
 

  



 



 

 

 

 

 

Improving FRAP and SPT for mobility and interaction 

measurements of molecules and nanoparticles in 

biomaterials 

 

 

Hendrik Deschout 

Master of Physics and Engineering Physics 

 

 

Thesis submitted to obtain the degree of Doctor in Pharmaceutical Sciences 

 

2013 

 

 

Promoter 

prof. dr. Kevin Braeckmans 

Co-promoters 

prof. dr. ir. Kristiaan Neyts 
prof. dr. apr. Jo Demeester 

  



 



 

 

 

 

The author and the promoter give the authorization to consult and to copy parts of this 

thesis for personal use only. Any other use is limited by the laws of copyright, especially 

the obligation to refer to the source whenever results from this thesis are cited. 

 

De auteur en de promotor geven de toestemming om enkel voor persoonlijk gebruik 

stukken van deze thesis te raadplegen en te kopiëren. Elk ander gebruik valt onder de 

beperkingen van het auteursrecht, in het bijzonder de verplichting om te verwijzen 

naar de bron wanneer resultaten uit deze thesis worden aangehaald. 

 

Ghent, May 27
th

 2013, 

 

Promoter 

prof. dr. Kevin Braeckmans 

Author 

Hendrik Deschout 
  



 



 

5 

TABLE OF CONTENTS 

 

Introduction 7 
   
   
PART I FLUORESCENCE RECOVERY AFTER PHOTOBLEACHING 15 
   
Chapter 1 FRAP in pharmaceutical research: from drug delivery to 

diagnostics 
 

17 

   
Chapter 2 Straightforward FRAP for quantitative diffusion measurements 

with a laser scanning microscope 
51 

   
   
PART II SINGLE PARTICLE TRACKING 81 
   
Chapter 3 An introduction to single particle tracking with selected 

applications in pharmaceutical research 
83 

   
Chapter 4 Precisely and accurately localizing single molecules in 

fluorescence microscopy: state-of-the-art and best practice 
95 

   
Chapter 5 The influence of movement on the localization precision of sub-

resolution particles in fluorescence microscopy 
123 

   
Chapter 6 Correlation of dual colour single particle trajectories for improved 

detection and analysis of interactions in living cells 
153 

   
Chapter 7 On-chip light sheet illumination enables diagnostic size and 

concentration measurements of submicron membrane vesicles in 
biofluids 

183 

   
   
Summary 207 
  
Samenvatting 215 
  
  
Acknowledgements 223 
  
  
Appendix A Supplementary information of Chapter 5 227 
   
Appendix B Supplementary information of Chapter 7 239 
   
Appendix C Scientific curriculum vitae 249 



 

 



 

7 

 

 

 

 

 

 

Introduction 

  



 

8 

 



Introduction 

9 

CONTEXT 

 

An increasing amount of pharmaceutical and biomedical technologies are being 

developed in which nanoparticles play a crucial role. For instance, in the field of gene 

therapy, intelligent nanomedicines based on polymers or lipids are being designed that 

are capable of delivering nucleic acids to specific cell types. Among other properties, 

these nanoparticles should protect their therapeutic payload while manoeuvring 

through tissues, while having the capability of releasing the nucleic acids inside the 

target cells. Detailed knowledge is required on the behaviour of these nanomedicines in 

biological materials in order to optimize their efficiency and safety. In the field of 

diagnostics, biological vesicles that diffuse inside body fluids such as blood or saliva are 

being investigated for their potential as diagnostic markers. Properties of these 

nanoparticles, like size or concentration, could be linked to the progression of certain 

diseases such as cancer or Alzheimer’s disease. 

Techniques capable of measuring nanoparticle characteristics like mobility or 

interaction play a crucial role in this development. However, such measurements are 

challenging, considering that the nanoparticles are located inside complex biomaterials 

such as cells, tissues, or blood. Fluorescence microscopy is an interesting technique in 

this regard, as it allows to selectively visualize nanoparticles that are labelled with a 

certain fluorescent dye, enabling highly specific and non-invasive measurements. 

Unfortunately, optical microscopy is limited by its spatial resolution of about 250 nm, 

which means that nanoparticles cannot be well characterized by mere imaging. 

Advanced methods based on fluorescence microscopy have, therefore, been developed 

that extract mobility information from time sequences of images, which in turn reveals 

information on the physicochemical properties of the nanoparticles and their 

interaction with their local environment. 

One of the first fluorescence microscopy based methods to measure the mobility of 

molecules and nanoparticles in (bio)materials, developed in the 1970s, is fluorescence 

recovery after photobleaching (FRAP). In a FRAP experiment, a region in the sample is 

exposed to a high intensity light beam for a short period of time, causing the 

fluorescently labelled species in that area to be photobleached. Subsequently, the 

recovery of the fluorescence inside the photobleached region caused by diffusion of the 

labelled species is monitored. Fitting the observed recovery to a suitable mathematical 

model yields quantitative information on the diffusion rate and interactions of the 

labelled compounds in the biomaterial. Since these experiments can be performed on a 

standard confocal laser scanning microscope, FRAP has become a frequently used 
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technique in pharmaceutical research. However, accuracy in FRAP data analysis is often 

hampered by using analysis models that rely on too crude approximations. In particular, 

the effect of the scanning laser beam and the photochemistry on the shape of the 

photobleached region is usually either ignored or incorrectly accounted for. Also, FRAP 

methods are needed that allow for straightforward data analysis while making use of 

the full tempo-spatial information available in fluorescence recovery images. 

FRAP has the fundamental limitation that it only provides information on the ensemble 

average over all molecules or nanoparticles that participate in the fluorescence 

recovery. A fluorescence microscopy based method that does not suffer from this 

drawback is single particle tracking (SPT), first reported one decade after FRAP. An SPT 

experiment consists of recording a time sequence of images with a detector that is 

sufficiently sensitive to visualize individual fluorescently labelled nanoparticles (or 

molecules). By applying image processing, all nanoparticles in the images are identified 

and their motion trajectories are calculated based on their positions. From these 

trajectories detailed information on the mobility and interactions of the nanoparticles 

can be derived. However, just like for FRAP, SPT data analysis can be inaccurate 

because of certain experimental factors that are incorrectly accounted for. This is 

especially the case for the experimental uncertainty with which the nanoparticle 

positions are determined, which is either ignored or at best assumed to be equal to the 

case of immobile nanoparticles. An even more fundamental issue that degrades the 

accuracy in SPT is the contrast with which the nanoparticles are visible. In case of 

conventional widefield illumination, this contrast can become very low due to 

background fluorescence coming from free dye or nanoparticles that are located out of 

focus. An interesting recent solution to this problem is light sheet illumination, with 

which only the nanoparticles in the focal plane area are illuminated, while the 

nanoparticles outside out of focus remain dark, leading to a much higher contrast. 

However, current light sheet microscope set-ups typically produce the light sheet by an 

extra objective lens, thus requiring a special sample holder that allows to position the 

illumination and imaging objective lens perpendicularly in close proximity with the 

sample in between. Such a sample holder is not suitable for high-throughput SPT 

measurements in biofluids, for which inexpensive disposable sample holders are 

preferred to avoid extensive cleaning procedures and sample contamination. 

In this PhD thesis, a number of these problems are addressed to enable improved FRAP 

and SPT measurements of nanoparticles in biomaterials for pharmaceutical and 

diagnostic applications. 
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AIM 

 

The general aim of this PhD thesis is to improve the accuracy of mobility measurements 

by fluorescence microscopy for the characterization of nanoparticles and molecules in 

biomaterials. In particular, the fluorescence microscopy based methods FRAP and SPT 

are considered. FRAP modelling of the fluorescence recovery is revisited in order to 

incorporate the effect of the scanning laser beam on the shape of the photobleached 

region in a full tempo-spatial framework. Since FRAP is easily performed with a confocal 

laser scanning microscope, this new FRAP model should lead to more straightforward 

an accurate FRAP measurements. 

The second and largest part of the PhD thesis deals with SPT, starting with a theoretical 

and experimental investigation of how motion during image acquisition affects the 

experimental uncertainty with which the nanoparticle positions are determined. This 

knowledge is used to develop a method that is able to identify interactions between 

nanoparticles more reliably and in more detail than classic colocalization 

measurements, by scanning the nanoparticle trajectories for correlated positions. This 

method should provide information that can be helpful in the optimization of 

nanomedicines that are targeted to cells, by measuring the interactions of the 

nanomedicines with intracellular constituents, such as endosomes. Besides SPT data 

analysis, it is also explored how light sheet illumination, which allows to strongly reduce 

the out of focus fluorescence that degrades the contrast in SPT experiments, can be 

generated by a planar waveguide that is incorporated on a disposable chip. This should 

make accurate SPT measurements in biofluids available, without the need for extensive 

cleaning procedures and pre-processing steps in order to remove unbound fluorescent 

dye. Especially of interest are on-chip SPT size and concentration measurements on 

cell-derived membrane vesicles, that are currently emerging as non-invasive 

biomarkers for diseases such as cancer. 

 

OUTLINE 

 

This PhD thesis is divided in two separate parts, each one devoted to an advanced 

fluorescence microscopy based method for mobility measurements of molecules and 

nanoparticles. FRAP is the topic of PART I that includes Chapters 1 and 2. The principle 

of FRAP and its many applications in pharmaceutical and biomedical research are 
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reviewed in Chapter 1. This chapter has the purpose of illustrating the importance and 

popularity of FRAP in pharmaceutical research, providing a justification for further 

efforts in improving this fluorescence microscopy based method. An account of this 

effort is given in Chapter 2, where a new theoretical model is developed for the fitting 

to the fluorescence recovery, observed in FRAP experiments performed with a standard 

confocal laser scanning microscope. Unlike most conventional models, the full spatial 

and temporal recovery of a photobleached rectangular area is described by the new 

model. This has the advantage that the shape of the scanning laser beam can be 

included in the fitting procedure, allowing for straightforward and accurate FRAP 

measurements without prior calibration. In collaboration with Dr. Niklas Lorén from the 

Swedish Institute for Food and Technology, the model is applied to measure the 

diffusion of macromolecules inside a biopolymer system that consist of two separate 

phases, which has applications in food as well as pharmaceutical technology. 

PART II of this PhD thesis, which comprises Chapters 3 to 7, is devoted to SPT. Although 

SPT is not yet an established and routinely used method in pharmaceutical research, it 

has great potential, as is briefly discussed in Chapter 3. For instance, SPT has already 

been used to measure the aggregation of nanomedicines in the blood circulation and to 

investigate their intracellular trafficking. One of the key aspects in all these SPT 

experiments is the localization of the individual nanoparticles in the recorded 

microscopy images. The experimental uncertainty with which these locations can be 

determined is a topic that has recently received a great deal of interest, as it directly 

influences all subsequent data analysis. An overview of the different theories and 

experimental techniques to correctly determine this quantity is given in Chapter 4. This 

shows that the localization uncertainty primarily depends on the number of detected 

photons and the shape of the image of the nanoparticle. Surprisingly, the distortion of 

this shape because of motion during image acquisition, which is inherently present in 

all SPT experiments, is in most cases not accounted for. A new theoretical description 

of the increase in localization uncertainty because of diffusion during image acquisition 

is therefore introduced in Chapter 5, together with a unique approach to 

experimentally measure the localization precision for moving nanoparticles. This 

improved description of the localization precision in SPT is then applied to a new 

method to measure interaction between different nanoparticles with high spatial and 

temporal resolution, as detailed in Chapter 6. Such information is valuable in the field 

of drug delivery, as illustrated by applying the method to investigate the endosomal 

trafficking of polymeric gene complexes inside living cells. Besides the localization 

uncertainty, the quality of SPT experiments is also largely determined by the contrast 

with which the nanoparticles are visible. Usually, widefield illumination is used for SPT, 

resulting in limited contrast because out of focus fluorescence. Although this type of 
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background can be avoided by only illuminating the focal plane area with a light sheet, 

this generally requires an extra objective lens and a custom-built sample holder. This 

complicates high-throughput SPT measurements in biofluids, demanding extensive 

cleaning procedures and running the risk of sample contamination. An alternative and 

more simple solution is presented in Chapter 7, where the development of a disposable 

microfluidics chip with an integrated planar waveguide for light sheet illumination is 

discussed. To illustrate its potential as a diagnostics tool, the chip is used for improved 

SPT size and concentration measurements of cell derived vesicles in interstitial fluid of a 

human breast tumour. 
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ABSTRACT 

 

Fluorescence recovery after photobleaching (FRAP) is a fluorescence microscopy 

technique that has attracted a lot of interest in pharmaceutical research during the last 

decades. The main purpose of FRAP is to measure diffusion on a micrometer scale in a 

non-invasive and highly specific way, making it capable of measurements in 

biomaterials, even in vivo. This has proven to be very useful in the investigation of drug 

diffusion inside different tissues of the body and in materials for controlled drug 

delivery. FRAP has even found applications for the improvement of several medical 

therapies as well as for diagnostics. In Chapter 1, an overview is given of the different 

applications of FRAP in pharmaceutical research, together with essential guidelines on 

how to perform and analyse FRAP experiments. 
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1.1 INTRODUCTION AND HISTORICAL OVERVIEW 

 

Being able to measure the diffusion of molecules and nanoparticles inside biological or 

artificial materials has always been of great interest in pharmaceutically oriented 

research, and more generally in the life sciences. Fluorescence recovery after 

photobleaching (FRAP) is an interesting technique for this purpose, as it is fast, non-

invasive, highly specific, and relatively easy to perform. FRAP is a fluorescence 

microscopy method, requiring that the species of interest, which can be molecules or 

nanoparticles, are labelled with fluorophores. As illustrated in Fig. 1.1, a FRAP 

experiment starts by applying a high intensity light beam for a short period of time to a 

microscopic region inside the sample. This destroys the fluorescent property of the 

fluorophores in that region, a phenomenon called photobleaching. Immediately 

afterwards, the fluorescence in the photobleached region will start to recover, because 

diffusion causes some of the photobleached molecules to leave and other fluorescent 

molecules to enter. This recovery is monitored by means of a fluorescence microscope 

and afterwards a suitable mathematical model is used for analysis, generally yielding 

the fraction of molecules that are mobile and their diffusion coefficient. 

FRAP was developed in the 1970s, using specialized microscope set-ups featuring a 

stationary (i.e. non-scanning) focused light beam for bleaching and a photo multiplying 

tube (PMT) or avalanche photodiode (APD) for the fluorescence recovery detection [1]. 

As illustrated in Fig. 1.2, for bleaching, the full intensity of the light source was used, 

while for imaging the light intensity was strongly attenuated. The shape of the 

photobleached region was restricted to a circular spot with a Gaussian- or uniform-like 

intensity distribution. Due to the stationary light beam, no spatial information was 

available of the recovery process and only the total fluorescence in the bleached spot 

was measured as a function of time. The first applications of FRAP were mainly situated 

in the field of cell biology, in particular for measuring the diffusion of proteins in the cell 

membrane [2,3]. 

A couple of years later, FRAP was also reported to be used for protein diffusion 

measurements inside the cell [4,5]. At this time, some groups started to replace the 

PMT or APD by a camera that was able to capture two-dimensional images of the 

fluorescence recovery. The additional spatial information could be exploited to analyze 

the recovery in terms of anisotropic diffusion as well, rather than being limited to 

isotropic diffusion only [6]. At the end of the 1980s, it was shown that FRAP could be 

applied for diffusion measurements in vivo [7]. The first pharmaceutical applications of 

FRAP were reported in the early 1990s, when it was applied for measuring the diffusion 
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rate of proteins inside artificial and biological hydrogels, which is of interest for the 

development of drug delivery systems [8,9]. Some groups were adapting the 

mathematical FRAP models for measuring binding instead of diffusion in the cell 

membrane [10], thus allowing to assess the binding affinity of drug delivery systems for 

target cell receptors on the plasma membrane. 

 

 

Figure 1.1 | An illustration of a FRAP experiment. On the left, fluorescence microscopy images at 
different time points   are shown. At   < 0, before the photobleaching, the initial fluorescence 
intensity is registered. At   = 0, a square region of 10 µm by 10 µm is photobleached in the centre 
of the image by a high intensity laser beam. In the images at the different time points   > 0 the 
recovery of the fluorescence inside the photobleached area is visible. On the right, the total 
fluorescence in the photobleached square normalized to the initial fluorescence is shown in 
function of time. 

 

In the 1990s, user-friendly confocal laser scanning microscopes (CLSMs) became more 

widespread. This type of microscope can be equipped with an acousto optic modulator 

(AOM) or an acousto optic tunable filter (AOTF), which allows to change the intensity of 

the scanning laser beam on a pixel by pixel basis in the image. Thus, as illustrated in Fig. 

1.2, arbitrary patterns could easily be photobleached using standard CLSM equipment 

[11,12]. Another instrumental development that had important consequences for FRAP 

in pharmaceutical research was multi-photon fluorescence microscopy. Combining this 

technique with FRAP allows for diffusion measurements much deeper in tissue than 

possible with conventional single-photon FRAP [13,14]. At the same time, it became 
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clear that the use of the fluorescent protein had important advantages for FRAP 

measurements inside cells. Until then, the fluorescently labelled proteins had to be 

microinjected into the cells, a cumbersome manipulation that can disturb the cell’s 

normal working mechanism. Letting the cell express fluorescent proteins, it became 

possible to perform completely non-invasive FRAP measurements inside cells [15-17]. 

The combination of all these developments resulted in a steep increase in the use of 

FRAP in the life sciences [18,19]. However, despite the CLSM being able to photobleach 

complex shapes and to record two-dimensional recovery images, the analysis was 

usually limited to the total fluorescence of a circular bleached spot. It was only in the 

1990s, with enough computer memory and processing power becoming available in 

standard computers, that FRAP models were developed that started to exploit more of 

the available spatial information [20,21]. As discussed in Chapter 2, this development is 

on-going and allows to extract increasingly more information with better accuracy from 

the observed fluorescence recovery [22-24]. 

 

 

Figure 1.2 | Illustration of a FRAP experiment using a stationary light source and the scanning 
beam of a CLSM. (a) A stationary light source can only be used to photobleach a circular region. 
(b) Detection of the fluorescence recovery with a stationary light source is limited to recording 
the total intensity in the photobleached spot at different time points   ,   ,   , ... after 
photobleaching. (c) In case of a CLSM, arbitrary patterns can be photobleached by scanning the 
laser beam over the image and applying full laser intensity (green spot) inside the pattern and 
zero intensity outside. (d) Detection of the fluorescence recovery with a CLSM happens by 
scanning the laser beam with a constant intensity that is attenuated with respect to the 
photobleaching intensity. This results in 2D images at different time points   ,   ,   , ... after 
photobleaching. Thus, not only temporal but also spatial information is obtained. 
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In Chapter 1, the most important practical aspects of FRAP experiments and data 

analysis will be summarized, followed by a discussion of the different applications of 

FRAP in pharmaceutically oriented research. Not only pharmaceutically relevant 

applications will be addressed, like the design and optimization of drug delivery 

systems, also research will be discussed that is situated more on the interface between 

pharmacy and medicine, such as the improvement of medical therapies and the 

development of diagnostic tests. 

 

1.2 THEORETICAL FRAP MODELS 

 

Although FRAP is a conceptually simple technique, the analysis of the observed 

fluorescence recovery can be quite involved. Different types of theoretical models have 

been developed that describe the recovery process in a number of different 

circumstances. Here, these FRAP models are briefly discussed. 

 

1.2.1 Diffusion 

The original goal of FRAP was to obtain information on the diffusion coefficient of 

molecules or other nanoparticles, and this is still the most frequent application today. A 

simple type of analysis is to determine the time it takes until a certain percentage of 

the fluorescence in the photobleached spot has recovered after photobleaching [25]. 

However, this approach only allows for qualitative comparison of the diffusion 

coefficient, and requires identical experimental circumstances. A more quantitative 

type of analysis requires a theoretical model of the recovery process. There are a 

number of approaches, all starting from the second law of Fick which describes 

diffusion in the presence of a concentration gradient [26]. 

 

Conventional models 

The first type of FRAP models consisted of a mathematical description of the total 

fluorescence inside the photobleached spot as a function of the time after 

photobleaching (see Fig. 1.1). This was an obvious choice, since that was the only signal 

that could be measured with early instruments where a stationary light beam was used 

for photobleaching and imaging [1]. Fitting the model to the experimental recovery 
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curve yields the diffusion coefficient and the mobile fraction. Nowadays, even with the 

CLSM as the standard FRAP instrument, this is still common practice. An expression of 

the total fluorescence recovery inside the photobleached spot can be obtained by 

solving the second law of Fick with appropriate boundary and initial conditions. For the 

boundary condition, it is usually assumed that the sample volume is ‘infinitely large’. 

The initial condition is the concentration profile of the fluorophores immediately after 

photobleaching, which requires a good description of the photobleaching intensity. 

Considering a stationary focused laser beam for photobleaching (see Fig. 1.2a), the first 

conventional FRAP models approximated the photobleaching intensity by a circular 

beam with Gaussian or uniform intensity distribution [1,27]. Similar models have been 

reported for CLSMs, additionally accounting for the imaging point spread function (PSF) 

[28]. However, the description of the photobleaching intensity is complicated for a 

CLSM, i.e. the convolution of the scanning motion with the photobleaching PSF (see Fig. 

1.2c). Models have been developed that describe the total fluorescence recovery inside 

a photobleached disk, assuming a Gaussian distributed photobleaching PSF that is 

identical to the imaging PSF [29]. This approach has been extended for multi-photon 

FRAP as well [14]. 

 

Spatially resolved models 

A lot of information is lost by integrating all fluorescence in the photobleached spot, 

rather than using the full spatial information that is available in the fluorescence 

recovery images. This limits the analysis in practice to the identification of a diffusion 

coefficient and a mobile fraction. More complicated situations, like multiple diffusing 

species, anisotropic diffusion, or flow can be more accurately detected by using the 

spatial information as well. This can be done by fitting a spatially resolved model to the 

observed 2D fluorescence recovery. One of the first reports considered the 

photobleaching of a uniform disk with a CLSM [30]. Similar methods were developed 

for a line and point source [31] or a Gaussian distribution [28] as initial profiles of the 

fluorophore concentration after photobleaching. As discussed in Chapter 2, we recently 

developed a flexible and accurate spatially resolved model making use of a 

photobleached rectangle that can have any size or aspect ratio [22]. 

 

Numerical models 

The analytical models described above are quite convenient, as they only require to 

perform a best fit of a mathematical formula to the experimental recovery data. In 
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order for these models to be valid, it is important to realize that they are derived for 

particular conditions to which the experiment should comply. In practice, however, this 

is sometimes difficult, if not impossible, to achieve. For instance, the sample might not 

be ‘infinitely large’ but quite limited, such as when performing FRAP experiments in 

cells. Problems might also arise when diffusion occurs during the photobleaching 

phase, which is typically not accounted for in the theoretical models. Also, non-linear 

effects during the high intensity photobleaching phase, may cause substantial deviation 

of the photobleached area from the theoretically assumed geometry [32]. In these 

situations that are mathematically complex, only numerical solutions of the second law 

of Fick might provide a solution, an approach that started to draw attention as soon as 

standard computers became equipped with sufficient processing power and memory. 

In a first attempt, the recovery of the average fluorescence of a photobleached line 

obtained by a CLSM was numerically modelled, incorporating the photobleaching PSF 

as a Gaussian distribution [33]. However, this method still assumes a specific 

photobleached shape. This limitation was circumvented by using the first image after 

photobleaching as the initial condition in order to numerically solve the second law of 

Fick [34]. In that way, several diffusion coefficients could be included in the analysis. In 

similar work, a radially symmetric and non-decreasing initial photobleached profile was 

assumed, which could be estimated from the first image after photobleaching [23]. The 

drawback of this type of approach is that it requires specific programming expertise 

that might be too involved for the non-expert user. 

 

Transform models 

Besides the numerical models (see above), making use of the Fourier transform of the 

recovery images is another approach that does not require an analytical description of 

the initial fluorophore concentration directly after photobleaching [8,21]. This 

framework has been extended to incorporate anisotropic diffusion [21]. The 

disadvantage is that a constant fluorophore concentration at the edges of the images is 

assumed, restricting the size of the photobleached region. In a related effort, the 

properties of the Hankel transform have been used to distinguish multiple components 

of diffusion coefficients [24]. 

 

1.2.2 Binding 

Besides diffusion (see Section 1.2.1), also information on the binding kinetics can be 

derived from the fluorescence recovery in FRAP experiments. Usually, a reversible first 
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order reaction is assumed, described by two partial differential equations, one for the 

concentration of the diffusing fluorophores and one for the concentration of the bound 

fluorophores [10,35]. Just like the conventional FRAP models for diffusion (see Section 

1.2.1), these equations are solved for the total fluorescence recovery over the 

photobleached spot, considering initial and boundary conditions. Besides the 

concentration of the diffusing fluorophores directly after photobleaching as initial 

condition, it is also assumed that the system is in equilibrium before photobleaching. 

Three different regimes can be distinguished from each other [35]. If free diffusion is 

dominant, the binding can be ignored and the problem reduces to the case of diffusion. 

When the binding events happen much faster than the diffusion, the recovery can still 

be described by free diffusion, but with a lower effective diffusion coefficient. A third 

regime can be considered if the diffusion is very fast compared to the binding reaction 

and to the timescale of the FRAP measurement. In this case, diffusion is not detected, 

and the fluorescence recovery is completely determined by the values of the binding 

rate. The reader is referred elsewhere for more information on this topic [35,36]. 

 

1.3 GUIDELINES FOR FRAP EXPERIMENTS 

 

Most FRAP models are specific solutions of the second law of Fick (see Section 1.2). The 

way a FRAP experiment is performed thus has important consequences for the validity 

of the chosen model. Here, some general guidelines for FRAP experiments are given. 

 

1.3.1 Fluorescent labelling 

Since FRAP is a fluorescence microscopy technique, the molecules or nanoparticles of 

interest should be labelled with fluorophores. It is important that the type of 

fluorophore is small enough, so that it does not significantly influence the diffusion of 

the labelled molecule or nanoparticle. Additionally, the dye has to have the property 

that it photobleaches relatively easily. One of the most commonly used dyes for FRAP is 

fluorescein or its derivative fluorescein isothiocyanate (FITC). In the case that protein 

mobility inside a living cell is investigated, the use of the green fluorescent protein 

(GFP) or a variant is mostly used nowadays. Fluorophores that do not photobleach, but 

instead switch from a dark state to a bright one (photoactivation) or convert from 

emission in one spectral band to a different one (photoconversion) can also be used for 

FRAP [37]. 



Chapter 1 

27 

One of the basic assumptions in most FRAP models concerning the fluorescent labelling 

is that the observed fluorescence scales linearly with the concentration of 

fluorophores. In a FRAP experiment, this generally means that the fluorophore 

concentration should be low enough, so that fluorescent light emitted by one 

fluorophore is not likely to be absorbed by neighbouring fluorophores [38]. If at all 

possible it is strongly advised to check linearity of the fluorescence signal by making an 

appropriate dilution series of the fluorescent probe and determine the maximum 

concentration that is allowed to be used. 

 

1.3.2 Photobleaching 

The essential part of a FRAP experiment is the photobleaching of a region in the 

fluorescent sample. The validity of conventional and spatially resolved FRAP models 

(see Section 1.2.1) is crucially dependent on the way this is done, since the 

photobleached spot determines the initial condition for solving the second law of Fick. 

 

Light source 

A high intensity light source with a wavelength suitable for absorption by the 

fluorophores is required for photobleaching. Although originally the focused light from 

a xenon or mercury light bulb was used, nowadays preference is given to lasers which 

offer a high intensity collimated beam at a specific wavelength. The argon ion gas laser 

is popular, because it exhibits high intensity laser lines around 488 nm and 514 nm. 

However, these lasers are being replaced by smaller and more convenient solid state 

alternatives that are becoming available with increasing power. High intensity pico- or 

femtosecond pulsed laser sources are capable of two-photon photobleaching, in which 

case the wavelength should be twice the fluorophore absorption wavelength [39]. The 

titanium-sapphire laser that has a tunable wavelength in the range of 700 - 1000 nm is 

often used in combination with green fluorescent dyes. Although the light source 

should be intense enough to induce photobleaching, care should be taken to avoid non-

linear effects that are not considered by most FRAP models [32]. 
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Spot shape and size 

Most conventional and spatially resolved FRAP models require a specific shape of the 

photobleached spot. When a stationary focused light source is used, the models that 

assume a Gaussian shape can be used, although in practice it is often very difficult to 

determine the exact width of the spot as it depends on many variables, including the 

laser intensity, type of fluorophore and the chemical nature of the sample [32]. Yet, 

accurate knowledge of the spot size is of crucial importance as the calculated diffusion 

coefficient depends on the square of the spot size. Also, care should be taken when the 

photobleaching is done by a CLSM. The initial condition is then described by the 

convolution of the photobleaching PSF with the pattern that is scanned by the CLSM. 

Many FRAP models ignore the influence of the photobleaching PSF, but this is only 

permissible if the photobleached spot is sufficiently large (i.e. five times larger than the 

standard deviation of the photobleaching PSF) [29]. 

The actual shape of the photobleached spot can deviate from the intended shape 

because of a significant amount of recovery already taking place during 

photobleaching, which is not accounted for by most conventional FRAP models [40]. 

When the model does not correct for this effect, the time it takes for photobleaching 

should be minimized as much as possible. Photobleaching by long exposure or by 

repeating the photobleaching step several times should thus be avoided. As a rule of 

thumb, the photobleaching time is usually taken to be at least 15 times smaller than 

the characteristic recovery time, that is defined as the average time it takes for a 

molecule or nanoparticle to diffuse from the centre to the edge of the spot [18]. The 

effect of recovery during photobleaching can thus also be limited by increasing the size 

of the photobleached spot. 

 

Objective lens 

In case of a high numerical aperture (  ) objective lens (e.g.    = 1.2), the 

photobleached volume in the direction of the optical axis is not uniform, but has a 

distinct conical shape and concentration gradient, meaning that recovery along this 

direction cannot be ignored, see Fig. 1.3. The only exception is the specific case of 

molecules or nanoparticles that diffuse in a 2D plane (e.g. in the cell membrane). That is 

the reason why low    objective lenses (e.g.    = 0.2) are often used in FRAP, since 

these have a low axial resolution that distributes the photobleaching light intensity over 

an extended cylindrical profile along the optical axis (see Fig. 1.3). The drawback of low 

   objective lenses for photobleaching is of course the low resolution, which results in 
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less detailed recovery images. Regardless of the objective lens NA, the effect of 

recovery in the direction of the optical axis is even stronger in multi-photon than in 

single-photon FRAP, requiring specialized models [14]. 

 

 

Figure 1.3 | The effect of the numerical aperture of the objective lens on the shape of the 
photobleached volume when using a CLSM. (a) For high numerical apertures, the extension of 
the photobleached volume in the direction of the optical axis is limited, meaning that 
fluorescence recovery in that direction cannot be ignored. (b) In case of a low numerical 
aperture, the photobleached volume is much more extended in the direction of the optical axis, 
which allows to ignore the fluorescence recovery in that direction. 

 

1.3.3 Fluorescence recovery 

After photobleaching, the fluorescence recovery is monitored in a FRAP experiment. 

The way this is done and the nature of the recovery both affect the validity of the 

selected FRAP model. 

 

Detection of the recovery 

The recovery of the fluorescence is usually monitored at several time points fast 

enough after photobleaching so that the beginning of the recovery is captured in detail. 

As a rule of thumb, the time interval between these different time points is taken to be 

three times smaller than the characteristic recovery time (see Section 1.3.2). If there is 
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an immobile fraction present, enough time points should be included so that recovery 

in a later stage is also monitored. 

However, photobleaching during detection of the fluorescence recovery can alter the 

apparent recovery kinetics, as illustrated in Fig. 1.4. A balance is, therefore, needed 

between the number of time points (i.e. the amount of recorded images) and the 

photobleaching during imaging. This effect can be corrected for, either by including it 

explicitly in the FRAP model [41], or by monitoring the fluorescence of a suitable 

background region in the recovery images. The second option is of course only possible 

with instruments such as a CLSM that acquire images that cover a significantly larger 

field of view than the photobleached spot. This solution has the advantage that it also 

corrects for possible intensity fluctuations during imaging. 

 

 

Figure 1.4 | The effect of photobleaching during imaging on a FRAP experiment. On the left, 
fluorescence microscopy images at three different time points t after photobleaching are shown, 
for both the situation of photobleaching and no photobleaching during imaging. At   = 0, a square 
region of 10 µm by 10 µm is photobleached in the centre of the image. On the right, the total 
fluorescence in the photobleached square as normalized to the fluorescence before 
photobleaching is shown for both situations in function of time. When the photobleaching during 
imaging is not corrected for, the observed fluorescence recovery is distorted. 

 

Deviations from ideal recovery 

Many FRAP models consider only one diffusing species, sometimes in combination with 

an immobile fraction. If flow is present, the recovery will occur faster than would be 

expected based on diffusion alone, leading to an overestimation of the real diffusion 

rate [1]. Care should therefore be taken to avoid flow in the sample. Related to this, the 

sample should be in thermodynamic equilibrium so that no net mass transport is 

occurring that would distort the FRAP measurement. In case of deviations from simple 
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one-component diffusion, e.g. anomalous diffusion or multiple diffusing species, a 

specialized FRAP model should be applied. 

Almost all FRAP models assume that the sample has an infinite volume as boundary 

condition. In practice, this means that the diffusing molecules or nanoparticles should 

not be hindered during the monitoring of the fluorescence recovery. Deviations from 

this boundary condition should be avoided as much as possible, which is especially a 

concern inside cells. 

 

1.4 APPLICATIONS OF FRAP IN PHARMACEUTICAL RESEARCH 

 

1.4.1 Designing drug delivery systems 

Drug delivery systems are being developed to achieve time-controlled delivery of 

encapsulated drugs. FRAP has been used to characterize diffusion in such materials in 

order to understand the macroscopic release profiles. This kind of information is 

needed to guide the optimization of these systems. 

 

Diffusion inside hydrogels 

Hydrogels comprise an important class of matrix materials for time-controlled drug 

delivery. A hydrogel consists of a physically or chemically cross-linked 3D network of 

hydrophilic polymers that has absorbed a large amount of water [42]. Drug molecules 

can be trapped in the hydrogel by chemical bonds and hydrophobic or electrostatic 

interactions. Dependent on the mesh size of the polymeric network, some therapeutic 

molecules (e.g. pharmaceutical proteins) can be physically trapped in the hydrogel 

pores. This not only shields the molecules from the environment, but also allows to 

tailor drug release from the hydrogel matrix The drug release is often mediated by a 

gradual degradation and/or swelling of the hydrogel network [43]. FRAP has proven to 

be a valuable technique for characterization of the diffusion process underlying the 

overall release profile. 

A variety of techniques and polymers have been used to fabricate hydrogels for drug 

delivery. One example is the use of peptide sequences that fold and self-assemble into 

hydrogels [44]. Using fluorescently labelled dextrans as model drug molecule, FRAP 

measurements showed that their mobility and release could be modulated by varying 
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the mesh size. Another self-assembling hydrogel was based on biodegradable dextran 

microspheres [45]. The hydrogel was obtained by hydration of mixtures of oppositely 

charged dextran microspheres with a protein solution. FRAP was used to study the 

mobility of proteins in these gels, showing a continuous release of entrapped proteins 

with preservation of their activity. 

Other preparation methods exist besides self-assembly, such as step-growth 

polymerization of poly(ethylene glycol) (PEG) [46]. FRAP measurements of dextrans 

inside these gels corresponded well with results from NMR spectroscopy and release 

experiments. Another PEG-based hydrogel was formed by the radically cross-linkable 

oligo(poly(ethylene glycol)fumarate) together with two cross-linking agents [47]. FRAP 

experiments were performed to measure the diffusion coefficient of dextrans inside 

this hydrogel. Hydrogels have also been fabricated from chitosan by chemical cross-

linking with dialdehydes [48]. FRAP was used to measure the diffusion of dextrans with 

different molecular weight in these hydrogels and in aqueous solution. Above a 

molecular weight of 100 kDa, the dextrans were found to diffuse slower in the 

hydrogel, indicating hindered diffusion. 

Composite hydrogel systems have also been of interest, such as agarose-dextran 

composite gels [49]. FRAP was used to measure diffusion of proteins and 

polysaccharides in these hydrogels and in aqueous solution, indicating an increase in 

hindered diffusion with hydrodynamic diameter. Additionally, the diffusion was more 

hindered in hydrogels with higher dextran concentrations. Another example are gelatin 

hydrogels in which chondroitin sulfate (ChS) was incorporated to retard the release of 

cationic proteins because of electrostatic interactions [50]. FRAP showed that diffusion 

of lysozymes inside the hydrogel increases with increasing ChS content. 

More complicated fabrication processes allow for greater flexibility in hydrogel 

properties. Hydrogels consisting out of ABA triblock copolymers were fabricated, in 

which the A-block is a thermosensitive polymer and the B-block is a PEG [51]. The gels 

were prepared by thermogelling combined with photopolymerization, which is a fast 

and simple cross-linking method that improves stability and mechanical properties. 

FRAP showed that the release rate of bovine serum albumin (BSA) depended on the 

protein size and the hydrogel molecular weight between the cross-links. In related 

work, FRAP was used to measure the diffusion of dextrans in the same type of hydrogel 

for different temperatures used during thermogelling [52]. The diffusion and mobile 

fractions were found to decrease upon elevating the temperature above 25° C, and the 

mobility could be adjusted by changing the PEG block length. 
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Complicated hydrogel fabrication can lead to interesting hydrogel structures. For 

instance, hydrogels with nanostructured porosity were produced by synthesizing and 

cross-linking ABA triblock copolymers, with ε-caprolactone (PCL) A-blocks and a 

poly(ethylene oxide) (PEO) B-block [53]. By subsequently degrading the gels by 

hydrolysis to remove the PCL domains, pores are formed which allow fast transport of 

molecules through the hydrogel. By using FRAP, it was shown that diffusion of proteins 

and polystyrene beads inside the hydrogel is higher than in comparable homogeneous 

hydrogels. 

Intelligent stimuli-sensitive hydrogels that change behaviour in response to varying 

environmental conditions have also been developed. A hydrogel for colon drug delivery 

was fabricated, using an enzymatic procedure to modify a galactomannan hydrogel and 

guar oligomer in order to entrap the guar oligomer [54]. The hydrogel retains the guar 

oligomer until it reaches the colonic environment where bacteria-secreted enzymes 

degrade the hydrogel. FRAP was used to quantify the diffusion of guar oligomer inside 

the hydrogel, showing that diffusion was decreased significantly compared to non-

interacting probes and remained constant over a couple of hours, resulting in a gradual 

release. Another system intended for colonic drug delivery is a hydrogel based on 

konjac glucomannan, which is a polysaccharide that is not degradable in the small 

intestine but is degradable by anaerobic human intestinal bacteria [55]. FRAP was 

performed to measure the diffusion and mobile fraction of dextrans in the system and 

it was found that the diffusion behaviour cannot only be explained by macroscopic 

properties of the medium. Also the molecular size and a sieving mechanism have to be 

taken into account. 

 

Permeability of polyelectrolyte capsules 

Layer-by-Layer (LbL) polyelectrolyte capsules are microparticles that are being 

evaluated for controlled drug delivery [56]. The polyelectrolyte shells of the capsules 

are semi-permeable, so that large molecules cannot diffuse through the polymer wall, 

resulting in their protection from environmental degradation. In this context, FRAP has 

been used assess the permeability of the capsule walls by monitoring the fluorescence 

recovery after completely photobleaching the fluorescence inside the capsule. 

Different methods have been investigated to load molecules inside LbL polyelectrolyte 

capsules. For instance, in the case of capsules that consist of eight layers of 

poly(diallyldimethylammonium chloride) and poly(styrene sulfonate), this could be 

done by temperature induced rearrangements within the shells [57]. FRAP was used to 

demonstrate that the permeability for dextrans decreases after heat incubation. 
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Another example are composite systems composed of poly-L-lysine and trisodium 

citrate LbL polyelectrolyte capsules that contain magnetic particles [58]. Using FRAP, it 

was found that the permeability for dextrans could be controlled by altering the extent 

of glutaraldehyde cross-linking. It has been argued that polysaccharides offer an 

attractive biocompatible alternative over synthetic polyelectrolytes. For instance, the 

anionic alginate sodium and cationic chitosan were used as wall components for 

multilayer LbL capsules [59]. The shells displayed high stability in poly(styrenesulfonate 

sodium) and FRAP was used to study the permeability of the shells. 

 

1.4.2 Overcoming drug delivery barriers 

When soluble drugs or drug-loaded nanoparticles (i.e. nanomedicines) are 

administered to the human body, they need to manoeuvre inside extracellular matrices 

(ECMs) before they reach their target cells. A variety of ECMs exist, which have in 

common that they are rather complex materials that consist of networks of 

biomacromolecules that can hinder the transport of drugs, and thus act as a barrier for 

drug delivery. FRAP has been used to measure the mobility in these ECMs, information 

that is useful in the design of carriers for drugs that could assist them to reach their 

destination. 

 

Solutions and gels as model ECM 

Different types of gels and solutions have been used as a model to study mobility in 

ECMs. One example is agarose gel and simulated tissue consisting of cells embedded in 

agarose gel [8]. FRAP was used to study the diffusion of dextrans and proteins in these 

gels. In another study, the diffusion of proteins, polystyrene microspheres, dextrans, 

and dendrimers in PEO and guar galactomannan solutions was measured with FRAP 

[60]. The purpose was to investigate the effect on diffusion of different probe sizes and 

shapes relative to the PEO and guar galactomannan mesh. It was found that diffusion of 

nanospheres was more hindered than dextrans with the same hydrodynamic diameter. 

At equal mesh size, the diffusion through the more rigid guar galactomannan solution 

was hindered compared to the more flexible PEO solution. Mobility in ECMs was also 

modelled with cross-linked matrices consisting of the proteins fibrinogen, fibronectin, 

and concanavalin A [61]. The mobility of Texas red and dextrans inside these matrices 

and in solution was measured with FRAP. Diffusion was found to be 3 to 4 orders of 

magnitude slower than in solution, and hindered diffusion was observed as well, 

caused by specific molecular interactions of the probes with the matrix proteins. 
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Tumour interstitium 

The tumour interstitium is an important barrier for drug delivery in cancer therapy [62]. 

This ECM consists of a collagen network embedded in a gel of the proteins 

glycosaminoglycan and proteoglycan. FRAP is a particularly interesting technique in this 

context, because diffusion is the most important transport mechanism for 

nanomedicines inside tumours [63]. 

To investigate the effect of collagen in the tumour interstitium, FRAP was used to 

measure the diffusion of immunoglobulin (IgG) in different human tumour xenografts in 

mice [64]. The diffusion of IgG was found to decrease with the amount of collagen in 

the tumour, while collagenase treatment significantly increased diffusion, identifying 

collagen as an important diffusion barrier for tumour interstitium penetration. A similar 

investigation was carried out on the effect of different tumour types and anatomical 

locations on the diffusion rate [63]. The diffusion of proteins, dextrans, and liposomes 

inside two different human tumour xenografts grown in cranial windows and dorsal 

chambers in mice was investigated with FRAP. Diffusion was faster in the cranial 

window than in the dorsal chamber tumours, which correlates with a lower density of 

host stromal cells that synthesize collagen in the cranial window tumours, confirming 

that collagen plays an important role in diffusion hindrance in the tumour interstitial 

fluid. To investigate the effect of collagen in more detail, FRAP measurements were 

carried out on diffusing proteins and dextrans inside collagen gels [65]. Good 

agreement was found with in vivo measurements in tumours with a comparable 

collagen concentration. 

More recently, investigations have been undertaken to identify the role of other 

tumour interstitium properties on the mobility besides collagen content. For instance, 

the spatial orientation of the collagen network was studied by measuring the diffusion 

of dextrans inside collagen gels and human tumour xenografts using multi-photon FRAP 

[66]. It was shown that the network orientation leads to diffusion anisotropy, although 

it does not affect overall diffusion. This was confirmed in another investigation, where 

two-photon FRAP was used to measure the diffusion of dextrans in collagen gels that 

were aligned in a magnetic field [67]. In the same study, the effect of 

glycosaminoglycans (e.g. hyaluronan) and proteoglycans (e.g. decorin) was also 

investigated by adding decorin and hyaluronan to the collagen gels. The presence of 

decorin had no effect on the diffusion, while high concentrations of hyaluronan 

increased diffusion. In relation to these findings, the effect of collagen and hyaluronan 

degrading enzymes on the diffusion of dextrans in human tumor xenografts was 

investigated [68]. FRAP showed that the diffusion increased largely due to the collagen 

degrading enzymes. Investigation of the difference in diffusion hindrance caused by 
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interstitial versus cellular constituent was also carried out [69]. Multi-photon FRAP 

measurements of the diffusion of IgG in tumours and gels consisting out of collagen and 

hyaluronan showed that decreasing the cell density increases diffusion. 

Although it is possible to perform FRAP in human tumours in vivo, it is more convenient 

to conduct such experiments ex vivo on biopsies. To quantify the effect of excision and 

cooling, FRAP was used to measure the diffusion of BSA and IgM in human tumour 

xenografts in mice both in vivo and ex vivo [13]. The correction determined from these 

measurements was applied to calculate the diffusion of BSA and IgM in human tumours 

in vivo from the values obtained in biopsies. A higher diffusion was found in human 

tumour xenografts in vivo, probably because of a lower concentration of collagen in the 

accessible regions of human tumours. A solution to this problem is given by 

microfiberoptic epifluorescence photobleaching, in which a fiber with a micron sized tip 

is introduced deep inside tissue in vivo [70]. Inside subcutaneous tumours in mice, the 

diffusion of dextrans was indeed found to be slower deeper inside the tumour tissue. 

Other experimental complications such as the effect of flow in tumours have been 

investigated as well. A method based on multi-photon FRAP has been developed to 

account for such flow [71]. Both diffusion and flow of dextrans were measured in 

murine tumours implanted in dorsal chambers in mice in vivo. 

 

Brain extracellular matrix 

The brain ECM in which neurons, glial cells, and blood vessels are embedded, consists 

of ions, neurotransmitters, metabolites, peptides, and other molecules [72]. This ECM is 

an important barrier for drugs that treat diseases and disorders related to the brain 

function. To enable successful drug delivery to the brain, it is thus important to 

understand transport inside the brain ECM, for which FRAP can again be useful [73].  

For instance, FRAP was applied to measure the diffusion of dextrans in mouse brain in 

vivo, showing that it is threefold slower than in solution [72]. In case of seizure activity 

or cytotoxic brain edema associated with head injury, the diffusion was found to 

decrease by more than a factor of 10. In a similar study, a drop in diffusion was also 

found in the presence of cytotoxic brain edema, while a slight increase in diffusion was 

measured in case of vasogenic brain edema associated with brain tumour [74]. 

However, a fourfold decrease in diffusion was found inside the brain tumour itself. The 

extent of diffusion hindrance in the brain ECM was investigated in detail by performing 

FRAP on dextran inside mouse brain ECM and inside solution [75]. 
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To measure diffusion in the ECM in parts of the brain that are not accessible by light 

microscopes, microfiberoptic epifluorescence photobleaching (see above) was applied 

[76]. Dextrans were found to diffuse more than 4 times slower in the cerebral cortex 

ECM compared in solution, independent of the depth inside the cerebral cortex. It was 

also shown that diffusion varied strongly in different parts of the brain, with faster 

diffusion in the thalamus and slower in the hippocampus compared to the cerebral 

cortex. Deep inside the brain, the diffusion compared to free solution was strongly 

dependent on the dextran size, indicating hindered diffusion, while this was not the 

case in the cerebral cortex. 

 

Mucus 

Several epithelial surfaces in mammalian organs in the respiratory, gastrointensital, and 

reproductive tract are covered with a mucus layer. This layer limits the exposure of 

human tissues to external pathogens and as such also represents a significant barrier 

for drugs that have to reach or get across these epithelial linings [77]. Mucus is a 

viscoelastic gel with as main components water, mucin, inorganic salts, carbohydrates, 

and lipids. The thickness of the mucus layer ranges from a few micron to several 

hundred microns, depending on the organ. FRAP can be used to study the ability of 

drugs to diffuse within the mucosal network [78]. 

FRAP was used to measure the diffusion of immunoglobulin (IgA, IgG, and IgM) inside 

human cervical mucus [9]. It was found that immunoglobulin diffusion was relatively 

unhindered, suggesting pore sizes in the mucus of around 100 nm. In a similar 

investigation, FRAP was used to determine the diffusion of proteins, viruses, and 

polystyrene microspheres in human cervical mucus [79]. Most proteins and even the 

smaller viruses could diffuse as rapidly in mucus as in water. The larger microspheres 

and viruses did not diffuse, probably because of sticking to mucin strands. In line with 

these results, a FRAP study in expectorated cystic fibrosis lung sputum revealed that 

the mucus network did not hinder diffusion of dextrans with different molecular 

weights up to 2000 kDa (corresponding to a hydrodynamic diameter of approx. 65 nm) 

[29]. Taken together, these investigations suggest that mucus does not pose a sterical 

barrier to molecules or small nanoparticles, although adhesion to the biopolymers 

might be an issue. 

In the context of gene therapy, FRAP was employed to measure diffusion of plasmid 

DNA in bovine cervical mucus [80]. Supercoiled DNA was found to diffuse faster than 

linear DNA, and complexation of the DNA with liposomes increased the diffusion two-

fold. 
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Other drug delivery barriers 

For the treatment of bone diseases such as osteoporosis or osteonecrosis, it is essential 

that drugs are able to traverse the bone tissue. Bone mainly consists out of osteocytes 

that form a cellular network embedded within a mineralized matrix that is largely 

impermeable. Instead of diffusion, it is hypothesized that load-induced flow within the 

bone lacunar-canaliculi system serves as the main transport mechanism in bone [81]. 

FRAP is an interesting technique to gain better understanding of this flow, as it 

complements the classic perfusion measurements that lack temporal dynamics and 

that are prone to histologic artefacts [82]. The technique was applied to measure the 

diffusion and flow of sodium fluorescein in the lacunar-canaliculi system of mouse 

bone, confirming the hypothesis of a load-induced flow [83]. 

In the treatment of retinal diseases, intravitreal injection is an attractive administration 

route for drugs, since systemic delivery is impeded by the blood-retina barrier. The 

vitreous humour is a hydrogel formed by a network of collagen fibrils that are cross-

linked by proteoglycan filaments. Besides collagen and proteoglycan, the vitreous also 

contains other proteins such as hyaluronan. Contrary to the case of cystic fibrosis 

sputum (see above), FRAP measurements showed that dextrans in the vitreous 

experience a sterical hindrance that is proportional to their molecular weight, likely due 

to the dense network of hyaluronic acid polymers [29]. In the context of gene therapy, 

FRAP has been used to measure the diffusion of polystyrene nanospheres and 

complexes of plasmid DNA and liposomes in the vitreous of bovine eyes [84]. While 

nanospheres functionalized with PEG were found to be mobile, the DNA complexes 

were immobilized because of aggregation and binding to fibrillar structures in the 

vitreous. By adding a PEG coating to the DNA complexes, aggregation and binding could 

be prevented. 

The stratum corneum is the top layer of the skin and consists of several layers of 

corneocytes. Since its purpose is to protect the underlying tissue, it constitutes the 

primary barrier for transdermal drug delivery. Mobility measurements inside the 

stratum corneum are, therefore, of interest in the development of drug formulations 

intended for topical administration. In this context, FRAP was used to measure the 

diffusion of several lipophilic probes of different molecular weight in model lipid 

bilayers and in a lipid bilayer consisting of human stratum corneum extracted lipids 

[85]. 
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1.4.3 Drug delivery inside cells 

An increasing number of nanomedicines are developed for drug delivery in the 

intracellular space of target cells, which means they need to find their way inside the 

cytoplasm, and sometimes even to the cell nucleus. A better understanding of mobility 

inside the cell is thus of great importance in this effort [19]. 

FRAP has been used to investigate the diffusion of a variety of macromolecules inside 

living cells. For instance, the technique was used to measure the diffusion of 

microinjected dextrans with different molecular weights inside the cytoplasm and 

nucleus of epithelial cells and fibroblasts [86]. The diffusion in both cytoplasm and 

nucleus was found to be approximately 4 times slower than in water. This factor was 

independent of the molecular weight up to 500 kDa, indicating that the diffusion is 

unhindered. This result was contradicted by other studies, where FRAP was used to 

measure the diffusion of dextrans [87] and proteins [88] with different molecular 

weights in the cytoplasm of muscle cells. The diffusion of the dextrans and especially 

the proteins was found to be hindered with increasing molecular weight, likely because 

of different compounds of the cytoskeleton. Recently, FRAP was used to show that the 

cytoplasm of cells behaves like a poroelastic material [89]. 

Besides these general investigations, FRAP has also been applied to measure the 

intracellular diffusion of nucleic acids, which is of relevance to gene therapy. The 

diffusion of double stranded DNA fragments with different numbers of base pairs was 

measured after microinjection into the cytoplasm and nucleus of HeLa cells [90]. In the 

cytoplasm, diffusion was found to be significantly lower than in water, and the diffusion 

was found to be increasingly hindered with an increasing number of base pairs. In the 

nucleus, the DNA fragments were immobile, in contrast to dextrans with similar 

molecular weight, indicating that DNA immobilization is caused by binding. FRAP was 

also used to investigate the diffusion of single stranded DNA. For instance, after 

introduction into the nucleus of rat myoblasts, the diffusion of oligodeoxynucleotides 

was found to be similar to its diffusion in solution [91]. 

Potential intracellular drug delivery carriers, such as Tat-derived peptides [92], have 

also been studied. FRAP was used to investigate the intracellular mobility of Tat-

peptides with cargoes of different molecular weights below and above the threshold 

for diffusion through the nuclear pores [93]. This was done by photobleaching the 

fluorescence inside the nucleus and subsequently monitoring the recovery coming from 

the cytoplasm, and vice versa. Combined with FRAP diffusion measurements, it was 

found that the Tat-peptides with cargoes with a molecular weight below the threshold 

are able to cross the nuclear envelope by diffusion. 
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1.4.4 Improving therapy 

FRAP can also be of interest for providing information that helps improving medical 

therapies. FRAP has found a number of different and sometimes surprising applications 

in this context. 

Several neuro-degenerative diseases, such as Parkinson's and Alzheimer's disease, are 

related to protein or peptide aggregates inside the brain. FRAP has been reported for 

measuring the diffusion of α-synuclein [94] and amyloid-β [95] aggregates, providing 

information that is not only useful for a better understanding of the molecular 

mechanisms that cause these diseases, but also for assessing potential treatments that 

can reverse this aggregation. Besides these mobility measurements, FRAP has also been 

employed to assess cell membrane perturbations caused by amyloid-β aggregates [96]. 

This can be done by measuring the membrane fluidity, which basically means verifying 

whether lipids inside the membrane are undergoing free diffusion or not. 

Stem cell therapy is a promising approach for the treatment of a variety of pathologies. 

In this context, it is important to assess the gap junctional intercellular communication 

(GJIC), as it is essential for maintaining homeostatic balance and normal differentiation 

of cells. FRAP was used to measure the presence of GJIC, not by measuring diffusion in 

the classical sense, but by monitoring the fluorescence recovery rate in one cell due to 

influx of fluorescence from another cell through the gap junction channels between 

both cells [97-99]. 

For cancer therapy, FRAP was used to monitor the change in mobility of tumour 

associated proteins inside living cells induced by candidate anti-cancer drugs such as 

dihydroartemisinin [100], apigenin [101], cytosine arabinoside [102], and multimeric 

RGD-peptides [103]. FRAP can also be used to determine binding kinetics, which is 

useful in the context of cancer therapy in order to assess the binding affinity of 

antibodies to their tumour-associated antigen [104,105]. FRAP has also been reported 

to measure the effect of an apoptosis inducing drug on the GJIC [106], and to measure 

the cell membrane fluidity in the context of electro-chemotherapy [107]. 

Injury treatment is also of interest in pharmaceutical research and FRAP has found 

some applications in this context. For instance, the diffusion of dextrans was measured 

in vivo inside blood vessels of injured muscle tissue of mice in order to assess the 

endothelial barrier function [108]. In the context of retinal injuries, the diffusion of 

dextrans in the retina ECM of mice was measured after damage was induced by 

elevated intraocular pressure [109]. Furthermore, FRAP has been used to study the 

effect of the antioxidant α-tocopheral on the membrane fluidity after arterial injury 

[110]. 
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Some specific applications of FRAP have also been reported in the context of a variety 

of other medical treatments. Pulsed high intensity focused ultrasound is a technique 

that has potential to treat thrombolysis. FRAP was used to measure the diffusion of 

dextrans in blood clots after treatment, and it was found that the diffusion coefficient 

increased significantly [111]. In the context of cystic fibrosis, FRAP was used to measure 

the diffusion of dextrans in the fluid of submucosal glands [112]. A decrease in diffusion 

was found compared to the normal situation, providing evidence for defects in 

submucosal gland function caused by cystic fibrosis. In research on the human 

immunodeficiency virus type 1, FRAP was used to determine the effect of 

sphingomyelinase treatment on the diffusion of several receptor proteins in the cell 

membrane [113]. It was found that the diffusion of the HIV receptor CD4 decreased 

after treatment. FRAP measurements of diffusion of proteins inside cells were also 

undertaken in research aimed at improving the treatment of diarrheal diseases [114], 

neuropsychiatric disorders [115], and obesity [116]. 

 

1.4.5 Diagnostics 

A less obvious application of FRAP is situated in the field of diagnostics. Medical 

conditions are sometimes preceded by a change in the structure of the affected cells or 

the surrounding ECM. This, in turn, can result in a change of mobility inside these cells 

or the ECM. In this context, some efforts have been undertaken to use FRAP as a 

diagnostic assay by measuring such changes in mobility. In one case, FRAP was used to 

measure the diffusion of dextrans in the ECM of mouse brain in vivo, since diffusion 

inside the brain ECM is related to neural activity [72]. It was found that slowed diffusion 

preceded seizure activity, indicating that FRAP measurements can be used as a 

predictor of impeding brain seizure. In another study, FRAP was used to investigate the 

diffusion of dextrans inside a tissue-engineered skeletal muscle model in compressed 

an uncompressed state [117]. A significantly reduced diffusion coefficient was found in 

the compressed state, which could be considered in the development of a screening 

method for early detection of pressure-related deep tissue injuries. 

 

1.5 CONCLUSION AND FUTURE OUTLOOK 

 

Almost 40 years after its conception, FRAP is has become a mature technique that is of 

great value to pharmaceutical research. The technique has been employed to tailor the 
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properties of drug delivery systems, to test how drugs can overcome delivery barriers 

inside the body, to improve several medical therapies, and even to serve as a diagnostic 

tool. 

The success of FRAP has several explanations. First of all, the technique is conceptually 

simple and in recent years widely available to everyone with access to a standard CLSM. 

Secondly, it is one of the few tools that is able to perform diffusion measurements 

inside living tissue and even inside living cells. This is an invaluable asset to 

pharmaceutical research and more generally to the life sciences. And last but not least, 

FRAP is a versatile technique, not being limited to measuring diffusion coefficients, but 

also allowing investigation of binding kinetics, membrane fluidity, gap junctional 

intracellular communication, and permeability of vesicles. 

Despite the success of FRAP, some critical remarks are in place. Most theoretical FRAP 

models make assumptions that are not always correct in reality, even when applied in 

simple drug delivery systems like hydrogels. In particular, when using a CLSM, the effect 

of the scanning laser beam is often ignored or incorrectly accounted for. A model that 

accounts for this issue is developed in Chapter 2. Further problems can still arise in 

more complicated biological systems. For instance, inside living cells, deviations in the 

fluorescence recovery caused by the cell boundaries cannot easily be corrected for. 

Apart from these theoretical issues, another important but underreported problem 

when performing FRAP in living systems is the amount of damage caused by 

photobleaching and the possible related increase in temperature [118]. These effects 

should be minimized as much as possible since they can distort the measurements. 

Besides FRAP, other fluorescence techniques exist that are capable of diffusion 

measurements. In particular, fluorescence correlation spectroscopy (FCS) and single 

particle tracking (SPT), which is the topic of PART II, are interesting techniques that do 

not suffer from some of the drawbacks listed above, simply because they do not rely on 

deliberate photobleaching [119,120]. For some applications, FRAP might become 

replaced by FCS and SPT, but the technique will continue to be of use to pharmaceutical 

research because of its obvious advantages. 

  



Chapter 1 

43 

REFERENCES 

 

 1.  D. Axelrod, D. E. Koppel, J. Schlessinger, E. Elson, and W. W. Webb, "Mobility Measurement 
by Analysis of Fluorescence Photobleaching Recovery Kinetics," Biophysical Journal 16, 
1055-1069 (1976). 

 2.  J. Schlessinger, D. E. Koppel, D. Axelrod, K. Jacobson, W. W. Webb, and E. L. Elson, "Lateral 
Transport on Cell-Membranes - Mobility of Concanavalin A Receptors on Myoblasts," 
Proceedings of the National Academy of Sciences of the United States of America 73, 2409-
2413 (1976). 

 3.  M. Edidin, Y. Zagyansky, and T. J. Lardner, "Measurement of Membrane Protein Lateral 
Diffusion in Single Cells," Science 191, 466-468 (1976). 

 4.  Y. Wang, F. Lanni, P. L. Mcneil, B. R. Ware, and D. L. Taylor, "Mobility of Cytoplasmic and 
Membrane-Associated Actin in Living Cells," Proceedings of the National Academy of 
Sciences of the United States of America-Biological Sciences 79, 4660-4664 (1982). 

 5.  J. W. Wojcieszyn, R. A. Schlegel, E. S. Wu, and K. A. Jacobson, "Diffusion of Injected 
Macromolecules Within the Cytoplasm of Living Cells," Proceedings of the National 
Academy of Sciences of the United States of America-Biological Sciences 78, 4407-4410 
(1981). 

 6.  H. G. Kapitza, G. Mcgregor, and K. A. Jacobson, "Direct Measurement of Lateral Transport in 
Membranes by Using Time-Resolved Spatial Photometry," Proceedings of the National 
Academy of Sciences of the United States of America 82, 4122-4126 (1985). 

 7.  S. R. Chary and R. K. Jain, "Direct Measurement of Interstitial Convection and Diffusion of 
Albumin in Normal and Neoplastic Tissues by Fluorescence Photobleaching," Proceedings of 
the National Academy of Sciences of the United States of America 86, 5385-5389 (1989). 

 8.  D. A. Berk, F. Yuan, M. Leunig, and R. K. Jain, "Fluorescence Photobleaching with Spatial 
Fourier-Analysis - Measurement of Diffusion in Light-Scattering Media," Biophysical Journal 
65, 2428-2436 (1993). 

 9.  W. M. Saltzman, M. L. Radomsky, K. J. Whaley, and R. A. Cone, "Antibody Diffusion in 
Human Cervical-Mucus," Biophysical Journal 66, 508-515 (1994). 

10.  E. N. Kaufman and R. K. Jain, "Quantification of Transport and Binding Parameters Using 
Fluorescence Recovery After Photobleaching - Potential for Invivo Applications," 
Biophysical Journal 58, 873-885 (1990). 

11.  K. Braeckmans, S. C. De Smedt, M. Leblans, R. Pauwels, and J. Demeester, "Encoding 
microcarriers: Present and future technologies," Nature Reviews Drug Discovery 1, 447-456 
(2002). 

12.  K. Braeckmans, S. C. De Smedt, C. Roelant, M. Leblans, R. Pauwels, and J. Demeester, 
"Encoding microcarriers by spatial selective photobleaching," Nature Materials 2, 169-173 
(2003). 

13.  E. B. Brown, E. S. Wu, W. Zipfel, and W. W. Webb, "Measurement of molecular diffusion in 
solution by multiphoton fluorescence photobleaching recovery," Biophysical Journal 77, 
2837-2849 (1999). 

14.  D. Mazza, K. Braeckmans, F. Cella, I. Testa, D. Vercauteren, J. Demeester, S. S. De Smedt, 
and A. Diaspro, "A new FRAP/FRAPa method for three-dimensional diffusion measurements 
based on multiphoton excitation microscopy," Biophysical Journal 95, 3457-3469 (2008). 



Chapter 1 

44 

15.  J. G. McNally, W. G. Muller, D. Walker, R. Wolford, and G. L. Hager, "The glucocorticoid 
receptor: Rapid exchange with regulatory sites in living cells," Science 287, 1262-1265 
(2000). 

16.  R. Swaminathan, C. P. Hoang, and A. S. Verkman, "Photobleaching recovery and anisotropy 
decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity 
probed by green fluorescent protein translational and rotational diffusion," Biophysical 
Journal 72, 1900-1907 (1997). 

17.  J. White and E. Stelzer, "Photobleaching GFP reveals protein dynamics inside live cells," 
Trends in Cell Biology 9, 61-65 (1999). 

18.  T. K. L. Meyvis, S. C. De Smedt, P. Van Oostveldt, and J. Demeester, "Fluorescence recovery 
after photobleaching: A versatile tool for mobility and interaction measurements in 
pharmaceutical research," Pharmaceutical Research 16, 1153-1162 (1999). 

19.  A. S. Verkman, "Solute and macromolecule diffusion in cellular aqueous compartments," 
Trends in Biochemical Sciences 27, 27-33 (2002). 

20.  U. Kubitscheck, P. Wedekind, and R. Peters, "Three-dimensional diffusion measurements by 
scanning microphotolysis," Journal of Microscopy-Oxford 192, 126-138 (1998). 

21.  T. T. Tsay and K. A. Jacobson, "Spatial Fourier-Analysis of Video Photobleaching 
Measurements - Principles and Optimization," Biophysical Journal 60, 360-368 (1991). 

22.  H. Deschout, J. Hagman, S. Fransson, J. Jonasson, M. Rudemo, N. Loren, and K. Braeckmans, 
"Straightforward FRAP for quantitative diffusion measurements with a laser scanning 
microscope," Optics Express 18, 22886-22905 (2010). 

23.  J. K. Jonasson, J. Hagman, N. Loren, D. Bernin, M. Nyden, and M. Rudemo, "Pixel-based 
analysis of FRAP data with a general initial bleaching profile," Journal of Microscopy 239, 
142-153 (2010). 

24.  P. Jonsson, M. P. Jonsson, J. O. Tegenfeldt, and F. Hook, "A Method Improving the Accuracy 
of Fluorescence Recovery after Photobleaching Analysis," Biophysical Journal 95, 5334-
5348 (2008). 

25.  H. G. Kapitza, G. Mcgregor, and K. A. Jacobson, "Direct Measurement of Lateral Transport in 
Membranes by Using Time-Resolved Spatial Photometry," Proceedings of the National 
Academy of Sciences of the United States of America 82, 4122-4126 (1985). 

26.  J. Crank, The Mathematics of Diffusion, (Oxford University Press, Oxford, 1975). 

27.  D. M. Soumpasis, "Theoretical-Analysis of Fluorescence Photobleaching Recovery 
Experiments," Biophysical Journal 41, 95-97 (1983). 

28.  J. K. Jonasson, N. Loren, P. Olofsson, M. Nyden, and M. Rudemo, "A pixel-based likelihood 
framework for analysis of fluorescence recovery after photobleaching data," Journal of 
Microscopy 232, 260-269 (2008). 

29.  K. Braeckmans, L. Peeters, N. N. Sanders, S. C. De Smedt, and J. Demeester, "Three-
dimensional fluorescence recovery after photobleaching with the confocal scanning laser 
microscope," Biophysical Journal 85, 2240-2252 (2003). 

30.  U. Kubitscheck, P. Wedekind, and R. Peters, "Lateral Diffusion Measurement at High-
Spatial-Resolution by Scanning Microphotolysis in A Confocal Microscope," Biophysical 
Journal 67, 948-956 (1994). 

31.  S. Seiffert and W. Oppermann, "Systematic evaluation of FRAP experiments performed in a 
confocal laser scanning microscope," Journal of Microscopy-Oxford 220, 20-30 (2005). 

32.  K. Braeckmans, B. G. Stubbe, K. Remaut, J. Demeester, and S. C. De Smedt, "Anomalous 
photobleaching in fluorescence recovery after photobleaching measurements due to 
excitation saturation- a case study for fluorescein," Journal of Biomedical Optics 11, (2006). 



Chapter 1 

45 

33.  P. Wedekind, U. Kubitscheck, O. Heinrich, and R. Peters, "Line-scanning microphotolysis for 
diffraction-limited measurements of lateral diffusion," Biophysical Journal 71, 1621-1632 
(1996). 

34.  A. Tannert, S. Tannert, S. Burgold, and M. Schaefer, "Convolution-based one and two 
component FRAP analysis: theory and application," European Biophysics Journal with 
Biophysics Letters 38, 649-661 (2009). 

35.  B. L. Sprague, R. L. Pego, D. A. Stavreva, and J. G. McNally, "Analysis of binding reactions by 
fluorescence recovery after photobleaching," Biophysical Journal 86, 3473-3495 (2004). 

36.  F. Mueller, D. Mazza, T. J. Stasevich, and J. G. McNally, "FRAP and kinetic modeling in the 
analysis of nuclear protein dynamics: what do we really know?," Current Opinion in Cell 
Biology 22, 403-411 (2010). 

37.  J. Lippincott-Schwartz, N. tan-Bonnet, and G. H. Patterson, "Photobleaching and 
photoactivation: following protein dynamics in living cells," Nature Cell Biology S7-S14 
(2003). 

38.  P. Van Oostveldt and S. Bauwens, "Quantitative Fluorescence in Confocal Microscopy - the 
Effect of the Detection Pinhole Aperture on the Reabsorption and Inner Filter Phenomena," 
Journal of Microscopy-Oxford 158, 121-132 (1990). 

39.  F. Cella and A. Diaspro, "Two-Photon Excitation Microscopy: A Superb Wizard for 
Fluorescence Imaging," in Nanoscopy and Multidimensional Optical Fluorescence 
Microscopy, A. Diaspro, ed., (Chapman & Hall, Boca Raton, 2010). 

40.  J. Braga, J. M. P. Desterro, and M. Carmo-Fonseca, "Intracellular macromolecular mobility 
measured by fluorescence recovery after photobleaching with confocal laser scanning 
microscopes," Molecular Biology of the Cell 15, 4749-4760 (2004). 

41.  J. Wu, N. Shekhar, P. P. Lele, and T. P. Lele, "FRAP Analysis: Accounting for Bleaching during 
Image Capture," Plos One 7, (2012). 

42.  W. E. Hennink and C. F. van Nostrum, "Novel crosslinking methods to design hydrogels," 
Advanced Drug Delivery Reviews 54, 13-36 (2002). 

43.  T. Vermonden, R. Censi, and W. E. Hennink, "Hydrogels for Protein Delivery," Chemical 
Reviews 112, 2853-2888 (2012). 

44.  M. C. Branco, D. J. Pochan, N. J. Wagner, and J. P. Schneider, "Macromolecular diffusion 
and release from self-assembled beta-hairpin peptide hydrogels," Biomaterials 30, 1339-
1347 (2009). 

45.  S. R. Van Tomme, B. G. De Geest, K. Braeckmans, S. C. De Smedt, F. Siepmann, J. Siepmann, 
C. F. van Nostrum, and W. E. Hennink, "Mobility of model proteins in hydrogels composed 
of oppositely charged dextran microspheres studied by protein release and fluorescence 
recovery after photobleaching," Journal of Controlled Release 110, 67-78 (2005). 

46.  F. Brandl, F. Kastner, R. M. Gschwind, T. Blunk, J. Tessmar, and A. Gopferich, "Hydrogel-
based drug delivery systems: Comparison of drug diffusivity and release kinetics," Journal 
of Controlled Release 142, 221-228 (2010). 

47.  M. Henke, F. Brandl, A. M. Goepferich, and J. K. Tessmar, "Size-dependent release of 
fluorescent macromolecules and nanoparticles from radically cross-linked hydrogels," 
European Journal of Pharmaceutics and Biopharmaceutics 74, 184-192 (2010). 

48.  L. Payet, A. Ponton, L. Leger, H. Hervet, J. L. Grossiord, and F. Agnely, "Self-Diffusion in 
Chitosan Networks: From a Gel-Gel Method to Fluorescence Recovery after Photobleaching 
by Fringe Pattern," Macromolecules 41, 9376-9381 (2008). 

49.  K. B. Kosto and W. M. Deen, "Diffusivities of macromolecules in composite hydrogels," 
Aiche Journal 50, 2648-2658 (2004). 



Chapter 1 

46 

50.  A. J. Kuijpers, G. H. M. Engbers, T. K. L. Meyvis, S. S. C. de Smedt, J. Demeester, J. Krijgsveld, 
S. A. J. Zaat, J. Dankert, and J. Feijen, "Combined gelatin-chondroitin sulfate hydrogels for 
controlled release of cationic antibacterial proteins," Macromolecules 33, 3705-3713 
(2000). 

51.  R. Censi, T. Vermonden, M. J. van Steenbergen, H. Deschout, K. Braeckmans, S. C. De 
Smedt, C. F. van Nostrum, P. di Martino, and W. E. Hennink, "Photopolymerized 
thermosensitive hydrogels for tailorable diffusion-controlled protein delivery," Journal of 
Controlled Release 140, 230-236 (2009). 

52.  T. Vermonden, S. S. Jena, D. Barriet, R. Censi, J. van der Gucht, W. E. Hennink, and R. A. 
Siegel, "Macromolecular Diffusion in Self-Assembling Biodegradable Thermosensitive 
Hydrogels," Macromolecules 43, 782-789 (2010). 

53.  J. Kang and K. J. Beers, "Macromolecular transport through nanostructured and porous 
hydrogels synthesized using the amphiphilic copolymer, PCL-b-PEO-b-PCL," European 
Polymer Journal 45, 3004-3009 (2009). 

54.  M. D. Burke, J. O. Park, M. Srinivasarao, and S. A. Khan, "A novel enzymatic technique for 
limiting drug mobility in a hydrogel matrix," Journal of Controlled Release 104, 141-153 
(2005). 

55.  F. Alvarez-Mancenido, K. Braeckmans, S. C. De Smedt, J. Demeester, M. Landin, and R. 
Martinez-Pacheco, "Characterization of diffusion of macromolecules in konjac 
glucomannan solutions and gels by fluorescence recovery after photobleaching technique," 
International Journal of Pharmaceutics 316, 37-46 (2006). 

56.  R. Xiong, S. Soenen, K. Braeckmans, and A. G. Skirtach, "Towards Theranostic 
Multicompartment Microcapsules: in-situ Diagnostics and Laser-induced Treatment," 
Theranostics 3, 141-151 (2013). 

57.  K. Kohler and G. B. Sukhorukov, "Heat treatment of polyelectrolyte multilayer capsules: A 
versatile method for encapsulation," Advanced Functional Materials 17, 2053-2061 (2007). 

58.  M. S. Toprak, B. J. McKenna, J. H. Waite, and G. D. Stucky, "Control of size and permeability 
of nanocomposite microspheres," Chemistry of Materials 19, 4263-4269 (2007). 

59.  X. Tao, X. J. Sun, J. M. Su, J. F. Chen, and W. Roa, "Natural microshells of alginate-chitosan: 
Unexpected stability and permeability," Polymer 47, 6167-6171 (2006). 

60.  Y. Cheng, R. K. Prud'homme, and J. L. Thomas, "Diffusion of mesoscopic probes in aqueous 
polymer solutions measured by fluorescence recovery after photobleaching," 
Macromolecules 35, 8111-8121 (2002). 

61.  S. Basu and P. J. Campagnola, "Properties of crosslinked protein matrices for tissue 
engineering applications synthesized by multiphoton excitation," Journal of Biomedical 
Materials Research Part A 71A, 359-368 (2004). 

62.  K. Remaut, N. N. Sanders, B. G. De Geest, K. Braeckmans, J. Demeester, and S. C. De Smedt, 
"Nucleic acid delivery: Where material sciences and bio-sciences meet," Materials Science 
& Engineering R-Reports 58, 117-161 (2007). 

63.  A. Pluen, Y. Boucher, S. Ramanujan, T. D. Mckee, T. Gohongi, E. di Tomaso, E. B. Brown, Y. 
Izumi, R. B. Campbell, D. A. Berk, and R. K. Jain, "Role of tumor-host interactions in 
interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors," Proceedings of 
the National Academy of Sciences of the United States of America 98, 4628-4633 (2001). 

64.  P. A. Netti, D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain, "Role of extracellular 
matrix assembly in interstitial transport in solid tumors," Cancer Research 60, 2497-2503 
(2000). 



Chapter 1 

47 

65.  S. Ramanujan, A. Pluen, T. D. Mckee, E. B. Brown, Y. Boucher, and R. K. Jain, "Diffusion and 
convection in collagen gels: Implications for transport in the tumor interstitium," 
Biophysical Journal 83, 1650-1660 (2002). 

66.  T. Stylianopoulos, B. op-Frimpong, L. L. Munn, and R. K. Jain, "Diffusion Anisotropy in 
Collagen Gels and Tumors: The Effect of Fiber Network Orientation," Biophysical Journal 99, 
3119-3128 (2010). 

67.  A. Erikson, H. N. Andersen, S. N. Naess, P. Sikorski, and C. D. Davies, "Physical and chemical 
modifications of collagen gels: Impact on diffusion," Biopolymers 89, 135-143 (2008). 

68.  L. Eikenes, I. Tufto, E. A. Schnell, A. Bjorkoy, and C. D. Davies, "Effect of Collagenase and 
Hyaluronidase on Free and Anomalous Diffusion in Multicellular Spheroids and Xenografts," 
Anticancer Research 30, 359-368 (2010). 

69.  V. P. Chauhan, R. M. Lanning, B. op-Frimpong, W. Mok, E. B. Brown, T. P. Padera, Y. 
Boucher, and R. K. Jain, "Multiscale Measurements Distinguish Cellular and Interstitial 
Hindrances to Diffusion In Vivo," Biophysical Journal 97, 330-336 (2009). 

70.  M. Magzoub, S. Jin, and A. S. Verkman, "Enhanced macromolecule diffusion deep in tumors 
after enzymatic digestion of extracellular matrix collagen and its associated proteoglycan 
decorin," Faseb Journal 22, 276-284 (2008). 

71.  K. D. Sullivan, W. H. Sipprell, E. B. Brown, and E. B. Brown, "Improved Model of 
Fluorescence Recovery Expands the Application of Multiphoton Fluorescence Recovery 
after Photobleaching in Vivo," Biophysical Journal 96, 5082-5094 (2009). 

72.  D. K. Binder, M. C. Papadopoulos, P. M. Haggie, and A. S. Verkman, "In vivo measurement 
of brain extracellular space diffusion by cortical surface photobleaching," Journal of 
Neuroscience 24, 8049-8056 (2004). 

73.  E. Sykova and C. Nicholson, "Diffusion in brain extracellular space," Physiological Reviews 
88, 1277-1340 (2008). 

74.  M. C. Papadopoulos, D. K. Binder, and A. S. Verkman, "Enhanced macromolecular diffusion 
in brain extracellular space in mouse models of vasogenic edema measured by cortical 
surface photobleaching," Faseb Journal 18, 425-+ (2004). 

75.  M. C. Papadopoulos, J. K. Kim, and A. S. Verkman, "Extracellular space diffusion in central 
nervous system: Anisotropic diffusion measured by elliptical surface photobleaching," 
Biophysical Journal 89, 3660-3668 (2005). 

76.  Z. Zador, M. Magzoub, S. Jin, G. T. Manley, M. C. Papadopoulos, and A. S. Verkman, 
"Microfiberoptic fluorescence photobleaching reveals size-dependent macromolecule 
diffusion in extracellular space deep in brain," Faseb Journal 22, 870-879 (2008). 

77.  N. N. Sanders, S. C. De Smedt, and J. Demeester, "The physical properties of biogels and 
their permeability for macromolecular drugs and colloidal drug carriers," Journal of 
Pharmaceutical Sciences 89, 835-849 (2000). 

78.  P. Occhipinti and P. C. Griffiths, "Quantifying diffusion in mucosal systems by pulsed-
gradient spin-echo NMR," Advanced Drug Delivery Reviews 60, 1570-1582 (2008). 

79.  S. S. Olmsted, J. L. Padgett, A. I. Yudin, K. J. Whaley, T. R. Moench, and R. A. Cone, "Diffusion 
of macromolecules and virus-like particles in human cervical mucus," Biophysical Journal 
81, 1930-1937 (2001). 

80.  H. Shen, Y. Y. Hu, and W. M. Saltzman, "DNA diffusion in mucus: Effect of size, topology of 
DNAs, and transfection reagents," Biophysical Journal 91, 639-644 (2006). 

81.  E. H. Burger and J. Klein-Nulend, "Mechanotransduction in bone - role of the lacuno-
canalicular network," Faseb Journal 13, S101-S112 (1999). 



Chapter 1 

48 

82.  X. Z. Zhou, J. E. Novotny, and L. Y. Wang, "Modeling Fluorescence Recovery After 
Photobleaching in Loaded Bone: Potential Applications in Measuring Fluid and Solute 
Transport in the Osteocytic Lacunar-Canalicular System," Annals of Biomedical Engineering 
36, 1961-1977 (2008). 

83.  C. Price, X. Z. Zhou, W. Li, and L. Y. Wang, "Real-Time Measurement of Solute Transport 
Within the Lacunar-Canalicular System of Mechanically Loaded Bone: Direct Evidence for 
Load-Induced Fluid Flow," Journal of Bone and Mineral Research 26, 277-285 (2011). 

84.  L. Peeters, N. N. Sanders, K. Braeckmans, K. Boussery, J. V. de Voorde, S. C. De Smedt, and J. 
Demeester, "Vitreous: A barrier to nonviral ocular gene therapy," Investigative 
Ophthalmology & Visual Science 46, 3553-3561 (2005). 

85.  M. E. Johnson, D. A. Berk, D. Blankschtein, D. E. Golan, R. K. Jain, and R. S. Langer, "Lateral 
diffusion of small compounds in human stratum corneum and model lipid bilayer systems," 
Biophysical Journal 71, 2656-2668 (1996). 

86.  O. Seksek, J. Biwersi, and A. S. Verkman, "Translational diffusion of macromolecule-sized 
solutes in cytoplasm and nucleus," Journal of Cell Biology 138, 131-142 (1997). 

87.  M. ArrioDupont, S. Cribier, G. Foucault, P. F. Devaux, and A. d'Albis, "Diffusion of 
fluorescently labeled macromolecules in cultured muscle cells," Biophysical Journal 70, 
2327-2332 (1996). 

88.  M. ArrioDupont, G. Foucault, M. Vacher, P. F. Devaux, and S. Cribier, "Translational 
diffusion of globular proteins in the cytoplasm of cultured muscle cells," Biophysical Journal 
78, 901-907 (2000). 

89.  E. Moeendarbary, L. Valon, M. Fritzsche, A. R. Harris, D. A. Moulding, A. J. Thrasher, E. 
Stride, L. Mahadevan, and G. T. Charras, "The cytoplasm of living cells behaves as a 
poroelastic material," Nature Materials 12, 253-261 (2013). 

90.  G. L. Lukacs, P. Haggie, O. Seksek, D. Lechardeur, N. Freedman, and A. S. Verkman, "Size-
dependent DNA mobility in cytoplasm and nucleus," Journal of Biological Chemistry 275, 
1625-1629 (2000). 

91.  J. C. Politz, E. S. Browne, D. E. Wolf, and T. Pederson, "Intranuclear diffusion and 
hybridization state of oligonucleotides measured by fluorescence correlation spectroscopy 
in living cells," Proceedings of the National Academy of Sciences of the United States of 
America 95, 6043-6048 (1998). 

92.  A. T. Jones and E. J. Sayers, "Cell entry of cell penetrating peptides: tales of tails wagging 
dogs," Journal of Controlled Release 161, 582-591 (2012). 

93.  F. Cardarelli, M. Serresi, R. Bizzarri, M. Giacca, and F. Beltram, "In vivo study of HIV-1 Tat 
arginine-rich motif unveils its transport properties," Molecular Therapy 15, 1313-1322 
(2007). 

94.  M. J. Roberti, T. M. Jovin, and E. Jares-Erijman, "Confocal Fluorescence Anisotropy and 
FRAP Imaging of alpha-Synuclein Amyloid Aggregates in Living Cells," Plos One 6, (2011). 

95.  N. J. Edwin, R. P. Hammer, R. L. McCarley, and P. S. Russo, "Reversibility of beta-Amyloid 
Self-Assembly: Effects of pH and Added Salts Assessed by Fluorescence Photobleaching 
Recovery," Biomacromolecules 11, 341-347 (2010). 

96.  I. Sponne, A. Fifre, A. Drouet, C. Klein, V. Koziel, M. Pingon-Raymond, J. L. Olivier, J. 
Chambaz, and T. Pillot, "Apoptotic neuronal cell death induced by the non-fibrillar amyloid-
beta peptide proceeds through an early reactive oxygen species-dependent cytoskeleton 
perturbation," Journal of Biological Chemistry 278, 3437-3445 (2003). 



Chapter 1 

49 

97.  K. Guan, S. Wagner, B. Unsold, L. S. Maier, D. Kaiser, B. Hemmerlein, K. Nayernia, W. Engel, 
and G. Hasenfuss, "Generation of functional cardiomyocytes from adult mouse 
spermatogonial stem cells," Circulation Research 100, 1615-1625 (2007). 

98.  B. J. Muller-Borer, W. E. Cascio, P. A. W. Anderson, J. N. Snowwaert, J. R. Frye, N. Desai, G. 
L. Esch, J. A. Brackham, C. R. Bagnell, W. B. Coleman, J. W. Grisham, and N. N. Malouf, 
"Adult-derived liver stem cells acquire a cardiomyocyte structural and functional phenotype 
ex vivo," American Journal of Pathology 165, 135-145 (2004). 

99.  M. G. Todorova, B. Soria, and I. Quesada, "Gap junctional intercellular communication is 
required to maintain embryonic stem cells in a non-differentiated and proliferative state," 
Journal of Cellular Physiology 214, 354-362 (2008). 

100.  Y. Y. Lu, T. S. Chen, X. P. Wang, and L. Li, "Single-cell analysis of dihydroartemisinin-induced 
apoptosis through reactive oxygen species-mediated caspase-8 activation and 
mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques," Journal of 
Biomedical Optics 15, (2010). 

101.  X. H. Long, M. Y. Fan, R. M. Bigsby, and K. P. Nephew, "Apigenin inhibits antiestrogen-
resistant breast cancer cell growth through estrogen receptor-alpha-dependent and 
estrogen receptor-alpha-independent mechanisms," Molecular Cancer Therapeutics 7, 
2096-2108 (2008). 

102.  M. S. Phadke, N. F. Krynetskaia, A. K. Mishra, and E. Krynetskiy, "Glyceraldehyde 3-
Phosphate Dehydrogenase Depletion Induces Cell Cycle Arrest and Resistance to 
Antimetabolites in Human Carcinoma Cell Lines," Journal of Pharmacology and 
Experimental Therapeutics 331, 77-86 (2009). 

103.  L. Sancey, E. Garanger, S. Foillard, G. Schoehn, A. Hurbin, C. biges-Rizo, D. Boturyn, C. 
Souchier, A. Grichine, P. Dumy, and J. L. Coll, "Clustering and Internalization of Integrin 
alpha(v)beta(3) With a Tetrameric RGD-synthetic Peptide," Molecular Therapy 17, 837-843 
(2009). 

104.  D. A. Berk, F. Yuan, M. Leunig, and R. K. Jain, "Direct in vivo measurement of targeted 
binding in a human tumor xenograft," Proceedings of the National Academy of Sciences of 
the United States of America 94, 1785-1790 (1997). 

105.  E. N. Kaufman and R. K. Jain, "Effect of Bivalent Interaction Upon Apparent Antibody-
Affinity - Experimental Confirmation of Theory Using Fluorescence Photobleaching and 
Implications for Antibody-Binding Assays," Cancer Research 52, 4157-4167 (1992). 

106.  T. Ogawa, T. Hayashi, M. Tokunou, K. Nakachi, J. E. Trosko, C. C. Chang, and N. Yorioka, 
"Suberoylanilide hydroxamic acid enhances gap junctional intercellular communication via 
acetylation of histone containing Connexin 43 gene locus," Cancer Research 65, 9771-9778 
(2005). 

107.  H. Sauer, V. Putz, K. Fischer, J. Hescheler, and M. Wartenberg, "Increased doxorubicin 
uptake and toxicity in multicellular tumour spheroids treated with DC electrical fields," 
British Journal of Cancer 80, 1204-1213 (1999). 

108.  M. J. C. Machado and C. A. Mitchell, "Temporal changes in microvessel leakiness during 
wound healing discriminated by in vivo fluorescence recovery after photobleaching," 
Journal of Physiology-London 589, 4681-4696 (2011). 

109.  T. Da and A. S. Verkman, "Aquaporin-4 gene disruption in mice protects against impaired 
retinal function and cell death after ischemia," Investigative Ophthalmology & Visual 
Science 45, 4477-4483 (2004). 

110.  J. A. van Aalst, W. Burmeister, P. L. Fox, and L. M. Graham, "alpha-Tocopherol preserves 
endothelial cell migration in the presence of cell-oxidized low-density lipoprotein by 



Chapter 1 

50 

inhibiting changes in cell membrane fluidity," Journal of Vascular Surgery 39, 229-237 
(2004). 

111.  G. Jones, F. Hunter, H. A. Hancock, A. Kapoor, M. J. Stone, B. J. Wood, J. W. Xie, M. R. 
Dreher, and V. Frenkel, "In Vitro Investigations Into Enhancement of tPA Bioavailability in 
Whole Blood Clots Using Pulsed-High Intensity Focused Ultrasound Exposures," Ieee 
Transactions on Biomedical Engineering 57, 33-36 (2010). 

112.  D. Salinas, P. M. Haggie, J. R. Thiagarajah, Y. L. Song, K. Rosbe, W. E. Finkbeiner, D. W. 
Nielson, and A. S. Verkman, "Submucosal gland dysfunction as a primary defect in cystic 
fibrosis," Faseb Journal 18, 431-+ (2004). 

113.  C. M. Finnegan, S. S. Rawat, E. H. Cho, D. L. Guiffre, S. Lockett, A. H. Merrill, and R. 
Blumenthal, "Sphingomyelinase restricts the lateral diffusion of CD4 and inhibits human 
immunodeficiency virus fusion," Journal of Virology 81, 5294-5304 (2007). 

114.  R. Lin, R. Murtazina, B. Y. Cha, M. Chakraborty, R. Sarker, T. E. Chen, Z. H. Lin, B. M. 
Hogema, H. R. de Jonge, U. Seidler, J. R. Turner, X. H. Li, O. Kovbasnjuk, and M. Donowitz, 
"D-Glucose Acts via Sodium/Glucose Cotransporter 1 to Increase NHE3 in Mouse Jejunal 
Brush Border by a Na plus/H plus Exchange Regulatory Factor 2-Dependent Process," 
Gastroenterology 140, 560-571 (2011). 

115.  R. Saxena and A. Chattopadhyay, "Membrane organization and dynamics of the 
serotonin(1A) receptor in live cells," Journal of Neurochemistry 116, 726-733 (2011). 

116.  E. Meimaridou, S. B. Gooljar, N. Ramnarace, L. Anthonypillai, A. J. L. Clark, and J. P. Chapple, 
"The Cytosolic Chaperone Hsc70 Promotes Traffic to the Cell Surface of Intracellular 
Retained Melanocortin-4 Receptor Mutants," Molecular Endocrinology 25, 1650-1660 
(2011). 

117.  A. Gefen, L. H. Cornelissen, D. Gawlitta, D. L. Bader, and C. W. J. Oomens, "The free 
diffusion of macromolecules in tissue-engineered skeletal muscle subjected to large 
compression strains," Journal of Biomechanics 41, 845-853 (2008). 

118.  J. W. Dobrucki, D. Feret, and A. Noatynska, "Scattering of exciting light by live cells in 
fluorescence Confocal imaging: Phototoxic effects and relevance for FRAP studies," 
Biophysical Journal 93, 1778-1786 (2007). 

119.  S. T. Hess, S. H. Huang, A. A. Heikal, and W. W. Webb, "Biological and chemical applications 
of fluorescence correlation spectroscopy: A review," Biochemistry 41, 697-705 (2002). 

120.  M. J. Saxton and K. Jacobson, "Single-particle tracking: Applications to membrane 
dynamics," Annual Review of Biophysics and Biomolecular Structure 26, 373-399 (1997). 

 



 

51 

 

 

 

 

 

 

Chapter 2 

 

Straightforward FRAP for quantitative diffusion 

measurements with a laser scanning microscope 

 

 

This chapter is published as: 

 

Hendrik Deschout
1,2

, Joel Hagman
3
, Sophia Fransson

3
, Jenny Jonasson

4
, Mats Rudemo

4
, 

Niklas Lorén
3
, and Kevin Braeckmans

1,2
. Optics Express, Volume 18, Issue 22, Pages 

22886-22905, 2010. 

 

1
Laboratory for General Biochemistry and Physical Pharmacy, Ghent University, Belgium 

2
Centre for Nano- and Biophotonics, Ghent University, Belgium 

3
Structure and Material Design, The Swedish Institute for Food and Biotechnology, Sweden 

4
Mathematical Sciences, Chalmers University of Technology and Gothenburg University, Sweden 

  



 

52 

 



Chapter 2 

53 

ABSTRACT 

 

Confocal or multi-photon laser scanning microscopes are convenient tools to perform 

FRAP diffusion measurements, rendering it a popular technique in pharmaceutical 

research, as discussed in Chapter 1. Nonetheless, accurate FRAP remains often 

challenging since current methods are either limited to relatively large bleach regions 

or can be complicated for non-specialists. In order to bring reliable quantitative FRAP 

measurements to the broad community of laser scanning microscopy users, here we 

have revised FRAP theory and present a new pixel based FRAP method relying on the 

photo bleaching of rectangular regions of any size and aspect ratio. The method allows 

for fast and straightforward quantitative diffusion measurements due to a closed–form 

expression for the recovery process utilizing all available spatial and temporal data. 

After a detailed validation, its versatility is demonstrated by diffusion studies in 

heterogeneous biopolymer mixtures. 
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2.1 INTRODUCTION 

 

Molecular transport is essential for the functionality of cells and for the properties of 

many industrial products such as pharmaceuticals, pharmaceutical devices, foods, 

cosmetics etc. Different methods based on fluorescence microscopy exist to 

characterize the local mobility of molecules in terms of a diffusion coefficient. One of 

them is fluorescence recovery after photobleaching (FRAP), which is most useful for 

studying diffusion in the range of 0.1 to 100 µm
2
/s on a micrometer scale. FRAP 

diffusion measurements are based on creating a concentration gradient through local 

photobleaching of the fluorescently labelled molecules, which is the photochemical 

process through which a fluorescent molecule loses its fluorescence properties after 

being excited by an incoming photon. By illuminating a certain area in the microscope 

sample with high-intensity excitation light, the fluorescent molecules within that area 

can photobleach, leading to a local reduction in fluorescence intensity. Exchange via 

diffusion of these photobleached molecules with intact fluorescent molecules outside 

the illuminated area leads to a gradual recovery of the fluorescence inside that area. 

The rate of fluorescence recovery is proportional to the rate of diffusion of the 

fluorescently labelled molecules. Using a suitable FRAP model, analysis of the 

fluorescence recovery can yield the physical quantities describing the local diffusion in 

the sample, such as the diffusion coefficient in case of free diffusion. FRAP has become 

a popular technique to study the diffusion of molecules in a variety of systems like cell 

membranes [1-3], polymer gel systems [4-9] and living cells [10-12]. 

The first FRAP methods were developed in the 1970s, using fluorescence microscopes 

with non-scanning lasers as light sources and photo-multiplier tubes as detectors [13]. 

The photobleached area was determined by the intensity distribution of the focused 

laser beam which had either a Gaussian or a uniform circular profile. As the 

fluorescence recovery was monitored by the same (attenuated) laser beam, only 

temporal information was available of the fluorescence recovery (i.e. spot 

photobleaching measurements). To include spatial information as well, video cameras 

were used during the 1980s, allowing visualisation of the fluorescence recovery inside 

and outside the photobleached region. During this period, also the confocal laser 

scanning microscope (CLSM) became available, opening up new possibilities for more 

flexible FRAP experiments. 

By means of the scanning laser beam of a CLSM it is possible to define a photobleaching 

area of any size and shape, resulting in a large range of detectable diffusion 

coefficients. Since confocal microscopy is an imaging technique, both spatial and 
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temporal information are in principle available from the recovery images. However, 

due to the mathematical complexity of the problem, quantitative interpretation of 

FRAP data to date remains mostly limited to temporal analysis of the average 

fluorescence in the photobleached area. When spatial information is not taken into 

account, a prerequisite for accurate results is the exact knowledge of the initial 

concentration of bleached molecules after photobleaching. However, because of non-

linear saturation effects during the highly intense photobleaching phase that depend 

on the photon flux, the type of fluorophore and the local chemical environment, it is 

very difficult to estimate or calibrate the initial bleaching profile exactly [14-16]. While 

these non-linear effects can be neglected when using large photobleaching areas [17], 

they have a substantial effect when using small areas close to the resolution of the 

microscope [15,16]. 

The necessity of a priori knowledge of the exact initial bleaching profile can be 

circumvented by taking into account the spatial information of the recovery images. 

Inventive FRAP models have been proposed along this line that make use of 

mathematical transformations, such as the Fourier transform or Hankel transform [18-

20]. However, the methods published so far do not take the microscope’s imaging 

point-spread function into account so that deviations could arise for very small regions. 

Moreover, these methods have not been extended to 3-D diffusion for e.g. 2-photon 

FRAP measurements [16]. A pixelbased maximum likelihood framework was reported, 

assuming that the initial bleaching profile can be approximated by a Gaussian 

distribution [21]. To alleviate the latter restriction, recently a numerical method has 

been introduced [22], where the maximum likelihood framework is extended to a 

general initial profile only assuming that the profile is a non-decreasing function of the 

distance to the bleaching centre. While this method is accurate for all types of initial 

profiles studied, similar to other numerical approaches [23-25], it generally requires 

special programming expertise, while data analysis can take hours on modern 

computers. Therefore, there remains the need for quantitative but straightforward and 

fast FRAP methods that take the full spatial and temporal information into account 

without posing any restrictions on the size of the bleaching area. 

In order to bring highly reliable quantitative FRAP measurements to the broad 

community of laser scanning microscopy users, here we present a new and versatile 

FRAP model that describes the full temporal and spatial diffusion process after 

photobleaching by a scanning laser beam of an arbitrary rectangular area (rFRAP). A 

rectangular area was chosen instead of the more typical circular region because this 

enabled us to find a closed-form expression for the recovery process, thus allowing for 

fast and straightforward analysis of the recovery images. Moreover, by taking the 

microscope’s effective photobleaching and imaging resolution into account, the 
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rectangle can have any size and aspect ratio, thus providing for maximum flexibility. 

The new pixelbased FRAP model effectively utilises all information in the image set to 

estimate the diffusion rate. First we give an outline of the mathematical derivation 

leading to the general 3-D multi-photon FRAP expression, followed by a discussion on 

the practical 2-D limit for single photon CLSM experiments. We present a detailed 

experimental validation of the method where we demonstrate that the method is valid 

for any size and aspect ratio of the rectangle. Furthermore we compare two ways of 

analyzing the recovery images, either by a straightforward least squares analysis or by a 

robust maximum likelihood framework. Finally, in collaboration with Dr. Niklas Lorén 

from the Swedish Institute for Food and Technology, we demonstrate the usefulness 

and versatility of the method on a mixed biopolymer system of gelatin and 

maltodextrin which is of relevance to the food and pharmaceutical industry. 

 

2.2 THEORY 

 

2.2.1 Derivation of the general rFRAP expression 

Consider a sample with a uniform concentration    of fluorescent molecules. Let 

  
 (       ) be the  -photon illumination intensity distribution of the laser scanning 

microscope (LSM) with a temporal average intensity of the (pulsed) laser beam 

〈  
 (       )〉. Assuming first order photobleaching kinetics and a short photobleaching 

time to avoid significant diffusion during bleaching, the fluorophore concentration    

after  -photon photobleaching of a 2-D geometry  (   ) with a scanning beam can be 

calculated from [16]: 

 
  (     )     

 
    
    

 (     )
  (2.1) 

where    is the  -photon absorption cross-section and    the quantum efficiency for  -

photon photobleaching.   is the scanning speed of the laser beam and    the distance 

between adjacent scanning lines. The effective bleaching intensity distribution 

 (     ) is calculated from the convolution product of the geometry  (   ) and the 

time-average bleaching intensity distribution: 

 
 (     )  ∫ ∫  (     )〈  

 (             )〉       
  

  

  

  

 (2.2) 
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Here we assume a rectangular photobleaching area as illustrated in Fig. 2.1: 

 
 (   )  {      

  
 
   

  
 
 and  

  

 
   

  

 
 ,    elsewhere

 (2.3) 

and a Gaussian photobleaching intensity distribution [16,26]: 

 
〈  
 (       )〉  〈  

 (       )〉 
   (

     

    
  

  

    
 )

  
(2.4) 

where      is the lateral and      is the axial effective resolution for single photon 

photobleaching. 〈  
 (       )〉 is the temporal average intensity of the (pulsed) laser 

beam at the origin for  -photon photobleaching. 

 

 

Figure 2.1 | The use of a confocal laser scanning microscope in a FRAP measurement. The 
scanning speed is   and the distance between the consecutive scanning lines is   . (a) Images 
are acquired by scanning the imaging point spread function (open circle) across the focal plane. 
(b) By increasing the laser intensity within the indicated rectangle, a rectangular area can be 
photobleached. 

 

Inserting Eqs. (2.3) and (2.4) into Eq. (2.2) results in: 
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  (2.5) 

Since it is our aim to finally come to a closed-form expression, we further assume a 

limited amount of photobleaching such that the exponential photobleaching process 
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from Eq. (2.1) can be approximated by a linear process (first order of the Taylor 

expansion): 

   (     )       
    
    

 (     )  (2.6) 

We will show experimentally that this assumption in practice does not impose a big 

limitation. Furthermore, we will demonstrate that in practice diffusion during 

photobleaching in fact can be accounted for by the rectangle FRAP method, despite the 

fact that this is formally neglected at this point in the derivation. To model the 

fluorescence recovery after photobleaching of the rectangle, Fick’s second law has to 

be solved for the initial condition in Eq. (2.6). Inserting Eq. (2.6) into the integral form of 

Fick’s second law gives the concentration   of the fluorophores as a function of time 

and space after photobleaching [27]: 
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Eq. (2.7). can be rewritten using Eq. (2.5), finally leading to: 
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(2.8) 

where   is the isotropic diffusion coefficient of the diffusing species. If the fluorescence 

recovery is imaged by  -photon microscopy, the observed fluorescence can be 

calculated from the convolution product of the real concentration according to Eq. (2.8) 

and the overall microscope’s imaging point spread function 〈  
 (       )〉: 

  (       )   

 ∫ ∫ ∫ 〈  
 (       )〉 (                )         

  

  

  

  

  

  

  
(2.9) 
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The imaging point spread function 〈  
 (       )〉 can be modelled as a 3-D Gaussian 

function: 

 
〈  
 (       )〉  〈  

 (       )〉 
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(2.10) 

where      is the lateral and      is the axial resolution for single photon imaging. Note 

that we allow the resolution (radial and axial) of the imaging point spread function to 

be different from the bleaching intensity distribution in Eq. (2.4) since it was previously 

shown that saturation effects can increase the effective resolution of the bleaching 

intensity distribution [14-16]. First, define the following parameters as: 
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Substituting Eq. (2.10) in (2.9) subsequently leads to: 
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(2.12) 

which describes the three-dimensional fluorescence recovery at a time   after 

photobleaching. Excitation is assumed to be an  - and  -photon process for imaging 

and bleaching, respectively, and the bleached area is a rectangle centred in the origin 

with width    and height    (see Fig. 2.1). Equation (2.12) contains the error function, 

which is defined as    ( )  
 

√ 
∫    

 
  

 

 
. 

 

2.2.2 Single photon rFRAP 

It is useful to consider the case   =   = 1 (we denote     
  as    in Eq. (2.11)) which 

corresponds to FRAP experiments performed on a regular (single photon) CLSM. 

However, in that case the above formula is incorrect as far as the axial diffusion is 

concerned ( -direction). This is because the single photon illumination profile has a 

conical shape which is not taken into account by Eq. (2.4) and this will lead to a 

discrepancy between the theory and the actual experiment. Therefore, when 

performing FRAP experiments on a regular (single photon) CLSM, diffusion along the 
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optical axis should be avoided so that 2-D diffusion can be assumed. This is e.g. the case 

when the diffusion is restricted to a plane, such as for membrane transport. In a 3-D 

extended sample, a 2-D situation can be mimicked by using a low numerical aperture 

lens which produces a cylindrical illumination profile instead of a conical one 

[15,17,28]. In that case, there will be substantial photobleaching above and below the 

focal plane, thus avoiding net diffusion along the optical axis. The single photon 2-D 

rFRAP model can be derived from Eq. (2.12) by letting      approach infinity, and setting 

  =   = 1 and   = 0 (observation in focal plane): 

  (     )
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(2.13) 

Note that the percentage of photobleaching   at the centre of the rectangle, follows 

immediately from  (     ): 
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))  (2.14) 

One special case is when the combination of a mobile and immobile fraction is 

assumed. Let   be the fraction of mobile molecules, the fluorescence   (     ) is then 

given by [15]: 

   (     )   (     )   [ (     )   (     )]  (2.15) 

where  (     ) is defined by Eq. (2.13). All experiments presented in this work were 

analyzed using Eqs. (2.13) and (2.15). 

 

2.2.3 Parameter estimation by maximum likelihood and least squares fitting 

As is illustrated in Fig. 2.2a, a CLSM FRAP experiment results in a time lapse movie 

consisting of one or more pre-bleach images, the photobleaching image (depending on 

the instrument) and the recovery images. After normalization to the initial fluorescence 

and optional correction for photobleaching during imaging, Eq. (2.13) or (2.15) can be 

fitted to the entire set of pixel values from the recovery images. Since all available data 

is used, this method achieves maximum precision and also allows to include the 

resolution parameter    as a free fitting parameter. In this way calibration of the 

photobleaching resolution      can be avoided [15]. We have evaluated two different 
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fitting procedures, one based on classic least squares analysis and another one on a 

maximum likelihood framework. 

Maximum likelihood is an efficient statistical method for estimating parameters of a 

model [29]. To use it in this context, a probabilistic description of the noise is needed. 

Let  (     ) denote the pixel value at a pixel with coordinates (   ) at time  . The 

pixel value or intensity is assumed to be linearly proportional to the number of photons 

 (     ) observed at that pixel, which we write as  (     )    (     ). The 

expectation of  (     ) is given by  (     ) from Eq. (2.13). Furthermore, we assume 

that  (     ) is Poisson distributed with expectation  (     )  ⁄ . The Poisson 

distribution is approximated by a normal distribution with expectation and variance 

 (     )  ⁄ , that is,  (     ) is approximately normal with expectation  (     ) and 

variance   (     ). The approximation should be excellent since the expectation of 

the Poisson distribution, corresponding to pixel values, is at least 100 as estimated from 

our images. 

The parameters   and    can be estimated from the pre-bleach image(s) independent 

from the other model parameters. The expectation of a pixel value in the pre-bleach 

images is    and its variance is    .    is estimated by the average pixel value in the 

pre-bleach image(s), while   is estimated by the variance of the pre-bleach pixel values 

divided by the estimate of   . The set of remaining model parameters   

(        
 ) is estimated by maximum likelihood. To indicate that  (     ) depends 

on the parameter vector  , we will write  (       ) further on. The likelihood function 

for all pixels (   )    for all times     can then be written as: 
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The log-likelihood that is to be maximized, is given by: 
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where | | and | | denote the number of elements in the sets   and  . Let  ̂ denote the 

 -value maximizing the log-likelihood. From the large sample theory for likelihood 
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estimators it is known that  ̂ is asymptotically normal with a covariance matrix    

which is the inverse of the observed Fisher information,  ( ̂) whose (   )th element is 

given by: 

 
 

  

      
 ( )|

   ̂

  (2.18) 

Hence the standard error of    is given by the square root of the  th diagonal term 

of  ( ̂)
  

. When analyzing the rFRAP data by least squares fitting, we minimize: 

  ( )  ∑ ∑( (     )   (       ))
 

   (   )  

  (2.19) 

Note that, at the expense of additional programming and considerably extended 

computing time standard errors may also be obtained by use of bootstrap techniques 

[30]. 

 

2.3 MATERIALS AND METHODS 

 

2.3.1 Confocal microscopy 

Validation experiments were performed on a confocal laser scanning microscope 

(model MRC1024 UV, Bio-Rad, UK). A 488 nm line of a 4 W Ar-ion laser (model Stabilite 

2017, Spectra-Physics, Germany) was used for (single photon) imaging and 

photobleaching in combination with a 10× Nikon CFI Plan Apochromat objective lens 

with a numerical aperture (  ) of 0.45 (Nikon, The Netherlands). On the Bio-Rad 

MRC1024 UV, this lens achieves an imaging resolution of      = 1.0 µm, as determined 

from images of 200 nm fluorescent nanospheres immobilized on a microscope slide. 

The experiments on biopolymer mixtures were performed on a confocal laser scanning 

microscope (model TCP SP2, Leica, Germany) equipped with a heating and cooling 

stage (model TMS 92, Linkam, UK). The light source for imaging and bleaching was the 

488 nm line from a built-in Ar-ion laser. An 63× HC PL APO water immersion objective 

lens with a    of 0.90 was used. As the beam expander function was not used, the 

effective    was lower than 0.90. 
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2.3.2 Test solutions 

The validation measurements of the rFRAP method are performed on 150 kDalton FITC-

dextran (Sigma-Aldrich, Belgium) solutions prepared in HEPES buffer at pH 7.4. The 

concentration range in which a linear relation exists between the observed 

fluorescence and the concentration of the fluorophore was determined to be below 4 

mg/ml. It was decided to use a 3 mg/ml FITC-dextran stock solution for all validation 

experiments.  

The solutions contained different amounts of sucrose in order to vary the dynamic 

viscosity   and to obtain diffusion coefficients in the range of 0.1 µm
2
/s to 10 µm

2
/s. 

For rFRAP experiments, 5 µl of the FITC-dextran solution was dispensed on a 

microscope slide and sealed with a coverslip using a 120 µm thick double adhesive 

spacer (Secure-Seal Spacer, Molecular Probes, The Netherlands). 

 

2.3.3 Biopolymer mixtures 

Biopolymer mixtures were prepared from gelatin LH type with Bloom 240 (System Bio 

Industries, France) and Paselli SA2 maltodextrin (Avebe Group, Netherlands). The 

maltodextrin was covalently labeled with Rhodamine B isothiocyanate (RITC) to visually 

differentiate between gelatin and maltodextrin on the microscope images. Gelatin and 

RITC-maltodextrin were dissolved in a 150 ppm 10kDa FITC dextran solution under 

continuous slow agitation at 70 °C for 40 minutes and at 95 °C for 30 minutes, 

respectively. The gelatin and maltodextrin mixtures were subsequently mixed so that a 

final biopolymer concentration of 4% w/w gelatin and 6% w/w maltodextrin was 

obtained. The mixture was put in a water bath at 70 °C to avoid a loss of heat and was 

stirred for a few minutes. The sample was subsequently transferred to a sample cup 

that was preheated to 70 °C in a furnace. The furnace was finally set to cool the sample 

from 70 °C to room temperature at 21 °C at a cooling rate of approximately 0.2 °C/min. 

 

2.3.4 Measurement protocol 

The validation experiments on the FITC-dextran solutions were performed in the middle 

of the sample, at approximately 60 µm above the coverslip. A typical FRAP 

measurement consisted of a time series of 30 images of 512 by 512 pixels, as illustrated 

in Fig. 2.2a. 
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Figure 2.2 | Illustration of a rFRAP experiment. The sample is a 150 kD FITC-dextran solution in 
HEPES buffer with 60% sucrose. (a) Several frames (512 by 512 pixels) of the time lapse movie are 
shown. The first frame shows the pre-bleach image. At time   = 0 s, a square region is bleached 
(30 by 30 µm) at the left side of the field of view, as is illustrated in the second frame. The 
following frames show the fluorescence recovery at four different times   after bleaching. The 
dashed square around the bleached area indicates the region that was taken into account in the 
analysis. The dashed rectangle to the right shows the region that was used for the background 
correction. (b) The intensity values with the result from the fitting procedure (solid line) are 
shown for a cross section along the  -direction of the square. 

 



Chapter 2 

65 

The first image shows the sample before bleaching, the second one shows the 

bleaching pattern at the time of bleaching, and the subsequent images show the 

recovery process after bleaching. The pattern is usually bleached at the left side of the 

image as this allows the user to define a background region at the right side of the 

image that is not affected by the diffusion front during the image acquisition. This 

background is used to correct for possible laser intensity fluctuations and bleaching 

during imaging. All validation experiments were performed at 22.5° C. 

The FRAP protocol for the experiments performed in biopolymer mixtures was as 

follows. First, 20 pre-bleach images were recorded after which a rectangle was 

photobleached in a single step. The acousto optical tunable filter (AOTF) was set to 

100% to obtain maximal bleaching. In addition, the zoom-in function was used to 

further increase the efficiency of the bleaching. Finally, 50 recovery images were 

recorded with an AOTF setting of 2%. The image format used, was 256 by 256 pixels 

with a scan rate of 800 Hz, leading to an image acquisition time of 0.5 s per image. The 

size of the bleaching region was between 5 by 5 µm and 10 by 10 µm. The sample was 

always examined in three dimensions before bleaching in order to avoid influence of 

the opposite phase along the  -direction. All experiments in biopolymer mixtures were 

performed at 21° C. 

 

2.3.5 Data analysis 

Before fitting of the data to the rFRAP model, the recovery data was normalized to the 

fluorescence before bleaching, and corrected for intensity fluctuations and 

photobleaching during imaging. Normalization to the pre-bleach intensity was 

performed by dividing every pixel in the recovery images by the corresponding pixel in 

the pre-bleach image. To limit the corresponding amplification of noise, the pre-bleach 

image was first smoothed by a 15 by 15 pixel median kernel. Correction for laser 

fluctuations and bleaching during imaging is performed by dividing the pixels of each 

recovery images by the average value from a reference background region in the same 

image. As indicated in Fig 2.2a, this reference region should be placed sufficiently far 

from the bleach region so as to remain unaffected by the diffusion front. Finally, the 

pixel values of the entire stack of images of the time lapse movie are simultaneously 

fitted (least squares fit or maximum likelihood analysis) to Eqs. (2.13) and (2.15) of the 

rFRAP model with custom written routines in the Matlab programming environment 

(The Matworks, USA). As motivated in the Section 2.2.2, Eq. (2.13) is used because in 

this work we have made use of a low    lens for single-photon FRAP experiments. A 

representative example is shown in Fig. 2.2b. Details on the maximum likelihood 
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estimation are discussed in the Section 2.2. To limit the computation time, the analysis 

is performed on a subregion as illustrated in Fig 2.2a usually consisting of the bleached 

area extended with 30 pixels in each direction. In our experience, including more pixels 

did not substantially improve the analysis precision. 

 

2.4 RESULTS 

 

2.4.1 Validation of the rFRAP method 

To validate the new rFRAP method, experiments are performed on 150 kD FITC-dextran 

(FD150) solutions in HEPES buffer. Different amounts of sucrose were added to obtain a 

wide range of viscosities and hence diffusion coefficients. The influence of several 

model parameters was assessed on the calculated diffusion coefficient, as is below. In 

all cases, the free fitting parameters were the diffusion coefficient  , the bleaching 

parameter   , the mobile fraction   and the average squared resolution   . The mobile 

fraction was correctly found to be close to 1 throughout all the validation experiments 

independent of the other parameters and is therefore not discussed any further. 

 

Time step 

The first question that was addressed is if there is an influence of the frame rate on an 

rFRAP experiment. It is useful to consider this question in relation to a characteristic 

recovery time  , which is defined as the average time it takes for a molecule with 

diffusion coefficient   to diffuse from the centre to the edge of the bleached region. In 

two dimensions this average time is given by: 

 
  

(  ⁄ ) 

  
  (2.20) 

where   is the length of the shortest side of the rectangle. rFRAP measurements were 

performed on an FD150 solution (containing 24% sucrose) for different times    

between the subsequent recovery images (    ,      ⁄ ,      ⁄ ,      ⁄ , 

     ⁄ ) using a constant square bleach region of 50 by 50 µm. Uniform disk FRAP 

measurements were performed on the same sample to obtain an independent 

reference value for the diffusion coefficient [17]. In Fig. 2.3a the diffusion coefficient as 

obtained from the rFRAP experiments (  = 5, with   the number of performed rFRAP 
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experiments) is plotted as a function of the time step   , from which it is clear that the 

calculated diffusion coefficient is hardly influenced by the selected frame rate. The data 

suggest a slight increase (~5%) of the measured diffusion coefficient for smaller time 

steps. However, this could very well be due to some polydispersity of the FITC-dextrans 

because of which the larger and more slowly moving molecules are contributing less to 

the recovery at short time intervals. From this result it was decided to use a time 

interval      for all further experiments. 

 

 

Figure 2.3 | The influence of the time step and diffusion during bleaching. (a) The average 
diffusion coefficient of 5 rFRAP measurements on a FD150 solution (24% sucrose) is plotted as a 
function of the time interval    (relative to the characteristic recovery time  ) between the 
images. In all cases a square region of 50 by 50 µm was bleached. The solid horizontal line 
indicates the diffusion coefficient of a uniform disk FRAP reference measurement (  = 9.8 ± 0.5 
µm

2
/s). The dashed lines indicate the corresponding standard deviation of 0.5 µm

2
/s. (b) The 

average diffusion coefficient for rFRAP measurements on FD150 solutions with 16% sucrose in 
function of the bleaching time (expressed as the percentage of the characteristic recovery time  ) 
that was needed in order to bleach a square of 20 by 20 µm. The dashed line indicates the 
average value of the data points (  = 12.88 ± 1.0 µm

2
/s). 

 

Eq. (2.20) is also useful to make sure that the acquisition time of a single image is small 

compared to the typical recovery time so that the image can be considered as a 

snapshot of the fluorophore concentration distribution at that time. In case of very 

slow scanning rates, the pixels at the beginning of the image would be recorded at a 

substantially different time than the last pixels in the same image, which could lead to 

erroneous results. 
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Diffusion during bleaching 

In the theoretical derivation of the rectangle FRAP model we assumed that bleaching 

happens instantaneous so as to ignore diffusion during bleaching. However, on a laser 

scanning microscope the bleaching can never be entirely instantaneous. This is because 

of the scanning motion of the laser beam by which the last pixels of the bleach area are 

bleached at a later point in time than the first ones. The experimental bleach step 

therefore deviates from the theory by the fact that the rectangle (or any other shape) is 

not bleached at once and that diffusion inside the bleach area might already start 

during the bleaching step. This can result in a deviation of the effective initial profile of 

the bleached fluorophores from the theoretically expected one [10,31]. Therefore, we 

have explicitly tested the effect of diffusion during photobleaching on the measured 

diffusion coefficient for a number of bleach times. The experiment was carried out on 

an FD150 solution (16% sucrose) in which square regions of 20 µm × 20 µm were 

bleached with different zoom settings so as to obtain different bleaching times. The 

amount of photobleaching was kept below 50% for all zoom settings, this will be shown 

to be valid below. 

The results are shown in Fig. 2.3b (  = 10) where the measured diffusion coefficient is 

plotted versus the bleaching time which is expressed as a percentage of the recovery 

time   (see Eq. (2.20)). Within the tested range of 4-14% (which was maximum for our 

CLSM), no significant difference could be found in the measured diffusion coefficient. 

This demonstrates the capability of the rectangle FRAP method to compensate for at 

least a limited amount of diffusion during bleaching. All further experiments reported 

here were conducted with bleaching times shorter than 14% of the recovery time  . 

 

Amount of photobleaching 

An important assumption in the rFRAP model is the linearity of the photobleaching 

process (cfr. Eq. (2.6)). Since normally the photobleaching process is modeled as an 

exponential decay, in theory this could mean that only a small amount of bleaching is 

allowed (< 30%). We tested this experimentally on a FD150 solution (52% sucrose) for 

different percentages of photobleaching of a 5 by 5 µm square bleach region. The 

percentage of photobleaching was calculated using Eq. (2.14). The amount of 

photobleaching was increased by increasing the zoom setting of the microscope. 

As indicated in Fig. 2.4a (  = 5), the diffusion coefficient was found to be constant 

within the experimental precision for at least up to ~50% of photobleaching. 

Apparently the (possible) deviation from linearity is counter-acted by an increase of the 
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resolution parameter    (see Fig. 2.4b). However, when increasing the amount of 

photobleaching further to 70-90%, the resolution parameter cannot fully compensate 

for the deviation from linearity leading to an over-estimation (~25%) of the diffusion 

coefficient. We conclude that the calculated diffusion coefficient by the rFRAP method 

in practice is independent of the amount of photobleaching for at least up to 50%. 

 

 

Figure 2.4 | The influence of the amount of photobleaching. rFRAP measurements were 
performed for different bleaching percentages on an FITC-dextran solution. (a) The average 
diffusion coefficient is plotted in function of percentage of bleaching. The straight dashed line 
represents the average value over the first 3 data points. (b) The resolution parameter is shown 
in function of the percentage of bleaching. The dashed line represents a linear fit to the 
measured average values (the data point at 10% was excluded). 

 

Rectangle size 

Since in the derivation of the rFRAP model we have included the effective 

photobleaching resolution as well as the imaging resolution, the method should be 

valid for all sizes of the bleaching rectangle. This was tested on an FD150 solution (60% 

sucrose) by photobleaching square regions of different sizes: 2.4 µm, 5 µm, 7.4 µm, 10 

µm and 12.4 µm. The results are shown in Fig. 2.5a (  = 10), from which it is clear that 

the calculated diffusion coefficient is indeed independent of the size of the bleach 

region. The standard error on the average   values increases for smaller sizes of the 

bleach region since the available number of pixels in the data set decreases. 
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Figure 2.5 | The influence of the rectangle size and aspect ratio. (a) The average diffusion 
coefficient for rFRAP measurements on FITC-dextran solutions with 60% sucrose in function of 
the size of the bleached square with side length  . The dashed line indicates the average value of 
the data points. (b) The diffusion coefficient is calculated from rFRAP measurements on an FD150 
solution (60% sucrose) using rectangles of length 10 µm but with a varying height   . The dashed 

line indicates the average value over all measurements. 

 

Rectangle aspect ratio 

In a next step we tested the validity of the rectangle FRAP method for different aspect 

ratios of the rectangle. rFRAP experiments were performed on an FD150 solution (60% 

sucrose) for bleach rectangles all having a width of 10 µm, but a variable height: 2.4 

µm, 5 µm and 10 µm. The results in Fig. 2.5b (  = 5) confirm that the diffusion 

coefficient is independent of the aspect ratio. The larger the height of the rectangle, 

the more precise the diffusion coefficient could be determined because of more pixels 

being available in the bleached area. 

Validation of the calculated diffusion coefficient 

The diffusion coefficients predicted by the new rFRAP model are validated against 

measurements by the uniform disk model on FD150 solutions containing different 

amounts of sucrose : 0%, 5%, 10%, 16%, 24%, 32% and 44%. The uniform disk model is 

used as a reference since it is an independent FRAP method that has been extensively 

validated [17]. 
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Figure 2.6 | Validation of the calculated diffusion coefficient. The average diffusion coefficient 
  as determined by the rFRAP method is plotted vs. the average diffusion coefficient   
determined by the disk model for FD150 solutions with different amounts of sucrose. The dashed 
line represents the ideal case in which both methods predict exactly the same diffusion 
coefficient. 

 

For all measurements a rectangle of 30 by 30 µm and a disk of 50 µm diameter was 

used. The effect of the size of the bleaching region on the estimated diffusion 

coefficient was discussed above. As can be seen from the data in Fig. 2.6, the rFRAP 

measurements are in excellent agreement with the disk FRAP measurements. A linear 

fit to the data yields a slope of 1.0065 and an offset of -0.0987 µm
2
/s.

.
An additional 

two-tailed t-test confirmed that the rFRAP measurements are not different from the 

disk FRAP measurements at the 5% significance level. Despite the extra free fitting 

parameter in case of the rectangle method (average squared resolution   ), the 

precision of the individual diffusion coefficients is similar for both methods, ranging 

between between 5% and 15%. This can be attributed to the spatial information that is 

taken into account by the rFRAP method. We conclude that the rFRAP method is 

capable of accurately measuring diffusion for a wide range of diffusion coefficients with 

good precision. 

 

Comparison of least squares estimation and maximum likelihood estimation 

Maximum Likelihood (ML) was recently suggested as an alternative to the classic least-

squares (LS) fit for analysis of FRAP data [21]. It is therefore interesting to compare 

both analysis methods side by side. A series of rFRAP experiments was performed on an 



Chapter 2 

72 

FD150 solution (60% sucrose) using a constant bleach region but an increasing laser 

intensity so as to obtain a range of different    and    values. These data sets were 

analyzed by both LS and ML. 

 

 

Figure 2.7 | Comparison of least squares estimation and maximum likelihood estimation. Least 
squares estimates (black) and maximum likelihood estimates (red) for rFRAP experiments 
performed on an FD150 solution (60% sucrose) using a constant bleach region but an increasing 
laser intensity between 2 mW and 10 mW are shown. The data points are the averages of 10 
measurements with error bars corresponding to one standard deviation. 

 

As can be seen in Fig. 2.7, the estimates of  ,   and    are essentially the same for 

both analysis methods, whereas    is slightly lower for the ML estimation. The standard 

deviations of the estimates are also similar but generally a little smaller for the ML 

method. The computation time for the ML method was generally longer than for the LS 

method, particularly if the initial guesses of the unknown parameters were far from the 

optimal values. ML and LS can both produce standard errors for the estimated 



Chapter 2 

73 

parameters, which can be used both to get an idea of the precision of the estimates 

and to give prediction bounds in residual plots as a guideline for the quality of the 

model fit. This is especially useful in case of heterogeneous samples where it might be 

difficult to repeat FRAP experiments under identical conditions and thus to obtain the 

standard error from repeated measurements. We note that in some cases it was 

difficult to come to a good estimate of the resolution parameter    by direct 

optimization of the likelihood. In this case, iteration with the profile likelihood [29] 

turned out to be useful. 

 

2.4.2 rFRAP measurements on biopolymer mixtures 

Mixed biopolymer systems are widely utilized in industries for foods, pharmaceuticals 

and personal care to control texture and mass transport in a product. Many mixed 

biopolymer systems are incompatible and will phase separate and gel under certain 

conditions. The protein-polysaccharide mixture of gelatin and maltodextrin is a 

thermodynamically instable system, having a segregative phase separation process 

generating regions enriched in either one of the polymers [32,33]. In addition, the 

system will gel when a temperature below the gelling temperature of gelatin is 

reached, which kinetically traps the system in a nonequilibrium state. 

The final morphology of the mixed biopolymer system will be determined by the 

kinetics of phase separation and gelation together with the relative rate between the 

two processes [34]. By changing the biopolymer concentration, quench temperature, 

cooling rate, ionic conditions and confinement, it has been shown that the morphology 

of the gelatin-maltodextrin system can be designed to desired microstructures [35]. 

Kinetically trapped phase separated biopolymer mixtures, such as mixtures of gelatin 

and maltodextrin, often have a very heterogeneous microstructure. Fig. 2.8a shows an 

example of such a structure with 4 w/w% gelatin and 6 w/w% maltodextrin. The dark 

phase is the gelatin phase and the bright phase is the maltodextrin phase. It can be 

seen that the structure is very heterogeneous with a bicontinuous morphology that 

contains spherical inclusions of the opposite phase. The characteristic length scales of 

the phase separated domains in this system ranges from a few micrometers up to 

hundreds of micrometers. One of the main objectives with the rFRAP method is to 

measure the local diffusion rate in small regions of such heterogeneous materials. 
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Figure 2.8 | rFRAP measurements on biopolymer mixtures. (a) CLSM image of a kinetically 
trapped and phase separated gelatin/maltodextrin mixture. The maltodextrin phase is bright and 
the gelatin phase is dark. The scale bar is 20 µm. (b) An rFRAP measurement in the maltodextrin 
phase of a phase separated gelatin/maltodextrin system. The bleached square is 7 by 7 µm and 
the field of view is 60 by 60 µm. (c) Diffusion coefficients determined using rFRAP in pure gelatine 
and maltodextrin, as well as in the pase-separated gelatin/maltodextrin mixture. 

 

Fig. 2.8b shows an rFRAP experiment in the maltodextrin phase of a kinetically trapped 

and phase separated gelatin/maltodextrin mixture containing FITC-dextran molecules 

of 10 kDa. The first (  < 0) and second (  = 0.5 s) image in Fig. 2.8b show the structure 

before bleaching and after bleaching, respectively. Images 3 (  = 1 s) and 4 (  = 5 s) 

show the subsequent fluorescence recovery of the FITC-dextran molecules. 
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Fig. 2.8c shows the results from rectangle FRAP measurements in both the pure gelatin 

and maltodextrin gels, as well as in the gelatin and maltodextrin phases of the 

kinetically trapped phase separated mixture. The leftmost and the rightmost bar in Fig. 

2.8c are the diffusion rates in pure gelatin and pure maltodextrin respectively. The 

diffusion coefficient of FITC-dextran 10 kDa in pure gelatin is 14.8 ± 2.9 µm
2
/s and 18.3 

± 0.6 µm
2
/s in pure maltodextrin. The diffusion coefficient obtained by rFRAP in the 

phase-separated mixture is 15.8 ± 1.4 µm
2
/s (  = 14) in the gelatin phase and 17.9 ± 1.2 

µm
2
/s in the maltodextrin phase (  = 13). The diffusion coefficients in the phase 

separated system differ slightly from the values obtained in corresponding pure phases. 

This can be attributed to the fact that the maltodextrin phase will always contain a 

small amount of gelatin and vice versa due to entropic reasons. This means that the 

gelatin will contribute to the diffusion rate in maltodextrin and maltodextrin will 

contribute to the diffusion in gelatin. A t-test performed on the data from the polymer 

mixture showed that the diffusion coefficients in the different phases were significantly 

different with a p-value of 0.0004. It can therefore be concluded that rFRAP has the 

power to differentiate between the diffusion rate of FITC-dextran in the individual 

phases in a heterogeneous phase separated and gelled biopolymer mixture even when 

the difference is small. 

 

2.5 DISCUSSION 

 

Over the years, FRAP has become one of the most well-known methods to study local 

diffusion on the micrometer scale in biological media and biopharmaceutical materials. 

While several quantitative FRAP methods have been put forward in literature, it is a 

fact that most of the reported applied FRAP mobility studies remain qualitative or semi-

quantitative at best because of the limited usefulness or complexity of published FRAP 

methods. In order to bring quantitative FRAP measurements to the larger community 

of biologists and material scientists, we feel there is a clear need for FRAP methods that 

are more versatile, are easily implemented on commercial microscopes and allow for 

straightforward and fast data analysis. Here we have addressed this need by developing 

a new pixelbased FRAP method with a closed-form expression that describes the full 

temporal and spatial information of the recovery process. A closed-form expression 

could be obtained by assuming a rectangular bleaching area and making the 

assumption of a linear photobleaching process. Note that a similar closed-formed 

expression is currently not available for the conventionally used circular bleaching area. 

By taking into account the relevant microscope resolution parameters (effective 
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photobleaching resolution and imaging resolution), the rectangle can have any size and 

aspect ratio, even down to the size of the point spread function. We have shown before 

that the effective photobleaching resolution can be substantially larger than the 

theoretical one because of triplet saturation of the fluorophores that might arise during 

the highly intense photobleaching phase [14,15]. The actual value of the effective 

photobleaching resolution depends on the excitation photon flux, the photochemical 

properties of the fluorophore and the local chemical environment. Hence it is 

important to include the photobleaching and imaging resolution as independent 

parameters. Nevertheless, in the final expression of the rFRAP model, both resolution 

parameters combine to a single one (the average square resolution   ) that can be 

included as a free fitting parameter during the data analysis, thus eliminating the need 

for prior calibration. Including    as a free fitting parameter is possible since not only 

temporal but also spatial information is taken into account. 

Using well-characterized FITC-dextran solutions we have shown that the rFRAP method 

can reliably measure the diffusion coefficient in a wide range of conditions. It was 

demonstrated that the rectangle can be arbitrarily small or large with any aspect ratio. 

Furthermore it was shown that, despite the theoretical assumption of linear 

photobleaching, substantial photobleaching up to at least 50% is allowed thanks to 

including the resolution    as a free fitting parameter, which was found to increase 

with increasing bleaching power, as expected [14,15]. Diffusion during bleaching was 

found to have a negligible effect on the predicted diffusion coefficient. This can be 

explained by the fact that the rectangle FRAP model is based on a rectangular bleach 

area that is convolved with a Gaussian function (cfr. Eq. (2.2)). Although the original 

reason was to incorporate an independent effective bleaching intensity distribution, it 

is not surprising that diffusion during bleaching can also be captured by this 

convolution since the progression of free diffusion follows from a Gaussian propagator 

as well (cfr. Eq. (2.7)). Finally, the rFRAP method was thoroughly validated against 

conventional large disk FRAP measurements on a series of FITC-dextran solutions with 

different viscosities. 

In the data analysis of the rFRAP method, two fitting algorithms were evaluated, the 

least squares method and the maximum likelihood method. We found that the classic 

least squares fit gives acceptable results, while the maximum likelihood method can 

obtain slightly improved estimates at the expense of a longer calculation time. Both 

methods allow to calculate standard errors from a single experiment. This is an 

advantage in case of heterogeneous samples where it might be difficult to obtain 

repetitions of exactly the same measurement. As mentioned in Section 2.2.3, with 

additional programming and extended computing time standard errors may also be 

obtained for least squares fitting by use of bootstrap techniques. 
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In collaboration with Dr. Niklas Lorén from the Swedish Institute for Food and 

Technology, the rFRAP method was finally used to study the diffusion coefficient in a 

phase separated mixture of gelatin and maltodextrin having characteristic length scales 

between five and hundreds of micrometers. The diffusion coefficient in the separate 

phases could be accurately determined. 

 

2.6 CONCLUSION 

 

The rFRAP method proves to be a versatile approach for accurate and precise diffusion 

measurements by a (confocal) laser scanning microscope. Because the model can make 

use of a closed-form solution describing the full recovery in time and space, 

independent calibration of the effective microscope resolution parameters is no longer 

required. Combined with the possibility to photobleach rectangles of any size and 

aspect ratio, it opens up the field for performing diffusion measurements on both small 

and large samples with our without heterogeneous structures on the micrometer 

length scale. 
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ABSTRACT 

 

Fluorescence microscopy based methods for measuring biophysical nanoparticle 

properties inside biomaterials are of interest in pharmaceutical research. As discussed 

in PART I, a well-known example of such a technique is fluorescence recovery after 

photobleaching (FRAP). Single particle tracking (SPT) is another emerging method that 

is arguably proving to be even more useful for this purpose. Just like FRAP, SPT can be 

of great help in the systematic optimization of nanoparticles that protect, transport and 

deliver therapeutic macromolecules in cells and tissues. Additionally, SPT shows 

potential for diagnostic assays as well. Here, the basic principles of SPT are discussed 

and a brief overview is given of its possible applications in pharmacology. 
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3.1 INTRODUCTION 

 

In pharmaceutical research, a lot of effort goes to the development and optimization of 

nanomedicines, i.e. nanoparticles that function as drug delivery systems. For instance, 

in the field of gene therapy, nanomedicines are being designed with the purpose of 

delivering therapeutic nucleic acids to specific cells [1]. A common approach to 

fabricate these nanoparticles is by electrostatic complexation of the nucleic acids with a 

carrier material like cationic polymers or lipids. The carrier material, also called vector, 

should protect the nucleic acid payload from degradation after administration into the 

body. Moreover, the nanomedicines should remain stable and should not aggregate 

nor dissociate before reaching the target location. In case of an intracellular target, the 

carrier material should also facilitate efficient (endocytic) uptake in cells, and if 

necessary, release from endosomes into the cytosol. Engineering of such nanoparticles 

thus requires detailed knowledge of their behaviour in a variety of biomaterials, 

according to the delivery route. 

Advanced fluorescence microscopy methods have already been reported to be useful 

for nanoparticle characterization in the context of drug delivery [1,5-7]. Especially SPT 

can be of great help, since the technique is capable of measuring properties of 

individual nanoparticles, such as the type of motion [8], size [9], interaction [10], and 

concentration [11] directly inside biomaterials. Interaction measurements with SPT are 

the topic of Chapter 6. 

Besides drug delivery, characterization of nanoparticles is also of interest in diagnostics. 

For instance, it is being investigated in which way the properties of cell derived 

membrane vesicles in body fluids, such as blood or urine, could be predictive for 

different diseases, like cancer or thrombosis [2,3]. Another example is aggregation of 

amyloid β in cerebrospinal fluid, which is suggested to indicate the presence of 

neurodegenerative disorders like Parkinson’s or Alzheimer’s disease [4]. Accurate and 

precise characterization of biological nanoparticles in biomaterials, therefore, shows 

potential towards diagnosing medical conditions. 

In Chapter 3, a brief overview is given of the different nanoparticle properties that can 

be studied with SPT, together with corresponding pharmaceutical applications. But 

first, the basic principles of SPT will be discussed in Section 3.2. 
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3.2 PRINCIPLES OF SPT 

 

SPT is a fluorescence microscopy method capable of visualising the motion of individual 

fluorescently labelled nanoparticles that have a size below the microscope resolution 

(typically 250 nm). 

 

 

Figure 3.1 | The concept of single particle tracking. (a) A sequence of images is recorded at 
successive time points. (b) Using image processing software, the individual nanoparticles are 
identified in each image (yellow contours). (c) The position of each identified nanoparticle in each 
image is calculated (dots in different colours), e.g. by least-squares fitting of a Gaussian function. 
(d) The positions in the different images belonging to the same nanoparticle are connected to 
each other to form the nanoparticle trajectory, for instance with a nearest neighbour algorithm. 
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When a sufficient number of fluorescent photons (e.g. more than 100) coming from a 

single nanoparticle are detected, they will form a distinct spot in the image that has a 

width in the same order as the resolution. Usually, this spot has a Gaussian shape, 

which means that the location of the nanoparticle can be estimated from the centre of 

the spot, with a precision much better than the resolution of the microscope, e.g. up to 

10 nm using least-squares fitting of a Gaussian function (see Chapter 4 for a discussion 

on this topic). Recording a time sequence of images thus allows to precisely determine 

the trajectory of the individual nanoparticle. These experiments require excitation, 

usually by laser light, of the fluorescently labelled nanoparticle over the entire field of 

view. Furthermore, a fast and sensitive detector like an electron multiplying charge 

coupled (EMCCD) device is necessary to detect as much photons as possible. For an 

exemplary experimental SPT set-up, the reader is referred to Section 5.3.2 of Chapter 

5. 

Although usually more than one nanoparticle is present in the field of view, SPT can still 

be performed without much complications if the nanoparticle concentration is 

sufficiently low so that each spot in the image is corresponding to an individual 

nanoparticle (i.e. all nanoparticles are at least 500 nm removed from each other). As 

illustrated in Fig. 3.1, after recording the time sequence of images, the individual 

nanoparticles are identified by image processing (see Section 5.3.4 in Chapter 5 for 

more details on how it is done in our group). Subsequently the position of each 

identified nanoparticle in each image is calculated, and then the trajectories of the 

different nanoparticles can be obtained, e.g. by using a nearest neighbour algorithm. 

These trajectories form the basis of further analysis that yields information on a variety 

of properties of the nanoparticles, as explained in Section 3.3. 

 

3.3 TRAJECTORY ANALYSIS 

 

3.3.1 Type of motion 

Often one is interested in determining the type of motion of the nanoparticles [12]. 

This is usually done by investigation of the mean square displacements in the 

nanoparticle trajectory. For instance, when the nanoparticle is undergoing free 

diffusion, its mean square displacement is linearly related to time, with a 

proportionality constant that is defined by the diffusion coefficient (see Eq. (5.13) in 

Chapter 5). Other types of motion, such as directed transport or anomalous diffusion, 

result in a different behaviour of the mean square displacements [8,13,14]. 
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In this way, SPT can reveal the modes of transport of a nanoparticle in different 

biomaterials, which is indicative of its interaction with the biomaterial constituents. In 

the case of extracellular matrices, SPT has for instance been applied to determine 

which surface functionalization of polystyrene nanospheres ensures the highest 

mobility in mucus [15-17], and vitreous [18,19]. Similarly, SPT has been used to study 

the different types of motion of polymeric gene complexes that are taken up by cells 

[20-22]. Such information is of great interest in designing efficient nanoparticles for 

drug delivery. 

 

3.3.2 Size 

Besides the type of motion, analysis of the mean square displacements in the trajectory 

can also yield information on the size of the nanoparticle. When the nanoparticle is 

undergoing Brownian motion, its diffusion coefficient is inversely related to the size 

through the Stokes-Einstein equation (see Eq. (7.2) in Chapter 7) . Measuring the 

trajectories of many nanoparticles with SPT and calculating their diffusion coefficients 

thus allows to determine the nanoparticle size distribution [9]. The main advantage 

over techniques like dynamic light scattering is that these are only able to measure size 

distributions inside transparent media that contain little or no other scattering 

components, while SPT can be performed in any biomaterial if the nanoparticle is 

fluorescently labelled. 

One important pharmaceutical application of SPT size measurements is investigating 

whether or not nanoparticles aggregate in blood upon intravenous administration. For 

instance, SPT was used to measure the size distribution inside blood of liposomes that 

contain different amounts of polyethylene glycol (PEG) [9]. Liposomes with small 

amounts of PEG were found to aggregate strongly over time, while larger amounts of 

PEG significantly inhibited this behaviour. Similarly it was shown that SPT sizing allows 

to study potential aggregation of therapeutic proteins upon intravenous administration 

[23,24]. SPT size measurements are also potentially useful in the field of diagnostics, 

since the size distribution of cell-derived membrane vesicles present in biological fluids 

are believed to be related to different stadia of medical conditions such as cancer [2]. 

 

3.3.3 Interaction 

In the context of fluorescence microscopy, interactions between nanoparticles and 

biological structures are often investigated by labelling them with different types of 
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fluorophores and recording multi-colour images. The colocalization of colours is then 

taken as a measure for this interaction. Quantification can either be done by comparing 

the pixel values between the images, or by first identifying the relevant objects in each 

image and subsequently determining the distance between their centre positions. 

However, these approaches only use the information of one time point, which means 

that coincidental colocalization is indistinguishable from interaction. New methods 

have therefore been developed that take both spatial and temporal information into 

account, i.e. by performing SPT instead of recording a single image in the different 

colours. In this approach, interaction between nanoparticles is defined as colocalization 

or correlation between trajectories in the corresponding colours [10,25,26]. This allows 

a more accurate identification of interaction, since colocalized or correlated trajectories 

are not likely to arise by coincidence. 

This SPT method has been used in the field of gene therapy to investigate the 

interaction of polymeric gene complexes with certain types of endosomes inside cells 

[26]. If a complex is transported by a certain endosome, their corresponding 

trajectories exhibit correlation. Another possible application in drug delivery research is 

the investigation of the stability of nanoparticles in biomaterials, by labelling the carrier 

material and the therapeutic payload with different fluorophores and looking for 

interaction between the corresponding trajectories. 

 

3.3.4 Concentration 

Although the number of observed nanoparticles is immediately available from an SPT 

experiment as the number of trajectories, it is also necessary to know the volume in 

which these nanoparticles have been detected to determine the number 

concentration. This volume, however, is not straightforward to calculate, since the 

thickness of the focal volume in which the nanoparticles are detected does not only 

depend on the objective lens, but also on the brightness of the nanoparticles and the 

image processing settings for identification of the nanoparticles. To avoid a separate 

calibration of the detection volume for each experiment, a method has been proposed 

to estimate the detection volume directly from the trajectory information, assuming 

that the nanoparticles are undergoing Brownian motion [11]. The concentration of 

nanoparticles inside biomaterials can thus be calculated directly from the SPT data 

without any calibration. 

This method has been applied in the field of drug delivery to characterize the behaviour 

of nucleic acid containing nanogels in blood [27]. Measuring the concentration of 

nanogels in both plasma and blood allowed to estimate the fraction of nanogels that 
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are not bound to cells. The method has potential applications in diagnostics too, since 

not only the size distribution, but also the concentration of certain types of cell-derived 

membrane vesicles is believed to be a biomarker for specific diseases. 

 

3.4 CONCLUSION 

 

SPT allows to investigate the properties of nanoparticles directly inside biomaterials by 

determining their trajectories. Unlike FRAP, which is an ensemble average technique, 

the mobility of each individual nanoparticle is analyzed in SPT, yielding highly precise 

and accurate results. SPT is also versatile in the sense that not only the type of motion, 

but also properties like concentration, size, and interaction can be derived from the 

trajectories. In the field of drug delivery, this information can strongly aid the 

systematic optimization of nanoparticles that should be able to protect, transport and 

deliver therapeutic macromolecules to target cells. Detection of the size and 

concentration of nanoparticles inside biomaterials is also of great interest for diagnostic 

assays based on nanoparticulate biomarkers. SPT is thus a powerful fluorescence 

microscopy technique with many potential applications in pharmaceutical research. 

In order to realize this potential, several aspects of SPT experiments and data analysis 

still need optimization. One important issue is the experimental uncertainty with which 

the nanoparticle positions are determined, this is discussed in Chapter 4 and 5. An even 

more fundamental issue that limits the accuracy of SPT data analysis is the contrast 

with which the nanoparticles are visible, this is the topic of Chapter 7. 
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ABSTRACT 

 

For decades, scientists have yearned for better resolution in light microscopy. Recently, 

methods based on single molecule localization and photophysics have brought into 

reach nanoscale imaging with visible light. On the one hand this has enabled single 

particle tracking applications for studying the dynamics of molecules and nanoparticles, 

as discussed in Chapter 3. On the other hand it has led to the recent revolution in 

super-resolution localization microscopy techniques. Crucial to the optimization of such 

methods are the precision and accuracy with which single fluorophores and 

nanoparticles can be localized. While previous reports address aspects of determining 

and optimizing the localization precision and accuracy, the aim of Chapter 4 is to 

present a lucid synthesis of these developments and their practical implications, in 

order to guide the increasing number of researchers using single particle tracking and 

super-resolution localization microscopy. 
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4.1 INTRODUCTION 

 

One of the major quests in fluorescence microscopy is to image specimens with the 

highest detail possible. The amount of detail that can be resolved by a conventional 

light microscope is, however, fundamentally limited by the diffraction of light. Even an 

infinitely small point source of light is still imaged as a spot of finite volume, known as 

the point spread function (PSF). Consequently, the PSFs of two point sources that are 

closer together than the PSF width will show significant overlap, making it difficult or 

impossible to distinguish them from one another. Based on the pioneering work by 

Abbe [1] and Rayleigh [2], the resolution in the focal plane is often approximated as 

      ⁄ , with   being the wavelength of light and    the numerical aperture of the 

microscope objective lens. The attainable resolution is thus fundamentally limited to 

around 200 nm for visible light (  = 550 nm) using a high-   objective lens (NA = 1.4). 

However, when it comes to determining the location of a single, isolated sub-resolution 

particle, such as a single fluorophore, this limit is less important as the isolated spot of 

light coming from this particle does not need to be distinguished from any other 

structure in the vicinity. While the spot shape is related to the PSF, the particle’s 

location can be determined with a precision and accuracy (cfr. Section 4.2) usually 

much smaller than the PSF width, even down to the nanometer scale, as illustrated in 

Fig. 4.1. 

Although this intuitive concept has been known for a long time [3,4], it was not before 

the 1980s that sub-resolution localization of fluorescent particles was put into practice, 

when light detectors became sensitive enough. It was first applied in a technique called 

single particle tracking (SPT) or single molecule tracking. SPT was initially mostly used to 

investigate the motion of fluorescently labeled proteins on the cell membrane [5], but 

was later on extended to many other applications, such as rheology [6], imaging of 

intracellular dynamics [7] and particle sizing [8], to name just a few. Not before long it 

was realized that knowledge of the precision with which the position of a single 

fluorescent particle can be estimated, is of vital importance for correct analysis of the 

particle trajectories, e.g. for the determination of the diffusion coefficient from 

Brownian motion trajectories [9]. By now, SPT has become a mature and widely used 

technique [10,11], so that correctly assessing the localization precision and accuracy is 

an important topical issue. 
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Figure 4.1 | The concept of localization precision and accuracy. (a) The particle position is 
encoded in the image shape. In case of an isotropic emitter in the focal plane, the image can be 
described by the Airy pattern (red curve). The Airy pattern can be approximated by a two-
dimensional Gaussian function (blue curve) with standard deviation  . (b) An example of an 
experimentally recorded image of an isotropic emitter in the focal plane. The real particle 

position (     ) can be estimated from such an image with a lateral localization precision 

    √  
    

  and a lateral localization accuracy     √  
    

 . The blue circles denote 

experimentally determined position estimates from different images, and ( ̂   ̂ ) is the average 

of these individual values. 

 

The interest in localization precision and accuracy has recently increased considerably 

due to the development of super-resolution localization microscopy (LM) techniques, 

such as photo-activated localization microscopy (PALM) [12], fluorescence 

photoactivation localization microscopy (FPALM) [13] and stochastic optical 

reconstruction microscopy (STORM) [14]. Key to LM is the consecutive on- and off-

switching of fluorophores within a spectral detection window [15]. The imaging 

procedure starts with the fluorophores in an off (dark) state, either by using fluorescent 

proteins which are natively expressed in a dark state [12,13], or by using fluorophores 

which are converted into a dark state by a suitable illumination procedure [14]. Next, a 
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random but sparse subset of fluorophores is activated by illuminating the sample with 

suitable wavelength and intensity. This subset is then imaged by either a different read-

out wavelength or, in special cases, by the same wavelength resulting in a fluorescence 

image with spatially separated images of each fluorophore (i.e. diffraction limited spots 

of light). This allows the position of the activated fluorophores to be determined with a 

precision and accuracy smaller than the resolution. By repeating the off/on cycle many 

times, the position of many or all fluorophores in the sample can be determined and a 

super-resolution image can be constructed from their estimated positions. The 

effective achievable resolution is therefore closely related to the localization precision 

and accuracy, making it indispensable to have a clear understanding of how these 

parameters can be quantified and optimized (cfr. Section 4.6.1). The desire to improve 

resolution is a motivation for the LM field, and consideration of the issues detailed in 

this review will help users get the best resolution possible for their experiments. 

 

4.2 LOCALIZATION PRECISION AND ACCURACY 

 

The position coordinates (        ) of an isolated fluorescent particle can be 

estimated from a microscopy image with a limited certainty that comprises both a 

precision and an accuracy, as illustrated in Fig. 4.1b. The localization precision    on the 

coordinate    can be determined from the standard deviation of a sufficiently large 

amount of estimated positions     : 

 

   √
 

   
∑(      ̂ )

 
 

   

  (4.1) 

where   is the number of estimates, and  ̂  the mean of the estimated positions: 

 
 ̂  

 

 
∑    

 

   

  (4.2) 

Similar expressions for the localization precision    and    hold for the position 

coordinates    and   , respectively. The localization precision is essentially determined 

by the photons that make up the image. On the one hand, the number of photons 

arriving in a certain time interval follows a Poisson distribution, the standard deviation 

of which is known as shot noise. On the other hand, the photon positions have a spatial 
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distribution that is dictated by the emission profile of the particle in combination with 

light diffraction in the microscope (cfr. Section 4.3). Experimental factors, such as 

detector and sample properties, further influence the localization precision (cfr. Section 

4.4). The best localization precision theoretically achievable is given by the square root 

of the Cramér-Rao lower bound (CRLB), which is defined as the smallest possible 

variance any unbiased estimation algorithm can have [16,17]. For an isotropic emitter 

in or close to the focal plane, the particle image is often approximated by a two-

dimensional Gaussian function [18], see Fig. 4.1a. Considering only shot noise, the limit 

on the lateral localization precision in this simple case is given by [19,20]: 

    
 

√ 
 and    

 

√ 
  (4.3) 

with   being the total number of detected photons and   the standard deviation of the 

Gaussian function. Besides shot noise, detector properties such as pixelation and read-

out noise can be included in the CRLB [19]. The limit on the axial and lateral localization 

precision outside the focal plane cannot be described by a simple analytical expression, 

since 3-D models of the particle image are significantly more complex (cfr. Section 

4.3.2). 

If the algorithm that is used for the estimation of    is unbiased, the mean of its 

estimates approaches the true particle position with an increasing number of estimates 

 , i.e.  ̂  =   . However, when the algorithm is biased, the mean  ̂  predicts the wrong 

position. Such an algorithm is called inaccurate, with a non-zero localization accuracy 

   on the  -coordinate given by: 

     ̂      (4.4) 

Similar expressions of the localization accuracy    and    hold for the position 

coordinates    and   , respectively. Since the localization accuracy does not involve 

individual measurements     , it is not sensitive to shot noise. However, the other 

factors that influence the localization precision, i.e. the spatial distribution of the 

photons in the image and the properties of the detector and sample, can in principle 

also affect the localization accuracy. However, unlike the case of the localization 

precision, there is no fundamental limit on the achievable localization accuracy. 
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4.3. EMITTER PROPERTIES INFLUENCING PRECISION AND ACCURACY 

 

The location of single emitters can be determined from microscopy images using a 

specific algorithm, referred to as the position estimator. Examples of such estimators 

are fitting of a Gaussian function to the observed particle image or calculating its 

centre-of-mass [21]. Perfect localization accuracy can be achieved if the position 

estimator is unbiased (cfr. Section 4.2). The localization precision, on the other hand, 

can never be perfect as it is fundamentally limited by the Cramér-Rao lower bound 

(CRLB) (cfr. Section 4.2). The localization precision and accuracy theories of commonly 

used position estimators for the different situations that can be encountered in SPT or 

LM are summarized in Table 4.1. 

 

4.3.1 Isotropic emitters in focus 

Arguably the most frequently used position estimator, especially in the context of LM, 

is Gaussian fitting, either by least-squares or maximum likelihood procedures. The 

underlying assumption is that the particle image can be regarded as a two-dimensional 

Gaussian function, which is reasonable for an isotropic emitter in or close to the focal 

plane [18]. If these conditions are fulfilled, this position estimator is unbiased. 

In terms of precision, the maximum likelihood procedure has been shown to be the 

best choice, since it approaches the CRLB [22]. Despite this fact, weighted least-squares 

fitting has historically been more popular [20,21,23,24]. Although this procedure 

theoretically can attain the same precision as maximum likelihood, it suffers from 

practical problems with the weights approaching zero at the edge of the particle image 

[22]. The unweighted least-squares fitting, also known as the Gaussian mask, does not 

have this problem, at the expense of a lower precision. For example, it has been shown 

that in the absence of background fluorescence the precision is 33% worse than in the 

case of maximum likelihood [20,22]. 

Besides fitting procedures there also exist a variety of algebraic estimators. The centre-

of-mass algorithm is a well-known algebraic estimator, whose localization precision [25] 

and accuracy [26] has already been studied extensively in other contexts than SPT and 

LM. The centre-of-mass algorithm is computationally faster than Gaussian fitting [27], 

but has a reduced precision [21]. Note that other algebraic estimators have been 

developed with better precision than the centre-of-mass, e.g. an estimator based on 

the radial symmetry of the particle image [28]. Localization inaccuracy, typically arising 
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from detector pixelation or sample background, can also be a problem for the centre-

of-mass (cfr. Section 4.4), although unbiased adaptations have been reported [26,29]. 

On the other hand, significant efforts have been undertaken to speed up the maximum 

likelihood estimation of the Gaussian function while retaining its precision [30]. 

 

4.3.2 3-D localization of isotropic emitters 

If an isotropic emitter is located at a distance of a few hundred nanometers from the 

focal plane, the Gaussian approximation still holds, but with a standard deviation that 

increases with the axial position. On one hand this means that the lateral localization 

precision decreases with increasing out of focus distance (see Eq. (4.3)). On the other 

hand this has the advantage that the axial position can be estimated by fitting a 

Gaussian function with variable standard deviation, although with a significantly lower 

precision than for the lateral position [31,32]. For an isotropic emitter further out of 

focus, the image can exhibit a distinct pattern of diffraction rings that are unique to 

each axial position, as illustrated in Fig. 4.2a. Avoiding axial localization inaccuracies in 

this case requires more elaborate 3-D scalar [33,34] or vectorial [35-37] PSF models. 

Maximum likelihood estimation of a scalar PSF model [34] has been used to determine 

the axial position, with a precision close to the CRLB [38]. As apparent from Table 4.1, 

estimator-specific precision theories are challenging to derive in the case of 

complicated image models, and instead the performance is usually compared to the 

CRLB. 

A common aspect in any of these approaches is that the axial position is indirectly 

determined from the lateral shape of the particle image. This leads to especially poor 

axial localization precision for particles far out of focus or close to the focal plane, 

where the signal is distributed over a large area or the change in shape is minimal, 

respectively. Additionally, for axially symmetric PSFs, it cannot be inferred from the 

lateral shape if the emitter is below or above the focal plane. A recently developed 

technique, called multifocal plane or biplane microscopy, overcomes these problems by 

simultaneously imaging different focal planes in the sample [39-41]. Comparing images 

simultaneously acquired in multiple focal planes allows to determine the axial position 

unambiguously over several microns and results in a fairly constant localization 

precision in all three directions [42,43], close to the CRLB [44]. Other recently reported 

techniques that achieve an almost isotropic 3-D nanometer precision make use of a 

side view in addition to the normal front image [45,46]. 
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Figure 4.2 | Emitter properties that influence the localization precision and accuracy. Visible 
light (  = 550 nm) and a high-   objective lens (   = 1.4) are assumed. (a) The image of an 
isotropic emitter at different axial positions   . Outside the focal plane   = 0, the image features 

distinct diffraction rings. (b) The image of a dipole emitter at    = 1 µm. Different dipole angles   

with the  -axis result in different types of asymmetric images. (c) Particle movement in the focal 
plane   = 0, e.g. Brownian motion with diffusion coefficient   over an image acquisition time of 
100 ms, distorts of the image. All images are normalized to their maximum values. 

 

In an alternative approach, optical elements added to the microscope induce an axially 

dependent deformation of the PSF so that the shape of a single lateral image 

unambiguously encodes the axial position of the emitter. In one embodiment a 

cylindrical lens is introduced, leading to an astigmatic elliptical particle image with 

changing ellipticity and orientation depending on the axial position [47,48]. This has 

been shown to result in a precision similar to the multifocal plane approach, although 

less isotropic in 3-D [42,49]. In another embodiment, a PSF consisting of two lobes 

whose relative distance depends on the axial position of the emitter is engineered by 

adding a prism over half the emission path, resulting in comparable precision to the 

astigmatic case [50,51]. In a similar technique, called parallax, this is done by two 

closely spaced parallel mirrors [52]. Alternatively, a spatial light modulator has been 

used to engineer a single-helix PSF [53] or double-helix PSF [54,55], resulting in a 3-D 
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localization precision that is largely independent of the axial position over a range of 

several microns [49,56,57] and generally outperforms the astigmatism or multifocal 

plane methods [49,58]. A recently developed technique that provides superior axial 

precision, even down to nanometers, is based on the self-interference of the light 

emitted by a particle and collected by two opposing objectives [43,59,60]. 

 

4.3.3 Localization of dipole emitters 

A single fluorophore does not emit light in an isotropic fashion, but rather behaves as 

an electric dipole [61]. This means that the assumption of an isotropic emitter in focus 

does not necessarily hold for a single fluorophore image, as illustrated in Fig. 4.2b. This 

has important repercussions for the localization precision and accuracy, a fact that is 

increasingly being appreciated in the field of LM [62]. 

For a stationary fluorophore, e.g. by being linked to a stationary structure, the dipole 

can have a fixed orientation. Depending on the orientation, the fluorophore image 

usually exhibits a significant amount of asymmetry, with a shift in the intensity peak 

with respect to its actual position. This asymmetry becomes more pronounced further 

out of focus, in case of    = 1.4 even leading to a lateral bias up to 100 nm for the 

centre-of-mass algorithm [63]. This bias is significantly reduced for lower values of the 

   [62,64]. Although fitting of a Gaussian function can still achieve a good precision 

close to the CRLB [22], a lateral bias of tens of nanometers can be introduced [62,64]. 

This can only be avoided by fitting of an image model that takes the dipole orientation 

into account [22,65]. However, this approach is only valid if the amount of defocus is 

known, since different combinations of dipole orientation and defocus can result in 

similar images. Methods that do not suffer from this drawback have recently been 

reported, making use of polarization optics to measure the dipole orientation [66]. This 

approach can be combined with the double-helix PSF (cfr. Section 4.3.2) which allows 

to determine the 3-D position of the dipole emitter [67]. 

If the dipole emitter exhibits sufficiently fast rotation relative to the image acquisition 

time, the resulting image can be described as coming from a superposition of randomly 

oriented fixed dipoles, giving rise to a symmetric image [64]. It has been shown that 

maximum likelihood estimation of the exact superposition vectorial model results in 

unbiased estimation with a precision approaching the CRLB [22]. Interestingly, a similar 

precision was obtained with maximum likelihood estimation using the simpler Gaussian 

function [22,64]. 
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Emitter Sample Detector Position estimator Localization theory References 

Isotropic 

emitter 

in focus 

Homogeneous 

background 

fluorescence 

Pixelation 

& excess noise 

MLE of 2-D Gauss     Eq. (5) in [22] 

WLS of 2-D Gauss     Eq. (5)in [22] 

ULS of 2-D Gauss     Eq. (6) in [22] 

Pixelation 

& read-out 

noise 

CM     Eq. (17) in [25] 

CM     Eq. (6) in [29] 

Unspecified CRLB on     [19] 

Not accounted 

for 

Pixelation 

& excess + 

read-out noise 

Unspecified CRLB on     [72] 

Pixelation CM     Eq. (12) in [26] 

Isotropic 

emitter 

in 3-D 

Homogeneous 

background 

fluorescence 

Pixelation 

& read-out 

noise 

WLS of 2-D Gauss    Eq. (5) in [31] 

MLE of vector model 
CRLB on     and    (AS, 

BP, IF) 
[43] 

ULS of scalar model CRLB on     and    (BP) [44] 

Pixelation Unspecified 
CRLB on     and    (DH, 

AS, BP) 
[49] 

Not accounted 

for 
Pixelation 

MLE of scalar model CRLB on    [38] 

Unspecified 
CRLB on     and    (DH, 

AS, BP) 
[58] 

CM based estimation CRLB on     and    (DH) [54] 

Dipole 

emitter 

Homogeneous 

background 

fluorescence 

Pixelation 

& excess noise 
MLE of vector model CRLB on     [22] 

Pixelation 

ULS of vector model CRLB on     [65] 

MLE of scalar model CRLB on     (PL) [66] 

ULS based estimation 
CRLB on     and    (DH 

and PL) 
[67] 

Motion 

during 

image 

acquisition 

Homogeneous 

background 

fluorescence 

Pixelation 

& excess noise 
CM     (diffusion) Eq. (12) in [71] 

Pixelation 

& read-out 

noise 

Unspecified 
CRLB on     (linear and 

circular motion) 
[70] 

 

Table 4.1 | Localization precision and accuracy theories. A non-exhaustive list of theoretical 
investigations of the lateral or axial localization precision (    or   ), and the lateral localization 

accuracy (   ). Each theory makes assumptions on the emitter, sample, and detector, and is 

applicable for a certain position estimator, such as the centre-of-mass (CM), unweighted or 
weighted least-squares (ULS or WLS), or maximum likelihood estimation (MLE). While 
expressions for the localization precision of simple estimators have been derived, for complicated 
estimators the performance is usually compared to the Cramér-Rao lower bound (CRLB). Some 
theories assume a non-conventional microscope set-up: double-helix PSF (DH), astigmatic 
imaging (AS), biplane microscopy (BP), self-interference (IF), or polarization imaging (PL). 
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In SPT often the mobility of a nanoparticle or macromolecule having several 

fluorophores attached to it is studied. If such an emitter is stationary, the ensemble of 

fluorophores can be considered as a superposition of fixed but randomly oriented 

dipoles. Using widefield illumination, the image is symmetric and fitting of the Gaussian 

function remains an unbiased estimator. However, care should be taken when using 

total internal reflection (TIRF) illumination in which case the electric field does not have 

a random orientation, thus resulting in an asymmetric image and making the Gaussian 

estimator inaccurate. However, the bias will be identical for all fluorescent particles in 

the field of view [22], so the position estimates are unbiased relative to each other and 

trajectory analysis remains possible. The determination of molecular trajectories is also 

gaining interest in LM [68]. In this case, bias due to molecular dipole orientation can be 

important if the fluorophore is unable to freely rotate within the acquisition time per 

camera frame. 

 

4.3.4 Motion during image acquisition 

Translational particle movement during image acquisition is common in SPT 

experiments and can cause a significant deformation of the observed particle image, as 

illustrated in Fig. 4.2c for Brownian motion. This in turn influences the localization 

precision and accuracy. The effect of linear and circular motion on the CRLB has been 

investigated [69,70], which is of relevance for sample drift (cfr. Section 4.4.2). However, 

particle motion at the microscopic scale more commonly exhibits a stochastic 

component. In Chapter 5, it will be shown that numerical fitting of a Gaussian function 

becomes inaccurate and imprecise in the case of significant diffusion during the image 

acquisition time. Instead, the centre-of-mass algorithm is affected to a much lesser 

extent as it does not depend on a particular shape of the particle image [71]. 

 

4.4. EXPERIMENTAL FACTORS INFLUENCING PRECISION AND ACCURACY 

 

In any SPT or LM experiment, an emitter is located inside a sample and a detector is 

used to record the image. Besides the shape of the image (cfr. Section 4.3), many 

properties of the detector and the sample can also affect the precision and accuracy 

with which the emitter is localized. Table 4.1 summarizes the localization precision and 

accuracy theories for different sample and detector properties typically encountered in 

SPT or LM. 
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4.4.1 Detector 

 

Detector pixelation 

Detector pixelation limits the achievable localization precision since the location at 

which the individual photons arrive within the pixel area is unknown. Larger pixel sizes 

thus result in a reduced localization precision, as accounted for in most localization 

theories listed in Table 4.1. However, smaller pixel sizes might cause several detector 

noise sources to overwhelm the reduced amount of detected photons per pixel (see 

below). Usually, the pixel size is selected so that the width of the PSF is 2-3× larger, 

according to the Nyquist criterion. Besides generally affecting the localization precision, 

detector pixelation also adds a lateral bias to position estimates obtained with the 

centre-of-mass algorithm [26,29]. 

 

Detector noise 

The classic detector in LM and SPT is the charge coupled device (CCD) in which 

thermally induced dark current introduces a Poisson distributed background that 

increases with the image acquisition time [73]. Also the electron multiplying charge 

coupled device (EMCCD) and scientific complementary metal oxide semiconductor 

(sCMOS) detector suffer from dark current. However, modern detectors are cooled in 

order to reduce the amount of dark current, rendering it effectively insignificant during 

the short exposure times that are typical for SPT and LM applications. 

The CCD detector features read-out noise, originating from the conversion of the 

electrons in each pixel to a digital signal. As this noise follows a Gaussian distribution 

independent of the pixel intensity, it degrades the localization precision [19,69], 

especially for low light levels. Read-out noise is usually not included in precision 

theories, arguably because the EMCCD has replaced the CCD in recent years. The on-

chip electron-multiplication process renders the read-out noise effectively negligible 

and thus is not an issue for EMCCD detectors. The increasingly popular sCMOS also 

features low read-out noise. Its localization precision performance was found to be 

competitive with EMCCD for relatively high light levels, but performs worse for low light 

levels [74,75]. 

However, the electron-multiplication process in EMCCDs is a stochastic process that 

adds so-called excess noise to the pixel intensities. It has been shown that in case of 
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high multiplication levels (e.g. 10
3
) the pixel electrons remain Poisson distributed after 

multiplication, but with twice the variance [76,77]. This, in turn, decreases the 

localization precision by a factor of √  [22,72,76], although it was argued recently that 

low light levels or low electron multiplication values require a more complex treatment 

[72]. 

 

Detector background 

Non-uniform sensitivity of the pixels over the detector area was recently reported to 

affect the localization accuracy [78]. The so-called photoresponse non-uniformity is 

caused by differences in the conversion of photons to electrons between pixels or even 

within the same pixel, leading to a non-uniform image even when all pixels are 

illuminated uniformly. This can lead to localization inaccuracies, on the order of 

nanometers, especially when the non-uniformities have the same scale as the width of 

the particle image. This bias can be corrected for by mapping the photoresponse non-

uniformity in detail, e.g. by recording the image of an illuminated pinhole that is 

scanned across the pixels with sub-pixel step size [78]. 

Another type of detector background is called the pedestal, it is a constant offset value 

that that is added to the pixel intensities of a detector. The pedestal has no effect on 

accuracy, but can reduce the localization precision for estimators such as the weighted 

least-squares fitting [22]. 

 

4.4.2 Sample 

 

Sample drift 

Drift of the sample negatively affects the localization precision in a way that is similar to 

particle motion during image acquisition (cfr. Section 4.4.3). Drift on the nanometer 

scale is hard to avoid as it can be caused by a variety of sources, such as vibration and 

mechanical relaxation of the microscope or motion within the sample. One often 

reported drift correction approach is to relate all position estimates to the position of a 

fiduciary marker that is embedded in the sample [12,14] or attached to the cover slip 

[79,80]. To maintain a good precision of the location estimates, this fiduciary marker 

should be bright enough so that its location can be determined with near perfect 
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precision. However, if this bright structure is located too close to the particle of 

interest, it will add to its background, again reducing the localization precision. On the 

other hand, if the marker is too far off, it might not represent the local drift sufficiently 

well. Alternative techniques for drift correction are the use of spatial correlation 

between subsequent super-resolution images [48,81,82] or the use of structures of the 

sample itself (e.g. intracellular structures that are imaged separately but simultaneously 

with transmitted light) as fiduciary markers. 

 

 

Figure 4.3 | The effect of sample background on the localization precision. (a) Fluorescent sub-
resolved objects are localized at different axial depths by means of an astigmatic PSF in a 
transparent agarose gel (thin sample) and in a 100 µm cellular spheroid (thick sample). Direct 
estimation of the effective axial localization precision within the cellular spheroid by repeated 
measurements of sub-resolved point-like objects (cfr. Section 4.5) shows a decrease of the 
localization precision in thicker samples. (b) The experimental localization precision in the 
agarose gel is 68 nm. (c) The experimental localization deep within the cellular spheroid it is 
reduced to 141 nm. 
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Sample background 

Sample background fluorescence can significantly reduce the precision, and, for 

estimators like the centre-of-mass algorithm, also the accuracy [29]. This is especially 

the case when the particles are located deep inside thick biological samples. For 

example, the extra background inside cellular spheroids of 100 µm diameter has been 

shown to lead to a decrease in precision by a factor of two compared to the ideal 

situation without background [83], as illustrated in Fig. 4.3. Homogeneous background 

fluorescence is often incorporated in the precision and accuracy theories, as indicated 

in Table 4.1. It takes the form of a Poisson distributed background, and is thus 

equivalent to dark current (cfr. Section 4.4.1). In some samples, especially thick ones, 

the background fluorescence can be heterogeneous, thus also affecting the localization 

accuracy with a bias of up to tens of nanometers. Although image processing 

procedures can be used to filter out background heterogeneity to some extent, a 

complete correction is difficult to achieve. 

 

PSF deformation 

The PSF can become deformed because of refractive index variations in the sample, 

light scattering or absorption by the sample, and refractive index mismatch between 

sample, embedding medium and cover slip. This results in a deformation of the particle 

image that becomes more pronounced when focusing deeper into the sample. Position 

estimators that are based on a particular model of the particle image will no longer 

perform as intended. In that case, unbiased position estimations can only be achieved 

by fitting of an experimentally determined particle image model [80,84-86]. These 

experimental particle reference images are usually obtained from an independently 

recorded  -stack of a fluorescent non-blinking particle, such as a fluorescent bead. 

Possible differences in photobleaching [39,42], refractive index mismatch [48,87], or 

dipole orientation [87] between the actual image and the calibration stack need to be 

corrected for. Recently, an interesting possibility for at least partially mitigating these 

complications has been reported which infers an image model is derived from only a 

couple of experimental images at different  -positions using a phase retrieval algorithm 

[88]. 
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4.5 MEASURING THE LOCALIZATION PRECISION 

 

Localization theories, as summarized in Table 4.1, are often based on simplifying 

assumptions. Therefore, if at all possible, it is preferable to determine the localization 

precision experimentally. For stationary molecules (i.e. without translational 

movement), as it is often the case in LM, this can be done by acquiring a series of 

images of a sparse set of molecules. By determining the location of the same molecule 

in subsequent images, the standard deviation on the molecule localization can be 

determined, which is by definition the localization precision, see Eq. (4.1). As this 

procedure is sensitive to instrumental drift, it is better to determine the precision from 

the distance between consecutive particle locations rather than the positions itself [20]. 

To determine the effective localization precision of particles that are moving during the 

image acquisition time, as it is typically the case for SPT experiments, a method is 

introduced in Chapter 5 that makes use of two simultaneously acquired images, for 

instance by introducing a 50/50 beam splitter or dichroic mirror in the detection path 

[71]. 

 

4.6 IMPLICATIONS FOR LM AND SPT 

 

4.6.1 Resolution in LM 

The major force behind the recent surge in optical super-resolution microscopy 

techniques is the desire of obtaining increasingly better resolution. In LM, evidently 

localization and precision are linked to the achievable resolution. However, so far there 

has been little consensus in the field about how resolution in LM should be measured 

and reported. A fundamental resolution measure (FREM) [89] has been developed in 

order to replace the conventional approach of Abbe [1] and Rayleigh [2]. According to 

the FREM framework, which is based on the localization precision, the resolution of an 

optical microscope is not limited and can be improved by increasing the number of 

detected photons. However, the use of localization precision alone as a measure of 

resolution is risky, since theoretical descriptions can deviate from measured values and 

because it does not account for position accuracy effects induced by dipole orientation 

(cfr. Section 4.3.3), detector properties (cfr. Section 4.4.1), or the labelling method. For 

example, a combination of primary and secondary antibodies can introduce 

displacements of 10-20 nm between the fluorophore and the molecule of interest. 
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Most importantly, however, localization precision alone is not sufficient to describe 

resolution because it does not account for the effect of label density [90], as illustrated 

in Fig. 4.4. 

 

 

Figure 4.4 | The influence of localization precision and label density on the resolution in LM. 
Only a sufficiently high localization precision (symbolized by the green dotted circles) and label 
density result in an image (green line) that faithfully represents the actual structure (blue line). 
The influence of the displacement between the fluorescent label (red dots) and the actual 
molecule (blue dots) is also indicated. 

 

An analogy of the Nyquist criterion has been applied for this purpose, stating that the 

mean distance between two neighbouring emitters must be smaller than half of the 

smallest sample feature that can be resolved [87,91]. For instance, using this approach, 

it was calculated that an effective 2-D resolution of 10 nm can only be obtained with a 

label density of 10
4
 µm

-2
 or higher [91]. However, it has recently been argued that the 
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Nyquist criterion does not properly describe the scaling of resolution in LM on label 

density [92]. Instead, estimation theory was used to develop a measure of spatial 

resolution in LM that jointly depends on the density of the emitters, the precision of 

emitter localization, and prior information regarding the spatial frequency content of 

the labelled object [92,93]. Alternatively, simulation of the particular structure within 

its context can be useful for determination of the combination of localization precision 

and density needed to successfully resolve that structure in LM. 

 

 

Figure 4.5 | The influence of localization precision on SPT data analysis. The observed trajectory 
(green line) is different from the actual trajectory (red line) because of the localization precision 
(symbolized by the green dotted circles). In case of Brownian motion, the observed mean square 
displacements (   ) of the observed trajectory (green squares) in function of the time-lags in 
the trajectory can be modelled by a straight line with an offset value that is related to the 
localization precision. 

 

4.6.2 SPT analysis 

In SPT, the trajectories of individual particles or molecules are determined from their 

position estimates in a time-series of images. The trajectories are subsequently 

analysed to obtain information about the particle mobility or its interaction with the 

surrounding medium. For correct trajectory analysis it is crucial to account for any 

limited localization precision and accuracy. A popular type of analysis is the fitting of a 

theoretical model to the mean square displacements (   ) of the trajectories 

[10,11,94]. For example, the     is linearly proportional to the time-lag between the 

observed locations in case of free Brownian motion, while typically a power law is 

considered in case of anomalous diffusion [95]. The effect of limited localization 

precision has to be included in the model through a constant offset [9,96,97], as 

illustrated in Fig. 4.5. In the context of SPT, where particles or molecules are typically 

mobile, motion during image acquisition and its effect on localization precision should 
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be taken into account. Surprisingly it was not until recently that this effect was 

considered [71,98], see Chapter 5 for more details. Interestingly, an algorithm was 

recently reported that determines the optimum number of time-lags that should be 

included in the trajectory analysis, simultaneously minimizing the effect of the limited 

trajectory length and the localization precision [99]. 

 

4.7 CONCLUSION AND FUTURE OUTLOOK 

 

LM and SPT now provide invaluable insight into biological systems at the nanoscale, but 

both depend on precise and accurate localization of fluorescent molecules or 

nanoparticles. Popular position estimators, such as the weighted least-squares fitting of 

a Gaussian function, only yield optimal precision and accuracy in specific cases, i.e. for 

stationary and isotropic emitters located in or near the focal plane. This is, however, 

often a rare situation in SPT or LM experiments, which usually feature emitters that are 

out of focus, move, or behave like non-rotating dipole emitters. In these cases, 

complicated image shapes occur, which strongly reduce precision and accuracy, unless 

specially adapted estimators are used. Sample drift, background fluorescence, detector 

noise, and other experimental effects reduce the precision and sometimes the accuracy 

even further. When determining the localization precision and accuracy in LM and SPT, 

it is crucial to properly account for all these effects. This is not only required for correct 

optimization of the performance in LM and SPT, but also for correct interpretation of 

the obtained data. In SPT, it would be of interest to investigate the effect of different 

types of movement on the localization precision and accuracy, this is the topic of 

Chapter 5. In any case, it needs to realized that the influence of precision and also 

accuracy on the analysis of SPT data cannot be neglected. In LM, it is crucial to develop 

a correct understanding of the role of precision and accuracy on the effective 

resolution. 
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ABSTRACT 

 

Obtaining sub-resolution particle positions in fluorescence microscopy images is 

essential for single particle tracking and high-resolution localization microscopy. While 

the localization precision of stationary single molecules or particles is well understood, 

the influence of particle motion during image acquisition has been largely neglected, as 

discussed in Chapter 4. Here, we address this issue and provide a theoretical 

description on how particle motion influences the centroid localization precision, both 

in case of 2-D and 3-D diffusion. In addition, a novel method is proposed, based on 

dual-channel imaging, for the experimental determination of the localization precision 

of moving particles. For typical single particle tracking experiments, we show that the 

localization precision is approximately two-fold worse than expected from the 

stationary theory. Strikingly, we find that the most popular localization method, based 

on the fitting of a Gaussian distribution, breaks down in case of significant lateral 

diffusion during the image acquisition time. Instead, the centroid localization method is 

found to perform well under all conditions. 
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5.1 INTRODUCTION 

 

A fundamental property of imaging a point-like object with any optical set-up is that the 

observed spot has a certain spatial intensity distribution known as the point spread 

function (PSF). The radial and axial extent of the PSF determines the imaging resolution, 

which is around 250 nm and 900 nm, respectively, for a research grade epi-

fluorescence microscope [1]. Despite the limited spatial resolution, the position of such 

a small object can be determined with much better precision by locating the centre 

point of the PSF, as detailed in Chapter 4. This is an important trick that is applied 

extensively in single particle/molecule tracking (SPT/SMT) microscopy [2-4], in sub-

resolution imaging techniques, such as STORM or PALM [5,6], and a combination 

thereof [7]. 

It is, therefore, of great interest to have a detailed knowledge of the different 

parameters that determine the localization precision. Independent of the method that 

is used for determining the PSF centre position, it was shown that the theoretical lower 

limit for the localization precision of a stationary particle scales inversely with the 

square root of the number of detected photons [8,9]. While this result corroborates the 

common knowledge that as many photons as possible should be collected, there are 

two other important factors that determine the localization precision. First, due to the 

fact that images are recorded with a finite pixel size, the sampling of the PSF is not 

perfect. Secondly, a certain amount of background will usually be present as well. 

Thompson et al. gave the first approximate theoretical description taking all three 

factors into account for the case of a stationary particle whose position is determined 

by the least-squares fitting of a circular 2-D Gaussian function to the PSF in the focal 

plane [10]. By a more rigorous theoretical derivation, an important correction to this 

often used equation was recently published by Mortensen et al. [11]. In addition, they 

provided similar formulas for a fitting algorithm based on maximum likelihood 

estimation and for more complicated PSF models that describe the dipole emission of 

single fluorescent molecules. A different way to obtain the particle position, although 

used less often, is calculating the intensity weighted centre position of the PSF spot, 

also known as the centroid [12,13]. 

While a sound theoretical basis now exists for the localization precision of stationary 

particles, the case of moving particles, which is ubiquitous in SPT/SMT experiments, has 

been largely neglected. Particle movement during image acquisition alters the shape of 

the observed intensity distribution compared to the stationary PSF, as illustrated in Fig. 

5.1, so the localization precision can be expected to be substantially affected. One 
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recent study gives a theoretical treatment of the influence of the special cases of linear 

and circular movement during image acquisition on the localization precision [14]. 

However, on a molecular scale, stochastic motion is much more common and of 

practical relevance. In this case, the observed intensity distribution does not necessarily 

have a symmetric shape, rendering the popular Gaussian approximation problematic. It 

should be noted that the effect of particle diffusion during image acquisition was 

already studied on the level of motion quantification in SPT experiments. A correction 

on the classical expression for the mean squared displacement (   ) was proposed, 

but the influence on the localization precision was not considered [15-18]. 

 

 

Figure 5.1 | The effect of motion during image acquisition on the observed intensity 
distribution. (a) Illustration of the influence of lateral movement parallel to the focal plane on 
the PSF. Two different situations are shown: a stationary particle and a diffusing particle in the 
focal plane. The trajectories during the image acquisition time are shown together with their PSF. 
The circular Gaussian approximation of the stationary PSF has a standard deviation   . (b) 
Illustration of the influence of axial movement perpendicular to the focal plane on the PSF. Two 
different situations are shown: a particle on average in focus with       = 0 and a particle on 

average out focus with       > 0. The PSF of the particle in focus has a smaller standard deviation 

than the PSF of the particle out focus. 

 

In this study, we address the important but currently unanswered question of how 2-D 

or 3-D stochastic motion influences the localization precision of sub-resolution 

particles. It is shown that the centroid localization algorithm is the most robust one in 

the case that the particles move substantially during image acquisition. Therefore, a 

formula that describes the centroid localization precision in case of 2-D and 3-D 

stochastic motion is derived. Our theory is validated both by computer simulations as 

well as experiments by using a novel procedure based on SPT in two different (spectral) 

channels. It is shown that particle movement can significantly affect the localization 
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precision for all image acquisition times. Furthermore, the centroid estimator is 

compared to the popular method of least-squares fitting of a circular 2-D Gaussian 

distribution. Notably, we find that the localization precision for the Gaussian least-

squares fitting rapidly deteriorates for increasing image acquisition times. Instead, the 

much simpler and faster centroid algorithm is found to give a superior localization 

precision if all pixels that belong to the particle intensity distribution are included. 

 

5.2 THEORY 

 

5.2.1 Localization precision of diffusing particles  

The position of stationary sub-resolution particles in microscopy images is usually 

estimated by determining the centre location of the particle PSF. If multiple images of 

the same particle are recorded, its apparent centre position will be slightly different in 

each image due to a limited signal-to-noise ratio (SNR). The precision   with which a 

particle can be localized, can be defined as the standard deviation on these apparent 

centre positions. According to the Fisher information theory, this precision is 

fundamentally limited according to [8]: 

 
  

 

   √ 
  (5.1) 

with   the photon wavelength,   the refractive index and   the total number of 

collected photons. This limit is fundamental, not only because it assumes an ideal 

noiseless detection process and an infinitely small pixel size, but also because it is 

independent of the type of PSF centre estimator. In real situations, the precision will be 

worse compared to the limit provided in Eq. (5.1). The most frequently used method to 

identify the PSF centre location  ⃗  = (     ) in the focal plane (  -plane), is the least-

squares fitting of a circular 2-D Gaussian distribution to the observed PSF: 
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       (5.2) 

with   the standard deviation of the Gaussian distribution and   a constant 

background. Note that this is only an approximate description, the more exact 

description of the PSF is an Airy distribution with an infinite standard deviation [19]. 

Arguably, the popularity of this method is due to the frequently cited work of Cheezum 

et al., where it was argued that this algorithm performs best in low SNR situations, as is 
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often the case in SPT or nanoscopy experiments [12]. An approximate model for the 

localization precision    of this method was put forward by Thompson et al. in 2002, 

which was refined by a more rigorous mathematical derivation by Mortensen et al. in 

2010 [10,11]: 
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}  (5.3) 

with   the pixel size and   the background. We will only consider a Poisson distributed 

photon background, which means that   can also be interpreted as the background 

standard deviation. The factor   is equal to 1 in case of a CCD or CMOS detector, while 

it is equal to 2 for an electron multiplying CCD (EMCCD) camera [11,20,21]. 

A different type of estimator for the PSF centre is the well-known centroid [12]: 
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  (5.4) 

The sum goes over all the pixels (   ) that belong to the particle PSF, with      the 

intensity and  ⃗    = (         ) the pixel coordinate. Similar to Eq. (5.3) for the Gaussian 

fitting method, it is possible to derive an expression for the centroid localization 

precision    of a stationary sub-resolution particle (see Appendix A): 
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This expression is valid on condition that all relevant pixels belonging to the particle 

intensity distribution are included in the centroid calculation, see Eq. (5.4), while the 

background is excluded. 

Now, we consider the effect of random motion on the localization precision. If a 

particle is diffusing during image acquisition, the shape of the observed intensity 

distribution will be significantly distorted compared to the stationary PSF. In case of 

movement inside the focal plane, the intensity distribution can even become 

asymmetrical. Fitting of a circular Gaussian function, therefore, does not seem to be a 

suitable approach (as will be demonstrated in Section 5.4). Instead, if all relevant pixels 

are taken into account, the centroid algorithm does not make any assumption on the 

shape of the intensity distribution and is expected to be a better estimator in case of 

particle motion. 

We, therefore, expand the theory of the centroid precision to include particle diffusion 

during image acquisition. It is important to realize that the centroid is the intensity 
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weighted centre, which corresponds to the average particle position during the time 

over which the image is acquired. Furthermore, it should be noted that it is impossible 

to determine the localization precision of an individual diffusing particle, since its 

trajectory is unknown and unpredictable by definition. Instead, it is rather the effect on 

a large ensemble of particles that can be described, i.e. the localization precision that is 

expected on average given a certain diffusion rate and image acquisition time. Since we 

will investigate 3-D diffusion, the PSF should be considered in 3-D. In extension of the 

circular 2-D Gaussian PSF for a particle in focus (see Eq. (5.2)), the fundamental 

Gaussian beam solution can be used to describe its intensity distribution in a region 

near the focal plane [22]: 
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with the Gaussian standard deviation  (  ) defined by: 
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where    is the Gaussian standard deviation in the focal plane and    = (    ⁄ )  
 . It 

should be noted that at a certain distance from the focal plane (e.g. in the order of µm), 

the PSF shape becomes more complicated and the fundamental Gaussian beam 

solution is not valid anymore. From a rigorous mathematical derivation (see Appendix 

A), it follows that the apparent PSF of particles undergoing lateral diffusion in the focal 

plane only (i.e. diffusion in the   -plane, see Fig. 5.1a) can on average still be 

approximated by a circular 2-D Gaussian distribution with variance: 

 
   
    

  
 

 
     (5.8) 

with   the diffusion coefficient and    the image acquisition time. A similar but slightly 

different correction was already proposed by Michalet et al. [16]. However, they 

performed their calculations assuming that the initial position of the particle during 

image acquisition is known. In experimental images, this is not the case and it is rather 

the average position during image acquisition which can be estimated. It is this 

consideration that leads to the factor 1/3 in Eq. (5.8), which was omitted in the work by 

Michalet et al. 

For particles diffusing in the axial direction along the optical axis (diffusion along the  -

axis, see Fig. 5.1b), a detailed calculation shows that the apparent PSF can also be 
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described on average by a circular 2-D Gaussian distribution with variance (see 

Appendix A): 
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   (5.9) 

where the average position during the image acquisition time is restricted between the 

boundaries   =       and   =      along the optical axis, an assumption based on the 

apparent PSF becoming indistinguishable from the background if the particle is located 

too far from the focal plane. In order to reasonably estimate     , it can be assumed 

that a particle becomes undetectable if its peak intensity drops to     times its peak 

intensity in the focal plane, leading to (see Appendix A): 

        √ 
     (5.10) 

In reality,      will depend not only on the optical properties of the objective lens, but 

also on the particle SNR and image processing settings for detecting the particles. We 

recently worked out a theoretical framework that allows to accurately determine      

from SPT images of 3-D diffusing particles [23]. For clarity, however, in this work we 

have consistently used Eq. (5.10), since it was sufficiently accurate for this purpose. 

Equations (5.8) and (5.9) show that both the diffusion in the focal plane and along the 

optical axis result in an apparent PSF that has on average a circular 2-D Gaussian 

distribution, with a variance that increases linearly with the image acquisition time and 

diffusion coefficient: 
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For a stationary particle (  = 0) that is observed in the focal plane (     = 0), we find 

that   =   , as expected. Substituting Eq. (5.11) in Eq. (5.5), we propose the following 

description of the average localization precision for centroids, corrected for the 

influence of 3-D diffusion during image acquisition: 
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(5.12) 

The average localization precision of diffusing particles is thus equal to the localization 

precision for a PSF blurred by the average diffusion. 
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5.2.2 Experimental determination of the localization precision of moving 

particles 

Not only a theoretical description of the localization precision, but also a method that 

allows experimental determination of this value is of interest. It is well-known that the 

    of a the 2-D trajectory of a diffusing particle is given by [15-17,24,25]: 

 
        

 

 
         (5.13) 

with   the time interval between the positions in the trajectory (determined by the 

camera frame rate). When a particle is stationary (  = 0), the localization precision   

can be easily determined experimentally by making images of that particle at 

sequential time points. The     of the apparent particle trajectory is then equal to 

   . We will refer to this method as the single-channel method, as opposed to the 

dual-channel method for moving particles, which will be explained below. 

 

 

Figure 5.2 | The dual-channel method for determining the localization precision of moving 
particles. The true particle trajectory consists out of 4 positions  ⃗    (  = 1,…,4). The particle 

positions  ⃗    and  ⃗    that are detected in channel   and  , respectively, are normally distributed 
around the true position  ⃗    with standard deviations    and   , respectively. Making an overlay 

of the images in both channels and taking the standard deviation of the difference between the 
positions  ⃗     ⃗    for every  , results in the localization precision    and   . 
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For a moving particle, Eq. (5.13) suggests that   could be determined from the 

intercept of the     plot, by fitting of a straight line. However, in reality, one typically 

has to deal with relatively short trajectories so that, according to our experience, the 

localization precision cannot be accurately determined this way. Instead, we have 

developed a novel method, based on SPT in two channels, to determine the localization 

precision reliably. These can be spectrally different channels (e.g. green and red 

fluorescence by using a dichroic mirror), but also the same image that is acquired on 

two detectors (e.g. by using a 50/50 mirror). Consider a particle that is imaged 

simultaneously in two different channels   and  . The observed trajectories of the 

particle are described by the positions  ⃗    and  ⃗    (with   = 1, 2, …) in channel   and  , 

respectively (see Fig. 5.2). These positions can be assumed to be distributed around the 

true particle positions  ⃗   . We will consider only the  -dimension, since the same 

reasoning applies to the  -dimension. The precisions corresponding to the particle 

locations      and      are defined as    and   , respectively. If the photons in both 

channels are detected independently from each other, the standard deviation of the 

differences           between the positions in both channels is given by: 
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   (5.14) 

In addition, there might be an error on the overlay of the images of both channels, 

which can be taken into account by introducing an extra overlay contribution    [26]: 
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If a 50/50 mirror is used,    and    will be equal to each other, immediately resulting 

in: 
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If rather a dichroic mirror is used for detection in two spectrally different channels, a 

correction has to be made for the different wavelengths and intensities in both 

channels. If we assume in a first approximation that both    and    are described by 

the photon shot noise according to Eq. (5.1), their ratio is given by: 
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  (5.17) 



Chapter 5 

134 

with    and    the (average) wavelength in channel   and  , respectively, and    and 

   the corresponding number of collected photons. Combining Eq. (5.17) with Eq. 

(5.15) yields: 
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  (5.18) 

For equal intensities and wavelengths Eq. (5.18) indeed reduces to Eq. (5.16). In 

conclusion, by tracking a diffusing particle in two channels and calculating the variance 

on the difference between the two positions, the effective localization precision in both 

channels can be readily calculated with the dual-channel method according to Eq. 

(5.16) or (5.18). Note that the dual-channel method does not make any explicit 

assumption on the type of motion. 

 

5.3 MATERIALS AND METHODS 

 

5.3.1 Computer simulated single particle images 

The simulations of images of the apparent PSF of diffusing particles were performed in 

the Matlab programming environment (The MathWorks, USA). First, the arrival times 

     and      (  = 1, ...,    and   = 1, ...,   ) of    and    detected photons in channel   

and  , respectively, were determined. For an observed photon emission rate    and    

in channel   and  , respectively, the expected number of photons during image 

acquisition time    is given by      and     . These are the averages of the Poisson 

distributions describing the photon numbers in both channels. Two numbers    and    

were generated from these Poisson distributions using the Matlab function poissrnd. 

The arrival times      and      in channel   and  , respectively, were then determined 

by generating    and    random numbers in the interval [    ] using the Matlab 

function rand. The image acquisition times    were chosen between 1 and 30 ms and 

photon emission rates    and    had the same value of 2 · 10
5
 s

-1
, in accordance with 

our experiments. 

As a second step, the particle positions  ⃗    = (  (  )   (  )   (  )) were calculated 

at the times    = {         } (  = 1,...,      ) for channel   and   together, with 

diffusion coefficient   = 1 µm
2
/s. For 1-D diffusion, the position   (  ) was determined 
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by taking the position   (    ) and adding a distance from the Gaussian diffusion 

propagator with variance   (       ) using the Matlab function randn. The starting 

position  ⃗    = (              ) at time   = 0 was chosen as      =      = 0 and      a 

random number in the interval [          ], with      = 1.5 µm. If the average particle 

position during    was located outside these boundaries, the trajectory was discarded 

from the analysis. Next, in order to apply the single-channel method for determining 

the localization precision, the average position of all simulated particle trajectories 

during    should be identical. This was achieved by shifting each time the average 

position of the trajectory to the origin in the centre of the image. Subsequently, the 

trajectory of the particle in channel   or   was obtained by extracting the positions  ⃗    

corresponding to the photon arrival times    =      or    =     , respectively. 

The positions  ⃗    represent the real positions of the particle during   . The observed 

photon positions  ⃗   for every    were obtained from the probability distribution 

described by the 3-D Gaussian PSF according to Eq. (5.6), using the Matlab function 

randn. The standard deviation    of the PSF for a stationary particle in the focal plane 

was taken equal to 0.15 µm. If all photon positions were generated, they were assigned 

to     pixels, with a pixel size of 0.1 µm. Finally, a normally distributed photon 

background was added, with a variance equal to 500 s
-1

   , in the same order of 

magnitude as for the experimental situation. The variance was assumed to increase 

linearly with   , corresponding to our experiments. The resulting matrix was saved as a 

16-bit image. For each image acquisition time typically 1000 images were simulated. 

The overlay error    in the overlap between the images of both channels was taken 

equal to zero. Once all simulated images were obtained, the image processing software 

that was used in the actual experiments and described in Section 5.3.4, was used to 

identify and localize the particles. 

 

5.3.2 Experimental set-up 

The SPT experiments were carried out on a custom-built laser widefield epi-

fluorescence microscope set-up that is described elsewhere in more detail [27]. Briefly, 

two solid state lasers were used for illumination: a 100 mW Calypso 491 nm (Cobolt, 

Sweden) and a IQ1C 30 mW 636 nm (Power Technology, USA). The microscope was a 

Nikon TE2000-E with a Nikon Plan Apochromat 100× oil immersion objective lens with a 

numerical aperture of 1.4 (Nikon, Belgium). The fluorescence light coming from the 

sample was collected again by the objective lens and sent through the side port of the 

microscope towards the Cascade II:512 EMCCD camera (Roper Scientific, USA). A pair of 

achromat lenses was placed in between the camera and microscope side port for an 
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extra 2× magnification of the image on the CCD chip so that one pixel corresponded to 

a distance of 89 nm in the sample. A dichroic mirror placed between both achromat 

lenses reflected the fluorescent light with a wavelength below 560 nm and transmitted 

the wavelengths above 560 nm. Accompanying mirrors and notch filters (AHF 

Analysentechnik, Germany) guided the reflected and transmitted part of the 

fluorescence each to one half of the CCD chip. High-speed movies were recorded using 

the Nikon Elements R imaging software. The camera does not output photon numbers 

but pixel values in analogue-to-digital units that are linearly related to the number of 

photons collected by the pixels. The conversion factor, which is called the gain, was 

calibrated with the method published by Janesick [28], using the intensity average and 

variance from both a dark and an even illuminated image, for an electron multiplication 

factor that was kept constant throughout the experiments. 

 

5.3.3 Sample preparation and experimental protocol 

SPT experiments were performed on 200 nm diameter Tetraspeck polystyrene 

nanospheres (Molecular Probes, Belgium), containing, among other fluorescent labels, 

a green (505 nm excitation peak, 515 nm emission peak) and a red (660 nm excitation 

peak, 680 nm emission peak) fluorescent label. The fluorescence emission of the green 

and red label was detected each on a separate half of the CCD chip to enable 

simultaneous dual-colour imaging. The beads were diluted in water to a concentration 

of approximately 10
9
 particles per ml. A microscope sample was prepared by applying 5 

µl of the bead suspension between a microscope slide and a cover glass with a double-

sided adhesive Secure-Seal Spacer of 120 µm thickness (Molecular Probes, The 

Netherlands) in between. To obtain a sample with stationary particles, 5 µl (with typical 

concentration of 10
8
 particles per ml) was applied on the cover slip and allowed to 

evaporate, leaving only the nanospheres behind. A microscope sample was prepared by 

applying 5 µl of water on top of the beads, and the sample was sealed with a cover 

glass using the double-sided adhesive Secure-Seal Spacer. To increase the camera 

frame rate, a subregion of the CCD chip of 256 by 512 pixels was selected. Typical 

image acquisition times were between 1 and 32 ms per frame, with a corresponding 

frame rate of about 20 to 40 frames per second. For each sample typically 20 movies of 

about 10 s were recorded at different locations within the sample, with about 20 to 100 

particles detected in each movie. All experiments were performed at 22.5° C. 
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5.3.4 Single particle tracking data analysis 

In case of experimental data, the images from both channels were first aligned, making 

use of an affine transformation with parameter values derived from an image with 

stationary multi-colour particles. This procedure resulted in an average overlay 

precision    of approximately 3 nm over the entire field of view, as obtained from Eq. 

(5.15) with      the standard deviation of the differences between the positions of the 

same particle in both channels and    and    the localization precisions in both 

channels separately. 

Analysis of the experimental and simulated SPT images was performed in Matlab with 

custom image processing software for identifying and tracking of the individual 

particles. The procedure that was used to identify the particles in all experimental and 

simulated images is illustrated in Fig. 5.3 and is described elsewhere [24]. First, a simple 

algorithm was applied that automatically determines an intensity threshold value for 

every separate image in a single particle tracking (SPT) movie. Briefly, in each image, a 

Gaussian function was fitted to the pixel intensity distribution. The pixel intensities 

from the background are approximately described by the Gaussian function itself, while 

the (relatively few) pixel intensities coming from the brighter particle spots are outliers. 

A threshold   could, therefore, be defined as   =     , where   is the mean and   

the standard deviation of the Gaussian function. A good value for   was determined 

beforehand by visually inspecting a number of representative images and was 

subsequently used for all movies of a single series of experiments. This procedure 

resulted for each separate image in a corresponding binary image that was used to 

calculate the contours that circumscribe every particle intensity distribution. The pixels 

within each contour thus belong to the observed intensity distribution of a particle. 

Note that the contours do not have a predefined shape. Also, a second contour was 

defined at a distance of typically 4 pixels around each original contour. The average 

pixel value along this contour defines the local background B for each particle. 

Once all particle contours had been obtained, the centre position  ⃗  = (     ) of each 

particle was calculated based on the pixels within the contours, using the centroid 

algorithm defined in Eq. (5.4). A suitable intensity threshold has to be chosen in order 

to include all relevant pixels belonging to the intensity distribution into the sum of Eq. 

(5.4), while excluding the background pixels. Another, more popular, method that we 

have also used, is the least-squares fitting of a circular 2-D Gaussian defined in Eq. (5.2) 

to the PSF images. 
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Additionally, least-squares fitting of an elliptical 2-D Gaussian distribution to each PSF 

image was also performed: 

    (   )  
 

      
  

 
 {(

     

   
  

     

   
 )(    )

 
  ( 

     

   
  

     

   
 )(    )(    ) (

     

   
  

     

   
 )(    )

 
}
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with   the angle describing the orientation of the distribution relative to the  -axis, and 

   and    the standard deviation along the major and minor axis, respectively. The full 

variation of shapes was thus included in the fit to the elliptical 2-D Gaussian 

distribution. Both Gaussian functions are fitted to the pixels within the second 

background contour, because in this case it is necessary to include some background 

pixels in order to determine the baseline   of the Gaussian function accurately. 

After all centre positions of all particles in each image were calculated, the trajectories 

of the particles are determined by a nearest neighbour algorithm that connects the 

positions of particles that are closest to each other in subsequent images. To ensure 

that positions that are too far removed from each other are not connected, a maximum 

distance that a particle can reasonably move from one image to another was defined, 

based on the probability distribution of diffusional motion. 

 

5.3.5 Calculation of the theoretical localization precision 

In order to use Eq. (5.5) for the determination of the localization precision of stationary 

particles, several parameters had to be determined. Since an EMCCD camera was used, 

the factor   was taken equal to 2. The number of photons   could be obtained from 

the particle spot intensities (i.e. the pixel values within the contour) and was found to 

be on average 1.97 · 10
5
 s

-1
Δt in the green channel and 2.01 · 10

5
 s

-1
Δt in the red 

channel. The PSF standard deviation s0 was determined to be 0.143 µm in the green 

and 0.157 µm in the red channel. The photon background variance was estimated from 

the experimental SPT movies as 54 s
-1

    in the green and 25 s
-1

    in the red channel. 

Note that this variance is equal to     instead of    in Eq. (5.5), considering the 

electron multiplication process of the EMCCD camera. 

In case of diffusing particles, the theoretical localization precision was calculated from 

Eq. (5.12) (with   equal to 2). The number of photons   was found to be on average 
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0.98 · 10
5
 s

-1
    in the green channel and 0.72 · 10

5
 s

-1
    in the red channel. The 

photon background variance     was estimated from the experimental SPT movies as 

184 s
-1

    in the green and 78 s
-1

    in the red channel. The diffusion coefficient was 

calculated from least-squares fitting Eq. (5.13) to the mean squared displacements of 

the particle trajectories. Only the displacements corresponding to the first 25% of the 

time lags were included, with the localization precision as a free parameter, resulting in 

an average diffusion coefficient   of 1.6 µm
2
/s [29]. Weights were added to the least-

squares fitting according to the theory from Qian et al. [30]. The maximum detection 

distance from the focal plane     , estimated from Eq. (5.10), was found to be around 

1.66 µm and 1.82 µm in the green and red channel, respectively. 

 

 

Figure 5.3 | SPT data analysis on a typical experimental image. First, an intensity threshold is 
applied, resulting in a binary image with a black background and white particles. Next, the binary 
image is used to calculate the contours that circumscribe the particle PSF (yellow contours), 
together with a second contour describing the local background (green contours). Subsequently, 
the pixels within these contours are used to calculate the apparent PSF centre positions. 

 

5.4 RESULTS 

 

5.4.1 Simulations 

A first validation of the theory for determining the localization precision of diffusing 

particles, as well as the experimental dual-channel method, was performed using 

computer simulated images of diffusing sub-resolution particles. For several acquisition 

times, images of the PSF of stationary and diffusing particles were simulated. 

Subsequently, the particle locations in these simulated images were obtained by the 
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centroid algorithm, and additionally also by least-squares fitting of the circular and 

elliptical 2-D Gaussian functions. Since the average particle position in the simulated 

images is located in the origin, the classic single-channel method could also be used to 

determine the localization precision in case of the diffusing particles, allowing 

validation of the theory. This would not have been possible for experimental images of 

a moving particle whose trajectory, and hence time-averaged position, during image 

acquisition is variable and unknown a priori. All images were simulated in two channels 

with equal wavelength and equal intensity, to validate the dual-channel method by 

comparison with the single-channel method. 

 

 

Figure 5.4 | The effect of motion during image acquisition on the localization precision. The 
localization precision, as determined from simulated images, is shown in function of the image 
acquisition time. The results for 3 different PSF centre estimators (the centroid (○) and the least-
squares fitting of a circular (•) and elliptical (+) 2-D Gaussian function) are shown in case of: (a) 
stationary particles, (b) particles diffusing along the axial direction only, (c) particles diffusing in 
the focal plane only, (d) particles diffusing in 3-D. The dashed line represents the theoretical 
prediction according to Mortensen et al. for the stationary particles (see Eq. (5.3) with   = 1). 

 

As can be seen in Fig. 5.4a, for each PSF centre estimator, the localization precision 

decreases with the image acquisition time, as expected for stationary particles. Both 

least-squares methods result in approximately the same localization precision, which is 
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in excellent agreement with the theory of Mortensen et al., see Eq. (5.3) (with   = 1). 

The localization precision of the centroid method performs nearly identical as well. To 

investigate the effect of diffusion during acquisition, images were simulated for a 

particle diffusing with a diffusion coefficient of 1 µm
2
/s for different image acquisition 

times. First, the particle was allowed to move along the  -direction only, obtaining the 

situation of axial diffusion along the optical axis. As can be seen from the results in Fig. 

5.4b, the three PSF centre estimators produced nearly identical results in this case. For 

all acquisition times, the localization precision becomes > 80% worse compared to the 

stationary theory of Mortensen et al. The effect of lateral diffusion, i.e. movement 

restricted to the   -plane, on the localization precision is shown in Fig. 5.4c. In this 

situation, the three estimators behave quite differently from each other. The centroid 

precision becomes only slightly worse than the stationary case with increasing image 

acquisition times. Strikingly, however, the precision of both least-squares fits rapidly 

deteriorates for longer image acquisition times. Fitting of the elliptical 2-D Gaussian 

function (see Section 5.3.4) results in a localization precision that is somewhat better 

than for the circular symmetric 2-D Gaussian, but is still much worse than the centroid 

method. When the particle is diffusing in all 3 dimensions, a combination of the 

behaviour in the axial and lateral diffusion case can be seen for the three estimators in 

Fig. 5.4d. We can conclude that the centroid estimator has the best overall 

performance in case of particle diffusion, while the Gaussian fitting methods rapidly 

break down for lateral diffusion in case of longer image acquisition times. 

We have used the centroid data of the diffusing particles, obtained with the single-

channel method, to validate Eqs. (5.5) and (5.12) (with   = 1) which we derived in 

Section 5.2.1. As can be seen from Fig. 5.5a, the theory accurately describes the 

behaviour of the centroid precision in case of stationary particles. In the case of axial 

diffusion, the correction from Eq. (5.9) nicely accounts for the > 80% decrease in 

precision, as can be seen from Fig. 5.5b. The small decrease in centroid precision for 

larger image acquisition times, if the particle is laterally diffusing, is captured well by 

the correction from Eq. (5.8), as demonstrated in Fig. 5.5c. Also in case of 3-D diffusion, 

we now see a very good correspondence between theory and simulated data (see Fig. 

5.5d). From the results in Fig. 5.5, it can be seen that the centroid precision theory 

slightly underestimates the simulated values (typically less than 10%, which is less than 

2 nm in absolute terms). A hypothesis for this deviation is provided in Section 5.5.  

We performed similar simulations for two detection channels as well, allowing to 

validate the new dual-channel method that we put forward for the experimental 

determination of the localization precision of diffusing particles. As can be seen from 

Fig. 5.5, the precision values of the dual-channel method correspond well to the values 

from the classic single-channel method, demonstrating the validity of this method. 
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Figure 5.5 | Validation of the localization precision theory and dual-channel method by 
simulations. The localization precision, as determined from simulated images, is shown in 
function of the image acquisition time. The results for the centroid are shown in function in case 
of: (a) stationary particles, (b) particles diffusing along the axial direction only, (c) particles 
diffusing in the focal plane only, (d) particles diffusing in 3-D. The centroid precision values 
obtained by both the single-channel (○) and dual-channel (×) method are shown. The dotted line 
is the same and represents the theory for the stationary particles (see Eq. (5.5) with   = 1). The 
full line shows the theory that takes the diffusion (axial, lateral or both) during image acquisition 
time into account (see Eq. (5.12) with   = 1). 

 

5.4.2 Single particle tracking experiments 

Through simulations, we showed that our model accurately describes the localization 

precision of the centroid algorithm in case of diffusion. In a last step, we wanted to 

verify this model against experimental data using SPT movies of multi-colour 

fluorescent 200 nm diameter nanospheres that are diffusing in water. To this end, we 

have developed the dual-channel method that allows to calculate the localization 

precision of particles that are moving during image acquisition from experimental SPT 

images. To apply the dual-channel method, the SPT movies are recorded in two 

different colours, referred to as the green and red channel. 

First, it was checked if the dual-channel method performs correctly on stationary beads 

in comparison with the classic single-channel method. The dual-channel precision 

values were obtained for the green and red channel separately using Eq. (5.18). As can 



Chapter 5 

143 

be seen from the results in Fig. 5.6a, the single and dual-channel methods are in 

excellent agreement with each other for the green channel, and both methods are in 

agreement with the theoretical prediction for stationary particles, see Eq. (5.5) (with   

= 2). The same result was found for the red channel (data not shown). We then applied 

the dual-channel method to the diffusing particles, the results correspond well with the 

theoretical prediction according to Eq. (5.12) (with   = 2), as shown in Fig. 5.6b. 

Comparison with the theoretical predication that does not take the diffusion into 

account (Eq. (5.5) with   = 2) shows that the stationary theory underestimates the 

diffusion localization precision significantly, by roughly a factor of 2, for all image 

acquisition times, see Fig. 5.6b. 

 

 

Figure 5.6 | Validation of the localization precision theory by experiments. The experimentally 
determined centroid precision from dual-colour SPT movies of stationary and diffusing 200 nm 
diameter nanospheres is shown in function of the image acquisition time. The results from for 
the green channel are shown for: (a) the stationary particles, and (b) the diffusing particles. For 
the stationary particles, both the single-channel (○) and dual-channel (×) precision values are 
shown, for the diffusing particles only the dual-channel (×) values. The error bars represent the 
95% confidence intervals of the dual-channel values. The dashed line shows the theoretical 
prediction for the stationary particles (see Eq. (5.5) with   = 2). The dotted line shows the 
theoretical prediction if the diffusion is not taken into account (see Eq. (5.5) with   = 2). The full 
line represents the theoretical prediction that takes the diffusion during image acquisition time 
into account (see Eq. (5.12) with   = 2). 

 

5.5 DISCUSSION 

 

When sub-resolution particles or molecules are localized in microscopy images, 

typically a theoretical PSF model is fitted to the observed intensity distribution and the 
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real particle position is estimated by the fitted PSF centre. This results in a localization 

precision that is significantly better than the width of the intensity distribution, a 

property that has been conveniently used for decades in SPT and more recently in 

nanoscopy methods based on fluorophore localization [3,5,6]. Up to now, most efforts 

in estimating this localization precision explicitly or implicitly assume that the particle is 

immobile during image acquisition [8,10,11]. This is a reasonable assumption, because 

strictly speaking the location of a mobile particle during the image acquisition time 

cannot be defined. Nonetheless, moving particles have an average position during 

image acquisition, and localization of this average position is possible. Particle 

movement, however, affects the observed intensity distribution so that the localization 

precision for moving particles can be expected to be significantly worse compared to 

the stationary case. In recent work, the effect of a priori known linear and circular 

motion on the localization precision was studied within the framework of the Fisher 

information theory [14,31]. We, on the other hand, have considered stochastic motion, 

which is more relevant on the molecular scale. Since, to the best of our knowledge, 

stochastic motion is not easily implemented in the Fisher information approach, we 

have expanded the popular existing theories on stationary particle localization to 

include the effects of 2-D and 3-D diffusion during image acquisition. 

It is important to realize that, due to the stochastic motion, it is impossible to predict 

the localization precision of an individual particle. What is possible, though, is to give a 

description of the average localization precision of a large ensemble of particles. The 

PSF of a stationary sub-resolution particle is often described as a circular 2-D Gaussian 

distribution. The theory presented in this work, shows that a Gaussian description is on 

average still valid in case of 2-D and 3-D diffusion, but now with a variable standard 

deviation that depends on the diffusion coefficient and the image acquisition time. 

Note that it was recently shown that the apparent PSF of a single rotating dipole 

emitter can be approximated by a Gaussian function, which suggests that the proposed 

theory of a variable Gaussian variance can also be applied on moving fluorophores with 

dipole photon emission [32]. For an individual particle, the observed intensity 

distribution shape can deviate substantially from a circular Gaussian distribution. This 

explains why we found that determining the position of diffusing particles by the classic 

Gaussian fitting method ceased to work correctly for longer image acquisition times. 

The elliptical 2-D Gaussian function could possibly take the spot deformation somewhat 

better into account. However, our results showed that the localization precision was 

only slightly improved, compared to the circular 2-D Gaussian. Most likely, this is due to 

the fact that, compared to the stationary case, the shape of the apparent PSF becomes 

distorted and asymmetrical in such a way that it starts to exhibit multiple maxima for 

longer image acquisition times. 
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The centroid algorithm, which does not rely on any assumption on the shape of the 

observed intensity distribution, was found to be a superior particle location estimator 

in case of movement during image acquisition, compared to the least-squares fitting of 

the 2-D Gaussian. Through a rigorous mathematical derivation, we succeeded in 

deriving an expression that predicts the centroid localization precision for particles 

diffusing in the focal plane or even in 3-D. The theory matched almost perfectly with 

both simulated and experimental particle localization data. It was found that motion 

along the optical axis decreases the centroid precision nearly independently of the 

image acquisition time. The lateral motion in the focal plane only affects the centroid 

precision for long image acquisition times or large diffusion coefficients. For diffusing 

particles we conclude that the centroid method globally outperforms the much used 

least-squares fitting of a circular or elliptical Gaussian function. This would appear to be 

in disagreement with the conclusion put forward in the article by Cheezum et al., who 

made a systematic comparison between different localization algorithms [12]. By 

simulating images of stationary particles, they found that the Gaussian fitting method 

performed better than the centroid algorithm in low SNR conditions. However, particle 

motion was not considered, which turns out to be the determining factor for longer 

image acquisition times. 

We would like to note that, although the theory accurately describes the centroid 

precision, it was derived under the specific assumption that all relevant pixels that 

contribute to the PSF are included in the centroid calculation, while background pixels 

should be excluded. Any deviation from this assumption might lead to a decrease in the 

localization precision compared to what is expected theoretically. We hypothesize that 

this, at least partially, could explain the small underestimation of the simulated values 

by the theory that we found. Possibly not all relevant pixels were included by the 

automated selection procedure, so that somewhat less photons were taken into 

account, leading to a slightly higher uncertainty on the particle locations as determined 

from the simulated images. An additional contribution to the experimental localization 

uncertainty could stem from the fact that a particle is never exactly located at the 

centre of a pixel. As a consequence, when selecting an iso-intensity contour, some 

more pixels might be included on one side of the centre compared to the other side. 

This in turn can lead to an additional contribution to the error in the determination of 

the particle location. Nevertheless, if these effects are present, they are in any case 

quite small considering the excellent agreement between theory and experiment. 

Apart from applications in high-resolution localization microscopy (e.g. STORM/PALM), 

the theory of the localization precision that takes movement during image acquisition 

into account, can also be used to more precisely determine the diffusion coefficient 

from the     plot. The     expression in Eq. (5.13) for free diffusion contains two 
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important corrections. The first correction comes from the fact that the diffusing 

particle does not have a unique location during the image acquisition. Instead, the 

particle location is rather the average position of the particle during the image 

acquisition time [15-17]. The second correction was investigated in this study and takes 

into account the finite localization precision, which we have shown to depend on the 

diffusion coefficient, see Eq. (5.12). For accurate diffusion measurements we suggest to 

use Eq. (5.13) in combination with Eq. (5.12) for fitting to the     curves: 
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By doing so, there is only one free fitting parameter, namely the diffusion coefficient   

in all three terms. To check if this leads to a better precision of the fitted  -values, we 

least- squares fitted both Eqs. (5.13) and (5.20) to the     of the trajectories of 

diffusing particles in our SPT experiments (for an image acquisition time of 10 ms in the 

green channel). Only the     corresponding to the first 25% of the time lags were 

included [33]. Weights were included in the least-squares fitting according to the 

theory from Qian et al. [30]. The resulting diffusion coefficient distributions for both 

cases are shown in Fig. 5.7. Equation (5.13) resulted in a mean diffusion coefficient of 

1.6 µm
2
/s and a standard deviation of 0.7 µm

2
/s, while Eq. (5.20) resulted in a larger 

mean diffusion coefficient of 1.8 µm
2
/s and a smaller standard deviation 0.6 µm

2
/s. The 

standard two-sample t-test rejected the null hypothesis of equal means, with a p-value 

< 10
-7

. Although the data is not normally distributed, the sample is large enough to 

allow the use of the t-test according to the central limit theorem. We also investigated 

the null hypothesis of equal means for the mean and the standard deviation of both 

distributions with a simple bootstrap test [34]. This approximate test was run with 10
7
 

bootstrap replications, resulting in a p-value of 0 for the mean and the standard 

deviation. We can thus safely assume a p-value < 10
-7

, allowing us to conclude that both 

the mean and standard deviation of both diffusion coefficient distributions are 

significantly different. This indeed indicates that fitting Eq. (5.20) to the     results in 

a more precise diffusion coefficient than using the classical     expression with two 

free fitting parameters according to Eq. (5.13). Interestingly, an entirely different 

approach to determine the diffusion coefficient has recently been reported, making use 

of the broadening of the observed intensity distribution because of the diffusion during 

image acquisition [35]. This method might be of interest when diffusion is too fast to 
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observe sufficiently long trajectories, but generally the     analysis should be 

preferred as it likely has a higher precision. 

 

 

Figure 5.7 | The diffusion coefficient obtained from observed mean square displacements. The 
distribution of the diffusion coefficients determined by least-squares fitting of the classic Eq. 
(5.13) (red line) and of Eq. (5.20) (blue line) to the     of the particle trajectories from the SPT 
experiments in the green channel for an image acquisition time of 10 ms. 

 

A practical consequence of our theory is that it allows to estimate an optimal image 

acquisition time for a given diffusion coefficient. To this end, it is instructive to write 

the theoretical centroid precision explicitly as a function of the image acquisition time. 

It is reasonable to assume that   =    , meaning that the number of photons   

increases linearly with the image acquisition time   , with   the observed photon 

emission rate. The localization precision in Eq. (5.12) can thus be rewritten as: 
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The first term always decreases with larger image acquisition times. In a first 

approximation, we can assume that the background mainly comes from out-of-focus 

light, so that it is Poisson distributed with variance    =    . 
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This causes the second term in Eq. (5.21) to increase with larger image acquisition times 

(see Fig. 5.8), resulting in an optimal localization precision for the following image 

acquisition time: 
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Beyond this point, the localization precision will deteriorate. This minimum, however, is 

quite weak and only occurs for long image acquisition times, for example around 274 

ms for typical parameters values used in our experiments (see Fig. 5.8). This would 

result in very slow frame rates and is therefore not an optimal image acquisition time 

when studying dynamic events. In practice, one will typically have to make a trade-off 

between the localization precision and a sufficiently high frame rate, using Eq. (5.22). 

 

 

Figure 5.8 | The image acquisition time for optimal localization precision. Illustration of the 
contribution of the photon shot noise term and the background noise term to the total centroid 
precision (see Eq. (5.21)) in function of the image acquisition time. Parameter values typical for 
our experiments (the green channel) were used in Eq. (5.21). The image acquisition time 
corresponding to the minimum precision (see Eq. (5.22)) is indicated as a square. 

 

Although only the case of free particle diffusion was treated in Section 5.2, one could 

wonder what the effect would be in case of anomalous sub- or super-diffusion. These 

types of motion can be described by a Gaussian probability distribution that is similar to 

the one for free diffusion, but with the diffusion coefficient replaced by a time-

dependent variable [3]. However, considering the increased complexity, it is likely not 

worth the effort, since the image acquisition time is short compared to the time scale 
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over which the     curve should be analyzed in order to detect anomalous diffusion. 

Indeed, for short time lags, the     curve is always nearly linear so that it seems 

sensible to describe the particle movement by free diffusion during the short image 

acquisition time. 

Besides the theoretical model, also a simple empirical method was presented that 

allows to experimentally determine the localization precision of moving particles. 

Usually, the localization precision is calculated experimentally by taking the standard 

deviation of the positions of the same particle determined at several time points. This 

approach is valid for stationary particles, but of course not for moving particles whose 

position is unknown and variable over time. The proposed dual-channel method 

calculates the localization precision using the standard deviation of the differences 

between the positions of two trajectories of the same particle, determined 

simultaneously in two different channels. In this study, we have made use of multi-

colour beads that are visible in two spectrally different channels. However, it should be 

noted that this method is not limited thereto, and it is equally possible to make use of 

e.g. a 50/50 mirror and detect the same image on two detectors (or two halves of a 

CCD chip as was done here). The only requirement for the dual-channel method to 

work is that the photons in both channels should be detected independently from each 

other. Noteworthy, this dual-channel method is not limited to a specific type of motion 

so that it could be also applied to other types of motion than free diffusion. 

 

5.6 CONCLUSION 

 

We have shown that movement during the image acquisition time degrades the 

precision with which single particles or molecules can be localized. In agreement with 

our theory, lateral movement in the focal plane was found only to affect the precision 

for large image acquisition times, while axial movement perpendicular to the focal 

plane always degraded the precision. Attention should be paid in case of fitting of a 

Gaussian function, because the deformation of the point spread function caused by 

lateral movement results in a rapid deterioration of the localization precision. The 

centroid algorithm does not suffer from this drawback and is, therefore, a more reliable 

position estimator for moving particles.  



Chapter 5 

150 

REFERENCES 

 

 1.  J. E. N. Jonkman and E. H. K. Stelzer, "Resolution and Contrast in Confocal and Two-Photon 
Microscopy," in Confocal and Two-Photon Microscopy : Foundation, Applications, and 
Advances, A. Alberto, ed., (Wiley-Liss, Inc., New York, 2002),  pp. 101-126. 

 2.  V. Levi and E. Gratton, "Exploring dynamics in living cells by tracking single particles," Cell 
Biochemistry and Biophysics 48, 1-15 (2007). 

 3.  M. J. Saxton and K. Jacobson, "Single-particle tracking: Applications to membrane 
dynamics," Annual Review of Biophysics and Biomolecular Structure 26, 373-399 (1997). 

 4.  S. Wieser and G. J. Schutz, "Tracking single molecules in the live cell plasma membrane-Do's 
and Don't's," Methods 46, 131-140 (2008). 

 5.  E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. 
Davidson, J. Lippincott-Schwartz, and H. F. Hess, "Imaging intracellular fluorescent proteins 
at nanometer resolution," Science 313, 1642-1645 (2006). 

 6.  W. E. Moerner, "New directions in single-molecule imaging and analysis," Proceedings of 
the National Academy of Sciences of the United States of America 104, 12596-12602 
(2007). 

 7.  S. Manley, J. M. Gillette, G. H. Patterson, H. Shroff, H. F. Hess, E. Betzig, and J. Lippincott-
Schwartz, "High-density mapping of single-molecule trajectories with photoactivated 
localization microscopy," Nature Methods 5, 155-157 (2008). 

 8.  R. J. Ober, S. Ram, and E. S. Ward, "Localization accuracy in single-molecule microscopy," 
Biophysical Journal 86, 1185-1200 (2004). 

 9.  N. Bobroff, "Position Measurement with A Resolution and Noise-Limited Instrument," 
Review of Scientific Instruments 57, 1152-1157 (1986). 

10.  R. E. Thompson, D. R. Larson, and W. W. Webb, "Precise nanometer localization analysis for 
individual fluorescent probes," Biophysical Journal 82, 2775-2783 (2002). 

11.  K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, "Optimized localization 
analysis for single-molecule tracking and super-resolution microscopy," Nature Methods 7, 
377-U59 (2010). 

12.  M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative comparison of algorithms 
for tracking single fluorescent particles," Biophysical Journal 81, 2378-2388 (2001). 

13.  R. N. Ghosh and W. W. Webb, "Automated Detection and Tracking of Individual and 
Clustered Cell-Surface Low-Density-Lipoprotein Receptor Molecules," Biophysical Journal 
66, 1301-1318 (1994). 

14.  Y. Wong, Z. P. Lin, and R. J. Ober, "Limit of the Accuracy of Parameter Estimation for Moving 
Single Molecules Imaged by Fluorescence Microscopy," Ieee Transactions on Signal 
Processing 59, 895-911 (2011). 

15.  M. Goulian and S. M. Simon, "Tracking single proteins within cells," Biophysical Journal 79, 
2188-2198 (2000). 

16.  X. Michalet, "Mean square displacement analysis of single-particle trajectories with 
localization error: Brownian motion in an isotropic medium," Physical Review e 82, (2010). 

17.  T. Savin and P. S. Doyle, "Static and dynamic errors in particle tracking microrheology," 
Biophysical Journal 88, 623-638 (2005). 



Chapter 5 

151 

18.  D. Montiel, H. Cang, and H. Yang, "Quantitative characterization of changes in dynamical 
behavior for single-particle tracking studies," Journal of Physical Chemistry B 110, 19763-
19770 (2006). 

19.  M. Born and E. Wolf, Principles of optics, (Cambridge University Press, Cambridge, 1999). 

20.  T. W. Quan, S. Q. Zeng, and Z. L. Huang, "Localization capability and limitation of electron-
multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and 
charge-coupled devices for superresolution imaging," Journal of Biomedical Optics 15, 
(2010). 

21.  M. S. Robbins and B. J. Hadwen, "The noise performance of electron multiplying charge-
coupled devices," Ieee Transactions on Electron Devices 50, 1227-1232 (2003). 

22.  A. Yariv, Quantum electronics, (John Wiley & Sons, Inc., New York, 1989). 

23.  M. Röding, H. Deschout, K. Braeckmans, and M. Rudemo, "Measuring absolute number 
concentrations of nanoparticles using single-particle tracking," Physical Review e 84, (2011). 

24.  K. Braeckmans, D. Vercauteren, J. Demeester, and S. C. De Smedt, "Single Particle Tracking," 
in Nanoscopy and Multidimensional Optical Fluorescence Microscopy, A. Diaspro, ed., (CRC 
Press / Taylor & Francis Group, Boca Raton, 2010). 

25.  J. C. Crocker and D. G. Grier, "Methods of digital video microscopy for colloidal studies," 
Journal of Colloid and Interface Science 179, 298-310 (1996). 

26.  I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai, and A. Kusumi, 
"Fluorescence imaging for monitoring the colocalization of two single molecules in living 
cells," Biophysical Journal 88, 2126-2136 (2005). 

27.  K. Braeckmans, K. Buyens, W. Bouquet, C. Vervaet, P. Joye, F. De Vos, L. Plawinski, L. 
Doeuvre, E. ngles-Cano, N. N. Sanders, J. Demeester, and S. C. De Smedt, "Sizing 
Nanomatter in Biological Fluids by Fluorescence Single Particle Tracking," Nano Letters 10, 
4435-4442 (2010). 

28.  J. R. Janesick, Scientific Charge-Coupled Devices, (SPIE - The International Society for Optical 
Engineering, Bellingham, Washington, 2001). 

29.  M. J. Saxton, "Single-particle tracking: The distribution of diffusion coefficients," Biophysical 
Journal 72, 1744-1753 (1997). 

30.  H. Qian, M. P. Sheetz, and E. L. Elson, "Single-Particle Tracking - Analysis of Diffusion and 
Flow in 2-Dimensional Systems," Biophysical Journal 60, 910-921 (1991). 

31.  S. Ram, E. S. Ward, and R. J. Ober, "A stochastic analysis of performance limits for optical 
microscopes," Multidimensional Systems and Signal Processing 17, 27-57 (2006). 

32.  S. Stallinga and B. Rieger, "Accuracy of the Gaussian Point Spread Function model in 2D 
localization microscopy," Optics Express 18, 24461-24476 (2010). 

33.  M. J. Saxton, "Single-particle tracking: The distribution of diffusion coefficients," Biophysical 
Journal 72, 1744-1753 (1997). 

34.  B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap, (Chapman & Hall/CRC, Boca 
Raton, 1993). 

35.  S. K. Zareh, M. C. DeSantis, J. M. Kessler, J. L. Li, and Y. M. Wang, "Single-Image Diffusion 
Coefficient Measurements of Proteins in Free Solution," Biophysical Journal 102, 1685-1691 
(2012). 

  



Chapter 5 

152 



 

153 

 

 

 

 

 

 

Chapter 6 

 

Correlation of dual colour single particle trajectories 
for improved detection and analysis of interactions in 
living cells 

 

This chapter is submitted for publication: 

 

Hendrik Deschout
1,2

, Thomas Martens
1,2

, Dries Vercauteren
1,2

, Katrien Remaut
1
, Jo 

Demeester
1
, Stefaan C. De Smedt

1
, Kristiaan Neyts

3,2
, Kevin Braeckmans

1,2
. 

 

1
Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Belgium 

3
Centre for Nano- and Biophotonics, Ghent University, Belgium 

3
Liquid Crystals and Photonics Group, Ghent University, Belgium 

  



 

154 

 



Chapter 6 

155 

ABSTRACT 

 

Interactions between objects inside living cells are often investigated by looking for 

colocalization between fluorescence microscopy images that are recorded in separate 

colours corresponding to the fluorescent label of each object. The fundamental 

limitation of this approach in case of dynamic objects is that coincidental colocalization 

cannot be distinguished from true interaction. Instead, correlation between motion 

trajectories obtained by dual colour single particle tracking provides a much stronger 

indication of interaction. However, frequently occurring phenomena in living cells, such 

as immobile phases or transient interactions, can limit the correlation to small parts of 

the trajectories. The method presented here, developed for the detection of 

interaction, is based on the correlation inside a window that is scanned along the 

trajectories, covering different subsets of the positions. This scanning window method 

was validated by simulations and, as an experimental proof of concept, it was applied 

to the investigation of the intracellular trafficking of polymeric gene complexes by 

endosomes in living retinal pigment epithelium cells, which is of interest to ocular gene 

therapy. 
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6.1 INTRODUCTION 

 

In the field of gene therapy, a lot of effort goes to the development of nanomedicines, 

with a size in the order of 100 nm, for the delivery of therapeutic nucleic acids to target 

cells [1]. The way such nanomedicines are processed inside these cells is one of the 

main determinants of their effectiveness. In order to optimize the performance of 

nanomedicines it is, therefore, important to understand how they interact with the 

intracellular constituents, such as endosomes, that are involved in their transport and 

final fate. Fluorescence microscopy is the ideal tool to make this type of information 

available, by simultaneously recording multi-colour live-cell images of fluorescently 

labelled nanomedicines and intracellular organelles [2-5]. 

The most common way of investigating interactions in multi-colour images is by 

comparing pixel values between colours, for which different quantification methods 

exist [6-11]. However, these pixel based methods are very susceptible to false positives, 

i.e. all labelled compounds closer together than the microscope resolution (usually 250 

nm or more) will contribute to the overall colocalization in the image. Fluorescence 

resonance energy transfer (FRET) offers an alternative that is not restricted by the 

resolution, but has a limited working range of 1-10 nm [12]. Another approach is 

looking for the colocalization of discrete objects, rather than individual pixel values [13-

18]. The basic condition here is that the objects of interest can be identified as separate 

entities in the microscopy images. One possibility to quantify object based 

colocalization is to compare their intensity weighted centre positions to each other 

[19]. The objects are classified as colocalized when their intensity weighted centre 

positions are closer together than a user defined maximum distance. Another 

possibility to quantify object based colocalization is to calculate the spatial overlap of 

the objects in both images [16]. Just like FRET, these object based methods are better 

in excluding false positives than pixel based colocalization, since the object positions 

can be determined with a precision much better than the microscope’s resolution 

[20,21]. 

In live-cell imaging, or any other application that involves dynamic events, the objects 

of interest, such as proteins or organelles, might be mobile. Two objects that are 

moving past each other by coincidence could, therefore, be identified as being 

colocalized by either the pixel or object based methods. This can be especially 

problematic in case of very dense object populations. One potential solution is to 

perform two-colour image cross-correlation spectroscopy (ICCS) [22,23]. Two 

interacting objects that move together will give rise to correlated fluorescence intensity 
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fluctuations between the two simultaneously recorded detection channels. 

Unfortunately, this method only provides information that is spatially averaged over 

the part of the image that is included in the analysis. Another solution that retains the 

spatial information is to look at trajectories of moving objects in dual colour time-lapse 

movies, as is done in single particle tracking (SPT) [24-26]. When two objects remain 

together for a significant amount of time (i.e. in multiple consecutive images), this is a 

strong indication that they are truly interacting. Recently, our group proposed an object 

based approach for investigating the interaction between moving objects based on the 

spatial correlation of their trajectories obtained by dual colour SPT [27]. When the 

correlation between the trajectories exceeds a certain threshold value, the 

corresponding objects are considered to be interacting. Interestingly, as correlation is 

translation independent, it does not require a user defined maximum distance and 

offers the possibility to detect interactions at any distance within the image. This was 

shown to give more reliable results than in case of classic object based analysis. 

However, an objective measure for the correlation threshold has not been determined. 

Also, as the published correlation method is based on calculating the correlation 

between complete trajectories, it performs suboptimal in case trajectories are not 

completely correlated. For instance, intracellular motion can exhibit variable mobility, 

including immobile phases that inherently do not correlate. Another example is 

photobleaching of fluorescent labels, which degrades the localization precision in the 

trajectories, in turn affecting their correlation. There is also the possibility of transient 

interactions that take place during only a short time span, restricting the correlation to 

only a part of the trajectories. If the uncorrelated part of the trajectories in these 

situations is sufficiently large, the correlation determined from all positions in the 

trajectories will not exceed the correlation threshold, despite (transient) interaction 

being present. A method that can identify correlation in smaller segments of the 

trajectories with an objectively determined correlation threshold is, therefore, 

required. In Chapter 6, such a method is presented, based on a scanning window 

approach in which the correlation is calculated over a limited number of positions 

within the trajectories. The optimal size of the window and the correlation threshold 

value are selected according to criteria that account for the localization precision in the 

trajectories and the mobility of the objects. The scanning window method is verified by 

simulations and applied to investigate the intracellular trafficking of polymeric gene 

complexes inside endosomes of living cells. 
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6.2 THEORY 

 

6.2.1 Identifying interaction by correlated motion 

As mentioned in Section 6.1, we have recently proposed a new approach to identify 

interaction [27]. Instead of looking for colocalization in terms of a maximum distance, 

interaction between two objects is assumed to result in trajectories whose positions 

are correlated in time. Consider two sequences of images in different colours acquired 

at time points    (with   = 1, …,  ). The observed motion trajectory   of an object in one 

colour is given by (  (  )   (  )), and the observed motion trajectory   of an object in 

the other colour is given by (  (  )   (  )). The Pearson correlation coefficient   

between the  -coordinates of both trajectories can be calculated from: 

 
  

∑ (  (  )  〈  〉)(  (  )  〈  〉)
 
   

√∑ (  (  )  〈  〉)
  

   ∑ (  (  )  〈  〉)
  

   

  
(6.1) 

with 〈  〉 and 〈  〉 the average  -coordinates of the trajectories   and  , respectively. 

The same definition applies to the  -coordinates. From now on, we will only consider 

the  -coordinates as the theory equally applies to the other dimensions. Define    and 

   as the localization precisions with which   (  ) and   (  ), respectively, were 

determined. Besides various experimental noise sources, the localization precision is 

essentially determined by the number of detected photons and their spatial 

distribution in the image [20,21]. Define    as the overlay precision with which both 

colour images are aligned, which can be calculated as the standard deviation of the 

differences between identical positions in the images after overlay [26]. 

The effect of   ,    and    on the correlation   between the trajectories is illustrated in 

Fig. 6.1, showing that, even if both objects are interacting, perfect correlation will not 

be obtained. This means that the computed correlation coefficient   < 1 should have a 

 -value smaller than 0.05, to make sure that it reflects true correlation rather than 

being obtained by coincidence under the null hypothesis that there is actually no 

correlation. However, a condition based on the  -value alone would mean that there is 

5% chance of getting false positives in case of non-correlated trajectories. To reduce 

this probability, a correlation threshold     , defined as the minimum correlation that 

is expected in case of correlated trajectories, can be imposed. As will be explained 

below, the      threshold value depends on   ,    and   , as well as on other 

trajectory properties. 



Chapter 6 

159 

 

Figure 6.1 | The effect of the localization and overlay precision on the observed trajectories. 
The localization precision    and    of the positions in the observed trajectories   (green) and   
(red), respectively, are defined as the standard deviation (dotted circles) of the observed 
positions around the true positions (black). The overlay precision    between the images is 
defined as the standard deviation of the differences (dotted lines) between identical positions in 
the images after overlay. 

 

6.2.2 Correlation threshold 

For a certain localization and overlay precision, the correlation threshold      can be 

defined as the minimum correlation with a  -value smaller than 0.05 that a pair of 

trajectories coming from interacting objects can have. Although the localization 

precision may vary to some extent along a trajectory, we will assume that it remains 

constant, as motivated in Section 6.2.3. 

First, consider the situation of an equal localization precision   =    =    in both 

trajectories and a perfect overlay precision    = 0. For Brownian or linear motion, which 

is common in live-cell imaging, it can be shown that the expected correlation   

between trajectories with   positions is completely determined by the relative 

localization precision   (see Appendix B): 

   
 

 
  (6.2) 
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where   is the mean step length in the trajectories, which can be estimated as: 

 
  

 

  
∑(|  (  )    (    )|  |  (  )    (    )|) 

 

   

 (6.3) 

The expected value of the observed correlation   is thus identical for all trajectory pairs 

with   positions and relative localization precision  , which means that the same 

correlation threshold      can be used for all these trajectories. 

It can be shown that the same applies to the general and more realistic case of    ≠    

and    ≠ 0 (see Appendix B). In this case, however, the localization precision   in Eq. 

(6.2) should be calculated according to: 
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(6.4) 

where    (  ) and    (  ) are the variances of the  -coordinates in the trajectories   

and  , respectively. 

 

6.2.3 Scanning window concept 

In many circumstances, such as live-cell imaging, objects usually exhibit a variable 

mobility. When a certain part of the trajectories exhibits low mobility, the local mean 

step length   is smaller than the value over the entire trajectory. From Eq. (6.2), it 

immediately follows that the local relative localization precision   degrades (i.e. the 

value   increases), which in turn decreases the correlation in this part of the 

trajectories. The same effect can be caused by a locally lower localization precision    

and   , as can be seen from Eqs. (6.2) and (6.4). Another effect that can cause a change 

in correlation along the trajectories is the presence of transient interactions, such as 

binding and unbinding events. These different situations are illustrated in Fig. 6.2. Thus, 

it is clear that assessing interaction by evaluating the correlation over the entire 

trajectories may not be optimal. 

One obvious solution to this problem lies in identifying correlation in smaller parts of 

the trajectories to which the framework of Section 6.2.2 can be applied. This idea leads 

to the scanning window method, as illustrated in Fig. 6.3. Basically, the correlation is 
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calculated in small overlapping subsets of trajectory positions, i.e. in a window that is 

scanned along the trajectories. If the observed correlation in a window has a  -value 

smaller than 0.05 and is larger than the threshold      for that window, the objects are 

considered to be interacting in that window. This threshold      depends on the size of 

the window and the local relative localization precision   (cfr. Eq. (6.2)). 

 

 

Figure 6.2 | The effect of a time dependent mobility, localization precision or interaction on the 
observed trajectories. The localization precision of the positions in the observed trajectory   
(green) and   (red), respectively, are defined as the standard deviation (dotted circles) of the 
observed positions around the positions of the true trajectories (black). When one part of the 
trajectories exhibits low localization precision, the local relative localization precision is high, 
degrading the correlation in that part. Also, when one part of the trajectories exhibits low 
mobility, the local relative localization precision is high, which in turn degrades the correlation in 
that part. When the objects do not interact in one part of the trajectories, there is even no 
correlation in that part. 
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This raises the important question of what is the optimal window size. On the one 

hand, the window should be as small as possible in order to have the best temporal 

resolution and to ensure that the variation in relative localization precision is minimal. 

On the other hand, the window should include a sufficient number of positions in order 

to detect correlation with sufficient statistical significance. Consider correlated 

trajectories and define   as the probability to observe a correlation with a  -value 

smaller than 0.05 inside a window with length  . Similar to the correlation threshold 

    , this probability   depends on the relative localization precision  . The optimal 

window length is then defined as the smallest   for which   becomes larger than a 

user defined value. Since the window size cannot be smaller than 3, each position will 

be evaluated in at least 3 different windows (except at the trajectory extremities). The 

probability that the correlation in at least one of those windows has a  -value smaller 

than 0.05 is given by 1 - (1- )
3
. A probability of more than 0.99 is achieved by   = 0.8, 

which is the threshold value for   used throughout this study. 

 

6.2.4 Numerical determination of      and   

The values of the correlation thresholds      (see Section 6.2.2) and the values of the 

probabilities   to identify the optimal window length (see Section 6.2.3) were obtained 

by simulating correlated trajectory pairs that represent windows of different sizes with 

different relative localization precisions. The simulations were performed in the Matlab 

programming environment (The Mathworks, USA). First, one-dimensional trajectories 

were simulated for each combination of trajectory length   and relative localization 

precision   from a set of pre-defined values (i.e.   = 3, 4, ..., 200 and   = 0.01, 0.02, ..., 

1.00). The number of simulated trajectories    depended on the trajectory length  , 

so that the total amount of positions from all trajectories together was approximately 

10
6
 in all cases (e.g. for   = 10, the number of trajectories was 10

5
). The type of motion 

was chosen to be Brownian motion, since it is common on a microscopic scale, and 

because unrelated Brownian trajectories on average do not exhibit correlation. The 

diffusion coefficient was taken to be   = 1 µm
2
/s and the time interval between 

subsequent positions was   = 0.1 s, resulting in a one-dimensional mean step of   = 

√    = 0.447 µm. The normally distributed step of the Brownian trajectories was 

simulated by the Matlab function randn. From each simulated trajectory, two 

correlated trajectories were extracted by separately adding two normally distributed 

values to each position of the simulated trajectory, again using the Matlab function 

randn. The standard deviation of the normal distribution for the extra value is the 

localization precision   =    (cfr. Eq. (6.2)). 
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Subsequently, the correlation   between both trajectories is calculated, using the 

Matlab function corrcoef together with its corresponding  -value, For each value of   

and  , let      be the number of trajectory pairs that are correlated with a  -value 

smaller than 0.05. Then   =       ⁄  is the probability of finding a statistically 

significant correlation   in case of interacting objects. The results are partially shown in 

Table 6.1. The minimum value of the statistically significant correlations is selected as 

the threshold correlation      for a given   and  , as partially shown in Table 6.2. Note 

that for the smallest trajectory lengths   sometimes a correlation   smaller than zero 

was found (anti-correlation) with a  -value larger than 0.05. These correlations were 

treated as if they were not statistically significant. Also note that the values of      do 

not always increase with the trajectory length  . When the trajectories are too short, 

only high enough correlations are statistically significant. Only from the point where the 

trajectories are long enough so that all correlations become significant (i.e.   = 1) does 

     increase with  . The practical use of Table 6.1 and 6.2 is explained in Section 

6.2.5. 

 

Simulated values of the probability   

   = 3   = 4   = 5   = 6 …   = 200 

  = 0.01 0.97177 0.99992 1 1  1 

  = 0.02 0.90433 0.99872 1 1  1 

  = 0.03 0.82096 0.99532 0.99980 1  1 

  = 0.04 0.73582 0.99020 0.99950 1  1 

  = 0.05 0.65341 0.98112 0.99815 0.99982  1 

…
 

      

  = 1.00 0.04623 0.07992 0.12200 0.19284  1 

 

Table 6.1 | Simulated values of the probabilities  . The probability   to observe a statistically 
significant correlation in a window with length   in a pair of trajectories coming from interacting 
objects with relative localization precision  . The values were obtained from simulations of 
completely correlated trajectories for different lengths   = 3, 4, …, 2   and different relative 
localization precisions   = 0.01, 0.02, ..., 1.00. 
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6.2.5 Scanning window method 

The main input for the scanning window method consists of the trajectory   given by 

(  (  )   (  )) and the trajectory   given by (  (  )   (  )) at the time points    

(with   = 1, 2, ...,  ). Other required input is the localization precision    and    of 

trajectory   and  , respectively, calculated within the window as it is scanned along the 

trajectories, and the overlay precision    between the images (see Section 6.3.4 for an 

explanation of how these values can be determined experimentally). 

 

Simulated values of the correlation threshold      

   = 3   = 4   = 5   = 6 …   = 200 

  = 0.01 0.99693 0.95043 0.97095 0.99242  0.99998 

  = 0.02 0.99692 0.95013 0.88554 0.89819  0.9999 

  = 0.03 0.99692 0.95003 0.88114 0.91113  0.99972 

  = 0.04 0.99692 0.95004 0.88418 0.87069  0.99965 

  = 0.05 0.99692 0.95001 0.87854 0.81552  0.99925 

…
 

      

  = 1.00 0.99693 0.95002 0.87836 0.81141  0.77525 

 

Table 6.2 | Simulated values of the correlation threshold     . The correlation threshold      is 
the minimum statistically significant correlation in a window with length   and local relative 
localization precision   in a pair of trajectories coming from interacting objects. The values are 
obtained from simulations of completely correlated trajectories for different lengths   = 3, 4, …, 
200 and different relative localization precisions   = 0.01, 0.02, ..., 1.00. 

 

Consider first the  -coordinates of the trajectories   and  . The scan starts at   (  ) 

and   (  ), with a window of size   = 3, which thus covers the  -coordinates from    

to   . The relative localization precision   in that window is calculated, according to Eqs. 

(6.2) to (6.4). For the relative localization precision   and the window length   = 3, the 

probability   can be derived from Table 6.1, after rounding the value of   to the 

nearest tabulated value. For example,   = 0.045 is rounded to 0.05, and the 

corresponding row in Table 6.1 shows   = 0.653 (for   = 3). If the window has a 
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probability   ≥  .8, it is considered to be the optimal window. If the window has a 

probability   < 0.8, it is extended to a size   = 4, covering the  -coordinates from    to 

  . In the same manner, the probability   is calculated in the new window. This 

procedure is repeated until the optimal window size is reached for which   ≥  .8. In 

case the window size would become larger than both trajectories   and  , the 

calculation is aborted as correlation cannot be determined with sufficient certainty. 

 

 

Figure 6.3 | An illustration of the scanning window method. A trajectory   and a trajectory   
are analyzed by the scanning window method. The scan happens in two directions (up and down) 
for both the  - and  -coordinates independently. For each position, the window size starts at   = 
3, and the probability   is calculated in the window (see Table 6.1). If   < 0.8 (red window), an 
extra position is included in the window, until an optimal window size with     0.8 is found 
(green window) for which the correlation is calculated. If the correlation is larger than the 
threshold      of the window (see Table 6.2) with a  -value smaller than 0.05, the positions in 
the window are assumed to interact (symbolized by binary values 1). If this is not the case, the 
positions are considered not to interact (symbolized by binary values 0). The results of the 
different windows and of both scans are combined according to the logical OR operation. The 
results of both coordinates are finally combined according to the logical AND operation. 
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Having determined the optimal window size   and the local relative localization 

precision  , the correlation threshold      can be determined from Table 6.2, again 

after rounding the value of   to the nearest tabulated value. Next, the correlation   

between  -coordinates from both trajectories within the window is calculated 

according to Eq. (6.1), together with the corresponding  -value. If the  -value is smaller 

than 0.05, and the correlation   is larger than the correlation threshold     , all  -

coordinates in the window are assigned a binary value 1 (see Fig. 6.3). In all other cases, 

a binary value 0 is assigned to all  -coordinates in that window. 

This procedure is repeated, starting at the next positions   (  ) and   (  ). The  -

coordinates of the trajectories   and   are further scanned, position by position, until 

  (    ) and   (    ) have been reached. Except near the start and end of the 

trajectory, the positions are evaluated at least three times by different windows. 

Therefore, for each position there are at least three binary values, indicating that 

correlation was found or not within a particular window. If correlation was found at 

least one time, the position is flagged as being correlated. This results in a list of binary 

values that identify the positions where the scan found correlation (see Fig. 6.3). The 

same scanning procedure is repeated in the other direction, starting from   (  ) and 

  (  ) and moving towards the start of the trajectory. The results from both scanning 

directions are combined so that a position is correlated if it was flagged in one of both 

scanning directions (see Fig. 6.3). 

The identical scanning window procedure as described above is applied to the  -

coordinates. Afterwards, interaction is assigned to a position if correlation was found in 

each dimension (see Fig. 6.3). The result is a list of binary values that identify the 

positions where the objects were found to interact. 

 

6.3 MATERIALS AND METHODS 

 

6.3.1 Validation simulations 

The scanning window method was validated by simulations in Matlab. Different sets of 

1000 pairs of two-dimensional Brownian motion trajectories with length   = 20 and 

time interval    = 0.1 s between successive positions were simulated. The Brownian 

motion step in each dimension was simulated with the Matlab function randn, 

assuming a standard deviation equal to the mean step   = √   . In most sets, the 

diffusion coefficient was taken   = 1 µm
2
/s, resulting in   = 0.447 µm. The two 
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trajectories of each simulated pair start at the same position, and remain identical as 

long as there is interaction, depending on the set. A normally distributed value was 

added to each coordinate of each trajectory separately, again using the Matlab function 

randn. The standard deviation of this normal distribution is the localization precision  , 

which is equal for both trajectories. The values of the localization precision were either 

chosen   = 4.47 nm or   = 44.7 nm, in order to obtain a relative localization precision   

= 0.01 or   = 0.10, respectively, according to Eq. (6.2). The overlay was taken to be 

perfect, i.e.    = 0. In one set, the localization precision was different in the first and 

second half of the trajectories. In another set, the diffusion coefficient was different in 

the two trajectory halves, both leading to local relative localization precisions in the 

windows that are variable. The different conditions of each set of simulated trajectories 

are listed in Table 6.3. The scanning window method is applied to each pair of 

simulated trajectories, as explained in Section 6.2.5. 

 

6.3.2 Live-cell sample preparation 

The preparation of the sample for the live-cell dual colour SPT experiments is described 

in detail elsewhere [27]. Briefly, ARPE-19 cells (retinal pigment epithelial cell line; ATCC 

number CRL-2302) were cultured in DMEM:F12 supplemented with 10% FBS, 2 mm L-

glutamine, and 2% P/S. All cells were grown at 37 °C in a humidified atmosphere 

containing 5% CO2. The pGL4.13 plasmid was labelled with Cy5 using the Label IT 

Nucleic Acid Labeling Kit (Mirus Bio Corporation, USA), according to the manufacturer's 

instructions at a 1:2 (v:w) ratio of Label IT Tracker Reagent and plasmid. Polymeric gene 

complexes were obtained by adding a poly(N,N’-cystaminebisacrylamide 4-

aminobutanol) (p(CBA-ABOL)) solution of 0.6 mg/mL to a plasmid solution of 0.05 

mg/mL in a final mass ratio of 48/1 in 25 mm HEPES buffer pH 7.2 and vortexing the 

mixture for 10 s. ARPE-19 cells were seeded at a concentration of 220.000 cells per well 

on sterile MatTek coverslips (1.5)-bottom dishes (MatTek Corporation, USA). The next 

day, cells were transfected with plasmids coding for the EGFP construct EGFPFlot2 

using Lipofectamine according to the manufacturer's description. Fresh polymeric gene 

complexes were diluted 5x in OptiMEM when added to the cells expressing fluorescent 

protein constructs, corresponding to 4 μg of Cy5-labeled plasmid. Intense contact with 

the cells was assured through repetitive pipetting at room temperature, allowing 

electrostatic adhesion of the polyplexes to the plasma membrane. Next, the cells were 

washed and imaged in fresh OptiMEM to chase the cell-associated fraction of polymeric 

gene complexes. 
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Trajectory properties in the validation simulations 

Situation Positions Interaction       

interaction,   = 0.01 1 -20 yes 1 µm
2
/s 0.447 µm 4.47 nm 

interaction,   = 0.10 1 -20 yes 1 µm
2
/s 0.447 µm 44.7 nm 

no interaction,   = 0.01 1 -20 no 1 µm
2
/s 0.447 µm 4.47 nm 

no interaction,   = 0.10 1 -20 no 1 µm
2
/s 0.447 µm 44.7 nm 

interaction, variable   

1 -10 yes 1 µm
2
/s 0.447 µm 4.47 nm 

11 - 20 yes 0.01 µm
2
/s 0.0447 µm 4.47 nm 

interaction, variable   

1 -10 yes 1 µm
2
/s 0.447 µm 4.47 nm 

11 - 20 yes 1 µm
2
/s 0.447 µm 44.7 nm 

transient interaction 

1 -10 yes 1 µm
2
/s 0.447 µm 4.47 nm 

11 - 20 no 1 µm
2
/s 0.447 µm 4.47 nm 

 

Table 6.3 | The conditions for each set of simulated trajectory pairs for the validation of the 
scanning window method. Each set consists of 1000 pairs of Brownian motion trajectories with 
trajectory length   = 20 and time interval corresponding to successive positions   = 0.1 s. The 
presence or absence of interaction, the diffusion coefficient  , the mean step  , and the 
localization precision   are listed in function of the trajectory positions. 

 

6.3.3 Experimental set-up 

The dual colour SPT experiments were carried out on a custom-built laser widefield epi-

fluorescence microscope set-up that is described elsewhere in detail [28]. Briefly, the 

microscope was a Nikon TE2000-E with a Nikon Plan Apochromat    = 1.4 oil 

immersion 100× objective lens (Nikon, Belgium). EGFP was excited with a 100 mW 

Calypso 491 nm diode pumped solid state laser (Cobolt, Sweden) and Cy5 was exited 

with a 30 mW IQ1C 636 nm diode laser (Power Technology, USA). The fluorescence 

light coming from the sample was collected again by the objective lens and sent 
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through the side port of the microscope towards a Cascade II:512 electron 

multiplication charge coupled device (EMCCD) camera (Roper Scientific, USA). A pair of 

achromat lenses was placed in between the camera and microscope side port for an 

extra 2× magnification of the image on the CCD chip so that one pixel corresponded to 

a distance of 89 nm in the sample. A dichroic mirror placed between both achromat 

lenses reflected the fluorescent light with a wavelength below 630 nm and transmitted 

the wavelengths above 630 nm. Accompanying mirrors and notch filters (AHF 

Analysentechnik, Germany) guided the reflected and transmitted part of the 

fluorescence each to one half of the CCD chip. High-speed movies were recorded using 

the Nikon NIS Elements (Nikon, Belgium) imaging software. The EMCCD camera was 

synchronized with an acousto-optical tunable filter to only illuminate the sample during 

the actual camera exposure time so as to minimize phototoxicity and photobleaching. 

The living cells were placed on the microscope in a stage top incubation chamber (Tokai 

Hit, Japan), set at 37 °C, 5% CO2, and 100% humidity. 

 

6.3.4 SPT experiments and analysis 

Movies of 60 seconds were recorded on different time points at a speed of 2 frames 

per second and with an image acquisition time of 30 ms. For each movie, a different cell 

was selected for imaging in order to minimize photobleaching and phototoxicity, and to 

obtain information on a large population of cells. Cells were chosen, based on a 

relatively low expression level of EGFP-constructs to minimize the possibility of a 

disturbed cell functioning. 

After recording the movies, the images in the two different colours (i.e. with 

fluorescence light above and below 630 nm) were aligned using an affine 

transformation. The transformation parameter values were determined from an image 

of immobilized TetraSpeck microspheres (Molecular Probes, Belgium) that are 

fluorescent in both colours. Image processing was performed in Matlab on all images 

for identification of the individual object spots, as explained in detail elsewhere [28]. 

The object locations were determined using an intensity weighted centroid algorithm, 

as it was recently shown that it is more robust than the fitting of a Gaussian function in 

case of moving objects [29]. Using a nearest neighbour algorithm, these positions were 

used to reconstruct the trajectories. Since the objects are moving, their position during 

image acquisition is unknown, making it impossible to determine the exact precision 

with which an individual intensity weighted centre has been determined. However, the 

average localization precision for an intensity weighted centre was calculated, 

according to Eq. (5.12) in Chapter 5. Besides the localization precision, the overlay 
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precision was determined as    = 3 nm for all movies by an experimental procedure as 

also explained in Section 5.3.4 of Chapter 5. 

The scanning window method is applied to each such pair of trajectories, as explained 

in Section 6.2.5. To restrict the calculation time, trajectory pairs that cannot realistically 

correspond to interacting objects are not considered, i.e. at least one pair of positions 

from both trajectories should be within a distance of 500 nm from each other, in both 

the  - and  -direction. When the method finds at least one window with correlation, 

the trajectories are assumed to originate from objects that, at least temporarily, 

interact with each other. When there are different candidate trajectories in one colour 

that are correlated with a certain trajectory in the other colour, the pair with the 

highest number of correlated positions is retained. 

 

6.4 RESULTS 

 

6.4.1 Validation by simulations 

The performance of the scanning window method was verified with simulated pairs of 

two-dimensional Brownian motion trajectories, as explained in Section 6.3.1. Brownian 

motion was chosen, not only because it is common on a microscopic scale, but also 

because random Brownian motion trajectories are not expected to be correlated. A 

number of different situations were considered (see Table 6.3), for each of which 1000 

trajectory pairs with length   = 20 and time interval   = 0.1 s between successive 

positions were simulated. 

The situation of complete interaction was investigated for a diffusion coefficient   = 1 

µm
2
/s. The results are shown in Fig. 6.4a, where for each position along the trajectories 

the percentage is shown of trajectories where the scanning window method has 

detected interaction. In case of high localization precision   = 4.47 nm, corresponding 

to a relative localization precision of   = 0.01 (cfr. Eq. (6.2) with   = √    = 0.447 µm), 

the scanning window method correctly finds 100% of the time interaction at almost 

every position. Only at the trajectory start and end points, the method performs slightly 

worse, with interaction correctly detected 98% of the time. This can be explained by 

the smaller number of windows that correspond to the trajectory extremities (see Fig. 

6.3). For lower localization precision   = 44.7 nm, corresponding to a relative 

localization precision of   = 0.10, the scanning window method behaviour is essentially 

the same. 
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As shown in Fig. 6.4a, these trajectories were also analysed with an earlier reported 

object based colocalization method that makes use of a maximum distance      = 

1.65√  
    

    
  to decide whether or not there is interaction at a particular 

position [26]. Here,      = 1.65√  , considering    =    =   and    = 0. At almost all 

positions, the colocalization method finds interaction 81% of the time, for both relative 

localization precisions   = 0.01 and   = 0.10. 

 

 

Figure 6.4 | Validation simulations for interaction and no interaction. The percentage of 1000 
pairs of simulated Brownian motion trajectories where the scanning window method has found 
interaction (black line) is shown for each position along the trajectories, in case of (a) interaction, 
and (b) no interaction. All simulated trajectories have a length   = 20, a diffusion coefficient   = 1 
µm

2
/s, and a time interval   = 0.1 s between successive positions. The localization precision was 

chosen   = 4.47 nm or   = 44.7 nm, corresponding to a relative localization precision of   = 0.01 
or   = 0.10, respectively. The same trajectories were also analysed with an object based 

colocalization method with      = 1.65√   as maximum distance (purple line). On the right, 
example pairs of trajectories are shown for the case of   = 0.10. 

 

Similarly, it was tested if the scanning window method can correctly detect the absence 

of interaction. This was investigated for a diffusion coefficient   = 1 µm
2
/s, the results 
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of which are shown in Fig. 6.4b. In case of high localization precision   = 4.47 nm, 

corresponding to a relative localization precision   = 0.01, the scanning window method 

finds that less than 1% of the trajectories are interacting at most positions (i.e. false 

positives). For lower localization precision   = 44.7 nm, corresponding to a relative 

localization precision   = 0.10, the method finds less than 3% false positives. The object 

based method with maximum distance      = 1.65√   finds that 81% of the 

trajectories are interacting at the first position, both in the case of   = 0.01 and   = 

0.10, since the trajectories were simulated to start in the same position (see Section 

6.3.1). From position 2, this percentage drops and remains below the percentage found 

with the scanning window method. 

Simulations were also carried out to evaluate the performance of the scanning window 

method in more complicated situations (representing the ones shown in Fig. 6.2). The 

case of complete interaction with a variable diffusion coefficient was investigated for   

= 1 µm
2
/s from position 1 to 10 and   = 0.01 µm

2
/s from position 11 to 20. This results 

in a corresponding local relative localization precision   = 0.01 and   = 0.10, 

respectively, since the localization precision   = 4.47 nm was constant at all positions. 

Thanks to the variable window size, the scanning window method finds interaction 

100% of the time at most positions, as shown in Fig. 6.5a. Only at the trajectory 

extremities, the method performs slightly worse, with interaction correctly detected 

98% of the time. Although the colocalization method with maximum distance      = 

1.65√   is not affected by differences in diffusion coefficient, only 81% of the 

trajectories is found to interact. 

Complete interaction was also investigated with a variable localization precision   = 

4.47 nm from position 1 to 10 and   = 44.7 nm from position 11 to 20. This results in a 

corresponding local relative localization precision   = 0.01 and   = 0.10, respectively, 

since the diffusion coefficient   = 1 µm
2
/s was constant at all positions. The scanning 

window method finds 100% of the time interaction at most positions, as shown in Fig. 

6.5b. The colocalization method with maximum distance      = 1.65√   is not 

affected by differences in localization precision, so that 81% of the trajectories is found 

to interact at all positions. 

Variable interaction was the last situation that was investigated, with the objects only 

interacting from position 1 to 10 and not interacting from position 11 to 20. The results 

are shown in Fig. 6.5c, for a relative localization precision of   = 0.01 (since   = 1 µm
2
/s 

and   = 4.47 nm). Comparison to Fig. 6.4 shows that the scanning window method 

performs as expected from the case of full interaction and no interaction The transition 

of interaction to no interaction is almost perfectly detected going from position 9 to 11 

with a resolution smaller than the expected window length   = 3 (see Table 6.1). 
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Figure 6.5 | Validation simulations for variable diffusion coefficient, localization precision and 
interaction. The percentage of 1000 pairs of simulated Brownian motion trajectories where the 
scanning window method has found interaction (black line) is shown for each position along the 
trajectories, in case of (a) full interaction with localization precision   = 4.47 nm, and a diffusion 
coefficient   = 1 µm

2
/s from position 1 to 10 and   = 0.01 µm

2
/s from position 11 to 20, (b) full 

interaction with a diffusion coefficient   = 1 µm
2
/s, and a localization precision   = 4.47 nm from 

position 1 to 10 and   = 44.7 nm from position 11 to 20, (c) a diffusion coefficient   = 1 µm
2
/s, a 

localization precision   = 4.47 nm, and interaction from position 1 to 10 and no interaction from 
position 11 to 20. All simulated trajectories had a length   = 20 and a time interval   = 0.1 s 
between successive positions. The same trajectories were also analysed with an object based 

colocalization method with      = 1.65√   as maximum distance (purple line). On the right, 
example pairs of trajectories are shown. 
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Also the colocalization method with maximum distance      = 1.65√   performs as 

expected, with interaction being found 81% of the time in the first half and virtually no 

interaction in the second half. 

The simulations show that the scanning window method is capable of reliably 

identifying interaction, independent of the relative localization precision. Even when 

parts of the trajectories are not correlated because of transient interactions, or exhibit 

low correlation because of a high local relative localization precision, the scanning 

window method is still able to detect interaction when it takes place. An important 

benefit to the object based colocalization method is that the scanning window method 

is significantly less sensitive for false negatives that cannot be avoided by object based 

colocalization. Furthermore, it is much less sensitive to false positives in case of 

coincidental colocalization. 

 

6.4.2 Intracellular trafficking of nanomedicines 

In pharmaceutical research, nanomedicines such as polymeric gene complexes 

(polyplexes) are being developed for the delivery of therapeutic nucleic acids to target 

cells, such as retinal pigment epithelium (RPE) cells in the context of ocular gene 

therapy [30]. To improve therapeutic efficacy, it is of interest to have a detailed 

understanding of the postendocytic trafficking profile of polyplexes inside such cells [1]. 

In previous work, we have investigated the presence of nanomedicines in different 

types of endosomes as a function of time in RPE cells. This was done, using dual colour 

SPT on living RPE cells with one colour corresponding to the fluorescently labelled 

endosomes and the other to the fluorescently labelled polyplexes [27]. Trajectories of 

both polyplexes and endosomes were determined from the SPT images. Colocalization 

of polyplexes in endosomes was measured by determining the correlation, as defined in 

Eq. (6.1), between the positions of the full trajectories in both colours. From here on, 

we will refer to this approach as the full trajectory method. This method was found to 

perform better than classic object based colocalization because it was less prone to find 

false positives and insensitive to false positives due to coincidental colocalization. 

However, interactions might be overlooked when they only result in correlation over a 

limited part of the trajectories (see Section 6.2.3). This is especially relevant in the 

context of intracellular traffic, since such trajectories often exhibit immobile phases 

that do not correlate. Moreover, transient interactions such as the escape of a polyplex 

from an endosome or the transferral of the polyplex to another type of (unlabelled) 

endosome also give rise to trajectory pairs that are not completely correlated. 
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Figure 6.6 | Interactions between endosomes and polyplexes measured by the scanning 
window method. (a) The percentage of polyplex trajectories that are interacting with a flotillin-2 
type endosome trajectory inside living RPE cells at different time points after uptake of the 
polyplexes is shown. The lines show the trend based on the average of three subsequent 
measurements, while the dots represent individual values corresponding to a single dual colour 
SPT measurement. The blue data corresponds to the full trajectory method and the red data 
corresponds to the scanning window method. A pair of trajectories was considered to interact 
when the scanning window method found interaction in at least one window. (b) An overlay 
image and the corresponding trajectories of the dual colour SPT measurement at 53 minutes are 
shown. The endosomes have a green fluorescent label and the polyplexes have a red fluorescent 
label. The trajectories are coloured accordingly and the positions where the scanning window 
method found correlation are indicated in blue. 

 

The scanning window method is, therefore, expected to perform better in the 

investigation of intracellular trafficking of nanomedicines than the full trajectory 

method, since it inherently is capable of detecting interaction in small segments of 

trajectories. As a proof of concept, we here apply the scanning window method to the 

dual colour SPT data for the flotillin-2 type of endosomes (more details on the 

experiments can be found in Sections 6.3.2 to 6.3.4). The measured percentage of 

polyplex trajectories that are interacting in at least one window with a flotillin-2 

endosome trajectory are shown in Fig. 6.6, together with the results obtained with the 

full trajectory method [27]. Each data point shows the percentage for a different dual 

colour SPT movie. The wide variability in values is caused by the variability between 

different living cells, since each experiment was performed on a different cell. 

Comparison between the values from both methods shows that the scanning window 

method finds on at least two times more interaction than the full trajectory method. 

The same qualitative trend is found as for the scanning window method, indicating that 

the underestimation of the full trajectory method is systematic, and should thus always 

be accounted for. Visual inspection of the trajectory pairs where the scanning window 
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method only finds correlation in a couple of positions, suggests that this is mostly 

caused by either a low mobility or low localization precision in a large part of the 

trajectories (cfr. Fig. 6.2). A clear example of transient interaction was also found, as 

shown in Fig. 6.7. Although this event could be interpreted as endosomal escape, it 

seems more likely that this is actually an endosomal fusion event where the polyplex is 

transferred to a different (unlabelled) type of endosome. 

 

 

Figure 6.7 | An example of transient interaction detected by the scanning window method. On 
the left, an overlay image from a dual colour SPT experiment recorded 100 minutes after uptake 
of the polyplexes. The flotillin-2 type endosomes have a green fluorescent label and the 
polyplexes a red fluorescent label. On the right, a subregion is shown with the corresponding 
trajectories at different time points, showing a transient event where the polyplex and endosome 
are at first exhibiting correlated motion, after which the polyplex moves away from the 
endosome. The trajectories are coloured according to the fluorescent labels, and the interacting 
positions found by the scanning window method are indicated in blue. The scanning window 
method finds interaction until 40 s, afterwards it becomes apparent that both objects are not 
interacting anymore. 

 

6.5 DISCUSSION 

 

We have recently reported correlation between entire trajectories as a measure for the 

interaction between two dynamic species that is less prone to false positives and false 

negatives than object based colocalization [27]. However, this full trajectory method 

might not detect correlation in situations that are often present in live-cell imaging, 

such as changing mobility or transient interactions (see Section 6.2.3). Moreover, an 

objective measure for a threshold value of the correlation between trajectories of 
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interacting objects was not determined. We, therefore, have developed a scanning 

window method, which allows spatial and temporal characterization of interaction by 

investigating the correlation in a window with a variable size that is scanned along the 

trajectories. The optimal window size depends on the local relative localization 

precision   (cfr. Eq. (6.2)) and is determined as the window size for which the 

probability     0.8. The correlation threshold      for the optimal window depends in 

turn on both the window size and the local relative localization precision  . The values 

of   and      can be determined from Table 6.1 and 6.2, respectively. 

The scanning window method was validated with simulated trajectory pairs (see 

Section 6.4.1). It was shown that the method is able to accurately identify interaction, 

independent of the relative localization precision   (see Fig. 6.4a). This should come as 

no surprise, since Table 6.1 and 6.2 were determined from similar simulated 

trajectories of interacting objects (see Section 6.2.4). The scanning window method, 

however, was demonstrated to perform well in the case of no interaction as well (see 

Fig. 6.4b). Only for a low relative localization precision  , the percentage of false 

positives was found to increase slightly. 

The performance of the scanning window method was also tested with simulated 

trajectory pairs that represent more complicated behaviour. In case of interaction along 

the entire trajectory, but with a changing diffusion coefficient, the scanning window 

method is still able to detect the interaction (see Fig. 6.5a), because of the variable 

window size that accounts for the changing relative localization precision. For the same 

reason, the method also performs well when the localization precision changes along 

the trajectory (see Fig. 6.5b). Interestingly, the scanning window method is very well 

capable of detecting transient interactions along trajectories. The point at which the 

transition from binding to unbinding or vice versa occurs, can be determined with 

excellent resolution. 

As a comparison, the same simulated data was also analysed with an earlier reported 

object based colocalization method that makes use of a maximum distance to decide 

whether or not there is interaction at a particular position [26]. As shown in Fig. 6.4a, 

this method was found to be sensitive for false negatives, i.e. interaction is significantly 

underestimated. It is also more sensitive to false positives in case of coincidental 

colocalization, which can happen when two independent objects pass by close to each 

other (see the first position in Fig. 6.4b). Thus it is clear that the scanning window 

method is a more reliable and robust method to detect interaction. 

As a proof of concept, the scanning window method was applied to the trajectories of 

polyplexes and endosomes inside living cells, obtained by dual colour SPT experiments 
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(see Section 6.4.2). When interaction is found in at least one window, the polyplex is 

considered to be residing in, or at least interacting with, the endosome. Compared to 

the previously published full trajectory method, the scanning window approach was 

better capable of detecting this interaction. This is because it is for instance not 

uncommon for endosomes to exhibit mobility that changes over time [31,32]. In 

addition, a variable localization precision can occur, e.g. when the fluorescent labels 

photobleach. Both issues cause a variable local localization precision   and thus a 

variable correlation along the trajectories. Correlation might also be degraded due to 

imperfect trajectory determination, for instance because of the difficulty to 

unambiguously track the objects in crowded environments that are often present in 

living cells. In some cases, mistakes are unavoidable, leading to trajectories that contain 

incorrect positions. When there is interaction, the parts of the trajectories that 

correspond to the interacting objects still correlate, and hence are found to interact by 

the scanning window method. A decrease in the overall correlation might also be 

caused by transient interactions, such as the escape of the polyplexes from endosomes, 

a process that is vital for the functioning of the polymeric gene complexes [1]. 

Comparison of the scanning window method with the full trajectory method [26], 

shows that the latter method misses at least half of the interactions (see Fig. 6.6). Since 

it only searches for correlation on the full trajectory scale, the conventional correlation 

method does not notice many of the trajectory pairs that only partly correlate, due to 

the reasons discussed above. Interestingly, the scanning window method was capable 

of detecting transient interactions like the one shown in Fig. 6.7, which can be 

interpreted as the transferral of a polyplex to an unlabelled type of endosome or 

possibly endosomal escape of the polyplex. 

The scanning window method could be tested on other types of motion besides 

diffusion, and Tables 6.1 and 6.2 for the determination of   and      could be adjusted 

if required. In the specific case that the objects are undergoing different types of 

motion, trajectory analysis could first be applied to determine the trajectory segments 

that correspond to these types of motion [33], which could then be analysed 

separately. 

 

6.6 CONCLUSION 

 

We have developed the scanning window method for measuring the interaction 

between moving objects in dual colour microscope time-lapse images. Employing a 
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scanning window along two trajectories in which the correlation between the positions 

is calculated, not only spatial but also temporal information about the interaction 

becomes available. The scanning window method was validated with simulations and 

applied to the trajectories of endosomes and polymeric gene nanoparticles in live-cells. 

Interaction was more reliably found with the scanning window method than by simple 

correlation analysis over the entire trajectory at once, which in turn was already proven 

to perform more reliably than the classic object based approach. The additional 

temporal information thus allows a more sensitive estimation of the interactions 

between objects, and moreover provides a means to detect transient interaction 

events. 
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ABSTRACT 

 

Cell-derived membrane vesicles (MVs) that are released in biofluids like blood, urine, or 

saliva, are currently emerging as potential non-invasive biomarkers for diseases, such as 

cancer. Techniques capable of measuring the size and concentration of specific types of 

MVs directly in biofluids, without the need for pre-processing steps, are urgently 

needed. As discussed in Chapter 3, single particle tracking (SPT) microscopy has the 

potential of doing exactly that, by labelling the MVs of interest with a specific 

fluorescent label (e.g. a labelled antibody) and analysing their Brownian motion in the 

biofluid. However, unbound dye in the biofluid can cause high background intensity 

that biases the SPT size and concentration measurements, since smaller and dimmer 

MVs are more easily missed. While such background can be avoided with light sheet 

illumination, current set-ups require specialty sample holders that are not compatible 

with high-throughput diagnostics. Here we report on a mass-manufacturable 

microfluidic chip with integrated light sheet illumination, and demonstrate accurate 

SPT size and concentration measurements of MVs in cell culture medium and in 

interstitial fluid collected from primary human breast tumours. 
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7.1 INTRODUCTION 

 

The relation between specific types of MVs in body fluids and disease progression, e.g. 

tumour growth and metastasis, is a topic that receives a lot of attention nowadays [1-

6]. The size, origin and concentration of cell-derived MVs could entail clinically relevant 

signatures with diagnostic and prognostic value [2,5,7]. Thus, substantial efforts have 

gone into evaluating and developing techniques suitable for submicron MV 

characterization in terms of specificity, size and concentration [8]. Specifically, due to a 

lack of standardized isolation and purification protocols and in order to avoid 

manipulation artefacts, techniques capable of performing MV characterization directly 

in body fluids are urgently needed [2,9,10]. 

Single Particle Tracking (SPT) was recently shown to be the first technique capable of 

accurately measuring the size distribution and number concentration of fluorescently 

labelled nanoparticles in undiluted biofluids, such as whole blood [11,12] (cfr. Section 

7.2.8). However, being based on epi-fluorescence microscopy, a limitation of the 

technique is limited contrast due to fluorescence coming from out-of-focus particles or 

unbound fluorescent dye, as illustrated in Fig. 7.1a. Especially the latter aspect can be 

problematic for SPT characterization of MVs that require staining with fluorescent 

labels targeted against specific membrane markers to detect MV subpopulations. As 

the concentration of MVs in e.g. a patient sample is unknown a priori, a surplus of 

labelled antibodies has to be added in order to be certain that all vesicles will be 

stained. This will typically result in a substantial fraction of unbound fluorescent labels 

in the sample medium and a concomitant decrease in contrast. Thus, smaller (dimmer) 

particles are more difficult to detect, resulting in an underestimation of the number 

concentration and a biased size distribution. This is especially of importance for a 

correct characterization of the smaller types of MVs, such as exosomes, with a size 

below 100 nm [10,13]. 

To enable high-throughput diagnostics of MVs in biofluids, we created a mass 

producible microfluidic chip with integrated light sheet illumination for SPT size and 

concentration measurements of submicron MVs that are fluorescently labelled directly 

in the biofluid without the need for isolation or purification steps. Light sheet 

illumination presents an attractive alternative to conventional epi-illumination as it 

combines superior contrast with real-time imaging, as is required to capture the MV’s 

fast Brownian motion [14-16]. 
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Figure 7.1 | Microfluidic chip with integrated waveguide for light sheet illumination. (a) 
Illustration of the (green) excitation and (red) fluorescence light path in epi-fluorescence and light 
sheet illumination. The contrast for the nanoparticles in focus is better with light sheet 
illumination because the nanoparticles and unbound dye out of focus are not illuminated. (b) 
Design of microfluidic chip with integrated waveguide for on-chip light sheet illumination. Laser 
light enters the planar waveguide by means of a butt-coupled optical fiber. While the laser light is 
confined in the vertical direction, it can spread horizontally in the waveguide so that a sheet of 
light emerges in the microchannel. The fluorescence light is collected by an objective lens whose 
focal plane coincides with the light sheet. The drawing is not to scale. 
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Although light sheet illumination has mainly been applied to mesoscopic imaging set-

ups for developmental biology [17-20], some reports demonstrate its usefulness for 

high-resolution imaging applications as well [14-16,21,22]. As illustrated in Fig. 7.1a, 

this requires two objective lenses positioned perpendicular to one another in very close 

proximity, one for creating the light sheet, the other one for imaging. This has been 

shown to be possible for SPT experiments in combination with custom made sample 

holders having two high-quality optical windows for illumination and imaging [14-16]. 

However, as they are difficult and expensive to manufacture [23], they are not suitable 

for high-throughput diagnostic assays for which inexpensive disposable sample holders 

are preferred to avoid extensive cleaning procedures and sample contamination. One 

solution has recently been reported in which the light sheet is incident from the top 

and reflected over 90° by a mirror that is positioned in the sample [24]. However, this 

still requires placing an extra objective lens for producing the light sheet in the position 

of the condenser of an inverted microscope. 

Here, we realize for the first time light sheet illumination in a mass-manufacturable 

microfluidic chip by coupling laser light into a planar waveguide structure in which a 

microchannel, containing the sample, is provided. The light sheet is characterized by 

acquiring a  -stack through the microchannel containing a dispersion of fluorescent 

nanospheres, indicating a Full Width at Half Maximum (FWHM) of ~9 µm. The contrast 

with which the nanospheres are visible is shown to improve substantially compared to 

classic epi-illumination, close to what has been achieved on dedicated light sheet 

microscopes. To demonstrate the potential of the microfluidic chip as a diagnostic tool, 

SPT measurements were performed of MVs in cell culture medium and in interstitial 

fluid collected from primary human breast tumours. Because of the high background 

intensity, the on-chip light sheet illumination is found to be essential for correct MV 

characterization. 

 

7.2 MATERIALS AND METHODS 

 

7.2.1 Chip fabrication process 

Multiple microfluidics chips with an integrated planar waveguide are simultaneously 

fabricated in one process on 10 cm diameter wafers. Two different types of wafers are 

used, standard silicon wafers and 145 µm thick borosilicate glass wafers. The wafers are 

first cleaned with an O2 plasma in a TepPla 300 plasma system. The clean room process 

exists out of 4 basic steps, as illustrated in Fig. 7.2. 
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Chip fabrication process 

Process step Details 

1. bottom cladding layer 

1.1 spin coating 

 10 s acceleration at 100 rpm/s 

 40 s at 1000 rpm 

 1 s acceleration at 400 rpm/s 

 1 s deceleration at 400 rpm/s 

 5 s at 1000 rpm 

 10 s deceleration at 100 rpm/s 

1.2 soft bake 
 25 min increase at 4°C/min starting from 20°C 

 25 min decrease at 4°C/min starting from 120°C 

2. core layer 
2.1 spin coating 

 5 s acceleration at 100 rpm/s 

 5 s at 500 rpm 

 30 s acceleration at 100 rpm/s 

 40 s at 3500 rpm 

 1 s acceleration at 400 rpm/s 

 1 s deceleration at 400 rpm/s 

 5 s at 3500 rpm 

 35s deceleration at 100 rpm/s 

2.2 soft bake idem to step 1.2 

3. top cladding layer 
3.1 spin coating idem to step 1.1 

3.2 soft bake idem to step 1.2 

4. photolithography 

4.1 UV exposure 

 13.5 s at 10 mW/cm2 

 10 s pause 

 13.5 s at 10 mW/cm2 

4.2 post exposure bake 

 40 min increase at 2°C/min 

 40 min bake at 95°C 

 uncontrolled cooling down for 90 min 

4.3 developing 

 3 min in PGMEA bath 

 2 min in other PGMEA bath 

 N2 drying 

 

Table 7.1 | The chip fabrication process. The process for fabrication of the microfluidics chip 
with integrated planar waveguide consists of 4 basic steps. Details on spin coating and 
subsequent post baking for each SU-8 layer are given in step 1-3. Details on the UV exposure and 
subsequent post bake and development for the 3-layer structure are given in step 4. 

 

First, SU-8 type GM 1060 (Gersteltec Sàrl, Switzerland) mixed with 6% of the epoxy 

resin D.E.R.
TM

 353 (The Dow Chemical Company, Belgium) is spin coated on the wafer 

using a Sawatec LSM 200 coater, to obtain a ~25 µm thick bottom cladding layer, 

followed by soft baking on a Sawatec HP 401 Z hotplate (see Table 7.1). Next, pure SU-8 

type GM 1060 is spin coated on the bottom cladding layer to obtain a ~5 µm thick core 

layer, again followed by a soft bake step. Finally, SU-8 type GM 1060 mixed with 6% of 
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the epoxy resin D.E.R.
TM

 353 is spin coated on the core layer to obtain a ~25 µm thick 

top cladding layer, followed by a final soft bake step. 

To create the microfluidic structures, the whole 3-layer structure is exposed to 270 

mJ/cm
2
 of the i-line (365 nm) of a Karl Suss MA 6 mask aligner using a Cr mask. Next, 

the structure is post exposure baked on a programmable hotplate, and developed in a 

wet bench using propylene glycol methyl ether acetate (PGMEA). Since SU-8 is a 

negative photoresist, the part that is not exposed to UV does not polymerize during 

post exposure bake, and is removed by developing with PGMEA. The wafer is finally 

diced with a Disco DAD 321 Automatic Dicing Saw, to obtain separate microfluidics 

chips that each contain a planar waveguide and microchannel with in- and outlet 

reservoir. 

 

 

Figure 7.2 | Illustration of the chip fabrication process. (a) In the first step, the bottom cladding 
layer that consists of SU-8 type GM 1060 mixed with 6% of D.E.R.

TM
 353 is spin coated on a glass 

or silicon wafer and soft baked. (b) In the second step, the core layer that consists of pure SU-8 
type GM 1060 is spin coated on the bottom core layer and soft baked. (c) In the third step, the 
top cladding layer that consists of SU-8 type GM 1060 mixed with 6% of D.E.R.

TM
 353 is spin 

coated on the core layer and soft baked. (d) In the fourth step, the 3-layer structure is exposed to 
UV light using a mask, post baked, and developed, in order to create a microchannel of 100 µm 
width. 
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7.2.2 Microscope set-up 

Excitation light is coupled into the planar waveguide of the chip by illuminating the 

waveguide core layer with the output of an optical fiber. The cleaved side of a single 

mode patch cord fiber (Newport, The Netherlands) with an operating wavelength of 

633 nm is used for this purpose. The other side of the patch cord contains an FC/PC 

connector which is used for coupling laser light into the fiber. Excitation light with a 

wavelength of 640 nm is provided by a 100 mW diode-pumped Excelsior solid state 

laser (Spectra Physics, The Netherlands). The fiber core is carefully aligned with the 

planar waveguide core layer using an ULTRAlign precision linear stage (Newport, The 

Netherlands). This is possible by using a standard CCD camera to monitor the 

waveguide exit at the other side of the chip, see Fig. 7.3a. Optimal alignment between 

fiber and waveguide results in a light sheet in the microchannel, and part of this light 

enters the second half of the planar waveguide. This situation is thus obtained when a 

maximum amount of light emerges from the core layer at the waveguide exit, as 

depicted in Fig. 7.3b. 

 

 

Figure 7.3 | Coupling the excitation light into the planar waveguide. (a) A cross section of the 
set-up showing the fiber that is used to couple the excitation light into the planar waveguide. The 
fluorescence light from the sample in the microchannel is detected by the objective lens of the 
microscope. Successful incoupling of the excitation light into the planar waveguide can be 
monitored by imaging the other side of the chip. (b) In case of successful alignment between 
fiber and planar waveguide, the waveguide output as seen by the camera exhibits a clear line 
profile at the centre of the waveguide. 

 

The chip with fiber is placed under a Nikon Plan Fluorite 40× objective lens with a 

numerical aperture (  ) of 0.75, using an objective lens inverter (LSM Tech, USA) 
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connected to a Nikon TE 2000-E microscope (Nikon, Belgium), see Fig. 7.4. The 

fluorescence light coming from the sample is collected by the objective lens, as shown 

in Fig. 7.3a, and imaged on an electron multiplication charge coupled device (EMCCD) 

Cascade II:512 camera (Roper Scientific, USA). A pair of achromat lenses is placed in 

between the camera and microscope side port for an extra 2× magnification of the 

image on the EMCCD chip so that one pixel corresponds to a distance of 196 nm in the 

sample. High-speed movies and image stacks are recorded using the Nikon Elements AR 

imaging software. 

 

 

Figure 7.4 | Photograph of the microscope set-up. A chip with silicon substrate is placed under 
an objective lens that is attached to an objective lens inverter that sends the fluorescence light to 
the microscope. The cleaved side of a fiber core is carefully aligned with the core layer of the 
planar waveguide using precision linear stages. 
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7.2.3 Simulation of the light sheet 

Assume a planar waveguide with a core layer of 5 µm thickness surrounded by two 

cladding layers of 25 µm thick. The core layer has a refractive index     = 1.595 of SU-8, 

and both core layers have a refractive index     = 1.594 of SU-8 mixed with epoxy resin 

[25]. Consider further a sample with the same refractive index as water     = 1.333 and 

light with a wavelength of   = 640 nm. We have simulated the behaviour of the 

fundamental waveguide mode exiting the planar waveguide into the sample, using the 

Python eigenmode modelling framework CAMFR (http://camfr.sourceforge.net/). 

 

7.2.4 Experimental characterization of the light sheet  

Since out-of-focus light is not rejected in the detection path of the microscope, it is not 

possible to indirectly characterize the light sheet by simply measuring the intensity of a 

fluorescent sample in function of the  -position. However, if the sample is a dispersion 

of fluorescent particles, the background corrected intensity       of the particles in 

focus does not contain out-of-focus contributions, with    the intensity of the particle 

and    the local background intensity. Using image processing, the light sheet can thus 

be characterized by the background corrected intensities of the particles in focus in 

each image of  -stack. The range where the light sheet is located, manifests itself as an 

intensity peak, and the FWHM of that peak is a measure of the light sheet thickness. 

Care should be taken when measuring differences between  -positions in microscopy, 

because it is necessary to account for the possible mismatch between the refractive 

index of the objective lens immersion medium     and the refractive index of the 

sample    . In case of a mismatch, the real  -position difference     will not be equal 

to the observed difference    . We have measured the microchannel height to be 56.6 

µm with a Dektak 150 profilometer (Veeco, Germany), which is in good agreement with 

the 55 µm as expected from the fabrication process. On the other hand, the  -stacks of 

images recorded in the microchannel suggest a height of 41.1 µm. This leads to the 

following correction for the refractive index mismatch: 

              (7.1) 

This is close to the ratio of the refractive index     = 1.333 of the water, which is the 

sample medium, and the refractive index of air     = 1, which is the objective lens 

immersion medium, as suggested for low    [26]. The reported values in the 

manuscript are corrected for this effect. 
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The light sheet is characterized for both the glass and silicon chip. The microchannel is 

filled with a water dispersion of dark red fluorescent (660 nm excitation peak, 680 nm 

emission peak) polystyrene 0.2 µm diameter FluoSpheres (Molecular Probes, Belgium). 

A  -stack of images with a step of 0.1 µm is recorded throughout the microchannel, 

with both sheet illumination and epi-fluorescence illumination. In each frame of the 

stack, the intensity and local background of each particle was determined off line [27]. 

The FWHM of the light sheet peak is obtained by fitting a two-dimensional Gaussian 

function to the average background corrected intensity       in function of the  -

position. 

 

7.2.5 Contrast measurements 

The contrast is measured by recording images of a dispersion of fluorescent particles 

inside the light sheet. Using image processing, the intensity    and local background    

of each particle is determined, and (     ) (     )⁄  is used to quantify its contrast 

[14]. 

The contrast is measured in both the glass and silicon chip. The microchannel is filled 

with a water dispersion of dark red fluorescent (660 nm excitation peak, 680 nm 

emission peak) polystyrene 0.2 µm diameter FluoSpheres (Molecular Probes, Belgium). 

To mimic different fluorescent backgrounds, different concentrations of the red dye 

Cy5 are added to the water. The microscope was focused at the centre position of the 

light sheet and several images were recorded with epi-illumination and light sheet 

illumination. In each image, the average contrast of the nanospheres was calculated off 

line [27]. 

 

7.2.6 Isolation, sizing, and labelling of breast cancer cell-line derived 

membrane MVs 

The MCF-7 breast cancer cell line [28] stably transfected with GFP-Rab27B was 

maintained at 37°C and 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM, 

Invitrogen, Belgium) supplemented with 10% fetal bovine serum (FBS) and 

penicillin/streptomycin. For MV production, cells were cultured in DMEM 

supplemented with 10% exosome-depleted FBS (Exo-FBS
TM

, System Biosciences, 

Belgium) for 48 hours. MVs were isolated from the conditioned medium by differential 

centrifugation. Briefly, conditioned cell culture medium was successively centrifuged at 

300 g for 10 minutes, 3000 g for 10 minutes and 15000 g for 30 minutes and the 
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supernatant was collected after each step. Next, the supernatant was concentrated 

using a Vivaspin 20 with molecular weight cut-off 50 kDa (Sartorius, Belgium) to a 

volume of about 5 ml. The MVs were then pelleted by ultracentrifugation (UC) for 70 

minutes at 120 000 g, washed with phosphate buffered saline (PBS) and again pelleted 

by UC at 120 000 g for 70 minutes. Finally the MV pellet was resuspended in 200 µl PBS. 

After diluting 5× in PBS, the MV size distribution was measured by dynamic light 

scattering measurements at 25°C on a Nano-ZS (Malvern, UK). The MVs were 

fluorescently labelled by mixing 3 µl of the isolated MVs with 6 µl HEPES buffer, 1 µl 

10× Annexin V binding buffer (100 mM HEPES, 1.4 M NaCl, and 25 mM CaCl2, pH 7.4) 

and 0.1 µl Annexin V alexa fluor 647 (Molecular Probes, Belgium). The sample was 

gently mixed and incubated in the dark for 15 minutes at room temperature prior to 

measurement. 

 

7.2.7 Fluorescent labelling of MVs in tumour interstitial fluid 

Primary breast cancer resection specimens were collected at Ghent University Hospital. 

Written informed consent was obtained from each patient according to the 

recommendations of the local ethics committee. About 0.25 g of clean fresh tissue was 

cut into small pieces (1-2 mm
3
), washed carefully with PBS, and incubated in 1 ml PBS 

for 1 hour at 37°C in a humidified CO2 incubator. The samples were centrifuged [29] at 

500 g for 10 minutes and 1500 g for 20 minutes. Without any further purification, 4 µl 

of the final supernatant (i.e. tumour interstitial fluid) was mixed with 8 µl of Annexin V 

binding buffer (10 mM HEPES, 140 mM NaCl, and 2.5 mM CaCl2, pH 7.4) and 4 µl of 

Annexin V alexa fluor 647 (Invitrogen, Belgium). The sample was gently mixed and 

incubated in the dark for 15 minutes at room temperature prior to measurement. 

Note that size measurements by DLS are not an option in this case due to the high 

protein content and the presence of other light scattering compounds in biofluids like 

interstitial fluid. Neither does DLS allow to perform concentration measurements, nor 

can it detect a specific subtype of MVs as can be easily achieved with SPT by using 

specific labelled antibodies. 

 

7.2.8 SPT size distribution and number concentration measurements 

SPT measurements can be used to determine the number concentration and size 

distribution of particles undergoing Brownian motion in a dispersion [11,12], as 

explained in Chapter 3. Briefly, first a movie is recorded of the diffusing particles and 
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their motion trajectories are determined, using image processing. From the mean 

square displacement, a diffusion coefficient can be estimated for each individual 

trajectory. This leads to a distribution of diffusion coefficients when many particles are 

analysed. A maximum entropy deconvolution step can subsequently be applied to this 

distribution to reduce sampling noise and improve its precision [11]. The distribution of 

diffusion coefficients can be converted to a size distribution via the Stokes-Einstein 

relation: 

 
  

  

    
  (7.2) 

where   is the Boltzmann constant,   is the temperature,   is the viscosity of the 

sample liquid, and   is the particle diameter. The number concentration can be derived 

from the trajectories as well, since the observation volume can be inherently calibrated 

from the time that particles appear in focus [12]. By knowing the detection volume and 

the number of particles in each image, the number concentration immediately follows. 

The SPT experiments for determination of the size and concentration are performed in 

a silicon chip. The microchannel is filled with the dispersion of fluorescently labelled 

cell-derived MVs, and the objective lens is positioned so that the focal plane coincides 

with the intensity peak of the light sheet. Subsequently, between 10 and 20 movies 

with a duration time of 10 seconds are recorded with a frame rate between 22.6 and 

27.6 frames per second, an image acquisition time between 20 and 30 ms, and an 

image size between 436 and 450 pixels in the  -direction, and between 124 and 192 

pixels in the  -direction, with a pixel size of 196 nm. Particle trajectories are calculated 

off line [27]. Only trajectories of minimally 5 positions are included in the size and 

concentration analysis to remove false positives (noisy features in the image that are 

sometimes seen as particles by the image processing software). All SPT experiments 

were performed at 22.5° C. 

 

7.3 RESULTS AND DISCUSSION 

 

To obtain on-chip light sheet illumination, a mass-manufacturable microfluidic chip was 

designed that consists of substrate with a planar waveguide on top in which a 

microchannel is provided, as illustrated in Fig. 7.1b. The fabrication process of the chip 

is explained in detail in Section 7.2.1. Briefly, the chip is constructed on a glass or silicon 

substrate on top of which a planar waveguide structure is created consisting of 3 layers 
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of SU-8 that are sequentially deposited by spin coating followed by a soft bake step. 

The refractive index of the bottom and top layer (~25 µm thickness each) is lowered by 

mixing the SU-8 with the epoxy resin D.E.R.
TM

 353, making these layers suitable as 

waveguide cladding while the middle layer (~5 µm thickness) acts as waveguide core 

[25]. Finally, a microchannel of 100 µm width containing in- and outlet reservoirs is 

created in the SU-8 waveguide using standard photolithography (see Fig. 7.5a-b). 

 

 

Figure 7.5 | Photographs of the microfluidic chips with planar waveguide for light sheet 
illumination in a microchannel. (a) Image of a silicon wafer with 20 planar waveguides and 
microchannels made from SU-8 after photolithography. (b) Light microscopy image of a 
microfluidic chip showing the 100 µm wide microchannel. (c) Image of microfluidic chip with glass 
substrate on top of a PDMS block. (d) Image of microfluidic chip with silicon substrate covered 
with a microscope cover slip. 

 

The entire process is carried out on a 10 cm diameter wafer, thus obtaining 20 chips in 

parallel after dicing. Chips based on the glass substrate are covered with a 

polydimethylsiloxane (PDMS) block to seal the microchannel and to provide in and 

outlets for the sample (see Fig. 7.5c). Imaging of the sample is then performed through 

the 145 µm thick glass substrate. Chips based on the silicon substrate are sealed with a 

microscopy cover slip containing a thin layer of PDMS through which the sample in the 
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microchannel can be imaged (see Fig. 7.5d). The chips are mounted on a fluorescence 

microscope for image acquisition of the diffusing nanoparticles. Laser light of 640 nm is 

coupled into the waveguide using an optical fiber attached to a high precision 

alignment stage (cfr. Section 7.2.2). 

Simulations of the fundamental propagating light mode (see Section 7.2.3) show that 

such a planar waveguide is capable of producing a light sheet with a fairly uniform 

thickness over a large field of view. As shown in Fig. 7.6, the FWHM of the spatial 

intensity distribution coming from the fundamental TE mode is around 4.6 µm right 

outside the waveguide. At a distance of 50 µm outside the waveguide, the FWHM is 

around 5.4 µm, and at distance of 100 µm it has increased to 7.5 µm. This indicates that 

the light sheet generated by the planar waveguide based on SU-8 does not strongly 

diverge over distances that are typical for the field of view in SPT experiments. 

 

 

Figure 7.6 | Simulation of the light sheet generated by a planar waveguide in a water sample. 
(a) Visualization of the real part of the TE field of the fundamental mode exiting the waveguide. 
The core layer has a thickness of 5 µm and a refractive index     = 1.595, the two surrounding 
cladding layers have a thickness of 25 µm and a refractive index     = 1.594, and the sample 
(water) has a refractive index     = 1.333. (b) The spatial intensity distribution of the light sheet 
along the  -axis directly outside the waveguide at   = 0 µm has a FWHM = 4.6 µm. At a distance   
= 50 µm from the waveguide this becomes FWHM = 5.4 µm, and after   = 100 µm it becomes 
FWHM = 7.5 µm. The behaviour of the fundamental TM mode is similar. 

 

The actual light sheet of both types of chips was characterized by acquiring a  -stack 

through the microchannel containing a dispersion of 0.2 µm fluorescent polystyrene 

nanospheres (for details, see Section 7.2.4). The light sheet intensity profile along the 

optical axis (i.e. perpendicular to the sheet of light) was calculated from the average 

intensity of the nanospheres visible in each frame of the  -stack. The average intensity 

profile across the entire channel width is shown in Fig. 7.7a, resulting in an average 

thickness of ~9 µm FWHM. The smaller intensity peaks visible in the intensity profiles 
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indicate that the waveguide is likely multimodal which could explain the slight 

difference with the theoretical calculations. 

 

 

Figure 7.7 | Experimental characterization of the light sheet and contrast. (a) Average light 
sheet intensity profile along the optical axis of the microscope imaging lens. Contrary to epi-
illumination (blue data points), illumination through the planar waveguide results in excitation 
light that is restricted to a thin region at the centre of the channel with a FWHM of ~9 µm (red 
data points). (b) In order to determine the gain in contrast using light sheet illumination versus 
epi-illumination, the microchannel is filled with a dispersion of 0.2 µm fluorescent polystyrene 
nanospheres. To mimic different values of background intensity, different concentrations of the 
red fluorescent dye Cy5 are added. Images are recorded using both illumination modes with the 
microscope focused at the centre of the light sheet. Example images obtained with a silicon chip 
are shown to the left. Contrast values for a range of Cy5 concentrations using the silicon and 
glass chip are shown to the right. The error bars represent the standard deviation. 
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Figure 7.8 | On-chip SPT concentration and size measurements of cell-derived membrane 
vesicles. (a) SPT size distribution and number concentration measurements are performed on 
cell-derived MVs in cell culture medium. The MVs are clearly visible when using light sheet 
illumination, while only a few particles are visible in conventional epi-illumination mode due to 
the much higher background fluorescence. This results in a 4× underestimation of the number 
concentration and a bias towards larger (and brighter) MVs for epi- vs. sheet-illumination. (b) 
Similar SPT experiments are performed on MVs in patient derived interstitial fluid. The MVs are 
visible when using light sheet illumination, while almost no particles are visible in epi-illumination 
mode. A meaningful concentration and size distribution could only be obtained when using sheet 
illumination. 

 

The aim of light sheet illumination is to improve the contrast, which was quantified for 

both chips according to (     ) (     )⁄ , with    the intensity of the nanoparticle 

and    the average local background intensity [14]. The microchannel was filled with a 

dispersion of 0.2 µm fluorescent polystyrene nanospheres containing various amounts 

of Cy5 dye to simulate different background intensities coming from free dye. As shown 

in Fig. 7.7b, compared to classic epi-illumination, a contrast improvement of 1.5 - 2.4× 

was obtained in the glass chip, and 1.9 - 6.4× in the silicon chip, depending on the 

background intensity (cfr. Section 7.2.5). This improvement approaches the 
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performance of light sheet illumination as created with a high quality objective lens 

(see Fig. 7.1a) [14]. The better relative increase in contrast with the silicon chip is due 

to the light intensity almost going to zero at the edges of the light sheet, which is not 

the case for the glass chip (cfr. Fig. 7.7a). However, in absolute terms the glass chip 

produced the best contrast as the silicon chip suffers from a higher background 

intensity due to the reflectivity of the silicon substrate (i.e. a doubling of the 

background intensity). 

 

 

Figure 7.9 | Cell-derived membrane vesicle size distribution obtained by dynamic light 
scattering. Size distribution measurements are performed by dynamic light scattering on cell-
derived MVs in cell culture medium. The MVs have a diameter between 50 nm and 700 nm with a 
peak around 170 nm. 

 

In a next step, on-chip SPT size and concentration measurements were performed of 

cell-derived MVs isolated from the conditioned cell culture medium of breast cancer 

cells [30] (cfr. Section 7.2.6). An excess of fluorescently labelled Annexin V was used to 

label the cell-derived MVs which are known to expose phosphatidylserine (PS) on their 

surface [13], followed by on-chip SPT analysis without additional purification. As shown 

in Fig. 7.8a, using sheet illumination, the majority of the MVs were situated in the 50 - 

700 nm size range (in agreement with dynamic light scattering, see Fig. 7.9), and the 

overall number concentration was 8.4 ∙ 1 
8
 #/ml. Using conventional epi-fluorescence, 

a 4× lower concentration of only 1.9 ∙ 1 
8
 #/ml was found with a size distribution that is 

clearly shifted towards larger values. 
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To demonstrate the potential of the microfluidic chip with integrated planar waveguide 

as a diagnostic tool, SPT measurements were performed on cell-derived MVs secreted 

in the interstitial fluid harvested from fresh human breast cancer specimens [29] (see 

Section 7.2.7). To ensure optimal fluorescent labelling of PS-exposing MVs present in 

the interstitial fluid, again an excess of dye-conjugated Annexin V was added. 

Subsequent on-chip SPT analysis was performed without any additional purification 

steps to remove unbound label. A broad distribution of cell-derived MV sizes was found 

in the interstitial fluid, as shown in Fig. 7.8b. The majority of the MVs are situated in the 

90 - 900 nm size range, with a total number concentration of 4.1 ∙ 1 
8
 #/ml. Using 

conventional epi-fluorescence the background fluorescence was so high that only very 

few MVs were visible and no meaningful size distribution or concentration could be 

determined. This once more clearly demonstrates that improving contrast by light 

sheet illumination is essential for correct MV characterization, especially when there is 

a high background intensity due to out of focus particles and unbound fluorescent dye. 

 

7.4 CONCLUSION AND FUTURE OUTLOOK 

 

Here, we have produced a mass-manufacturable microfluidic chip with integrated light 

sheet illumination, and successfully demonstrated that it allows accurate SPT size and 

concentration measurements of MVs in cell culture medium and in interstitial fluid 

collected from primary human breast tumours. 

Nonetheless, further optimization of the chip’s performance should be possible. Based 

on the simulated light sheet created by the fundamental propagating light mode, it 

seems that at least 30% reduction of the light sheet thickness should be possible by 

reducing the core thickness and fine-tuning of the refractive indices of core and 

cladding layers so as to obtain a monomodal waveguide. This requires optimization of 

the fabrication process, including the amount of D.E.R.
TM

 353 in the cladding layers, 

spin coating speeds, and baking times. In case of the silicon chip, contrast could be 

further improved by applying a non-reflective coating (e.g. black SU-8 formulations) on 

the silicon wafer before spin coating of the waveguide structure. Furthermore, 

automation of the coupling of light from the fiber into the waveguide is expected to 

make the chip more suitable for high-throughput measurements. 

Interestingly, one other type of microfluidic chip was recently reported for MV 

characterization in biological fluids based on labelling with magnetic nanoparticles and 

miniaturized nuclear magnetic resonance detection [7]. Although it was shown to be 
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capable of discriminating different types of MVs with high sensitivity, it does not 

feature independent size and concentration measurements. In contrast, the 

microfluidic chip presented here is much simpler in design, can be mass-fabricated at a 

low cost, and allows at the same time MV identification, as well as size and 

concentration measurements. Thus, it opens the possibility to be used as a diagnostic 

tool that combine low cost, ease of use, and sensitivity [31,32]. 
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A variety of nanoparticles, like nanomedicines or biological vesicles, play an important 

role in many emerging pharmaceutical technologies. The efficient and rational 

development of these technologies can, therefore, strongly benefit from a detailed 

knowledge of the characteristics of these nanoparticles within the relevant biological 

materials. A suitable technique for this purpose is fluorescence microscopy, as it allows 

to non-invasively visualize fluorescently labelled nanoparticles with excellent specificity 

in biomaterials. However, the limited spatial resolution in optical microscopy restricts 

these observations to the micrometer scale. Advanced methods based on fluorescence 

microscopy are, therefore, developed to determine nanoparticle properties in an 

indirect way, based on their motion inside the biomaterials. 

The topic of PART I was FRAP, an advanced fluorescence microscopy based method 

that is capable of measuring the diffusion and interaction of fluorescently labelled 

molecules or nanoparticles inside biomaterials. FRAP has already found a variety of 

applications in pharmaceutical research, as reviewed in Chapter 1. This showed that 

the method has proven to be particularly useful in the field of drug delivery, where it 

was used extensively to measure the diffusion of tracer molecules inside drug delivery 

systems, such as hydrogels, yielding important clues for their optimization. FRAP has 

also been applied numerously to investigate the mobility of drug molecules and 

nanoparticles inside extracellular matrices, as well as inside living cells. Such 

information is essential in the development or optimization of nanomedicine 

formulations that guide drug molecules inside these biomaterials to reach their site of 

action. Besides drug delivery, FRAP has also been helpful to improve several medical 

therapies, for instance by observing the effect of candidate anti-cancer drugs on the 

mobility of tumour related proteins, or by measuring the diffusion of peptide and 

protein aggregates related to neuro-degenerative diseases inside the brain. Yet another 

application of FRAP is situated in the field of diagnostics, where it was found that some 

medical conditions can be detected in an early stage by a change in mobility of tracer 

molecules inside the affected tissue. 

Although FRAP has proven to be useful in pharmaceutical, biomedical and biological 

research for several decades, most theoretical FRAP models for fitting to the observed 

fluorescence recovery still rely on approximations that in many circumstances affect 

their accuracy. In particular, these models usually either neglect or incorrectly account 

for the imaging and photobleaching point spread functions (PSFs), in particular when a 

standard confocal laser scanning microscope is used. Generally, this degrades the 

accuracy of the FRAP analysis, unless an area is photobleached that is sufficiently large 

compared to both PSFs. However, often one is interested in measuring the diffusion in 

a very small area close to the microscope resolution, necessitating a more refined type 

of analysis. This usually requires prior knowledge or calibration of the size and shape of 
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both PSFs. However, this is problematic for the (effective) photobleaching PSF, since its 

properties strongly depend on the photobleaching light power and the photochemistry 

of the fluorophore inside the sample. A new FRAP model that addresses these issues 

was, therefore, developed in Chapter 2. This model describes the spatial profile of the 

fluorescence recovery after photobleaching of a rectangular area, assuming a linear 

photobleaching process and approximating the photobleaching and imaging PSFs by 

Gaussian functions with each a different standard deviation. Since not only temporal 

but also spatial information is used in the fit, more degrees of freedom are allowed 

than with conventional models that only describe the average fluorescence over the 

photobleached area. This, in turn, allows the standard deviations of the two Gaussian 

shaped PSFs to be treated as free fitting parameters, which removes the necessity of 

prior knowledge or calibration. The rectangle FRAP model was extensively validated on 

solutions of dextrans with different viscosities. It was shown that the rectangle can be 

arbitrarily small and have any aspect ratio. Interestingly, diffusion during 

photobleaching did not impact the value of the measured diffusion coefficient. 

Empirically, it was found that, despite the linear approximation of the photobleaching 

process, up to 50% of bleaching was allowed. In collaboration with Dr. Niklas Lorén 

from the Swedish Institute for Food and Technology, the model was used to study the 

diffusion of dextrans in a mixture of gelatin and maltodextrin that exhibits separate 

phases with a characteristic length scale down to a few micron. Due to the ability of the 

rectangle FRAP model to perform diffusion measurements in micron sized regions, the 

diffusion coefficient in the separate phases could be accurately determined. The 

diffusion in the phase separated system was found to differ slightly from the 

corresponding pure phases, indicating that there is some mixing of both components. 

Since additional free parameters can be included in the fit, more complex types of 

analysis should be possible in the future, such as measurements of anomalous or 

anisotropic diffusion, distribution of diffusion coefficients, or diffusion and binding. 

Besides FRAP, other advanced methods based on fluorescence microscopy for 

investigating the motion of fluorescently labelled molecules or nanoparticles inside 

biomaterials have been developed as well. The topic of PART II was single particle 

tracking (SPT), a particularly interesting method since it allows to determine a variety of 

nanoparticle properties like size, diffusion rate, concentration, or interaction inside 

biomaterials. As the method is based on measurements of individual nanoparticles, it is 

inherently more precise in comparison to an ensemble average method like FRAP. In 

recent years, SPT has started to attract attention in pharmaceutical research, as 

discussed in Chapter 3. Just like FRAP, SPT is particularly useful in the field of drug 

delivery, as it can provide valuable information for a systematic optimization of drug 

delivery systems. For instance, in the context of gene therapy, complexes of 



Summary 

211 

therapeutic nucleic acids and liposomes or polymers are being developed for delivery 

of the nucleic acids to target cells. SPT has been applied to study their aggregation in 

the blood circulation and their intracellular trafficking. The method also has much 

potential in the field of diagnostics, where it is believed that the concentration and size 

of cell-derived membrane vesicles are predictive of several diseases. SPT can be used to 

measure these nanoparticle properties directly in body fluids like blood or urine. 

In order to realize the full potential of SPT, there are several important technical issues 

that need to be settled. An essential step in every SPT experiment is determining the 

location of the individual nanoparticles in the recorded fluorescence microscope 

images. This is often done by fitting a two-dimensional Gaussian function to the 

observed nanoparticle intensity distribution. However, this only yields precise and 

accurate estimations of the nanoparticle position in the specific case that it is located 

near the focal plane and emits photons in an isotropic fashion. Else, the Gaussian 

function is no longer guaranteed to be a good approximation of the nanoparticle image, 

resulting in a potentially significant increase in localization uncertainty. Several other 

aspects of the SPT experiment, such as detector noise and out of focus fluorescence 

from the sample, can also degrade the localization precision and accuracy. In order to 

correctly analyse SPT data and optimize SPT experiments, theoretical descriptions of 

the localization uncertainty that account for these different cases have been 

developed, as reviewed in Chapter 4. Moreover, since the localization of single 

molecules is the essence of some recently developed super resolution microscopy 

techniques, the relevance of localization uncertainty has also been treated in this 

context. 

Despite being inherent to SPT, motion during image acquisition is generally ignored in 

theoretical descriptions of localization precision and accuracy. In Chapter 5, it is shown 

that this effect strongly increases the localization uncertainty in case of Gaussian fitting. 

Instead, the simple centre-of-mass algorithm that does not make assumptions about 

the shape of the nanoparticle image is found to perform much more reliably. A theory 

is developed for the average precision of the centre-of-mass, taking diffusion during 

image acquisition into account. Besides this theoretical model, also a method for the 

experimental determination of the average localization precision of moving 

nanoparticles is proposed, based on SPT performed simultaneously in two different 

imaging channels. Both the theory and the experimental method are validated by 

simulations and applied to determine the localization precision of diffusing 

nanospheres. Both predictions agree with each other and show that diffusion during 

imaging results in a localization precision that is significantly worse than for stationary 

nanoparticles. Furthermore, in the context of determining the diffusion coefficient from 

the trajectory mean square displacements, it was shown that incorporating the 
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localization precision theory into the model of these displacements increases the 

accuracy of the fitted diffusion coefficient. Interestingly, the theory can also be used to 

define an optimal image acquisition time that maximizes the localization precision. 

Taking the effect of motion during image acquisition on the localization precision into 

account is thus essential for correct analysis of SPT measurements. In Chapter 6, this 

knowledge is applied to a new method for the investigation of the interaction between 

dynamic objects that each have a different fluorescent label by comparing their 

trajectories. The basic idea is that, if two objects are interacting, they will move 

together. In other words, the positions in both trajectories exhibit a certain amount of 

correlation during the interaction time frame. The new method scans the positions in 

both trajectories with a window in which the correlation is calculated. If this correlation 

is statistically significant and larger than a certain threshold, the nanoparticles are 

considered to interact in that window. Both the window size and the correlation 

threshold depend on the local localization precision and travelled distance. This 

scanning window method thus allows to build a picture of both the spatial and 

temporal behaviour of the interaction. The method is validated with simulated 

trajectories, showing that interaction and absence of interaction are correctly 

distinguished from each other. Moreover, simulated trajectories that feature more 

complex situations such as transient interaction or variable localization precision also 

do not pose a problem to the scanning window method. As a proof of concept, the 

method is applied in the context of gene therapy to investigate the endosomal 

trafficking of gene complexes inside living cells. More than twice the amount of 

correlated trajectory pairs is found compared to a more simple method that does not 

scan the trajectories. This is likely caused by several experimental complications such as 

a changing mobility or a changing localization precision in the trajectories. Moreover, it 

is found that the scanning window method is able to detect transient events, such as 

trajectories that stop interacting at some point. Such a method will possibly allow to 

detect the escape of nanomedicine particles from endosomes into the cytosol of cells, a 

required step for nucleic acids to perform their intended therapeutic action. Endosomal 

escape is considered to be one of the major bottlenecks in intracellular macromolecular 

drug delivery and methods capable of studying this barrier are urgently sought for. 

Besides precise and accurate localization of nanoparticles in the images, an even more 

fundamental requirement for SPT is that the nanoparticles are visible with sufficient 

contrast. When widefield illumination is used, the contrast is limited because the 

nanoparticles and unbound dye located out of focus are also illuminated and, 

therefore, contribute to the image background. A solution to this problem is light sheet 

illumination, in which only a thin layer surrounding the focal plane is illuminated. The 

out of focus nanoparticles and unbound dye thus remain dark and the contrast 
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improves significantly. However, such a light sheet is usually produced by an extra 

objective lens, making the microscope set-up complicated and requiring a special 

sample holder with a transparent side window in addition to the imaging window. As 

explained in Chapter 7, we have developed a simple microfluidics chip with an 

integrated planar waveguide that generates a light sheet inside a microchannel 

containing the sample. This allows for SPT measurement in biofluids with light sheet 

illumination, without the need for an extra objective lens. Moreover, the mass 

producible chip can be made disposable, which, in turn, removes the necessity of 

cleaning procedures between samples and avoids sample contamination. The chip was 

used to perform SPT on cell-derived membrane vesicles in cell culture medium and in 

interstitial fluid from a human breast tumour. An accurate and precise size distribution 

and concentration could be derived from the SPT measurements using the light sheet 

illumination, while this was not possible with widefield illumination because of limited 

contrast. This shows the potential of the chip as a diagnostic tool, since the size and 

concentration of such membrane vesicles are believed to be linked to different stadia 

of cancer. Further optimization of the fabrication process of the chip should lead to a 

thinner light sheet, which enhances the contrast in SPT experiments even more. The 

chip could also be equipped with for instance more advanced microfluidics, leading to a 

diagnostic tool that can be used outside a laboratory setting. 

The results of this PhD thesis are expected to contribute to the on-going effort of 

making accurate SPT and FRAP measurements of molecules and nanoparticle 

properties in biomaterials more accessible to the pharmaceutical research community. 

This access is crucial for further developments in the field of drug delivery and 

diagnostics, where nanoparticles, such as nanomedicines and biological vesicles, are 

finding more and more applications. 
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Een verscheidenheid aan nanopartikels, zoals nanomedicijnen of biologische vesikels, 

spelen een belangrijke rol in heel wat nieuwe farmaceutische technologieën. De 

efficiënte en rationele ontwikkeling van deze technologieën kan daarom sterk 

profiteren van een gedetailleerde kennis van de karakteristieken van deze 

nanopartikels in de relevante biologische materialen. Een geschikte techniek voor dit 

doeleinde is fluorescentiemicroscopie, aangezien fluorescent gelabelde nanopartikels 

hiermee op een niet-invasieve manier kunnen gevisualiseerd worden met uitstekende 

specificiteit in biomaterialen. De beperkte spatiale resolutie van optische microscopie 

limiteert deze observaties echter tot op de micrometerschaal. Geavanceerde methodes 

gebaseerd op fluorescentiemicroscopie worden daarom ontwikkeld om de 

eigenschappen van nanopartikels op een indirecte wijze te bepalen, gebaseerd op hun 

beweging in de biomaterialen. 

Het onderwerp van DEEL I was fluorescence recovery after photobleaching (FRAP), een 

geavanceerde techniek gebaseerd op fluorescentiemicroscopie die in staat is om de 

diffusie en interactie van fluorescent gelabelde moleculen of nanopartikels in 

biomaterialen te meten. FRAP heeft reeds een verscheidenheid aan toepassingen 

gevonden in farmaceutisch onderzoek, zoals besproken in Hoofdstuk 1. Dit overzicht 

toonde aan dat de methode vooral nuttig is gebleken in het veld van drug delivery, 

waarbij metingen van de diffusie van fluorescent gelabelde moleculen in systemen voor 

geneesmiddelafgifte, zoals hydrogels, belangrijke aanwijzingen opleveren voor hun 

verdere optimalisatie. FRAP is ook veelvuldig gebruikt geweest om de mobiliteit van 

geneesmiddelmoleculen en nanopartikels in extracellulaire matrices en zelfs in levende 

cellen te onderzoeken. Dergelijke informatie is essentieel voor de ontwikkeling of 

optimalisatie van de formulering van nanomedicijnen die geneesmiddelenmoleculen 

begeleiden in deze biomaterialen opdat ze hun werkingsgebied zouden bereiken. Naast 

geneesmiddelafgifte is FRAP ook nuttig geweest bij de verbetering van verschillende 

medische therapieën, bijvoorbeeld door het observeren van het effect van potentiele 

anti-kankergeneesmiddelen op de mobiliteit van tumor-gerelateerde eiwitten, of door 

het meten van de diffusie van peptide- of eiwitaggregaten die gerelateerd zijn aan 

neurodegeneratieve ziektes in de hersenen. Nog een andere toepassing van FRAP is 

gesitueerd in the veld van de diagnostiek, waar sommige medische aandoeningen in 

een vroeg stadium kunnen worden gedetecteerd via een verandering in de mobiliteit 

van fluorescent gelabelde moleculen in het aangetaste weefsel. 

Alhoewel FRAP al enkele decennia nuttig is gebleken in farmaceutisch, biomedisch en 

biologisch onderzoek, zijn de meeste theoretische FRAP modellen voor het fitten van 

het geobserveerde herstel van de fluorescentie na fotobleking nog steeds gebaseerd op 

benaderingen die in heel wat omstandigheden hun nauwkeurigheid aantasten. De point 

spread function (PSF) tijdens het fotobleken en tijdens het observeren van het herstel 
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van de fluorescentie wordt door de meeste modellen ofwel genegeerd ofwel op de 

verkeerde manier in rekening gebracht, vooral wanneer een standaard confocale 

laserfluorescentiemicroscoop wordt gebruikt. In het algemeen zal dit de FRAP analyse 

minder nauwkeurig maken, tenzij een gebied wordt gefotobleekt dat voldoende groot 

is vergeleken met beide PSF-en. Men is echter meestal geïnteresseerd in 

diffusiemetingen in een zeer kleine gebieden die de resolutie van de microscoop 

benaderen, zodat een meer verfijnd type van analyse nodig is. Dit vergt meestal 

voorafgaande kennis of kalibratie van de grootte en vorm van beide PSF-en. Dit is 

problematisch voor de (effectieve) PSF tijdens het fotobleken, aangezien de 

eigenschappen van deze PSF sterk afhangen van het vermogen van het licht dat 

gebruikt werd om te fotobleken en van de fotochemie van het fluorofoor in het staal. 

Een nieuw FRAP model dat een oplossing aanbiedt voor deze problemen, werd daarom 

ontwikkeld in Hoofdstuk 2. Dit model beschrijft het ruimtelijk profiel van het herstel 

van de fluorescentie na fotobleking van een rechthoekig gebied, waarbij wordt 

verondersteld dat het fotoblekingsproces lineair is en waarbij de PSF-en tijdens het 

fotobleken en tijdens het observeren van het herstel van de fluorescentie worden 

benaderd door Gaussiaanse functies met elk een verschillende standaardafwijking. 

Aangezien zo niet enkel temporele, maar ook spatiale informatie wordt gebruikt in de 

fit, zijn meer vrijheidsgraden toegelaten dan met conventionele modellen die enkele de 

gemiddelde fluorescentie over het gefotobleekte gebied beschrijven. Dit laat op zijn 

beurt toe om de standaardafwijkingen van de twee Gaussiaanse PSF-en te behandelen 

als vrijheidsgraden, wat de noodzaak van voorafgaande kennis of kalibratie wegneemt. 

Het rectangle FRAP model werd uitgebreid gevalideerd aan de hand van oplossingen 

van dextranen met verschillende viscositeit. Hiermee werd aangetoond dat de 

rechthoek arbitrair klein kan zijn en elke aspect ratio kan hebben. Interessant was ook 

de vondst dat diffusie tijdens het fotobleken geen invloed had op de waarde van de 

gemeten diffusiecoëfficiënt. Empirisch werd aangetoond dat, ondanks de lineaire 

benadering van het fotoblekingsproces, tot en met 50% fotobleking was toegelaten. In 

samenwerking met Dr. Niklas Lorén van het Zweedse Instituut voor Voedsel en 

Technologie, werd het model gebruikt om de diffusie van dextranen te bestuderen in 

een mengsel van gelatine en maltodextrine. Dit mengsel organiseert zich als gescheiden 

fases die een karakteristieke lengte van een paar micrometer hebben. Dankzij het 

vermogen van het rectangle FRAP model om diffusiemetingen uit te voeren in gebieden 

met microscopische afmetingen, kon de diffusiecoëfficiënt in deze afzonderlijke fases 

worden bepaald met grote nauwkeurigheid. De diffusie in het mengsel met gescheiden 

fases bleek licht te verschillen van de overeenkomstige waarde in pure fases, wat erop 

wijst dat beide componenten enigszins met elkaar mengen. Aangezien de fit nog extra 

vrijheidsgraden toelaat, zijn meer complexe types van FRAP analyse mogelijk in de 
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toekomst, zoals metingen van anomale of anisotrope diffusie, distributies van 

diffusiecoëfficiënten, of diffusie en binding. 

Naast FRAP zijn er ook andere geavanceerde methodes gebaseerd op 

fluorescentiemicroscopie ontwikkeld voor het bestuderen van de beweging van 

fluorescent gelabelde moleculen of nanopartikels in biomaterialen. Het onderwerp van 

DEEL II was single particle tracking (SPT), een erg interessante methode die toelaat om 

een verscheidenheid aan nanopartikeleigenschappen zoals grootte, diffusiesnelheid, 

concentratie of interactie te bestuderen in biomaterialen. Aangezien SPT gebaseerd is 

op metingen van individuele nanopartikels, is de techniek inherent meer precies dan 

een ensemble gemiddelde methode zoals FRAP. Sinds enkele jaren begint SPT aandacht 

te krijgen in farmaceutisch onderzoek, zoals werd besproken in Hoofdstuk 3. Net zoals 

FRAP, is ook SPT bijzonder nuttig voor het veld van drug delivery, aangezien met deze 

methode informatie kan worden bekomen die erg belangrijk is voor een systematische 

optimalisatie van systemen voor geneesmiddelafgifte. Bijvoorbeeld, in de context van 

gentherapie worden complexen van therapeutische nucleïnezuren en liposomen of 

polymeren ontwikkeld voor de afgifte van de nucleïnezuren aan bepaalde cellen. SPT 

werd gebruikt om de aggregatie van deze complexen in de bloedcirculatie te 

bestuderen en om na te gaan hoe ze intracellulair worden verwerkt. De methode heeft 

ook veel potentieel in het veld van de diagnostiek, waar er wordt vanuit gegaan dat de 

concentratie en de grootte van membraanvesikels die worden afgescheiden door cellen 

kan gerelateerd worden aan verschillende ziektes. SPT kan worden gebruikt om de 

eigenschappen van deze nanopartikels rechtstreeks te meten in lichaamsvloeistoffen 

zoals bloed of urine. 

Om het potentieel van SPT ten volle te kunnen realiseren, zijn er echter nog heel wat 

technische moeilijkheden die moeten worden aangepakt. Een essentiële stap in elk SPT 

experiment is het bepalen van de lokatie van de individuele nanopartikels in de 

opgenomen fluorescentiemicroscopie-beelden. Dit wordt vaak gedaan door een 

tweedimensionale Gaussiaanse functie aan de geobserveerde intensiteitsdistributie van 

elk nanopartikel te fitten. Dit levert echter enkel een precieze en accurate schatting van 

de positie van het nanopartikel op in het specifieke geval dat het zich dicht bij het 

focusvlak bevindt en fotonen uitzendt op een isotrope manier. In elk ander geval is de 

Gaussiaanse functie niet noodzakelijk een goede benadering van het beeld van het 

nanopartikel, wat resulteert in een mogelijk significante toename in de onzekerheid 

waarmee de locatie wordt bepaald. Verschillende andere aspecten van het SPT 

experiment, zoals ruis in de detector of fluorescentie van het staal buiten het focusvlak, 

kunnen de precisie en accuraatheid van de lokalisatie ook verminderen. Om de data 

van SPT experimenten correct te kunnen analyseren en om SPT experimenten te 

kunnen optimaliseren, werden theoretische beschrijvingen van deze lokalisatie-
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onzekerheid ontwikkeld die deze verschillende gevallen in rekening brengen, zoals 

werd besproken in Hoofstuk 4. Aangezien het lokaliseren van afzonderlijke moleculen 

de essentie is van sommige onlangs ontwikkelde superresolutiemicroscopie-

technieken, werd de relevantie van lokalisatie-onzekerheid ook in deze context 

behandeld. 

Ondanks het feit dat beweging tijdens de beeldopname inherent aanwezig is in SPT 

experimenten, wordt dit over het algemeen genegeerd in de theoretische 

beschrijvingen van de precisie en accuraatheid van de lokalisatie. In Hoofdstuk 5 werd 

aangetoond dat dit effect de onzekerheid van de lokalisatie sterk doet toenemen 

wanneer een Gaussiaanse functie wordt gefit. Het eenvoudige massacentrum-

algoritme, dat geen veronderstellingen maakt over de vorm van het beeld van het 

nanopartikel, is daarentegen veel meer betrouwbaar. Een theorie werd ontwikkeld 

voor de beschrijving van de gemiddelde lokalisatieprecisie van het massacentrum, 

waarbij rekening wordt gehouden met diffusie tijdens de beeldopname. Naast dit 

theoretische model werd ook een methode voor de experimentele bepaling van de 

gemiddelde lokalisatieprecisie van bewegende nanopartikels voorgesteld, gebaseerd op 

SPT die simultaan wordt uitgevoerd in twee verschillende beeldkanalen. Zowel de 

theorie als de experimentele methode werden gevalideerd aan de hand van simulaties 

en toegepast om de lokalisatieprecisie van diffunderende nanosferen te bepalen. Beide 

resultaten bevestigen elkaar en tonen aan dat diffusie tijdens de beeldopname 

resulteert in een lokalisatieprecisie die aanzienlijk slechter is dan in het geval van 

stationaire nanopartikels. In de context van het bepalen van de diffusiecoëfficiënt uit 

de gemiddelde kwadratische verplaatsingen in trajecten, werd er bovendien 

aangetoond dat het in rekening brengen van de theorie voor de lokalisatieprecisie in 

het model van deze verplaatsingen de nauwkeurigheid van de gefitte diffusiecoëfficiënt 

verhoogt. Noemenswaardig is ook dat de theorie kan worden gebruikt om een optimale 

beeldopnametijd te definiëren die de lokalisatieprecisie maximaliseert. 

Het in rekening brengen van het effect van beweging tijdens de beeldopname op de 

lokalisatieprecisie is dus essentieel voor een correcte analyse van SPT-metingen. In 

Hoofdstuk 6 wordt deze kennis toegepast op een nieuwe methode voor het 

bestuderen van de interacties tussen dynamische objecten die elk een verschillend 

fluorescent label hebben, via het vergelijken van hun trajecten. Het achterliggende idee 

is dat wanneer twee objecten met elkaar interageren, ze samen zullen bewegen. Met 

andere woorden, in geval van interactie zullen de posities van beide trajecten een 

zekere correlatie vertonen gedurende de periode dat ze interageren. De nieuwe 

methode scant de posities in beide trajecten met een venster waarin de correlatie 

wordt berekend. Als deze correlatie statistisch significant en groter dan een bepaalde 

drempelwaarde is, worden de nanopartikels verondersteld te interageren in dat 
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venster. Zowel de grootte van het venster als de drempelwaarde voor de correlatie 

hangen af van de lokale lokalisatieprecisie en afgelegde afstand. Deze scanning window 

methode laat dus toe om een beeld te krijgen van het spatiaal en temporeel gedrag van 

de interactie. De methode werd gevalideerd aan de hand van gesimuleerde trajecten, 

waaruit blijkt dat interactie en afwezigheid van interactie op een correcte manier van 

elkaar wordt onderscheiden. Bovendien heeft de methode ook geen probleem met 

gesimuleerde trajecten die worden gekenmerkt door meer complexe situaties, zoals 

tijdelijke interactie of variabele lokalisatieprecisie. Om het concept te bewijzen, wordt 

de methode toegepast in de context van gentherapie om het transport van 

gencomplexen door endosomen in levende cellen te bestuderen. In vergelijking met 

een meer eenvoudige methode die de trajecten niet scant met een venster, worden 

meer dan twee keer zoveel gecorreleerde trajecten gevonden. Dit verschil wordt naar 

alle waarschijnlijkheid veroorzaakt door experimentele complicaties zoals een 

veranderende mobiliteit of een veranderende lokalisatieprecisie in de trajecten. De 

scanning window methode is bovendien in staat om tijdelijke gebeurtenissen te 

detecteren, wat bijvoorbeeld het geval is als trajecten op een zeker punt stoppen met 

interageren. Een dergelijke methode zal mogelijk toelaten om nanomedicijnen die 

ontsnappen vanuit endosomen naar het cytosol van cellen te detecteren, een 

noodzakelijke stap voor nucleïnezuren om hun therapeutische actie te verwezenlijken. 

Endosomale ontsnapping wordt gezien als een van de belangrijkste knelpunten in 

intracellulaire afgifte van macromoleculaire geneesmiddelen, er wordt daarom 

intensief gezocht naar methodes die in staat zijn om deze barrière te bestuderen. 

Naast het precies en nauwkeurig lokaliseren van nanopartikels in de opgenomen 

beelden, is een nog fundamentelere voorwaarde voor SPT het zichtbaar zijn van de 

nanopartikels met voldoende contrast. Wanneer widefield belichting wordt gebruikt, 

zal het contrast beperkt zijn, aangezien de nanopartikels en ongebonden fluorescente 

labels die zich buiten het focusvlak bevinden ook worden belicht en daarom bijdragen 

tot de achtergrond in de beelden. Een oplossing voor dit probleem is light sheet 

belichting, waarbij enkel een dunne laag rond het focusvlak wordt belicht. De 

nanopartikels en ongebonden fluorescente labels die zich buiten het focusvlak 

bevinden, blijven daardoor donker, zodat het contrast aanzienlijk verbetert. Een 

dergelijke belichting wordt meestal geproduceerd met behulp van een extra 

objectieflens, wat niet alleen de microscoopopstelling complex maakt, maar ook een 

speciale staalhouder vereist met, naast het venster voor de beeldvorming, ook een 

transparant venster aan de zijkant. Zoals uitgelegd in Hoofdstuk 7, hebben we een 

eenvoudige microfluidica chip ontwikkeld met een geïntegreerde vlakke golfgeleider 

die een light sheet genereert in een microkanaal dat het staal bevat. Dit laat toe om SPT 

metingen in biologische vloeistoffen uit te voeren met light sheet belichting, zonder de 
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noodzaak van een extra objectieflens. Daarbovenop kan de massaproduceerbare chip 

wegwerpbaar worden gemaakt, wat op zijn beurt reiniging tussen het meten van 

verschillende stalen onnodig maakt en de contaminatie tussen verschillende stalen 

verhindert. De chip werd gebruikt om SPT metingen uit te voeren in celcultuurmedium 

en interstitieel vocht van een menselijke borsttumor waarin zich membraanvesikels 

bevinden die door cellen zijn afgescheiden. Een nauwkeurige groottedistributie en 

concentratie kon worden bepaald aan de hand van de SPT metingen met behulp van de 

light sheet belichting, terwijl dit niet mogelijk was voor de widefield belichting, gezien 

het beperkte contrast. Dit illustreert het potentieel van de chip als een diagnostisch 

instrument, aangezien de grootte en concentratie van dergelijke membraanvesikels 

mogelijk kan worden gelinkt aan verschillende stadia van kanker. Verdere optimalisatie 

van het fabricatieproces van de chip zou moeten leiden tot een dunnere light sheet, 

wat het contrast in SPT experimenten nog meer kan verbeteren. Daarnaast zou de chip 

ook kunnen uitgerust worden met bijvoorbeeld meer geavanceerde microfluidica, wat 

moet resulteren in een diagnostisch instrument dat ook buiten een laboratorium kan 

worden gebruikt. 

We verwachten dat de resultaten van deze doctoraatsthesis zullen bijdragen tot de 

huidige inspanningen om nauwkeurige SPT en FRAP metingen van de eigenschappen 

van moleculen en nanopartikels in biomaterialen meer toegankelijk te maken voor de 

farmaceutische onderzoeksgemeenschap. Deze toegang is cruciaal voor verdere 

ontwikkelingen in het veld van drug delivery en diagnostiek, waar nanopartikels, zoals 

nanomedicijnen en biologische vesikels, steeds meer toepassingen vinden. 
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Localization precision of the centroid algorithm 

The point spread function (PSF) of a stationary particle in position  ⃗  = (     ) in the 

focal plane can be described by the circular 2-D Gaussian distribution [3]: 
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     (A.1) 

with   the standard deviation of the Gaussian distribution and   the total number of 

photons. Consider an image of the PSF that consists of pixels with size  . The intensity 

of pixel (   ) with centre position  ⃗    = (         ) can approximately be described by 

[7]: 
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The intensity weighted centre or centroid of the PSF in the image is defined as: 
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A noise contribution for every pixel (   ) is explicitly introduced as     . Note that a 

possible constant background is assumed to be subtracted from the image. According 

to Cao et al., the localization precision    of the centroid coordinate    (defined as the 

standard deviation on the centroids) resulting from noise      with standard deviation 

     in every pixel (   ) can be described by [2,5]: 
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A similar definition is valid for the centroid coordinate   . We assume that the noise 

consists of Poisson distributed photon noise and background noise with a constant 

standard deviation   [10]: 
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If ∑ (         )    is approximated by ∑        , the substitution of Eq. (A.5) in Eq. (A.4) 

can be shown to result in [5]: 
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If all pixels are included that belong to the particle PSF, then: 
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The sum in the numerator of the first term of Eq. (A.6) can be approximated by an 

integration over the entire plane: 
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resulting in: 
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The sum in the numerator in the second term of Eq. (A.6) can also be approximated by 

integration over the entire image plane. However, this leads to infinity. We, therefore, 

limit the integration to a circular area around the PSF centre location  ⃗  = (     ) with 

radius equal to three times the PSF standard deviation, meaning that 99.7% of the   

photons are included. This leads to: 
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resulting in: 
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Substituting Eqs. (A.7), (A.9), and (A.11) in Eq. (A.6) readily leads to the following 

expression for the localization precision of the centroid: 
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  (A.12) 

Note the similarity with the much used expression published by Mortensen et al. [7]. 

The first term shows the effect of the Poisson distributed photon noise and the second 

term takes the background noise into account. Equation (A.12) is valid for a CCD or 

CMOS camera, in case of an electron multiplying (EMCCD) CCD detector, the electron 

multiplication process adds a factor of two to the photon noise, leading to [8,9]: 
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where it is assumed that   mainly consists of photon background noise. 

 

Gaussian point spread function 

Consider an image of a light emitting point-object with position  ⃗  = (        ) 

projected in the image space (   -space). The focal plane of the objective lens is 

projected at   = 0. The positions  ⃗ = (   ) of the photons in the image plane (  -plane) 

are described by a probability distribution according to the PSF. For a particle in the 

focal plane with isotropic photon emission, the PSF is given by the Airy distribution with 

an infinite standard deviation [1]. To facilitate calculations, the PSF of a particle in the 

focal plane is often approximated by a circular 2-D Gaussian distribution, which is a 

reasonable approximation for all applications where the higher order diffraction 

features can be neglected [3]. The same reasoning can be extended to the third 

dimension. In that case, the PSF can be approximated by the fundamental Gaussian 

beam solution [11]: 
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where the Gaussian variance   (  ) is defined by: 
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with   
  the Gaussian variance in case the particle is located in the focal plane (   = 0). 

The parameter    is defined by: 

 
   

   

 
  
   (A.16) 

with   the refractive index of the medium and   the wavelength of the emitted 

photons. The further from the focal plane the particle is located, the more the value of 

  (  ) increases, leading to a broader PSF with a smaller amplitude. However, if the 

point-object is not stationary but moving during the image acquisition, its movement 

will affect the shape of the observed intensity distribution. Let  ⃗ ( ) be the particle 

trajectory during the image acquisition time   , then the resulting apparent PSF will be: 
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The exact trajectory  ⃗ ( ) of an individual particle during    is usually unknown. 

However, if the average position  ⃗     during the image acquisition time can be 

estimated and if information about the type of motion is available, it is possible to 

compose the probability distribution  ( ⃗ ) of all particle positions  ⃗  during   . The 

convolution of this probability distribution with the PSF than immediately yields an 

average apparent PSF. In the following, free diffusion will be considered as the particle 

motion type. 

 

Lateral diffusion 

Diffusion in the   -plane parallel to the focal plane (  = 0) will cause the apparent PSF 

to deviate from the stationary situation in Eq. (A.1). We consider particle movement in 

the  -direction only, since the obtained results equally apply to the  -dimension. 

Assume a diffusing particle during image acquisition time    with starting point     . 

The probability distribution of the particle position    at time   is given by [4]: 
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with   the diffusion coefficient. Now consider a particle trajectory that consists of   + 

1 positions      at different times    =     ⁄  (  = 0, 1, ...,  ). 
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The average position       of the particle during    is estimated by: 
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Assume      = 0, the other particle positions      with   > 0 can then be rewritten as: 

      (           )  (             )    (         )  (A.20) 

Every            , with 1 ≤   ≤  , can be seen as the position after diffusion over a 

time         =    ⁄  with start position in       . This means, using Eq. (A.18), that 

the probability distribution of             is given by: 
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The             values are normally distributed with variance      ⁄ . Position     , 

being the sum of   normally distributed variables with variance      ⁄ , is also 

normally distributed with variance: 

 
        

  

 
  (A.22) 

Since position      is set equal to zero, the corresponding variance      is also equal to 

zero. The average particle position defined in Eq. (A.19) is the sum of   + 1 normally 

distributed variables, therefore it is also normally distributed with variance: 
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This result, already derived by Michalet et al. [6], has to be interpreted with care. 

Equation (A.23) expresses that the positions of a diffusing particle, always starting from 

the same initial position, are normally distributed with variance    , see Fig. A.1. This, 

however, has limited practical use because in reality, when taking an image from a 

diffusing particle with illumination time   , the initial position is usually unknown. 

Therefore, of more relevance is the variance     of the positions with respect to the 

average position of the trajectory. 

Consider a particle trajectory during    that consists of   + 1 positions      at different 

times    =     ⁄  (  = 0, 1, ...,  ). Contrary to the previous derivation of   , no 
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assumption is made here on the value of     . Take a random position      of the 

trajectory, with   ≤   ≤  , the difference           for every   can be written as: 

          

 {
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(A.24) 

As shown in Eq. (A.21), every             is normally distributed with variance 

     ⁄ , meaning that           is also normally distributed. If the variances of      

and      are defined as       and      , respectively, the variance of           is equal 

to            , resulting in: 
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The average particle position, defined in Eq. (A.19), is the sum of normally distributed 

variables, therefore it is also normally distributed with variance: 
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Equation (A.25) can thus be written as: 
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which leads to: 
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The same reasoning can be applied for the values     , resulting in: 
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This immediately yields: 

 
    

 

 
     (A.30) 

The trajectory positions caused by diffusion during    are thus normally distributed 

with a variance     ⁄  with respect to the average trajectory position, as illustrated in 

Fig. A.1. 

 

 

Figure A.1 | The standard deviation of the trajectory positions of a diffusion particle. An 
illustration of a trajectory of a particle with diffusion coefficient   during image acquisition time 
   starting in the origin  ⃗   . The positions  ⃗    with   = 0, 1,...,   of all possible trajectories are 

normally distributed around  ⃗    with variance    , while the positions  ⃗    of an individual 

trajectory are normally distributed around the average trajectory position  ⃗     with variance 
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This result can be extended to the two dimensions in the focal plane, leading to the 

following probability distribution: 
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with  ⃗     = (           ) the average position during   . Convolution with Eq. (A.14) in 

the focal plane (   = 0) leads to the average apparent PSF for the lateral movement: 
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The average apparent PSF in the case of lateral diffusion still has a Gaussian shape with 

a variance given by: 
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This variance is larger than in the stationary case, and it becomes larger with increasing 

image acquisition time    or diffusion coefficient  . 

 

Axial diffusion 

Now consider a particle that is diffusing along the optical axis ( -direction). From Eq. 

(A.14), it follows that further away from the focal plane the PSF becomes wider, while 

the amplitude drops. The apparent PSF due to diffusion perpendicular to the focal 

plane will, therefore, deviate from the stationary PSF. Assume, however, that the 

apparent PSF can still be approximated by the Gaussian distribution in Eq. (A.14), where 

the variance   (  ) has to be replaced by an average value. In analogy with Eq. (A.31), 

the probability distribution of the particle positions    in the axial direction is given by: 
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with       the average position during the image acquisition time. 
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This probability distribution can be applied to calculate the average variance using Eq. 

(A.15): 

 
  (     )  ∫   (  ) (  )   

  

  

   
 (  

     
 

  
  

   

   
 )  (A.35) 

Except for the ideal situation where the image background is zero, the apparent PSF 

will become indistinguishable (as a separate object) from the background for 

sufficiently large      -values. It is, therefore, assumed that the particle is only visible 

for      -values between certain boundaries in the axial direction, defined as      and 

    . For free diffusion, every position along the axial direction can be occupied with 

the same probability by a particle. This means that the possible       are uniformly 

distributed over the interval [          ], resulting in an average value of: 
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The average apparent PSF thus has a Gaussian shape with a variance given by: 
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As in the case of the lateral movement, axial movement also results in a variance that is 

larger than in the stationary case and increases with the image acquisition time and the 

diffusion coefficient, but to a lesser extent as can be seen by comparing with Eq. (A.33). 

The value of      can be roughly estimated from the peak value of the PSF in Eq. (A.14): 
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Assume that a particle at  ⃗  can no longer be distinguished from the background at a 

certain    =     , where the peak value drops to     times the value    ( )⁄  it has if 

the particle is in the focal plane (   = 0). With Eq. (A.15), this leads to: 
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The effect of the localization and overlay precision on the correlation 

Consider a one-dimensional trajectory    and a one-dimensional trajectory   . The 

Pearson correlation   between both trajectories is given by: 

 
  

   (     )

√   (  )   (  )
  (B.1) 

The numerator is called the covariance and is defined as: 

    (     )   [(    [  ])(    [  ])]  (B.2) 

where  [ ] is the expected value of  . The denominator in Eq. (B.1) is the square root 

of the product of two variances, defined by: 

    (  )   [(    [  ])
 ] 

   (  )   [(    [  ])
 ]  

(B.3) 

Assume now that the observed trajectories    and    deviate from the real trajectories 

   and   , respectively, because of experimental uncertainty: 

          

          
(B.4) 

with    and    deviations caused by the finite localization and overlay precision. The 

part coming from the localization precision follows a distribution around zero with 

standard deviation    and   , respectively. The deviations caused by the overlay 

process are not strictly defined, besides that their difference is following a distribution 

around zero with standard deviation   , which is called the overlay precision. For 

mathematical convenience, it is therefore assumed that    and    are distributed 

around zero with a standard deviation   
  √  

    
  ⁄  and   

  √  
    

  ⁄ , 

respectively. Combining Eqs. (B.2) and (B.4), the covariance between    and    is given 

by: 

    (     )     (     )  (B.5) 
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The variance of    and    follow from Eqs. (B.3) and (B.4): 

    (  )     (  )     
  

   (  )     (  )     
 . 

(B.6) 

The Pearson correlation   between the observed trajectories    and    is thus given 

by: 
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    (  )     

    (  )     
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Consider now the special situation     =     =  , in this case the correlation becomes: 

 
  

   (     )

√   (  )   (  )       (  )   
    (  )    

  (B.8) 

Both correlations will be equal if the following condition for   is fulfilled: 

    
    (  )     

    (  )     
    

       (  )       (  )      (B.9) 

This is a quadratic equation in   , with solution: 
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(B.10) 

Using Eq. (B.6) and considering the definitions of     and    , this can be rewritten as: 
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(B.11) 

This expression is more useful than Eq. (B.10), since the variances    (  ) and    (  ) 

cannot be determined experimentally. 
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In reality, the complete trajectories    and    are not known, only discrete positions 

  (  ) and   (  ) at different time points    (  = 1, 2, ...,  ) are measured, from which 

the sample variances can be determined: 

 
   (  )  
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(B.12) 

with 〈  〉 and 〈  〉 the average positions of the observed trajectories    and   , 

respectively: 

 
〈  〉  

∑   (  )
 
   

 
 

〈  〉  
∑   (  )
 
   

 
  

(B.13) 

 

Correlation between trajectories of interacting objects 

Consider a one-dimensional trajectory    of one object and a one-dimensional 

trajectory    of another object. Assume that both objects are interacting, resulting in 

identical trajectories, aside from a constant displacement  : 

      

        
(B.14) 

The observed trajectories    and    deviate from the real trajectories, because of 

experimental uncertainty: 

         

           
(B.15) 

with    and    deviations caused by the finite localization and overlay precision. As 

explained above, both can be assumed to be distributed around zero with equal 

standard deviation   defined in Eq. (B.10). 
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According to Eq. (B.8), the Pearson correlation between the observed trajectories    

and    is thus given by: 

 
  

   (     )

√   ( )   (   )       ( )       (   )    
  (B.16) 

According to Eqs. (B.2) and (B.3), the covariance    (     ) and the variance 

   (   ) are equal to: 

    (     )     ( ) 

   (   )     ( )  
(B.17) 

This allows to rewrite Eq. (B.16) as: 

 
  

 

√   
  

   ( )
 (

  

   ( )
)
 

  
(B.18) 

The correlation between observed trajectories of interacting objects is thus completely 

determined by the ratio of      ( )⁄ . Assume for instance that the interacting objects 

are undergoing Brownian motion with diffusion coefficient  . If the trajectories are 

observed during a time  , the variance is given by [1]: 

 
   ( )  

 

 
    (B.19) 

The mean step in the trajectory over a time interval   <   is known to be [2]: 

   √     (B.20) 

Combining Eqs. (B.19) and (B.20) immediately results in: 

 
   ( )  

 

  
    (B.21) 

Another example is linear motion with velocity  . If the trajectories are observed during 

a time  , the variance is given by: 

 
   ( )  

 

  
      (B.22) 
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The (mean) step in the trajectory over a time interval   <   is: 

       (B.23) 

Combining Eqs. (B.22) and (B.23) immediately results in: 

 
   ( )  

  

    
    (B.24) 

Linear and Brownian motion thus give rise to the following relationship between 

trajectory variance and mean step: 

    ( )       (B.25) 

where   is a factor that depends on the ratio   ⁄  between the observation time and 

time interval for the step. Inserting this expression in Eq. (B.18) gives: 

 
  

 

√   (
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)
 
  

(B.26) 

In other words, for a certain ratio   ⁄ , the observed correlation between two 

interacting objects undergoing Brownian or linear motion is completely determined by 

the following ratio, termed the relative localization precision: 

   
 

 
  (B.27) 

However, the mean step   cannot be determined experimentally. In reality, the actual 

trajectory   is not known, only discrete positions   (  ) and   (  ) at different time 

points    (  = 1, 2, ...,  ) are measured. In this case the time interval is given by   =    - 

     (  = 2, ...,  ) and the total observation time by   =   , from which immediately 

follows that the ratio   ⁄  =  . From the trajectories the sample mean steps can be 

determined as: 

 
    

 

  
∑{|  (  )    (    )|  |  (  )    (    )|}

 

   

  (B.28) 

These are estimations of the mean steps defined in Eqs. (B.20) and (B.23). All observed 

trajectories with length   of interacting objects that are undergoing Brownian or linear 

motion will thus have the same expectation value for the correlation if they have the 

same relative localization precision  . This result is valid for all types of motion that 
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fulfil the condition in Eq. (B.25), i.e. the variance of the trajectories of the interacting 

objects should be linearly related to the square of the mean step. 
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