 2006), which has been shown to be pathogen-

inducible, and JA-inducible rice MYB transcription factor gene OsJAMYB both show a simi-

lar trend at all-time points. Both genes are significantly down-regulated in M. graminicola 

infected roots at 1 dpi. However, these two genes are up-regulated in all BABA-treated and 

inoculated roots in comparison to control roots.  

The ET biosynthesis gene OsACO7 and responsive gene OsERF1 were used to evaluate the 

ET pathway. The qRT-PCR data indicate that OsACO7 shows a significant down-regulation 1 

day after BABA-treatment, and 1dpi in BABA treated and inoculated roots. OsERF1 does not 

significantly respond to BABA treatment or to M. graminicola infection.  

OsNCED3 is a key enzyme in the ABA biosynthesis pathway, and OsLIP 9 is an ABA re-

sponsive gene. These genes do not strongly respond to inoculation at 1 and 3 dpi. However, 

BABA induces a strong up-regulation of OsNECD3 at 2 days after treatment, both in unin-
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oculated and inoculated roots. The ABA responsive gene shows a similar expression trend as 

OsNCED3, although it is a bit lower induced by BABA. 

 

 

Fig  4.4 Analysis of the expression levels of defence hormone related genes in rice roots after soil ap-

plication of BABA alone or with RKN infection at different times. Bars represent mean expression 

levels and ±SE from two biological replicates and three technical replicates, each containing a pool of 

eight plants. Asterisks indicate significant differential expression (P≤0.05). Data are shown as relative 

expression levels in comparison with the control roots (uninoculated and untreated). Gene expression 

levels were normalized using three internal reference genes, OsEXP, OsEXPnarsai, and OsUBQ5. M.g: 

M. graminicola.  
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4.2.3 Plants impaired, or less efficient in hormone-related pathways are still protected 

by BABA treatment 

The qRT-PCR data described above showed that some genes involved in SA and ABA signal 

transduction pathways were strongly induced by BABA treatment (Fig 4.4). In order to obtain 

a more detailed understanding of the role of these defence signaling pathways in BABA-

induced resistance against rice RKN, different rice transgenic plants were used to evaluate the 

efficiency of BABA-IR against M. graminicola.  
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Fig 4.5 Effects of BABA against rice RKN in SA and ABA defective lines. 3.5mM BABA was soil 

drenched one day before nematode inoculation. The number of females per plant was counted at 16 dpi. 

Bars represent means and ±SE of females per plant (n = 8). Different letters indicate statistically signif-

icant differences (Duncan Multiple Range Test with p≤0.05). Data represent one of two independent 

experiments with similar results. The other replicate is shown in addendum Fig A11. 

NahG plants express a bacterial salicylate hydroxylase that degrades SA to catechol (Gaffney 

et al., 1993) and this decreases the level of SA. OsWRKY45 and OsNPR1 are functioning in a 

signaling pathway downstream of SA, but are independent of each other (Shimono et al., 

2007). NahG, WRKY45 RNAi and NPR1 RNAi transgenic plants were used to check the im-

portance of SA in BABA-IR. The data (Fig 4.5) show nematode reduction after application of 

BABA in all transgenic plants similar to the corresponding control lines. 

The role of the ABA-inducible mitogen-activated protein kinase OsMPK5 in various biotic 

and abiotic stresses in rice is well documented (Xiong & Yang, 2003). Our experiments 

showed that there is no significant difference in nematode reduction by BABA-application in 

OsMPK5 RNAi lines in comparison to the control. 

4.2.4 Analysis of the mode of action of BABA using inhibitors of secondary metabolites  

To further test whether the protection attributed to BABA depends on the accumulation of 

secondary metabolites, BABA was applied together with different chemical inhibitors of me-

tabolite biosynthesis, 24h prior to nematode inoculation. Figure 4.6 illustrates the number of 

females developing on these plants at 16dpi. In planta inhibition of JA biosynthesis by DIE-

CA and ET biosynthesis by AOA resulted in similar nematode reduction rates by BABA-

application as in the control. Phenylalanine ammonia lyase (PAL) is the first enzyme in the 

phenylpropanoid pathway and is involved in the biosynthesis of the polyphenols (Hahlbrock 

& Grisebach, 1979). Blocking PAL biosynthesis by L-AOPP significantly decreased BABA-

induced resistance against M. graminicola, with only about 40%-50% reduction rate com-

pared to about 60%-70% reduction in the control. Similarly, blocking ABA biosynthesis by 

fluridone results in only 37.7%-40% nematode reduction by BABA-treatment (Fig 4.6). 

These results indicate that PAL and ABA are both partially involved in BABA-induced re-

sistance against RKN, but not JA and ET. 

 

 

 

 

http://en.wikipedia.org/wiki/Phenylpropanoids_metabolism
http://en.wikipedia.org/wiki/Biosynthesis
http://en.wikipedia.org/wiki/Polyphenol
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Fig 4.6 Effects of BABA in plants treated with inhibitors of secondary metabolites. 3.5mM BABA was 

soil drenched one day before nematode inoculation. The number of females per plant was recorded at 

16dpi. Bars represent means and ±SE of females per plant (n = 8). Different letters indicate statistically 

significant differences (Duncan Multiple Range Test with p ≤ 0.05). Data represent one of two inde-

pendent experiments with similar results. The data from other replicate is in addendum Fig A12.  

4.2.5 Reactive oxygen species generation 

The production of reactive oxygen species during the oxidative burst is characteristic of the 

defence response in plants (Levine et al., 1994). The hydrogen peroxide (H2O2) level was 

measured in rice roots upon BABA treatment. Increased levels of H2O2 were found in BABA 

treated plants, whether inoculated with M. graminicola or not (Fig. 4.7A). Nearly no changes 

in H2O2 generation over time were observed in untreated/uninoculated plants, but there is a 

small decrease in H2O2 production in roots infected with M. graminicola. This experiment 

was only conducted in one biological replicate and with a limited number of plants (4-5 

plants), therefore, further study is needed. 

The NADPH oxidases, which catalyze the reduction of oxygen to generate the superoxide 

anion, in plants also termed Respiratory Burst Oxidase Homolog (Rboh), were shown to be 

required for ROS accumulation in plant defence (Simon‐Plas et al., 2002, Torres et al., 2006, 

Yoshioka et al., 2003). Here we investigated the expression of one rice NADPH oxidase gene 

(OsRbohB) by qRT-PCR (Fig 4.7B). OsRbohB is strongly induced 2 days after BABA treat-

ment in both uninoculated and inoculated plants. 
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Fig 4.7 (A) The average value at λ max=390 per gram of fresh roots in BABA treated and water treated 

rice roots inoculated with M. graminicola or water. 3.5mM BABA or water was soil drenched 1 day 

prior to inoculation. Bars represent the mean and standard error of 4 to 5 plants. Different letters indi-

cate statistically significant differences (Duncan Multiple Range Test with p ≤ 0.05). (B) Analysis of 

OsRbohB expression in BABA treated and/or inoculated roots compared to untreated/uninoculated 

control at different time points. Bars represent mean expression levels and ±SE from two biological 

replicates and three technical replicates, each containing a pool of eight plants. Asterisks indicate sig-

nificant differential expression (P≤0.05). Data are shown as relative expression levels in comparison 

with the control roots (uninoculated and untreated, set at 1). Gene expression levels were normalized 

using two internal reference genes, OsEXPnarsai and OsUBQ5. M.g: M. graminicola.  

(B) 

(A) 
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4.2.6 BABA-treated plants have increased lignin accumulation and related gene expres-

sion in roots 

The observation in the inhibitor experiment (Fig 4.6) indicated that the gene OsPAL may play 

a role in BABA-induced resistance against RKN. PAL is an important enzyme in the phe-

nylpropanoid pathway that catalyzes the deamination of phenylalanine to trans-cinnamic acid, 

a precursor for the lignin and flavonoid biosynthetic pathways (Dixon & Paiva, 1995). Lignin 

confers mechanical strength to plant secondary cell walls, which contributes to the basal de-

fence against pathogens (Lewis & Yamamoto, 1990), including plant parasitic nematodes 

(Wuyts et al., 2006b, Fogain & Gowen, 1995, Wuyts et al., 2007). To better determine the 

mechanisms of BABA-IR against RKN, the phloroglucinol-HCL (Wiesner) reaction was used 

to detect lignin (syringyl and guaiacyl lignin) in gall sections at different time points (Fig 

4.8A). A strong staining of lignin (red) was observed around feeding sites at all-time points in 

BABA-treated plants compared to untreated control (Fig 4.8A). 
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Fig 4.8 (A) Histochemical staining for lignin (pink-red color) in galls induced by M. graminicola at 

different time points. 100µm sections were stained with the Wiesner reagent to detect total lignin 

(guaiacyl and syringyl monomers). Scale bar = 100 µm. Yellow stars: giant cells. (B) Lignin content in 

the roots of rice seedlings. Measurements were made 1 day after BABA treatment or control (water) 

treatment. Bars represent the mean and ±SE of 20 plants. Different letters indicate statistically signifi-

cant differences (Student T test with p ≤0.05). (C) Analysis of the expression levels of three genes 

involved in ligni biosynthesis in rice roots after soil application of BABA alone or with RKN infection 

at different times compared to untreated and uninoculated control. PAL, phenylalanine ammonia-lyase; 

C4H, cinnamate 4-hydroxylase; CAD, cinnamyl alcohol dehydrogenase. Bars represent mean expres-

sion levels and ±SE from two biological replicates and three technical replicates, each containing a 

pool of eight plants. Asterisks indicate significant differential expression (P≤0.05). Data are shown as 

(C) 

(B) 
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relative expression levels in comparison with the control roots (uninoculated and untreated, set as 1). 

Gene expression levels were normalized using two internal reference genes, OsEXPnarsai and 

OsUBQ5. M.g: M. graminicola.  

Using the acetyl bromide method for quantification, a significant induction of lignin was also 

shown in rice roots 24 h after BABA treatment (Fig 4.8B). In line with these results, qRT-

PCR on three important enzymes involved in lignin biosynthesis showed them to be signifi-

cantly induced by BABA-treatment at different time points (Fig 4.8C). However, in non-

BABA-treated but nematode-inoculated roots, a down-regulation of OsC4H (at 1 dpi) and 

OsPAL (at 3 dpi) was observed. 

4.2.7 Callose deposition is enhanced in BABA-treated galls  

Many researchers have reported that BABA induces callose deposition upon pathogen attack 

(Zimmerli et al., 2001, Ton & Mauch- Mani, 2004, Hamiduzzaman et al., 2005). To explore 

further the mechanisms of BABA-induced resistance against M. graminicola, callose staining 

was performed on galls. Callose is a structural component of papillae and can be visualized 

after aniline blue staining with fluorescence microscopy (Adam & Somerville, 1996). Two 

days after M. graminicola infection, rice roots were washed up and transferred to 3.5mM 

BABA solution or water for another 2 days, and then roots including galls were used for cal-

lose staining. Representative pictures are shown in Figure 4.9A. Callose deposits were strong-

ly induced by BABA in galls. The formed callose was more dense, bigger and prominent in 

BABA-treated galls than control galls. The big bright dots are probably the aggregation of 

many callose speckles, as reported by Ham et al., (2007),  they reported that ‘big callose’ was 

induced by Pseudomonas syringae pv. Phaseolicola NPS3121 with a diameter exceeding 

20µm. Moreover, the bright “dots” in each BABA-treated gall were significant more than in 

the control gall as measured by Image J (Fig 4.9B).    

 

(A) 
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Fig.4.9 (A) Callose detection in 4dpi water-treated and BABA-treated galls. (B) Quantification of cal-

lose deposition. The number of dots within the gall area was counted by ImageJ. Data are the mean and 

±SE of dots from 8 galls. Different letters indicate significant differences (Student T test P≤0.05). (C) 

Analysis of the relative expression levels of callose synthesis and decomposition genes in BABA treat-

ed rice roots compared to control. (D) Analysis of the relative expression levels of callose synthesis and 

decomposition genes in BABA treated and water treated galls compared to non-treated/ non-inoculated 

root tips. Bars represent mean expression levels and SE from two biological replicates and three tech-

nical replicates, each containing a pool of eight plants. Asterisks indicate significant differential ex-

pression (P≤0.05). Gene expression levels were normalized using two internal reference genes, OsEX-

Pnarsai and OsUBQ5.  

Callose deposition is a dynamic process coordinated through the activities of callose synthase 

and the callose hydrolyzing enzyme β-1,3-glucanase (Hao et al., 2008). The expression pat-

terns of three callose synthase-encoding genes (OsGSL1, OsGSL3 and OsGSL5) and one cal-

lose hydrolyzing gene (OsGNS5) were investigated by qRT-PCR (Fig 4.9C and D).  

Upon BABA-treatment, OsGSL1 and OsGSL5 expression levels were clearly increased in 

roots, while OsGNS5 showed a significant down-regulation (Fig 4.9C).  

When looking at infected tissue, OsGSL3 was significantly up-regulated in BABA-treated 

galls compared to control galls, as well as compared to un-treated/uninoculated root tips (Fig 

4.9D). Although the other two callose synthase genes show a slightly higher expression level 

in BABA-treated galls, these differences were not significant. Interestingly, OsGNS5 was 

clearly up-regulated in control galls; while in contrast, the expression level of this gene re-

mained at the basal expression level in BABA treated galls. The results of the qRT-PCR con-

firm our microscopic observations that BABA induces the accumulation of callose by up-

regulating callose biosynthesis and repressing its degradation, and OsGNS5 is strongly in-

duced in non-BABA-treated galls, exemplifying once again that this nematode strongly sup-

presses the plant innate immunity system.   

4.3 Discussion 

BABA has been reported for years to be a potent inducer of resistance in plants against a 

broad-spectrum of stress factors (Cohen, 2002, Jakab et al., 2001, Jakab et al., 2005, 

Zimmerli et al., 2008, Pastor et al., 2013). However, the molecular mechanisms underlying 

BABA-IR remain largely unknown, especially in the interaction of plants with plant parasitic 

nematodes. The research described here aims to provide a characterization of the role of BA-

BA induced resistance against the rice root-knot nematode M. graminicola and the related 

defence mechanisms. 
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The data presented in this report show that BABA is a potent inducer of root defence against 

RKN attack in rice. Although this chemical does not influence nematode attraction towards 

the roots, treatment with BABA makes rice roots more difficult for RKN to invade as indicat-

ed by a lower number of nematodes in roots at 50 hpi. Furthermore, the development of juve-

niles into females was heavily inhibited, and giant cells in BABA-treated plants are much 

smaller than those in control plants. The action of BABA against RKN is not based on a di-

rect toxic effect since 3.5mM BABA incubation did not exhibit any influence on nematode 

mobility in vitro (data not shown), which is in agreement with the other studies performed on 

many plant pathogens and nematodes (Oka & Cohen, 2001, Cohen, 2002, Jakab et al., 2001). 

Moreover, in vivo toxicity of BABA metabolites can also be ruled out as experiments using 

C
14

-labeled BABA clearly demonstrated that the substance is not metabolized by the plant 

(Cohen & Gisi, 1994). Therefore, BABA seems to enhance rice defence against RKN attack. 

To elucidate possible mechanisms contributing to BABA induced resistance against RKN, the 

involvement of hormone dependent defence pathways was examined. It has been reported that 

BABA-IR against TMV in tobacco, Pseudomonas syringae and Botrytis cinerea in Arabidop-

sis are based on an intact SA signaling pathway (Siegrist et al., 2000, Zimmerli et al., 2000). 

In this study, our data firstly showed that the transcripts of SAR marker PR1b and SA biosyn-

thesis gene ICS1 did not accumulate upon BABA-treatment. Secondly, BABA-IR was fully 

functional in the NahG line, and NPR1 RNAi lines. Although the expression of OsWRKY45 

was significantly potentiated in BABA-treated roots, BABA succeeded to trigger defence 

against RKN in the WKRY45 RNAi line, indicating that activation of OsWRKY45 by BABA is 

not a prerequisite for defence against RKN. From these observations we conclude that the 

SA–dependent defence pathway does not contribute to BABA-IR against RKN.  

Hydrogen peroxide accumulation has been implicated to perform several important functions 

in early defence responses of plants against pathogens (Lamb & Dixon, 1997, Apel & Hirt, 

2004). It may cause direct pathogen destruction (Bestwick et al., 1998), trigger hypersensitive 

cell death and activate defence related genes (Levine et al., 1994, Apel & Hirt, 2004), or serve 

as a secondary messenger in the systemic signaling network of plant cells (Shetty et al., 2003). 

The accumulation of H2O2 in BABA treated plants has been repeatedly described. For in-

stance, in lettuce, BABA treated plants induced accumulation of H2O2 in the mycelia of 

Bremia lactucae and adjacent mesophyll cells and altered the color of mycelia into red 

(Cohen et al., 2011). In tomato, BABA induces an early oxidative burst and antioxidative 

defence mechanism, which leads to a suppressive effect on Pseudomonas syringae growth 

(Baysal et al., 2007). In grapevine, a strong H2O2 production was observed in BABA-treated 

leaves after downy mildew Plasmopara viticola infection, and this process was correlated 

with an increased resistance (Dubreuil-Maurizi et al., 2010). Furthermore, BABA also in-
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duced H2O2 production when infected by M. javanica in tomato (Sahebani & Hadavi, 2009) 

and cucumber (Sahebani et al., 2011). In our experiments, treatment with BABA resulted in a 

stronger H2O2 generation in the rice roots, and this production of H2O2 lasts at least 5 days 

after nematode inoculation. Moreover, the transcript level of OsRbohB is strongly induced at 

2 days after BABA-treatment in uninfected and infected plants. Therefore, the H2O2 produc-

tion probably correlates with the induced resistance against RKN by BABA.  

H2O2 could for instance also contribute to signaling events leading to enhanced lignin for-

mation and callose deposition. Therefore, differences in lignin and callose content between 

BABA treated and water treated plants were analyzed. The lignin content was found to be 

significantly enhanced in one day BABA treated roots. Lignin, a major component of cell 

walls of vascular plants, is considered to be the first line of defence against the penetration of 

invading pathogens (Vance et al., 1980, Lewis & Yamamoto, 1990, Nicholson & 

Hammerschmidt, 1992). Lignin can enhance mechanical strength of plant cell walls and make 

it less accessible to cell wall-degrading enzymes, which are secreted by plant parasitic nema-

todes for their penetration and migration in plant roots (Gheysen et al., 2006). RNAi-

mediated transient gene silencing of lignin biosynthesis genes in wheat led to a higher pene-

tration efficiency of Blumeria graminis f. sp. tritici than control (Bhuiyan et al., 2009). Re-

sistant banana (Musa spp.) of burrowing nematode Radopholus similis had constitutively 

higher levels of lignin in the vascular bundle than susceptible cultivars (Fogain & Gowen, 

1995, Wuyts et al., 2007). Hence, the high level of lignification in BABA-treated roots prob-

ably restricts M. graminicola invasion and therefore resulted in less nematode penetration in 

our experiment. Portillo et al. (2013) reported that genes such as phenylalanine ammonia 

lyase (PAL), cinnamate 4-hydoxylase (C4H), caffeate O-methyltransferase (COMT) and cin-

namyl alcohol dehydrogenase (CAD) involved in lignin monomer synthesis and lignin cross-

linking pathways are strongly repressed in giant cells induced by M. javanica in tomato and 

Arabidopsis plants. Also in rice galls induced by M. graminicola, the phenylpropanoid path-

way is known to be strongly repressed (Kyndt et al., 2012a). PAL and C4H are two important 

enzymes in the phenylpropanoid pathway from where monolignol biosynthesis is derived 

(Howles et al., 1996, Blount et al., 2000), while, CAD and COMT are core enzymes leading 

to the biosynthesis of lignin in plants (Mee et al., 2005). Therefore, suppressing the expres-

sion of those genes will affect lignin biosynthesis and result in lower lignin content. Ara-

bidopsis thaliana mutants with impaired COMT function were more susceptible to various 

bacterial and fungal pathogens (Quentin et al., 2009). Transgenic Arabidopsis containing 

elevated levels of syringyl lignin, significantly reduced the fecundity and development of M. 

incognita compared to the wild type control (Wuyts et al., 2006a).  Accordingly, tobacco 

plants with reduced syringyl lignin content result in a faster life cycle of M. incognita. In our 
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study, BABA treated galls were characterized by a more pronounced lignin deposition than 

control galls, and genes involved in lignin biosynthesis are more strongly expressed in BA-

BA-treated plants at different time points. PAL genes are significantly suppressed in giant 

cells induced by M. graminicola in rice (Ji et al., 2013), and several researchers have reported 

that BABA treated plants have enhanced PAL activity which is correlated with disease re-

sistance (Slaughter et al., 2008, Baysal et al., 2005). Application of 100µM L-AOPP, an in-

hibitor of PAL, did not increase the susceptibility of Nipponbare to RKN, although there were 

a slightly higher number of females than the control. However, BABA induced resistance was 

partially compromised in L-AOPP treated plants with a 40%-50% reduction of females in 

comparison to nearly 60%-70% reduction in control plants. Taken together, we speculate that 

a higher PAL expression leads to increased levels of lignin, which contributes to less efficient 

penetration and/or delay of RKN development. However, the role of other phenylpropanoid 

compounds, like flavonoids and phytoalexins, in BABA-IR still needs to be investigated.  

Callose plays important roles during the normal development of plants (Chen et al., 2007), 

and it is known to be induced as a plant resistance response after exposure to a range of biotic 

and abiotic stresses (Jacobs et al., 2003, Ueki & Citovsky, 2005, Luna et al., 2011, Chen & 

Kim, 2009, Stone & Clarke, 1992). Callose deposition is one of the earliest plant responses 

against invading nematodes (Hussey et al., 1992, Grundler et al., 1998). It is generally depos-

ited between the plasma membrane and the cell wall, and synthesized by callose synthase and 

degraded by β-1,3-glucanase (Kauss, 1996). It has been demonstrated that BABA induced 

callose deposition is correlated to the expression of resistance in several pathosystems 

(Zimmerli et al., 2000, Ton & Mauch‐Mani, 2004, Hamiduzzaman et al., 2005, Cohen et al., 

2011, Cohen et al., 2010, Walz & Simon, 2009, Barilli et al., 2010). The authors proposed 

that callose deposition may (i) cause cell wall strengthening and restrict pathogen penetration; 

(ii) block the transport of nutrients and water to the feeding sites of nematodes, causing star-

vation and growth cessation of the nematodes. For example, overexpressing of RAP2.6, an 

ethylene response transcription factor gene in Arabidopsis plants enhanced callose deposition 

in syncytia and enhanced resistance against the beet cyst nematode Heterodera schachtii (Ali 

et al., 2013). Similarly, callose deposition on the sieve plates of resistant rice is an important 

mechanism for reducing phloem translocation and phloem sap to the brown plant hopper pest 

(Hao et al., 2008). In our experiment, stronger fluorescence was found in BABA-treated galls, 

indicating abundant, compact callose deposits in those galls. In contrast, the callose signals 

were much fainter in water-treated galls. The callose synthase gene OsGSL3 was significantly 

up-regulated in BABA treated galls, compared to uninfected root tips or water treated galls. 

Another two callose synthase genes, OsGSL1 and OsGSL5 were also induced in rice roots 

treated with BABA. OsGNS5 on the other hand is strongly down-regulated in BABA treated 



 Chapter 4                                                                    β-aminobutyric acid-induced resistance 

111 
 

roots. GNS5 plays critical roles in decomposition of the callose barriers, and it is hijacked by 

pathogens to weaken the physical barriers of the plant and hence promote infection (Akiyama 

et al., 1997). The down-regulation by BABA may allow callose to be maintained in plant 

roots. In contrast, our results show that RKN feeding induces the expression of this β-1, 3-

glucanase, which is probably one of the mechanisms of RKN to overcome the physical barri-

ers of the basal defence in susceptible rice plants. Similarly, the brown plant hopper can un-

plug sieve tube occlusions by activating β-1, 3-glucanase genes in susceptible rice plants (Hao 

et al., 2008). Taken together, we conclude that BABA activates genes for callose synthesis 

and suppresses callose degradation, leading to the accumulation of callose in BABA treated 

roots. This phenomenon may inhibit RKN penetration, giant cell expansion and female en-

largement and ingestion of cytoplasm from giant cells. Several studies have been reported that 

BABA-induced callose deposition is based on the ABA signaling pathway (Ton & 

Mauch‐Mani, 2004, Ton et al., 2005, Flors et al., 2005). There is an indication in our experi-

ments that ABA is required for BABA-IR against RKN as BABA-IR was slightly impaired 

when the plants were co-treated with the ABA inhibitor fluridone. However, since fluridone 

inhibits ABA biosynthesis via the carotenoid pathway from which only a small fraction may 

be required for ABA biosynthesis (Taylor et al., 2000), fluridone probably provoked perturba-

tions (i.e. inhibition of astaxanthin and lutein) other than the inhibition of ABA biosynthesis 

(Achuo 2005). Therefore, whether fluridone can successfully and specifically inhibit ABA 

production in our experimental conditions, and if callose deposition is dependent on ABA still 

needs to be further explored.  

Our understanding of the mechanisms of BABA induced resistance against rice root-knot 

nematode RKN can be encapsulated in a model shown in Figure 4.10. BABA induces a multi-

faceted plant basal defence response in the rice roots, which inhibits nematode penetration 

and development. However, hormone-dependent signal pathways play no major roles in this 

induced resistance mechanism.  
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 Fig.4.10 Model illustrating the mechanisms of BABA induced resistance against RKN in rice. Lines 

ending with arrows show activation. The line ending with a perpendicular short line indicates suppres-

sion. Dashed lines indicate possible effects, for which this paper does not provide evidence. 

4.4 Conclusions 

In summary, we have shown that BABA application to rice roots induced strong resistance 

against the RKN M. graminicola at different developmental stages. The induced resistance is 

independent of the defence signaling cascades SA, JA and ET, but coupled with enhanced 

multifaceted plant basal defence, including H2O2, lignin and callose accumulation. The cumu-

lative results presented in this research highlight the possible actions of the non-protein amino 

acid BABA against RKN in rice.  

4.5 Material and methods 

Plant materials and growth conditions 

Rice (Oryza sativa L.) lines used in this work included of O. sativa cv. Nipponbare and culti-

var Taipei 309 (NPR1 WT). The seeds of cv Nipponbare were provided by the US Depart-

ment of Agriculture (GSOR-100) and corresponding SA-deficient NahG lines (Yang et al., 

2004) and RNAi OsMPK5 transgenic plants (Xiong & Yang, 2003) were kindly provided by 

YinongYang (Pennsylvania StateUniversity), OsWRKY45 RNAi lines was a gift from Hiroshi 

Takatsuji (Plant Disease Resistance Research Unit, National Institute of Agrobiological Sci-

ences, Ibaraki 305-8602, Japan); the NPR1 mutant and its corresponding wild type Taipei 309 
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was kindly provided by Zuhua He (National Key Laboratory of Plant Molecular Genetics, 

Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chi-

nese Academy of Sciences, Shanghai 200032, China). Seeds were germinated on wet filter 

paper for 3 days at 30
o
C and then transferred to SAP substrate (Reversat et al., 1999) in PVC 

(polyvinyl-chloride) tubes and further grown at 26°C under a 16h/8h light regime at a relative 

humidity of 70-75%. 

Infection experiments 

The M. graminicola culture was provided by Prof. Dirk De Waele (Catholic University Leu-

ven, Belgium) and was originally isolated in the Philippines. M. graminicola was maintained 

on O. sativa cv. Nipponbare in potting soil under the same temperature/light conditions as 

described above, and the nematodes were extracted using a modified Baermann funnel. Four-

teen-day-old rice plants were soil drenched with 3.5mM BABA or water as control, and one 

day after they were inoculated with about 200 second-stage juveniles of M. graminicola per 

plant. In the case of a developmental assay, in pre-treatment of BABA, two days after inocu-

lation, roots were washed and plants were put in Hoagland solution for another 14 days. In 

post-treatment of BABA, 2 days after M. graminicola infection, roots were washed and trans-

ferred to Hoagland+3.5mM BABA solution for 2 days, after that, plants were transferred to 

pure Hoagland. Infected roots were collected at 50 hours post infection (hpi) for penetration 

assay, 16 days post infection (16dpi) for development stage analysis , and then roots were 

boiled for 3 min in 0.8% acetic acid and 0.013% acid fuchsin. They were washed with run-

ning tap water and then destained in 5:100 ml acidified glycerol to visualize nematode devel-

opmental stages. 

Attraction assay 

14- day-old O. sativa cv. Nipponbare seedlings were soil drenched with 3.5mM BABA or 

water. One day after treatment, root tips were excised (about 5mm long) and each tip was put 

into a 1.5cm diameter well in a 24 well cell culture microplate. Each well contains about 150 

J2 suspended in 500µl 0.8% water-agar. The microplates were incubated in a growth chamber 

(26°C) for 9 h after initiation of the assay, and then the number of nematodes touching the 

terminal 1mm of the root tip was counted. Eight replicates were included in each experiment 

and the experiment was done twice. 

Inhibitor experiment 

Chemical treatment was done with aminooxyacetic acid (AOA), Diethyldithiocarbamic acid 

(DIECA),  L-2-aminooxy-3-phenylpropionic acid (L-AOPP) and fluridone, inhibiting eth-
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ylene (ET) biosynthesis, jasmonic acid (JA) biosynthesis, phenylalanine ammonia-lyase (PAL) 

and abscisic acid (ABA) biosynthesis, respectively. All chemicals were dissolved in a few 

drops of ethanol before diluting in distilled water. The chemicals and concentrations used are 

as follows: AOA (50mM), DIECA (100µM), L-AOPP (100µm), and fluridone (0.1µm). Intact 

14-d-old seedlings were soil drenched with each inhibitor or each inhibitor plus 3.5mM BA-

BA. All the experiments were independently repeated with similar results. All the chemicals 

were soil drenched 24 h before nematode  inoculation. 

RNA extraction, cDNA synthesis, and qRT-PCR 

RNA extraction and cDNA synthesis were performed on total roots, galls or root tips and 

analyzed as described by  Kyndt et al. (2012b). The primer sequences used for qRT-PCR are 

listed in Table 4.1 

Table 4.1 Overview of the reference and target genes used in this study, showing their GenBank acces-

sion/locus numbers (MSU7.0) and the primer used for qRT-PCR 

Primers Forward  primer (5’-3’) Reverse primer (5’-3’) 

OsEXP 

(LOC_Os03g27010) 

TGTGAGCAGCTTCTCGTTTG TGTTGTTGCCTGTGAGATCG 

OsUBQ5  (AK061988) ACCACTTCGACCGCCACTACT ACGCCTAAGCCTGCTGGTT 

OsEXPnarsai 

(LOC_Os07g02340.1) 

AGGAACATGGAGAA-

GAACAAGG 

CAGAGGTGGTGCAGATGAAA 

OsICS1 

(NM_001069519  

TGTCCCCACAAAGGCATCCTG

G 

TGGCCCTCAACCTTTAAACATGCC 

OsdWRKY45 

(Os05g0323900) 

AATTCGGTGGTCGTCAAGAA AAGTAGGCCTTTGGGTGCTT 

OsPR1b (AK107926) ACGCCTTCACGGTCCATAC  AAACAGAAAGAAACAGAGGGAGTAC  

OsAOS2 (Os03g12500) CAATACGTGTACTGGTCGAAT

GG 

AAGGTGTCGTACCGGAGGAA 

OsJAMyb (AY026332) GAGGACCAGAGTGCAAAAGC CATGGCATCCTTGAACCTCT 

OsACO7 (Os01g39860) GGACTACTACCAGGGCACCA GATTAGCGCACGCGATTTTA 

OsERF1 (EF061888.1) GAGTCGTCCTTCTCCTCCTC CCTCTCTTTCTCCGTTTCG 

OsNCED3 

(Os03g40438) 

GTTCAAGCTCCAGGAGATGC AGAGGTGGAAGCAGAAGCAG 

OsLIP9 (AB011367) CCGGCTACAGAGGAAGTGAG TCTCCATGATCTTGCCCAGT 

OsRbohB  

(NM001049555.1) 

CTGGACAGGACCAAGAGCAG ATCTTGAACGGAGCAGCACA 
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OsC4H 

(NM_001061725) 

CAGACTGGTGAGATCCGGTG TTCCCCATTCGATCGACCAC 

OsCAD6 

(NM_001058825 ) 

TCGGTAAGAGGACGGTGAGT TGTCGATGTCCCAGGTGATG 

OsPAL (X16099.1) TGTGCGTGCTTCTGCTGCTG AGGGTGTTGATGCGCACGAG 

OsGSL1 (AP001389) TGAGGACCTGCCACGATT CACGCTGATTGCGAACAT 

OsGSL3 (AP003268) TGGCAAGCGACCACATAG AGACCTTAGCACGGACTG 

OsGSL5 (AP008212) GTGGTGTCCCTGCTATGA GTTGTTTGCTATT 

OsGNS5 (U72251) TTGCGGCCATTCCTACAGT TGGTGAGGGCGATGCTTG 

 

Tissue processing for light microscopy 

Galls on the roots were excised from mock treated and BABA-treated plants 7 days after in-

oculation. Fixation of galls was done in 2% glutaraldehyde and 98% PIPES buffer overnight, 

then dehydration was done in a series of ethanol dilutions. Embedding of galls was conducted 

by using Technovit 7100 (Kulzer, Germany). 10µm thick sections were cut with a Leica 

RM2265 motorized rotary microtome (Leica microsystems, Nussloch, Germany) and stained 

with 0.05% toluidine blue O. Digital images were acquired with an Olympus BX51 micro-

scope equipped with an Olympus ColorView III camera. 

Hydrogen peroxide content assay 

Hydrogen peroxide levels were determined according to Velikova et al. (2000). Root tissues 

(about 100 mg) were homogenized in an ice bath with 1 mL 0.1% (w/v) TCA. The homoge-

nate was centrifuged at 14000 rpm for 15 min and 0.5 ml of the supernatant was added to 0.5 

mL, 10 mM potassium phosphate buffer (pH 7.0) and 1 ml 1 M KI. The absorbance of super-

natant was read at λ max=390 nm. One biological replicate was conducted with 4-5 plants. 

Lignin analyses and histochemical test 

Lignin quantification was performed according to Vanholme et al. (2013). Root tissues were 

collected one day after soil drench with 3.5mM BABA or water. Dry roots (5mg-7mg each) in 

2ml vials were subjected to sequential extractions, each time for 30 min: at near-boiling tem-

peratures in water (98°C), ethanol (76°C), chloroform (59°C), and acetone (54°C). The re-

maining cell wall residue was dried under vacuum and weighed again. Absorbance was 

measured at 280 nm using a Nano-Drop® ND-1000 spectrophotometer (NanoDrop Technol-

ogies, Wilmington, DE, USA). Twenty samples were measured for each treatment. 
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Lignin histochemistry was examined using Wiesner reagent (Pomar et al., 2004). Galls har-

vested at different time points from BABA or mock treatments were embedded in 7% agarose, 

and were cut into 100µm sections with a Vibroslicer. Sections were incubated for 5 min in a 

phloroglucinol solution (1% phloroglucinol in 95% ethanol+HCL), and then the Wiesner 

reagent was changed by water. Sections were directly observed with a binocular microscope 

(Leica, S8APO). 

 

Callose staining 

The method of detection of callose deposition was adapted from Millet et al. (2010). Two 

days after nematode or water inoculation, plants were transferred to 3.5mM BABA or water 

for another 2 days. Whole roots were immediately fixed in a 3:1 ethanol: acetic acid solution 

overnight. The fixative was changed three times to ensure both thorough fixing and clearing 

of the tissues. Seedlings were rehydrated in 70% ethanol for 3 h, 50% ethanol for 3 h, 30% 

ethanol for an additional 2h and water overnight. After three water washes, roots were treated 

with 10% NaOH and placed at 37
o
C for 2 h to make the tissues transparent. After three water 

washes, seedlings were incubated in 0.01% aniline blue (Sigma-Aldrich) in 150mM K2HPO4 

solution, pH 9.5 for 25 min. The roots including galls were mounted on slides, and callose 

was observed immediately under UV (excitation, 390nm; emission, 460 nm). For each treat-

ment 8 roots with several galls were observed. Callose quantification was done by using Im-

age J.  
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Abstract 

One of the reasons for the progressive yield decline observed in aerobic rice production is the 

rapid build-up of populations of the rice root-knot nematode Meloidogyne graminicola. These 

nematodes induce specialized feeding cells inside root tissue, called giant cells. By injecting 

effectors in and sipping metabolites out of these cells, they reprogram the normal cell devel-

opment, and deprive the plant of its nutrients. In this research, we have studied the transcrip-

tome of giant cells in rice, after isolation of these cells by Laser Capture Microdissection. The 

expression profiles revealed a general induction of primary metabolism inside the giant cells. 

Although the roots were completely covered from light induction, we detected a remarkable 

induction of genes involved in chloroplast biogenesis and tetrapyrrole synthesis. The presence 

of chloroplast-like structures inside these dark-grown cells was confirmed by confocal mi-

croscopy. On the other hand, genes involved in secondary metabolism and more specifically 

the majority of defence-related genes were strongly suppressed in the giant cells. In addition, 

significant induction of transcripts involved in epigenetic processes was detected inside these 

cells at 7 days after infection.  

5.1 Introduction 

Biotrophic plant pathogens have evolved sophisticated strategies to manipulate their host. 

They derive all of their nutrients from living plant tissues, by making intimate contact with 

their host while avoiding a resistance response. Rice is one of the most important crop plants 

worldwide and an excellent model system for studying monocotyledonous plants. Estimates 

of annual yield losses due to plant-parasitic nematodes on this crop range from 10 to 25% 

worldwide (Bridge et al., 2005). One of the agronomically most important nematodes attack-

ing rice is the rice root-knot nematode Meloidogyne graminicola. Attack of plant roots by 

sedentary plant parasitic nematodes, like the root-knot nematodes (RKN; Meloidogyne spp.) 

leads to the development of specialized feeding cells in the vascular tissue. The second stage 

juvenile of the RKN punctures selected vascular cells with its stylet, injects pharyngeal secre-

tions, and this ultimately leads to the reorganisation of these cells into typical feeding struc-

tures called giant cells (GCs), from which the nematode feeds for the remainder of its seden-

tary life cycle (Gheysen and Mitchum, 2011). Morphological and physiological reprogram-

ming of the initial feeding cell leads to nuclear enlargement, proliferation of organelles, meta-

bolic activation, cell cycle alterations and cell wall changes (Gheysen and Mitchum, 2011). 

The hyperplasia and hypertrophy of the surrounding cells leads to the formation of a root gall, 

which is typically formed at the root tips in the case of the rice RKN M. graminicola. In com-

parison with other RKN, M. graminicola has a very fast life cycle. In well-drained soil at 22-

29ºC the life cycle of M. graminicola is completed in 19 days. Swelling of the root tips is 

observed as early as 1 day post inoculation (dpi). At 3 dpi, terminal hook-like galls are clearly 
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visible (Bridge et al., 2005). After 3 moults the nematodes are mature, around 10-12 dpi. 

While most other RKN deposit egg masses at the gall surface, the M. graminicola females lay 

their eggs inside the galls, and hatched juveniles can re-infect the same or adjacent roots.  

We have recently studied transcriptional reprogramming patterns in galls induced by the RKN 

M. graminicola in rice using deep RNA sequencing (Kyndt et al., 2012a). The there-reported 

gene expression differences reflect a combination of changes occurring in giant cells and sur-

rounding gall tissues. Due to the technical difficulty of isolating giant cells from the root tis-

sue, most transcriptome analyses have up till now focused on the whole gall tissue, in Ara-

bidopsis and tomato (e.g. Bar-Or et al., 2005, Jammes et al., 2005). Nevertheless, though 

technically challenging, giant cell contents can be isolated using microaspiration (Wang et al. 

2003) or laser capture microdissection (LCM; Portillo et al., 2009; Fosu-Nyarko et al., 2009, 

Barcala et al., 2010; Portillo et al., 2013). The research of Barcala et al. (2010) and Portillo et 

al. (2013) demonstrated the molecular distinctiveness between the giant cells and the sur-

rounding gall tissue.  

The goal of our research was to study the transcriptional changes in giant cells formed in rice 

roots upon RKN infection. LCM was combined with mRNA-Seq to study the giant cell tran-

scriptome at two time points after infection. We have compared the data with reports from 

giant cells and complete galls induced by RKN in rice and other plant species. Some of the 

reported changes were independently validated by quantitative RT-PCR (qRT-PCR) and con-

focal microscopy. Our study highlights that key metabolic pathways, hormone homeostasis 

and epigenetic processes are affected during giant cell development.  

5.2 Results 

In this study, a comparative gene expression analysis was carried out to investigate the rice 

response to infection with a sedentary nematode species, Meloidogyne graminicola. This 

nematode induces the formation of specialized feeding sites called giant cells (GCs) in root 

tissue. For an in-depth analysis of the transcriptional reprogramming induced in these cells, 

they were isolated by laser capture microdissection (LCM) at 7 and 14 days post inoculation 

(dpi) and mRNA-Seq was carried out on the isolated RNA. Root cells from the vascular tissue 

of uninfected plants of the same age were used as control material. Transmitted light micro-

scopical analysis revealed that at 7 dpi, the nematodes were at the juvenile 3 (J3) or J4 stage; 

at 14 dpi most of M. graminicola had matured and most females had laid eggs. The GCs con-

tained a dense cytoplasm, the shape was oval or globular, and the cell wall was thick (Fig 5.1). 

Per biological replicate and time point 150-200 giant cell sections (Fig 5.1) or 300 control 

sections (from uninfected plants) were used for LCM of the giant and vascular cells, respec-
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tively. After quality control, the cDNA was sequenced using the Illumina mRNA-Seq proto-

col. 

 

Fig 5.1 Transverse sections of giant cells (GC) formed by the root-knot nematode Meloidogyne grami-

nicola in rice roots (Oryza sativa cv. Nipponbare). A: control vascular tissue B: 7 dpi GC. Scale bars in 

A and B: 25µm. C: 7 dpi GCs before LCM; D: 7 dpi GCs after LCM. Scale bars in C and D: 50µm. 

In total 139,254,416 reads were acquired from infected and uninfected cells at the two time 

points. The data can be accessed through the GEO repository: GSE43577. The short reads 

were aligned against the whole reference genome sequence of rice cv. Nipponbare (MSU7.0) 

and 79.2 % of the sequenced fragments, 36 bp reads on each end of the fragments, could be 

mapped (Table 5.1). This mapping percentage is substantially higher than reported in our 

previous mRNA-Seq analysis on complete galls (Kyndt et al., 2012a); where on average only 

49.20 % of the reads were mapped. The higher number of mapped reads in the current analy-

sis can be explained by the fact that paired-end reads were used here, and because of the na-

ture of the samples, specific isolated cells from within the root tissue have a lower chance of 

contaminants. The total length of mapped reads was over 10 billion bases, representing nearly 

27-fold coverage of the rice genome and approximately 97-fold coverage of the annotated 

transcriptome. The expression of a total of 54,206 different rice transcripts was detected in the 

analyzed tissues. Correlation between the two biological replicates sequenced from each cell 
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type and at each time point was checked by means of Pearson correlation coefficient of the 

expression value of each gene after normalization. The average Pearson R between 2 biologi-

cal replicates was 0.9959 (p-value <2.2 E-16). 

Comparative gene expression profiling was performed by Gene Set Enrichment, pathway 

mapping and statistical analysis of differential gene expression levels between infected and 

uninfected cells at the different time points. In addition, a search was performed to detect 

novel transcriptionally active regions (nTARs) not annotated in the rice genome assembly 

MSU7.0, and alternative splicing patterns in the isolated rice cells. 

5.2.1 Transcriptome changes in giant cells at 7 dpi 

At 7 dpi, the nematodes feeding from the giant cells within the gall tissue were at the J3/J4 

stage. A total of 42,756 different transcripts were found to be expressed in the collected cells 

at this time point. The expression level of all rice loci was compared between 7 dpi GCs and 

uninfected vascular cells in roots of the same age.  

Gene Set Enrichment Analysis on relative expression levels (log2FC) of all transcripts in the 

infected versus uninfected cells revealed that genes involved in ‘biosynthetic process’ (mainly 

translation), ‘cell cycle’, ‘generation of precursor metabolites and energy’, and ‘cellular com-

ponent organization’, were strongly up-regulated at 7 dpi, while genes involved in ‘tropism’, 

‘signaling’, ‘response to stimulus’ and ‘secondary metabolic process’ were generally down-

regulated. Genes with a molecular function annotated as ‘structural molecule activity’ and 

‘nucleic acid binding’ were generally higher expressed in 7 dpi GCs than in control cells (Fig 

5.2).  
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Table 5.1 Overview of the obtained mRNA-Seq data from giant cells induced by nematode infection in rice and control cells from the vascular root tissue, and 

mapping of these sequences onto the rice genome.  

Sample Total number of 

sequenced frag-

ments 

Total number of 

paired mappings 

Number of 

mapped 

fragments 

Number of 

unmapped 

fragments 

% unique 

mapping 

Uninfected vascular cells at time point 7 dpi(1) 17031983 32558679 13967317 3064666 82,01 

Uninfected vascular cells at time point 7 dpi (2) 16406474 30877769 12916523 3489951 78,73 

Giant cells at time point 7 dpi(1) 18433445 36677998 14860282 3573163 80,62 

Giant cells at time point 7 dpi (2) 18253140 34825239 14294260 3958880 78,31 

Uninfected vascular cells at time point 14 dpi (1) 17135578 33563491 13585221 3550357 79,28 

Uninfected vascular cells at time point 14 dpi (2) 17600487 33773375 13622898 3977589 77,40 

Giant cells at time point 14 dpi (1) 16877180 37350477 13725022 3152158 81,32 

Giant cells at time point 14 dpi (2) 17516129 37472359 13296867 4219262 75,91 

Total 139254416 277099387 110268390 28986026 79,18 

Reads (two/fragment) 278508832     

Coverage of the rice genome 26,86     

Coverage of the rice transcriptome 97,63     
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Fig 5.2 Parametric Analysis of Gene Set Enrichment of transcriptome data of giant cells induced by 

RKN in rice at 7 dpi (top) and 14 dpi (below). Z-scores (Y-axis) of all secondary level GO terms are 

shown. Bars in dark grey indicate GO terms that are up-regulated in the infected tissue versus the cor-

responding control, while light grey bars indicate GO-terms that are down-regulated in the infected 

tissue versus the corresponding control. 

Pathway mapping with MapMan showed a significant modification of, for instance, glycoly-

sis, starch metabolism, trehalose metabolism, homoserine biosynthesis, tetrapyrrole synthesis, 

phenylpropanoid pathway, flavonoid production, cell wall precursor synthesis and pectin 

esterases. Figure 5.3 shows the expression pattern of transcripts involved in tetrapyrrole bio-

synthesis, with a high frequency of transcripts induced in the GCs vs. control material. Higher 
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plants contain four classes of tetrapyrroles, namely chlorophyll, heme, siroheme, and phyto-

chromobilin, and all of them play vital roles in various biological processes, including photo-

synthesis, respiration, nitrite and sulfite reduction, as well as various cellular processes in-

cluding gene expression, protein import, and the assembly of essential proteins (Tanaka and 

Tanaka, 2007). They are predominantly synthesized in plastids. Figure 5.3 shows that almost 

all genes involved in the biosynthesis of siroheme, heme, phytochromobilin and chlorophyll a, 

but not chlorophyll b, are expressed at higher levels in giant cells than in control cells.  

 

 

Fig 5.3 Mapman visualization of the expression profiles of genes involved in tetrapyrrole biosynthesis 

in 7 dpi giant cells. The visualization shows the observed differential expression patterns, based on the 

log2 fold changes of mRNA levels, in giant cells versus control cells. Dots show the different paralo-

gous genes encoding the enzyme that catalyzes a certain step. Red dots indicate that the gene is up-

regulated in infected tissue versus the corresponding healthy control, while green indicates down-

regulation.  

At 7 dpi 77,709 transcripts were found to be significantly differentially expressed 

(FDR<0.05), with 650 transcripts down-regulated, and 77,059 up-regulated in the giant cells 

(Table S5.2). Thirteen of them were chosen for independent validation based on their poten-

tially interesting function, and their expression pattern in the giant cells was evaluated on an 

independent biological sample by qRT-PCR. The expression trend was confirmed in all but 

one case (Table S5.3). Differences in Log2FC-values as obtained from mRNA-Seq and qRT-

PCR are largely due to biological variation and/or to differences in the applied algorithms for 

estimating expression levels. 
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The genes with strongest down-regulation in GCs versus uninfected cells included transcripts 

encoding gibberellin 2-beta-dioxygenase, involved in gibberellin catabolism; chalcone syn-

thase, involved in flavonoid production; protein disulfide isomerase, that catalyzes post-

translational protein modifications through formation and breakage of disulfide bonds; and 2 

NBS-LRR disease resistance proteins. Among the strongest up-regulated transcripts were 

those encoding 78 transporter proteins; OsBAK1, the BRASSINOSTEROID INSENSITIVE 

1-associated receptor kinase 1; ABIL2, known to be involved in regulation of actin and mi-

crotubule organization; 17 cell-cycle regulating cyclins; 10 tubulins; 6 members of the auxin-

responsive OsIAA-gene family; 6 other auxin-response factors; and a remorin C-terminal 

domain containing protein.  

5.2.2 Experimental validation of chloroplast and chlorophyll content in 7 dpi giant cells 

Many reports on plant-nematode interactions have analyzed plants growing in Petri dishes in 

a day/night cycle (Sijmons et al., 1991). It is generally known that the developed nematode 

feeding sites contain chloroplasts under light influence (Orion and Wergin, 1982; Golinowski 

et al., 1996; Sijmons et al., 1991). Orion and Wergin studied this with electron microscopy 

and revealed the differentiation of chloroplasts from amyloplasts inside these light-induced 

giant cells in tomato. However, in the current study, roots were completely covered from light 

to preclude any artificial induction of chlorophyll and chloroplast formation. Interestingly, the 

results of the transcriptome data (Fig 5.3), reveal a strong induction of photosynthesis-related 

genes in dark-grown GCs, and hence we decided to confirm the presence of chlorophyll a 

inside the GCs using confocal microscopy. To this end, lambda stacks of fixed GC sections 

were acquired using spectral detection confocal microscopy and they were compared with 

images from fixed and fresh leaf sections. The confocal images demonstrated that fresh rice 

leaves contain dense arrays of strongly autofluorescent chloroplasts, about 5 µm in size and 

shaped as flattened disk (Fig 5.4A, D). After fixation, the fluorescent pattern in the leaf had 

changed into a more punctuate pattern, with chloroplast fluorescence limited to ~1µm-sized 

foci. This punctuated effect is plausibly due to the fixation and (especially) the dehydration 

procedure (Fig 5.4B, C). Remarkably, similar fluorescent foci were observed inside the GCs, 

albeit to a lesser extent (Fig 5.4C, F) and some autofluorescence was also seen in the neigh-

bouring cells of the GCs. However, the fluorescent foci and autofluorescence were never ob-

served in healthy control roots (data not shown). To determine whether these foci in the GCs 

contained chlorophyll a, we compared their spectral profile with that of chloroplasts in fixed 

and fresh leaf sections (Fig 5.4G). Pedrós et al. (2008) reported that the chlorophyll a fluores-

cence emission spectrum is characterized by a major peak at 683 nm, which dominates the 

autofluorescence spectrum of chloroplasts in the deep red region. Indeed, inside chloroplasts 

from fresh leaf material a fluorescent peak with a maximum intensity at 683 nm was obtained 
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upon excitation at 488 nm. In chloroplasts from fixed leaf sections, this peak was slightly 

shifted towards 678 nm, possibly due to quenching effects. A very similar, although slightly 

shifted, peak was observed in the presumed chloroplasts from the GC sections, suggesting the 

presence of chlorophyll a in these structures. The slight shift of the peak and the deviation 

from the reference curves at the longer wavelengths may be due to the absence of other acces-

sory pigments (e.g. carotenoids, xanthophyll’s, and chlorophyll b) that contribute to the spec-

tral profile.  

 

Fig 5.4 Confocal microscopy and spectral profiling of chloroplast (-like) autofluorescence. A-F: Confocal images 

were acquired from sections of fresh leaves (A, D), fixed leaves (B, E) and fixed giant cells (C, F) at two different 

zoom factors 1x (A, B, C) and 3x (D, E, F), using a spectral detector set to capture chlorophyll a autofluorescence 

(655.5nm-735.5nm). White squares in A, B and C, respectively, show the region that was magnified in D, E and F, 

respectively. The dotted lines in C delineate the boundaries of the giant cells. Note the difference in shape between 

chloroplasts of fresh and fixed leaf sections and the presence of chloroplast-like structures in the giant cell section. 

G: Average spectral profiles, measured as average intensity per wavelength interval across the lambda stack range 

for at least 4 (presumed) chloroplast regions.   
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5.2.3 Transcriptome changes in giant cells at 14 dpi 

The expression level of all rice loci was compared between 14 dpi GCs and uninfected root 

vascular cells at the same time point. In total, 41,179 different transcripts were found to be 

expressed in the collected rice cells. While still ongoing at 7 dpi, the expansion of giant cells 

and cytoskeleton rearrangements end at 10–14 dpi in the case of M. incognita infection on 

Arabidopsis (de Almeida-Engler et al., 2004). 

Gene Set Enrichment Analysis of relative expression levels (log2FC) of all transcripts in the 

infected versus uninfected cells revealed that genes involved in ‘photosynthesis’, ‘DNA met-

abolic process’, ‘cellular component organization’, ‘generation of precursor metabolites and 

energy’ and ‘cell cycle’ were strongly up-regulated at 14 dpi, while genes involved in ‘sec-

ondary metabolic process’, ‘response to stimulus’ and ‘cell death’ were generally down-

regulated. Transcripts coding for proteins with ‘hydrolase’ and ‘nuclease’ activity were gen-

erally up-regulated (Fig 5.2). When comparing Gene Set Enrichment of 7 and 14 dpi giant 

cells (Fig 5.2), similar trends are observed, although genes in the GO-categories ‘metabolic 

processes’, ‘structural molecule activity’, ‘organelle part’, ‘membrane-enclosed lumen’, and 

‘macromolecular complex’ show less strong induction at 14 dpi than at 7 dpi. Pathway map-

ping with MapMan showed, similar to the 7 dpi data, a significant modification of starch and 

sucrose metabolism, trehalose metabolism, tetrapyrrole synthesis and the phenylpropanoid 

pathway. Additionally, significant modifications were detected in light reactions, flavonoid 

production and cell wall-related pathways in 14 dpi GCs.  

2,884 transcripts were significantly differentially expressed at FDR<0.05. 238 of them were 

down-regulated, while 2,646 were up-regulated (Table S5.4). Among the strongest down-

regulated genes, transcripts were found coding for nicotianamine synthase, involved in phyto-

siderophore biosynthesis; a glucan endo-1,3-beta-glucosidase precursor; alpha DOX2, in-

volved in the synthesis of oxylipins; transcription factor WRKY71; 4 thionin-like peptides; 

flavonol synthase and phenylalanine ammonia lyase, both involved in the phenylpropanoid 

pathway. The strongest up-regulated transcripts included starch synthase; Cullin-1; AP2-like 

ethylene-responsive transcription factor AINTEGUMENTA, which regulates growth and cell 

numbers during organogenesis; roothairless-1; and genes involved in cell cycle control, such 

as those encoding cyclin-T1-1, cyclin-dependent kinase A-1 and cyclin-dependent kinase C-2. 

5.2.4 Comparison between 7 & 14 dpi GCs and 7 dpi galls 

A total of 942 genes was found to be differentially expressed (FDR<0.05) between control 

and giant cells at both 7 and 14 dpi. Correlation between the Log2FC-values (GC vs. respec-

tive control) of those 942 genes is Pearson R=0.85 (p<2.2E-16). This demonstrates that DEGs 

at 7 and 14 dpi show a similar transcriptional profile.  
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In the following paragraphs the transcriptional profiles of some specific pathways are ex-

plored in the GCs (7 and 14 dpi), in comparison with previously generated transcriptome data 

from 7 dpi whole-gall material of rice (Kyndt et al., 2012a).  

Transcripts involved in the metabolism of the phytohormones salicylic acid (SA), jasmonic 

acid (JA), ethylene (ET), abscissic acid (ABA) and gibberellic acid (GA)  

As already described by Barcala et al. (2010) and Portillo et al. (2013) for tomato and Ara-

bidopsis, expression patterns in rice GCs were strongly different from the whole-gall tran-

scriptional profile (Kyndt et al., 2012a). TableS5.5 shows the Log2FC of genes involved in 

biosynthesis of different plant hormones in 7 and 14 dpi GCs and 7 dpi whole gall material 

(data taken from Kyndt et al., 2012a), each in comparison with their corresponding uninfected 

control tissue. Results show that transcripts involved in SA-biosynthesis through the phe-

nylpropanoid pathway are suppressed in GCs at both 7 dpi and 14 dpi, with for instance many 

paralogues encoding phenylalanine ammonia lyase much lower expressed in giant cells in 

comparison with uninfected vascular cells (Table S5.5). Some of these genes were found to 

be rather induced in 7 dpi whole galls. Many transcripts involved in jasmonate biosynthesis, 

e.g. encoding lipoxygenases, allene oxide synthase and 12-oxophytodienoate reductases, are 

suppressed in 7 and 14 dpi GCs versus uninfected vascular root cells. A lot of these tran-

scripts are rather induced in 7 dpi whole galls (Table S5.3). The fact that GA-biosynthesis and 

signaling through DELLA proteins is generally induced in gall tissue was already reported by 

Kyndt et al. (2012a), and the data shown in the current study reveal that many of these en-

zymes are also expressed to a higher level inside GCs at both time points. The fact that genes 

involved in GA-degradation are also induced is potentially due to a feedback effect to control 

internal GA homeostasis. 

A lot of transcripts involved in the production of abscisic acid are induced in 7 dpi galls, 

while many ABA-biosynthesis genes are repressed in 7 dpi GCs. In 14 dpi GCs both induced 

and repressed expression patterns are observed. Nevertheless, the transcript encoding 8-

hydroxylase, involved in ABA degradation, is very strongly induced in the gall and GC tissue 

both at 7 and 14 dpi. In the ET-biosynthesis pathway, either strong induction or strong sup-

pression was observed for different 1-aminocyclopropane-1-carboxylic acid (ACC)-synthase 

and ACC-oxidase paralogues, but no clear trend was seen, although slightly more transcripts 

encoding ACC-oxidase were found in 7 dpi galls.  

Transcriptional changes in genes involved in epigenetic modifications  

Different epigenetic processes, which are not necessarily independent of one another, have 

been described to affect gene expression (Berger, 2007). Many transcripts involved in (post)-
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transcriptional gene silencing, like those encoding Dicer and ARGONAUTE proteins, are 

induced in the 7 dpi GCs and some also in whole 7 dpi gall material (Table 5.2), but this trend 

does not persist in the 14 dpi GC. Histone-modifying enzymes are also dramatically up-

regulated in the 7 dpi GCs, while they show varying expression profiles in the 14 dpi GCs 

(Table 5.2). In complete gall tissue the transcriptional profile is diluted by the neighbouring 

cells, but also there one of these genes (LOC_Os01g59620) is significantly higher expressed 

in comparison with the uninfected root tips.  

5.2.5 Novel transcripts and alternatively spliced transcripts 

A total of 18,291 novel transcriptionally active regions (nTARs) were detected in the isolated 

cells (Table S5.6). A blast search was done against all ESTs from Oryza sativa, and all pro-

teins predicted from the O. sativa genome project. 7,383 nTARs gave a significant hit (E 

<1E-4) against at least one EST from O. sativa. tBlastX against all proteins of O. sativa re-

sulted in hits for 3,587 of the nTARs, indicating potential paralogy to a known rice transcript 

(Table S5.6).  

To predict a potential function of these nTARs, a SwissProt/trembl search was done, and alt-

hough this was successful for 4,719 transcripts, many of them were annotated as ‘Putative 

uncharacterized protein, O. sativa’. Nevertheless, among the nTARS the following rice 

orthologues were detected: a Bowman-Birk type wound-induced proteinase inhibitor WIP1 

(Zea mays), a receptor-like protein 12 (A. thaliana), disease resistance protein RGA2 (Sola-

num bulbocastanum), regulatory protein NPR3 (A. thaliana) and Gibberellin 20 oxidase 1 (A. 

thaliana) (Table S5.4). Among the nTARs, 12,185 nTARS showed a significant differential 

expression pattern in the GCs versus the uninfected vascular cells, with 2,214 nTARs signifi-

cantly down-regulated in the GCs, and 9,971 significantly up-regulated (FDR<0.05). Among 

the down-regulated nTARs were for example transcripts showing homology to isoflavone 

reductase and carotenoid 9, 10(9', 10’)-cleavage dioxygenase. Potential novel orthologues of 

callose synthase 3 and polygalacturonase are both significantly induced in the giant cells (Ta-

ble S5.6). In addition to the nTARs, 16,063 alternatively spliced transcripts were detected 

(Table S5.6), among which 8,374 have significant differential expression patterns (2,465 

down and 5,909 up-regulated).  
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Table 5.2 Transcriptional changes in genes involved in epigenetic mechanisms as obtained by mRNA-Seq on 7 dpi and 14 dpi giant cells  (Vs. control vascular root cells) and 7 dpi 

galls (vs. control root tips; data extracted from Kyndt et al., 2012a). NE: Not expressed 

  Log2FC Gall 7 dpi 

vs. Control root 

tips 

Log2FC Giant Cell 7 

dpi vs. control root 

cells 

Log2FC Giant Cell 

14 dpi vs. control 

root cells 

Annotation 

Post-transcriptional gene 

silencing 

    

LOC_Os01g16870 0,02 1,98 0,73 argonaute 

LOC_Os01g16860 1,58 1,37 NE AGO4-2 

LOC_Os10g34430 5,35 7,03 0,01 Dicer 

LOC_Os04g43050 2,45 1,90 0,76 Dicer 

LOC_Os04g39160 2,78 4,59 2,04 RNA-dependent RNA polymerase 

LOC_Os01g34350 2,19 0,54 -6,89 RNA-dependent RNA polymerase 

LOC_Os02g58490 -0,26 4,70 3,79 PINHEAD 

LOC_Os04g47870 1,91 2,45 0,35 PINHEAD 

Histone modification     

LOC_Os01g56540 1,00 3,99 NE histone-lysine N-methyltransferase SUVR3 

LOC_Os01g59620 2,16 4,25 4,25 histone-lysine N-methyltransferase, H3 lysine-9 specific SUVH1 

LOC_Os07g25450 -0,09 5,87 -0,15 histone-lysine N-methyltransferase 

LOC_Os08g10470 0,03 7,56 4,91 histone-lysine N-methyltransferase ASHR2 

LOC_Os12g32374 -0,88 4,89 2,20 histone deacetylase 6 

LOC_Os05g36920 0,88 5,53 -3,11 histone deacetylase 

LOC_Os10g28040 -0,45 5,58 -2,98 histone acetyltransferase GCN5 

LOC_Os06g38470 0,97 3,19 1,10 histone deacetylase HDAC1 
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5.3 Discussion 

During pathogen attack, a plant host modulates its gene expression to ward off the invader, 

while the pathogen produces effector proteins to manipulate the molecular machinery of the 

plant aiming at increased susceptibility. Characterizing gene expression in the cells that are 

specifically targeted by the pathogens provides insights into this complex molecular arms-

race. To the best of our knowledge, this report represents the first successful combination of 

Laser Capture Microdissection with mRNA-Seq for expression profiling in the field of plant-

nematode interactions. Recently, we have reported an mRNA-seq based transcriptome analy-

sis of galls induced by M. graminicola in rice (Kyndt et al., 2012a). Within this gall, develop-

ing giant cells undergo repeated nuclear divisions without cytokinesis to form large multinu-

cleate cells. As giant cells comprise only a small fraction of the gall material, the analysis of 

gene expression at the single-cell type level was required for a further in-depth study on these 

highly specialized nematode feeding cells. In the current study giant cells at 7 and 14 dpi and 

the corresponding control cells were isolated by LCM, and their transcriptomes were com-

pared using mRNA-Seq.  

In total 278 billion paired-end mRNA-Seq reads were generated, leading to estimated expres-

sion levels of more than 50,000 annotated and novel rice loci, with a coverage of approxi-

mately 100-fold the annotated transcriptome. Previous studies on complete gall tissue and 

microdissected giant cells from Arabidopsis, tomato and soybean (Bar-Or et al., 2005; 

Jammes et al., 2005; Barcala et al., 2010; Ibrahim et al., 2011) applied microarray analysis, 

and hence only transcripts represented on the arrays could be detected. The benefit of mRNA-

Seq lies in the fact that next to annotated transcripts this technique allows the detection of 

novel splice junctions, novel transcripts, paralogues and rare transcripts (Sultan et al., 2008; 

Wilhelm et al., 2008; Zhang et al., 2010). Indeed, our analysis uncovered 18,291 putative 

novel transcriptionally active regions (nTARs) and 16,063 alternatively spliced transcripts 

expressed in the analyzed LCM-isolated rice cell types. Similar high levels of alternative 

splicing in rice have been reported by Lu et al. (2010) who estimated that ~48% of rice genes 

show alternative splicing patterns. Among the nTARs, 12,185 are differentially expressed, 

with 2,214 nTARs significantly down-regulated in the GCs, and 9,971 significantly up-

regulated (FDR<0.05). These represent transcripts that might only be expressed at very low 

levels and/or under specific circumstances, making them undetected in previous studies.  

In the following paragraphs, transcriptional changes observed in rice giant cells are being 

compared to expression results from Arabidopsis and tomato giant cells (Barcala et al. 2010; 

Portillo et al., 2013), complete galls from tomato, Arabidopsis and rice (Bar-Or et al., 2005; 

Barcala et al., 2010; Kyndt et al., 2012a, Portillo et al., 2013), and above-ground tissues of 
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nematode-infected rice plants (Kyndt et al., 2012b). Our results were also compared with data 

obtained from plants infected with cyst nematodes, another type of sedentary plant-parasitic 

nematodes that form feeding sites called syncytia (Ithal et al., 2007a, 2007b; Klink et al., 

2007; Szakasits et al., 2009). 

Metabolic changes in giant cells induced by RKN infection in rice 

Feeding sites of sedentary endoparasitic nematodes, like Meloidogyne spp. and cyst nema-

todes, are the only source of nutrients for these root parasites throughout their life (Jammes et 

al., 2005; Szakasits et al., 2009). This high demand for resources is reflected in the up-

regulation of genes involved in the primary metabolism of the plant cell, with a prominent 

induction of starch production, something already observed by Barcala et al. (2010) in Ara-

bidopsis giant cells. Also syncytia formed by cyst nematodes store carbohydrates by starch 

accumulation in the plastids (Hofmann et al., 2008), probably as a carbohydrate buffer and 

long-term storage to compensate for changing solute uptake by the nematode. In contrast with 

the induction of the primary metabolism, the secondary metabolism of the giant cells is 

strongly impaired, with for instance many down-regulated transcripts involved in phenylpro-

panoid production.  

The flavonoid side-chain of the phenylpropanoid pathway 

The first step in the phenylpropanoid pathway is catalysed by phenylalanine ammonia lyase 

(PAL). Strikingly, all PAL-homologues are suppressed in giant cells at both investigated time 

points. However, when looking at whole gall tissue many of them were repressed at 3 dpi 

(Kyndt et al., 2012a), but induced at 7 dpi (Table S5.5). After non-oxidative deamination of 

L-phenylalanine to trans-cinnamic acid by phenylalanine ammonia-lyase (PAL), the phe-

nylpropanoid pathway branches into different side chains responsible for the biosynthesis of 

different metabolites, like lignin precursors, flavonoids, hydroxycinnamic acid esters and 

salicylic acid (Boudet, 2000).  

Active suppression of the flavonoid pathway is an important feature of pathogenicity in many 

other plant pathogen-interactions (Oh and Collmer, 2005). In line with this view, we found 

with both mRNA-Seq and qRT-PCR that chalcone synthase, the key enzyme in the flavonoid 

side-branch of the phenylpropanoid pathway is significantly suppressed in rice giant cells 

(Table S5.3). Nevertheless, Hutangura et al. (1999) showed that chalcone synthase is induced 

around the invading nematode at 24 h after M. javanica infection in white clover (Trifolium 

repens) and that flavonoids were detectable in and around the feeding site within 48 h of the 

start of the infection process. Similarly, in other plant-nematode interactions, genes involved 

in flavonoid biosynthesis have been reported to be induced, e.g. upon migratory nematode 
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infection in rice (Kyndt et al., 2012a) and cyst nematode infection in soybean and Arabidop-

sis (Ithal et al., 2007a; Jones et al., 2007). Data from mutant lines impaired in flavonoid bio-

synthesis showed that they were either equally or more susceptible to Heterodera schachtii 

(Jones et al., 2007) supporting the view that flavonoids are produced by the plant as part of 

the defence response against nematodes. These metabolites have indeed been shown to have a 

direct negative effect on many nematode species (Wuyts et al., 2006b). Hence, local suppres-

sion of flavonoid biosynthesis in the giant cells might be an important strategy for the RKN to 

overcome host defence responses.  

Trehalose 

Prior to the current study, an activation of the trehalose metabolism was observed in whole 

galls induced by RKN in rice (Kyndt et al., 2012a) and systemic tissue of cyst nematode in-

fected plants (Hofmann et al., 2010). Remarkably, in studies focusing on isolated nematode 

feeding sites several genes encoding trehalose-6-phosphate synthase, an enzyme needed to 

form trehalose-6-phosphate (T6P), were rather down-regulated (GCs: this study; syncytia: 

Szakasits et al., 2009). T6P has multiple functions in plants, not only in carbohydrate storage 

and metabolism, but also as a stress protectant, and as a metabolic signaling molecule in-

volved in many plant pathogen-interactions (Fernandez et al., 2010) and cell wall modifica-

tion (Bae et al., 2005). Furthermore, other transcripts that are known to be responsive to abi-

otic and biotic stimuli, like (receptor-like) protein kinases, stress and disease resistance-

related proteins are generally strongly repressed in giant cells when compared to correspond-

ing uninfected vascular root cells.  

Dark-grown giant cells contain chloroplast-like organelles 

Plant roots mainly develop non-photosynthetic plastids, such as starch-containing amyloplasts, 

but roots of several plant species have the potential to turn green when exposed to light (Flo-

res et al., 1993). Upon light exposure, amyloplasts inside RKN-induced galls in tomato roots 

were reported to differentiate into chloroplasts (Orion and Wergin, 1982), and similar phe-

nomena are generally seen in syncytia formed in nematode-infected plants under light influ-

ence (Sijmons et al., 1991; Golinowski et al., 1996). Also our previous transcriptome study of 

complete galls showed evidence of photosynthetic activity at 7 dpi, but again these results 

could have been biased because the tissue had not been covered from indirect light (Kyndt et 

al., 2012a). Up till now, this phenomenon had not been investigated in dark-grown giant cells. 

That is why, for the here-described experiments, the material was completely protected from 

light. To our surprise, a strong induction of photosynthesis-related transcripts and transcripts 

involved in the biogenesis of chloroplasts was consistently found in the GCs. Genes related to 
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the biosynthesis of tetrapyrroles, which mainly occurs inside chloroplasts, are induced in the 

giant cells (Fig 5.3). Both transcriptome data and microscopical analysis (Fig 5.4) confirmed 

that the 7 dpi giant cells even without light-stimulation hold chloroplast-like structures, which 

contain metabolites with a similar fluorescence emission spectrum as rice leaf tissue. 

Sugar depletion due to nutrient sipping by the feeding nematode might be the trigger that 

activates photosynthetic gene expression (Oswald et al., 2001). Furthermore, recent findings 

suggest that phytohormones and environmental (stress) signals regulate the expression of 

genes that are related to tetrapyrrole metabolism. Whether there is a causal relationship be-

tween this disturbance of the hormone homeostasis and chlorophyll accumulation inside giant 

cells remains to be further studied. 

Modulation of plant-hormone pathways in giant cells  

Hormones act as signaling molecules in plants by mediating physiological responses, thereby 

coordinating growth and differentiation of cells as well as innate immunity.  

Consistent with recent findings demonstrating a general induction of GA biosynthesis in galls 

on tomato and rice (Bar-Or et al. 2005, Kyndt et al., 2012a) and syncytia in soybean (Klink et 

al., 2007), giant cells accumulate high levels of transcripts coding for enzymes involved in 

GA production and response (such as catabolism and DELLA proteins) (Table S5.5). Gibber-

ellins are important stimulators of cell division and elongation (Richards et al., 2001). These 

observations suggest that gibberellins are important players in the development, maintenance 

and maturation of giant cells. GA plays a critical role in controlling and coordinating cell 

division, cell expansion and, interestingly, also chloroplast biogenesis through influencing the 

DELLA protein family in leaf tissue of both dicot and monocot plant species (Jiang et al., 

2012). 

Transcripts necessary for jasmonate biosynthesis are suppressed in the 7 and 14 dpi giant cells, 

although this was not observed in whole gall tissue (Nahar et al., 2011; Kyndt et al., 2012a). 

Also Ithal et al. (2007b) detected a strong and consistent, but very local, suppression of the 

JA-pathway in isolated syncytia after cyst nematode infection in soybean. It is important to 

note that activation of the JA-pathway by external methyl jasmonate application is an effec-

tive way to protect potato, tomato and rice from RKN infection (Cooper et al., 2005; Nahar et 

al., 2011; Vieira dos Santos et al., 2013).  

Although application of the SA-analogue BTH only resulted in slightly less gall information 

in rice (Nahar et al., 2011), it has recently been shown to have a strong negative effect on M. 

chitwoodi development in tomato and potato (Vieira dos Santos et al., 2013). SA is derived 
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from the phenylpropanoid pathway, and inn line with a general local and systemic repression 

of this pathway at 3 dpi in galls and systemic tissues in rice (Kyndt et al., 2012a and 2012b) 

and giant cells formed in Arabidopsis (Barcala et al., 2010), transcripts involved in the phe-

nylpropanoid pathway are also strongly down-regulated in the isolated 7 and 14 dpi giant 

cells formed in rice roots. Ethylene (ET) is known to play a synergistic role with JA in plant 

innate immunity (Pieterse et al., 2009). Nahar et al. (2011) showed that ET-insensitive mu-

tants and pharmacological inhibition of ET-biosynthesis in rice leads to significantly higher 

susceptibility for RKN, demonstrating that ET plays a role in defence against RKN in these 

plants. In addition, Fudali et al. (2013) showed that ET-overproducing Arabidopsis plants are 

less attractive to RKN. Nevertheless, ET has been suggested to be critical for syncytium for-

mation during cyst-nematode infections in Arabidopsis (Goverse et al., 2000). Its ambiguous 

role in plant defence versus development of the feeding site, might explain why no clear trend 

concerning the ET-pathway was observed in the here-studied 7 dpi and 14 dpi giant cells (Ta-

ble S5.5).  

A role for epigenetic processes in transcriptional reprogramming of the root cells 

Different epigenetic processes have been described to affect the transcriptome of plant cells: 

(1) cytosine methylation influences gene expression by altering transcription and chromatin 

structure, (2) histone modifications have an important impact on the structure of chromatin 

and can make DNA more or less accessible for transcription, (3) small RNAs, like miRNA 

and siRNAs influence gene expression through targeted degradation of mRNA (post-

transcriptional gene silencing) or induction of methylation at complementary DNA sequences 

(transcriptional gene silencing).  

Recent studies have shown the importance of small RNAs during cyst nematode feeding site 

(syncytium) formation. Sequences of known miRNAs as well as siRNAs were identified by 

sequencing small RNA libraries isolated from feeding sites induced by the cyst nematode 

Heterodera schachtii in Arabidopsis roots (Hewezi et al., 2008), and the data suggested a role 

for small RNAs mediating gene regulation processes during the plant-nematode interaction. 

Hewezi et al. (2012) reported a strong down-regulation of miR396 in early syncytial cells in 

comparison with the surrounding root tissue, when nematodes are at the J2 or early J3 stage. 

At later time points, when nematodes reached the J3/J4 stage, a specific miR396 up-

regulation was observed in the developed feeding site, miR396 targets a set of Growth-

regulation Factor genes (Hewezi et al., 2012).   

In tomato giant cells, Portillo et al. (2013) reported that genes involved in epigenetic process-

es are induced from 3 dpi and increasing at 7 dpi. Histone acetylation/deacetylation and 
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methylation are important mechanisms regulating gene expression in plants (Zhou et al., 

2010), and may be largely involved in responses to environmental stimuli (Chen and Tian, 

2007; Servet et al., 2010). The here-reported transcriptional changes at 7 dpi in genes encod-

ing histone modifying and small RNA processing enzymes (Table 5.2) confirm a role for 

epigenetic processes in transcriptional reprogramming of the root cells to form nematode 

feeding sites. Which transcriptional changes are specifically targeted by these enzymes, and 

what is their functional relevance, remains to be elucidated. 

5.4 Materials and Methods 

Infection and LCM of giant cells 

Oryza sativa cv. Nipponbare (GSOR-100, USDA) was germinated for 6 days at 30°C, trans-

ferred to SAP-substrate (Sand Absorbent Polymer; Reversat et al., 1999) and further grown at 

26°C under a 16h/8h light-regime. Extra care was taken to prevent any light influence on the 

roots of the plants. Nematodes were cultured and extracted as described before (Kyndt et al., 

2012b). When 12 days old, plants were inoculated in SAP with 250 stage 2 juveniles of 

Meloidogyne graminicola per plant. Control plants were mock-inoculated with water. One 

day after inoculation the plants were transferred to a hydroponic culturing system with Hoa-

gland solution (Reversat et al., 1999) to synchronize the infection process. Infected and con-

trol roots were collected at 7 and 14 days post infection (dpi) and fixed in Farmer’s fixative 

(3:1 Ethanol: Acetic Acid). The material was dehydrated in ethanol and then cryosectioned 

with a cryostat at -20°C. RKN form giant cells in the vascular tissue, but the type of cells 

specifically targeted is unknown and can even differ between individual nematodes in the 

same plant tissue (Endo, 1987), therefore a mixture of different types of cells from the vascu-

lar tissue of mature rice roots was used as control material in this study. Giant cells and con-

trol cells were captured using a Zeiss PALM Laser Microbeam according to the manufactur-

er’s instructions (Fig 5.1). Captured cells were infiltrated in RNA extraction lysis buffer 

(Stratagene). Three independent biological replicates were taken at each time point, of which 

two were analyzed by mRNA-Seq. The third independent biological replicate was used for 

qRT-PCR validation. About 150-200 giant cell sections and 300 control sections (of uninfect-

ed plants) per biological replicate were used for giant cell and control cell isolation by LCM. 

RNA extraction, library preparation and Illumina GAIIx sequencing 

RNA from LCM-isolated giant cells was extracted with the Absolutely RNA Nanoprep Kit 

(Agilent), followed by cDNA synthesis using the Ovation RNA-Seq System (NuGEN). This 

system is based on the Ribo-SPIA® technology (NuGEN) to generate high quality, linearly 

amplified cDNA from low amounts of RNA, and was specifically designed for next genera-
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tion sequencing platforms. The obtained cDNA-concentrations varied between 4.8 and 6.6 µg 

per sample. cDNA integrity was confirmed using the Agilent BioAnalyzer 2100 (Agilent) and 

qRT-PCR with two reference genes (Table S5.1). 

The full length cDNA was fragmented by sonication with a Covaris S2 ultrasonicator (Co-

varis). The mRNA-Seq library was constructed according to the NEB protocols E6040 (New 

England BioLabs). We used the multiplexing sequencing adapters provided in the Multiplex-

ing Sample Preparation Oligo Kit (Illumina). Size selection of the library was performed on a 

2% agarose gel (Low Range Ultra Agarose, Biorad 161-3107). The denatured library was 

diluted to a final concentration of 6 pM and loaded on a paired-end read flow cell (TruSeq v5 

kit, Illumina). To minimize lane effects the samples were multiplexed. Each sample was se-

quenced in duplicate in 2 different lanes (4 lanes total with 8 MID tags per lane). After cluster 

generation, the multiplexed library was sequenced on an Illumina Genome Analyzer IIx (36 

cycles, paired end). 

Mapping reads to genome data and annotated transcripts  

Reads were mapped to the Oryza sativa subsp. Japonica reference genome (build MSU7.0) in 

two phases using TopHat version 1.3.1 (Trapnell et al., 2009) and Cufflinks, version 1.0.3 

(Trapnell et al., 2010). A detailed description of the workflow and settings used in the data 

analysis is given in Kyndt et al. (2012a). 

Identification of novel transcriptionally active regions (nTARs) 

The Cufflinks program generates a GTF file including all transcripts annotated in MSU7.0 

and putative novel transcripts derived from the data. All putative nTARs marked as splice 

variants of known genes or located within intronic regions were disregarded and for the 

18,291 remaining nTARs BLASTx searches were performed against Swiss-Prot and trEMBL 

and all predicted rice proteins (http://rice.plantbiology.msu.edu/). Homologues of the nTARs 

in rice ESTs were searched by tBLASTx (E<1e-4).  

Calculation, normalization and profiling of gene expression  

Expression was quantified per sample and per annotated or unannotated transcript as the sum 

of all reads that mapped to the respective gene exons with a 16 base pair tolerance on either 

side to compensate for potential errors in the gene annotation. Expression profiles were as-

sessed using the R-package “baySeq”, version 1.5.1. (Hardcastle and Kelly, 2010). To com-

pensate for artificial differences in read distributions, the original library sizes were multiplied 

by additional normalisation factors calculated using the Trimmed Median of M-values meth-

od described in (Robinson and Oshlack, 2010) with standard settings as implemented in the 

edgeR package (version 2.0.3). A transcript was considered to be expressed if at least one 
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sequence read was mapped to it in one of the samples. For all further analyses the expression 

level of each transcript for each condition was estimated as the fold change (FC) of mapped 

reads relative to the controls. The FC was calculated as follows: reads were normalized as 

described earlier and averaged over the biological replicates. Before calculating the base 2 log 

of the ratio of these averages, the number of reads was increased by 1 in each group (to avoid 

0-values).  

Gene Ontology and enrichment analyses 

Gene Ontology (GO) analysis and GO enrichment were performed using agriGO (Du et al., 

2010). Parametric Analysis of Gene Set Enrichment (PAGE) (Kim and Volsky, 2005), based 

on differential gene expression levels (log2FC), was executed. Benjamini and Hochberg false 

discovery rate analysis (FDR) was performed using the default parameters to adjust the PAGE 

P-values.  

In addition, MapMan (Thimm et al., 2004) was used to visualize the expression of genes onto 

metabolic pathways and the WSR-test (with Benjamin and Hochberg correction) was used to 

test the statistical significance of differential expression of these pathways. 

Validation of mRNA-Seq by qRT-PCR 

Based on potential functional importance, 13 genes were selected for validation in an inde-

pendent biological sample by qRT-PCR. Locus number of these transcripts, primer sequences 

and reaction efficiencies are presented in Supplementary Table S5.1. qRT-PCR was per-

formed and analysed as described in Kyndt et al. (2012b), using 3 technical replicates. 

Confocal microscopy 

Galls were collected at 7 dpi and fixed in Farmer’s fixative (3:1 Ethanol: Acetic Acid) over-

night. They were dehydrated by a dilution series of 70-90-100% Ethanol (1h each) and stored 

at 4°C for 7 days before microscopical analysis. To prepare samples for confocal microscopy, 

fixed galls were sliced in thin sections using a razor blade and mounted onto a slide in a drop 

of water. Images were acquired with a Nikon A1R confocal microscope, mounted on a Nikon 

Ti body and equipped with a 40 x (NA = 0.6) PLAN Fluor ELWD objective. Image acquisi-

tion was performed at a pinhole setting of 1 Airy Unit and a pixel size of 0.6 µm x 0.6 µm 

(zoom factor 1) or 0.2 µm x 0.2 µm (zoom factor 3). To capture the spectral fingerprint 

(lambda stack) of chloroplast pigment autofluorescence, samples were illuminated with a 488 

nm Argon laser and emission was detected on a spectral 32-PMT detector, set at a resolution 

of 2.5 nm per detector within a range of 655.5 – 735.5 nm. As a reference, lambda stacks 

were also acquired from fresh and fixed leaf sections using identical settings. Spectral profiles 

of (presumed) chloroplasts were determined by measuring the average intensity per wave-
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length interval (2.5nm) across the lambda stack range. Per condition, the average of the indi-

vidual profiles of min. 4 equally sized chloroplast (-like) regions was calculated. 
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Rice root-knot nematode (RKN) can be suppressed in rice by over-expressing one of its 

endogenous thionin genes  

RKNs migrate between the plant cells by enzymatic softening of the middle lamella of the 

root cells, causing hardly any necrosis during their invasion. In addition, RKNs obtain manip-

ulative power to suppress plant defence for their feeding site establishment and development. 

For example, many genes involved in the phenylpropanoid pathways and defence-related 

hormone pathways are strongly attenuated in galls (Kyndt et al., 2012a, Barcala et al., 2010, 

Jammes et al., 2005), as well as in giant cells (chapter 5). One of the rice thionin genes, Os-

THI7, was observed in a transcriptome study to be down-regulated in 3dpi and 7dpi galls 

induced by M. graminicola (Kyndt et al., 2012a). Corroborating and extending this 

knowledge, the results provided in chapter 3 show a clear attenuation of thionin transcripts in 

early developmental stages of galls, as observed by qRT-PCR and promoter-GUS assays. 

Thionins, known pathogen related proteins (PR protein), are a group of anti-microbial poly-

peptides that are thought to be involved in plant defence (Bohlmann & Apel, 1991). There are 

40 putative paralogues of thionin in Japonica rice. This large number could be the result of 

evolution by the pressure of new variants of pathogens, and/or the fact that each gene might 

be uniquely responsive to specific external or internal stimuli, such as pathogens, hormones or 

expression in different tissues or developmental stages (Florack & Stiekema, 1994, Bohlmann 

& Apel, 1991). Indeed, rice thionin genes respond differently to plant defence related hor-

mones, although the amino acid sequences of those thionin proteins are highly similar. In 

chapter 3, we studied the transcriptional response of three rice thionin genes, OsTHI1, Os-

THI2, and OsTHI7+6 upon BTH, MeJA and ABA application. OsTHI7+6 was strongly and 

continuously induced by BTH, which indicates that OsTHI7+6 is involved in SA mediated 

plant defence against rice RKN (chapter 3). OsTHI1 expression in rice roots strongly re-

sponds to ABA treatment. Since ABA is a very important signaling molecule involved in 

abiotic stress, the potential correlation of OsTHI1 with abiotic stress deserves to be further 

investigated. Our analysis was only conducted in root tissue, and since PR gene expression is 

associated with SAR, further analysis of the expression of thionin genes in shoot tissue will 

expand our knowledge on thionin and defence hormone interactions in rice. Moreover, in 

addition to the classical defence-related hormones SA, JA or ABA, other hormones such as 

brassinosteroid, cytokinins, auxins and gibberellins have been implicated as important players 

in plant defence (Bari & Jones, 2009, Pieterse et al., 2012). It will be particularly interesting 

to test thionin gene expression in response to these hormones. In addition, these stimuli could 

also regulate other thionin genes, such as those located on other chromosomes. In this per-

spective, it is tempting to test the response of other rice thionin genes to certain stimuli. Due 

to the high similarity of coding sequences of thionin genes in rice, it was not easy to measure 
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the expression of a single gene. Nevertheless, in the future fluorescent probes might be used 

to solve this issue.  

In chapter 3, we used the transgenic approach to study a single thionin gene in the interaction 

between thionins and rice RKN. Based on the observations in RNAseq analysis (Kyndt et al., 

2012a) and qRT-PCR results (chapter 3), as well as the response to defence hormones (chap-

ter 3), OsTHI7 was thought to be a promising candidate for the transgenic study. Interestingly, 

our results show that overexpression of OsTHI7 in the susceptible rice variety Oryza sativa cv 

Nipponbare not only decreases plants susceptibility to the RKN, resulting in a lower number 

of females and total number of  nematodes per plants, but also enhances plant tolerance to 

Pythium graminicola infection.  However, the exact mechanism by which OsTHI7 decreases 

susceptibility to pathogens is still unknown. The subcellular localization study shows that 

OsTHI7 is translocated in the secretory pathway and it has a dual localization in the extracel-

lular spaces and vacuoles (chapter 3), which is in line with previous findings from other thio-

nins (Vera et al., 1989, Dixon et al., 1991). It has been reported that thionins have a toxic 

effect on pathogenic fungi and bacteria by changing the permeability of their membranes 

(Bohlmann & Apel, 1991). The toxicity has been previously established in vitro (Bohlmann et 

al., 1988, Florack & Stiekema, 1994), and emerging evidence also indicates that thionins are 

toxic to fungal pathogens in vivo. For instance, overexpression of the Arabidopsis homolog, 

AtTHI2.1 decreased the susceptibility to Fusarium oxysporum. Fungi infecting cotyledons of 

transgenic lines had more abnormal hyphae, including hyperbranching via a direct toxic effect 

of the overexpressed thionin (Epple et al., 1997).  Cytotoxic effects on cultured mammalian 

cells have also been reported (García Olmedo et al., 1989). Endosperm thionins were toxic to 

mice, guinea pigs and rabbits or insect larva when the protein was injected intravenously or in 

the hemocoel, but not upon oral administration.  Further deciphering the effect of OsTHI7 

protein in vitro against nematodes may provide more insights on the effect of this protein 

effect against RKN. Moreover, in-depth detection of OsTHI7 distribution in feeding site by 

antibodies will be of particular value in supporting our hypothesis of a release of OsTHI7 

from vacuoles upon feeding site formation. Besides the direct toxic effect, overexpression of 

OsTHI7 may augment the expression of other defence-related genes. Although we have 

checked the expression of PR1a and PR1b in overexpressed plants and there are nearly no 

changes in overexpressed plants compared to the control, more defence-related genes should 

be checked to get a general overview of thionin induced resistance against RKN. The en-

hanced tolerance of OsTHI7 overexpression plants against Pythium graminicola was revealed 

by a better shoot growth compared to the control plants, although the infected roots appeared 

to have a similar disease index as the control. The mechanism of this enhanced tolerance is 

unclear. Mechanisms of tolerance are quite diverse, including increased photosynthetic activi-
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ty, reallocating resources, increase in nutrients uptake etc. (Rosenthal & Kotanen, 1994, 

Agrawal et al., 1999, Tiffin & Inouye, 2000).  

The resistance against other plant parasitic nematodes and pathogens or abiotic stress still 

needs to be explored and besides the number of nematodes or a disease index score to meas-

ure resistance, measuring the grain yield will be the most important parameter. Field trails 

may also offer a better idea about the future application of this transgenic plant. 

 Rice RKN can be suppressed in rice by exogenous application of BABA  

Plants carry inducible mechanisms that protect plants in a time-dependent manner. Since the 

beginning of the 20
th
 century, much research has been conducted on the use of induced re-

sistance (IR) agents to reduce dependence on chemical pesticides. IR only uses endogenous 

genes to carry out efficient defence, which avoids introducing exogenous genes into plants 

and therefore it does not meet the public protest encountered by genetically modified plants 

(chapter 4). β-aminobutyric acid (BABA), a non-protein amino acid, is an IR agent that helps 

fending off a wide range of pathogens in dicotyledonous plants (Cohen, 2002, Jakab et al., 

2001, Jakab et al., 2005, Zimmerli et al., 2008, Pastor et al., 2013). In line with the extensive 

work in dicots, this thesis revealed BABA can also induce resistance against RKN in mono-

cots such as rice (chapter 4). 

Results in chapter 4 show that BABA-IR against RKN in rice by inhibiting nematode penetra-

tion and delaying nematode and giant cell development. Hence, gaining insights into the abil-

ity of BABA-induced resistance against other nematodes or rice diseases will be helpful to 

consider whether BABA can be applied in the rice fields. Since not only RKN, but also other 

rice nematodes, such as white tip nematode (Aphelenchoides besseyi), rice root rot nematode 

(Hirschmanniella oryzae) and diseases caused by pathogenic bacteria and fungi are still 

among the major constraints on rice productivity. Intriguingly, the descendants of BABA 

primed Arabidopsis plants exhibit more resistance to oomycete pathogen Hyaloperonospora 

arabidopsidis compared to the descendants of unprimed plants (Slaughter et al., 2012). This 

result is incentive to test whether it is also the case in rice. The fact that BABA does not have 

a direct toxic effect to pathogens, insects and nematodes (Oka & Cohen, 2001, Cohen, 2002, 

Jakab et al., 2001), is potentially another advantage to other methods for plant resistance, 

such as the application of nematicides or engineering plants with PR proteins (chapter 3). 

These methods need to be cautioned since they have ecological costs. Taken together, BABA 

seems to be a very valuable induced resistance elicitor with a broad spectrum pathogen pro-

tection; it is also durable and environmentally sound. However, there is still allocation costs 

associated with induced resistance. For instance, application of benzothiadiazole to wheat in 

the absence of pathogens reduces biomass, number of ears and grains (Heil et al., 2000). High 
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concentrations of BABA induce a direct defence response in Arabidopsis against Hy-

aloperonospora parasitica and Pseudomonas syringae but reduce the relative growth rate up 

to 44% in the absence of pathogen infection (van Hulten et al., 2006). Hence, evaluation of 

yield losses caused by BABA -IR in rice will give another view to decide upon its application 

into the field. In our current study (chapter 4), a BABA concentration of 3.5mM was used, 

which is relative high compared to studies in dicotyledons. The lowest concentration of BA-

BA inducing resistance against RKN is worthwhile to test, in order to evaluate the cost factors. 

Moreover, using a lower concentration of BABA will result in priming (chapter 1), which 

hardly causes any fitness cost since plants only activate the defence response upon pathogen 

challenge (van Hulten et al., 2006).  

Results denoted in chapter 4 indicate that BABA induced resistance against rice RKN is dif-

ferent from Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR), 

which are SA and JA/ET dependent. However, this does not exclude the involvement of other 

types of hormones in addition to the pathways modulated by SA, JA. BABA induces re-

sistance in some pathogen-plant systems through enhanced basal defence (chapter 1). In line 

with those findings, histochemical, biochemical and molecular analyses were performed. The 

results uncovered that BABA-IR against RKN is correlated with increasing levels of H2O2, 

lignin and callose (chapter 4). Employing inhibitor compounds or mutants to block H2O2, 

lignin or callose synthesis would provide further support for these conclusions. There are 

many reports showing BABA induced callose deposition is ABA dependent (Ton & 

Mauch‐Mani, 2004, Ton et al., 2005, Flors et al., 2005). However, although we have found 

that BABA induced resistance against RKN was partially comprised in ABA inhibited plants, 

the link between ABA and callose deposition still needs to be further explored. In spite of the 

widespread interest of BABA-IR, there are still no data available on the transcriptome or pro-

teome analysis in monocot such as rice treated with BABA. Dissecting the transcriptome 

changes in BABA treated rice plants will shed new light on the mode of BABA induced re-

sistance in monocots. In the case of RKN, it will be interesting to focus on the transcriptome 

of giant cells in BABA treated plants (chapter 5). According to the transcriptome or proteome 

data, hopefully we can find the important genes which are responsible for BABA-IR in rice. 

Moreover, as the descendants of BABA primed Arabidopsis plants still exhibit resistance to 

oomycete challenge (Slaughter et al., 2010), studying the epigenetic modifications will be an 

interesting aspect for exploring the mechanism of BABA induced resistance. Another ques-

tion is the identification of BABA modulators or receptors, which is essential to our under-

standing of BABA induced resistance. 
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 Transcriptional analysis reveals a general induction of primary metabolism and a 

strong suppression of defence-related genes inside the giant cells  

The J2 juveniles of M. graminicola are attracted to the roots and penetrate the roots just be-

hind the root tips. When J2s settle down and start to feed, those feeding cells enlarge and are 

converted into multinucleate cells through synchronous nuclear divisions without cell division, 

forming so-called giant cells (GCs). Hyperplasia and hypertrophy of the surrounding cells 

lead to the formation of the typical galls at the root tips (chapter 1, Jones & Payne, 1978, 

Gheysen et al., 2006). The gene expression in GCs is very distinct from the surrounding cells 

(Gheysen & Fenoll, 2002, Escobar et al., 2011). To gain insight into GCs differentiation in 

rice upon RKN infection, we combined LCM with mRNA sequencing (mRNA-Seq) to study 

the giant cell transcriptome at two time points after infection (chapter 5). The expression pro-

files revealed a general induction of primary metabolism inside the giant cells. While genes 

involved in ‘tropism’, ‘signaling’, ‘response to stimulus’, and ‘secondary metabolism were 

generally down-regulated. The majority of phenylalanine ammonia lyase homologues and 

defence related hormones such as JA and SA were suppressed in GCs, although this was not 

observed in whole-gall tissue (Nahar et al., 2011; Kyndt et al., 2012a). Hence, local suppres-

sion of those defence- related genes in the GCs might be an important strategy for the RKN to 

overcome host defence. Taking advantage of this obtained knowledge, further work should 

focus on deciphering the putative roles of the induced or suppressed genes in GCs, either by 

genetic engineering or other approaches. Interestingly, a remarkable induction was observed 

in genes involved in chloroplast biogenesis and tetrapyrrole synthesis in dark grown GCs. 

Whether it is due to sugar depletion by the feeding nematode or related to other signals such 

as phytohormones remains to be further studied. The transcriptional changes at 7 dpi in genes 

encoding histone-modifying and small-RNA-processing enzymes indicate a role for epigenet-

ic processes in transcriptional reprogramming of the root cells to form nematode feeding sites. 

However, their functional relevance remains to be elucidated. Furthermore, it will be very 

interesting to explore the transcriptome changes in syncytia, the feeding sites of cyst nema-

todes  (Gheysen et al., 2006), in rice and other plant species, such as wheat, to gain more in-

depth insight of the distinct and conserved genes involved in the formation and maintenance 

of feeding sites.  
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Summary

The dramatic growth of human global population requires an increase in sustainable agricul-

tural production, particularly in the production of cereals, such as rice, wheat, and maize. 

However, plants are constantly exposed to a spectrum of diseases including viruses, fungi, 

bacteria, and nematodes, which cause yield loss. Presently, disease control is mainly based on 

the use of chemicals. However, due to the hazardous effect and non-specific toxicity of these 

chemicals or their degradation products on the environment and human health, the use of 

chemicals is often restricted. Therefore, producing crops with increased and durable re-

sistance is a major focus in plant research. In the past, durable resistance to diseases has been 

sought through conventional breeding approaches. However, conventional breeding of re-

sistance suffers from the serious limitation that it does not allow introduction of resistance 

genes into distant species. Genetic engineering has been promoted for three decades as a solu-

tion for this problem. The most straightforward approach is to add genes encoding proteins 

with antimicrobial properties, such as antimicrobial proteins, including the pathogenesis- 

related (PR) proteins. Those proteins have a direct a toxic effect on microbial pathogens, ei-

ther demonstrated in vitro or in vivo. Moreover, those genes might increase plant preformed 

physical arriers and are involved in the defence signaling pathways. Enhanced disease re-

sistance has been achieved not only using transgenic plants but can also be induced by a vari-

ety of abiotic and biotic inducers. Biotic inducers include infection by necrotizing pathogens 

which results in systemic acquired resistance (SAR), or by plant-growth-promoting rhizobac-

teria leading to induced systemic resistance (ISR). Abiotic inducers include chemicals which 

act at various facets in disease resistance as well as in abiotic stress tolerance. Among these 

abiotic inducers, β-aminobutyric acid (BABA), a non-protein amino acid exhibits a promising 

potential of induced resistance in plants. Although both engineering resistance and induced 

resistance hold great potential of disease control, little information is available on the efficacy 

of PR proteins against plant parasitic nematodes, and the knowledge of induced defence re-

sponses in the interaction between nematodes and monocots such as rice is still in its infancy. 

In this thesis, two approaches of improving rice resistance against RKN were studied, via 

genetic engineering resistance by overexpressing rice endogenous PR gene OsTHI7 and 

through exogenous application of BABA. Moreover, to get more knowledge on the plant re-

sponse to RKN infection, and in turn to supply more resources of effective genes for develop-

ing resistant plants, the transcriptome of giant cells in rice induced by RKN was analyzed.  

In the first part of this thesis, a thorough molecular characterization of the rice thionin genes 

is reported (chapter 3). A clear attenuation of thionin transcripts in early developmental stages 
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of galls was observed by qRT-PCR and promoter-GUS assays. These results indicate that the 

RKNs have the power to suppress plant defence to enable a successful infection and estab-

lishment of the functional feeding site. Overexpression of OsTHI7 decreases plant susceptibil-

ity against M. graminicola, as revealed by a lower number of females and lower total number 

of nematodes per plant. In addition, it enhances the plant tolerance to Pythium graminicola 

infection. The observed enhanced resistance might be explained by a toxic effect of plant 

thionins to the pathogens membranes. Moreover, although there are high similarities in cod-

ing sequences and amino acid sequences among the thionins, the three studied thionin genes 

respond differently upon phytohormone treatments, which may indicate that the functions of 

the gene family members are diverse and specific. All the data provided in this chapter point 

out that OsTHI7 can act as a defence gene in vivo against RKN and enhances plant tolerance 

to Pythium graminicola. Moreover, rice thionin genes, which are responding to different sig-

nal transduction pathways, may serve to different functions, either in plant development or 

defence.  

Aiming to further explore disease resistance in rice, attention was shifted to the induced re-

sistance by BABA (chapter 4). The potential of BABA-induced resistance (IR) was investi-

gated and the induced defence mechanisms underpinning BABA-IR in rice against RKN was 

deciphered. BABA application on rice plants inhibited nematode penetration and delayed 

nematode and giant cell development. Experiments with hormone biosynthesis inhibitors 

mtants and transgenic lines show that BABA-IR against RKN is SA, JA and ET-independent. 

In line with some research findings in other pathogen-plant systems, our data revealed that 

BABA-IR against RKN is correlated with increasing levels of H2O2, lignin and callose accu-

mulation. The cumulative results presented in this research indicate that BABA induces a 

multifaceted plant basal defence response in rice roots, which in turn inhibits nematode pene-

tration and development.  

Transcriptional data of the plant response to nematode infection would offer another approach 

to improve plant resistance through analyzing differentially expressed genes. In chapter 5, we 

specifically isolated giant cells by laser capture microdissection (LCM). After RNA extrac-

tion from these cells, we applied mRNA sequencing (mRNA-Seq) to study the giant cell tran-

scriptome at two time points after infection. The expression profiles revealed a general induc-

tion of primary metabolism inside the giant cells, but the majority of the defence-related 

genes were strongly suppressed in the giant cells. Moreover, transcripts involved in epigenetic 

processes were significantly induced in 7dpi giant cells. The results were also compared to 

expression results from Arabidopsis and tomato giant ells, as well as to complete galls and 

syncytia. This study identified several plant genes with differential expression in giant cells, 
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which may participate in feeding site formation and maintenance, or may be the plant re-

sponse to nematode invasion. Such genes can be used to improve plant resistance in the future. 

With this thesis, the understanding of rice-nematode interaction regarding thionin genes, BA-

BA-IR and transcriptome in giant cells have significantly progressed. Such advances will not 

only progress our fundamental knowledge of plant response to nematodes attack, but also 

provide novel strategies to improve rice defence to the root-knot nematode Meloidogyne 

graminicola. 
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Samenvatting 

De dramatische toename van de wereldpopulatie vereist een verhoogde maar duurzame 

landbouwproductie vooral van granen zoals rijst, tarwe en maïs. Planten worden echter 

voortdurend bedreigd door ziekten en plagen zoals virussen, schimmels, bacteriën, insecten 

en nematoden. Deze biotische problemen worden veelal onder controle gehouden door 

chemische gewasbeschermingsmiddelen. Chemische middelen hebben echter vaak negatieve 

effecten op omgeving en menselijke gezondheid en daarom is het interessanter om gewassen 

te verkrijgen met een duurzame resistentie tegen ziektes en plagen. Aangezien veredeling van 

ziekteresistentie gelimiteerd is tot genen die in dezelfde of verwante soorten aanwezig zijn, 

kan genetische modificatie een alternatieve oplossing bieden voor bepaalde problemen. Het 

ligt voor de hand daarvoor genen uit te testen die coderen voor antimicrobiële eiwitten zoals 

de pathogenese- gerelateerde(PR)-eiwitten. Deze eiwitten kunnen een direct antimicrobieel 

effect hebben op pathogenen of pathways in de plant beïnvloeden. Naast het inbrengen van 

genetische resistentie kan een plant ook beschermd worden door het natuurlijk afweersysteem 

te activeren via abiotische of biotische inducers. Biotische inducers zijn bv. infectie door 

necrose-veroorzakende pathogenen wat dan resulteert in systemische verworven resistentie 

(SAR), of door plantengroeibevorderende rhizobacteria wat leidt tot geïnduceerde 

systemische resistentie (ISR). Bij de abiotische inducers kennen we bv. β-aminobutyric acid 

(BABA), een non-protein aminozuur dat een groot potentieel heeft voor geïnduceerde 

resistentie in planten. Alhoewel deze methoden zeer beloftevol zijn staat de kennis van 

geïnduceerde afweer in de interactie tussen nematoden en monocots zoals rijst nog in de 

kinderschoenen. In dit doctoraat bestuderen wij twee mogelijkheden om rijstresistentie tegen 

wortelknobbelnematoden (RKN) te verbeteren, via genetische modificatie van resistentie door 

overexpressie van het PR-gen OsTHI7 en door exogene toediening van BABA. Bovendien 

proberen we nog meer informatie te verzamelen over de plantenrespons op RKN-infectie 

namelijk door transcriptoomanalyse van reuzencellen, om op die manier nog andere genen te 

identificeren die mogelijks kunnen gebruikt worden in nieuwe strategieën om planten 

resistent te maken tegen RKN. 

In het eerste deel van dit doctoraat wordt een gedetailleerde moleculaire analyse uitgevoerd 

van de rijstthioninegenen, een groep van PR-eiwitten (hoofdstuk 3). Een duidelijke attenuatie 

van thioninetranscripten in vroege ontwikkelingsstadia van gallen werd aangetoond via qRT-

PCR en promoter-GUS assays. Deze resultaten wijzen erop dat RKNs de plantenafweer 

kunnen onderdrukken  omzo een succesvolle infectie te kunnen uitvoeren. Overexpressie van 

OsTHI7 vermindert de gevoeligheid van de plant tegen M. graminicola, te zien aan een lager 

totaal aantal nematoden in de plant en een lager aantal mature vrouwtjes. Bovendien zijn deze 
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overexpressieplanten meer tolerant tegen Pythium graminicola infectie. De verhoogde 

resistentie zou kunnen verklaard worden door een toxisch effect van plant thionines op 

pathogeenmembranen. Bovendien is aangetoond dat de expressie van de verschillende 

thionines op een andere manier gereguleerd wordt door hormonen, wat er op wijst dat deze 

thionines mogelijks andere functies hebben in plantenontwikkeling en afweer. Het potentieel 

van BABA-geïnduceerde resistentie (IR) en de onderliggende mechanismen die de resistentie 

van rijst tegen RKN verhogen werden bestudeerd in hoofdstuk 4. Toediening van BABA aan 

rijstplanten inhibeerde nematodepenetratie en vertraagde de ontwikkeling van nematoden en 

reuzencellen. Experimenten met inhibitoren van hormoonbiosynthese, mutanten en transgene 

lijnen toonden aan dat BABA-IR tegen RKN onafhankelijk is van SA, JA of ET. Zoals in de 

literatuur beschreven voor andere plant-pathogeeninteracties werd ook hier gevonden dat 

BABA-IR gecorreleerd is met hogere concentraties aan H2O2, lignine en callose. Dit toont aan 

dat BABA een veelzijdige-plantenafweer induceert in rijstwortels die zowel de penetratie als 

de ontwikkeling van nematoden afremt. 

Transcriptionele gegevens van de plantenrespons op nematodeninfectie kan de basis vormen 

voor nieuwe strategieën om de plant te beschermen. In hoofdstuk 5 hebben we reuzencellen 

geïsoleerd via  “laser capture microdissection” (LCM). Na RNA-extractie uit deze cellen 

werd mRNA sequencing (mRNA-Seq) uitgevoerd om de expressie-patronen te analyseren op 

twee tijdstippen na infectie. De expressieprofielen wezen op een algemene inductie van het 

primaire metabolisme in reuzencellen en een algemene repressie van genen betrokken bij de 

afweer. Transcripten betrokken bij epigenetische processen zijn significant opgereguleerd op 

7 dagen na inoculatie. De resultaten werden ook vergeleken met gegevens van tomaat en 

Arabidopsis. Deze studie identificeerde verschillende plantengenen met een differentieel 

expressiepatroon in reuzencellen. Dergelijke genen kunnen betrokken zijn bij 

reuzencelontwikkeling of bij de afweer van de plant tegen infectie en kunnen dus mogelijks 

gebruikt worden in strategieën om de plantenafweer te verbeteren. 

In deze doctoraatsthesis is er significante vooruitgang geboekt in het begrijpen van de rijst-

nematode interactie meer bepaald in relatie tot thioninegenen, BABA-IR en het transcriptoom 

in reuzencellen. Deze gegevens bieden ni leen meer fundamenteel inzicht in de interactie 

maar kunnen ook nuttig zijn om de resistentie van rijst te verhogen tegen de nematode 

Meloidogyne graminicola. 
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Locus Number Putative 

function 
Locus Number Putative 

function 
Locus Number Putative 

function 
LOC_Os01g41140 OsTHI18 LOC_Os02g04190 OsTHI23 LOC_Os06g32350 OsTHI12 

LOC_Os01g41170 OsTHI27 LOC_Os03g08710 OsTHI26 LOC_Os06g32600 OsTHI15 

LOC_Os01g41180 OsTHI19 LOC_Os03g14300 OsTHI29 LOC_Os09g11200 OsTHI33 

LOC_Os02g02630 OsTHI20 LOC_Os03g21880 OsTHI28 LOC_Os09g11210 OsTHI35 

LOC_Os02g02650 OsTHI21 LOC_Os03g49270 OsTHI36 LOC_Os09g24350 OsTHI32 

LOC_Os02g03480 OsTHI24 LOC_Os03g49280 OsTHI37 LOC_Os11g15250 OsTHI31 

LOC_Os02g03520 OsTHI25 LOC_Os06g32290 OsTHI10 LOC_Os12g26960 OsTHI34 

LOC_Os02g03800 OsTHI22 LOC_Os06g32320 OsTHI11 LOC_Os12g27020 OsTHI41 

LOC_Os03g64300 OsTHI30+OsTHI39 

LOC_Os06g31890 OsTHI3+OsTHI5+OsTHI6+OsTHI9+OsTHI7+OsTHI2 

 

Fig A.1 (A) Rice thionin genes expression in different tissues. (B) Differential expression patterns 

(Log2FC≥1.5, P≥0.05) of rice thionin genes under different biotic stress or hormone treatments. Data 

were generated by Genevestigator, and shows an overview of all public available micro-array studies 

on these genes (Hruz et al., 2008 ). LOC_Os06g31890 is highlighted because this probe binds to the 

here-studied thionin genes. 

 

 

Fig A2 Upper: Multiple alignments of four rice thionin genes. Amino acid sequences deduced from 

rice annotation (http://rice.plantbiology.msu.edu/cgi-bin/putative_function_search.pl). Sequences were 

aligned using MUSEL multiple alignment software (http://www.ebi.ac.uk/Tools/msa/muscle/), and 

manually modified. The conserved six cysteine residues are indicated by a purple box; the toxicity 

defining residues (Tyr13 and Lys1) are indicated in red. Lower: Typical thionins contain a signal pep-

tide, a mature thionin domain and an acidic domain. 

 

 

 

   Signal 
peptide 

Mature thionin 
domain 

Acidic domain 

http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os01g41140
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os02g04190
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os06g32350
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os01g41140
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os03g08710
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os06g32600
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os01g41180
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os03g14300
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os09g11200
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os02g02630
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os03g21880
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os09g11210
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os02g02650
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os03g49270
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os09g24350
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os02g03480
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os03g49280
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os11g15250
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os02g03520
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os06g32290
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os12g26960
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os02g03800
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os06g32320
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os12g27020
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os03g64300
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os06g31890
http://rice.plantbiology.msu.edu/cgi-bin/ORF_infopage.cgi?orf=LOC_Os06g31890
http://rice.plantbiology.msu.edu/cgi-bin/putative_function_search.pl
http://www.ebi.ac.uk/Tools/msa/muscle/
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Fig A3 The phenotype of OsTHI7 overexpression lines (OX19, OX2 and OX22) and control plants 

(Nipponbare and Vec) 14-day-old before M. graminicola inoculation. Vec: transgenic line containing 

an empty vector 

  

Fig A4 Shoot and root length of control and OsTHI7 over-expression lines at 14days after infection 

with M. graminicola (28- day-old seedlings). Bars represent means and ±SE of nematodes per plant 

(n=24). Different letters indicate statistically significant differences (Duncan’s multiple range test with 

P≤ 0.05). Small letters indicate the significant differences in root length; big letters indicate the differ-

ences in shoot length. Vec: transgenic line containing an empty vector 
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Fig A5 Analysis of transgenic plants overexpressing OsTHI7. (A) Evaluation of the construct expres-

sion in leaves in the T0 generation of OsTHI7 overexpression plants by semi-quantatitive reverse tran-

scriptase PCR.  (B) Evaluation of the OsTHI7, PR1a and PR1b expression level in roots of the T1 gen-

eration of OsTHI7 overexpression plants, by qRT-PCR. Gene expression level was normalized using 

two internal reference genes, OsEXP, OsUBQ5.  Bars represent mean expression levels ±SE from two 

independent biological and three technical replicates, each containing a pool of 8 plant roots. Data was 

obtained using REST2009 software. Significant differential expression (P≤0.05) is indicated with aster-

isks in comparison with empty vector roots (set as 1).  
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EXP 
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Fig A6 OsTHI7 overexpressing plants exhibit reduced susceptibility to M. graminicola. Data obtained 

14 days after inoculation (14dpi). (A) The number of galls in overexpression (OX2, OX19 and OX22) 

and control (Nipponbare and Empty Vector) plants (B) The different developmental stages of M. gram-

inicola within the galls in overexpression (OX2, OX19 and OX22) and control (Nipponbare and Empty 

Vector) plants. Bars represent means and ±SE of nematodes per plant (n = 8). Different letters indicate 

statistically significant differences (Duncan’s multiple range test with P≤ 0.05). a/b indicates the signif-

icant differences in J2 stage; A/B indicates the significant differences in J3+J4 stages. α/β indicates the 

significant differences in females, and θ/ε indicates the significant differences in the total of the infect-

ed nematodes. Data represent the other two independent experiments than the one in Fig 3.4. Vec: 

transgenic line containing an empty vector. 

    

  

(A) 
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Fig A7 Susceptibility towards Pythium graminicola in OsTHI7overexpression line (OX22) in compari-

son with control (Nipponbare and Empty Vector) plants. OX22 enhanced rice shoot tolerance to root 

pathogen Pythium graminicola infection. Data obtained 7 days after infection. (A) The 0-to-V disease 

rating in control and overexpression plants. (B) The shoot length per plant. Statistical analysis for dis-

ease rating was done using Mann Whitney test (P≤0.05=α). Statistical analysis for shoot length was 

done using Duncan’s multiple range test P≤0.05. Bars represent means and ±SE from the other biologi-

cal replicate than the one in Fig 3.5 (6≤n≤12). Different letters indicate statistically significant differ-

ences. Vec: transgenic line containing an empty vector. 

(B) 
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Fig A8 (A) The effect of different concentrations of BABA on the number of females (B) The effect of 

different concentrations of BABA on the fitness (Above: on shoot and root length; Below: on fresh 

weight) of rice plants (30-day-old) at 16dpi, with (+Mg) and without nematode infection. Different 

concentrations of BABA were applied as soil drench one day before nematode inoculation. Bars repre-

sent the mean and ±SE per plant (n=8). Different letters indicate statistically significant differences 

(Duncan Multiple Range Test with p ≤0.05).  

      

(A) 
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Fig A9 (A) Plants were soil drenched with 3.5mM BABA one day before RKN infection. Sixteen days 

after infection, females per plant were recorded. Data represent the other two independent experiments 

than the one in Fig 4.19(A). Bars represent means and ±SE of females per plant (n = 8). (B) Analysis of 

BABA-induced resistance against RKN on the stage of attraction. 3.5mM BABA was soil drenched 

one day before nematode inoculation. The number of J2 close to the root tips (about 1mm) were rec-

orded at 9h after initiation of the experiment. Bars represent means and ±SE of nematodes per plant (n 

= 8). Data represent the other replicate than the one in Fig 4.1 (B). (C) Effects of BABA on invasion of 

M. graminicola to rice plants. 3.5mM BABA was soil drenched one day before nematode inoculation. 

Number of nematodes was recorded 50 hours after infection. Bars represent means and ±SE of nema-

todes per plant (n = 8). Data represent the other two independent experiments than the one in Fig 4.1 

(C). Different letters indicate statistically significant differences (Duncan Multiple Range Test with p 

≤0.05).  

(C) 
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Fig A10 Effects of DL-β-amino-n-butyric acid (BABA) on the development of M. graminicola in rice 

plants. (A) Pre-treatment of BABA: Plants were soil drenched with 3.5mM BABA or water one day 

before inoculation. Two days after inoculation, SAP was washed away from the roots and plants were 

transferred to Hoagland solution for another 14 days. (B) Post-treatment of BABA: Two days after M. 

graminicola infection, roots were washed and transferred to 3.5 mM BABA solution or water for two 

days, subsequently; plants were transferred to pure Hoagland solution for another twelve days.  Bars 

represent means and ±SE of nematodes per plant (n = 8). Different letters indicate statistically signifi-

cant differences (P≤0.05). a/b indicates the significant differences in J2 stage; A/B indicates the differ-

ences in J3+J4 stages. α/β indicates the significant differences in females, and θ/ε indicates the signifi-

cant differences in all infected nematodes.  Data represent another replicate than the one in Fig 4.2 (A) 

and (B), respectively.  

(A) 

(B) 
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Fig A11 Effects of BABA against RKN in SA and ABA defective lines. 3.5mM BABA was soil 

drenched one day before nematode inoculation. The number of females per plant was counted at 16 dpi. 

Bars represent means and ±SE of females per plant (n = 8). Different letters indicate statistically signif-

icant differences (Duncan Multiple Range Test with p ≤0.05). Data represent one of another replicate 

than the one in Fig 4.5.  
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Fig A12 Effects of BABA in plants treated with inhibitors of secondary metabolites. 3.5mM BABA 

was soil drenched one day before nematode inoculation. The number of females per plant was recorded 

at 16dpi. Bars represent means and ±SE of females per plant (n= 8). Different letters indicate statisti-

cally significant differences (Duncan Multiple Range Test with p ≤ 0.05). Data represent one of another 

independent experiment than the one in Fig 4.6.   

Table A1 Analysis of putative hormone cis-elements present in the 1.5kb promoter regions of 

four rice thionin genes by use of the PLANT CARE database.  

 

The supplementary data of chapter 5 is available at JXB online: 

  http://jxb.oxfordjournals.org/content/64/12/3885/suppl/DC1  

http://jxb.oxfordjournals.org/content/64/12/3885/suppl/DC1

