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Samenvatting 

Door de toenemende problematiek van waterbeschikbaarheid en globale 

klimaatsverandering stijgt de vraag naar efficiënte en precieze irrigatiecontrole, 

zelfs op plaatsen waar tot voorheen nooit werd geïrrigeerd. De aangewezen 

hoeveelheid water tijdens irrigatie wordt bij druivelaars (Vitis vinifera L.) niet 

zozeer bepaald door hun absolute vraag naar water, maar is eerder een kwestie 

van optimale timing en hoeveelheid, alsook een goede opvolging van het behoud 

van de waterstatus van de druivelaar. Bepaalde gradaties van lichte droogte op 

specifieke momenten in het groeiseizoen spelen zelfs een sleutelrol voor de 

productie van kwaliteitsdruiven en resulterende wijnen. Zowel te sterke als geen 

droogtestress zijn echter niet gewenst, aangezien ze het potentieel van druiven en 

wijnen negatief beïnvloeden. Om dit cruciaal evenwicht te bereiken zijn nieuwe, 

innovatieve technologieën nodig die de plant waterstatus kunnen monitoren en die 

de meest geschikte irrigatiehoeveelheid kunnen opleggen. Internationaal is men 

ervan overtuigd dat zulke technologieën op plantmetingen moeten gebaseerd zijn, 

en niet alleen op bodem- of microklimaatmetingen, omdat enkel dan informatie 

bekomen wordt over de werkelijke waterstatus van de plant. 

Het doel van deze thesis was het ontwikkelen en evalueren van een 

plantgebaseerde strategie voor het opvolgen van de waterstatus en stressdetectie 

bij druif, gebruikmakend van automatische plantmetingen en modellen. Zowel 

experimenten als modelgebaseerde studies werden uitgevoerd op druivelaars in 

pot die onderworpen werden aan condities gaande van volledig geïrrigeerd tot 

sterke droogte. 

Twee plantgebaseerde benaderingen voor opvolging van de plant waterstatus 

werden getest en vergeleken. In een eerste benadering werd een accurate 

opvolging van de druivelaar waterstatus en snelle droogtedetectie (i.e. 

verscheidene dagen vóór duidelijke visuele symptomen verschenen) bereikt met 

twee datagedreven modellen: Unfold Principle Component Analysis (UPCA) en 

Functional Unfold Principle Component Analysis (FUPCA). Deze modellen werden 
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oorspronkelijk ontwikkeld voor statistische procesopvolging van multivariabele 

datasets waar accurate kennis over het proces ontbreekt of moeilijk te achterhalen 

is. In deze studie bestonden de multivariabele datasets uit metingen van het 

microklimaat en een plantmeting die optrad als indicator van plant waterstatus, 

ofwel sapstroom ofwel stamdiametervariaties. De modellen gebruikten een grote 

hoeveelheid data uit goed bewaterde condities om de onderliggende informatie en 

patronen van deze gemeten variabelen te extraheren. Hieruit werd een profiel op 

van normaal datagedrag voor druivelaars onder goed bewaterde condities 

opgesteld. De nieuwe data werden aan dit patroon van normale condities getoetst. 

De modellen detecteerden abnormaal gedrag wanneer nieuwe data afweek van 

het normaal patroon, wat in deze studie kon gerelateerd worden aan het afwijken 

van de waterstatus of droogtestress. 

In tegenstelling tot de datagedreven benadering waar voorafgaande kennis over 

onderliggende plantmechanismen minder cruciaal was, werd in de tweede 

benadering gefocust op de ontwikkeling van een mechanistisch watertransport en 

opslag model voor druivelaar. Dit mechanistische model beschrijft het axiale en 

radiale watertransport en de dynamiek van de stamdiameter van druivelaars 

wiskundig. De basisprincipes kwamen voort uit een bestaand watertransport en 

opslag model voor bomen dat accurate simulaties van onder andere 

stamwaterpotentiaal (Ψstem), één van de beste indicatoren voor plant waterstatus, 

toeliet onder goed bewaterde condities. In deze doctoraatsstudie werden de 

constante hydraulische plantweerstanden in het model vervangen door 

vergelijkingen om betere droogterespons simulaties te verkrijgen. Zowel de 

geïntegreerde hydraulische weerstand die water ervaart tijdens opwaarts 

watertransport doorheen het bodem-tot-stam segment (RX), als de hydraulische 

weerstand tijdens radiaal watertransport tussen xyleemvaten en elastische 

levende weefsels (RS) bleken afhankelijk van de bodemwaterpotentiaal. Om deze 

ingebouwde mechanismen te verifiëren werden gemodelleerde waarden 

vergeleken met gemeten data. 

Het mechanistisch model bewees zijn toepasbaarheid voor twee aspecten. 

Doordat het model nieuwe inzichten onthulde droeg het ten eerste bij tot het 

doorgronden van het functioneren van druivelaars tijdens droogte. In de meeste 

andere plantmodellen worden RX and RS als constant beschouwd, nochtans 
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demonstreerde het verbeterde model dat zowel RX als RS dagelijkse fluctuaties 

vertoonden en, bovenop deze fluctuaties, exponentieel stegen onder toenemende 

droogte. Bovendien werd aangetoond dat de gemiddelde turgordruk in de 

elastische opslagweefsels snel afnam tijdens droogte. Ten slotte kon een in situ 

bodem-tot-stam vatbaarheidcurve voor droogte (zogenaamde vulnerability curve) 

gegenereerd worden die de hydraulische geleidbaarheid in bodem en plant 

integreert (KX = 1/RX). Een dergelijke vatbaarheidcurve voor droogte geeft het 

verlies aan KX weer in functie van afnemende Ψstem en wordt in de literatuur vaak 

toegepast om te bepalen hoe kwetsbaar soorten zijn voor droogte. Ten tweede 

werd het mechanistisch model uitgewerkt als een tool om de real time druivelaar 

waterstatus op te volgen. Met uitzondering van de meest extreme condities die 

niet geschikt zijn voor druif- en wijnkwaliteit en dus te vermijden zijn in de praktijk, 

kon het model Ψstem goed simuleren en behield het een strenge supervisie over 

druivelaar waterstatus. Ψstem kon immers continu worden getoetst aan te 

verwachten gedrag gedefinieerd voor goed bewaterde condities. Ψstem simulaties 

beschreven de werkelijke waterstatus van de druivelaar en werden vergeleken 

met een dynamische grenswaarde. Eens een druivelaar deze grenswaarde 

overschreed werd droogtestress verondersteld. De range waarin Ψstem verwacht 

werd onder goed bewaterde condities werd in deze studie gedefinieerd op basis 

van onzekerheidsbanden op een geschatte dynamische grenswaarde. Twee 

verschillende dynamische Ψstem grenswaarden werden getest. Een eerste 

benadering gebruikte verzadigingsdeficit (VD) als input. Een tweede, meer 

uitgebreide aanpak, gebruikte potentiële evapotranspiratie (λEp). Hierbij werd 

zowel VD als straling beschouwd, beide gekend als drijvende krachten voor 

transpiratie bij planten. Zowel het gebruik van een VD- of een λEp-gebaseerde 

dynamische grenswaarde en onzekerheidsband resulteerde in een snelle 

droogtedetectie en strenge supervisie over de plant waterstatus tijdens droogte 

experimenten op druivelaars. 

Uit dit onderzoek kan ten slotte gesteld worden dat zowel de datagedreven als de 

mechanistische modelbenadering veelbelovende plantgebaseerde strategieën zijn 

voor opvolging van de waterstatus van druivelaars. Er blijven echter nog enkele 

uitdagingen over vooraleer deze strategieën in de praktijk kunnen worden 

toegepast om druif- en wijnkwaliteit te optimaliseren. Aangezien alle experimenten 
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in deze studie werden uitgevoerd op druivelaars in pot, zouden toekomstige 

experimenten de prestatie en toepasbaarheid van de modellen moeten testen in 

veldomstandigheden. Om in de toekomst druif- en wijnkwaliteit te kunnen sturen 

zou bovendien de exacte impact van verschillende niveaus van droogtestress op 

specifieke momenten tijdens het droogteseizoen op de druiven moeten worden 

nagegaan.  
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Summary 

Water shortage has become a major problem, leading to a growing interest for 

efficient and precise irrigation scheduling even in areas that were completely rain-

fed so far. Appropriate irrigation for grapevines (Vitis vinifera L.) is not exclusively 

a story of fulfilling water demand, but rather of defining the optimum level and 

timing and having a good knowledge of the grapevine water status. Specific levels 

of soil water deficit at specific times in the growing season are known to play a key 

role in the production of high quality grapes and resulting wines, but both severe 

and no drought stress are not desired as they negatively influence the grape’s and 

wine’s potential. Innovative techniques for monitoring the plant water status and 

for applying an adequate irrigation scheduling are required to achieve this crucial 

water balance for a grapevine. It is internationally recognised that such tools 

should rely on plant measurements, as they provide information on the actual plant 

water status, rather than be based on soil or microclimatic measurements.  

The aim of this thesis was to develop and evaluate a strategy for water status 

monitoring and stress detection in grapevine based on automated plant 

measurements. To this end, both experimental and modelling work was carried out 

on potted grapevines that were subjected to conditions ranging from fully irrigated 

to severe drought. 

Two different plant-based monitoring approaches were tested and compared. In a 

first approach, an accurate monitoring of the grapevine water status and a fast 

detection of drought stress (i.e. several days before the first clear visible 

symptoms appeared) were accomplished using two data-driven models: Unfold 

Principle Component Analysis (UPCA) and Functional Unfold Principle Component 

Analysis (FUPCA). These models were originally developed for statistical process 

monitoring of multivariate data sets where accurate mechanistic knowledge is 

lacking or difficult to achieve. In this study, the multivariate data set consisted of 

measured microclimatic variables and a plant measurement that served as 

indicator for plant water status, either sap flow rate or stem diameter variations. 

Using a large amount of data from well-watered conditions, the models extracted 
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the information and patterns underlying these measured variables and made a 

profile of normal, expected data behaviour under sufficient water availability. 

Monitoring new data then implied checking these data against this pattern. When a 

discrepancy between new data and this normal pattern was observed, the models 

indicated abnormality, which was in this study related to a deviating water status or 

drought stress. 

Unlike the data-driven approach in which a priori information on underlying plant 

mechanisms was not crucial, the second approach focused on developing a 

comprehensive mechanistic water transport and storage model for grapevine. This 

mechanistic model mathematically describes the axial and radial water transport 

and stem diameter dynamics of grapevine. The basic principles originated from an 

existing tree water transport and storage model, which enabled among others 

accurate simulations of the stem water potential (Ψstem) under well-watered 

conditions, which is one of the best indicators for plant water status. To obtain 

better drought response simulations with the model, the constant hydraulic plant 

resistances were replaced by equations in this PhD study. Both the integrated 

hydraulic resistance experienced during upward water transport through the soil-

to-stem segment (RX) and the hydraulic resistance encountered during radial 

water transport between xylem and elastic living tissues (RS) were dependent on 

soil water potential. Modelled and measured data were compared to verify the 

implemented mechanisms. 

The mechanistic model was applied twofold. First, the model contributed to our 

understanding of grapevine functioning during drought conditions, as it revealed 

new insights. Despite the generally assumed constant RX and RS behaviour in 

several other plant models, the improved model demonstrated that both RX and RS 

showed daily fluctuations and, superimposed on these fluctuations, exponentially 

increased when drought progressed. Furthermore, it was shown that mean turgor 

in the elastic storage tissues rapidly decreased with drought. Finally, an in situ soil-

to-stem vulnerability curve that integrated the hydraulic conductance in soil and 

plant (KX = 1/RX) was generated using the model. Such a curve depicts the loss in 

KX as a function of declining Ψstem and is often applied in the literature to assess 

vulnerability of species to drought. Second, the mechanistic model was elaborated 

as a tool to monitor grapevine water status in real-time. Except under most severe 
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drought stress conditions, which are not favourable for grape and wine quality and 

should be avoided in practice, the model simulated Ψstem well and kept a tight 

supervision over the grapevine water status, as Ψstem could be continuously 

compared against expected plant behaviour defined under well-watered 

conditions. Simulated Ψstem, representing the actual water status of the grapevine, 

were then compared with a dynamic threshold beyond which the grapevine is 

considered to experience drought stress. In this study, the uncertainty band on the 

dynamic threshold estimation was used to represent the range within which Ψstem 

was expected to occur under well-watered conditions. Two different dynamic Ψstem 

thresholds were tested: an approach using vapour pressure deficit (VPD) as input, 

and a more elaborate approach using potential evapotranspiration (λEp). The latter 

includes VPD and radiation, both known as key driving variables for plant 

transpiration. The use of both the VPD- or the λEp-based dynamic threshold and 

uncertainty band allowed a fast detection of drought stress and tight supervision 

over the plant water status during a drought experiment on grapevines.  

To conclude, both the data-driven and the mechanistic modelling approach were 

judged promising as plant-based strategy for monitoring the grapevine water 

status. To apply these strategies for optimising grape and wine quality in practice, 

some challenges remain. As all experiments in this study were conducted on 

potted grapevines, future experiments should test the performance of the models 

under field conditions. In addition, the exact impact on the grape berries of 

different drought levels at specific times during the growing season should be 

investigated, in order to be able to steer grape and wine quality in the future. 
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Chapter 1  

Introduction  

Since ancient times, grapevines have intrigued people. Grapevines can grow in 

the most unlikely places and grapes were among the first fruits to be domesticated 

(Fig. 1.1). They are adaptable plants that can be shaped in different forms, while 

their fruits can be transformed into a wide spectrum of products with diverse 

appearances, tastes and aromas. Currently, grapevines are cultivated between 

latitudes 4° and 51° in the northern hemisphere and 6° and 45° in the southern 

hemisphere, covering six out of seven continents and very diverse climates 

Fig. 1.1 Wall paintings from 1500 B.C. in Thebes, the ancient capital of Egypt, 
indicate that grape cultivation and wine making originated in ancient times (after 
http://www.thecultureconcept.com/circle/wine-women-and-song-a-tripartite-motto-
for-all-time). 
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(Schultz and Stoll, 2010). Grapevines are one of the major economically important 

crop industries in the world and cover around 7.1 million ha, yielding almost 70 

million tonnes of grapes. They are the number one produced fruit crop around the 

world on a basis of planted area, and the number three on a basis of produced 

tonnes (2011 statistics by the Food and Agriculture Organisation of the United 

Nations). More than 70% of the harvested grapes are used for wine production, 

27% as table grapes and the remaining is consumed as raisins or applied for juice 

or brandy production (Keller, 2010b). 

1.1 Global climate change  

Contrary to many other agricultural crops, grapevines are often cultivated under 

suboptimal conditions, mainly water deficits, whether or not deliberately imposed 

to enhance grape quality. Water deficit is the prevailing climatic constraint in 

current wine producing areas. Even in moderate climates, grapevines are often 

prone to some levels of drought stress during certain periods of the growing 

season (Gaudillère et al., 2002; Schultz and Stoll, 2010). Grapevines are thus 

often subjected to drought. This may become even more common, and grape 

growing more challenging, because of global climate change (Schultz, 2000; 

Jones et al., 2005; Chaves et al., 2010; Keller, 2010a; Schultz and Stoll, 2010).  

Due to global climate change, the mean air temperature is predicted to rise and 

precipitation patterns are expected to change. Not only the amount of precipitation 

(annual total) will shift, but also the distribution among the different seasons, which 

can cause an increased shortage of water (IPCC, 2007; 2013). In Europe, more 

extreme temperatures (2.2 up to 5.3°C annual mean warming by 2080-2099 

compared to 1980-1999), a higher frequency of summer drought periods and a 

reduction in soil moisture are expected to occur (Christensen et al., 2007). 

Significant warming has in fact already been observed in viticultural regions in the 

last decades (1.26°C increase in the average growing season temperature in the 

world’s high-quality wine regions from 1950 to 1999 (Jones et al., 2005)), with a 

trend toward a prolongation of the growing season and accelerated vegetative and 

reproductive growth (Schultz, 2000; Jones et al., 2005; Keller, 2010a; Schultz and 

Stoll, 2010). The resulting earlier flowering, veraison and harvest are critical 
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aspects, because they strongly influence the ability to ripen grapes to optimum 

levels of sugar, acid and flavour, necessary to produce balanced and superior 

wines (Jones et al., 2005). In particular the timing of veraison is important, as an 

earlier veraison implies that the crucial ripening period shifts toward the warmest 

part of the season (Keller, 2010a).  

Changes in temperature and precipitation cause a gradual shift of the margins 

where cultivation of grapevines is (economically) suitable. Since the northern limit 

tends to shift northward, grapevine cultivation currently occurs in areas that were 

considered unfeasible so far. In addition, the most suitable grapevine cultivars and 

wine types for a certain area change (Schultz, 2000; Jones et al., 2005; Creasy 

and Creasy, 2009; Chaves et al., 2010; Keller, 2010a; Hannah et al., 2013a). The 

switch to new varieties, however, encounters a resistance from both a practical 

and traditional point of view. Indeed, switching to new varieties requires a great 

investment and challenging decisions, especially taking into consideration that 

(microclimatic) conditions at the time of vineyard plantation may be profoundly 

different from those in the further lifetime of the vineyard (typically > 30 years) 

(Creasy and Creasy, 2009; Keller, 2010a). Furthermore, wine has developed a 

strong and broad historical, social and cultural identity derived from its typical 

grape growing, production, weather and climate. The finest and typical wines are 

associated with geographically distinct viticulture regions entailing specific climatic 

conditions, as the latter has a pronounced influence on the quality of grapes and 

resulting high-quality wines (Jones et al., 2005). According to Jones et al. (2005), 

many of the European wine regions are presently at or near their ideal climate for 

their respective grape cultivars and wine styles, underlining their sensitivity to 

changes. Warming may exceed the optimum temperature for the currently grown 

varieties, making a balanced ripening of its grapes and the production of the 

current wine styles challenging, if not infeasible. Hannah et al. (2013a) predict a 

remarkable decline (25% to 73%) of suitable areas for viticulture in major wine 

producing regions by 2050, however, the impact will most likely be less dramatic 

when growers take adaptation measures (Hannah et al., 2013b; van Leeuwen et 

al., 2013).  
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1.2 Belgium and the Netherlands: upcoming wine 

regions? 

While global climate change makes viticulture more challenging in some regions, 

other regions become more viable (e.g. the northern regions of Europe) (Schultz, 

2000; Jones et al., 2005). Belgium and the Netherlands appear among the latter. 

Earlier spring warming and budburst in combination with a later autumn cooling 

are expected for currently cooler climates, which would result in a prolongation of 

the growing season and could improve grapevine cold hardiness and winter 

reserves (Keller, 2010a). In addition to the putatively improving climate, the 

emergence of new grape varieties play a role in the growing interest for viticulture 

in Belgium and nearby areas. German, Austrian, Swiss, Czech and Hungarian 

institutes developed varieties that are better adapted to cool climates, while more 

resistant to diseases like downy mildew (Plasmopara viticola, fungus that likes 

humid, rainy weather and cool to moderate temperatures). These new varieties 

came on the market in the early nineties (http://www.wijngaardeniersgilde.nl). 

The growing interest in viticulture in Belgium and the Netherlands is manifested by 

the steadily increasing amount of wine domains and the increasing quality of the 

wines (VILT website, 8 October 2007; 5 October 2009; 

http://www.brabantsewijnbouwers.nl; http://www.dewijnhoek.nl; 

http://www.neerlandswijnmakerij.nl). Obtained golden and silver medals at 

international competitions are proof of this (Belgian wines website, 16 June 2013; 

http://www.wijngaardeniersgilde.nl), as well as various educations on wine growing 

and making set up the last years, both for amateurs as professionals (e.g. 

http://www.syntra.be; http://www.wijnacademie.nl; http://www.wijninstituut.nl). 

Recently, the Flemish Prime Minister Kris Peeters took several supportive 

measures for the wine growing and making sector and underlined that it is an 

upcoming and promising sector for Belgium (VILT website, 16 September 2012; 

22 October 2012). Belgium has around 100 vineyards with a total area of 150 ha, 

among which 50 professionals in Flanders and 25 in the Walloon provinces (VILT 

website, 16 September 2012; http://www.dewijnhoek.nl). They are predominantly 

located in Hageland between Diest and Leuven (http://www.dewijnhoek.nl). 

Besides Hageland, the main Belgian viticultural areas are Haspengouw, Sambre-

http://www.dewijnhoek.nl/
http://www.neerlandswijnmakerij.nl/
http://www.wijngaardeniersgilde.nl/
http://www.wijnacademie.nl/
http://www.wijninstituut.nl/
http://www.dewijnhoek.nl/
http://www.dewijnhoek.nl/
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et-Meuse and Heuvelland (http://www.45nwf.be). Since the first appellation was 

founded in 1997, the area of vineyards is increased fourfold, with a doubling over 

the last five years (Belgian wines website, 16 June 2013). Under the impulse of 

Unizo, the Union for Independent Entrepreneurs, and the increasing awareness of 

its necessity, eight major Belgian wine growers founded the non-profit organisation 

vzw Belgische Wijnbouwers in 2009, which now has 66 members 

(http://www.belgischewijnbouwersvzw.be). The organisation provides training, 

commercial cooperation, a link with the several governments and acts in the 

Belgian wine grower’s interest. In 2011, Belgian wine growers produced 539.550 L 

wine (78% white, 18% red and 4% rosé wine), which is a 14.7% increase 

compared to 2010 (VILT website, 22 October 2012). The Netherlands, with 

approximately 200 vineyards (170 commercial ones) on approximately 200 ha, 

produced around 1.353.400 bottles of wine in 2011 (http://www.dewijnhoek.nl). 

Although Belgian and Dutch wines do not contribute on a quantity level, it is clear 

that these wines become much appreciated because of their quality. 

1.3 Thesis motivation and structure 

On a global scale, climate change has an important impact on grape and wine 

production. Water shortage has become a major problem, leading to a growing 

interest for sustainable irrigation scheduling even in areas that were completely 

rain-fed so far. Together with the growing necessity, however, also the costs of 

and competition for (irrigation) water are increasing (Schultz, 2000; Schultz and 

Stoll, 2010; Hannah et al., 2013a). Efficient and accurate irrigation scheduling is 

thus an important and crucial issue for the future. Besides fulfilling water demand, 

the growing interest in efficient and accurate irrigation scheduling originates from 

the increasing evidence and awareness that both grape quality and quantity are 

greatly affected by the grapevine’s water availability. Specific levels of water 

deficits at specific times play a key role in the production of high-quality grapes 

and resulting wines. However, both severe or no drought stress are not desired as 

they negatively affect the grape’s and wine’s potential (van Leeuwen et al., 2009). 

Too much water will induce excessive vegetative growth and decrease grape 

quality. A severe scarcity of water, on the other hand, limits important processes 

http://www.45nwf.be/
http://www.belgischewijnbouwersvzw.be/
http://www.dewijnhoek.nl/
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such as growth and photosynthesis (Möller et al., 2007; Creasy and Creasy, 

2009). Appropriate irrigation scheduling can thus assist in improving grape and 

resulting wine quality, but the balance between sufficient water availability for plant 

functioning and certain periods of drought stress is crucial. Defining and imposing 

this appropriate water status balance at a certain time during the growing season 

is difficult without additional tools for monitoring the plant water status and the 

ability to apply such an adequate irrigation scheduling. This thesis therefore aimed 

at developing a plant-based strategy for water status monitoring and stress 

detection in grapevine.  

The thesis is divided in eight chapters (Fig. 1.2). Chapter 2 summarises the basic 

principles of water transport and discusses the influence of plant water status on 

grapevine, its grapes and the resulting wine. Since information on the plant water 

status is crucial for improving grape and wine quality, Chapter 2 explains how 

plant measurements can be used as indicators for this purpose and how they can 

be applied for automatic water status monitoring and drought stress detection.  

Subsequently, two different monitoring strategies were developed and evaluated: 

one strategy based on data-driven modelling and another one based on 

mechanistic modelling. Chapter 3 introduces Unfold Principle Component 

Analysis (UPCA) and Functional Unfold Principal Component Analysis (FUPCA), 

both data-driven strategies, to detect drought stress automatically in an early stage 

based on measurements of the stem diameter. Chapter 4 elaborates on UPCA 

and FUPCA, explores drought stress detection based on measurements of sap 

flow rate and discusses the potential of UPCA and FUPCA to circumvent 

conventional threshold values. 

Because data-driven models are less suitable to infer underlying mechanisms, 

crucial for understanding plant responses, Chapter 5 presents the development of 

a mechanistic water transport and storage model. An existing tree water transport 

and storage model was adapted for monitoring the plant water status in 

grapevines and required changes to perform well under dry conditions. This 

adapted model was applied to describe plant responses during drought. Chapter 6 

focuses on the applicability of the mechanistic water transport and storage model 

in practice and tests its contribution to obtaining information on plant responses in 

real-time. Finally, to apply plant measurements as automatic indicators for the 
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plant water status, thresholds beyond which the plant starts sensing a certain level 

of drought stress are required. Such a threshold should not be defined as a fixed 

constant value, as it is not only influenced by soil water availability but also by 

microclimatic conditions. Although several approaches have been proposed to 

determine dynamic thresholds, the step toward a more practical, high time-

resolution dynamic threshold, especially for grapevine stem water potential, is still 

lacking. Chapter 7 therefore gives a detailed description of calculating and 

applying dynamic thresholds for the water status.  

The last chapter, Chapter 8, compares the data-driven strategy with the 

mechanistic one, and links the results of Chapters 3 to 7. General conclusions are 

drawn concerning the applicability of mathematic models as automatic systems for 

water status monitoring and drought stress detection. Finally, perspectives for 

ongoing and future research are formulated. 

 

 

Fig. 1.2 Thesis structure 
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Chapter 2  

Water transport and its crucial role 

for grape and wine quality  

2.1 Water transport in the soil-plant-atmosphere 

continuum 

2.1.1 Basic principles of water transport 

As all plants, grapevines can exert energy from the sun to fix atmospheric carbon 

dioxide (CO2). This photosynthesis process mainly occurs in the leaves (called 

sources). The captured energy is stored in the plant as photosynthetic assimilates, 

which are transported through the phloem (Fig. 2.1) toward energy demanding 

organs (called sinks). There it is used for maintenance and synthetic process 

(Jones, 1992). While the stomata (micro-pores imbedded in the lower epidermis of 

Fig. 2.1 Cross section of a three-year-old grapevine. Phloem for sugar transport 
from the leaves (called sources) to energy demanding organs (called sinks) and 
xylem for upward water transport from the roots are shown (after 
http://rieslingrules.com). 
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the leaves) are open during the day to capture CO2, water escapes to the 

atmosphere. This process, called transpiration, is the driving force for water 

transport in the plant (Fig. 2.2).  

 

Water transport in plants mainly occurs in the xylem (Fig. 2.1). Xylem in 

grapevines consists of dead conducting vessels and transports water, minerals 

and other substances (e.g. amino acids) from the roots to all plant organs. This 

upward water stream, also called sap flow, can be explained by the cohesion 

tension theory, which is introduced by Dixon and Joly (1895) and is still generally 

accepted as mechanism for describing water movement in plants. The cohesion 

tension theory states that water in the xylem vessels is under tension as a result of 

water loss in the leaves during transpiration. This tension overcomes the 

downward gravitational force and pulls water up by a combination of two forces: 

cohesion and adhesion. Water molecules are linked together by hydrogen bonds 

Fig. 2.2 Schematic overview of sugar and water transport in a grapevine. During 
photosynthesis, light and carbon dioxide (CO2) are converted into oxygen (O2) and 
sugars, which are transported from the leaves toward energy demanding organs 
through the phloem. While the stomata are open for photosynthesis, water vapour 
(H2O) is lost to the atmosphere. This transpiration process induces an upward 
water flow, whereby water and minerals are absorbed by the roots and transported 
upward through the xylem (adapted from http://www.stevennoble.com). 
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that provide a strong intermolecular attraction. This cohesion force results in 

strongly connected water strings going from soil particles around the roots up to 

the cell walls where transpiration occurs. Water in plants thus forms one 

continuum, also referred to as the soil-plant-atmosphere continuum. Adhesion, on 

the other hand, exerts a force between the water continuum and the surrounding 

cell walls of the water conducting vessels and allows the water to rise upward 

(Cruiziat and Tyree, 1990). 

Water transport and plant water status are often expressed in terms of Gibbs free 

energy by using the term water potential (Ψ), which can be seen as a measure of 

water demand. The reference state (Ψ = 0) is freely available water, while Ψ 

decreases to negative values when water demand is higher. Ψ is composed of 

four major components, resulting from osmotic (Ψπ [MPa]), pressure (Ψp [MPa]), 

matric (Ψm [MPa]) and gravitational (Ψg [MPa]) forces:  

 gπgmpπ Ψ+P+Ψ=Ψ+Ψ+Ψ+Ψ=Ψ
  (2.1) 

Since it is difficult to distinguish between pressure in the xylem vessels (Ψp) or in 

the cell walls (capillary forces or Ψm), Ψp and Ψm are generally considered 

together as the hydrostatic pressure (P). Turgor pressure is expressed as a 

positive P, while tension is expressed as a negative P. Differences in potential 

energy caused by a difference in height are represented by Ψg, but are often 

neglected when describing (small) plant systems. Finally, Ψπ represents the 

attraction of water by dissolved solutes and is always negative. As xylem sap has 

only few osmotic components, Ψπ can be omitted as well. It is thus acceptable to 

consider only hydrostatic pressure potentials to describe water transport in the 

xylem. Water moves passively (spontaneously) from higher Ψ to lower (more 

negative) Ψ, and is thus driven by water potential gradients (Fig. 2.3) (Jones, 

1992; Williams, 2000; Jones, 2007; Keller, 2010b). 

2.1.2 Hydraulic resistance 

Water transport through the soil-plant-atmosphere continuum can be explained in 

analogy with electrical circuits, as introduced by van den Honert (1948). According 

to this theory, water flowing through the soil-plant-atmosphere continuum 

encounters a hydraulic resistance in each compartment: soil, roots, stem and 

leaves, such as electrical currents encounter electrical resistances. Similar to 
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electrical currents that are driven by potential differences, water transport is driven 

by water potential gradients (Fig. 2.4), as also stated by the cohesion tension 

theory. The water potential is higher near the roots and decreases (becomes more 

negative) in the direction of the leaves, creating a water potential gradient. This 

gradient results in water uptake near the roots and upward water transport toward 

the leaves (Fig. 2.3 and 2.4). Introducing the electrical analogy allows quantifying 

steady-state water flow (SF [g.h-1]) by applying Ohm’s law: 

 
KΔΨ=

R

ΔΨ
=SF

  (2.2) 

Fig. 2.3 Schematic overview of the water transport pathway through the soil-plant-
atmosphere continuum and principle of the cohesion tension theory. Leaf 
transpiration creates a water potential gradient between the soil and the 
atmosphere. Typical values for air, leaves, stem, roots and soil water potential are 
shown (Ψair, Ψleaves, Ψstem, Ψroots and Ψsoil). As water flows from a region with 
higher water potential to a region with lower water potential, water is pulled up 
through the xylem by a combination of adhesion and cohesion forces (adapted 
from Campbell and Reece (2008)). 
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with R the hydraulic resistance [MPa.h.g-1], ΔΨ the water potential difference 

[MPa] and K the often used reciprocal of R, i.e. hydraulic conductance                  

[g.MPa-1.h-1]. Note that Eq. 2.2 only applies for steady-state flows and therefore a 

simplification of actual plant water flow, which is dynamic. Internal water storage or 

capacitive aspects are not considered, although they play an important role. 

Internal water storage pools contribute to the transpiration stream to compensate 

for the time lag of several minutes to hours that has been observed between 

transpiration (water loss through the leaves) and water uptake by the roots (Tyree, 

1988; Meinzer et al., 2001; Steppe et al., 2006).  

2.1.3 Cavitation 

The xylem is built out of rigid vessels, necessary to avoid collapse under the 

continuous prevailing tension. Since water under such tensions is in a physically 

metastable condition, the presence of any air bubble may be sufficient to break the 

cohesion between the water molecules. The resulting breakage of the water 

continuum is called cavitation. During this process, the liquid water at negative 

pressure in the vessel is replaced by air (Fig. 2.5), this vessel loses its hydraulic 

function and the overall hydraulic resistance in the xylem increases. Cavitation 

Fig. 2.4 Illustration of water transport through the soil-plant-atmosphere continuum 
as a result of decreasing water potentials (Ψ) (left) and its electrical analogy 
(right). Water transport is driven by water potential differences (ΔΨ) and 
encounters a specific hydraulic resistance (R) in each compartment (e.g. soil, 
roots, stem and leaves).  
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especially occurs when plants experience drought stress because the water 

potential strongly decreases during drought conditions and may surpass a critical 

threshold value. When this critical water potential threshold is surpassed, air 

bubbles are sucked into the xylem vessel and interrupt the water column 

(explained in Fig. 2.6) (Sperry and Tyree, 1988; Cruiziat and Tyree, 1990; Tyree 

and Zimmermann, 2002; Hölttä et al., 2009; Lovisolo et al., 2010). Although more 

pronounced during drought, cavitation, as well as refilling of cavitated vessels, are 

common processes in many plant species (McCully et al., 1998; McCully, 1999; 

Bucci et al., 2003), including grapevines (Lovisolo et al., 2008; Brodersen et al., 

2010; Zufferey et al., 2011; Schenk et al., 2013). Recent findings indicate that 

refilling can even occur when nearby vessels are still under considerable negative 

pressures (Meinzer et al., 2013; Schenk et al., 2013). As a consequence, hydraulic 

resistance (section 2.1.2) depends on the balance between cavitation formation 

and refilling and can vary throughout the day (Meinzer et al., 2013). Allowing some 

level of cavitation may actually benefit the plant, because the water pressure of the 

surrounding vessels increases when liquid water is released to the transpiration 

stream during cavitation, positively affecting the plant water status in the short-

term. Cavitation thus entails a capacitive effect (Meinzer et al., 2001; Tyree and 

Zimmermann, 2002; Hölttä et al., 2009). Furthermore, this effect may delay 

closure of the stomata, allowing the plant to gain more carbon (Hölttä et al., 2009). 

Wheeler et al. (2013) however question the above findings and attribute observed 

diurnal variation in level of cavitation to artefacts of the methods used to quantify 

this cavitation, indicating that further research is still needed on this topic. 

Fig. 2.5 Cross section of a grapevine stem obtained by magnetic resonance 
imaging: green arrows indicate vessels that were initially filled with water (A), then 
cavitated under declining water potential, thus filled with gas and not visible (B), 
and finally refilled after water supply was resumed (C) (after Holbrook et al. 
(2001)). 
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Fig. 2.6 Schematic overview of drought-induced cavitation according to the air-
seeding hypothesis. Initially, vessel V1 is cavitated (filled with air) while the 
adjacent vessel V2 is still functional (filled with water) (A). Air-water menisci are 
created at the pit membrane pores and can stand medium tensions (B). Due to 
transpiration or dehydration, the pressure difference between V1 and V2 builds up 
and gradually pulls an air bubble through the largest pore, as large pores are most 
sensitive to high tensions (C). When the critical threshold for the pressure 
difference is surpassed, the air bubble is pulled into vessel V2 (D). The gas bubble 
expands and fills V2 entirely (E), resulting in a cavitated vessel that is no longer 
functional (F) (adapted from Cruiziat and Tyree (1990)).  
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2.2 Influence of plant water status on grapevine 

development and productivity 

Growth, development and productivity of grapevines are highly influenced by soil 

water availability. Excessive water may lead to excessive vegetative and/or 

reproductive growth (Fig. 2.7), which are both undesired for several reasons. 

Excessive reproductive growth or yield indicates an imbalance between fruit 

development and vegetative growth. If grapevines invest too much energy in fruit 

development, it may be detrimental for their ripening, the shoot and leaves growth, 

as well as for the fruit development of the next season. Indeed, an imbalance 

leads to inappropriate partitioning of assimilates between canopy and fruit 

production. Furthermore, the rate of fruit maturation is influenced by crop level: 

larger crops require more time to ripen their grapes compared to smaller crops. 

Finally, a high yield delays the ripening of branches and shoots and delays sugar 

accumulation, thus depleting the reserves for the consecutive winter (Smart et al., 

1990; Dokoozlian, 2000; Creasy and Creasy, 2009; Keller, 2010a; b).  

Fig. 2.7 Example of excessive vegetative (A) and reproductive (B) growth in 
grapevines (adapted from http://en.wikipedia.org/wiki/Grape; http://homeguides. 
sfgate.com/prune-grape-vine-buds-50029.html). 
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Excessive vegetative growth, on the other hand, may compete with flower 

formation for sugars, nutrients and water. In a later stage, it competes with the 

grapes and may jeopardise fruit quality (Smart et al., 1990; Creasy and Creasy, 

2009; Keller, 2010a; b). A large plant growth alters the microclimate and increases 

the indirect light within the canopy. Indirect light has a different light quality and 

quantity as direct sun light, resulting in a significant physiological effect on leaves 

as well as grapes. Grape temperature is close to ambient air temperature in 

shaded berries, while up to 13°C (or even 17°C) elevated temperature has been 

observed in sun exposed grapes, e.g. in semi-arid climates (Smart and Sinclair, 

1976; Spayd et al., 2002; Tarara et al., 2008; Keller, 2010a). Shading can lead to 

diminished fruit set, yield, berry size, delayed ripening and decreased and 

heterogeneous grape quality (Smart et al., 1990; Dokoozlian, 2000; Creasy and 

Creasy, 2009). Note that also excessive crop load, thus the grapes itself, can 

cause shadow within the canopy. An altered microclimate (not only light conditions 

and temperature but also humidity and wind speed) may change grape 

composition and may enhance the risk for diseases (Smart et al., 1990), although 

it is often unclear whether the adverse effects of inadequate sun exposure arise 

from a decrease in light or temperature (Keller, 2010a). Finally, a larger canopy 

complicates the maintenance and management of the vineyard and makes it more 

labour-intensive. Larger canopies increase time-consuming practices such as 

pruning, spraying, leaf-removal in the fruit zone and shoot thinning (Smart et al., 

1990; Creasy and Creasy, 2009).  

Severe water deficiency, called drought stress, is not desired as well, as it may 

limit important plant processes such as growth and photosynthesis. The plant 

water status determines the turgor pressure in the plant cells, which is the driving 

force for cell (and plant) growth (Lockhart, 1965; Jones, 1992; Williams, 2000). 

One of the first visible signs of drought stress is a diminished shoot growth. Under 

moderate stress the shoot length, rate of elongation, leaf size, total leaf area, trunk 

biomass and diameter are decreased. Under severe or very rapid onset of drought 

stress, the shoot tip may even die (Williams, 2000). Plant water status influences 

opening and closing of the stomata through which water escapes while CO2 gas is 

taken up during photosynthesis. This process synthesises sugars and is of utmost 

importance for maintenance, growth, grapevine and fruit development (Jones, 
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1992; Dokoozlian, 2000; Williams, 2000; Chaves et al., 2010). During the growing 

season, sugars are mainly transported to non-photosynthetic organs such as the 

roots and stem. After veraison (colouring and ripening of the grapes), the grapes 

become the main sink (Dokoozlian, 2000). Even fruit set of the next year can be 

hindered by a reduced photosynthetic capacity (Creasy and Creasy, 2009), as the 

reproductive development of grapevines is expanded over two years: shoots 

formed out of buds in the first growing season carry fruit in the following growing 

season (Keller, 2010a). 

Level and timing of drought stress during the growing season is crucial. Sufficient 

soil water availability at the start of the growing season is needed to develop a 

large enough canopy for capturing sufficient sun light (Smart et al., 1990; 

Acevedo-Opazo et al., 2010). Especially near flowering, grapevines are very 

sensitive to water deficit. Mild drought stress may promote inflorescence initiation 

(flower cluster), but more severe drought stress reduces the number of 

inflorescences (Keller, 2010a) and strongly reduces fruit set (Hardie and 

Considine, 1976; Creasy and Creasy, 2009).  

Recent vineyard practices try to find a good balance between vegetative and 

reproductive growth by limiting excessive crop or canopy growth. A grapevine 

should obtain a sufficient canopy to maintain photosynthesis and ripen its fruits 

without resulting in vigorous vines that require intensive management. Currently, 

one of the major objectives is to produce uniformly ripe grapes (homogeneous 

ripeness) with great flavour and aroma, as it is difficult to determine the optimal 

and most practical harvest time when berry maturity shows large variation 

(Kennedy, 2002; Creasy and Creasy, 2009; Stafne and Martinson, 2012). Most 

growers strive to minimise not only spatial, but also annual variation in grape yield 

and quality (Keller, 2010a; b). The optimal balance is case-specific: it depends on 

the year, climate, cultivar, type of wine, management and location (Creasy and 

Creasy, 2009).   
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2.3 Influence of plant water status on grape and 

wine composition 

2.3.1 What defines grape and wine quality? 

Quality is not easy to define or quantify and strongly depends on the intended end-

use (table or wine grapes, type of wine). Grapes or wines are considered of high 

quality when visual, taste and aroma characters are considered above average. 

Quality depends on the perception of pleasant and attractive flavours and aromas. 

Components interactively contributing to the grape and wine impression are their 

size and shape (for table grapes), pH, sugars, acids, tannins, colour and other 

phenolic and volatile chemicals (Jackson and Lombard, 1993; Creasy and Creasy, 

2009; Keller, 2010b). 

2.3.2 Growth phases of the grape 

To understand the effect of water status on grape quality, it is important to obtain 

insight into berry growth and development and to know when different components 

accumulate in the grapes. Grape and wine quality can be modified by regulating 

berry size, since this alters the contribution of three main constituents of a berry, 

i.e. skin, seeds and flesh. These tissues show very different compositions and thus 

attribute in a diverse manner to the final quality. Wines produced from smaller 

berries, for instance, will generally have a higher share of components derived 

from the skin and the seeds (Kennedy, 2002; Stafne and Martinson, 2012). The 

development of berry weight, size and diameter is characterised by two 

successive sigmoid growth phases (phase I and III), separated by a lag phase of 

slow or no growth (phase II) (Fig. 2.8: overview of the berry development and  

typical changes in berry diameter) (Dokoozlian, 2000; Kennedy, 2002; Keller, 

2010a; Stafne and Martinson, 2012). The three typical berry growth phases will be 

discussed in the following paragraphs.  

Phase I 

The first rapid growth phase starts at bloom and lasts a few weeks (up to 60 days) 

(Dokoozlian, 2000; Kennedy, 2002). The seed embryos and berry are constituted 

during phase I, but the berry remains firm and green due to the presence of 

chlorophyll (Kennedy, 2002; Stafne and Martinson, 2012). In the beginning, mainly 
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fast cell divisions are responsible for the increasing volume and berry diameter 

(Fig. 2.8B). Near the end of phase I, the number of cells stabilises and new cells 

are no longer formed. Besides cell volume and organic solute content (sugars), 

final berry size at harvest is a function of the number of cell divisions during this 

phase (Dokoozlian, 2000; Kennedy, 2002; Keller, 2010a).  

Water import into the berry can occur via both xylem and phloem, but their relative 

contribution is dependent on the berry growth phase. During phase I and II, water 

import mainly occurs via the xylem vessels (Fig. 2.8A) (Choat et al., 2009; Dai et 

al., 2010). 

Sugar content remains low (around 2% of berry fresh weight), but soluble solids 

such as tartaric, malic and hydroxycinnamic acids and tannins accumulate in the 

berry (Fig. 2.8, 2.9) (Dokoozlian, 2000). Tartaric and malic acids (the main organic 

acids in grapes) reach their maximum concentration around veraison and 

contribute to the acidity of the wine. Malic acids mainly occur in the flesh, while the 

Fig. 2.8 (A) Development of berry size and colour from flowering until harvest. 
Major events and main components that accumulate during a certain period are 
indicated in the green and grey boxes, respectively (after Kennedy (2002)). (B) 
Typical changes in berry diameter during the growing season. Three typical 
growth phases can be distinguished: two successive sigmoid phases with fast 
growth (phase I and III) separated by a period of no growth (phase II) (after 
Dokoozlian (2000)). 



 
 Water transport in grapevines  

21 

highest accumulation of tartaric acids is found in the skin (Stafne and Martinson, 

2012). Their concentration is crucial for wine balance, stability and aging potential 

(Dai et al., 2010). Hydroxycinnamic acids, present in the skin and the flesh, act as 

precursor for volatile phenols (Kennedy, 2002; Stafne and Martinson, 2012). 

These phenols, such as tannins, anthocyanins and flavones, play a key role for the 

determination of grape colour, aromas and astringency (Dokoozlian, 2000; Creasy 

and Creasy, 2009). Tannins are present in seeds and skins and are not only 

responsible for the specific bitter and astringent taste of red wines, but have a 

putative role for the mouthfeel, aging potential and stability of the red colour 

(Dokoozlian, 2000; Stafne and Martinson, 2012). Red pigments in grapes are 

fragile and their stability depends on the tannins that bind on them. Furthermore, 

phenols are assumed to play an important role within the context of nutritive value 

and health benefits, as they can act as antioxidants (Dokoozlian, 2000; Creasy 

and Creasy, 2009). Finally, also aroma components, amino acids, micro nutrients, 

vitamins and minerals (mainly potassium, calcium, sodium, phosphor and chloride   

ions) accumulate during phase I (Dokoozlian, 2000; Kennedy, 2002). 

 

Fig. 2.9 Typical changes in sugar and acid levels during grape berry development. 
Acids are accumulated during growth phase I, while sugar concentration remains 
low. After veraison, sugars accumulate in the berry and the acid concentration 
diminishes (after Sun et al. (2010)). 
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Phase II 

The lag phase lasts approximately two or three weeks (Dokoozlian, 2000) but 

varies considerably dependent on cultivar (Creasy and Creasy, 2009). Grape berry 

growth stagnates temporarily and cell division stops. Further increase in volume is 

solely attributed to cell elongations. During phase II, the seeds in the berry start to 

grow rapidly and reach their final size before veraison. The berries itself remain 

hard but start to lose chlorophyll. The organic acids reach their maximum 

concentration (Dokoozlian, 2000; Stafne and Martinson, 2012).  

Phase III 

Grape ripening and resumption of rapid berry growth starts with veraison. In this 

period, the berries soften and change colour (Fig. 2.8A). Their size approximately 

doubles through cell expansion (Fig. 2.8B), mainly because of sugar and water 

accumulation. Sugars accumulate up to 25% or more of berry fresh weight at 

harvest, juice pH rises gradually and the phenol and acid concentration decreases 

(Fig. 2.9). pH determines the ionic forms of some molecules, possibly affecting the 

colour of anthocyanins, and is crucial for grape juice and wine biological stability 

(increased risk for spoilage and wine oxidation occurs when pH > 3.6) (Creasy and 

Creasy, 2009; Keller, 2010b).  

The amount of most components that were accumulated during phase I remain 

constant, although, their concentration drops remarkably due to volume increase 

(dilution effect) (Dokoozlian, 2000; Kennedy, 2002; Dai et al., 2010; Stafne and 

Martinson, 2012). Nevertheless, the absolute amount of malic acids and tannins is 

diminished by respiration and enzyme degradation (Dokoozlian, 2000; Stafne and 

Martinson, 2012). Also some important aromatic components decline on a per-

berry basis during the ripening process, e.g. methoxypyrazine compounds (related 

to vegetal characteristics of wines) (Kennedy, 2002).   

The most prominent transformation during phase III is the ripening of the grapes 

and the related strong increase in certain components, in particular sugars (Fig. 

2.8, 2.9) and secondary metabolites (i.e. organic compounds which are not core to 

normal growth, development and survival of the plant). Both sugars and secondary 

metabolites are of utmost importance for the quality. The latter include 

anthocyanins (red varieties), certain aroma and volatile flavour compounds, and 
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their precursors, e.g. terpenoids (white varieties) (Dokoozlian, 2000; Kennedy, 

2002; Stafne and Martinson, 2012). Sugars are required for fruit growth, ripening 

and as constituents for other components such as organic and amino acids 

(Dokoozlian, 2000). They contribute to wine taste, mouthfeel, body and balance. 

Importantly, sugars determine the percentage of alcohol in wines as they are 

converted into alcohol during fermentation (Williams, 2000; Keller, 2010b). 

During phase III, xylem constitutes no longer the preferential pathway for water 

import into the berry, as import mainly occurs via phloem after veraison (Fig. 2.8) 

(Greenspan et al., 1994; Choat et al., 2009; Dai et al., 2010). This shift in water 

supply has been assigned to disruption of xylem vessels as a result of berry 

growth, but recent studies demonstrate that xylem remains functional and that the 

berries and the grapevine remain hydraulically connected (Keller et al., 2006; 

Choat et al., 2009; Tilbrook and Tyerman, 2009). Reduction in water supply via 

xylem may be attributed to an accumulation of solutes in the berry apoplast and 

hydraulic buffering by water delivered via the phloem (Keller et al., 2006; Choat et 

al., 2009). This may even lead to an excess of phloem water supply, and may 

result in water efflux via xylem (from the berries back to the plant), also called 

xylem backflow (Tyerman et al., 2004; Keller et al., 2006; Dai et al., 2010). 

Tyerman et al. (2004) and Tilbrook and Tyerman (2009) suggested that xylem 

backflow may play a key role in observed berry weight loss of certain varieties 

during the later stages of ripening (e.g. in Vitis vinifera L. cv. Shiraz, but rarely in 

cv. Chardonnay). 

2.3.3 Grape and wine composition 

As indicated above, any factor changing the grapevine growth or its physiology, in 

particular water status, will influence grape berry development and composition, 

either directly or indirectly. The extent of alteration depends on both the drought 

level and the prevailing berry growth phase (Fig. 2.8). For instance, excessive 

water availability leads to reduced sugar, colour and higher acidity, while water 

deficit can both increase or decrease sugar and acid content, pH and colour, 

dependent on the timing and level (Keller, 2010b). Besides soil water availability, 

also other factors that limit photosynthesis (e.g. nutrient deficiency) can affect 

berry size and ripening (Dokoozlian, 2000), but this study focuses on soil water 

availability. 
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Berry size 

Although berry size itself is not a crucial feature for quality of wine grapes, it has a 

major influence on grape and wine composition. Berry size defines the degree of 

dilution of secondary metabolites present in the berry sap (Dai et al., 2010) and, 

indirectly, the proportion of skin, seeds and sap (Kennedy, 2002). 

Water deficits are known to influence berry size, generally resulting in a decline 

(Dai et al., 2010). Phase I (onset of flowering until decelerated growth) seems 

most affected by drought. Grapevines subjected to drought during this phase 

usually have smaller berries compared to well-watered grapevines (Dokoozlian, 

2000; Williams, 2000; van Leeuwen et al., 2009; Chaves et al., 2010; Dai et al., 

2010). Supplemental irrigation in later stages cannot compensate for this 

diminished growth, suggesting a decreased number of cells (cell divisions only 

occur during phase I) or permanent restriction of cell size or volume (Dokoozlian, 

2000; Williams, 2000). Decreased berry size can also result from water deficits 

during phases II and III, but is then caused by diminished cell volume (not number) 

and reduction in soluble solids such as sugars (Dokoozlian, 2000). Mild to 

moderate drought stress seems therefore most beneficial when applied during 

phase I (van Leeuwen et al., 2009; Keller, 2010b).  

Sugars 

Water availability affects sugar concentration by an interaction of three processes: 

sugar import, sugar metabolism and water import (Dai et al., 2010). Higher sugar 

concentrations have been observed in grapevines subjected to certain levels of 

drought stress compared to well-watered grapevines (Williams and Matthews, 

1990; Williams, 2000; van Leeuwen et al., 2009; Chaves et al., 2010; Keller, 

2010b). This can be partly explained by diminished sugar accumulation seen in 

well-watered grapevines (due to increased shadow within large canopies), while 

drought-stressed grapevines tend to have a smaller yield and thus less sinks that 

compete for carbohydrate. Finally, water is lost from grapes subjected to drought, 

resulting in a smaller berry volume and higher sugar concentration (Williams, 

2000; Keller, 2010b). Slight to moderate water deficits increase the sugar 

concentration, however, sugars imported into the grapes need to be produced 

during photosynthesis. When grapevines close their stomata under more severe 
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water deficit and photosynthesis stops, also sugar production and transport to the 

grapes will eventually cease (Dokoozlian, 2000; Keller, 2010b). 

Acids 

Acids are as important as sugars for the perception of grapes and wine. They 

contribute to the sharp and astringent taste and mask the effect of sugars 

(sweetness) (Keller, 2010b). Low levels result in flat wines, high levels give a tart 

and sour taste (Dai et al., 2010). Tartaric acid is little affected by water status, but 

malic acid is (Keller, 2010b). Water deficits have been found to result in a declined 

acidity at harvest, especially when occurred before veraison (Williams and 

Matthews, 1990; Keller, 2010b). Other studies, however, did not observe an 

influence of moderate drought stress on titratable acidity (Matthews et al., 1990; 

Ginestar et al., 1998; Chaves et al., 2010).  

Aroma, taste and colour constituents 

Water deficits before or after veraison influence the appearance of wine, its aroma, 

taste and colour. The latter appears the easiest to identify (Matthews et al., 1990). 

Both anthocyanins (Ginestar et al., 1998; Roby et al., 2004; Acevedo-Opazo et al., 

2010; Chaves et al., 2010; Keller, 2010b) and flavonols (Chaves et al., 2010) were 

found to be greatly affected, their composition possibly in a greater extent than 

their concentration (Chaves et al., 2010). Matthews et al. (1990) observed highest 

concentrations of anthocyanins in wines from grapevines subjected to mild drought 

stress (shortly) before veraison, suggesting that grape ripening is most sensitive 

around this period. The authors argue that drought either stimulates the production 

of anthocyanins (Chaves et al., 2010), responsible for the red colour, or limits their 

conversion to other, not colour-related components. Others state that an increment 

of the skin-to-pulp ratio (due to decreased berry size) is to a greater extent 

responsible for improved colour (Acevedo-Opazo et al., 2010; Keller, 2010b). 

Severe drought, however, may result in uneven ripening and green or poor-

coloured grapes and is thus detrimental for colour (Keller, 2010b). Altered aromas 

were found more noticeable than tastes, which may indicate that volatile 

components are more affected by water status than soluble constituents 

(Matthews et al., 1990). Again, severe stress has been observed to impair the 

aroma potential. Some authors report no effect on the accumulation of tannins and 
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flavonols (Keller, 2010b), while others did observe an effect on tannins (Roby et 

al., 2004; van Leeuwen et al., 2009). 

As mentioned in section 2.2, grapevines with a large soil water availability tend to 

develop large canopies. This impedes light interception and is detrimental for 

grape quality, because such grapevines have been shown to produce grapes with 

higher pH and malic acids, while sugars, tartaric acids, phenols (aromas) and 

anthocyanins were diminished (Smart et al., 1990; Creasy and Creasy, 2009). For 

instance, the amount of methoxypyrazines and monoterpenes (aroma compounds) 

seems to depend on the light-exposure of the berries. Methoxypyrazines are 

important and highly concentrated components in unripe grapes. They contribute 

to vegetal (herbaceous) characteristics found in some wines (e.g. Vitis vinifera L. 

cv. Cabernet Sauvignon and Cabernet Blanc), but the prevailing opinion regards 

them as undesirable. As their degradation is influenced by light, these flavours can 

be mitigated by restricting the water availability (which limits canopy growth and 

shadow) (Smart et al., 1990; Kennedy, 2002; Creasy and Creasy, 2009). The 

opposite goes for monoterpenes: they are considered favourable and their 

accumulation is stimulated by light-exposure of the berry. They are associated with 

tropical, fruity flavours and often dominate and define the typicity of cultivars such 

as Muscat and Riesling (Creasy and Creasy, 2009). Also Chapman et al. (2005) 

observed lower astringency, more fruity and less vegetal aromas in wines from 

drought-stressed Cabernet Sauvignons. 

2.4 Using plant measurements as indicators for 

plant water status  

The water status has a great influence on the appearance of the grapevine, its 

dimension and health and, which is crucial to grape- and wine growers, is decisive 

for the composition and quality of the grapes. By fine-tuning the appropriate timing 

and level of water deficits, optimal fruit and wine quality can be achieved. 

Obtaining this crucial balance seems however difficult, if not impossible, without an 

accurate monitoring of the plant water status (Naor, 2006). It is internationally 

recognised that such a monitoring system should rely on plant measurements 

rather than on soil or climatic measurements, since many plant physiological 
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processes respond directly to changes in water status of plant tissues (Jones, 

2004; Steppe et al., 2008). Therefore, information on the actual water status and 

the health of the plant is gained by measuring on the plant itself, also called the 

speaking plant concept (Udink ten Cate et al., 1978). Although various plant 

variables are applied for this purpose (e.g. review by Jones (2004)), only the three 

plant variables most crucial for this study will be described in the following 

paragraphs. 

2.4.1 Stem diameter variations 

A promising indicator for plant water status is the variation in stem diameter. Stem 

diameter variations result from both actual stem growth and daily fluctuations of 

the living tissues due to radial water transport (Génard et al., 2001; Daudet et al., 

2005; Steppe et al., 2006). The latter is driven by imbalances between root water 

uptake and leaf transpiration and occurs between xylem and surrounding, more 

elastic living tissues that serve as a storage pool for water. In the morning, when 

transpiration is started but water uptake is lagging behind, water is withdrawn from 

the internal water storage pool, which causes the stem diameter to decrease. The 

opposite phenomenon is seen in the evening when elastic storage tissues are 

replenished, resulting in an expansion of the stem diameter (Tyree and 

Zimmermann, 2002; Steppe and Lemeur, 2004). 

Stem diameter variations can be measured continuously and automatically (Fig. 

2.10) and are strongly influenced by drought stress (Vermeulen et al., 2008). They 

have been applied for automatic monitoring of the plant’s physiological condition 

and water status, including grapevines (Cifre et al., 2005; Kopyt and Ton, 2005; 

Steppe et al., 2006; De Swaef et al., 2009; Fernández and Cuevas, 2010; Ortuño 

et al., 2010). Noteworthy is that besides drought stress, also phenological stage 

and crop load may have an influence on the stem diameter variations (Intrigliolo 

and Castel, 2006; 2007a; b).  

2.4.2 Sap flow rate 

Another indicator used worldwide for plant water status is sap flow rate (Fig. 2.11), 

which additionally provides information on the exact amount of water the plant 

consumes (Ginestar et al., 1998; Cifre et al., 2005; Patakas et al., 2005; 

Fernández et al., 2008; Green, 2008). Besides soil water availability, also 
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atmospheric water demand affects sap flow rate (De Swaef et al., 2009). Low sap 

flow rates can therefore result from low soil water availability, but may also be the 

consequence of a cloudy day. 

Fig. 2.10 Linear Variable Displacement Transducer (LVDT, accuracy ± 1 µm) 
installed on a (A) stem and (B) shoot of a grapevine to measure stem diameter 
variations. A LVDT transforms mechanic movement, due to expansion or 
shrinkage of the stem, into an electrical, detectable signal that can be registered 
automatically.   

Fig. 2.11 Installation of Dynagage sensors (accuracy ± 10%) (van Bavel and van 
Bavel, 1990) to measure sap flow rate in grapevines. These heat balance sensors 
calculate sap flow rate based on thermodynamics. A controlled, continuous 
amount of heat is applied to the exterior of the stem. The amount of heat that 
dissipates in radial and axial direction (by conduction) is measured. The remaining 
heat transported  with the ascending sap (by convection) is calculated to deduce 
sap flow rate. The higher the convection, the higher the sap flow rate in the plant. 
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2.4.3 Stem water potential 

Various researchers have proposed stem water potential as one of the most 

suitable indicators for plant water status (McCutchan and Shackel, 1992; Shackel 

et al., 1997; Choné et al., 2001; Williams and Araujo, 2002; Patakas et al., 2005; 

Acevedo-Opazo et al., 2010). Stem water potential is generally measured with a 

pressure chamber (Scholander et al., 1965), also a well-established method by 

grape- and wine growers (Williams and Araujo, 2002; Creasy and Creasy, 2009). 

In this method, leaves are enclosed in two-layered bags, plastic on the inside and 

aluminium foil on the outside, at least 1 hour prior to the measurements. When 

equilibrium between the leaf water potential of enclosed leaves and stem xylem 

water is reached, these leaves are cut off and inserted into the pressure chamber 

(Fig. 2.12) (McCutchan and Shackel, 1992). It is a destructive, discontinuous and 

labour-intensive method, which makes it impractical for automatic and continuous 

purposes. Attempts have been made to measure stem water potential 

automatically, such as the use of in situ stem psychrometers (Dixon and Tyree, 

1984; Vogt and Losch, 1999; Vogt, 2001). Although this sophisticated sensor 

requires a high level of technical skill and appears rather difficult to install and 

apply for long-standing applications (Jones, 2004; Nizinski et al., 2013), the stem 

psychrometer seems a promising technique for the future. 

2.4.4 Combination of plant measurements  

The above outlined physiological indicators for plant water status show both 

advantages as well as shortcomings. The influence of other factors such as 

microclimatic conditions, crop load and phenological stage may hamper the use of 

stem diameter variations and sap flow rate measurements as unambiguous 

indicators of plant water status when used without additional information. Stem 

water potential, on the other hand, is until now difficult to measure automatically. 

Good knowledge of underlying plant mechanisms seems of great importance. 

Mechanistic models are promising tools for this purpose as they can serve as a 

soft sensor: by compiling various plant variables, information can be linked and 

interpreted simultaneously. This enables unravelling plant mechanisms and 

contributes to our understanding of plant functioning. Such mechanistic models 

could also be used for automatic water status monitoring and irrigation scheduling. 
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Steppe et al. (2006; 2008) developed such a mechanistic model for irrigation 

scheduling of trees. Their water transport and storage model uses measurements 

of sap flow rate and stem diameter variations as input to describe both the 

dynamics in stem diameter and axial and radial water transport in a tree. The term 

storage refers to the fact that the model also considers daily fluctuation and water 

storage in the stem (as explained in section 2.4.1). The model enables accurate 

simulations of stem water potential under well-watered conditions, among other 

plant variables. By combining the information on stem water potential, stem 

diameter variations and sap flow rate, the water transport and storage model gives 

a detailed description of the water status and physiological condition of the plant. 

2.4.5 Vulnerability curve 

The plant’s sensitivity to drought is generally described by a vulnerability curve 

(Fig. 2.13) (Choat et al., 2010; Cochard et al., 2010; Sperry et al., 2012). Such a 

curve is a graphical representation of the plant’s percentage loss of hydraulic 

conductance  (PLC [%]) in the xylem as a function of declining xylem water 

potential (Ψ [MPa]) (Tyree and Zimmermann, 2002). Alternatively, if the length of 

the segment is known, PLC is calculated based on hydraulic conductivity 

Fig. 2.12 (A) Set-up of the pressure chamber method (accuracy ± 0.05 MPa) 
(Scholander et al., 1965). When a leaf is cut off, xylem sap drops back below the 
cut surface due to prevailing xylem tension (i.e. water potential). The pressure in 
the pressure chamber (where the cut leaf is placed) is gradually raised until sap 
exudates at the cut end. At that moment, leaf water potential matches applied 
external pressure and can be read out. (B) When leaves are bagged for at least 1 
h prior the measurements, leaf water potential comes into equilibrium with stem 
xylem water potential. 
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(normalised to the length). In the stem xylem, this loss is mainly the consequence 

of cavitation (Sperry et al., 2012). For each Ψ value (e.g. Ψ ranging from 0 to -5 

MPa), a corresponding PLC value can be calculated as such: 

 

)
K

K
1(*100=PLC

max
-

  (2.3) 

with K actual hydraulic conductance [g.MPa-1.h-1] or conductivity [g.m.MPa-1.h-1] 

and Kmax the hydraulic conductance or conductivity when none of the xylem 

vessels is cavitated. The more sensitive a plant is to cavitation, the more it is 

prone to cavitation under less negative stem water potentials and thus the more its 

hydraulic functioning is hindered.  

Each species (e.g. Tyree and Sperry, 1989; Tyree and Zimmermann, 2002) or 

even cultivar (e.g. Alsina et al., 2007) has a characteristic vulnerability curve. A 

vulnerability curve typically has a sigmoid shape (so-called “s” shape, Fig. 2.13) 

because not all vessels cavitate under the same stem water potentials. Indeed, the 

vessels have different dimensions (Cai and Tyree, 2010; Christman et al., 2012) 

and perhaps more importantly, a different total area of pit membranes (i.e. 

interconnection between separate vessels) (Wheeler et al., 2005), pit membrane 

structure and distribution of pores (Sperry and Tyree, 1988; Tyree and 

Zimmermann, 2002; Choat et al., 2008; Lens et al., 2013). All these important 

features define a vessel’s resistance against cavitation. Recently, also “r” shaped 

vulnerability curves have been observed (e.g. blue vulnerability curve in Fig. 2.13), 

which show a rapid rise in PLC at the beginning of the vulnerability curve (Ψ close 

to zero) before levelling off in a long tail (Cochard et al., 2010; Christman et al., 

2012; Sperry et al., 2012). Especially for species with long vessels, “r” shaped 

vulnerability curves have been observed with centrifuge and short segment 

techniques. These curves are considered anomalous and lead to a strong 

overestimation of plant vulnerability, probably arising from the presence of vessels 

which were cut open during sampling (called open-vessel artefact) (Choat et al., 

2010; Cochard et al., 2010; McElrone et al., 2012; Cochard et al., 2013). 

The stem water potential at which 50% of the hydraulic conductance is lost (Ψ50 or 

P50) is often applied as an index to classify the vulnerability of different species or 

cultivars to cavitation, e.g. as a screening trait for breeding programs (Tyree and 



 
Chapter 2 

32 

Zimmermann, 2002; Alsina et al., 2007; Choat et al., 2008). Ψ50 is therefore an 

important feature of a vulnerability curve. Values ranging from -0.7 to -11 MPa 

were found among 60 species from many different climates and growth forms 

(Tyree et al., 1994). 

Construction of the vulnerability curve 

Several standard procedures for constructing a vulnerability curve exist. K is 

calculated by the ratio of mass flow rate of the measurement solution through the 

segment (F [g.h-1]) and pressure gradient along its length (ΔP [MPa]), either 

induced gravimetrical by a hydraulic pressure head (Sperry et al., 1988; 2012; 

Alsina et al., 2007) or by a XYL’em apparatus (Cochard et al., 2000; Espino and 

Schenk, 2011): 

 PΔ

F
=K

  (2.4) 

Note the similarity with Eq. 2.2. The main difference of how a vulnerability curve is 

generated lies in the methodology to obtain the (successive) desired negative 

xylem pressures. These pressures are for instance obtained by bench drying or air 

dehydration (considered the gold standard) (Sperry and Tyree, 1988; Tyree and 

Zimmermann, 2002; Cochard et al., 2010; Christman et al., 2012; Urli et al., 2013), 

dehydration in a pressure chamber, also called air injection (Cochard et al., 1992; 

Sperry et al., 1998; 2012), or by using centrifugal forces (Alder et al., 1997; Sperry 

et al., 1998; 2012; Cochard, 2002; Urli et al., 2013). The standard procedures for 

constructing a vulnerability curve require destructive sampling and most are 

labour-intensive and time-consuming (Choat et al., 2010). Moreover, results may 

deviate dependent on the applied method (Choat et al., 2010; Cochard et al., 

2010; Jacobsen and Pratt, 2012; Cochard et al., 2013; Wheeler et al., 2013), 

sample length and/or dimension (Kikuta et al., 2003; Choat et al., 2010; Cochard 

et al., 2010) and method specifications such as xylem tensions during sample 

excision (Wheeler et al., 2013), degree of flushing and filtering, chemical 

composition and level of degassing of the aqueous measurement solution (Canny 

et al., 2007; Espino and Schenk, 2011; van Doorn et al., 2011; Jacobsen and 

Pratt, 2012; Sperry et al., 2012).  
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The use of vulnerability curves seems not so straightforward as first assumed. 

Besides the difficulties related to constructing and comparing vulnerability curves, 

other limitations arise. Hydraulic functioning or limitations for a species do not only 

depend on the plant hydraulic properties, but also on those of the soil. Alternative 

methods for describing vulnerability based on in situ plant (and soil) 

measurements may be a complementary method to investigate plant vulnerability. 

As such, hydraulic functioning can be observed under natural conditions and for 

an extended time period, while conventional vulnerability curves are constructed in 

a laboratory and at a certain moment in time. Also Hölttä et al. (2005) opted for an 

alternative vulnerability curve: they used measurements of ultrasonic acoustic 

emissions and stem diameter variations for studying cavitation dynamics in Scots 

pine (Pinus sylvestris L.) trees under field conditions. 

Vulnerability curve of grapevine 

The observation that vulnerability curves can vary greatly dependent on the 

applied procedure or method specifications, and its major implication for the often 

used benchmark criterion Ψ50 is illustrated for grapevine in Fig. 2.13 and Table 

2.1, respectively. 

2.5 Conclusions 

Water transport in grapevines occurs in xylem vessels and is described by the 

cohesion-tension theory. Since water is under tension, which is a metastable 

condition, the presence of air bubbles may lead to breakage of the water column. 

This process is called cavitation and results, in turn, in loss of hydraulic 

conductance. The loss of conductance as a function of increasing tensions is often 

depicted in a vulnerability curve, which is a benchmark method for comparing 

vulnerability of species. Grapevine development, quality of grapes and character 

of wine are strongly influenced by grapevine water status, and may benefit from 

some level of drought during certain periods of the growing season. Plant 

measurements such as sap flow rate, stem diameter variations and stem water 

potential are considered as good indirect or direct indicators for water status. They 

are therefore promising for obtaining this crucial balance, especially when their 

information is combined. 
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Fig. 2.13 Comparison of vulnerability curves for Vitis vinifera L. cv. Chardonnay 
obtained by different procedures and method specifications. A vulnerability curve 
depicts the percentage loss of hydraulic conductance (PLC) as a function of 
declining stem water potential (Ψstem). An important feature in vulnerability curves is 
Ψstem corresponding with 50% PLC (Ψ50). All experiments were performed by Choat 
et al. (2010), unless stated otherwise. 



 

 

Table 2.1 Overview of the implications for calculated Ψ50, i.e. stem water potential at which 50% of the hydraulic conductivity is lost, 
when comparing vulnerability curves obtained with different procedures and method specifications. All experiments were conducted 
on Vitis vinifera L.  

Cultivar Method Specifications Ψ50 
[MPa] 

Reference 

Chardonnay Centrifuge Non-flushed short segments (0.145 m) -2.19 Choat et al. (2010) 
Chardonnay Centrifuge Flushed short segments (0.145 m) -0.70 Choat et al. (2010) 
Chardonnay Bench drying 

 
Field-grown 
Long segments (0.5 - 0.9 m) 

-2.97 Choat et al. (2010) 

Chardonnay Bench drying 
 

Greenhouse-grown 
Long segments (0.5 - 0.9 m) 

-2.17 Choat et al. (2010) 

Chardonnay Air injection Long segments (0.9 m) -2.30 Choat et al. (2010) 
Chardonnay Air injection Short segments (0.145 m) -0.21 Choat et al. (2010) 
Chardonnay Bench drying - -2.27 Alsina et al. (2007) 
Tempranillo Bench drying - -1.17 Alsina et al. (2007) 
- Centrifuge Short segments (0.142 m) -0.76 Wheeler et al. (2005) 
Glenora Centrifuge Short segments (0.14 m) -0.16 Jacobsen and Pratt (2012) 
Glenora Centrifuge Short segments (0.27 m) -0.31 Jacobsen and Pratt (2012) 
Glenora Centrifuge Short segments (0.14 m) -0.34 Jacobsen and Pratt (2012) 
Glenora Centrifuge Short segments (0.27 m) -0.55 Jacobsen and Pratt (2012) 
Glenora Bench drying Short segments (0.14 m) -1.58 Jacobsen and Pratt (2012) 
Grenache Dehydration Long segments (0.4 m) 

Pooled data 
-0.91 Lovisolo et al. (2008)* 

Grenache Air injection Estimated based on leaf-specific 
hydraulic conductance 

-0.32 Schultz (2003)* 

Syrah Air injection Estimated based on leaf-specific 
hydraulic conductance 

-0.51 Schultz (2003)* 

Chasselas Bench drying 
 

Estimated based on a vulnerability curve 
of leaf petioles 

-0.41 Zufferey et al. (2011)* 

*Studies that reported hydraulic conductance, hydraulic conductivity or percentage loss of hydraulic conductivity data in combination with water 
potentials, but did not plot the data as a conventional vulnerability curve. Data were therefore extracted and converted to a vulnerability curve to 
estimate Ψ50 for comparison (after Jacobsen and Pratt (2012)). 
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Chapter 3  

Introduction of two statistical 

techniques for automatic stress 

detection based on stem diameter 

variations 

After: Baert A, Villez K and Steppe K. 2012. Functional Unfold Principal 

Component Analysis for automatic plant-based stress detection in grapevine. 

Functional Plant Biology. 39(6), 516-530. 

Abstract 

Detection of drought stress is of great importance in grapevines because the 

plant’s water status strongly affects the quality of the grapes and, hence, resulting 

wine. Measurements of stem diameter variations are very promising for detecting 

drought stress, but they strongly depend on microclimatic changes. Tools for 

advanced data analysis might be helpful to distinguish drought from microclimatic 

effects. To this end, the possibilities of two data mining techniques were explored: 

Unfold Principal Component Analysis (UPCA), an already established tool in 

several biotechnological domains, and Functional Unfold Principal Component 

Analysis (FUPCA), a newer technique combining functional data analysis with 

UPCA. With FUPCA, the original, multivariate time series of variables are first 

approximated by fitting the least-squares optimal linear combination of 
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orthonormal basis functions. The resulting coefficients of these linear combinations 

are then subjected to UPCA. Both techniques were used to detect when measured 

stem diameter variations in grapevine deviated from their normal conditions due to 

drought stress. Stress was detected with both UPCA and FUPCA days before 

visible symptoms appeared. However, FUPCA is less complex in the statistical 

sense and more robust compared to original UPCA modelling. Moreover, FUPCA 

can handle days with missing data, which is not possible with UPCA. 

3.1 Introduction 

As mentioned in Chapter 1, grapevines (Vitis vinifera L.) are often subjected to 

drought stress and this may become more common due to global climate change 

and increasing scarcity of water (Schultz, 2000; Schultz and Stoll, 2010). Soil 

water availability has a great influence on both the quality and the quantity of 

grapevines (Chapter 2; Smart et al., 1990; Williams and Matthews, 1990; Creasy 

and Creasy, 2009). Differences in plant water status thus result in wine with 

different appearance, aroma, flavour and colour (Smart and Robinson, 1991; 

Williams, 2000). 

It is known that the timing of occurrence of water deficit throughout the growing 

season is of great importance (Matthews et al., 1990; Keller, 2010a). Well-defined 

periods with a slight to moderate level of water deficit are therefore needed to 

improve the quality of grapes, and thus wine, without compromising production 

(Gaudillère et al., 2002; Möller et al., 2007; Creasy and Creasy, 2009). However, it 

is difficult to achieve this balance and it requires accurate monitoring of the plant’s 

water status. Early detection of drought stress makes it possible to avoid or at 

least limit decline in fruit quality (Bacci et al., 1998; Jones, 2004). As discussed in 

Chapter 2, it is generally recognised that the new and innovative strategies meant 

for this purpose should be plant-based, because plant physiological processes 

indeed respond directly to changes in the plant water status (e.g. Jones, 1990; 

2004; Steppe et al., 2008). Possible indicators are stem or leaf water potential 

(Jones, 1990). While the latter is strongly influenced by changing microclimatic 

conditions and therefore less suitable (Jones, 1990; Choné et al., 2001), stem 

water potential has already been successfully applied for drought stress detection 
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in grapevines (Choné et al., 2001; Intrigliolo and Castel, 2007b; Möller et al., 

2007). Water potential is generally measured with a pressure chamber, a 

destructive, discontinuous and labour-intensive method, and therefore impractical 

for continuous monitoring (Jones, 2004; Steppe et al., 2008). A more promising 

indicator is continuous measurement of variations in stem diameter (Goldhamer 

and Fereres, 2001; Steppe et al., 2006; Intrigliolo and Castel, 2007b; De Swaef et 

al., 2009; Fernández and Cuevas, 2010; Ortuño et al., 2010). Stem diameter 

variations result from both actual radial stem growth and daily fluctuations related 

to changes in water content in the elastic living tissues that serve as a storage 

pool for water (Génard et al., 2001; Daudet et al., 2005; Steppe et al., 2006). 

Changes in water content result from withdrawal (day) or replenishment (night) of 

internal water storage due to imbalances between root water uptake and leaf 

transpiration (Tyree and Zimmermann, 2002; Intrigliolo and Castel, 2007b; Steppe 

et al., 2012). Since stem diameter variations are affected by drought stress 

(Steppe et al., 2006; De Swaef et al., 2009) and can be measured continuously 

and automatically using Linear Variable Displacement Transducers (LVDT), they 

are very applicable for automatic on-line monitoring of the plant’s physiological 

condition.  

Before stem diameter variations, and plant-based indicators in general, can be 

used for stress detection, reference or threshold values are needed. However, an 

unambiguous method for determination of such values is currently not available 

(Jones, 2004; Steppe et al., 2008; De Swaef et al., 2009). Another difficulty is the 

highly dynamic nature of the plant’s water status (Goldhamer and Fereres, 2001) 

and the observation that stem diameter variations are not only affected by drought 

stress, but also depend on microclimatic conditions (Steppe et al., 2006; De Swaef 

and Steppe, 2010). Indeed, photosynthetic active radiation and vapour pressure 

deficit are key driving variables for transpiration and thus have an effect on the 

daily shrinkage and swelling of the diameter. Consequently, microclimatic 

measurements should be taken into account to distinguish automatically between 

changes in stem diameter variations due to daily variations (no detection desired) 

and changes due to the plant’s response to drought stress (detection desired as 

soon as possible). However, the resulting data set will likely be hard to interpret 

without additional tools for data analysis. 
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Specific data mining techniques, such as Principal Component Analysis (PCA), 

have been developed to facilitate monitoring and diagnosing of such multivariate 

data sets (Jackson, 1991) (More information on PCA for process monitoring can 

be found in Box 3.1). PCA is an efficient and powerful method that is commonly 

applied for statistical process control of processes where accurate mechanistic 

knowledge is lacking or difficult to achieve (MacGregor and Kourti, 1995; 

Venkatasubramanian et al., 2003). For instance, examples are found for 

wastewater treatment (Rosen and Lennox, 2001; Lennox and Rosen, 2002; Lee 

and Vanrolleghem, 2003; Villez et al., 2008) and fermentation processes (Lennox 

et al., 2001; Bicciato et al., 2002). Only one application of PCA for stress detection 

in plant science has been published so far (Villez et al., 2009). These authors used 

Unfold Principal Component Analysis (UPCA), an extension of PCA (Wold et al., 

1987; Nomikos and MacGregor, 1994), for successful drought stress detection in 

truss tomato (Solanum lycopersicum L.) and apple tree (Malus domestica Borkh). 

Another, newer technique called Functional Unfold Principal Component Analysis 

(FUPCA) combines functional data analysis with UPCA (Chen and Liu, 2001). 

With FUPCA, each daily time series of the original variables is first approximated 

by a function. As a result, the data are represented by a smaller number of new 

values which are further analysed by UPCA (Chen and Liu, 2001).  

The aim of the present chapter was to evaluate and compare the performance of 

both UPCA and FUPCA for automatic, fast and accurate on-line detection of 

drought stress in grapevine.  

 

Box 3.1 Principal Component Analysis applied for 

process monitoring 

Over a wide range of applications, there is a growing interest for automatic and 

online data acquisition of industrial processes. Automatic data collection appears 

very useful, timesaving and convenient, however, once the data are collected, it 

may be difficult to analyse and interpret the compiled dataset. In many datasets, 

complex interactions exist between the measured variables. The contribution of a 
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particular variable to the process performance, which is hoped to be optimised by 

monitoring the process, may be unclear. The interactions between the measured 

variables are not always (fully) understood and often knowledge of underlying 

mechanisms driving the process is lacking. For the controller/supervisor it may be 

difficult to define the most crucial variables to observe, unravel, extract correlations 

between the measured variables and assess whether the process behaves as 

expected or whether action is needed.  

Therefore, tools have been developed to support the handling and analysing of 

large and complex datasets in order to improve process performance and product 

quality (Kourti, 2002). An often applied, and in some fields already well-

established, technique for monitoring a process is Principal Component Analysis 

(PCA), which has many variants (Venkatasubramanian et al., 2003). PCA is a data 

mining technique, generally applied to reduce the dimensionality, and therefore 

surveyability, of a large dataset. By use of PCA, information contained in a great 

number of measured variables is extracted and subsequently expressed by a 

smaller number of new variables, called principal components (PCs). Contrary to 

the original variables, these PCs are uncorrelated. They are ordered as such that 

most of the variation present in the original variables is captured by only the first 

PCs. PCA as such considerably reduces the dataset’s dimension with only a 

minimal loss of variation inherent in the data (Jolliffe, 2002). It is assumed that the 

largest part of the variation that is captured by the PCA model is representative for 

the amount of retained information underlying the measured variables (Villez, 

2007) and that the constructed PCA model properly describes the major trends 

observed in the data (Venkatasubramanian et al., 2003). 

Besides dimension reduction, PCA can be applied to monitor a process, i.e. 

identify periods of unusual behaviour or indicate when an abnormal event occurs 

(Aguado et al., 2007). To this end, reference data (so-called historical data) are 

required to define normal (routine) behaviour for the corresponding process. Data 

describing the desirable performance forms as such the so-called in-control model. 

New data are subsequently checked against this in-control model (Chen and Liu, 

2001; Kourti, 2002). In some cases, PCA is further employed to diagnose the 

possible cause of detected abnormal process behaviour (MacGregor and Jaeckle, 

1994; Kourti, 2002; Qin, 2003). Although not every problem or cause may be 
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unambiguously pointed out by PCA, the method generally allows to reveal which 

group of measured variables contributed most to the deviation from the in-control 

model, suggesting their responsibility for the abnormal behaviour (MacGregor and 

Jaeckle, 1994; Kourti, 2002). This considerably narrows down the amount of data 

the controller/supervisor has to focus on.  

PCA has applications in agriculture, biology, chemistry, climatology, demography, 

ecology, genetics, economics, geology, quality control and so on (Jolliffe, 2002). 

For a monitoring purpose, the technique has been tested both offline and online (in 

real-time) for a various range of processes, such as fermentation (Lennox et al., 

2001; Monroy et al., 2012) and polymerisation batches (MacGregor and Kourti, 

1995), wastewater treatment processes to ensure that effluent quality targets are 

obtained (Aguado et al., 2007; Villez et al., 2008), steel- (Miletic et al., 2008), 

polyethylene- (MacGregor and Jaeckle, 1994) and food- (Gurden et al., 2001) 

manufacturing batches, among others. It has begun to find wide acceptance in 

industry as well, where it increased safety and returns (Kourti, 2002). As discussed 

in Chapters 3 and 4, a living grapevine can also be considered as an ongoing 

process with abnormal behaviour occurring during drought stress.   

 

 

3.2 Material and methods 

3.2.1 Plant material and experimental set-up 

An experiment was conducted on potted grapevines (Vitis vinifera L. cv. Leon 

Millot) in the greenhouse facilities of the Faculty of Bioscience Engineering of 

Ghent University, Belgium, during the growing season of 2011. The grapevines 

were approximately four years old and grown in 50 L containers (0.4 m diameter, 

0.4 m height) filled with DCM Mediterra compost and fertilized in summer with 

DCM organic fertilizer for grapes (magnesium NPK 7-4-7 + 2 MgO). The 

grapevines were approximately 1.5 m high and had stem diameters of about 16 to 

21 mm. They were trained and pruned according to the single Guyot system. One 

grapevine was chosen for this study and monitored continuously. After a long 
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control period where the plant was kept well-watered, a period of drought was 

imposed by withholding irrigation. Irrigation for the stressed plant was resumed 

when clear visible symptoms of drought stress were observed (colouring and 

wilting of the leaves). The drought period was followed by a recovery period, in 

which the plant was again well-watered. The experiment ran from 13 May until 26 

July (day of the year (DOY) 133 - 207). Drought stress was imposed from 14 until 

28 June (DOY 165 - 179), DOY 165 being the last irrigation before the drought 

period and DOY 179 the day were irrigation was resumed. 

3.2.2 Plant and microclimatic measurements 

During the experiment, stem diameter variations as well as microclimatic 

conditions were monitored (Fig. 3.1). Photosynthetic active radiation (PAR) was 

measured with a quantum sensor (LI-190S, Li-COR, Lincoln, NE, USA), air 

temperature (Tair) with a thermocouple (type T, Omega, Amstelveen, the 

Netherlands) and relative humidity (RH) with a RH sensor (type Hygroclip, 

Rotronic, USA) inserted in a radiation shield. The sensors were installed inside the 

greenhouse near the grapevines, approximately 2 m above ground. Vapour 

pressure deficit (VPD) was calculated from RH and Tair as the difference between 

the air’s potential and actual vapour pressure value.  

Stem diameter variations (D) were measured using a LVDT sensor (Linear 

Variable Displacement Transducer, model DF 5.0, Solartron Metrology, Bognor 

Regis, UK), attached to the stem with a custom-made stainless steel holder, which 

does not require a temperature correction (Steppe and Lemeur, 2004). All sensor 

signals were recorded every 20 s (DAQ 34970A and multiplexer 34901A, Agilent 

Technologies, Diegem, Belgium). The analysed data of PAR, VPD and D were 

included as input for UPCA and FUPCA modelling. All data- and modelling 

analysis were performed in Matlab® (The Mathworks Inc., Natick, MA, USA). 

3.2.3 Unfold Principal Component Analysis 

Principal Component Analysis (PCA) is a well-established technique for monitoring 

and diagnosing of processes with large, multivariate data sets, consisting of many 

variables with strong correlations (Box 3.1; Jackson, 1991; Kourti, 2002; 

Venkatasubramanian et al., 2003). In this study, PAR, VPD and D measurements 

were organised in a three-dimensional matrix X (I × J × K), in which I stands for 
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the day it was taken, J for the time within the day and K for the variable. To deal 

with three-dimensional data sets, an extension of PCA, Unfold Principal 

Component Analysis (UPCA), was needed, which was first proposed by Wold et 

al. (1987). A detailed description of UPCA can be found in Nomikos and 

MacGregor (1994) and a more extensive explanation on how UPCA can be 

applied for on-line plant stress detection in Villez et al. (2009).  

Fig. 3.1 Schematic overview of the sensors installed during a drought stress 
experiment on grapevine: (A) Relative humidity, air temperature and (B) 
photosynthetic active radiation were measured above the canopy. Soil water 
potential was measured with an electronic tensiometer (C), stem diameter 
variations with a Linear Variable Displacement Transducer (D) and sap flow rate 
with a heat balance sensor (E). 
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Days with missing data cannot be considered in classical UPCA, so 18 out of 74 

days were omitted from the data set, including four days during the control period 

(mainly because of electricity failure). The remaining 26 days between DOY 134 

and 165 during the well-watered control period were used for calibration (Ical) of the 

UPCA model, with I = 56 days, J = 4320 measurements (measurement value 

every 20 s) and K = 3 variables (PAR, VPD and D). 

Data pre-processing 

Prior to UPCA, the data were pre-processed. First, the daily net growth of the 

diameter was removed by subtracting the first value of each day from all D 

measurements of that day. This subtraction was necessary to get an interpretable 

UPCA model, because each day was considered as a separate and independent 

cycle for the purpose of PCA modelling (Villez et al., 2009). Next, the data were 

centred column-wise (Fig. 3.2A) to zero mean by subtracting the mean of all 

measurements for a specific sensor at a given time during the day from the 

corresponding measurements. Then, centred data of a specific sensor were 

divided by the overall standard deviation of the data for that given sensor. This 

group scaling or single-slab scaling (Fig. 3.2B) balanced the variation in the 

sensor’s measurements without disturbing the data’s covariance structure (Gurden 

et al., 2001). Finally, the data were unfolded batch-wise (Fig. 3.2C) to transform 

the three-way data set (I × J × K) into a two-way matrix (I × J.K). A single row now 

represented all and exclusively data of one single day (0-24 h). After pre-

Fig. 3.2 Column-wise centring (A), group scaling or single-slab scaling (B) (after 
Gurden et al. (2001)) and batch-wise unfolding (C) as part of the pre-processing of 
data for Unfold Principal Component Analysis. X represents a three-dimensional 
data matrix in which I stands for the day, J for the time within the day and K for the 
variable. 
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processing, the data were suitable for PCA modelling, henceforth referred to as 

UPCA modelling. 

The UPCA model 

Since correlation exists in the data, a majority of the data’s variation can be 

captured well by a smaller set of new variables, called principal components 

(PCs). Those new variables were constructed based on the calibration data and 

were uncorrelated and orthogonal linear combinations of the original variables. 

The larger the number of retained PCs (# PCs or c), the larger the proportion of 

variance of the original data that is captured by the model (Johnson and Wichern, 

2002). The proportion of total variance captured by a single PC is referred to as 

relative variance (RV), while the relative cumulative variance (RCV) is the 

proportion of variance captured by the first c PCs. As a result, identification of the 

UPCA model boils down to determining the number c. This is typically done in a 

subjective manner while attempting to trade off between dimension reduction (c) 

and captured variance (RCV). Visualisation and analysis by means of the PCs 

may be easier than working with the complete dataset. To transform the original 

variables into PCs, the data matrix (X I x J.K) is decomposed into a new score 

matrix (T I x c) with I observations and c principal components, and a loading matrix 

P (dimensions J.K x c). This can be written as follows: X = T.P' + E, with E the 

residuals. The c column vectors of P (thus one for each PC) are the c eigenvectors 

of the calibration data covariance matrix and are also called loading vectors. 

UPCA modelling can be interpreted as the construction of a relationship between 

the new variables to obtain a profile of expected, normal conditions.  

Stress detection with UPCA  

Two conventional statistics were used for statistical stress monitoring: the Q 

statistic and the Hotelling’s T² statistic (Hotelling, 1947; Johnson and Wichern, 

2002). Calibration data were used to determine the upper control limit of those two 

statistics (Fig. 3.3). The Q statistic or sum of squared residuals measures the 

goodness of the model fit:  

  ∑
N

1=n

2
R )n,i(M=)i(Q   (3.1) 
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with MR the matrix of residuals, N the lateral dimension of the two-dimensional 

data matrix (N = J x K), n the corresponding coordinate inside this matrix and i the 

coordinate representing the day. Practically, the Q statistic determines the 

difference between the original and reconstructed data and accounts for the 

expected variance of the residuals. If the upper control limit of this statistic is 

violated, residuals are believed not to result from random effects only. The second 

statistic, Hotelling’s T², is defined as the weighted sum of squared scores and is a 

measure for the distance between the reconstructed data and the origin:  

  

∑
C

1=c c

2
2

λ

)c,i(T
=)i(T

  (3.2) 

with T the score matrix, C the number of retained PCs, c the PC index and λc the 

cth largest eigenvalue. Since the use of the Hotelling's T2 assumes otherwise 

normal data, accounting for variation within the modelled space (linear subspace 

spanned by the c selected eigenvectors), this statistic is typically useful to detect 

extreme events which do not violate the correlation structure as identified via the 

Fig. 3.3 Schematic overview of Unfold Principal Component Analysis (UPCA) for 
plant stress detection. The UPCA model is constructed by means of a calibration 
set and statistical limits (T²α, Qα) are determined. Subsequently, new data are 
projected onto this UPCA model and corresponding statistics (T², Q) are 
calculated. They are finally compared with the previously determined statistical 
limits to determine if plant stress occurs. 
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first c eigenvectors of the covariance matrix. To this end, one first evaluates 

whether the Q statistic remains under its set limit. Only if this is true, the Hotelling's 

T2 is checked against its proper limit, even though it can always be computed. 

Determining whether drought is detected in new data is done by pre-processing 

these data in the same manner (removal of D net growth, centring, scaling and 

unfolding) and projecting them onto the UPCA model. Corresponding statistics (Q, 

T²) are then compared with the previously determined statistical limits (Qα, T²α) 

(Fig. 3.3). If one of the limits is exceeded, it indicates abnormality (drought stress) 

for the corresponding day. 

3.2.4 Functional Unfold Principal Component Analysis 

Functional Unfold Principal Component Analysis (FUPCA) was first introduced by 

Chen and Liu (2001). The method applies functional data analysis prior to UPCA 

modelling and therefore reduces the set of original variables into a set of new 

coefficients (via functional data analysis), while preserving the ability to easily 

monitor a process and detect abnormalities (via UPCA). FUPCA is therefore a 

promising technique for stress detection in plants. 

Functional data analysis 

Functional data analysis is a method to represent the data in such a way that it 

facilitates further analysis (Ramsay and Silverman, 2005). With this analysis, each 

single daily time series of the original variables (PAR, VPD and D) is approximated 

by linear combinations of a set of known basis functions (defined below). These 

basis functions are orthonormal and have been proven to allow arbitrarily good 

function approximations by linear combination of a sufficiently large number of 

such basis functions. As a result, the majority of the information contained in the  

PAR, VPD and D measurements is stored by functional data analysis in a 

condensed form, since the coefficients of the linear combination are of a lesser 

number than the original measurements. 

In this study, the B-spline basis was chosen. This basis consists of several spline 

functions, called B-splines, and often needs only a small number of them to 

approximate the data. B-splines can be computed fast and exhibit great flexibility 

(Ramsay and Silverman, 2005). The use of B-splines as a basis results in a piece-

wise polynomial function. 
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Two choices have to be made for defining a B-spline. First, the order (n) of the B-

splines has to be fixed, which is one more than its degree (n-1). For instance, a 

third order B-spline is from the second degree or piecewise quadratic. Note that 

the derivatives of the function up to derivative n-2 are continuous over the whole 

argument range of the fitted function. In Fig. 3.4A, B, C, an example of 

respectively a second, third and fourth order B-spline is shown for the 

approximation of a sine function. Second, one needs to determine the locations of 

the so called knots which define the location and width of each of the B-splines, as 

well as the intervals over which the fitted function is continuous. In this study, a 

complete day covered in the data set (0-24 h) was divided into equal-length 

intervals by placing knots uniformly over the argument range. The same 

Fig. 3.4 Example of second (A), third (B) and fourth (C) order B-splines (black 
lines) to approximate a sine function (grey lines). The interval across which the 
function is to be approximated is divided into subintervals by knots (green circles) 
(adapted from Ramsay and Silverman (2005)). 



 
Chapter 3 

50 

placement was used for all days and all variables. Knots were positioned every ith 

hour of a day [0: i: 24 h]. Different options for i were tested. For instance, a knot 

could be placed every 6 h or every 6 min. The number of coefficients to define a B-

spline is determined by the number of knots and the order (i.e. the interior knots 

plus the order). The approximation and flexibility of a B-spline can be improved by 

increasing the order and the number of knots, respectively. Determining the knots 

and order is therefore a balance between a better approximation (fit) and 

smoothness (simplicity).  

By the opportunity to add constraints to a function, functional data analysis permits 

incorporation of additional information based on prior knowledge, such as being 

positive, monotone, convex or concave (Ramsay and Silverman, 2005; Turlach, 

2005). In this study, the PAR variable is known only to take non-negative values 

(PAR ≥ 0). For this reason, a positivity constraint was added to ensure that the 

fitted functions are non-negative over the whole argument range. This was 

implemented through the shape constrained spline fitting method of Turlach 

(2005). 

More extensive information on functional data analysis and B-splines can be found 

in Ramsay and Silverman (2005) or Ramsay et al. (2009).  

Combination of functional data analysis and UPCA: the FUPCA model  

Functional data analysis was in this study applied to generate a smaller set of 

spline coefficients (originating from the B-splines), which capture the majority of 

the relevant information. These new coefficients, instead of the original data, were 

then used for identifying the UPCA model (Chen and Liu, 2001) (Fig. 3.5), 

henceforth referred to as FUPCA model. This reduced the number of free 

parameters to be estimated as part of the PCA modelling step. Moreover, 

functional data analysis can handle missing data, provided that the number of 

missing data points is not too large. More specifically, a unique set of coefficients 

can be identified if at least one data point is present in each knot interval and if the 

total number of data points is equal or larger than the number of estimated 

coefficients. Therefore, days with empty subintervals were removed from the data 

set. 
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Fig. 3.5 Schematic overview of Functional Principal Component Analysis (FUPCA) 
for plant stress detection. A calibration set (with N measurements) is first 
subjected to functional data analysis. Resulting C coefficients are then used to 
construct a UPCA model with c principal components (PCs) and to determine 
statistical limits (T²α, Qα). Subsequently, new data are projected onto this UPCA 
model after the same functional data analysis and corresponding statistics (T², Q) 
are calculated. They are finally compared with the previously determined statistical 
limits to determine if plant stress occurs. 

It is typically assumed in PCA-based applications that the data as analysed 

contain only independent and identically distributed (IID) noise. Moreover, PCA 

models are least-squares optimal which means that the resulting model is 

maximum likelihood optimal only if the measurement errors are assumed to be 

normal (i.e. Gaussian). Unfortunately, spline function fitting is a (linear) 

transformation and thus results in a non-identical distribution of the errors in the 

spline coefficients if the original measurement errors were IID distributed. Spline 

fitting does preserve normality, however, since it entails a linear transformation 

only. To counter the effects of spline fitting on the error distribution, a whitening 

procedure was executed to decorrelate the errors in the spline coefficients due to 

measurement error in the original data. To this end, the expected correlation 

matrix for these errors was computed, assuming normal and IID distribution of the 

measurement errors in the original data. This expected correlation matrix was then 
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used to apply maximum likelihood scaling to the spline coefficients (Wentzell and 

Lohnes, 1999) prior to UPCA analysis (Hoefsloot et al., 2006). 

Subsequently, to define the FUPCA model, a similar procedure as for classical 

UPCA modelling (Fig. 3.3) was applied. The difference is that the calibration set 

was first subjected to functional data analysis. Then, the resulting (smaller) set of 

coefficients were pre-processed by rotation, centring, scaling and unfolding and 

used to construct the FUPCA model. New data were projected onto this FUPCA 

model after the same functional data analysis and pre-processing. Corresponding 

statistics (Q, T²) were calculated and finally compared with the previously 

determined statistical limits (with the calibration set) to determine if plant stress 

occurred (Fig. 3.5). 

3.3 Results 

3.3.1 The UPCA model  

Microclimatic conditions (PAR and VPD) (Fig. 3.6A) and D (Fig. 3.6B) were 

monitored. The grapevine showed a net daily growth for D during the control 

period (DOY 133 - 165). A few days after water was withheld (DOY 165), a clear 

deviation in the course of D was observed. Irrigation was resumed on DOY 179 

because clear visible symptoms of drought stress were detected. Although the 

grapevine was again well-watered during the recovery period, D showed little or no 

growth (Fig. 3.6B). 

Calibration data (from the control period) were used to identify the UPCA model. 

The RV and corresponding RCV for the first 12 PCs are plotted in Fig. 3.7A and B, 

respectively. 60% of the total variance of the dataset was captured by the first PC. 

The following PCs only captured 10% or less. Since adding an extra PC would 

only add a small amount of explained variability, while increasing the complexity of 

the UPCA model, the model with one PC was selected. For all variables, large 

variability in the loadings of this first PC (Fig. 3.7C) was seen during the day, while 

the temporal variations were smaller in night time conditions (morning and evening 

hours, i.e. first and last data points of each variable). Indeed, Fig. 3.6 shows that 

most variability in PAR, VPD and D between days is found during the daytime. For 

instance, both sunny and cloudy days were observed, having a very different PAR 
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and VPD pattern. Since PAR and VPD are the key driving variables for 

transpiration, they also have an effect on the daily shrinkage and swelling of the 

diameter (Steppe et al., 2006). Moreover, Fig. 3.7C shows that PAR and VPD are 

positively correlated, while D shows a negative correlation. This negative 

correlation can be explained as follows: higher PAR and VPD result in higher 

transpiration and lower water potentials in the plant (Cruiziat and Tyree, 1990; De 

Swaef and Steppe, 2010). If transpiration exceeds water uptake from the soil, the 

internal water storage is depleted and D shrinks (Tyree and Zimmermann, 2002; 

Steppe et al., 2006; 2012; Intrigliolo and Castel, 2007b).  

Fig. 3.6  (A) Microclimatic conditions: photosynthetic active radiation (PAR, grey 
line) and vapour pressure deficit (VPD, black line). (B) Stem diameter variations 
(D) of a drought-stressed grapevine. The grey area marks the period of drought 
for the stressed grapevine (DOY 165 - 179). 
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3.3.2 Stress detection with UPCA 

The calibration data were used to determine the statistical limit for the Q statistic 

and Hotelling’s T² statistic (Qα, T²α). Subsequently, statistical values for the entire 

grapevine dataset were calculated using the UPCA model and compared with 

these limits (Fig. 3.3). Both the Q statistic (Fig. 3.8A) and the Hotelling’s T² statistic 

(Fig. 3.8B) stayed within their limit during the control period. The latter needs to be 

checked only if the Q statistic remains under its set limit, as it is designed to detect 

extreme events that do not violate the correlation structure. Since the Hotelling’s 

T² statistic stayed within its limit, no such events were detected. The Q statistic 

started violating the 99% limit (Qα) from DOY 172 until the end of the stress period, 

except for DOY 173 and 176, where Q did not exceed the limit, and DOY 178, 

which could not be monitored due to a lack of D data (Fig. 3.6B). The low Q 

statistics on DOY 173 and 176 can be explained by the low PAR and VPD values 

of those days, resulting in only a small or even negligible shrinkage of D (Fig. 3.6). 

On DOY 179, water supply was resumed and the Q statistic remained again below 

its limit from DOY 180 onward, suggesting recovery of the grapevine. UPCA could 

hence detect drought stress seven days before visible symptoms appeared.  

3.3.3 Functional data analysis 

In FUPCA (Fig. 3.5), all data were first transformed by means of B-spline basis 

functions. The same functional data analysis (same order and distribution of knots) 

Fig. 3.7 (A) Relative variance (RV) and (B) relative cumulative variance (RCV) as 
a function of the number of PCs, c. (C) Loadings for all variables, i.e. 
photosynthetic active radiation (PAR), vapour pressure deficit (VPD) and stem 
diameter variations (D), of the first principal component of the UPCA model for 
grapevine. 
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was performed on each variable. Different numbers of uniformly spaced knots 

were tested by increasing the length of the subintervals. For instance, in Fig. 3.9, 

third order B-splines with knots every 6 h (Fig. 3.9A) and every 6 min (Fig. 3.9B) 

were used to approximate one day of D. To decrease the complexity of the 

FUPCA model, the longest subinterval that resulted in a satisfying detection was 

chosen. For a subinterval of 1.5 hours, an early detection with only two false 

detections (i.e. detection of drought stress during a well-watered period, see 

below) was obtained. Also for smaller subintervals, one or two false detections 

were observed. When a greater subinterval was selected, four false detections or 

more were obtained. Therefore, a knot distribution every 1.5 h was chosen. Also 

different orders of the B-splines were tested. Third order B-splines were chosen 

because they resulted in a good data fit, while a greater order, thus also a more 

complex function, did not significantly improve this. Therefore, all variables were 

transformed with third order B-splines, knots placed every 1.5 h. This resulted in 

18 coefficients per variable as input for the FUPCA model (Fig. 3.10C, discussed 

below). 

Fig. 3.8 Unfold Principle Component Analysis (UPCA) for grapevine: (A) square 
root of Q statistic and (B) square root of Hotelling’s T² statistic as a function of 
time. The grey area marks the period of drought for the stressed plant (DOY 165 -
179), the dotted lines indicate the statistical 99% limits Qα and T²α. 
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3.3.4 Stress detection with FUPCA 

In Fig. 3.10A and B, RV and RCV for the first 12 PCs of the FUPCA model, based 

on the calibration data, are shown respectively. As in classical UPCA, the model 

with one PC was selected since more than 60% of the total variance of the dataset 

was captured with the first PC, while the following PCs captured 10% or less. For 

the FUPCA model, a similar loading pattern of the first PC (Fig. 3.10C) was found 

as for classical UPCA (Fig. 3.7C), but now with less data points per variable. This 

Fig. 3.9 Approximation by functional data analysis (black lines) for one day of 
diameter variation measurements (D, grey lines) with third order B-splines and 
subintervals of (A) 6 h or (B) 6 min. 

Fig. 3.10 (A) Relative variance (RV) and (B) relative cumulative variance (RCV) as 
a function of the number of PCs, c. (C) Loadings for all variables, i.e. 
photosynthetic active radiation (PAR), vapour pressure deficit (VPD) and stem 
diameter variations (D), of the first principal component of the FUPCA model for 
grapevine. 
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demonstrates that a major part of the information was kept after transformation by 

functional data analysis, while the complexity greatly reduced. 

In order to retain independent and identically distributed noise after functional data 

analysis, the coefficients were rotated prior to centring and scaling. Therefore, a 

rotation matrix was constructed, containing the variance of the variables: 246 

µmol.m-2.s-1 for PAR, 1.1 10-4 kPa for VPD and 2.5 10-7 m for D.  

Next, statistical values for the complete dataset were determined and compared 

with the statistical limits. Fig. 3.11 shows that the Q statistic and Hotelling’s T² 

statistic did not rise above their statistical limit for the entire control period. As in 

classical UPCA modelling, the Q statistic of the FUPCA model indicated 

abnormality on DOY 172. Drought stress was therefore detected by FUPCA with 

the same speed as with classical UPCA.  

Only two false detections were found: the Q statistic was violated on DOY 181 and 

193, even though those days belong to the recovery period. DOY 193 could not be 

monitored with classical UPCA (Fig. 3.8) because that day contained missing data. 

Fig. 3.11 Functional Unfold Principle Component Analysis (FUPCA) for grapevine: 
(A) square root of Q statistic and (B) square root of Hotelling’s T² statistic as a 
function of time. The grey area marks the period of drought for the stressed plant 
(DOY 165 - 179), the dotted lines indicate the statistical 99% limits Qα and T²α.  
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Moreover, the false detection on DOY 193 can be explained by the sudden 

increase in D (Fig. 3.6B). Because neither VPD nor PAR showed notable 

differences with other days, the sudden increase is caused by an irrigation event, 

suggesting that the grapevine might have experienced unsatisfying water 

availability the preceding days. 

3.4 Discussion 

3.4.1 UPCA and FUPCA to automatically detect plant stress  

The proposed UPCA and FUPCA techniques were proven successful for early 

drought stress detection in grapevine because they could detect drought stress 

days before visible symptoms appeared (colouring and wilting of the leaves, 

observed on the day of resumed irrigation). Also Villez et al. (2009) successfully 

applied UCPA for automatic stress detection in apple tree and truss tomato. The 

proposed FUPCA technique of this study was tested on those datasets as well, 

and obtained the same results as with classical UCPA modelling (Baert et al., 

2011). This suggests that both techniques will be applicable for other species as 

well, as long as there is a clear relationship between stem diameter variations and 

plant water status. The model should then be calibrated using the microclimate 

and stem diameter variations data of the species of interest during a well-watered 

period. 

Detection in UPCA and FUPCA is based on statistically determining whether new 

data behave normally, i.e. within the limits defined by a so-called in-control model. 

This in-control model is abstracted from the calibration data, which are assumed to 

represent correlations and behaviour belonging to normal conditions (well-

watered) (Venkatasubramanian et al., 2003). In fact, one can say that the FUPCA 

or UPCA model represents the expected pattern under normal conditions. Both 

techniques therefore circumvent the need of determining a reference or threshold 

value, which is a difficulty in other methods for automatic stress detection (Fereres 

and Goldhamer, 2003; Jones, 2004; Steppe et al., 2008; De Swaef et al., 2009). 

Such thresholds are typically set as boundary lines on monitored plant-based 

measurements. However, a reference measurement of the plant water status is 

not only influenced by soil water status, but also by microclimatic conditions 
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(Ortuño et al., 2010). The threshold is therefore usually based on measurements 

under well-watered conditions (Fereres and Goldhamer, 2003; Patakas et al., 

2005) or relationships between plant responses and the water status (De Swaef et 

al., 2009). There is however currently not an established method to make this 

possible. UPCA and FUPCA represent promising alternatives (further discussed in 

Chapter 4). 

The UPCA and FUPCA techniques developed in this study detect drought stress 

based on variations in stem diameter. It is indeed a sensitive parameter in 

grapevine to monitor the water status (Intrigliolo and Castel, 2007b; Ortuño et al., 

2010). After veraison, however, Intrigliolo and Castel (2007b) found that there was 

no longer a relationship between stem diameter variations and plant water status 

in grapevine. The time veraison is achieved, stem growth starts to decrease 

independently from water status, probably because the fruits become a more 

important sink, and eventually stem growth ceases. Most likely, UPCA and FUPCA 

would detect an abnormality in that specific period, although the shrinkage in stem 

diameter is then not caused by drought stress, but by the characteristic behaviour 

of grapevine after veraison. 

The lack of stem diameter growth during the recovery period (Fig. 3.6B) may be 

explained by the timing during the growing season, as stem diameter growth in 

grapevines has been observed to cease near the end of the growing season (Ton 

and Kopyt, 2004; Kopyt and Ton, 2005; Intrigliolo and Castel, 2007b). Hence, 

UPCA and FUPCA performances will be tested using data from different drought-

experiments (timing during the growing season) and different seasons in Chapter 

4. 

Currently, the proposed methods are able to detect abnormality or not, but they do 

not yet distinguish among different levels of drought stress. This is not necessary 

for full irrigation management, where drought stress is systematically avoided. In 

deficit irrigation scheduling, however, a specific level of drought stress is often 

desired and intended to be maintained over a certain period of time. This might be 

difficult with the developed models in this study. In future research, it would be 

interesting to investigate whether the UPCA and FUPCA techniques can be made 

useful to detect different levels of drought stress in plants (discussed in Chapter 

8).  
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3.4.2 Comparison of UPCA and FUPCA 

For grapevine, as well as apple tree and truss tomato (Baert et al., 2011), UPCA 

and FUPCA techniques achieved drought stress detection with the same speed. 

However, if the dataset contains days with partly missing data, FUPCA modelling 

is able to monitor more days compared to UPCA modelling. In this study, only 6 

days out of 74 needed to be removed in the FUPCA analysis (Fig. 3.11), because 

on these particular days the gaps of missing data were too large (mainly due to 

electricity failure). In UPCA, however, 18 days needed to be removed from the 

same data set (Fig. 3.8). Obviously, the ability of FUPCA modelling to estimate 

small gaps with missing data is a great advantage for fast stress detection, since 

more days can be monitored. 

Moreover, in FUPCA, all variables were first transformed with functional data 

analysis to reduce the FUPCA model input. This resulted in 18 coefficients per 

variable (Fig. 3.10C), while the original variables consisted of 4320 data points 

each (Fig. 3.7C) as input for the classical UPCA model. Consequently, the FUPCA 

model is less complex in a statistical sense compared to the original UPCA model. 

As a result, FUPCA does not capture the short-term (minutes) variations in D 

caused by fluctuations in the microclimatic conditions (e.g. Fig. 3.9A). Despite this 

information loss, UPCA and FUPCA performed similarly in this study. This 

suggests that the information important for the effect of drought is not a matter of 

minutes, but spread throughout the day, which is captured well by the functional 

data analysis. More experiments will be performed in Chapter 4 to confirm this 

hypothesis. 

3.5 Conclusions  

Even in temperate climates, grapevines often experience some level of drought 

stress during the growing season. The water status of grapevines is however of 

great importance for both fruit quantity and quality. To ensure an appropriate plant 

water status, an automatic, fast and reliable method for drought stress detection is 

hence needed. To this end, UPCA and FUPCA were tested and enabled 

successful stress detection days before visible symptoms appeared. Both 

methods, after calibration, can be implemented for other species as well, as was 
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proven for apple tree and truss tomato. It can therefore be concluded that these 

techniques are very promising for early plant stress detection, although further 

research is needed to apply UPCA and FUPCA for deficit irrigation scheduling. In 

grapevine, UPCA and FUPCA might detect an abnormality after veraison 

independently of the water status, but caused by the characteristic decreasing 

stem growth during that period. Although the techniques were proven successful 

for stress detection before veraison, additional research is needed to test the 

performance of both techniques across the entire growing season of grapevine. 

Compared to UPCA, FUPCA exhibits a lesser parametric complexity and can 

handle days with missing data straightforwardly. 
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Chapter 4  

Automatic drought stress detection 

in grapevines without using 

conventional threshold values  

After: Baert A, Villez K and Steppe K. 2013. Automatic drought stress detection in 

grapevines without using conventional threshold values. Plant and Soil. 369(1), 

439-452. 

Abstract 

Because the water status of grapevines strongly affects the quality of the grapes 

and resulting wine, automated and early drought stress detection is important. 

Plant measurements are very promising for detecting drought stress, but strongly 

depend on microclimatic changes. Therefore, conventional stress detection 

methods require threshold values which define when plants start sensing drought 

stress. There is however no unique method to define these values. In this study, 

two techniques that overcome this limitation were proposed: Unfold Principal 

Component Analysis (UPCA) and Functional Unfold Principal Component Analysis 

(FUPCA). These two statistical methods automatically distinguish between drought 

and microclimatic effects, based on a short preceding full-irrigated period to extract 

plant behaviour under normal conditions. Both techniques aimed at detecting 

when measured sap flow rate or stem diameter variations in grapevine deviated 

from their normal behaviour due to drought stress. The models based on sap flow 
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rate had some difficulties to detect stress on days with low atmospheric demands, 

while those based on stem diameter variations did not show this limitation, but 

ceased detecting stress when the stem diameter levelled off after a period of 

severe shrinkage. Nevertheless, stress was successfully detected with both 

approaches several days before visible symptoms appeared. UPCA and FUPCA 

based on plant indicators are therefore very promising for early stress detection. 

4.1 Introduction 

Automated and early detection of plant drought stress is of great importance, 

because the plant water status greatly influences both the fruit quality and the 

quantity, as has been shown for tomato (De Swaef and Steppe, 2010), grapevine 

(Smart et al., 1990; Williams, 2000; Keller, 2010a) and fruit trees (Naor, 2006). 

Drought stress detection is also a key factor in accurate irrigation scheduling tools 

(Jones, 2007; Steppe et al., 2008).  

Two plant variables used worldwide as plant water status indicator are sap flow 

rate (Ginestar et al., 1998; Cifre et al., 2005; Fernández et al., 2008) and stem 

diameter variations (Goldhamer and Fereres, 2001; Steppe et al., 2006; Intrigliolo 

and Castel, 2007b). Irrespective of the chosen plant-based indicator, threshold or 

reference values beyond which plants start sensing stress need to be defined 

(Fereres and Goldhamer, 2003; Jones, 2004). The difficulty with this approach is 

however that these threshold values are dynamic. Indeed, they are not only 

influenced by soil water availability, but also by microclimatic conditions (Steppe et 

al., 2008; De Swaef et al., 2009; De Swaef and Steppe, 2010; Ortuño et al., 2010). 

Therefore, it is not recommended to use one single, absolute value of any plant-

based measurement as a threshold. In addition, the chosen indicator always has 

to be considered relative to a reference (Fereres and Goldhamer, 2003; Intrigliolo 

and Castel, 2006). 

Two different approaches are conventionally applied for determining such a 

reference. In a first approach, a simultaneous reference group of plants under non-

limiting water conditions is required. Stress is detected when the ratio between the 

chosen plant variable of the actual (stressed) plants and that of the reference (full-

irrigated) plants exceeds a critical value. For instance, Patakas et al. (2005) and 
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Fernández et al. (2008) used a ratio based on sap flow rate measurements 

(SFi/SFref, with SFi = actual sap flow rate and SFref = sap flow rate of a reference 

(full-irrigated) group of plants), while Ortuño et al. (2009) and Conejero et al. 

(2011) based their irrigation scheduling on a ratio of maximum daily shrinkage 

(MDS) extracted from stem diameter variations (MDSi/MDSref, with MDSi = actual 

MDS and MDSref = MDS of a reference (full-irrigated) group of plants).  

In a second approach, reference equations (baseline relationships) are defined 

under non-limiting soil conditions or taken from the literature. Such an equation is 

typically a regression between the plant variable of interest and a meteorological 

variable closely related to drought stress (Fernández and Cuevas, 2010). For 

example, Intrigliolo and Castel (2006) determined regression equations between 

MDS and vapour pressure deficit (VPD), air temperature or evapotranspiration as 

a reference for irrigation scheduling in plum trees. Similar baselines were defined 

for citrus (Velez et al., 2007), olive (Moreno et al., 2006) and almond trees 

(Fereres and Goldhamer, 2003), among other species. 

Clearly, an unambiguous method for determination of threshold values is not yet 

available (Jones, 2004; Steppe et al., 2008; De Swaef et al., 2009). Moreover, 

both described approaches have some disadvantages. Reference equations 

obtained under certain conditions might not be applicable in other conditions, such 

as different microclimate, crop load and species size (Velez et al., 2007). The 

environmental variable most suitable to relate the plant variable to may change 

with species or cultural conditions (Velez et al., 2007). On the other hand, a full-

irrigated reference group of plants is needed in the first approach, which should be 

often inspected to ensure that they show similar growth and appearance as the 

treatment plants (Goldhamer and Fereres, 2001; Fernández et al., 2008). In 

addition, a critical value of the SFi/SFref or MDSi/MDSref ratio has to be defined. 

This critical value may be estimated based on the observed relationship between 

the ratio and stem water potential or photosynthesis (Patakas et al., 2005), but is 

more often arbitrarily chosen based on experience (Ortuño et al., 2009; Conejero 

et al., 2011). 

A promising alternative to overcome the difficulties of determining conventional 

threshold values is Unfold Principal Component Analysis (UPCA). This method is 

an extension of Principal Component Analysis (Wold et al., 1987; Nomikos and 
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MacGregor, 1994), a data mining technique developed to facilitate monitoring and 

diagnosing of complex, multivariate data sets (Box 3.1; Jackson, 1991). It is an 

efficient and commonly used method for process control (MacGregor and Kourti, 

1995; Venkatasubramanian et al., 2003), but has only a few applications in plant 

science so far (Villez et al., 2009; Chapter 3). Both studies used UPCA based on 

stem diameter variations, photosynthetic active radiation (PAR) and VPD 

measurements for early drought stress detection in truss tomato, apple tree or 

grapevine. In Chapter 3, next to classic UPCA, Functional Unfold Principal 

Component Analysis (FUPCA) was also successfully applied for drought stress 

detection, i.e. UPCA in combination with functional data analysis (Chen and Liu, 

2001). In both methods, an in-control model is abstracted from calibration data, i.e. 

data belonging to normal (full-irrigated) conditions, which represents the expected 

pattern and behaviour under normal conditions. Subsequently, stress detection is 

based on determining whether new stem diameter variations data, in combination 

with corresponding VPD and PAR data, behaves below the statistical limits 

defined by this in-control model. The UPCA and FUPCA techniques therefore 

circumvent the need of defining conventional threshold values, in contrast to the 

existing methods. Moreover, UPCA and FUPCA are techniques with simple visual 

readouts, which makes results easy to interpret. This is of great importance for the 

applicability of an automatic stress detection system (Fernández and Cuevas, 

2010). 

Although UPCA and FUPCA successfully detected drought stress in grapevine 

based on stem diameter variations, as shown in Chapter 3, both techniques may 

always detect an abnormality after veraison, irrespective of the water status. In 

that specific period, a characteristic shrinkage of the stem diameter can be 

observed in grapevines, not caused by drought, but by the fruits that are becoming 

a more important sink (Intrigliolo and Castel, 2007b; Ortuño et al., 2010). A 

possible solution may be to use another plant indicator, like sap flow rate, which 

remains related to the plant water status after veraison. 

The aim of this chapter was therefore to investigate the performance of UPCA and 

FUPCA with different stress indicators during drought stress experiments on 

grapevine. Sap flow rate and stem diameter variations in combination with 

microclimatic measurements as model input were compared and evaluated. Stress 
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detection was investigated during two different seasons, different timing during the 

season and on grapevines of two different ages. 

4.2 Materials and methods 

4.2.1 Plant material and experimental set-up 

Seven experiments (two control and five drought stress experiments) were 

conducted on potted grapevines (Vitis vinifera L.) in the greenhouse facilities of the 

Faculty of Bioscience Engineering of Ghent University, Belgium, during the 

growing season of 2010 and 2012. Henceforth, the experiment of 2010 will be 

referred to as repetition 1, R1, while the experiments of 2012 will be referred to as 

controls 1 and 2, C1 and C2, and repetitions 2 to 5, R2 to R5. All grapevines were 

grown in 50 L containers (0.4 m diameter, 0.4 m height) filled with DCM Mediterra 

compost, fertilised in summer with DCM organic fertiliser for grapes and trained 

according to the single Guyot system. The plants were two (C1, C2, R2 to R5) and 

seven (R1) years old, approximately 1.5 m high, and had stem diameters of 

approximately 9 to 17 mm at the beginning of the experiment. One grapevine (R1) 

was selected and continuously monitored during an experiment that ran from 1 

July until 12 August 2010 (day of the year (DOY) 182 - 224), while six other 

grapevines (C1, C2 and R2 to R5) were monitored from 25 April until 14 July 2012 

(DOY 116 - 196). After a control period in which the plants were at least irrigated 

every two to three days, irrigation was withheld for R1 to R5 to impose a period of 

drought stress. When clear visible symptoms of drought stress were observed 

(colouring and wilting of the leaves), irrigation was resumed for the stressed plants 

and a recovery period followed. The period of drought stress for R1 lasted from 18 

until 29 July (DOY 199 - 210), DOY 199 being the last irrigation event and DOY 

210 the day were irrigation was resumed. The period of drought stress for R2, R4 

and R5 lasted from 11 until 28 June (DOY 163 - 180), while the period of drought 

stress for R3 lasted from 21 May until 4 June (DOY 142 - 156). C1 and C2 were 

control treatments in which the plants were continuously kept fully irrigated. An 

overview of the experiments can be found in Table 4.1. 



 

 

Table 4.1 Overview of the Unfold Principal Component Analysis (UPCA) models based on sap flow rate (SF) or stem diameter 
variations (D) for the control (C1 and C2) and imposed drought stress experiments (R1 to R5) on grapevine. Time is given in day of 
the year (DOY). 

 

Control or  Experimental  Drought  Based on SF measurements Based on D measurements Day of clear visible 

repetition period [DOY] period [DOY] Calibration period  Day of detection [#] Calibration period Day of detection [#] detection [#] 

2010               

R1 182 - 224 199 - 210 182 - 196  3 182 - 196  2 12 

      (not 192 - 194)   (not 192 - 194)     

2012             

C1 116 - 196 - 116 - 162 - 116 - 162 - - 

C2 116 - 196 - 116 - 162 - 116 - 162 - - 

R2 116 - 196 163 - 180 142 - 162 10 142 - 162 10 15* 

R3 116 - 196 142 - 156     116 - 141 6 15 

R4 116 - 196 163 - 180 142 - 162 10 142 - 162 10 18 

R5 116 - 196 163 - 180 116 - 162 16 116 - 162 18 18 

*In R2, clear visible symptoms of drought stress appeared on DOY 177, while stress was imposed until DOY 180 
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4.2.2 Microclimatic and plant physiological measurements  

The set-up for plant and microclimatic measurements is similar to the experiment 

explained in Chapter 3. Photosynthetic active radiation (PAR) was measured with 

a quantum sensor (LI-190S, Li-COR, Lincoln, NE, USA), air temperature (Tair) with 

a thermocouple (type T, Omega, Amstelveen, the Netherlands) and relative 

humidity (RH) with a RH sensor (type Hygroclip, Rotronic, Hauppauge, NY, USA) 

inserted in a radiation shield. Vapour pressure deficit (VPD) was calculated from 

RH and Tair as the difference between the air’s potential and actual vapour 

pressure value. All sensors were installed inside the greenhouse near the 

grapevines, approximately 2 m above ground level. With exception of R3, the soil 

water potential (Ψsoil) was measured in each container with electronic tensiometers 

(type SWT4R, Delta-T Devices Ltd, Cambridge, UK for R1 and type TensioTrans 

model 1000 C, Tensio-Technik, Geisenheim, Germany for C1, C2, R2, R4 and R5) 

(see experimental set-up in Fig. 3.1 and 4.1).  

Sap flow rate (SF) was measured at the base of the stem of each grapevine 

(except for R3) with heat balance sap flow sensors (models SGA10-ws, SGEX-13 

or SGB16-ws, Dynamax Inc., Houston, TX, USA). Stem diameter variations (D) 

Fig. 4.1 Overview of the measurements performed during a drought experiment 
on grapevine: (A) microclimatic measurements (relative humidity, air temperature 
and photosynthetic active radiation), (B) sap flow rate, (C) stem diameter 
variations, (D) soil water potential and (E) stem water potential. 
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were measured on all monitored grapevines using Linear Variable Displacement 

Transducer (LVDT) sensors (model LBB 375-PA-100 and transducer bridge 8C-

35, Schaevitz, Hampton, VA, USA or model DF5.0, Solartron Metrology, Bognor 

Regis, UK), attached to the stem just below the sap flow sensor with a custom-

made stainless steel holder, for which no temperature correction is required 

(Steppe and Lemeur, 2004). All sensor signals were scanned every 20 s and 

recorded every 5 min (DAQ 34970A and multiplexer 34901A, Agilent 

Technologies, Diegem, Belgium). Finally, midday stem water potentials (Ψstem) 

were measured using a pressure chamber (PMS Instrument Company, Albany, 

OR, USA) at least twice a week. Occasionally, Ψstem were measured at several 

times during the day to examine its daily profile. Therefore, one to three mature, 

healthy leaves per grapevine per measurement were covered in plastic bags 

coated with aluminium foil for at least 2 h prior to the measurements and only 

detached from the plant just before the measurement (Fig. 4.1). 

4.2.3 Unfold Principal Component Analysis 

Principal Component Analysis (PCA) is a well-established technique for monitoring 

and diagnosing of processes with large, multivariate data sets, consisting of many 

variables with strong correlations (Chapter 3; Jackson, 1991; Kourti, 2002; 

Venkatasubramanian et al., 2003). In this chapter, two different sets of analysed 

data of microclimatic and plant physiological measurements were included as 

input for PCA modelling. In a first approach, PAR, Tair and VPD were combined 

with SF measurements as input, while in a second approach the same 

microclimatic measurements were combined with D measurements. Thus, two 

PCA models were constructed for each experiment. In both approaches, 

measurements were organised in a three-dimensional matrix X (I × J × K), in 

which I stands for the day it was taken, J for the time within the day and K for the 

variable. Since PCA is not able to handle such three-dimensional data sets, it is 

necessary to use an extension of PCA, Unfold Principal Component Analysis 

(UPCA). A detailed description of UPCA, which was first proposed by Wold et al. 

(1987), can be found in Nomikos and MacGregor (1994). Specific details of PCA-

based methods implemented for on-line stress detection in plants are given in 

Chapter 3 and Villez et al. (2009). 
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For R1, the data collected in the period from DOY 182 until 196 (irrigated control 

period) were used for calibration (Ical) of the UPCA models. As UPCA cannot deal 

with missing data by default, one day (DOY 194) was omitted from the data set. 

The missing data was the result of an electricity failure. In addition, DOY 192 and 

193 were not included in Ical due to a too negative Ψsoil (discussed below). As a 

result, the calibration data set included 12 days (Ical = 12). Furthermore, I = 42 

days, J = 288 measurements (measurement value every 5 min) and K = 4 

variables (SF or D, PAR, Tair and VPD) in both UPCA approaches. Data from DOY 

116 until 162 were used as calibration period for C1, C2 and R5, while data from 

DOY 142 until 162 were used to calibrate the models of R2 and R4 (Table 4.1).  

Data pre-processing 

Prior to UPCA, the data were pre-processed in a similar manner as explained in 

detail in Chapter 3. All data were centred column-wise (Fig. 3.2A) to zero mean 

and divided by the overall standard deviation of the data for that given sensor. This 

group scaling or single-slab scaling (Fig. 3.2B) (Gurden et al., 2001) was followed 

by batch-wise unfolding (Fig. 3.2C) to transform the three-way data set (I × J × K) 

into a two-way matrix (I × J.K). A single row now represented all and exclusively 

data of one single day (0-24 h). After pre-processing, the data were suitable for 

PCA modelling, henceforth referred to as UPCA modelling. 

Stress detection with the UPCA model 

As explained in Chapter 3, a majority of the existing variation in the microclimatic 

and plant physiological data can be captured well by a smaller set of new 

variables. Those new variables, called principal components (PCs), are 

constructed based on the calibration data and are uncorrelated and orthogonal 

linear combinations of the original variables. A larger proportion of variance of the 

original data is captured by the model if a larger number of PCs (# PCs or c) is 

retained (Johnson and Wichern, 2002). This proportion of total variance captured 

by a single PC is referred to as relative variance (RV), while the relative 

cumulative variance (RCV) is the proportion of variance captured by the first c 

PCs. As a result, identification of the UPCA model boils down to the assessment 

of the number c. The in-control UCPA model, which is abstracted from calibration 
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data, can be interpreted as the construction of a relationship between the new 

variables to obtain a profile of expected, normal conditions.  

Two conventional statistics are applied for statistical stress monitoring: the Q (sum 

of squared residuals, Eq. 3.1) statistic, which measures the goodness of the model 

fit, and the Hotelling’s T² statistic (weighted sum of squared scores, Eq. 3.2), which 

is a measure for the distance between the reconstructed data and the origin 

(Hotelling, 1947; Johnson and Wichern, 2002). The upper control limit of both 

statistics is determined based on the calibration data. If the upper control limit of 

the Q statistic is violated, residuals are believed not to result from random effects 

only and thus indicate abnormality. The Hotelling's T2 statistic, however, assumes 

the use of otherwise normal data, accounting for variation within the modelled 

space (linear subspace defined by the c selected eigenvectors), and is therefore 

typically useful to detect extreme events which do not violate the correlation 

structure as identified via the first c eigenvectors of the covariance matrix. To this 

end, the Q statistic is first evaluated, and only when this statistic remains below its 

set limit, the Hotelling's T2 is checked against its proper limit. Nevertheless, the 

Hotelling's T2 statistic can always be computed. Determining whether drought is 

detected in new data is done by pre-processing these data in the same manner 

and projecting them onto the UPCA model. Corresponding statistics (Q, T²) are 

then compared with the previously determined statistical limits (Qα, T²α) (Fig. 3.3). 

If one of the limits is exceeded, it indicates abnormality (drought stress) for the 

corresponding day. 

4.2.4 Functional Unfold Principal Component Analysis 

In FUPCA (first introduced by Chen and Liu (2001)), data are transformed by 

functional data analysis prior to UPCA modelling. With functional data analysis, the 

single daily time series of the original variables (SF or D, PAR, Tair and VPD) are 

approximated by linear combinations of a set of known basis functions. 

Consequently, the data are now represented by a smaller number of parameters 

than the amount of original data points. The UPCA model is identified using the 

fitted coefficients instead of the original data, with the same procedure as for 

classic UPCA modelling (removal of D net growth if applicable, centring, scaling 

and unfolding). The dimensionality of the input data for the UPCA model is thus 

strongly reduced. The resulting FUPCA model is, hence, less complex in a 
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statistical sense compared to the classic UPCA model, while preserving the ability 

to easily monitor a process and detect abnormalities. Moreover, functional data 

analysis has the advantage that gaps with missing data can be approximated if not 

too large, i.e. each knot interval should have at least one data point. 

As in Chapter 3, the B-spline basis was chosen to construct a family of spline 

functions. Each available function consists of a linear combination of several 

splines, in this case B-splines. B-splines can be computed fast, exhibit great 

flexibility, and data can often be approximated by using only a small number of 

them (Ramsay and Silverman, 2005). The order (n) of the B-splines defines its 

degree (n-1). A complete day (0-24 h) is divided into equal-length intervals by 

placing knots uniformly over the argument range (e.g. every ith hour of a day). The 

locations of these knots determines the location and width of the B-splines, and 

the successive intervals over which the function is to be fitted to the original data. 

The number of coefficients to define a B-spline depends on the number of knots 

(k) and the order (# coefficients = n + k - 2) (Ramsay and Silverman, 2005).  

Third order B-splines were chosen with a knot distribution every 1.6 h, which 

resulted in 17 coefficients per variable as input for the FUPCA models. Gaps with 

missing data could be approximated using this functional data analysis, therefore 

no days needed to be excluded from the data set of R1, while only one day (DOY 

158) needed to removed from the other data sets (C1, C2, R2 to R5). For 

calibration of the FUPCA models, the same days as for UPCA were used. For 

instance, I = 43 days, Ical = 12 days, J = 17 data points (instead of 288 

measurements) and K = 4 variables in both FUPCA approaches for R1. 

A detailed description of functional data analysis and B-splines can be found in 

Ramsay and Silverman (2005) or Ramsay et al. (2009). More information on the 

application of FUPCA for stress detection in plants is given in Chapter 3. 
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4.3 Results 

4.3.1 UPCA and FUPCA for drought stress detection  

Microclimatic and plant physiological measurements 

PAR, Tair and VPD during the drought stress experiment in 2010 (R1) are shown 

as an example in Fig. 4.2, the conditions during the other experiments were similar 

(Appendix Fig. S1). During the control period of R1 (DOY 182 - 199), the 

grapevine showed high SF and a daily net growth for D (Fig. 4.3A, B), except for 

DOY 192, 193 and 199. This is in agreement with the low Ψsoil on those days (Fig. 

4.3C). A few days after the last irrigation event (DOY 199), a clear deviation in 

both SF and D was observed. Midday stem water potentials (Ψstem, Fig. 4.3C) of      

-1.5 to -1.7 MPa were measured by the end of the stress period. From DOY 203 

onward, the Ψsoil sensor failed due to dehydration of the soil exceeding values of   

-0.08 MPa, which is beyond the sensor detection limit. Irrigation was resumed on 

DOY 210 as clear visible symptoms of drought stress were observed. In the 

following recovery period, SF and D recovered and midday Ψstem returned to          

-0.4 MPa on DOY 211. For C1, C2 and R2 up to R5, the grapevines were 

monitored earlier in the season (DOY 116 - 197). Therefore, low SF and zero or 

low daily net growth of D occurred at the beginning of the experiments, increasing 

thereafter along with canopy development (Fig. S2, S4, S6, S9, S11 and S13). 

When irrigation was withheld in R2 to R4, similar effects as in R1 were observed, 

i.e. ceased daily net growth of D, followed by shrinkage, and decreased SF and 

Ψstem as a result of decreasing Ψsoil. In R5, however, the effects on SF, D and 

Ψstem were rather weak (Fig. S13). In the control treatments, daily net growth of D 

and high SF were maintained during the entire experimental period and Ψstem did 

not exceed -0.58 and -0.68 MPa in C1 and C2, respectively, because Ψsoil was 

kept above -0.01 MPa (Fig. S2, S4). 

Determination of the UPCA and FUPCA models 

The RV and corresponding RCV for the first eight PCs of the UPCA model based 

on SF for R1 are shown in Fig. 4.4A and B, respectively. 49% of the total variance 

of the dataset was captured by the first PC, while the second PC captured 22%. 

The following PCs only captured 8% or less. In FUPCA based on SF of R1, the 
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first and second PC captured 48% and 26%, respectively. Therefore, both models 

with two PCs were selected since they captured 71% and 74% of the variance, 

while adding extra PCs would only add little to the explained variability and would 

increase the complexity of the models.  

Fig. 4.2 Microclimatic conditions: (A) photosynthetic active radiation (PAR), (B) air 
temperature (Tair) and (C) vapour pressure deficit (VPD) during the experiment in 
2010 as an example (R1). Time is given in day of year (DOY). 

Fig. 4.3 (A) Sap flow rate, SF, (B) stem diameter variations, D, (C) stem water 
potential, Ψstem and soil water potential, Ψsoil of the drought-stressed grapevine in 
R1 as an example. Time is given in day of the year (DOY). The grey area marks 
the period of drought stress for the plant (DOY 199 - 210), the dark grey area the 
day of resumed irrigation, until the irrigation event. 
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The loadings (coefficients) of this first PC of UPCA (Fig. 4.4C) and FUPCA 

showed a predominantly negative value for all four variables. This indicates that a 

positive effect on PAR, Tair and VPD also has a positive effect on SF. The loadings 

also indicate a large variability during the day, while the variability is smaller during 

night. This is in accordance with the high variability found in microclimatic 

conditions and SF (Fig. 4.2, 4.3A). Indeed, both sunny and cloudy days prevailed 

during the measurement campaign, with distinct PAR, Tair and VPD patterns and 

Fig. 4.4 Typical (A) relative variance (RV) and (B) relative cumulative variance 
(RCV) as a function of the number of principal components, c, of an Unfold 
Principal Component Analysis (UPCA) model based on sap flow rate (SF) 
measurements (R1). Loadings for all variables, i.e. SF, photosynthetic active 
radiation (PAR), air temperature (Tair) and vapour pressure deficit (VPD) are 
shown for the (C) first and (D) second principal component of this UPCA model 
based on SF. Typical (E) RV and (F) RCV of an UPCA model based on stem 
diameter variations (D) measurements (R1). Loadings for all variables, i.e. D, PAR, 
Tair and VPD are shown for the (G) first and (H) second principal component of this 
UPCA model based on D.  
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thus distinct SF patterns. In Fig. 4.4D, the loadings of the second PC of the UPCA 

model showed a wavelike pattern for all variables.  

Similar results were found for the identification of the UPCA and FUPCA models 

based on D for R1. RV (Fig. 4.4E) and corresponding RCV (Fig. 4.4F) of the 

UPCA model showed that the first and second PC captured 50% and 17% of the 

total variance of the dataset, respectively, while the following PCs captured 13% or 

less. For FUPCA 48% and 20%, respectively, were captured by the first and 

second PC (data not shown). Therefore, both models with two PCs were selected, 

capturing, respectively, 67% and 68% of the variance, exhibiting sufficient 

explained variability and maintaining an acceptable complexity. In contrast to SF, a 

positive change in PAR, Tair and VPD resulted in a negative change in D (Fig. 

4.4G, loadings of the first PC for the UPCA model). Similar to the loadings of the 

second PC for the SF models, the loadings of the second PC for the D models 

(Fig. 4.4H, loadings for the UPCA model) showed a wavelike pattern. 

Finally, UPCA and FUPCA models based on SF and D, each in combination with 

PAR, Tair and VPD, were constructed for the remaining experiments: C1, C2 and 

R2 to R5. Data of the specific experiments were used for calibration of the models 

(Table 4.1). Similar to R1, two PCs were selected for all the models, capturing 

56% to 75% of the variance existing in the data. 

Stress detection with UPCA and FUPCA based on SF 

The Q and Hotelling’s T² statistical values (Q, T²) of the UPCA and FUPCA models 

based on SF were calculated each day and compared with their corresponding 

statistical limits (Qα, T²α) determined by the corresponding calibration data.  

While the T² statistics were never violated in R1 (and therefore not shown), the Q 

statistic of UPCA (Fig. 4.5A) and FUPCA (Fig. 4.5B) remained below their limits 

during the control period, except on DOY 192 and 193. On DOY 192 and at the 

start of DOY 193, very low Ψsoil and SF (Fig. 4.3) occurred, resulting in an 

abnormality detection by both models. This indicates that an irrigation event every 

two or three days was insufficient in that period. During the stress period (DOY 

199 - 210), the Q statistics of both UPCA and FUPCA exceeded their 99% limit on 

DOY 201, 203, 205, 209 (plus DOY 208 for FUCPA), indicating abnormality 

(drought stress) while no visible symptoms of stress could yet be detected. On the 
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remaining days, where low SF occurred simultaneously with lower PAR and VPD 

(Fig. 4.2), the Q statistics did not exceed their limit for both UPCA and FUPCA. 

When water supply was resumed, the Q statistics remained below their limit 

(except for one or two days), suggesting recovery of the grapevine. 

Other drought stress experiments, i.e. R2 and R4 (Fig. S6-S7, S11-S12), 

supported the above mentioned results: the Q statistics of the UPCA models 

exceeded the 99% limit ten days after the last irrigation event. Clear visible stress 

symptoms were only detected five to eight days later (Table 4.2). Detection failed 

in both experiments on DOY 173 and DOY 176, when lower SF was observed in 

combination with lower PAR and VPD, as was also seen in R1. No UPCA model 

based on SF could be constructed for R3 since SF was not measured. For R5, 

UPCA only detected abnormality on DOY 178 and 180 (Table 4.2), since SF only 

showed a small decrease toward the end of the stress period (DOY 163 - 180). 

Also the absence of shrinkage in D and the fact that Ψstem never decreased below 

-0.7 MPa, suggested that this grapevine may not have been greatly influenced by 

the imposed stress, despite the prevailing low Ψsoil down to -0.08 MPa. 

With FUPCA, similar results as with UPCA were found for R4 and R5: abnormality 

was detected one day earlier using FUPCA in R4, while the FUPCA model of R5 

only detected an abnormality on DOY 180. In R2, UPCA scored however better 

Fig. 4.5 Square root of Q statistic as a function of time (in day of year, DOY) of (A) 
Unfold Principal Component Analysis (UPCA) and (B) Functional Unfold Principal 
Component Analysis (FUPCA) based on sap flow rate (SF) for R1 as an example. 
In both cases, the square root of the statistic is given, enabling a better distinction 
between values close to the statistical 99% limits Qα (dotted lines). The grey area 
marks the period of drought stress for the plant (DOY 199 - 210), the dark grey 
area the day of resumed irrigation. 
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than FUPCA, since the latter detected abnormality on the same day but failed to 

detect abnormality on DOY 174, 175 and 177 (Table 4.2).  

During the control treatment C1, the Q statistical 99% limit was not exceeded, 

except for three false detections with UPCA and two ones with FUPCA, while the 

statistical 99% limit of C2 was never violated with both models. This resulted from 

the normal SF, D, Ψsoil and Ψstem behaviour that was observed for C1 and C2 (Fig. 

S2 to S5). 

Stress detection with UPCA and FUPCA based on D 

The Q statistical values of the UPCA and FUPCA model based on D of R1 as an 

example are shown in Fig. 4.6A and B, respectively. The Hotelling’s T² statistics 

were never violated and therefore not shown. The Q statistics remained below 

their limit during the control period, except on DOY 192, 193 and 198. This again 

can be explained by the low Ψsoil causing a more pronounced shrinkage in D (Fig. 

4.3B, C). This confirmed the detection by both models based on SF. During the 

stress period of R1, the Q statistics of UPCA and FUPCA based on D started 

violating Qα from DOY 200 until 204. Toward the end of the stress period, the Q 

values no longer exceeded their 99% limit (except on DOY 210 for FUPCA) 

although drought stress was still ongoing. D was characterised by a pronounced 

overall decrease at the beginning of the drought stress period, but this levelled off 

after a couple of days, explaining the behaviour of the models. On DOY 210, water 

supply was resumed and the Q statistics remained below their limit afterward, 

suggesting a recovery, which is in agreement with the increase in D.  

In drought stress experiments R2, R3 and R4, the Q statistics of the UPCA models 

started to exceed the 99% limit six to ten days after the last irrigation event (Table 

4.2, Fig. S8, S10, S12). Again, when D levelled off after a couple of days, Q values 

did no longer exceed their limit, in spite of the continued drought stress. The Q 

values generally exceeded their limit on the last day of the stress period, i.e. on 

the transition day with resumed irrigation in the late afternoon, since this had a 

pronounced effect on D. This was correctly detected by most models as an 

abnormality. In R5, this was however the only detection (Table 4.2, Fig. S14). 
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The results with FUPCA for R2 to R5 were quite similar to the results obtained with 

UPCA, except for R3 (Table 4.2). In R3, the FUPCA model detected abnormality 

from DOY 147 to 151, DOY 149 not included, while UPCA detected drought 

continuously from DOY 147 to 153. 

The Q and T² statistics of the UPCA and FUPCA models based on D of C1 and C2 

were never violated, which is in agreement with a successful control treatment 

(Fig. S3, S5). 

4.3.2 Selection of the calibration period 

Another, shorter calibration period was selected in R2 and R4 (Table 4.1). This 

new calibration period started at DOY 142, when flowering began and leaf canopy 

was fully developed. Higher SF and more pronounced growth characterised this 

period (Fig. S6, S11). This particularly resulted in a better detection using SF, and 

a slight improvement when using D (Fig. S7 and S8, respectively). 

  

Fig. 4.6 Square root of Q statistic as a function of time (in day of year, DOY) of (A) 
Unfold Principal Component Analysis (UPCA) and (B) Functional Unfold Principal 
Component Analysis (FUPCA) based on stem diameter variations (D) for R1 as an 
example. In both cases, the square root of the statistic is given, enabling a better 
distinction between values close to the statistical 99% limits Qα (dotted lines). The 
grey area marks the period of drought stress for the plant (DOY 199 - 210), the 
dark grey area the day of resumed irrigation. 
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4.4 Discussion 

4.4.1 Loadings of the principal components 

The loadings of the first PCs showed that a positive effect on PAR, Tair and VPD 

had a similar effect on SF, while the contrary was observed for D (Fig. 4.4C and G, 

respectively). Since PAR and VPD are the key driving variables for transpiration 

(Jones, 1992; De Swaef et al., 2009), higher PAR and VPD result in higher SF. On 

the other hand, higher transpiration also results in lower water potentials in the 

plant (Cruiziat and Tyree, 1990; De Swaef and Steppe, 2010). Subsequently, if 

transpiration exceeds root water uptake, the internal water storage pool is 

depleted, which results in a shrinkage of D (Steppe et al., 2006; Intrigliolo and 

Castel, 2007b; Steppe et al., 2012).  

A more complex pattern for all variables was observed for the second PCs (Fig. 

4.4D, H). Villez et al. (2009) found a similar wavelike pattern for the second PC in 

their UPCA models for apple tree and truss tomato. Multiplying the main trajectory 

of the second PC with an arbitrary chosen positive multiple resulted in a forward 

shift in time of the peaks in PAR and VPD measurements compared to the mean 

trajectories, as well as a drop in D measurements. A negative multiple resulted in 

a backward shift of the trajectories (e.g. Fig. 7 in Villez et al. (2009)). Therefore, 

the authors suggested a temporal variability in the daily cycles captured by the 

second PC. Also in other cyclic processes, such as weather station data or gait 

cycles of children, behaviour of the second PC was attributed to a time shift or 

temporal effect (Ramsay and Silverman, 2005). 

4.4.2 UPCA and FUPCA for drought stress detection  

UPCA and FUPCA based on SF detected the first symptoms of drought stress five 

to nine days before any visible signs were noticed, but some difficulties arose with 

distinguishing low soil water availability from low atmospheric water demand on 

cloudy days. Indeed, low SF may result from low soil water availability, but also 

from a low water demand by the atmosphere (low PAR and VPD). For instance, 

Fig. 4.3A shows that also on fully irrigated days, lower PAR and VPD (Fig. 4.2) 

resulted in lower SF. Since this dependency was included in the calibration of the 

models, they did not detect any abnormality when low SF occurred in combination 

with lower atmospheric demand. 



 

 

Table 4.2 Overview of the difference in drought stress detection between Unfold Principal Component Analysis (UPCA) and 
Functional Unfold Principal Component Analysis (FUPCA) based on measurements of sap flow rate (SF) or stem diameter 
variations (D) for the control (C1 and C2) and imposed drought stress experiments (R1 to R5) on grapevine. Time is given in day of 
the year (DOY), underlined values highlight differences between UPCA and FUPCA. 

 

Control or  Drought  Detected days based on SF measurements Detected days based on D measurements 

repetition period [DOY]  UPCA FUPCA UPCA FUPCA 

2010           

R1 199 - 210 201, 203, 205, 209 201, 203, 205, 208, 209 200 - 204 200 - 204, 210 

            

2012   
 

  
 

  

C1 - - - - - 

C2 - - - - - 

R2 163 - 180 172, 174, 175, 177, 178 - 180 172, 178 - 180 172, 174, 175, 177, 180 172,  175, 177, 180 
R3 
 

142 - 156 
     

147, 148, 149, 150,  
151, 152, 153 

147, 148, 150, 151 
 

R4 163 - 180 172, 174, 175, 177 - 180 171, 172, 175, 177 - 180 172, 174, 175, 177, 180 172, 175, 177, 180 

R5 163 - 180 178, 180 180 180 - 
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Models based on D performed much better in these situations, but stopped 

detecting stress as soon as the measured stem diameter levelled off several days 

after initiation of severe drought stress, as was clearly observed in R1 (Fig. 4.3B, 

4.6) and in a lesser extent in R2, R3 and R4 (Fig. S6 to S12). Water storage pools 

were largely emptied by then and could no longer be recharged during the night, 

causing a less pronounced stem shrinkage and swelling pattern compared to the 

start of the drought stress (Fernández and Cuevas, 2010). This caused the models 

to indicate that plant behaviour returned to normal. Also in past studies, it has 

been observed that maximum daily shrinkage of measured stem diameter 

decreased, and even became smaller than those of the control when the drought 

cycle was applied long enough (Klepper et al., 1973; De Swaef et al., 2009; 

Ortuño et al., 2010). The purpose of the proposed techniques was however to 

detect drought stress at an early stage, in the context of an early-warning system, 

which was achieved five to seven days before the diameter started to level off and 

five to ten days before visual drought stress symptoms appeared. In addition, the 

ability to warn for deviating D behaviour due to insufficient irrigation (e.g. warnings 

during the control period of R1) was demonstrated. Above remarks indicate that a 

certain level of experience is in any case preferable to make a good evaluation of 

the model output. The end-user must have the capability to assess the model 

performance and reliability. The end-user should be able to link the results to 

microclimatic conditions or past events and evaluate whether plant recovery is the 

plausible cause if the model output returns to normal conditions. 

Only in R5, the models were not able to detect drought stress (Fig. S13, S14). 

Examination of the plant-physiological data of R5 suggests that this particular 

grapevine was not greatly affected by drought, even though irrigation was withheld 

for 18 days. Indeed, D barely shrank, SF only slightly diminished and Ψstem never 

decreased below -0.7 MPa, a value close to -0.63 MPa measured during the 

control period (Fig. S13). Also visibly, the grapevine appeared to be healthy, since 

only two leaves were coloured by the end of the drought period. The behaviour of 

this grapevine was hence in great contrast with the other grapevines. The 

unexpected response of R5 illustrates the possible existence of plant-to-plant 

variability in response to drought stress, already mentioned by others for various 

species, including grapevines (Naor, 2006; Velez et al., 2007; Fernández and 
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Cuevas, 2010; Montoro et al., 2012). It is therefore recommended to always 

monitor a representative plant when automatic drought stress detection is applied 

for a whole group of plants. This number not only depends on the plant-to-plant 

variability, but also on the root-zone and vineyard-wide spatial variability (Naor, 

2006). Naor (2006) and Fernández et al. (2008) suggested that recent 

developments such as remote sensing may help to identify representative plants 

and may reduce the required number of monitored individuals. Remote thermal 

imagery, for instance, is a technique that measures canopy temperature. Canopy 

temperature depends on changes in stomatal closure and leaf transpiration and is 

therefore recognised as a measure for plant stress (Maes and Steppe, 2012). The 

technique has been explored for screening canopy temperature variability over 

large areas, as well as for detecting biotic an abiotic stresses (Jones, 2007; Jones 

et al., 2009; Alchanatis et al., 2010; Maes and Steppe, 2012). 

UPCA and FUPCA can be implemented for other plant species as well, 

considering a proper calibration, as was already demonstrated for apple tree and 

truss tomato (Villez et al., 2009; Chapter 3). In this study, SF and D were chosen 

as plant water status indicator because of their easy continuous monitoring and 

worldwide appreciation, both for research and field applications (e.g. Cifre et al., 

2005).  

The preference for UPCA or FUPCA, as well as the choice for which plant variable 

to use as stress indicator, will depend on the application and availability, price and 

quality of the sensors. FUPCA requires an extra processing step (functional data 

analysis), but can monitor days with gaps of missing data. In case the risk for 

those gaps is high (e.g. caused by sensor, data acquisition or electricity failure), 

FUPCA will be the technique of choice, otherwise UCPA might suffice. In some 

cases (R3 and the SF approach in R2), UPCA resulted in a better or longer 

drought stress detection, although slightly better outcomes of FUPCA were 

observed in others cases (Table 4.2). Although FUPCA was able to detect drought 

stress in an early stage, its performance may be improved by adapting the knot 

distribution for the functional data analysis, dependent on the case study. 
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4.4.3 Selection of the calibration period 

Both UPCA and FUPCA were successfully applied in this study to detect 

abnormalities in plant behaviour and drought stress without the need to define 

conventional threshold values for SF or D. Instead, both techniques require a 

calibration data set, which can be a preceding control period in which the plant is 

fully irrigated. The length of this control period depends on the prevailing 

microclimatic variability, because the model eventually needs to abstract normal 

plant behaviour. Days with both low and high atmospheric demand were included 

in the calibration data set of this study, because the aim was to distinguish 

between microclimatic driven changes in plant behaviour and changes caused by 

drought stress.  

Also the phenological stage may influence the selection of the calibration period. 

When the calibration period contains too many days with zero or low daily net 

growth of D and low SF, typical for the beginning of the growing season, the 

models did not detect drought stress as abnormal, since they were taught to 

recognise these low values as expected. By selecting a proper, representative 

calibration period, defined for instance by a fully developed canopy, the models 

successfully detected drought stress.   

As the introduced methods still need a fully irrigated control period for calibration 

purposes, they may seem in essence not different from any other conventional 

method. The proposed approach, however, only needs a limited control period, 

while conventional methods need a continuous monitoring of the control group and 

this group has the risk to lose its property as being representative (Goldhamer and 

Fereres, 2001; Fernández et al., 2008). In addition, the critical threshold to be 

exceeded in order to warn for drought stress is determined in a statistical way in 

this study, while it is mostly chosen rather arbitrarily in conventional methods (e.g. 

Conejero et al., 2011). On the other hand, the latter permits to easily impose 

different degrees of drought stress, what might be desirable to improve fruit quality 

(Möller et al., 2007; Creasy and Creasy, 2009). This may also be possible with 

UPCA and FUPCA, but requires further investigation (discussed in Chapter 8). 
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4.5 Conclusions 

An automatic and reliable method for fast drought stress detection in grapevine is 

recommended to ensure an appropriate plant water status, since it influences both 

fruit quantity and quality. Current stress detection methods need the determination 

of threshold values beyond which the plant starts sensing drought stress. 

Determination of these values is however difficult due to their dynamic nature. 

Unfold Principal Component Analysis (UPCA) and Functional Unfold Principal 

Component Analysis (FUPCA) can circumvent this difficulty. The techniques are 

able to automatically abstract the plant’s behaviour in normal conditions, which 

pattern is used to compare the new data with, and are able to define the detection 

limit in a statistical way. Two UPCA and FUPCA models were proposed here: one 

based on sap flow rates and another based on stem diameter variations. All 

models enabled successful stress detection days before visible symptoms 

appeared irrespective of plant age, timing or season. It can be concluded that 

UPCA and FUPCA based on plant indicators are very promising for early stress 

detection. Nevertheless, care should be taken when selecting a few representative 

plants for automatic stress detection of a whole group.  
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Chapter 5  

Development of a mechanistic 

water transport and storage model 

for grapevine 

After: Baert A, De Schepper V and Steppe K. Variable hydraulic resistances and 

their impact on plant drought response modelling. Plant, Cell and Environment. 

(Submitted) 

Abstract 

Plant drought responses are still not fully understood. Improved knowledge on 

drought responses is, however, crucial to better predict the impact of expected 

drought on individual plant and ecosystem functioning. Mechanistic plant models 

in combination with plant measurements are promising for obtaining information on 

the whole-plant water status. This unique combination can greatly assist us in 

better understanding the effect of limiting soil water availability and drought stress 

associated with climate change. While existing water transport models are reliable 

under sufficient soil water availability, they generally fail under dry conditions as 

not all appropriate mechanisms seem yet implemented. The aim of this chapter 

was therefore to identify mechanisms underlying plant drought responses, and to 

investigate the behaviour of hydraulic resistances encountered in the soil and 

xylem for grapevine. The model-based study demonstrated that a variable 

hydraulic soil-to-stem resistance is necessary to describe plant drought responses. 

In addition, the implementation of a variable soil-to-stem hydraulic resistance in an 

existing water transport and storage model enabled the generation of an in situ 
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soil-to-stem vulnerability curve which might be a valuable alternative to the 

conventional curves. Furthermore, a daily recalibration of the adapted model 

revealed a drought-induced increase in the radial hydraulic resistance between 

xylem vessels and elastic living tissues. The ability to obtain accurate information 

on plant hydraulic resistances and to simulate plant drought responses can foster 

important discussions regarding the functioning of plants and ecosystems during 

climate change induced droughts. 

5.1 Introduction 

Increasing drought-induced hydraulic plant and tree failure has been observed 

worldwide, leading to forest decline and mortality (Mart  nez-Vilalta et al., 2002; 

Allen et al., 2010; Choat et al., 2012). Examining plant water status and its 

underlying mechanisms will contribute to our understanding of plant and tree 

functioning and their vulnerability to drought, which is crucial if we aspire to predict 

the impact of climate change, as more extreme drought events are expected to 

occur (Schultz and Stoll, 2010; Choat et al., 2012). Therefore, accurate information 

on the encountered hydraulic resistances in the soil to plant continuum is desired 

as this highly influences the plant water status. 

A first challenge is to understand the mechanisms determining plant hydraulic 

resistance. This resistance, or its reciprocal conductance, might be altered on a 

short-scale by a changed expression or activation of plasma membrane 

aquaporins (water channel proteins). The role of these aquaporins is mainly 

demonstrated in roots, leaves and fruits (Cochard et al., 2007; Choat et al., 2009; 

Lovisolo et al., 2010), and just recently in branches (Steppe et al., 2012). In 

addition, diurnal changes in xylem resistance have been observed (Tsuda and 

Tyree, 2000), possibly as a result of light-mediated changes in potassium 

concentration in the xylem sap (Sellin et al., 2010). Furthermore, cavitation 

increases the xylem resistance. During cavitation the xylem vessel loses its 

hydraulic function as water vapour replaces the xylem sap under tension (Sperry 

and Tyree, 1988; Cruiziat and Tyree, 1990; Lovisolo et al., 2010). Cavitation and 

refilling of cavitated xylem vessels occur on a daily basis, however, the cavitation 

events are enhanced by drought conditions (Brodersen et al., 2010; Zufferey et al., 
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2011; Meinzer et al., 2013; Schenk et al., 2013). Consequently, the hydraulic 

resistance in the xylem depends on the balance between vessel cavitation and 

vessel refilling which varies during the day (Meinzer et al., 2013). Vulnerability 

curves are commonly used to quantify cavitation by describing the relationship 

between declining stem water potential (Ψstem) and increasing resistance. The 

latter is depicted as percentage loss of hydraulic conductivity (PLC).  

A second challenge is to comprehend the hydraulic behaviour of the soil and its 

interaction with plant roots (Green et al., 2006; Damour et al., 2010). Soil water 

flow resistances increase with drying soil (Gardner, 1960; Tuzet et al., 2003; 

Zweifel et al., 2007). Soil texture is identified as the major factor determining the 

steepness of the water potential gradient between roots (Ψroot) and the soil 

rhizosphere (Ψsoil) (Sperry et al., 1998), but root water uptake might substantially 

enlarge this gradient (Gardner, 1960; Tuzet et al., 2003; Zweifel et al., 2007). 

Mechanistic modelling in combination with plant measurements is often applied to 

obtain deeper insight in the mechanisms underlying observed plant responses 

(Perämäki et al., 2001; Steppe et al., 2008; Diaz-Espejo et al., 2012), and is 

therefore considered as a promising tool for comprehending plant responses to 

drought. However, the application of models during drought conditions is complex 

and not straightforward (Mart  nez-Vilalta et al., 2002; Tuzet et al., 2003; Zweifel et 

al., 2007; Steppe et al., 2008; Damour et al., 2010; Egea et al., 2011; Diaz-Espejo 

et al., 2012; Zhou et al., 2013). Therefore, an urge for improved models with better 

mechanistic descriptions exists. For example, the dynamic water transport and 

storage model of Steppe et al. (2006), which enables amongst other variables 

simulation of Ψstem, one of the best plant water status indicators (Choné et al., 

2001; Fereres and Goldhamer, 2003; Acevedo-Opazo et al., 2010), performs well 

under well-watered conditions (Steppe et al., 2006; 2008) and mild drought stress 

(De Pauw et al., 2008a), but fails under severe drought conditions. Modelling plant 

water transport during severe drought stress can enhance our understanding of 

important plant processes occurring during these conditions. 

The objectives of this chapter were to (1) reveal the behaviour of hydraulic 

resistances encountered from soil to stem, in particular when exposed to drought 

conditions, and (2) seek if these new insights can be exerted to better describe 

drought responses. To address this, introducing a variable hydraulic resistance in 
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an existing water transport and storage model (Steppe et al., 2006; 2008) was 

investigated as a means to improving predictions of plant responses to drought. 

The model performance of the adapted model was verified for grapevine (Vitis 

vinifera L.). The applied mechanistic model is considered as generic, therefore, its 

contribution to a better understanding of plant drought responses was assessed 

and its importance in predicting plant functioning during drought was highlighted. 

5.2 Materials and methods  

5.2.1 Experimental set-up 

Experiments were conducted on four two-year-old grapevines (Vitis vinifera L. cv. 

Chardonnay) (repetitions R1 to R4). The grapevines were planted in 50 L 

containers (0.4 m diameter, 0.4 m height), filled with DCM Mediterra compost and 

fertilised in summer with DCM organic fertiliser for grapes. They were pruned and 

trained according to the single Guyot system and grown in the greenhouse 

facilities of the Faculty of Bioscience Engineering at Ghent University, Belgium. At 

the beginning of the growing season, the grapevines were about 1.5 m high and 

had stem diameters ranging from 9 to 17 mm at the stem base. The greenhouse 

facility allowed a strict control of the soil water availability of the grapevines, while 

the microclimate varied freely dependent on the prevailing conditions. Irrigation 

was stopped after a control period in which the plants were irrigated at least twice 

a week to ensure adequate water availability. Drought was imposed from 11 until 

28 June 2012 (day of the year (DOY) 163 - 180) for R1, R2 and R4, whereas 

drought lasted from 21 May until 7 June 2012 (DOY 142 - 159) for R3. Flowering 

occurred around DOY 142.  

5.2.2 Microclimatic and soil measurements  

Photosynthetic active radiation (PAR), air temperature (Tair) and relative humidity 

(RH) were measured approximately 2 m above ground level with a quantum 

sensor (LI-190S, Li-COR, Lincoln, NE, USA), thermocouple (type T, Omega, 

Amstelveen, the Netherlands) and RH sensor (type Hygroclip, Rotronic, 

Hauppauge, NY, USA) which was inserted in a radiation shield. An electronic 

tensiometer (type TensioTrans model 1000 C, Tensio-Technik, Geisenheim, 

Germany) was inserted in each container to measure soil water potential (Ψsoil). 
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5.2.3 Plant physiological measurements  

Stem diameter variations (D) were measured with Linear Variable Displacement 

Transducers (LVDT, model DF5.0, Solartron Metrology, Bognor Regis, UK or 

model LBB 375-PA-100 and transducer bridge 8C-35, Schaevitz, Hampton, VA, 

USA) attached to the stem base with custom-made stainless steel holders, which 

do not require temperature correction (Steppe and Lemeur, 2004). Sap flow rate 

(SF) was measured above each LVDT with heat balance sap flow sensors (SGEX-

13 or SGA10-ws, Dynamax Inc., Houston, TX, USA). A data logger (DAQ 34970A 

and multiplexer 34901A, Agilent Technologies, Diegem, Belgium) scanned all 

sensor signals every 20 s.  

Stem water potential (Ψstem) was measured using a pressure chamber (PMS 

Instrument Company, Albany, OR, USA). Mature, healthy leaves were covered in 

plastic bags coated with aluminium foil for at least 2 h prior to the measurements 

to ensure hydraulic equilibration with stem xylem water (McCutchan and Shackel, 

1992). Midday Ψstem was measured at least twice a week. Occasionally, Ψstem was 

measured at several times during the day to examine its daily dynamics. One to 

three leaves were chosen per record. Simultaneous measurements of Ψstem and 

Ψsoil were used to calculate the integrated hydraulic resistance of the soil-to-stem 

segment (RX [MPa.h.g-1]) according to Ohm’s law using the water potential 

difference [MPa] and prevailing sap flow rate (SF [g.h-1]) in the soil-to-stem 

segment (cf. Tsuda and Tyree, 2000; Sellin et al., 2010): 

 SF

ΨΨ
=R

stemsoilX -

  (5.1)  

5.2.4 Model description 

An existing water transport and storage model (Steppe et al., 2006; 2008), which 

describes water transport dynamics in a single plant, was adapted in this study. 

Model structure and equations are shown in Fig. 5.1. The basic principles from the 

original model of Steppe et al. (2006; 2008) were conserved. When transpiration 

starts in the morning, Ψstem decreases. The developed water potential difference 

between stem and soil induced water uptake from the soil. Since living tissues and 

xylem are hydraulically connected, stored water in the living tissues can contribute 

to the transpiration stream (Génard et al., 2001; Steppe et al., 2006; 2012) causing 
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the stem diameter to shrink. The model has two input variables (measurements of 

SF and Ψsoil) and consists of two submodels. The first submodel describes the 

dynamic axial and radial water transport within the rigid xylem and between the 

Fig. 5.1 Schematic overview of the model equations. The model consists of two 
submodels: a water transport submodel (left panel) for describing the dynamics of 
plant sap flow and storage, linked to a stem diameter variations submodel (right 
panel) that describes stem diameter changes and growth. Following parameters 
and variables are used in the model: Fstem, water flow between the roots and the 
stem; Ψsoil, soil water potential; Ψstem, stem water potential; RX, integrated 
hydraulic resistance in the soil-to-stem segment; fstem, water flow between xylem 
and storage compartment; RS, radial hydraulic resistance between the xylem and 
elastic storage tissues; Ψs

stem, water potential of storage compartment; SF, sap 
flow rate; Wstem, water content of the storage compartment; Wmax

stem, maximum 
Wstem; Cstem, capacitance of the water storage tissues in the stem compartment; r1, 
r2, parameters for calculation of RX; Vs, volume of the storage compartment; Di, 
inner stem diameter; ds, thickness of the storage compartment; l, length of the 
stem segment; D, outer diameter of the stem segment; Ψs

p, turgor pressure 
potential of the storage compartment; ε0, proportionality constant; ρw, density of 
water; Г, threshold at which cell wall-yielding occurs; ϕ, cell wall extensibility; a, b, 
allometric parameters; Ψs

π, osmotic potential of the storage compartment.  
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xylem and the living tissues. The second submodel simulates the dynamics in D, 

resulting from both irreversible growth (Lockhart, 1965) and reversible daily 

shrinkage and swelling of living tissues (Génard et al., 2001; Steppe et al., 2006). 

When the turgor pressure (Ψs
p) exceeds a critical wall-yielding threshold (Γ), the 

living cells grow irreversibly. Ψs
p depends on the radial water flow between the 

xylem and the living tissues, which is derived from the water transport submodel 

and, hence, represents the link between both submodels. A more detailed 

description can be found in Steppe et al. (2006; 2008). 

The existing model uses a constant parameter value for the hydraulic resistance in 

the xylem (Steppe et al., 2006; 2008; Baert and Steppe, 2013). To obtain better 

drought response simulations, the constant xylem resistance was replaced by a 

variable hydraulic resistance which is related to Ψsoil [MPa] and accounts for 

changes in overall hydraulic resistance experienced during upward water transport 

in the entire soil-to-stem segment (RX [MPa.h.g-1]):  

 
2r

2
soilΨ

1
X er=R

-

  (5.2) 

with r1 [MPa.h.g-1] and r2 [MPa-2] parameters dependent on plant and soil 

characteristics. It should be noted that the adapted model integrates the 

resistances of the soil, the roots and the stem in one variable RX that changes in 

function of Ψsoil. 

Model calibration, simulation and identifiability analysis 

Model implementation, simulation, calibration and identifiability analysis were 

conducted using the plant modelling software PhytoSim (Phyto-IT BVBA, 

Mariakerke, Belgium). Model simulation was performed with a fourth-order Runge-

Kutta numerical integrator with variable step size (integrator settings: accuracy = 1 

10-6 and maximum step size = 0.1 s). Model calibration was based on the simplex 

method (Nelder and Mead, 1965) and minimised the weighted sum of squared 

errors for the variables D and Ψstem. Measurements of SF and Ψsoil were used as 

model inputs and measurements of D and Ψstem for model calibration.  

Two types of identifiability analysis exist: structural (theoretical) or practical 

identifiability. Structural identifiability can be performed prior to data collection and 

without prior knowledge on the parameter values. This analysis deals with the 
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question whether it is theoretically possible to find unique values for the model 

parameters given the model structure and available measurements (De Pauw et 

al., 2008a). In this study, however, a practical identifiability analysis was 

performed. A practical identifiability determines whether model parameters can be 

accurately estimated using the amount and quality of the available data. A model 

parameter is then defined to be identifiable if it has sufficient influence on the 

model output (i.e. high sensitivity) and is at the same time is not correlated with 

other model parameters (i.e. no linear dependencies with other model parameters) 

(De Pauw et al., 2008a; Steppe et al., 2008). To compare the original and adapted 

model, calibration parameters were selected based on such practical identifiability 

analysis (De Pauw et al., 2008a) including available measurements of D and 

Ψstem. The selected calibration parameters of the original model were the 

capacitance of the water storage tissues in the stem compartment (Cstem), the cell 

wall extensibility (ϕ), the radial hydraulic resistance between the xylem and the 

storage compartment (RS) and the hydraulic xylem resistance (RX). For the 

adapted model, five identifiable calibration parameters were selected based on a 

second practical identifiability analysis (De Pauw et al., 2008a), as parameter RX 

was replaced by Eq. 5.2: Cstem, ϕ, R
S, r1 and r2. The remaining non-calibrated 

model parameters were assigned a fixed value based on the literature or direct 

measurements (Table 5.1). A set of ten consecutive days during the most severe 

drying soil conditions was used for calibrating and comparing the original and 

adapted model. The calibrated models were compared using the objective model 

selection criteria sum of squared errors (SSE) and final prediction error (FPE) (e.g. 

Dochain and Vanrolleghem, 2001; Steppe et al., 2006):  

 )pN(N

SSEp2
+

N

SSE
=FPE

-   (5.3) 

with N the number of data points and p the number of estimated parameters. The 

FPE evaluates both the model fit (first term) and the number of parameters 

(second term, penalises too complex models). The smaller the criteria, the better 

the model.  

Additional model calibrations were performed for each grapevine. The five 

identifiable parameters of the adapted model were recalibrated daily based on a 

five-day moving window to investigate their variability in response to soil drying. 
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This analysis resulted in calibrated parameter values for each day of the complete 

drought period. 

5.3 Results 

5.3.1 RX exponentially increases with decreasing Ψsoil 

A clear relationship was observed between measured Ψsoil [MPa] and RX 

calculated according to Eq. 5.1 [MPa.h.g-1] (Fig. 5.2). This observed relationship 

could be described by Eq. 5.2 and justified its implementation in the adapted water 

transport and storage model.  

Fig. 5.2 Integrated hydraulic resistance in the soil-to-stem segment (RX) as a 
function of soil water potential (Ψsoil) shows a clear trend for all four grapevines R1 

to R4 (A-D). The equation 2r
2
soilΨ

1
X er=R

-
(solid lines), with r1, r2 proportionality 

parameters, was fitted to the measurements. The coefficient of determination (R2) 
ranged between 0.65 and 0.90, and improved to the range of 0.72 and 0.90 when 
one outlier (on a very cloudy day) was removed (indicated with grey circles). 



 

 

Table 5.1 Definition, values (range over grapevines R1 to R4), unit and reference of the model parameters used in the water 
transport and storage model with variable soil-to-stem hydraulic resistance. 

Parameter Definition Value Unit Reference 

Obtained during calibration 
Cstem Capacitance of the water storage tissues in the stem 

compartment 
2.48 - 9 g.MPa-1 - 

ϕ Cell wall extensibility 0.0003 - 0.0043  MPa-1.h-1 - 
RS Radial hydraulic resistance between the xylem and 

the elastic living tissues 
0.86 - 1.78 MPa.h.g-1 - 

r1 Proportionality parameter for calculation of the 
integrated soil-to-stem hydraulic resistance  

0.0002 - 0.0035 MPa.h.g-1 - 

r2 Proportionality parameter for calculation of the 
integrated soil-to-stem hydraulic resistance 

180 - 502 MPa-2 - 

Obtained from measurements or the literature 
l Length of the stem segment 1 m Measured 
a Allometric parameter 0.002968 m Génard et al. (2001) 
b Allometric parameter 32 m-1 Génard et al. (2001) 
Γ Critical threshold value which must be exceeded to 

produce stem growth 
0.9 MPa Génard et al. (2001) 

ε0 Proportionality constant for calculation of the bulk 
elastic modulus 

1100 m-1 Steppe et al. (2006) 
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5.3.2 Drought stress simulated with constant or variable RX 

Measured SF (Fig. 5.3A, Appendix Fig. S15A, D, G) and daily net growth of D (Fig. 

5.3B, S15B, E, H) decreased in all grapevines (R1 to R4) with declining soil water 

availability (Fig. 5.3C, S15C, F, I), although this was less pronounced in R2. A 

similar trend was observed in measurements of Ψstem (Fig. 5.3C, S15C, F, I). 

For all grapevines, except for R2, the adapted model (variable RX, Eq. 5.2) 

showed a distinct enhancement in simulating the decreasing trend in D and Ψstem 

observed in drought-stressed grapevine compared to the original model that failed 

in describing the plant drought responses (Fig. 5.3, S15). These findings are also 

Fig. 5.3 Model inputs and simulations of a typical grapevine. The used model 
inputs were (A) sap flow rate (SF, grey lines) and soil water potential (Ψsoil, black 
lines); (B) Comparison between measurements of stem diameter variations (D, 
thin grey line) with model outputs of the original (constant hydraulic resistance in 
the xylem, thick grey lines) and adapted (integrated variable hydraulic resistance 
in the soil-to-stem segment, black lines) model; (C) Comparison between 
measurements (black dots) of stem water potential (Ψstem) with model outputs of 
the original (thick grey lines) and adapted (black lines) model. 
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reflected in both SSE and FPE values with higher values for the original model 

(Table 5.2). Table 5.1 gives an overview of range within which optimised 

parameter values occurred in the adapted model for R1 to R4.  

5.3.3 Vulnerability curve   

When drought stress progressed, the hydraulic functioning gradually declined as 

indicated by the declining modelled soil-to-stem hydraulic conductance (KX = 1/RX) 

(Fig. 5.4). The curve in Fig. 5.4, which depicts modelled KX as a function of 

modelled midday Ψstem, strongly resembles the commonly applied vulnerability 

curve. Similar to such vulnerability curves, which describe the relationship 

between Ψstem and loss of hydraulic conductivity in the plant (PLC [%]) (e.g. Choat 

et al., 2010; Cochard et al., 2010), Ψstem,50 and Ψstem,90 were determined as 

modelled stem water potential corresponding with 50% and 90% loss of hydraulic 

soil-to-stem conductance. Ψstem,50 and Ψstem,90 were -0.4 ± 0.1 MPa and -0.8 ± 0.1 

MPa, respectively. When Ψstem dropped below Ψstem,90 no full recovery of the stem 

diameter took place during the night, which resulted in a continuous decrease of 

the stem  diameter (Fig. 5.3, S15). 

Fig. 5.4 A modelled vulnerability curve representing modelled soil-to-stem 
hydraulic conductance (KX) as a function of modelled midday stem water potential 
(Ψstem) for a grapevine during soil drying. Ψ50 represents Ψstem at which 50% of the 
initial (not stressed) soil-to-stem hydraulic conductance is lost. The light grey 
values were averaged to obtain an appropriate fit. 
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Table 5.2 Sum of squared errors (SSE) and final prediction error (FPE) for 
simulations of stem diameter variations (D) or stem water potential (Ψstem). 
Simulations with a constant (original model) or variable (adapted model) hydraulic 
resistance in the soil-to-stem segment (RX) are compared for grapevine R1 to R4. 

 SSE for D [mm2] SSE for Ψstem [MPa2] 

n° Constant RX Variable RX Constant RX Variable RX 

 

R1 3.6 10-5 1.8 10-6 3.4 0.5 

R2 1.8 10-6 1.6 10-6 0.5 0.2 

R3 2.1 10-5 1.2 10-5 6.4 1.5 

R4 2.6 10-5 4.4 10-6 2.5 0.2 

     

 FPE for D [mm2] FPE for Ψstem [MPa2] 

 Constant RX Variable RX Constant RX Variable RX 

  

R1 1.3 10-8 6.6 10-10 0.30 0.06 

R2 6.1 10-10 5.4 10-10 0.06 0.03 

R3 7.1 10-9 4.1 10-9 0.76 0.17 

R4 9.2 10-9 1.6 10-9 0.28 0.02 

 

5.3.4 Dynamics in the hydraulic resistances RX and RS during soil 

drying 

RX showed a diurnal pattern under adequate water availability: maximum values 

prevailed during the night, while the lowest values were observed in the afternoon 

(Fig. 5.5A). These daily dynamics continued under drying soil (Fig. 5.5B) but a 

pronounced net increase in RX
 was superimposed on these daily fluctuations. 

The values for radial hydraulic resistance between the xylem and the elastic living 

tissues (RS [MPa.h.g-1]), recalibrated daily based on a moving window, were 

exponentially related to Ψsoil [MPa] for all grapevines, with the exception of R2 

(Fig. 5.6). In analogy with RX (Fig. 5.2, Eq. 5.2), the following equation fitted well 

through the measurements: 

 
2ssoilΨ

1
S es=R

-

  (5.4) 
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with s1 [MPa.h.g-1] and s2 [MPa-1] proportionality parameters dependent on plant 

and soil characteristics. No similar trends were found in the model parameters 

Cstem, ϕ, r1 or r2. 

5.4 Discussion 

5.4.1 Plant drought response modelling requires variable hydraulic 

resistances 

Accurate modelling and understanding plant responses to water deficit remains a 

challenging objective despite the increasing awareness of its necessity in many 

fields (Tuzet et al., 2003; Damour et al., 2010; Egea et al., 2011; Diaz-Espejo et 

al., 2012). This study demonstrates that the commonly accepted use of a constant 

hydraulic plant resistance as imbedded in water transport and storage models 

(e.g. Steppe et al., 2006; 2008; Zweifel et al., 2007; De Schepper and Steppe, 

2010; De Swaef and Steppe, 2010), fails to describe plant responses under severe 

drought conditions (Fig. 5.3, Appendix Fig. S15). To assess the impact of future 

droughts on crops and forests, a variable hydraulic resistance in soil and plants 

(Fig. 5.2) should be considered.  

Fig. 5.5 The simulated soil-to-stem hydraulic resistance (RX) shows (A) daily 
dynamics in wet conditions and (B) drought-induced dynamics in stressed 
conditions. If measurements were available, RX (grey dots) calculated according to 
Eq. 5.1 is also shown. Time is given in day of the year (DOY). 
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5.4.2 Advantage of an integrated soil-to-stem hydraulic resistance  

In the literature, soil and plant hydraulic resistances are often separately studied. A 

first group of researchers relates the plant hydraulic resistances in roots, stems 

and leaves to declining water potentials (Lovisolo and Schubert, 1998; Sperry et 

al., 1998; Lovisolo et al., 2010; Johnson et al., 2012). A second group deals with 

soil water availability under drying soil conditions, because the water potential near 

the roots strongly differs from the soil water potential measured at a certain 

distance (Gardner, 1960; Tuzet et al., 2003; Green et al., 2006; Zweifel et al., 

2007). An integrated soil-plant approach seems promising as the physical 

properties of water flow in soil and xylem are similar (Sperry et al., 2002) and their 

resistances are extremely difficult to separate since the soil resistance depends on 

micro-gradients around the root zone (Tuzet et al., 2003). Therefore, the improved 

model of this study (Fig. 5.1) incorporated a variable integrated hydraulic 

resistance RX that captures the entire upward water flow pathway from soil to stem 

Fig. 5.6 Increase in radial hydraulic resistance between xylem and elastic storage 
tissues (RS) with decreasing soil water potential (Ψsoil) for grapevines R1 (black 
circles), R3 (grey triangles) and R4 (grey circles), but not for R2 (black triangles). 

The equation 2ssoilΨ

1
S es=R

-
(solid lines), with s1, s2 both proportionality 

parameters, was fitted to the measurements. Coefficients of determination (R2) 
were 0.95 (R1), 0.93 (R3) and 0.97 (R4). 
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(Eq. 5.2, Fig. 5.2). Also Diaz-Espejo et al. (2012) used an integrated resistance 

and implemented a constant parameter for the soil-to-leaf hydraulic resistance in 

their stomatal conductance model based on Buckley et al. (2003). They observed 

a fourfold increase in this resistance when olive trees were exposed to a drying 

soil (determined by fitting the model for four days during a regulated deficit 

irrigation treatment). The approach of one variable hydraulic resistance integrating 

both soil and plant aspects avoids the implementation of multiple hydraulic 

resistances, often entailing uncertain model parameters which might be difficult to 

estimate. 

5.4.3 Modelled soil-stem integrated vulnerability curve 

The modelled relationship between soil-to-stem conductance and stem water 

potential (Fig. 5.4) integrates the information which was previously obtained from 

separate soil desorption and plant vulnerability curves (e.g. Gardner, 1960; Choat 

et al., 2010; Cochard et al., 2010). This integrated model approach might have 

several advantages compared to experimental approaches. For instance, a soil 

desorption curve has to be defined for each soil type, because of strong 

dependence on soil properties. Hence, a general description of a soil desorption 

curve requires a complex set of equations (e.g. Gardner, 1960; Tuzet et al., 2003). 

In addition, as demonstrated in Chapter 2, various and strongly diverging plant 

vulnerability curves can be found in the literature dependent on sample length 

and/or dimension (Kikuta et al., 2003; Choat et al., 2010; Cochard et al., 2010), on 

the applied method (Choat et al., 2010; Cochard et al., 2010; Jacobsen and Pratt, 

2012; Cochard et al., 2013) and on the method specifications such as the degree 

of flushing and filtering, chemical composition and degassing level of the 

measurement solution (Canny et al., 2007; Espino and Schenk, 2011; van Doorn 

et al., 2011; Jacobsen and Pratt, 2012; Sperry et al., 2012). Furthermore, 

conventional plant vulnerability curves require destructive sampling and 

investigate each plant organ separately (e.g. stem, branches, twigs and leaves). 

Unless one aims at distinguishing vulnerability of specific organs, it seems difficult 

to represent whole-plant hydraulic functioning by the hydraulic properties of the 

individual plant organs. Therefore, the use of conventional vulnerability curves to 

estimate the whole-plant in situ hydraulic functioning seems not straightforward. 

Alternative methods such as the proposed model approach (Fig. 5.4, 5.5), based 
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on automatic in situ plant and soil measurements, can be a valuable alternative for 

studying plant survival and vulnerability to drought. The model approach allows 

studying hydraulic functioning under natural conditions for an extended time 

period, whereas conventional vulnerability curves are constructed in a laboratory 

and at a certain moment in time. Hölttä et al. (2005) also developed an alternative 

vulnerability curve by using in situ measurements of ultrasonic acoustic emissions 

and stem diameter variations to study cavitation dynamics in Scots pine trees 

under field conditions.  

Reported values of Ψstem,50 in the literature are -0.70 MPa to -2.97 MPa for Vitis 

vinifera L. cv. Chardonnay (Wheeler et al., 2005; Alsina et al., 2007; Choat et al., 

2010). These values are notably lower than the ones determined from this 

modelling approach (-0.4 ± 0.1 MPa). However, this difference can be attributed to 

the fact that reported vulnerability curves only examine the hydraulic conductance 

of the stem xylem, whereas this model approach integrates the hydraulic 

conductance in soil, roots and stem. Ψstem,90 of the modelled vulnerability curve 

corresponded with a severe loss of conductance which apparently inhibited 

refilling of the elastic water storage tissues during the night and resulted in a 

continuous decrease of the stem diameter.  

5.4.4 Dynamics in axial and radial hydraulic resistances 

In addition to the drought-induced change of soil-to-stem hydraulic resistance, RX 

showed a diurnal pattern, in which lowest hydraulic resistance occurred in the 

afternoon and highest hydraulic resistance during the night (Fig. 5.5A). In this 

study, the diurnal pattern is driven by dynamics in soil water potential as a result of 

daily watering during the control periods (Eq. 5.2). Tsuda and Tyree (2000) also 

observed such a diurnal behaviour, in which the lowest hydraulic resistance of 

each day corresponded with the highest daily transpiration rate occurring in the 

afternoon, but the observed fast changes in plant hydraulic resistance were related 

to changing temperature and transpiration. Other studies noticed significant lower 

leaf (e.g. Cochard et al., 2007; Sellin et al., 2011; Guyot et al., 2012) and stem 

(Sellin et al., 2010; 2011) hydraulic resistances with increased light irradiance and 

linked these rapid changes to regulation of aquaporins (Cochard et al., 2007; 

Sellin et al., 2011; Guyot et al., 2012) or potassium concentration (Sellin et al., 

2010). The results from this study suggest that dynamics in soil water potential 
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might have an influence on plant hydraulic resistance, therefore, timing of water 

gift should be considered when examining dynamics in plant hydraulic resistances.  

In addition, a drought induced increase in radial hydraulic resistance between 

xylem and living tissues (RS) was observed (Fig. 5.6). This is in agreement with 

the recent study of Steppe et al. (2012) who elucidated the role of aquaporins in 

regulating the radial hydraulic resistance in response to drought. This general 

trend was, however, not observed for grapevine R2 (Fig. 5.6), probably because 

this plant had a higher drought resistance visible from the smaller decline in SF, D 

and Ψstem (Fig. S15). Noteworthy is that also data-driven models UPCA and 

FUPCA from Chapter 4 did not detect drought stress for this particular grapevine 

(i.e. grapevine R5 in Chapter 4, Fig. S13, S14). As such, the obtained model 

results suggest to replace the generally applied constant parameter RS (Génard et 

al., 2001; Steppe et al., 2006; De Schepper et al., 2010; De Swaef and Steppe, 

2010; De Schepper et al., 2011) with a variable RS. However, the model 

performance of the adapted water transport and storage model with a variable RS 

did not considerably improve model simulations (data not shown). Nevertheless, 

an enhanced performance of a model with a variable RS might be expected for 

other species, e.g. fruit trees. In contrast to grapevine (Choat et al., 2010; 

Jacobsen and Pratt, 2012), fruit trees have a strong drought induced decrease in 

Ψstem (Shackel et al., 1997; Ortuño et al., 2006; Doltra et al., 2007; Fernández et 

al., 2011b) which might be reflected in a higher variability of both RX and RS and 

thus a potential model improvement. 

5.5 Conclusions 

Model implementation of a variable integrated hydraulic resistance for upward 

water transport improved our understanding of drought stress responses in 

grapevine (Fig. 5.3, Appendix Fig. S15). Considering a variable hydraulic 

resistance under drought conditions seems therefore worthwhile to pursue when 

aspiring accurate drought response modelling in crops and trees. This is not only 

important for species that benefit from some level of drought for their fruit 

production and quality (Naor, 2006; Acevedo-Opazo et al., 2010), such as 

grapevines, but is currently equally important for non-commercial plants, even 
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ecosystems, that need to survive in regions where droughts associated with 

climate change are predicted to increase in duration and severity (Allen et al., 

2010). Recent findings reveal that drought plays a crucial role in observed forest 

decline and mortality, caused by so-called hydraulic failure (Mart  nez-Vilalta et al., 

2002; Allen et al., 2010; Choat et al., 2012). Many species function very close to 

their hydraulic safety margins against harmful levels of drought stress, irrespective 

of the type of environment they live in (Mart  nez-Vilalta et al., 2002; Meinzer et al., 

2009; Choat et al., 2012). Assessing the impact of future climate change on plants 

and ecosystems will strongly depend on our mechanistic understanding and ability 

to model and predict plant responses to drought, an aim to which this chapter 

contributes.  
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Chapter 6  

Real-time water status monitoring 

After: Baert A and Steppe K. Real-time water status monitoring in grapevines 

using a water transport and storage model. Journal of Agricultural Science. 

(Submitted) 

Abstract 

Increasing water shortage and costs make efficient irrigation scheduling inevitable 

in many viticultural areas, even where it was unnecessary so far, and introduce an 

increasing need for monitoring of the whole-plant water status. Since specific 

water deficits play a key role in the production of high quality grapes and wines, 

reliable monitoring is crucial, in particular under dry conditions. In this chapter, five 

potted grapevines (Vitis vinifera L. cv. Chardonnay), of which three were subjected 

to a drought treatment before veraison, were continuously monitored during the 

growing season of 2012. A mechanistic water transport and storage model 

enabled accurate real-time simulation of stem water potential (Ψstem) under slight 

to severe drought stress (soil water potential (Ψsoil) down to -0.09 MPa). 

Furthermore, the model created added value by supplying information on other 

relevant plant variables like rapid turgor changes in the elastic storage tissues of 

the grapevine or changes in both axial and radial hydraulic resistances, and by 

providing crucial knowledge on the mechanisms underlying plant functioning 

during drought stress. Finally, the modelling approach enabled generation of soil-

to-stem segment vulnerability curves by integrating the hydraulic conductance in 
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soil and plant. From these curves, Ψstem at which 50% and 90% loss of 

conductance in the soil-to-stem segment occurred could be deduced, resulting in a 

Ψstem,50 of -0.65 ± 0.02 MPa and a Ψstem,90 of -1.07 ± 0.11 MPa for Chardonnay 

grapevines. Since the model uses only automatic measurements (sap flow rate, 

stem diameter variations and Ψsoil) as input, it lends to automation and is therefore 

considered promising for future applications regarding real-time water status 

monitoring and efficient irrigation scheduling to improve grape quality. 

6.1 Introduction 

As explained in Chapter 1, water shortage is an increasing problem in the world, 

including viticultural areas (Williams and Matthews, 1990; Schultz, 2000; Hannah 

et al., 2013a). In central Europe, for instance, a reduction in soil moisture, more 

extreme temperatures and a higher frequency of summer dry periods are expected 

to occur (Schultz, 2000). Significant temperature rises have been observed in 

many regions over the last decades, leading to a growing interest in irrigation 

scheduling in areas that were completely rain-fed until now (Schultz and Stoll, 

2010; Hannah et al., 2013a). Considering that irrigation accounts for approximately 

70% of the total water use worldwide (Schultz and Stoll, 2010) and that 

competition for water and involved costs is increasing, efficient irrigation strategies 

become a necessity. Such irrigation strategies should minimise water consumption 

while still providing the adequate amount of water to the grapevines (Vitis vinifera 

L.). Importantly, mild drought stress at the right time enhances grape composition 

and plays a crucial role in the production of quality wines (Chapter 2; Möller et al., 

2007; van Leeuwen et al., 2009), resulting in different aromas, flavours and 

colours (Matthews et al., 1990; Keller, 2010a). On the other hand, both excessive 

and no drought stress negatively affect the grape’s and wine’s potential (van 

Leeuwen et al., 2009). Efficient irrigation is thus not exclusively a story of fulfilling 

water demand, but rather of defining the optimum level and timing and keeping a 

tight control of the plant water status.  

Accurate irrigation scheduling can therefore benefit from automatic water status 

monitoring, as this can provide crucial information on the whole-plant water 

balance. It is internationally acknowledged that such monitoring should rely on 



 
Real-time water status monitoring  

109 

plant measurements (e.g. Jones, 2004; Steppe et al., 2008), of which stem water 

potential (Ψstem) is still acknowledged as one of the best indicators (Choné et al., 

2001; Intrigliolo and Castel, 2004; Möller et al., 2007; Acevedo-Opazo et al., 

2010). Although Ψstem can be measured with the pressure chamber (Scholander et 

al., 1965), or with in situ stem psychrometers (Jones, 2004; Nizinski et al., 2013), 

the unique combination of mechanistic modelling with plant measurements offers 

an interesting alternative with great potential for monitoring whole-plant water 

status. Indeed, the pressure chamber is a destructive, discontinuous and labour 

intensive technique and therefore impractical for automatic water status monitoring 

(Jones, 2004; Intrigliolo and Castel, 2006), while the stem psychrometer is a 

sophisticated automated sensor, but quite difficult to install and use for long-

standing applications (Jones, 2004; Nizinski et al., 2013). While these methods 

only supply information on Ψstem, mechanistic plant models can act as soft sensors 

and also enable simulation of other relevant, but sometimes difficult to measure, 

plant variables such as axial and radial hydraulic resistances or turgor pressure in 

the living tissues. As such, mechanistic models provide supplementary information 

and help in improving our knowledge on plant functioning and their responses to 

drought by looking at the underlying mechanisms. 

Steppe et al. (2006) originally developed a plant model that can be run using easy 

to measure plant variables. This water transport and storage model 

mechanistically links sap flow rate (SF), or whole-plant water use, and stem 

diameter variations (D) and has been used earlier to simulate Ψstem for irrigation 

purposes in apple trees (Steppe et al., 2008). For a good model performance 

under pronounced dry soil conditions, Chapter 5 introduced new equations 

dependent on soil water potential to describe (1) the integrated hydraulic 

resistance encountered by water during its upward transport (RX, Eq. 5.2) and (2) 

the radial resistance between xylem and elastic water storage tissues (RS, Eq. 

5.4). Replacing the former constant RX and RS by variable ones was necessary to 

account for increasing water flow resistance of drying soil (Gardner, 1960; Zweifel 

et al., 2007), cavitating xylem vessels (Sperry et al., 1998; Lovisolo et al., 2010) 

and the interference of aquaporins (water channel proteins) (Cochard et al., 2007; 

Lovisolo et al., 2010; Steppe et al., 2012). The improved water transport and 

storage model proved useful for extending our knowledge on drought responses 
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(Chapter 5; Baert and Steppe, 2013), but has only been tested in an offline set-up 

and still required manual Ψstem measurements, which is less desirable in practical 

applications. 

In this chapter, the model’s potential for real-time monitoring of different plant 

variables important for the characterisation of the plant water status (Ψstem, RX, RS 

and turgor), and for extracting altered plant behaviour due to drought stress was 

investigated. To this end, grapevines were subjected to both wet and pronounced 

drought conditions and instantaneous plant behaviour was continuously simulated 

using the model. Because the choice of the moving window size (Steppe et al., 

2008), required for daily model recalibration, has an effect on the responsiveness 

and stability of the model, three moving window sizes (two, four and six days of 

past data) were tested. Model simulations of Ψstem using the defined windows were 

compared with manual measurements and the associated model performance was 

evaluated. 

6.2 Material and methods 

6.2.1 Plant material and set-up 

Five two-year-old potted grapevines (Vitis vinifera L. cv. Chardonnay) were 

continuously monitored during the 2012-growing season. The grapevines were 

grown in 50 L containers (0.4 m diameter and height) filled with DCM mediterra 

compost and fertilised in summer with DCM organic fertiliser for grapes. They 

were grown inside the greenhouse facility of the Faculty of Bioscience Engineering 

at Ghent University, Belgium, to have control over the soil water availability. The 

plants were pruned and trained according to the single Guyot system. Data from 

21 May (day of flowering) until 8 July 2012 (day of the year, DOY 142 - 190) were 

selected for this study: three grapevines were subjected to drought stress 

(repetitions R1 to R3) and two plants served as control (R4 and R5). At the start of 

the growing season, they had base stem diameters ranging from 9 to 17 mm. The 

grapevines were irrigated at least twice a week to guarantee adequate water 

supply, unless subjected to drought stress. The drought period lasted from 11 until 

28 June (DOY 163 - 180) for R1 and R3 and from 21 May until 7 June (DOY 142 - 

159) for R2. The first day represents the last irrigation event, the last day the day 
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on which irrigation was resumed. All drought treatments were conducted during 

the first fast growth phase of grape berry development (section 2.3.2; Dokoozlian, 

2000; Keller, 2010a), thus before veraison, which was setting in between the 

middle and end of July. Noteworthy is that results from a fourth drought-stressed 

grapevine in 2012 (R5 in Chapter 4 = R2 in Chapter 5) will not be presented in 

this chapter. Since that particular grapevine showed a higher drought resistance, it 

acted more like a control treatment and was therefore less interesting for this 

chapter. 

6.2.2 Microclimatic, soil and plant measurements 

Photosynthetic active radiation was measured with a quantum sensor (LI-190S, Li-

COR, Lincoln, NE, USA), air temperature with a thermocouple (type T, Omega, 

Amstelveen, the Netherlands) and relative humidity (RH) with a RH sensor (type 

Hygroclip, Rotronic, Hauppauge, NY, USA) inserted in a radiation shield. All 

sensors were installed near the grapevines at approximately 2 m above ground 

level.  

Sap flow rate (SF) was monitored with heat balance sap flow sensors (models 

SGA10-ws or SGEX-13, Dynamax Inc., Houston, TX, USA) and stem diameter 

variations (D) with Linear Variable Displacement Transducers (LVDT, model LBB 

375-PA-100 and transducer bridge 8C-35, Schaevitz, Hampton, VA, USA or model 

DF5.0, Solartron Metrology, Bognor Regis, UK), attached below the SF sensors 

with custom-made stainless steel holders, for which no temperature correction was 

required (Steppe and Lemeur, 2004).  

Soil water potential (Ψsoil) in each grapevine container was measured using an 

electronic tensiometer (type TensioTrans model 1000 C, Tensio-Technik, 

Geisenheim, Germany). All sensor signals were recorded every 20 s (DAQ 

34970A and multiplexer 34901A, Agilent Technologies, Diegem, Belgium).  

Stem water potential (Ψstem) measurements, used for initial model calibration and 

for verifying the real-time Ψstem model simulations during the actual application, 

were taken with a pressure chamber (PMS Instrument Company, Albany, OR, 

USA) at least twice a week around noon, and occasionally at several times during 

the day to examine the daily dynamics. One to three mature, healthy leaves per 

grapevine were chosen per record and covered in plastic bags coated with 



 
Chapter 6 

112 

aluminium foil for at least 2 h prior to Ψstem measurements to ensure hydraulic 

equilibrium with stem xylem water (McCutchan and Shackel, 1992). 

6.2.3 Model description 

As explained in Chapter 5, the basic principles of the applied water transport and 

storage model originated from the tree water transport and storage model of 

Steppe et al. (2006; 2008) and were conserved. Model structure and equations are 

shown in Fig. 6.1. The model describes the water transport in a single plant and is 

composed of two submodels: a water transport submodel describing the rigid 

xylem and surrounding living tissues (Fig. 6.1, left panel), and a submodel inferring 

the dynamics in D (Fig. 6.1, right panel). The latter result from both irreversible 

growth and reversible daily shrinkage and swelling caused by radial water 

transport (Génard et al., 2001; Steppe et al., 2006). Cells grow proportionally to 

the cell wall extensibility (ϕ) when the turgor pressure (Ψs
p) surpasses a critical 

wall-yielding threshold (Γ) (Lockhart, 1965). Ψstem decreases when plants start to 

transpire in the morning, developing a water potential gradient between stem and 

soil. Consequently, water uptake is induced, but also stored water contributes to 

the transpiration stream, causing the stem to shrink, because water in xylem and 

living storage tissues is hydraulically connected (Goldstein et al., 1998; Génard et 

al., 2001; Steppe et al., 2006; 2012).  

To improve plant drought response simulations, the former constant hydraulic 

resistances of the original model were replaced by new equations in Chapter 5: 

the hydraulic resistance encountered during radial water transport (RS, Eq. 5.4), as 

well as the integrated hydraulic resistance experienced during upward water 

transport through the soil-to-stem segment (RX, Eq. 5.2), became dependent on 

Ψsoil (Fig. 6.1). More details on the basic principles can be found in Steppe et al. 

(2006; 2008), and on the variable hydraulic resistances in Chapter 5 and Baert 

and Steppe (2013).  

6.2.4 Model calibration and simulation 

Model development, simulation, calibration and identifiability analysis were 

conducted with PhytoSim (Phyto-IT BVBA, Mariakerke, Belgium), software 

developed for plant modelling and simulation. For model simulation, a fourth-order 

Runge-Kutta numerical integrator with variable step size was used (integrator 
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settings: accuracy = 1 10-6 and maximum step size = 0.1 s). For model calibration, 

the simplex method, originally developed by Nelder and Mead (1965) and 

available in PhytoSim, was used to minimise the weighted sum of squared errors 

between the measured data and the model simulations. Measurements of SF and 

Fig. 6.1 Schematic overview of the model equations. The model consists of two 
submodels: a water transport submodel (left panel) for describing the dynamics of 
plant sap flow and storage, linked to a stem diameter variations submodel (right 
panel) that describes stem diameter changes and growth. Following parameters 
and variables are used in the model: Fstem, water flow between the roots and the 
stem; Ψsoil, soil water potential; Ψstem, stem water potential; RX, integrated 
hydraulic resistance in the soil-to-stem segment; fstem, water flow between xylem 
and storage compartment; RS, radial hydraulic resistance between the xylem and 
elastic storage tissues; Ψs

stem, water potential of storage compartment; SF, sap 
flow rate; Wstem, water content of the storage compartment; Wmax

stem, maximum 
Wstem; Cstem, capacitance of the water storage tissues in the stem compartment; s1, 
s2, proportionality parameters for calculation of RS; r1, r2, proportionality 
parameters for calculation of RX; Vs, volume of the storage compartment; Di, inner 
stem diameter; ds, thickness of the storage compartment; l, length of the stem 
segment; D, outer diameter of the stem segment; Ψs

p, turgor pressure potential of 
the storage compartment; ε0, proportionality constant; ρw, density of water; Г, 
threshold at which cell wall-yielding occurs; ϕ, cell wall extensibility; a, b, allometric 
parameters; Ψs

π, osmotic potential of the storage compartment. 
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Ψsoil were used as model inputs and measurements of D to calibrate the model 

(Fig. 6.2). While simulation of Ψstem is the actual target, the model additionally 

simulates other important features of plant functioning, such as RX, RS and turgor.  

Model parameters were either fixed beforehand based on the literature or direct 

measurements, or assigned a value during initial model calibration, or daily 

recalibration (Table 6.1). Calibration parameters were selected based on two 

practical identifiability analysis (Chapter 5; De Pauw et al., 2008a), which 

investigated both the sensitivity of the parameters (i.e. sufficient influence on the 

model output) and their correlation with other model parameters (i.e. no linear 

dependencies with other model parameters) (De Pauw et al., 2008a; Steppe et al., 

2008). The identifiability analysis for initial model calibration, including available 

measurements of D and Ψstem, revealed that parameters Cstem (stem capacitance), 

ϕ (cell wall extensibility), r1, r2 (parameters for calculation of RX) and s2 (parameter 

for calculation of RS) could be assigned unique values to. Since it seems logical to 

assume that some physiological characteristics of the plant (e.g. r1, r2, Cstem) do 

not remain constant throughout the growing season (Lechaudel et al., 2007; 

Steppe et al., 2008), the model was recalibrated daily for the actual application, 

using solely automatic D measurements. A second identifiability analysis 

demonstrated that the parameters Cstem, ϕ and r2 were identifiable when only D 

measurements were used. In practice, unique values were first assigned to r1 and 

s2 using a short, initial measurement campaign with both D and manual Ψstem 

measurements. This initial calibration period was set equal to the moving window 

size (see below), in which several Ψstem measurements (around noon) at a sunny 

day were sufficient. Thereafter, the model was recalibrated on a daily basis. Each  

morning, at 4.00 h, new calibrated values for parameters Cstem, ϕ and r2 were 

obtained using D measurements of the past two to six days and used for 

simulating the next day in real-time (Fig. 6.2).  

6.2.5 Size of the moving window 

The moving window size for model recalibration implies a compromise between (1) 

responsiveness, as a small moving window reacts rapidly to changing 

microclimatic and/or physiological conditions, and (2) stability, as a longer moving 

window is less influenced (or tricked) by the alternation of sunny with cloudy days 

(Steppe et al., 2008). Three options were tested: a two-, four- and six-day moving 
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window. Model performances were compared using an objective model selection 

criterion, called final prediction error (FPE) (e.g. Chapter 5; Dochain and 

Vanrolleghem, 2001; Steppe et al., 2006): 

 N)pN(

SSEp2
+

N

SSE
=FPE

-   (6.1) 

with N the number of data points and p the number of estimated parameters 

(Cstem, ϕ and r2). The lower the FPE, the better the model performance. 

Fig. 6.2 Typical application of the water transport and storage model for real-time 
simulation of grapevine water status (detail of R1 during drought). (A) Sap flow 
rate, SF, and (B) soil water potential, Ψsoil, are used as input variables. (C) Stem 
diameter variations, D, are used for daily model recalibration to simulate (D) stem 
water potential, Ψstem. Each morning, the model is recalibrated based on a moving 
window of past data and used for simulating the next day. Results from the model 
with a moving window of two (thick dark grey lines), four (thick light grey lines) or 
six (thick black lines) days are compared with measured D (thin grey line in C) and 
Ψstem (grey dots in D). Time is given in day of the year (DOY).  



 

 

 

Table 6.1 Definition, value, unit and reference of the parameters used in the mechanistic water transport and storage models of R1 
to R4, covering conditions from fully irrigated to severe drought. 

Parameter Definition Value Unit Reference 

Obtained from measurements, the literature or estimations 
l Length of the stem segment 1 m Measured 

a Allometric parameter 0.002968 m Génard et al. (2001) 

b Allometric parameter 32 m-1 Génard et al. (2001) 

Γ Critical threshold value for stem growth 0.9 MPa Génard et al. (2001) 

ε0 Proportionality constant for calculation of the bulk elastic 
modulus 

1100 m-1 Steppe et al. (2006) 

s1 Proportionality parameter for calculation of the radial 
hydraulic resistance between xylem and elastic living 
tissues 

0.02 MPa.h.g-1 Estimated (Chapter 5) 

Obtained during initial or daily (re)calibration 

Cstem Capacitance of the water storage tissues in the stem 
compartment 

1 - 10 g.MPa-1 Daily recalibrated 

ϕ Cell wall extensibility 0.0004 - 0.0063  MPa-1.h-1 Daily recalibrated 

r1 Proportionality parameter for calculation of the integrated 
hydraulic resistance in the soil-to-stem segment 

0.0007 - 0.0027 MPa.h.g-1 Initially calibrated 

r2 Proportionality parameter for calculation of the integrated 
hydraulic resistance in the soil-to-stem segment 

8 - 998 MPa-2 Daily recalibrated 

s2 Proportionality parameter for calculation of the radial 
hydraulic resistance between xylem and elastic living 
tissues 

52 - 63 MPa-1 Initially calibrated 
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6.3 Results and discussion 

6.3.1 Daily model recalibration  

Measurements of D were used to recalibrate the model by comparing them with 

model simulations of D (Fig. 6.3A and 6.4A for R1 and R2, respectively; results of 

R3 to R5 are similar and therefore not shown). Every night, new values were 

assigned to the parameters Cstem, ϕ and r2 by observing past data. These 

parameter values, containing plant information of the past days, were then applied 

for simulating the next day in real-time (24 h). The model thus simulated plant 

responses on a specific day using information on past plant behaviour. As a 

consequence, the model accurately simulated D when little differences existed in 

Fig. 6.3 Model simulations of (A) stem diameter variations, D, and (B) stem water 
potential, Ψstem, of R1 using a moving window for daily recalibration of two (thick 
dark grey lines), four (thick light grey lines) or six (thick black lines) days. 
Measured D (thin grey line in A) and Ψstem (grey dots in B) are indicated. Time is 
given in day of the year (DOY). Drought was imposed from DOY 163 - 180, as 
indicated by the grey arrows. 



 
Chapter 6 

118 

plant behaviour between consecutive days (Fig. 6.3A and 6.4A, e.g. model 

simulations before and after the drought period), but D simulations deviated from 

the measurements when the growth pattern altered between consecutive days. D 

simulations were then adapted day-by-day when D flattened out (Fig. 6.3A, DOY 

152 - 158), or adjusted gradually when strong decreases in D occurred due to 

drought stress (e.g. detail in Fig. 6.3A). However, in the envisaged application, D 

measurements and corresponding model simulations mainly serve for daily 

recalibration. It is noteworthy that changes in D could be captured more accurately 

when model simulations were performed across the period of model calibration 

and no real-time simulations of the next day were intended (Fig. 6.5, calibration 

and simulation over a four-day period). However, in such an approach information 

on a specific day is not available until the next day, while this study aimed at real-

time simulation of grapevine behaviour to enable a continuous, real-time 

monitoring of the plant water status. 

6.3.2 Real-time simulation of the plant behaviour and water status 

The water transport and storage model was used for real-time water status 

monitoring in grapevine, covering conditions from full irrigation to severe drought. 

The range within which optimised parameter values occurred, covering these 

various conditions and plants, are shown in Table 6.1. During wet and slight to 

severe drought conditions (Ψsoil down to -0.09 MPa, e.g. Fig. 6.2B), the model 

performed well in simulating Ψstem dynamics (Fig. 6.3B (R1) and 6.4B (R2)), in 

spite of the adjustments the model already was required to make for capturing the 

effects on D dynamics under moderate drought conditions (Ψsoil around -0.07 

MPa, Fig. 6.2B, C). During the most severe drought conditions (last days of the 

imposed drought period), the model however tended to underestimate Ψstem, as it 

simulated lower values than those observed. In R1, this occurred from DOY 178 - 

180 with the two- and six-day moving window (25-90% underestimation), while the 

model with a four-day moving window still simulated realistic Ψstem on DOY 178 

(Fig. 6.3B). In R2, the model predicted realistic Ψstem across the entire period with 

a two-day moving window, except on DOY 151, but underestimated Ψstem on DOY 

152, 154 and 156 with the other two moving windows (50-89%) (Fig. 6.4B). Finally, 

in R3, Ψstem was underestimated from DOY 177 onward (20-213%). This suggests 

that some plant mechanisms involved in grapevine drought responses under the 



 
Real-time water status monitoring  

119 

most extreme conditions are not yet, or not yet properly, included in the model. 

Note however that such conditions (Ψsoil < -0.09 MPa) are extreme and will not be 

deliberately imposed in practice since it is known that excessive drought stress 

negatively affects the quality of grapes and associated wines (van Leeuwen et al., 

2009). Model underestimation of Ψstem was also reflected in the deviation from the 

1:1 line under lower Ψsoil and Ψstem, but model simulations were accurate and 

realistic under less extreme soil conditions (Ψsoil > -0.09 MPa) (Fig. 6.6). 

 

Fig. 6.4 Model simulations of (A) stem diameter variations (D) and (B) stem water 
potential (Ψstem) of R2 using a moving window for daily recalibration of two (thick 
dark grey lines), four (thick light grey lines) or six (thick black lines) days. 
Measured D (thin grey line in A) and Ψstem (grey dots in B) are indicated. Time is 
given in day of the year (DOY). Drought was imposed from DOY 142 - 159, as 
indicated by the grey arrows. 

The model not only grasped the well-known effects of drought on D and Ψstem, but 

also revealed other drought responses of grapevine. Both the axial (RX) and the 

radial (RS) hydraulic resistance increased exponentially as water availability 

decreased and drought intensified (Fig. 6.7A and 6.7B, respectively). The increase 
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in RX resulted from the assumed increase in water flow resistance in the soil with 

drought (Gardner, 1960; Tuzet et al., 2003; Zweifel et al., 2007), as well as the 

increase in resistance against upward water transport in the plant with decreasing 

water potential due to cavitated xylem vessels (Sperry et al., 1998; Lovisolo et al., 

2010). Recently, a similar trend has also been suggested for RS (Chapter 5; 

Steppe et al., 2012; Mencuccini et al., 2013). Both RX and RS in existing water 

transport models are however still assumed constant (e.g. Zweifel et al., 2007; De 

Pauw et al., 2008a; Steppe et al., 2008; De Schepper et al., 2010; De Swaef and 

Steppe, 2010; De Schepper et al., 2011), which might explain their limitation in 

performing well under severe drought conditions.  

Fig. 6.5 Typical simulation of the stem diameter variations (D, thick grey line), of a 
grapevine (R1) using the model parameters obtained during model calibration for 
those days (no real-time simulation is intended). Measured D (black line) is also 
shown. Time is given in day of the year (DOY). 

Fig. 6.6 Comparison of stem water potential (Ψstem) obtained from measurements 
(x-axis) or through real-time simulation (y-axis) of three drought-stressed (R1 
(closed circles), R2 (closed triangles) and R3 (closed squares)) and two control 
grapevines (R4 (open circles) and R5 (open triangles)) using a moving window for 
daily recalibration of (A) two, (B) four or (C) six days. 
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In contrast to the increasing trends in RX and RS, mean turgor in the elastic 

storage tissues rapidly decreased when irrigation was withheld (Fig. 6.7C). This 

rapid change in bark turgor during drought has also been reported in a previous 

study on Scots pine trees (Mencuccini et al., 2013). This substantial drop in turgor 

with progressive drought resulted in a retarded radial stem growth in the 

Fig. 6.7 Typical trend in three drought-stressed grapevines ((R1 (closed circles), 
R2 (open circles) and R3 (open squares)) in: (A) hydraulic resistance in the soil-to-
stem segment, RX, (B) radial hydraulic resistance between xylem and elastic 
storage tissues, RS, and (C) turgor of the storage tissues, Ψs

p, as a function of day 
since the last irrigation event. (D) Hydraulic conductance in the soil-to-stem 
segment (KX  = 1/RX) as a function of midday stem water potential, Ψstem (12.00 - 
14.00 h). All values are daily means. 
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grapevines and overall stem shrinkage was observed when the daily mean turgor 

dropped below 83% of its critical wall-yielding threshold Γ (Fig. 6.3A and 6.4A). 

Although all grapevines showed similar trends in simulated RX, RS and turgor 

under the influence of drought (Fig. 6.7A to C), their absolute values differed from 

grapevine to grapevine. The existence of such a plant-to-plant variability, also 

observed in other studies on grapevine (e.g. Fernández and Cuevas, 2010; 

Montoro et al., 2012; Santesteban et al., 2013), indicates the importance of a 

model calibration (initial as well as daily recalibration) for each grapevine to obtain 

optimised model parameters for each monitored individual. 

The model-analysis showed a gradual decline in hydraulic functioning when 

drought stress progressed (lower midday Ψstem). By depicting the integrated soil-

to-stem hydraulic conductance (KX = 1/RX) as a function of midday Ψstem (Fig. 

6.7D), a curve that strongly resembled the often-applied vulnerability curve was 

generated, which describes the relationship between the percentage loss of 

hydraulic conductivity and Ψstem (e.g. Choat et al., 2010; Cochard et al., 2010). 

Whereas this classical vulnerability curve only examines the hydraulic 

conductance in the stem xylem, this study includes the hydraulic conductance in 

soil and roots as well. From these generated curves the Ψstem,50 (-0.65 ± 0.02 

MPa) and the Ψstem,90 (-1.07 ± 0.11 MPa) at which 50% and 90% loss of 

conductance in the soil-to-stem segment occurred was determined. This Ψstem,50 is 

higher than the in the literature reported -0.70 MPa to -2.97 MPa for Chardonnay 

(Wheeler et al., 2005; Alsina et al., 2007; Choat et al., 2010), but this discrepancy 

can be attributed to the fact that reported vulnerability curves only examine the 

hydraulic conductance in the stem xylem, whereas this model approach integrates 

the hydraulic conductance in soil and plant. It was found that when Ψstem fell below 

the Ψstem,90 threshold, the water transport function was markedly impaired, leading 

to the overall shrinkage of the stem diameter (Fig. 6.3 and 6.4).   

6.3.3 Size of the moving window 

The model was tested using three different moving window sizes of past D data for 

daily model recalibration in order to search for the best model performance. No 

consistently better performance was observed when using a two-, four- or six-day 

moving window (Fig. 6.3 and 6.4), with the exception of days with extreme 
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drought. Also the FPE results (Table 6.2) reflected small differences, and no 

consistent trend in FPE with moving window size was found. The best option 

seems therefore to use a medium (i.e. four-day) moving window size for daily 

model recalibration, as it represents a good compromise between model stability 

and responsiveness to physiological changes. Also Steppe et al. (2008) obtained 

successful irrigation scheduling with a four-day moving window in their study on 

apple trees under sufficient water supply. 

 

Table 6.2 Final prediction error (FPE) for simulations of stem diameter variations 
(D) and stem water potential (Ψstem) with the mechanistic water transport and 
storage model. Simulations obtained with a two-, four- or six-day moving window 
for daily model recalibration are compared for three drought-stressed (R1, R2, R3) 
and two control (R4, R5) grapevines. The lower the FPE (underlined values), the 
better the model. 

Moving window for daily recalibration 
Repetition two days four days six days 

FPE for D [mm²] 
R1 0.0011 0.0008 0.0013 
R2 
R3 

0.0011 
0.0018 

0.0015 
0.0028 

0.0013 
0.0025 

R4 0.0006 0.0010 0.0013 
R5 0.0004 0.0005 0.0007 
FPE for Ψstem [MPa²] 
R1 0.10 0.05 0.08 
R2 
R3 

0.08 
0.19 

0.10 
0.19 

0.08 
0.27 

R4 0.02 0.00 0.01 
R5 0.02 0.02 0.02 

  

 

6.3.4 Step toward accurate irrigation scheduling 

This small-scale experiment on five potted grapevines illustrates the first 

successful combination of a mechanistic water transport and storage model with 

automatic plant measurements for accurate real-time monitoring of Ψstem under 

slight to severe drought stress (Ψsoil > -0.09 MPa) (Fig. 6.3B and 6.4B). A 

remaining challenge is now to define a threshold or reference value beyond which 

the plant is considered to sense too much stress and beyond which action 

(irrigation) is needed (Fereres and Goldhamer, 2003; Jones, 2004) to ensure 

optimal fruit quality and resulting wine. This will be discussed in detail in Chapter 
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7. Such thresholds should be dynamic, since they are not only influenced by soil 

water availability, but also by microclimatic conditions (Chapters 3 and 4; Steppe 

et al., 2008; De Swaef et al., 2009; Ortuño et al., 2010) and plant phenology. 

Furthermore, additional large-scale experiments, including field experiments, are 

required for further testing the applicability of the water transport and storage 

model for future practical applications and for determining the required number of 

measured individuals, as plant-to-plant variability has been observed. For field set-

ups, also the positioning of one or more Ψsoil sensors should be carefully 

considered, as a large spatial variability in soil properties and soil water potential 

may occur (Gardner, 1960; Jones, 2004). 

6.4 Conclusions 

In this chapter, it was demonstrated that the use of a mechanistic water transport 

and storage model in combination with plant measurements could be a valuable 

alternative for real-time monitoring of the plant water status. The model not only 

accurately simulated Ψstem, but it also gave new insights into the behaviour of the 

grapevines during drought stress via simulation of rapid changes in turgor in the 

elastic tissues, increases in axial and radial hydraulic resistances and via the 

generation of soil-to-stem segment vulnerability curves. 
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Chapter 7  

Dynamic thresholds for stem water 

potential  

Abstract 

The ability to monitor grapevine water status is of utmost importance to achieve 

better fruit and wine quality. Even though the stem water potential (Ψstem) is 

recognised as one of the best indicators for monitoring plant water status, a 

generic, high time-resolution, dynamic threshold beyond which the plant is sensing 

stress is still lacking. Two dynamic Ψstem thresholds were therefore examined for 

grapevine (Vitis vinifera L. cv. Chardonnay): the first threshold uses vapour 

pressure deficit (VPD), while the second one uses potential evapotranspiration 

(λEp), thus combining VPD and solar radiation, both known as key driving 

variables for transpiration. The proposed method continuously evaluates whether 

simulations of actual Ψstem remain within the limits defined by the dynamic Ψstem 

threshold. If not, drought stress is detected. Both approaches detected drought 

stress 7 to 11 days following the last irrigation event, which is several days before 

visible symptoms appeared. This system hence achieved early warning of a 

deviating Ψstem from behaviour under well-watered conditions and allowed a 

continuous tight supervision of the grapevine water status by comparing actual 

simulated Ψstem against its threshold at any moment. Despite these promising 

results, the attempt of using one generic threshold for all grapevines occasionally 

resulted in false detection of drought stress under well-watered conditions. Further 
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research is therefore recommended on the quantification of generic parameters for 

the thresholds before testing this method in practice. 

7.1 Introduction 

Plant measurements are frequently used to verify the plant’s health and water 

status. In many applications, irrigation is scheduled using information from plant 

measurements (Ginestar et al., 1998; Jones, 2004; Fernández and Cuevas, 2010; 

Fernández et al., 2011a). Since mild drought stress at specific times can have 

positive effects on fruit quantity, dimension and composition (Naor, 2006; De 

Swaef and Steppe, 2010), plant-based irrigation scheduling offers the potential to 

enhance fruit quality. Certain levels of drought stress can be allowed or even 

imposed, while still maintaining tight supervision over the plant’s water potential 

and physiological condition.  

One of the best indicators of plant water status is stem water potential (Ψstem) 

(Choné et al., 2001; Möller et al., 2007; Acevedo-Opazo et al., 2010). To apply 

Ψstem (or any plant water status indicator) for irrigation scheduling, a threshold or 

reference value beyond which the plant starts sensing a certain level of drought 

stress is required (Fereres and Goldhamer, 2003; Jones, 2004). This threshold 

cannot be defined as a fixed constant value, but should be dynamic, because both 

soil water availability and microclimatic conditions determine its magnitude 

(Chapter 4; Steppe et al., 2008; De Swaef et al., 2009; Ortuño et al., 2010). 

Several approaches have been proposed to determine dynamic thresholds. 

Measurements of the selected indicator can be compared with the ones obtained 

from a reference group of plants, which are maintained under sufficient soil water 

availability during the entire monitoring period (Patakas et al., 2005; Fernández et 

al., 2008). The difficulties are however to assign a threshold to this ratio and to 

ensure that the reference group remains representative for the monitored plants 

(Goldhamer and Fereres, 2001). Alternatively, baselines or reference relationships 

between the water status indicator and a microclimatic variable, obtained under 

sufficient water availability, are used (Intrigliolo and Castel, 2006; Ortuño et al., 

2006; Velez et al., 2007; Fernández and Cuevas, 2010). The most suitable 

microclimatic variable to relate the water status indicator to may change with 
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species, environment and cultural conditions (Velez et al., 2007). To avoid some of 

these issues, two Principal Component Analysis (PCA) techniques that define 

statistical limits beyond which drought stress is detected were proposed in 

Chapters 3 and 4. The techniques do not require determination of the 

conventional threshold values, but use measurements on selected plants during a 

short preceding control period in which full irrigation is pursued to calibrate the 

PCA models.  

Although some suitable reference equations linking a microclimatic variable to 

Ψstem have previously been developed (e.g. for plum in Intrigliolo and Castel (2006) 

and for lemon trees in Ortuño et al. (2006)), the elaboration of a generic, high time-

resolution, dynamic threshold based on microclimatic measurements is scarce and 

still lacking for grapevines. Also for grapevines it is known that an accurate 

monitoring of the plant water status and a plant-based decision of the irrigation 

supply has a great potential to produce high quality grapes and resulting wines 

(Matthews et al., 1990; van Leeuwen et al., 2009; Acevedo-Opazo et al., 2010; 

Chaves et al., 2010; Keller, 2010a). The aim of this chapter was therefore to (1) 

propose two dynamic Ψstem thresholds for grapevines (Vitis vinifera L. cv. 

Chardonnay) based on microclimatic variables, and (2) investigate and compare 

their performance for water status monitoring and fast drought stress detection.  

7.2 Material and methods 

7.2.1 Plant material and experimental set-up 

Data from 21 May (day of flowering) until 8 July 2012 (day of the year, DOY 142 -

190) from six potted grapevines (Vitis vinifera L. cv. Chardonnay) were used for 

this study. The grapevines were planted in 2010 in 50 L containers filled with DCM 

mediterra compost and fertilised in summer with DCM organic fertiliser for grapes. 

They were grown in a greenhouse facility of the Faculty of Bioscience Engineering 

at Ghent University, Belgium. Diameters at stem base ranged from 9 to 17 mm at 

the beginning of the 2012-growing season. After a control period in which the 

plants were irrigated at least twice a week to guarantee adequate soil water 

availability, four grapevines were subjected to a drought treatment by withholding 

irrigation. The period of drought lasted from 11 until 28 June 2012 (DOY 163 - 
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180) for repetitions R1 to R3, while irrigation was withheld from a fourth grapevine 

(R4) between 21 May and 7 June 2012 (DOY 142 - 159). Control grapevines C1 

and C2 were irrigated three times a week the entire growing season. 

7.2.2 Water status monitoring  

Fig. 7.1 summarises the proposed methodology for plant water status monitoring 

and drought stress detection using dynamic thresholds based on environmental 

conditions. Each step will be explained in detail in the following paragraphs. Actual 

Ψstem is continuously simulated using a water transport and storage model 

(Chapters 5 and 6; Baert and Steppe, 2013), and compared against a dynamic 

Ψstem threshold with uncertainty band. Two options to calculate this threshold are 

compared: either an approach using only vapour pressure deficit (VPD), or a more 

elaborate approach using potential evapotranspiration (λEp). When the actual 

simulated Ψstem distinctively moved outside the uncertainty band of the Ψstem 

threshold, drought stress is detected. 

Actual stem water potential  

Actual Ψstem is simulated with a dynamic water transport and storage model 

(Chapters 5 and 6; Baert and Steppe, 2013). The model uses measurements of 

sap flow rate (SF) and soil water potential (Ψsoil) as input and stem diameter 

variations (D) for daily model recalibration. The model enables accurate Ψstem 

simulations in grapevines under both wet and dry conditions. More details can be 

found in Chapters 5 and 6. 

To be able to apply this model, each grapevine was equipped with a heat balance 

sap flow sensor to measure SF (model SGA10-ws or SGEX-13, Dynamax Inc., 

Houston, TX, USA) and a Linear Variable Displacement Transducer to measure D 

(LVDT, model LBB 375-PA-100 and transducer bridge 8C-35, Schaevitz, 

Hampton, VA, USA or model DF5.0, Solartron Metrology, Bognor Regis, UK). The 

LVDTs were attached to the base of the stem with custom-made stainless steel 

holders for which no temperature correction is required (Steppe and Lemeur, 

2004). Ψsoil was measured with electronic tensiometers inserted in each container 

(type TensioTrans model 1000 C, Tensio-Technik, Geisenheim, Germany). All 

sensor signals were scanned every 20 s and averaged over 5 min (DAQ 34970A 

and multiplexer 34901A, Agilent Technologies, Diegem, Belgium).  
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Manual Ψstem measurements were performed with a pressure chamber (PMS 

Instrument Company, Albany, OR, USA) and used to verify the actual Ψstem model 

simulations. One to three leaves per grapevine were covered in plastic bags 

coated with aluminium foil for at least 2 h prior to Ψstem measurements (McCutchan 

and Shackel, 1992). 

Microclimatic variables 

Two Ψstem thresholds are key in this study. A first approach derives the dynamic 

Ψstem threshold from VPD, which is calculated from relative humidity (RH) and air 

temperature (Tair) as the difference between the air’s potential and actual vapour 

pressure value. Tair was measured with a thermocouple (type T, Omega, 

Amstelveen, the Netherlands) and RH with a RH sensor (type Hygroclip, Rotronic, 

Hauppauge, NY, USA) inserted in a radiation shield.  

Fig. 7.1 General concept of dynamic thresholds based on environmental 
conditions to achieve plant-based water status monitoring and fast drought stress 
detection. Actual stem water potential (Ψstem) is simulated using a water transport 
and storage model (Chapter 6), in which sap flow rate (SF), stem diameter 
variations (D) and soil water potential (Ψsoil) are used as input. Subsequently, 
actual Ψstem is compared against a Ψstem threshold (with uncertainty band), which 
is calculated based on either vapour pressure deficit (VPD) or potential 
evapotranspiration (λEp). Both thresholds need air temperature (Tair) and relative 
humidity (RH) measurements as input, while the λEp-based threshold uses in 
addition net radiation (RN), wind speed (v) and soil heat flux (S). *wind speed (v = 
1 m.s-1) and soil heat flux (S = 0 W m.s-2) are assumed constant in this study. 
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Photosynthetic active radiation (PAR) may have a large influence on plant 

performance in protected environments such as greenhouse facilities (Vermeulen 

et al., 2012) and is known to be a key driving variable for plant transpiration 

besides VPD and soil water availability (Jones, 1992; De Swaef and Steppe, 

2010). Therefore, a second dynamic Ψstem threshold was defined using λEp to 

include both VPD and solar radiation. λEp [W.m-2] is calculated based on the 

Penman equation (e.g. Penman, 1948; Allen et al., 1998): 
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with s the slope of the curve relating saturation vapour pressure with temperature 

[hPa.°C-1], γ the psychrometric constant [hPa.°C-1], RN the net radiation [W.m-2], S 

the soil heat flux [W.m-2], ρo
v(Tair) and ρv(Tair) the saturated and actual vapour 

concentration at air temperature [g.m-3], respectively, ra the aerodynamic 

resistance [s.m-1] and λ the latent heat of evaporation [J.g-1]. ra was calculated 

based on wind speed (v [m.s-1]) (Allen et al., 1998), which was assumed low (v = 1 

m.s-1) since the plants were located in a (ventilated) greenhouse facility (e.g. Jarvis 

and McNaughton, 1986; Vermeulen et al., 2012). S was assumed negligible 

because the soil surface in the containers was very small compared to the above 

leaf area and S is in any case small compared to RN (Allen et al., 1998). RN was 

estimated using PAR measurements, which were conducted with a quantum 

sensor (LI-190S, Li-COR, Lincoln, NE, USA) installed near the grapevines 

approximately 2 m above the ground.  

Calculation and calibration of dynamic Ψstem thresholds 

Following Liu et al. (2007), Eq. 7.2 was used to calculate a dynamic Ψstem 

threshold [MPa] based on VPD [kPa]:  

 2v
1stem VPDv=ΨThreshold -   (7.2)    

with v1 and v2 parameters dependent on microclimatic and plant characteristics. A 

similar equation was defined for the dynamic Ψstem threshold [MPa] based on λEp 

[W.m-2]: 

 
2e

p1stem Eλe=ΨThreshold -
  (7.3) 
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with e1 and e2 parameters dependent on microclimatic and plant characteristics. 

Calibration of the parameters in Eq. 7.2 and 7.3 was conducted with PhytoSim 

(Phyto-IT BVBA, Mariakerke, Belgium), a software developed for plant modelling 

and simulation, by using the simplex search algorithm (Nelder and Mead, 1965) to 

minimise the weighted sum of squared errors between actual simulated Ψstem 

(Chapter 6) under well-watered conditions and threshold Ψstem. All parameters (v1 

v2, e1 and e2) were found identifiable (sensitivity and identifiability analysis as 

explained in De Pauw et al. (2008a)), with v2 two times more sensitive than v1 (Eq. 

7.2) and e2 over six times more sensitive than e1 (Eq. 7.3). 

The aim was to develop a generic Ψstem threshold based on either VPD or λEp to 

be used for all plants across the entire monitoring period. To this end, each 

parameter value, obtained by individual threshold calibration for each well-watered 

grapevine during the first four days of the experiment (DOY 142 - 146, resulting in 

a coefficient of determination R2 ranging from 0.82 to 0.96), was averaged (i.e. 

grapevines C1, C2 and R1 to R3; R4 was not included as drought was imposed 

from DOY 142 onward). This four-day calibration period was identical to the initial 

calibration period of the water transport and storage model used for actual Ψstem 

simulation (Chapter 6). Resulting mean parameter values constituted the generic 

Ψstem thresholds for all grapevines: v1 = 0.12 ±  0.03, v2 = 1.06 ±  0.12 for Eq. 7.2 

and e1 = 1.22 10-6 ±  2.47 10-7, e2 = 1.75 ±  0.03 for Eq. 7.3.  

Threshold uncertainty band 

Verifying the uncertainty of the dynamic Ψstem thresholds because of parameter 

uncertainty is very useful, because the thresholds are intended for prediction of 

normal Ψstem behaviour under well-water conditions and, in the future, decision 

making. A Monte Carlo uncertainty analysis was performed (see procedure in De 

Pauw et al., 2008b) with PhytoSim (Phyto-IT BVBA, Mariakerke, Belgium). To this 

end, a normal probability density function was assigned to each parameter (v1, v2 

in Eq. 7.2 and e1, e2 in Eq. 7.3) based on the above mentioned parameter values 

and their respective standard deviation. From these normal distributions 

associated with the parameters, 1000 samples were generated using Latin 

hypercube sampling (e.g. Helton and Davis, 2003; De Pauw et al., 2008b). In a 

next step, the sampled parameter values were propagated through the model to 

generate the output uncertainty on the Ψstem thresholds. The upper and lower 



 
Chapter 7 

132 

limits of the uncertainty band were defined as the 95th and 5th percentile of the 

resulting output probability distribution constructed from the 1000 different 

trajectories. This uncertainty band was used to evaluate actual simulated Ψstem. 

7.3 Results and discussion 

7.3.1 Calculation of stem water potential thresholds and uncertainty 

bands 

The trajectories of Eq. 7.2 and 7.3 corresponded well with the relationships found 

between actual simulated Ψstem and VPD or λEp during well-watered conditions 

(Fig. 7.2, data from the well-watered first four days of grapevines C1, C2, R1, R2 

R3), and seemed to justify implementation of Eq. 7.2 and 7.3 as dynamic Ψstem 

thresholds. The standard deviation on each threshold parameter (v1, v2 in Eq. 7.2 

and e1, e2 in Eq. 7.3) resulted in an uncertainty of the thresholds itself, which 

varied along the day (Fig. 7.2: changes in magnitude of grey bands). The 

threshold uncertainty was observed to be higher during the day (higher values of 

VPD or λEp) compared to nighttime hours, where Ψstem, VPD and λEp were close 

to zero. To account for this variability, an uncertainty analysis (section 7.2.2) was 

therefore performed, rather than using the parameter values and respective 

standard deviations directly. In a next step, the thresholds (Eq. 7.2 and 7.3) with 

corresponding uncertainty bands were used to supervise the plant’s water status 

and detect drought stress.  

7.3.2 Dynamic thresholds for water status monitoring 

On two typical well-watered sunny (Fig. 7.3A and B) and cloudy (Fig. 7.3C and D) 

days, actual simulated Ψstem remained within the uncertainty band of both 

thresholds, indicating that Ψstem behaved as predicted for well-watered 

Chardonnay grapevines under the prevailing microclimatic conditions (VPD or 

λEp). The Monte Carlo uncertainty analysis (De Pauw et al., 2008b) translated the 

observed uncertainty of the respective thresholds (Fig. 7.2) in smaller uncertainty 

bands at night, when lowest VPD and λEp occurred, and wider bands in the 

afternoon when VPD and λEp were highest (Fig. 7.3). Similarly, lower VPD and λEp 

values on cloudy days also resulted in smaller uncertainty bands. On typical 

drought-stressed days (starting a few days after irrigation was stopped), actual 
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simulated Ψstem deviated from its normal behaviour expected under sufficient soil 

water availability and was observed outside the predicted uncertainty band on the 

dynamic thresholds (Fig. 7.3E and F, respectively). The more severe the drought 

stress became and the more it started having a distinct effect on grapevine 

functioning, the more actual simulated Ψstem decreased and exceeded the 

uncertainty bands (e.g. Fig. 7.4A and B for VPD- and λEp-based threshold, 

respectively), illustrating that when drought progressed, deviation from predicted 

normal Ψstem behaviour intensified. 

Fig. 7.2 Relationship between actual simulated stem water potential (Ψstem) and 
(A) vapour pressure deficit (VPD) or (B) potential evapotranspiration (λEp) under 
well-watered conditions. Data from the first four well-watered days of grapevines 
C1 (open circles), C2 (open triangles), R1 (open squares), R2 (closed circles) and 
R3 (closed squares), which were used for calibrating a VPD- and λEp-based 
dynamic Ψstem threshold (grey lines), are shown. Standard deviation of the 
thresholds is also shown (grey bands). 
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Fig. 7.3 Comparison of two dynamic threshold approaches for water status 
monitoring and fast drought stress detection. Left: vapour pressure deficit (VPD) 
and corresponding VPD-based stem water potential (Ψstem) threshold (white line in 
grey uncertainty band) for two typical sunny (A) and cloudy (C) well-watered days, 
and two typical sunny days with drought stress (E). Right: potential 
evapotranspiration (λEp) and corresponding λEp-based Ψstem threshold (white line 
in grey uncertainty band) for two typical sunny (B) and cloudy (D) well-watered 
days, and two typical sunny days with drought stress (F). Actual simulated Ψstem 
(black lines) and manual Ψstem measurements (black dots) are also shown. Time is 
given in day of the year (DOY). 
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The dynamic behaviour of the thresholds is important for obtaining reliable plant-

based drought detection. Actual Ψstem values of -0.6 MPa, for instance, would alert 

the grower for unexpected Ψstem behaviour on a cloudy day (Fig. 7.3C, D), but not 

always on a sunny day (Fig. 7.3A, B), because Ψstem values down to -0.6 MPa and 

lower are normal under well-watered conditions with high VPD and λEp. As 

considered necessary in Chapter 4 and the literature (Steppe et al., 2008; De 

Swaef et al., 2009; Ortuño et al., 2010), detection of drought stress with the 

dynamic system proposed in this study is dependent on both soil water availability 

(which influences actual Ψstem) and microclimatic conditions (which influence the 

magnitude of the threshold bands). Besides dynamic behaviour, the proposed 

Fig. 7.4 Typical example of actual simulated stem water potential (Ψstem, black 
lines) during imposed drought stress (grapevine R3, day of the year (DOY) 163 -
180). Actual simulated Ψstem is compared against the uncertainty band (grey band) 
on the dynamic Ψstem threshold based on (A) vapour pressure deficit (VPD) or (B) 
potential evapotranspiration (λEp). Black dots show manual Ψstem measurements; 
insets zoom in on two successive days to show that deviation of actual simulated 
Ψstem from expected normal behaviour increases when drought progresses. 
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system also allows a high time-resolution. A tight supervision over the plant water 

status can be maintained at any moment during the day, as actual simulated Ψstem 

can continuously be compared against the expected plant behaviour under well-

watered conditions. Furthermore, the magnitude of deviation from the predicted 

Ψstem threshold can give information on the level of drought stress. The high time-

resolution property of the system entails a huge advantage over several other 

plant stress indicators such as maximum daily stem shrinkage, daily growth rate 

(De Swaef et al., 2009; Fernández and Cuevas, 2010; Conejero et al., 2011) and 

predawn or midday leaf or stem water potential (Williams and Araujo, 2002; Jones, 

2004; Acevedo-Opazo et al., 2010), which assess the water status only once a 

day. Indeed, continuous Ψstem simulations (and confirmed by manual Ψstem 

measurements) revealed that under fluctuating microclimatic conditions, Ψstem 

showed strong fluctuations (e.g. fluctuations in Fig. 7.3A and inset in Fig. 7.4A), 

which may possibly be overlooked when determining the plant water status only at 

one or a few instants a day. 

7.3.3 Performance of generic thresholds for drought stress detection 

As intended, actual simulated Ψstem remained within the expected well-watered 

behaviour range on the majority of days during well-watered conditions. On some 

well-watered days, however, actual simulated Ψstem slightly exceeded the 

threshold bands (maximum 0.1 MPa). This occurred on only zero to four (out of 49 

considered) days in most cases, but up to about ten days for one or both 

thresholds in C2, R3 and R4, both at the upper (less negative Ψstem than expected 

under well-watered conditions) or lower (more negative Ψstem) limit of the threshold 

band. The latter may be especially inconvenient when occurring frequently, 

because it delivers a false positive for a drought stress event to the grower. 

Multiple reasons may be at the origin of this observed false deviation outside the 

threshold bands under well-watered conditions. A first explanation lies in the 

applied Monte Carlo uncertainty analysis (De Pauw et al., 2008b), from which the 

upper and lower limits of the uncertainty bands were defined as the 95th and 5th 

percentile. As a result, 5% of well-watered days may be expected outside this 

range. Although this may partly explain the unexpected deviations from both 

thresholds, deviations occurred too often in some cases (C2, R4, VPD-based 

threshold in R3) to be the result of a 5% chance. Therefore, other sources of 
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uncertainty need to be considered. First, the number of plants under well-watered 

control conditions (n = 5) used for calibrating the parameters (v1, v2 in Eq. 7.2 and 

e1, e2 in Eq. 7.3), or the length of the period (four days) may have been too limited 

to sufficiently account for plant-to-plant or day-to-day variability, respectively. 

Second, in addition to parameter uncertainty, that arose from plant-to-plant 

variability and which was accounted for in the Monte Carlo uncertainty analysis, 

input uncertainty as a result of possible sensor or measurement uncertainty may 

also play an important role (Vermeulen et al., 2012). Finally, although very 

convenient for practical applications, optimising Ψstem threshold parameters (v1, v2 

in Eq. 7.2 and e1, e2 in Eq. 7.3) using a limited calibration period at the start of the 

measurements and applying these values across the entire growing season, is 

only justified when parameter variability across the growing season is absent.  

Variability in Ψstem threshold parameters was investigated by recalibrating the 

parameters across the growing season using well-watered grapevines C1 and C2. 

To this end, data from 5 May until 24 September 2012 (DOY 126 - 268) were 

divided in ten-day periods. For each defined ten-day period, v1, v2, e1 and e2 were 

assigned optimal values using the calibration module in PhytoSim. Examining 

changes in optimal parameter values revealed some seasonal influence on the 

VPD-based threshold (Fig. 7.5A), but a seasonal trend seemed to be absent for 

the λEp-based threshold (Fig. 7.5B). Parameter v1 (VPD-based threshold, Eq. 7.2) 

in grapevine C2 substantially decreased across the growing season, while 

parameter v2 (Eq. 7.2) in grapevine C1 showed the decreasing trend (Fig. 7.5A). In 

addition, the constant threshold parameters, derived from five plants and 

considered generic in this study, did not correspond well with the parameter values 

optimised for one particular plant at all times (Fig. 7.5), as is best illustrated by the 

deviation of parameter v1 (of both C1 and C2) from the applied generic threshold 

parameter value (v1 = 0.12 ± 0.03). To obtain more realistic threshold parameter 

values and standard deviations, a larger group of plants might be necessary to use 

for calibration of the threshold parameters. 

7.3.4 Accuracy of automatic water status monitoring 

Besides the importance of an appropriate dynamic Ψstem threshold and associated 

uncertainty band, the performance and the accuracy of the proposed method is 

also dependent on the reliability of the actual Ψstem input. The pressure chamber 



 
Chapter 7 

138 

(Scholander et al., 1965) is the benchmark method for measuring Ψstem and is 

widely used, also for grapevines (e.g. Choné et al., 2001; van Leeuwen et al., 

2009; Acevedo-Opazo et al., 2010), but the method is discontinuous, labour 

intensive, destructive, and cannot be automated (Intrigliolo and Castel, 2006). This 

Fig. 7.5 Variability across the growing season (day of the year, DOY) of the 
dynamic stem water potential (Ψstem) threshold parameters, using ten-day periods 
of well-watered grapevines C1 (open symbols) and C2 (closed symbols): 
parameter (A) v1 (triangles), v2 (circles) for the threshold based on vapour 

pressure deficit (VPD) ( 2v
1stem VPDv=ΨThreshold - ) and (B) e1 (triangles), e2 

(circles) for the threshold based on potential evapotranspiration (λEp)                      

( 2e
p1stem Eλe=ΨThreshold - ). Light grey lines show the applied generic 

threshold parameter value for v1 (A) and e1 (B), dark grey lines the applied value 
for v2 (A) and e2 (B). 
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probably explains the lack of dynamic Ψstem thresholds so far, even though many 

authors recognise Ψstem as one of the best indicators for plant water status 

(McCutchan and Shackel, 1992; Jones, 2004). Attempts have been made to 

measure Ψstem automatically with in situ stem psychrometers (Dixon and Tyree, 

1984; Vogt and Losch, 1999; Vogt, 2001). This sophisticated sensor requires a 

high level of technical skill and is observed to be difficult to install and apply in the 

long term (Jones, 2004; Nizinski et al., 2013). The technique may however 

advance in the future and may become more useful. Such an automatic, reliable 

sensor for continuous Ψstem measurements would perfectly complement automatic 

water status monitoring and drought stress detection in combination with the 

introduced dynamic Ψstem thresholds. Alternatively, this study used Ψstem 

simulations instead of measurements. These simulations were obtained by using 

other, automatic plant measurements in combination with a dynamic water 

transport and storage model (Chapter 6), and circumvented as such the difficulty 

of direct Ψstem measurements. 

7.3.5 Comparison between VPD and λEp-based thresholds 

Overall, the applied thresholds enabled fast detection of drought stress and 

supervision of its intensity in all grapevines. Drought detection was assumed when 

actual simulated Ψstem deviated clearly and consistently from its uncertainty band. 

The first obvious indication of drought stress with both thresholds was observed on 

the 8th, 11th and 9th day after irrigation was stopped for R1, R2 and R4, 

respectively. For R3, drought stress was detected on the 7th and 10th day with the 

λEp- and VPD-based threshold, respectively. Interestingly, clear visible symptoms 

only appeared on the 15th day in R1 and on the 18th day in R3 and R4, but were 

absent in R2 when irrigation was resumed on day 18. Actual simulated Ψstem did 

not exceed the uncertainty bands of the dynamic Ψstem thresholds in the control 

treatments (C1 and C2), with the exception of some days (zero to six days, 

dependent on the threshold and grapevine). 

Drought stress was detected rapidly irrespective whether actual simulated Ψstem 

was compared against a dynamic threshold calculated using solely VPD, or both 

VPD and radiation (via the use of λEp). Despite the similarity in results of both 

approaches, diverging results may arise in other applications because of a 

different coupling between the plant canopy and the atmosphere. This coupling 
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can be expressed by the decoupling coefficient (Ω) and describes the effect of 

stomatal regulation on transpiration (Jarvis and McNaughton, 1986; Jones, 1992). 

When the saturation deficit at the leaf surfaces of the canopy is strongly coupled 

(equal) to that of the surrounding air, the stomata have a tight control over 

transpiration. In such strongly coupled conditions, Ω is low (close to 0, e.g. conifer 

needles) and transpiration is mainly driven by VPD. When Ω is high (close to 1, 

e.g. some broad leaves), the saturation deficit of the air outside the thick boundary 

layer is completely decoupled from the saturation deficit at the leaf surfaces of the 

canopy, which reaches a local equilibrium. Because net radiation has a large 

influence on this local equilibrium, transpiration is no longer controlled by the 

degree of opening by the stomata, but is mainly driven by net radiation (Jarvis and 

McNaughton, 1986). In situations where Ω is high and net radiation plays a key 

role in driving transpiration, more realistic results may be expected with a λEp-

based threshold compared to a threshold based on VPD measurements only. 

Nevertheless, further investigation is required to verify this hypothesis. 

7.4 Conclusions 

In this study, proof of principle is given of how dynamic thresholds based on 

environmental conditions can be used to achieve plant-based (Ψstem is used as 

indicator) monitoring of the grapevine water status and fast drought stress 

detection. Since the proposed methodology can be easily automated, it could be 

further developed as a practical tool for scheduling irrigation or alerting the grower 

when irregularities occur and action may be required. Despite promising first 

results, the protocol for calibrating the generic threshold parameters should be 

further developed given the observed difficulties (e.g. plant-to-plant variability, 

seasonal trend and parameter or sensor uncertainty). For practical applications in 

the future, the performance of the proposed dynamic threshold concept should be 

carefully investigated under a wide range of environmental conditions (e.g. 

greenhouse facility versus field experiment) and for the plant species or cultivar of 

interest, since Ψstem behaviour under normal conditions (e.g. daily minimum Ψstem) 

has been observed to vary dependent on the species or cultivar (e.g. Williams and 

Araujo, 2002; Chaves et al., 2010). 
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Chapter 8  

General conclusions and future 

perspectives 

If not already a prerequisite now, a great part of the worldwide grapevine 

cultivation will benefit in the future from efficient and precise irrigation, not only to 

provide adequate water, but also to improve grape and wine quality. To 

accomplish precise irrigation scheduling, an accurate monitoring of the plant water 

status and an early detection of drought stress are crucial. The main objective of 

this thesis was therefore to develop and evaluate plant-based strategies to fulfil 

these needs. This final chapter reflects on the most important conclusions of this 

research and ideas for future research are put forward.   

8.1 General conclusions 

Two different plant-based strategies for monitoring the grapevine water status 

were tested. First, water status monitoring and fast drought stress detection were 

accomplished with a data-driven model approach (Chapters 3 and 4). Such an 

approach does not need a priori information on the underlying plant mechanisms, 

but the model is constructed using a large amount of historical data. Two different 

data-driven models were tested and their performances were compared: Unfold 

Principle Component Analysis (UPCA) and Functional Unfold Principle Component 

Analysis (FUPCA). In Chapters 5 to 7, a mechanistic water transport and storage 

model was developed and implemented for realising the same aim, but now uses 

knowledge on underlying mechanisms. Outcomes of both strategies are 
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summarised in the following paragraphs and their strengths and shortcomings are 

discussed. 

8.1.1  Data-driven modelling  

Two expansions of Principal Component Analysis (PCA), a frequently used data-

driven technique for monitoring a process in several domains (Box 3.1), were 

tested for monitoring the grapevine’s water status: UPCA and FUPCA (Chapters 3 

and 4). PCA expresses the information contained in the measured variables, i.e. 

an indicator of the plant water status such as stem diameter variations (D) 

(Chapters 3 and 4) or sap flow rate (SF) (Chapter 4), and measurements of the 

microclimatic conditions (photosynthetic radiation (PAR), vapour pressure deficit 

(VPD), air temperature (Tair)), by a smaller number of new variables. These 

variables are called principal components (PCs) and describe the major part of the 

variability (and thus information) in the original data, while the dimensionality of the 

dataset is greatly reduced. By constructing a relationship between these new PCs, 

a PCA model extracts the underlying data features and patterns under normal 

conditions, and as such makes a profile of normal, expected data behaviour 

(Jolliffe, 2002; Venkatasubramanian et al., 2003; Villez et al., 2009). Monitoring 

new data implies checking these data against the pattern of normal behaviour, i.e. 

projecting these data onto the constructed PCA model. Both UPCA and FUPCA 

enabled a fast detection of drought stress when potted grapevines were subjected 

to drought, several days (five to ten) before the first clear visible symptoms 

appeared (colouring and wilting of the leaves).  

Difference between UPCA and FUPCA 

In this study, UPCA and FUPCA performed quite similar in detecting drought 

stress at an early stage. UPCA seems the preferred technique in that respect, 

because unlike FUPCA, UPCA does not require the extra processing step of 

performing a functional data analysis. However, the functional data analysis in 

FUPCA involves certain advantages and is worth considering. FUPCA allows 

estimating gaps of missing data, if not too extensive. This enables water status 

monitoring of that particular day, which would be impossible with UPCA. Because 

proper data acquisition was occasionally impeded in this study due to required 

adjustments of a sensor installation or failure of data logging, electricity or sensors 
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(Chapters 3 and 4), the ability of FUPCA to estimate small gaps of missing data is 

believed very convenient and increases the usefulness and reliability of the 

technique. Furthermore, existing knowledge of the data can be incorporated in a 

functional data analysis (Ramsay and Silverman, 2005), as has been illustrated for 

the non-negative behaviour of PAR in this study (Chapter 3). Due to the 

considerably reduced amount of input data for the subsequent PCA model, the 

constructed FUPCA model is less complex compared to the UPCA model. 

Unravelling underlying mechanisms 

The PCA-based models, in their current use, might seem less suitable for 

unravelling new insights related to plant water status because underlying 

processes are not explained. Nevertheless, they can provide valuable 

supplementary information and could become very powerful when combined with 

knowledge on plant behaviour or mechanistic models (Kourti, 2002). Note for 

instance that PCA allows an easy exploration of a (large) dataset to reveal periods 

of unexpected behaviour and, although not explored in this thesis, can be applied 

to identify possible causes of unusual behaviour (Kourti, 2002; Box 3.1). 

Furthermore, the behaviour of the newly constructed variables (PCs) gave insight 

in the correlations of the original variables (Chapters 3 and 4). Indeed, the 

loadings for all variables (microclimatic measurements plus D or SF) of the first PC 

indicated that PAR, Tair and VPD are positively correlated with SF, which confirms 

that PAR and VPD are the key driving variables for transpiration and thus SF. On 

the other hand, they are negatively correlated with D, caused by a more extensive 

shrinkage of the diameter under higher transpiration (Steppe et al., 2006; Intrigliolo 

and Castel, 2007b; Steppe et al., 2012). Examination of the second PC revealed 

other, less obvious mechanisms (e.g. Fig. 4.4D, H). For both SF and D, a wavelike 

pattern was observed for all variables, which Villez et al. (2009) linked to temporal 

variability in the daily cycles. Also in other cyclic processes, such as weather 

station data or gait cycles of children, behaviour of the second PC was attributed 

to a time shift or temporal effect (Ramsay and Silverman, 2005). The subsequent 

PCs also account for specific information in the data, although interpretation 

becomes very difficult. They are not as important as the first and second PC, as 

they only explain small proportions of the variation in the data. 
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Monitoring performance depends on the measured plant variable 

The performance of the PCA models depends on their input. In Chapter 4, the 

models used either SF as plant indicator, or D. While both performed well, they 

had different issues to keep in mind. On cloudy days, SF was not able to 

distinguish between low soil water availability and low atmospheric water demand, 

since both phenomena result in lower SF values (De Swaef and Steppe, 2010; 

Chapter 4). When D was used as indicator, detection ceased when severe 

drought initiated. The model then suggested recovery from drought stress, while 

the plant exhibited more severe drought stress. This observation was caused by a 

levelling off of the stem diameter because the water storage pools were 

extensively depleted and could no longer be refilled during the night (e.g. Fig. 

4.3B, 4.6). The resulting less pronounced pattern of shrinkage and refilling under 

severe drought stress compared to the start of the drought stress treatment has 

been observed in other studies as well (De Swaef et al., 2009; Fernández and 

Cuevas, 2010; Ortuño et al., 2010). Furthermore, it was hypothesised in Chapter 

3 that the PCA models based on D would fail once veraison of the grapevines is 

achieved. Grapevines with sufficient soil water availability show a steadily growing 

diameter before veraison (Fig. 8.1). An impairment of the growth pattern during 

this period is therefore a clear indication of drought stress. After veraison, 

however, the stem diameter first shows a characteristic shrinkage irrespective of 

the water availability and stabilises afterwards (Fig. 8.1) (Ton and Kopyt, 2004; 

Kopyt and Ton, 2005; Intrigliolo and Castel, 2007b). The colouring and ripening 

grapes that become a more important sink from veraison onward may be 

responsible for this phenomenon, as they get priority for receiving photosynthetic 

assimilates (Dokoozlian, 2000; Intrigliolo and Castel, 2007b). Steered by the 

shrinking diameter, a PCA model is expected to detect abnormality around the 

onset of veraison, but is under these circumstances not an explicit sign of drought 

stress. A promising strategy to overcome the difficulty of changing stem diameter 

dynamics across the growing season may be to adapt the PCA model to (gradual) 

changes of the existing relationships between variables, also called adaptive PCA 

(Li et al., 2000; Lennox and Rosen, 2002; Villez, 2007). An adaptive PCA 

technique allows updating the PCA model online when new data are available and 

permits as such that the model follows the evolution/development of the 
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grapevine. However, care should be taken that the PCA model does not adapt to 

abnormal changes in grapevine behaviour (e.g. drought effects), which one wants 

to detect. 

Above remarks on the behaviour of SF and D apply for all techniques that use 

measurements of SF or D as indicator for plant water status. As mentioned in 

Chapter 2, a better understanding and more thorough and profound knowledge of 

the plant water status will be obtained when combining several plant 

measurements. Knowledge of underlying mechanisms and characteristic plant 

behaviour during specific periods in the growing season proved of utmost 

importance, even when data-driven models such as UPCA and FUPCA are 

Fig. 8.1 Typical examples of characteristic stem diameter growth curves across the 
growing season of two table grape cultivars, i.e. (A) Barlinka and (B) Thompson, 
and four wine grape cultivars, i.e. (C) Cabernet Sauvignon, (D) Merlot, (E) 
Chardonnay and (F) Shiraz (adapted from Kopyt and Ton (2005)). Typical 
occurrence of bloom, veraison and harvest are indicated. 
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applied. Therefore, the use of a mechanistic model that is built from underlying 

processes seemed a promising alternative. 

8.1.2 Mechanistic modelling 

A profound understanding of the plant water relations is of utmost importance for a 

reliable water status monitoring and, in the future, for maintaining the optimal 

water status level at specific times to optimise fruit quality. In particular, a 

comprehension of grapevine responses under dry conditions appears crucial, 

because grapevines are often cultivated under dry conditions and are known to 

benefit from mild levels of drought stress. Because UPCA and FUPCA were less 

suited to assist in broadening our knowledge of grapevine physiology, Chapters 5 

to 7 focussed on developing and applying a mechanistic model for describing the 

water transport and storage in grapevines. A mechanistic model mathematically 

describes the plant/grapevine by a series of known plant mechanisms and can be 

considered as a simplified representation of reality. Constructing a mechanistic 

model allows aligning and integrating several complex plant processes, which 

each are represented by a mathematical equation (e.g. Fig. 5.1), and interpreting 

their information simultaneously. As such, the behaviour, the interaction or certain 

hypotheses of the plant processes and variables can be investigated. Possible 

outcomes of hypothetical treatments or events can be checked and reasoned out 

transparently. Mechanistic models can therefore greatly contribute to the 

understanding of plant functioning and are able to provide explanations on certain 

observed plant responses. 

In Chapter 5 it was demonstrated that an existing water transport and storage 

model (Steppe et al., 2006; 2008; De Pauw et al., 2008a), developed for 

describing water transport and irrigation scheduling in trees, failed when applied 

for grapevines under dry conditions. Under dry conditions, the original model was 

not able to correctly simulate D and stem water potential (Ψstem), which is 

recognised as one of the best indicators for grapevine water status (Choné et al., 

2001; Acevedo-Opazo et al., 2010). The model simulations did not correspond 

with the actual measurements that indicated a clear decreasing trend in D and 

Ψstem when drought intensified (Fig. 5.3, Appendix Fig. S15). As was 

hypothesised, the generally applied constant parameter for hydraulic resistance in 

the xylem appeared responsible for this failure. It was proven that the hydraulic 
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resistance encountered during upward water transport (in the soil-to-stem 

segment, RX) cannot be considered constant. RX showed daily fluctuations, with 

maximum resistance during the night and minimum resistance during the day 

(Chapter 5), as well as a clear altered trend under the influence of drought 

(Chapters 5 and 6). Daily fluctuations have been observed in other studies as well 

(Bucci et al., 2003; Lovisolo et al., 2008; Sellin et al., 2010; Zufferey et al., 2011) 

and assist the plant in enhancing its hydraulic efficiency and water transport 

capacity while maintaining a moderate water potential drop during the day and 

avoiding extensive cavitation (Cochard et al., 2007; Nardini et al., 2010; Guyot et 

al., 2012). Besides this diurnal pattern, RX was found to increase exponentially due 

to drought stress (Chapters 5 and 6), which can be attributed to the combination 

of abundant cavitation in the xylem vessels (Sperry and Tyree, 1988; Lovisolo et 

al., 2010) and increasing water flow resistance in the soil (Gardner, 1960; Tuzet et 

al., 2003) under dry conditions. Besides the pronounced effect of drought stress 

on RX, also the radial hydraulic resistance between xylem and elastic living tissues 

that serve as a water storage pool (RS) was proven to be highly influenced by 

drought stress. The results of this study support the experimental discovery of 

Steppe et al. (2012) that aquaporins interfere not only in the regulation of upward 

water transport, but also of radial water transport. Furthermore, in correspondence 

to other studies (Mencuccini et al., 2013), a marked decline in turgor pressure was 

observed under drought stress (Chapter 6). 

Urged by the above new insights, the former constant RX and RS of the original 

water transport and storage model (Steppe et al., 2006; 2008) were replaced by 

equations (Eq. 5.2 and 5.4) dependent on the soil water potential (Ψsoil) (Chapter 

5). Once adapted, a good correspondence between measured and simulated data 

of D, Ψstem and RX was obtained. As such, the improved model allowed an 

accurate description of the grapevine’s response under dry conditions and 

confirmed the reliability of the new mechanisms related to hydraulic resistances 

implemented in the model. Variable hydraulic resistances are believed necessary 

for a good description of plant behaviour under dry conditions.  

Through the development of an appropriate mechanistic model for describing 

water transport and storage in grapevines under both wet and dry conditions, 

Chapter 5 mainly aimed at broadening the understanding on plant responses. 
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Once achieved, the improved model was further elaborated and tested to serve as 

a tool for automatic monitoring of grapevine water status in real-time (Chapter 6). 

To this end, the model was tested for monitoring the plant water status accurately 

based on automatic measurements alone (SF and Ψsoil as input data and D for 

daily model recalibration). Particularly under wet and slight to moderate drought 

conditions, the conditions that predominantly prevail in practice, the model 

simulations of Ψstem were accurate. Only under the most severe conditions, the 

model appeared to underestimate Ψstem (simulating more negative Ψstem values 

than actually measured). This suggests that some plant mechanisms involved in 

grapevine drought responses under the most extreme conditions are not yet, or 

not yet properly, included in the model. Note, however, that such severe drought 

conditions are not favourable for grape and wine quality (Chapter 2) and should 

be avoided in practice. 

8.1.3 Model calibration 

Prior to the onset of automatic water status monitoring, both the data-driven PCA 

models and the mechanistic model require calibration, for which historical data 

from a period where the plant and environmental conditions were optimal are 

needed. In this thesis, data collected from well-watered plants prior to the actual 

monitoring period were used for this purpose. A short preceding period is sufficient 

for the mechanistic model (two to six days, Chapter 6), while a longer period 

(minimum ten days) is preferred for the data-driven models (Chapters 3 and 4). In 

the latter models, as mentioned in section 8.1.1, calibration data are used to 

construct the PCA model and draw a profile of expected data behaviour and 

interactions (between meteorological data and D or SF) under well-watered 

conditions. Furthermore, these data define statistical limits under which new 

monitored days must stay to be considered as normal. Calibration for the 

mechanistic model works differently (Chapters 5 to 7). Model simulations of D and 

Ψstem are aligned with actual D and Ψstem measurements to find the best model fit. 

This is achieved by adjusting identifiable model parameters that could not be 

measured or estimated from the literature. As such, an optimal model parameter 

set for that particular grapevine is obtained.  

The calibration period must be chosen carefully. In both the data-driven or 

mechanistic approach, the phenological stage must be kept in mind. For the 
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mechanistic model, data after flowering was used for calibration (e.g. 21 May in 

2012, Chapters 5 to 7) because the grapevine had developed a full canopy by 

then. Also for UPCA and FUPCA it is better to avoid an extensive amount of days 

from the beginning of the growing season, typically showing zero or low daily net 

growth of D and low SF. It was proven necessary to shorten the calibration period 

for two out of six grapevines tested in Chapter 4 to obtain a good stress detection 

performance. Because the calibration data must teach the PCA models to 

recognise normal data behaviour expected for the rest of the season, the timing of 

the calibration period depends on the grapevine (canopy) development, while the 

length of the calibration period depends on the prevailing microclimatic variability. 

Since detection of altered plant behaviour on cloudy versus sunny days is not 

intended, both sunny and cloudy days should be included in the calibration data 

set. Accidental disturbances during the start-up period, on the contrary, must be 

excluded from the calibration data set, e.g. unforeseen drought stress or diseases. 

8.1.4 Threshold for drought stress detection 

Irrespective of the monitoring technique or plant variable that is used as an 

indicator, threshold or reference values are required to define when plants are 

considered to experience drought stress (Fereres and Goldhamer, 2003; Jones, 

2004). In UPCA and FUPCA (Chapters 3 and 4), this threshold is defined by the 

Q and Hotelling T² statistic (Eq. 3.1 and 3.2, respectively). If one of these limits is 

exceeded, the model discovers abnormality (e.g. drought stress) on that day. 

Because UPCA and FUPCA define these thresholds statistically, they seem the 

more straightforward and objective technique. 

Monitoring and evaluating grapevine water status with the mechanistic water 

transport and storage model, on the other hand, can be made visual and is 

therefore less abstract. The model provides continuous simulations of Ψstem 

(Chapter 6). Simultaneously, a dynamic Ψstem threshold band is constructed. This 

represents the range within which Ψstem is expected to fall under well-watered 

conditions (Chapter 7). If Ψstem starts exceeding this band, the plant experiences 

more negative Ψstem than under normal conditions, indicating drought stress for the 

plant. As outlined in Chapters 4 and 7, the dynamic feature of the Ψstem threshold 

is of utmost importance, because the plant water status is not only influenced by 

soil water availability, but also by microclimatic conditions (De Swaef et al., 2009; 
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Ortuño et al., 2010). Although several approaches have been proposed to 

determine such dynamic thresholds (e.g. Patakas et al., 2005; Ortuño et al., 2006; 

Velez et al., 2007), a more practical procedure for determining a generic, high 

time-resolution dynamic Ψstem threshold is still lacking, in particular for grapevine. 

Two different dynamic Ψstem thresholds were therefore proposed and compared in 

Chapter 7, both based on microclimatic measurements. A first threshold was 

rather simple as its calculation was based on VPD, the major driving variable for 

plant transpiration (De Swaef and Steppe, 2010). Besides VPD, also PAR is 

known as a key driving variable and may greatly affect plant performance in 

protected environments such as greenhouse facilities (Vermeulen et al., 2012). 

The second threshold therefore included both VPD and radiation by calculating 

potential evapotranspiration (λEp) (Eq. 7.2 and 7.3, respectively). 

As with UPCA and FUPCA (Chapters 3 and 4), the mechanistic model in 

combination with either one of the dynamic thresholds allowed a fast detection of 

drought stress and tight supervision over the plant water status during a drought-

exposure experiment on Chardonnay grapevines (Chapter 7), as Ψstem could be 

continuously compared against expected plant behaviour under well-watered 

conditions. These first results were very promising, nevertheless, the protocol for 

calibrating the generic Ψstem threshold parameters (Eq. 7.2 and 7.3) and defining 

their uncertainty should be further developed given the observed difficulties with 

occasional false drought stress detections despite well-watered conditions (as a 

result of plant-to-plant variability, seasonal trend or parameter and sensor 

uncertainty) (Chapter 7). 

8.1.5 Distinguishing between different levels of drought stress 

It was pointed out in Chapter 3 that UPCA and FUPCA are in their current use 

able to indicate whether data behave normal or abnormal on a certain day, but do 

not differentiate between gradations in drought stress. This shortcoming does not 

imply a problem for full irrigation treatments that attempt to avoid any level of 

drought stress. However, because grape composition benefits from mild levels of 

drought stress, while it is negatively affected by no or too severe stress (van 

Leeuwen et al., 2009; Keller, 2010b), a distinction between different levels of 

drought stress is crucial for grapevines. In future research, it would be interesting 

to investigate whether the techniques can be adapted for fulfilling this need. One 
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possibility would be to examine the degree of abnormality once data deviate from 

normal conditions (indicated by the Q statistic and Hotelling’s T² statistic). The 

contribution of each variable to this deviation can be retrieved from the underlying 

UPCA or FUPCA model (projection model that characterises the relationships 

under normal conditions). The magnitude of the contribution of the stem diameter 

variations could indicate how severe the deviation is. MacGregor and Jaeckle 

(1994) demonstrated this approach for process diagnosis of a polyethylene 

production reactor. Another option is applied by Dunia and Qin (1998). In their 

strategy, each abnormality is described by (1) a fixed unit vector, which describes 

the linear combination of residuals as expected for a particular fault type and (2) a 

scalar value describing the magnitude of an instance of that fault. Fault diagnosis 

then boils down to the identification of the scalars for all considered faults. Above 

strategies seem promising for adapting UPCA and FUPCA. However, it is not 

recommended to use these techniques in their current set-up when it is targeted to 

maintain a specific level of drought stress. The mechanistic model lends itself 

much better for this purpose. More severe drought stress results in a more 

pronounced decline in D, SF, Ψstem and turgor, while hydraulic resistances (RX and 

RS) increase considerably, all important plant variables related to the plant water 

status that can be examined using the water transport and storage model 

(Chapters 5 and 6). As such, information on the stress level of the plant can be 

extracted from the model outcome. 

8.1.6 Data interpretation and practical application 

Both the data-driven and mechanistic method consider the collected information 

simultaneously, which is a great advantage compared to many conventional water 

status monitoring approaches that do not integrate the data of different 

sensors/variables. Examining one variable at a time as if it is independent of the 

other variables, which is seldom the case because their behaviour is probably 

driven by only one or a few underlying mechanisms, makes their interpretation 

difficult and defining the underlying cause quite cumbersome. 

Instead, via the data-driven models, the information of all measured variables is 

transformed into a reduced amount of new variables (PCs). The information 

contained in the several variables is therefore considered simultaneously and is 

presented in a simpler manner (MacGregor and Jaeckle, 1994; MacGregor and 
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Kourti, 1995). UPCA and FUPCA also allow a simple and clear graphical 

representation of the monitoring results (e.g. Fig. 3.8), which are easy to 

understand and interpret (MacGregor and Jaeckle, 1994; Kourti, 2002). The 

absence of actual plant processes inherent to data-driven models are a drawback 

when aiming at testing and interpreting certain specific data/plant behaviour or 

hypotheses. The fact that a profound a priori understanding is not required, 

however, is rather an advantage for applying these models in practice because the 

end-user may lack a profound knowledge or feeling with underlying plant 

physiological processes. UPCA and FUPCA models can be used for stress 

detection without seeing or needing the built-in formulas and calculations and for 

reasoning with incomplete and/or uncertain information. Also the mechanistic 

water transport and storage model is easy to interpret and recalibrate daily once 

running, but in contrast to the data-driven models, a broader knowledge and 

understanding is important for model development and initial model calibration. 

A certain level of experience is nevertheless in any case preferable to make a 

good evaluation of the corresponding model output. Even when either a data-

driven or the mechanistic model is started up and is running automatically, the 

end-user must have the capability to assess the model performance and reliability. 

The end-user should be able to evaluate whether a drought event is the plausible 

cause of the detection event or whether there are other possibilities. For instance: 

Is the vineyard infected by diseases? Does the timing correspond with veraison 

(Fig. 8.1, Chapter 3)? In which stage is the grape development and which level of 

water availability is optimal for this stage (Chapter 2)? Furthermore, a certain 

feeling is required to make profound decisions on actions to take, if necessary.   

It is impossible to equip and monitor all plants in a commercial vineyard with 

automatic sensors. This limitation is not only applicable for the stress detection 

techniques proposed in this thesis, but also for other methods based on plant 

measurements. The required number will depend on the location of the plants and 

the variability of soil, root-zone and plant (Alchanatis et al., 2010). The existence of 

plant-to-plant variability has been shown for  several species (Naor, 2006; Velez et 

al., 2007; Fernández and Cuevas, 2010), including grapevines (Chapters 4, 6 and 

7; Montoro et al., 2012; Santesteban et al., 2013). Recent developments try to 

provide tools to identify representative plants or troublesome areas (Naor, 2006; 
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Fernández et al., 2008). Remote thermal imagery is such a technique, used for 

screening canopy temperature variability over large areas (Fig. 8.2A, B) (Jones, 

2007; Jones et al., 2009; Alchanatis et al., 2010; Maes and Steppe, 2012). As 

such, the required number of measured plants may be reduced and plant selection 

more underpinned, although more research is still needed on this topic. Canopy 

temperature depends on changes in stomatal closure and leaf transpiration and is 

recognised as a measure for plant stress (Maes and Steppe, 2012). Besides 

scanning for spatial variability, thermal imagery is also explored for detecting biotic 

and abiotic stress (Fig. 8.2C, D) (Jones, 2004; Chaerle et al., 2007; Grant et al., 

2007; Jones et al., 2009; Maes and Steppe, 2012). 

8.2 Future research 

This thesis focused on developing plant-based strategies for water status 

monitoring and stress detection in grapevine. Two approaches (data-driven and 

mechanistic) were elaborated, both achieving a good monitoring of the water 

status and a fast detection of drought stress during drought experiments on potted 

grapevines. Although several challenging and crucial steps were taken, some 

important issues remained unanswered and should be dealt with before these 

plant-based models can be applied for optimising grape and wine quality in 

practice. The most prominent ones are discussed below and suggestions for future 

research are given. 

8.2.1 From greenhouse experiments to practice 

All experiments described in this thesis were conducted in a greenhouse facility. 

Such a set-up was most appropriate and convenient for broadening our knowledge 

on grapevine behaviour, because it allowed having a strict control over the 

experiments, and in particular, the soil water availability for the grapevines. 

Indeed, this thesis especially focussed on the effect of drought stress, as it has a 

crucial influence on grape and wine quality. As such, also developing and testing 

the data-driven (Chapters 3 and 4) and mechanistic (Chapters 5 to 7) models 

occurred under controlled greenhouse conditions. It would be very interesting to 

conduct additional measurement campaigns under different conditions. First, plant 

responses and model performances were examined by withholding irrigation from 
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potted grapevines until visible symptoms appeared. Imposing different levels of 

stress (e.g. no, mild, slight to moderate and severe drought stress) during different 

prolonged periods in the growing season (e.g. from flowering until veraison, during 

ripening or post-harvest) instead of subjecting the grapevines to one relatively 

short drought shock may provide interesting information on the effect of sustained 

drought on plant and fruit behaviour. Such drought experiments probably match 

more tightly to the drought events that grapevine under rain-fed watering or 

traditional irrigation strategies experience. In addition, imposing different levels of 

drought stress may reveal different response mechanisms, both on a level of 

Fig. 8.2 Illustration of using thermal imagery for screening plant-to-plant variability 
or detecting drought stress by examining differences in canopy temperature. (A, B) 
Visible and thermal image taken prior to drought stress treatments in 2012. 
Although grapevine A and grapevines B were all under well-watered conditions, 
thermal imagery demonstrated plant-to-plant variability due to a difference in 
canopy temperature (± 26 versus ± 24°C, respectively). (C, D) Visible and thermal 
image taken two weeks after irrigation was withheld for grapevine C while D 
remained irrigated. Based on the considerably higher canopy temperature for 
grapevine C (± 33 versus ± 28°C), drought stress for that particular grapevine 
could be detected. 
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timing (e.g. when do symptoms and effects on plant functioning appear?) and 

quantity (e.g. how severe is the effect?). Similar experiments have already been 

conducted on grapevines, either by varying the levels (Patakas et al., 2005; dos 

Santos et al., 2007; Acevedo-Opazo et al., 2010; Santesteban et al., 2011) and/or 

the timing (Hardie and Considine, 1976; Matthews et al., 1990) of water deficits, 

but these studies rarely consider different plant measurements (such as SF and D) 

simultaneously or combine them with mechanistic modelling, as has been done in 

this thesis. Drought exposure experiments were for the first time combined with a 

data-driven model in this thesis. 

Second, besides pot experiments with controlled, prolonged drought levels, field 

experiments under natural conditions are required for confirming the new findings 

(e.g. behaviour of dynamic hydraulic plant resistances, Chapters 5 and 6) and 

testing the applicability of the models (Chapters 6 and 7) in field conditions.  

Finally, now that a more profound understanding of plant responses to drought 

stress and the underlying mechanisms is attained, the time has come to 

investigate the influence of drought stress on the fruits. Eventually, optimising the 

grape and resulting wine quality is the actual target of the grape- and winegrower. 

Examining the trend in berry size, pH, sugar and acid concentrations across the 

growing season as a result of different drought stress levels, all important features 

that contribute to fruit quality (Chapter 2), are only a few of the possible 

measurements to take. The abovementioned variables can be measured directly 

in the greenhouse or field (e.g. Ginestar et al., 1998; van Leeuwen et al., 2009). 

More elaborate methods, such as analytical studies in a laboratory or wine 

sensory tests with trained panellists, can be applied for investigating other fruit and 

wine quality-related components (aromatic, colour and flavour compounds and 

impressions) (e.g. Matthews et al., 1990; Roby et al., 2004; Chapman et al., 2005). 

8.2.2 Virtual fruit model 

As discussed in Chapter 2, grape quality is the result of an interaction between 

many complex biological processes, the fruits and the environment. Among these 

processes are cell and tissue development, xylem and phloem fluxes, 

transpiration, photosynthesis and respiration (Génard et al., 2007). The best option 

for better understanding the effect of the water status on grape quality, and 
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eventually controlling it, seems to consider the fruit and its development as a 

system and explicitly investigating the underlying mechanisms. To this end, the 

major processes and trends related to fruit growth, development and biochemistry 

should be integrated in a mechanistic model. This enables investigating the 

combined effect of several interconnected processes on such a complex aspect as 

fruit quality (Génard et al., 2007; Liu et al., 2007; Dai et al., 2010). 

Lescourret and Génard (2005) and Génard et al. (2007) were the first to develop 

such a virtual fruit model for peach by merging existing submodels for carbon, 

sugar and water fluxes going in and out of the fruit. Also for other species, 

research is ongoing for developing virtual fruit models based on biophysical 

mechanisms, such as tomato (Liu et al., 2007; De Swaef and Steppe, 2011), 

mango (Lechaudel et al., 2007) and kiwifruit (Cieslak et al., 2011). For grapevine, 

a few first attempts have been made. Models describing individual aspects related 

to grape berry development have been introduced, such as the growth model of 

Dai et al. (2008) (adapted from the peach growth model of Fishman and Génard 

(1998)) for simulating the response of grape berry growth to environmental 

conditions and source-to-sink ratio. Other examples are the models of Dreier et al. 

(2000) and Dai et al. (2009) for describing changes in sugar concentration during 

ripening. To attain eventually a comprehensive virtual grape model, further 

research is required, in particular on the integration of knowledge on different 

processes. Ideas on how to tackle this topic are given in the review of Dai et al. 

(2010) and potentially valuable frameworks for modelling various processes are 

extensively discussed.  

As explained in Chapters 3 and 4, grapevines show a characteristic shrinkage in 

diameter around the onset of veraison (Fig. 8.1), putatively because the grapes 

become higher demanding sinks for photosynthetic assimilates. Coupling the 

mechanistic water transport and storage model (Chapters 5 to 7) with a virtual 

fruit model may enable to comprehend and align the observed behaviour in 

diameter with the ongoing ripening processes in the grapes. The combination of 

these models would relate the water relations at the whole-plant level and offer 

insights into both the plant and fruit development.  
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Appendix 

Supplementary material for Chapter 4 

Microclimatic conditions during the experiments in 2012 

 

 

Fig. S1 Microclimatic conditions: (A) photosynthetic active radiation (PAR), (B) air 
temperature (Tair) and (C) vapour pressure deficit (VPD) during the experiments in 
2012, i.e. control 1, 2 and repetitions 2 to 5. Time is given in day of the year 
(DOY). 
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Analysis of control 1 (2012) 

 

 

Fig. S2 Control 1: (A) Sap flow rate (SF), (B) stem diameter variations (D) and (C) 

stem water potential (Ψstem) and soil water potential (Ψsoil) of a control grapevine. 

Time is given in day of the year (DOY). 

 

 

 

Fig. S3 Control 1: square root of Q statistic as a function of time (in day of the 
year, DOY) of Unfold Principal Component Analysis (UPCA) based on (A) sap flow 
rate (SF) and (B) stem diameter variations (D) for a control grapevine. The dotted 
lines indicate the statistical 99% limits Qα. 
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Analysis of control 2 (2012) 

 

 

 

Fig. S4 Control 2: (A) Sap flow rate (SF), (B) stem diameter variations (D) and (C) 

stem water potential (Ψstem) and soil water potential (Ψsoil) of a control grapevine. 

Time is given in day of the year (DOY). 

 

 

 

Fig. S5 Control 2: square root of Q statistic as a function of time (in day of the 
year, DOY) of Unfold Principal Component Analysis (UPCA) based on (A) sap flow 
rate (SF) and (B) stem diameter variations (D) for a control grapevine. The dotted 
lines indicate the statistical 99% limits Qα.  
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Analysis of repetition 2 (2012) 

 

Fig. S6 Repetition 2: (A) Sap flow rate (SF), (B) stem diameter variations (D) and 

(C) stem water potential (Ψstem) and soil water potential (Ψsoil) of a drought-

stressed grapevine. The grey area marks the period of drought stress for the plant 
(day of the year (DOY) 163 - 180), the dark grey area the day of resumed 
irrigation, until the irrigation event 

 

Fig. S7 Influence of a different calibration period for the Unfold Principal 
Component Analysis (UPCA) model based on sap flow rate, SF, of a drought-
stressed grapevine (repetition 2): square root of Q statistic as a function of time for 
the model calibrated with (A) DOY 116 - 162 or (B) DOY 142 - 162. The dotted 
lines indicate the statistical 99% limits Qα. The grey area marks the period of 
drought stress for the plant (DOY 163 - 180), the dark grey area the day of 
resumed irrigation (until the irrigation event). Clear visible symptoms of drought 
stress appeared on DOY 177. 
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Fig. S8 Influence of a different calibration period for the Unfold Principal 
Component Analysis (UPCA) model based on stem diameter variations, D, of a 
drought-stressed grapevine (repetition 2): square root of Q statistic as a function of 
time for the model calibrated with (A) DOY 116 - 162 or (B) DOY 142 - 162. The 
dotted lines indicate the statistical 99% limits Qα. The grey area marks the period 
of drought stress for the plant (DOY 163 - 180), the dark grey area the day of 
resumed irrigation (until the irrigation event). Clear visible symptoms of drought 
stress appeared on DOY 177. 
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Analysis of repetition 3 (2012) 

 

Fig. S9 Repetition 3: (A) stem diameter variations (D) and (B) stem water potential 

(Ψstem) of a drought-stressed grapevine. The grey area marks the period of drought 

stress for the plant (day of the year (DOY) 142 -156), the dark grey area the day of 
resumed irrigation, until the irrigation event. 

 

 

Fig. S10 Repetition 3: square root of Q statistic as a function of time (in day of the 
year, DOY) of (A) Unfold Principal Component Analysis (UPCA) and (B) 
Functional Unfold Principal Component Analysis (FUPCA) based on stem 
diameter variations (D) for a drought-stressed grapevine. The grey area marks the 
period of drought stress for the plant (DOY 142 - 156), the dark grey area the day 
of resumed irrigation and the dotted lines indicate the statistical 99% limits Qα. 
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Analysis of repetition 4 (2012) 

 

Fig. S11 Repetition 4: (A) Sap flow rate (SF), (B) stem diameter variations (D) and 

(C) stem water potential (Ψstem) and soil water potential (Ψsoil) of a drought-

stressed grapevine. The grey area marks the period of drought stress for the plant 
(day of the year (DOY) 163 - 180), the dark grey area the day of resumed 
irrigation, until the irrigation event. 

 

Fig. S12 Repetition 4: square root of Q statistic as a function of time (in day of the 
year, DOY) of Unfold Principal Component Analysis (UPCA) based on (A) sap flow 
rate (SF) and (B) stem diameter variations (D) for a drought-stressed grapevine. 
The grey area marks the period of drought stress for the plant (DOY 163 - 180), 
the dark grey area the day of resumed irrigation and the dotted lines indicate the 
statistical 99% limits Qα. 
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Analysis of repetition 5 (2012) 

 

Fig. S13 Repetition 5: (A) Sap flow rate (SF), (B) stem diameter variations (D) and 

(C) stem water potential (Ψstem) and soil water potential (Ψsoil) of a drought-

stressed grapevine. The grey area marks the period of drought stress for the plant 
(day of the year (DOY) 163 - 180), the dark grey area the day of resumed 
irrigation, until the irrigation event. 

 

Fig. S14 Repetition 5: square root of Q statistic as a function of time (in day of the 
year, DOY) of Unfold Principal Component Analysis (UPCA) based on (A) sap flow 
rate (SF) and (B) stem diameter variations (D) for a drought-stressed grapevine. 
The grey area marks the period of drought stress for the plant (DOY 163 - 180), 
the dark grey area the day of resumed irrigation and the dotted lines indicate the 
statistical 99% limits Qα. 
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Supplementary material for Chapter 5 

 

Fig. S15 Model inputs and simulations of grapevine R2 to R4. The used model inputs 
were (A, D, G) sap flow rate, SF (grey lines), and soil water potential, Ψsoil (black lines); 
(B, E, H) Comparison between measurements of stem diameter variations, D (thin grey 
line), with model outputs of the original (constant hydraulic resistance in the xylem, thick 
grey lines) and adapted (integrated variable hydraulic resistance in the soil-to-stem 
segment, black lines) model; (C, F, I) Comparison between measurements  of stem water 
potential (Ψstem, black dots) with model outputs of the original (thick grey lines) and 
adapted (black lines) model. 
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