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1.1 General introduction 

Leek (Allium ampeloprasum var. porrum) is predominantly a European crop with 

significant cultivation in Turkey (9000 ha), France (5800 ha), Belgium (4800 ha) and 

Poland (4400 ha). Although worldwide, Indonesia is the largest producer of leek as 

stated by FAO
1
. In Belgium, leek is one of the most important vegetables cultivated 

outdoors accounting for 16% of the total field agricultural production value. It is grown for 

its cylindrical pseudo stem, which is blanched white from growing underground and is 

made up of long leaf bases. The white shaft is used in many culinary preparations, 

whereas the green leaves are considered inferior and are, therefore, usually only used in 

soups or discarded during harvesting and processing of the fresh produce for the market. 

With regard to its health aspects, epidemiologic studies elucidated the reduction of the 

risk of prostate, colorectal, stomach and breast cancer upon the consumption of leek. 

These health benefits are linked to a range of phytochemicals, including 4 important 

chemical groups, i.e. (1) S-alk(en)yl-L-cysteine sulfoxides (2) polyphenols, (3) vitamins 

and (4) fructans.  

The present study focuses on the analysis of these compounds in leek as a function of 3 

main parameters, including genetic diversity, harvest time and processing/potential 

valorisation techniques. The results of the present study can recommend leek growers to 

use specific cultivars, types and practices to maximise their crop’s content of specific 

health-promoting compounds. The availability of data on antioxidant levels of leek can be 

considered as an important criterion for selection of genotypes from a gene bank for use 

in crop improvement or other research-related or commercial activities. Therefore, an 

understanding of the health-promoting compounds of leek can lay the foundation to 

develop even healthier varieties. Additionally, the results of this dissertation can serve to 

recommend consumers how to maintain the maximum amount of antioxidants when 

preparing leek at home. Moreover, the study can stimulate the valorisation of the green 

leaves of leek or by-products of other plant material in general.  

The outcome of this study can bridge the missing information about leeks, because 

many reports focus on health-promoting compounds in related Allium species, including 

onion, garlic and shallot. Therefore, the results reported in this dissertation are original 

and can be of importance for leek production in Flanders and beyond and as such 

strengthen its market position. 
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1.2 Objectives 

The objective of this PhD thesis is to develop knowledge on the presence of health-

promoting compounds in leek in order to complement to the many reports focusing on 

these compounds in other related Allium species. The aim is, on the basis of novel 

scientific knowledge on health-promoting compounds in leek, to stimulate innovation in 

leek breeding, production, marketing and the consumption pattern of leek. 

The specific research questions connected to this PhD research project were: (1) Which 

bioactive compounds are present in the white shaft and green leaves of leek? (2) Is there 

a difference in bioactive compound concentration among the range of current, 

commercial and old leek cultivars? (3) Is there a difference in leek type (summer, autumn 

winter) with regard to its antioxidant properties, harvested in their respective harvest 

season? (4) Does harvest time have an influence on the antioxidant concentration? (5) 

Where is leek, based on its content of health-promoting compounds, situated in the 

Allium genus? (6) Can we see a change in antioxidants upon post-harvest processing at 

the farm and refrigerated storage? (7) What is the amount of remaining antioxidants after 

domestic cooking processes? (8) How can we stabilise and valorise the amount of leek 

by-products generated during the currently used harvesting and processing methods? 

And finally, (9) what is the influence of these stabilisation processes on the content of 

antioxidants?  

 

In this study, bioactive compounds (S-alk(en)yl-L-cysteine sulfoxides, polyphenols, 

vitamins and fructans) were analysed in leek as a function of different parameters, 

including genetic diversity, harvest time and processing/potential valorisation techniques. 

The schematic diagram in Figure 1.1 represents the different chapters within the present 

study and their coherence.  

 

Chapter 2 gives a summary concerning the current position of leek production in 

Belgium and abroad. A distinction is made between leek as a crop and leek as a food 

product. Moreover, the presence and properties of bioactive compounds is discussed in 

Chapter 2. 

Chapter 3 describes the experimental design, including the selected plant material, the 

sampling procedure and further sample preparation for each experiment. The analytical 

and statistical methods are discussed in this chapter as well. 

Chapter 4 describes the influence of leek tissue and leek cultivar on content of different 

bioactive compounds present in the white shaft and green leaves. Thirty leek cultivars 

were investigated, a selection which was based on type of cultivar, manner of breeding 

and seed company.  
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Chapter 5 discusses the role of harvest time on the antioxidant properties of leek, in 

order to give further insight into the differences reported in Chapter 4. For this part, leek 

hybrids were harvested at 4 time points from September until March.  

Chapter 6 presents the comparison between leek and some of its related species, such 

as onion, shallot, bunching (Welsh) onion, chives, Egyptian and Chinese leek with regard 

to the antioxidant properties. The outcome of this study can elucidate the position of leek 

within the Allium genus as several studies report high antioxidant levels in members of 

the same family of leek. 

Chapter 7 focuses on the effect of post-harvest processing and storage on the 

antioxidant properties of leek. In this chapter, the antioxidants were measured from 

harvest until 13 days of refrigerated storage – ‘from harvest to fridge’.  

In addition, Allium species are usually consumed after a heat treatment, which can have 

an effect on the antioxidants. The application of domestic cooking processing was 

discussed in Chapter 8 – ‘from fridge to fork’.  

Because of the restricted culinary application of the green leek leaves and the change in 

demands, a large part remains unused, resulting in a large quantity of valuable biomass. 

Ways to stabilise the green leaves are needed if further valorisation is envisaged. 

Therefore, the application of some alternative value-adding processing and preservation 

methods such as fermentations and drying were investigated in Chapter 9. Fermentation 

and drying were performed in different ways and compared with regard to the end 

antioxidant properties.  

Chapter 10 provides a general discussion and perspectives for further research, while 

the summary at the end of this dissertation lists the most prominent results. 
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Figure 1.1 Structural organisation of the present study
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2.1 Introduction 

Leek (Allium ampeloprasum var. porrum) belongs to the Alliaceae family and is one of 

the most important vegetables cultivated outdoors in Western Europe, especially in 

Belgium. In addition to their economic importance, they are a source of several 

phytochemicals, including 4 important chemical groups that have perceived benefits to 

human health, i.e. the S-alk(en)yl-L-cysteine sulfoxides, polyphenols, vitamins and 

fructans. In this chapter, 3 topics will be discussed, i.e. (1) leek as a crop, (2) leek as a 

food product and (3) the main bioactive compounds of leek. 

 

2.2 Leek as a crop – from ‘seed to harvest’ 

2.2.1 Taxonomy and history of leek 

Leek is a monocotyledonous plant of the Alliaceae family and belongs to the Allium 

genus, a word which originates from the Greek “αλεω”, which means to avoid, referring 

to its offensive smell (Boswell, 1983). The Allium genus, one of the largest plant genera, 

includes about 700 species comprising numerous economically important vegetables 

such as A. cepa (onion), A. sativum (garlic), A. ampeloprasum (elephant garlic), A. 

fistulosum (bunching onion),  A. schoenoprasum (chive) and A. ascalonicum (shallot), 

primarily used for their unique flavours (Block, 2010). However, there are numerous of 

cultivated vegetable Alliums of more regional importance, including kurrat (A. 

ampeloprasum var. kurrat) which is eaten as a pickled leaf primarily in Egypt, rakkyo (A. 

chinense) and Chinese chives (A. tuberosum) (Jones and Mann, 1963). Leek (A. 

ampeloprasum var. porrum) and kurrat (A. ampeloprasum var. kurrat) are cultigens of 

wild forms of A. ampeloprasum and are therefore members of the same species. These 

wild forms differ from leek and kurrat by the production of a large bulb which consists of 

2 cloves (Jones and Mann, 1963). Wild plants of this species occur in the Mediterranean 

area from Portugal and northwest Africa in the west to Turkey, Syria, northern Iraq and 

western Iran in the east (De Wilde-Duyfjes, 1976; Stearn, 1978). According to Masefield 

et al. (1969), A. ampeloprasum is also a native of the Atlantic islands of the Azores, 

Canaries, Cape Verdes and Madeira and possibly native in a few areas on the southern 

coasts and off-shore islands of England and Wales. Nowadays, A. kurrat is the Middle-

Eastern cultivated leek, while A. porrum is predominantly a European crop. 
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2.2.2 Position of leek in agriculture and the market  

Significant cultivation of leek in Europe is found in Turkey (9  000 ha), France (5 800 ha), 

Belgium (4 800 ha) and Poland (4 400 ha) (De Clercq et al., 2003; Block, 2010, Eurostat, 

2012). In 2010, 23 300 ha were dedicated for cultivation of leek in Europe, where 1 ha 

typically comprises 150 000 leek plants (Eurostat, 2012). Worldwide, Indonesia is the 

largest producer of leek followed by Turkey, France, Belgium, China and Poland (FAO, 

2012).  

Figure 2.1 shows the evolution of the area used for cultivation of leek in Belgium from 

1965 until 2011. Until the 1980s, leek was cultivated on approximately 3 000 ha, which 

increased significantly during the 1990s. From the year 2000, the cultivated area has 

stabilised around 4500 ha. Belgium’s leek production did not increase significantly over 

the past 10 years, with the current production being 169 600 tonnes (Eurostat, 2012).  

 

 
Figure 2.1 Cultivated area (ha) of leek in Belgium from 1965 until 2011 (Eurostat, 2012) 

 

Nowadays, leek is one of the most important field vegetable crops in Belgium, 

accounting for 16% of the total field agricultural production value (Platteau et al., 2010). 

The main area of Belgiums leek production is situated in the region of West Flanders, 

comprising more than 75% of the leek production (Platteau et al., 2010).  

 

In 2011, approximately half of the leek production (77 106 tonnes of fresh leeks) was 

exported from Belgium mainly to France, Denmark, Poland, Sweden and Spain, 

accounting for 8% of the fresh vegetable export value in Belgium (VLAM
2
, 2011). 
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2.2.3 Cultivation of leek 

Leek is grown in Belgium for its cylindrical pseudo stem, which is blanched white from 

being grown underground; it is made up of long leaf bases. The basal plate or disk, a 

much suppressed stem, is located at the base of the pseudo stem where its apical 

meristem gives rise to leaves (van der Meer and Hanelt, 1990). Leek is a biannual crop, 

which means that the plant develops in the first year and after vernalisation in winter it 

flowers in the second year. In commercial cropping, leek is grown as a short-lived annual 

(Burt, 2011).  

During growth in the field, the relative growth rate of leek plants per effective degree-day 

is low compared to other vegetable species (Tsouvaltzis et al., 2010). The base 

temperature for growth of leek has been reported to be 5.9 ± 0.7 °C and the growth rates 

of leeks increase linearly with temperature between 6 and 20 °C (Brewster and 

Sutherland, 1993). 

 

2.2.3.1 Leek breeding 

Leek is a heterozygote cross-pollinated plant with 20% self-fertilisation (De Clercq et al., 

2003). The first leek cultivars were landraces (the result of mass selection), propagated 

by open pollination (OP) and were highly variable in agronomic and morphological traits. 

The method of mass selection is shown in Figure 2.2. Cycles can be repeated until the 

desired result. Subsequently, local landraces or breeder selections (the result of mass 

selection and family selection), adapted to different climates and market demands, were 

developed in many European countries from Bulgaria to Ireland and in other parts of the 

world (e.g. Middle East).  
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Figure 2.2 Positive mass selection (Engelen, 2003) 

In the case of family selection, harvest of the seeds takes place on each plant 

separately. The result is called a ‘half sib family’, if the mother plant is known but not the 

father or a ‘full sib family’, when both mother and parent plants are known (personal 

communication De Clercq). 

During the second half of the 20
th

 century, many new leek cultivars were developed. 

These cultivars were maintained by OP after selection for specific traits, including winter-

hardiness, long shafts, erectness of the leaves, dark leaf colour, disease resistance and 

uniformity and further referred as commercial OP cultivars (Havey and Leite, 1999). 

However, lack of uniformity was a major limiting factor in the marketability of the crop 

(Silvertand, 1996). Nowadays, F1 hybrids are gaining popularity among growers, due to 

their improved uniformity, higher yields and improved disease resistance compared with 

OP cultivars (De Clercq and Van Bockstaele, 2002). In order to maintain the uniformity of 

the crop, prevention of selfing in hybrid seed production is needed. Leek is, however, a 

self-incompatible crop. Therefore, it is advantageous to use plants that are male sterile 

(ms) in the production of hybrids of leek. Male sterile plants do not produce (or less) 

pollen. The combination of male sterile plants with a pollination population results in a 

first generation, called F1 hybrids. In fact, these F1 hybrids are pseudo-hybrids as it is 

the result of a controlled pollination.  
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The following steps are performed to obtain F1 leek hybrids (personal communication De 

Clercq): 

1) Selection of the parent lines 

a. Tracing ms in F2-F3 and maintaining this seed parent via bulbils 

b. Selection of pollinator parent and maintaining via bulbils 

2) Test crossings 

a. Production of top crosses: the specific combining ability of 1 male with 

several female lines is evaluated 

3) Evaluation 

a. First evaluation of the new hybrids on 1 location 

b. Evaluation of the new hybrids on more locations  

 

4) Introduction of a new cultivar, via scaling-up the number of plants for seed 

production 

 

The first F1 hybrids, i.e. Parton, Upton and Carlton (Nunhems) were developed in 1995.  

 

Leek types 

The selection and breeding efforts have resulted in different types of leek cultivars, each 

specifically adapted for growth during a specific part of the leek production season 

(Table 2.1). More specifically, the cultivation of leek is divided according to the time of 

harvest, into 3 periods: summer, autumn and winter period. A further subdivision can be 

made into very early, early and normal summer, early and late autumn and normal winter 

and late winter cultivation (Silvertand, 1996).  

 
Table 2.1 Distinctive features of leek types (De Clercq et al., 1999) 

 

 

 

 

 

Distinctive features Leek types 

 summer autumn winter 

Leaf colour yellow-green pale-green blue-green 

Shaft length long (30-50 cm) medium (24-29 cm) short (18-23 cm) 

Maturity very fast growing fast growing slow growing 

Winter hardiness no tolerance to frost some tolerance to frost good tolerance to frost 
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2.2.3.2 Sowing of leek 

Seeds of leek have an angular shape and are black coloured (De Clercq, 2008). 1 

gramme contains 300 to 400 seeds (Grubben and Denton, 2004). Sowing starts most of 

the time indoors as hard frost can be detrimental for young plants. The sowing method is 

pneumatic with precision seed (1.8-2.0 mm, germinative power of minimum 90%), 

whereupon seeds are covered with 1.5 cm of soil (personal communication De Clercq). 

Sowing of summer leek cultivars starts in December and continues until March. The 

autumn cultivars are sown in March and the winter cultivars from April to the middle of 

May. 

 

2.2.3.3 Transplanting leek 

After 10 to 12 weeks upon sowing, a selection of the young plants (thickness 5-10 mm) 

are transplanted to the production field. Three ways of planting are established in 

Belgium: (1) the gross of the leek in West Flanders is planted on ridges (1 row of leek 

plants for each ridge). Growth on ridges is preferred because of the fast growth due to 

the fast heating-up of the soil. Moreover growth on ridges gives the opportunity for 

deeper planting, which allows the production of a longer white shaft. (2) It is also 

possible to grow leek on a flat field, which need to be earthed up during growth. 

(3) Typical in the region of Mechelen is the growth of leek on beds (1.2 m width and 

30 cm height, 4 rows of leek plants for each bed), without the need of earthing up. 

 

2.2.3.4 Soil and fertilisation 

Leeks may be grown successfully on a wide range of soil types but because of the 

unbranched roots, sandy loam soils are the most suitable for plant growth in Belgium 

(sandy clay soils in the Netherlands) and result in above average yields (Silvertand, 

1996). Soil pH of at least 5.8 is most desirable. The soil should be prepared with green 

manure ploughed down or farmyard manure to enhance organic content and provide 

nutrients and extra moisture holding ability for the crop. Leeks require about 200-250 kg 

nitrogen (N) hectare
-1

. Phosphate requirements of leeks are not very substantial and 

applications of 50 to 100 kg P2O5 hectare
-1

 are adequate. Potassium requirements are 

moderate and 150 to 200 kg K2O hectare
-1

 as sulfate of potassium is adequate (Baker, 

1998). MestActiePlan (MAP) in Flanders requires a maximum of 320 kg N hectare
-1 

 

year
-1

 and 75 kg P2O5 hectare
-1

 year
-1 

for the cultivation of leek (VLM, 2012). 
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2.2.3.5 Pests and diseases 

Leek can be attacked by many pests and diseases. Onion fly (Delia antique), thrips 

(Thrips tabaci) and leek moth (Acrolepiosis essectella) are the most important pests. 

Rust (Puccinnia allii), white tip (Phytophthora porri) and purple blotch (Alternaria porri), 

are the diseases most frequently observed in leek (Silvertand, 1996). Leaf blotch 

(Cladosporium allii-porrii) and black stripe (Leptotrochila porri) are more rare (personal 

communication De Clercq). 

 

2.2.3.6 Harvest and storage 

When leek plants are mature, harvest can take place. In Belgium, the summer leek types 

are harvested from June until October, the autumn types from September until January 

and the winter types from January until April. Physical size should meet market 

requirements for thickness and length. 

Different leek harvest machines are developed over the years, from a simple lifting knife 

to a semi-automatic lifter-harvester machine, with the possibility to shorten the leaves 

and cut off the roots in the field. For processing purposes (frozen industry), leek is 

trimmed on the field followed by cutting the roots. For the fresh market, leeks are 

harvested without trimming, which will take place at the farm (personal communication 

De Clercq).   

 

In order to fill up the gap in the sales market during May and June, late winter leek plants 

are harvested in April and stored in cold rooms. Each subsequent week, a part is taken 

out to clean and pack for sale (personal communication De Clercq). Alternatively, freshly 

harvested leek plants are imported from southern European countries (Silvertand, 1996). 

As a result, leek is supplied to the fresh market year-round.  

 

2.3 Leek as a food product – from ‘harvest to fork’ 

2.3.1 Preparation for the market 

2.3.1.1 Peeling, washing and sorting 

Firstly, the outer leaves are removed at the farm and the leeks are placed on a 

transporting belt, going through a washing line. Simultaneously, the leaves and roots are 

trimmed. For fresh market delivery, leek is commonly packaged in 10 kg boxes, sorted 

for uniform thickness and colour. The length is about 55 cm in cages of 60 cm (personal 

communication De Clercq). 
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As a result, leek production is faced with biomass wastes and by-products, especially 

linked to the green leaves. Two fractions of the unused green leaves can be established, 

a first fraction, which is left behind on the field during harvesting (especially leek for 

industry), while a second fraction is removed during processing at the farm. For example, 

Groentenhof (Bornem, Belgium), growing 50 ha of leek, obtained a waste of green 

leaves ranging from 400 to 600 tonnes of green leaves a year (personal communication 

Croket). This amount of waste corresponds with 8 to 12 tonnes per hectare. When 

extrapolated to the Belgian leek production (4800 ha), it means 38 400 to 57 600 tonnes 

in 2012. This biomass is usually brought back onto the field, however, this large quantity 

of plant biomass could be valorised given an adequate stabilisation method and an 

identified use of the derived product.  

 

2.3.1.2 Fresh-cut leek  

The demand for fresh-cut vegetables, both for retail and food service applications, has 

grown tremendously over the past few years and has led to an increase in the quantity 

and variety of products available for the consumers. Leek may provide a challenge as a 

minimally processed vegetable, because it is a vegetable that requires minimal 

processing before consumption (Hong and Kim, 2001). Attempts have been made to 

develop minimally processed leek. This involves removal of roots and decayed leaves, 

and pseudo stem trimming to different sizes. However, the major problems that arise are 

inner leaf extension, discolouration of the cut surface as well as fresh weight loss, which 

causes a rapid loss in the overall market quality of the product (Tsouvaltzis et al., 2007; 

Tsouvaltzis et al., 2010).  

 

2.3.2 Commercialisation 

Leek production falls into 2 segments: leek for the fresh market and leek for the food 

processing industry. Around 80% of harvested leek plants are sold for direct 

consumption, whilst 20% is stored under refrigeration, frozen, dried or destined for the 

preparation of ready-made dishes (VLAM, 2012). A lot of companies in Belgium produce 

frozen vegetables and commercialise leek and leek derived frozen products, such as 

Ardo, Pinguin-Lutosa, Dujardin Foods, d’Arta, Pasfrost, Begro, Dejaeghere, Dicogel, 

Hesbayefrost, Horafrost. Most of these companies are concentrated in West Flanders, 

and are grouped in VeGeBe (Vereniging van Groenteverwerkende Bedrijven). Leek 

plants for the fresh market are mostly sold at vegetables auctions and subsequently find 

their way to the consumer via markets and the retail sector. Four vegetable auctions are 

situated in Belgium including BelOrta (Zellik, Kampenhout and Sint-Katelijne-Waver, a 
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fusion of Mechelse Veilingen and Coöbra), REO veiling (Roeselare), Veiling In-Co 

(Hoogstraten) and Limburgse Tuinbouwveiling (Herk-de-Stad) (LAVA
3
, 2012). Only these 

auctions offer the Flandria quality mark. Flandria is the Belgian quality label for fruits and 

vegetables. Since its inception in 1995, the Flandria label has given added value to fresh 

products. This seal of approval guarantees quality and freshness plus concern and care 

for the environment during their cultivation (LAVA, 2012). This Belgian quality mark is 

comparable with the Q&S (Qualität und Sicherheit) system in Germany. 

Table 2.2 shows the current assortment of leek on the Belgian and Dutch market. A 

distinction is made between the fresh and the frozen market. 

 

Demands for leek specifications differ from country to country (Neefs and Meulemeester, 

2010). In Denmark, for example, thin leek is required and especially organically grown 

leek. In Japan, on the other hand, thick leek shafts are preferred (personal 

communication, De Neef). In England, leek leaves are cut away and only pseudo stalks 

are meant for trade. In many other countries including Poland, whole leek plants with 

leaves are a marketable product where the leek leaves are used as an addition to soups 

or as a component of vegetable salads (De Clercq et al., 1999). Germany and Japan 

have high requirements concerning pesticide residue levels (Neefs and Meulemeester, 

2010). In addition to the demands for each country, each individual buyer has its own 

wishes with regard to packaging, size, quality and pesticide residue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
3
 Logistieke en Administratieve Veilingassociatie 
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Table 2.2 Assortment of leek in Belgium and the Netherlands (Neefs and Meulemeester, 2010; van 
den Elzen, 2012; d'Arta, 2012; Ardo, 2012) 

Fresh Frozen 

Loose Packaged Chopped Chopped 

 

Entire leek 
Length: 56 
cm 
With or 
without 
roots 

 

Flow pack  
Length: 20 cm, 36 
cm, 40 cm, 56 cm 
1 or more plants in 
1 bag 
With or without 
roots  

White- 
green 
4 mm, 10 
mm 

White-green 
(40/60-50/50-
70/30) 
 
White leek 

rings (10 mm, 
15 mm) 
cubes 

 

Semi-
entire leek 
Length: 40 
cm, 36 cm 
With or 
without 
roots 

 

Bundle  
Length: 56 cm 

   

 

White shaft 
Length: 20 
cm 

 

Netting bag 
Length: 56 cm 
Weight: 2 kg, 3 kg, 
5 kg, 10 kg 
With or without 
roots 

   

  

 

EPS box    

  

 

Carton box    

  

 

Plastic    

  

 

IFCO    

 

 

 

 

http://www.google.be/imgres?q=kist+prei&hl=nl&biw=1156&bih=648&tbm=isch&tbnid=y0-rM0Mhe95ZgM:&imgrefurl=http://www.retail-pro.be/DossierDetail.aspx?id=ERT0127N01&docid=0l2qR3SBOdk0QM&imgurl=http://foto.pmg.be/ERT/ERT0127N01_v1F17A033_groot.jpg&w=543&h=354&ei=_UEaUIuMHfKa1AWMgIGQDg&zoom=1&iact=hc&vpx=289&vpy=147&dur=142&hovh=181&hovw=278&tx=140&ty=120&sig=106961604181629817526&page=3&tbnh=144&tbnw=213&start=35&ndsp=20&ved=1t:429,r:6,s:35,i:2
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2.3.3 Trends 

Three important lifestyle trends have led to a remarkable evolution in leek production, 

commercialisation and consumption: (a) the demand for convenience as a result of the 

increasing small families, their limited time because of a time consuming job, living in a 

small apartments etc.; (b) consumers wish to cook with top-quality products when 

devoting the time to cooking. Cooking programmes on television have a great influence 

on this trend; (c) frequency of dining out has increased. These trends were the onset for 

a diversification in leek production, such as selling the white shaft separately. But also 

the development of the Flandria label for leek is a result of these different trends (Neefs 

and Meulemeester, 2010).  

 

2.3.4 Consumption  

Leek is usually consumed after a cooking process, such as in soups, oven dishes, 

stewed with béchamel sauce etc., but leek can also be consumed in fresh state in salads 

(Compernol and De Ryck, 2011). In the bachelor thesis of Compernol and De Ryck 

(2011), 618 Belgian persons were subjected to a survey concerning the habits and 

preferences of consumption of leek. Seven percent of the participants do not eat leek at 

all, mainly because of the taste. In total, 23% of the leek consuming group eats leek 

once per year, 45% once in a month, and 26% eat leek once in a week. A very small 

percentage of the group (6%) consume leek twice a week or even more. One-fourth of 

the participants only consume the white shaft of leek, mainly because of the toughness 

and bitterness of the green leaves. The leek consuming group buy leek, mostly in the 

fresh state as the entire leek plant, while a little part bought a fresh, washed, chopped or 

frozen mixture. Only 4% of the participants claimed to buy leek as plastic packaged fresh 

white part. 

Information on consumption quantities of vegetables and especially of leek is limited, 

although data can be found on the purchased amount. Table 2.3 shows the average 

amount of individual vegetable, including leek, bought in 2009 and 2010 in Belgium, 

expressed as kg capita
-1

.  
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Table 2.3 Average weight of vegetable purchased per capita in Belgium, in 2009 and 2010 (VLAM, 
2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3 demonstrates the increasing importance of leek, in addition to the top 5 

vegetables (tomato, carrot, onion, chicory and lettuce) (VLAM, 2011). In 2009 and 2010, 

2.70 kg and 3.10 kg leek was purchased per capita in Belgium, which was higher than 

the purchase of cauliflower and courgette but lower than tomatoes, carrots and onions. 

In 2010, leek represented 5.0% of the volume of vegetables used in the consumer’s 

kitchen (Neefs and Meulemeester, 2010). In comparison, in Germany the purchase of 

leek in 2010 was 1.3 kg capita
-1 

(VLAM, 2011).  

 

2.4 Chemical composition of leek and its bioactive 

compounds 

The main components of 100 g fresh leek include, in addition to water, carbohydrates 

(5.0-11.2 g), proteins (1.6-2.2 g), fat (0.1-0.4 g), dietary fiber (1.0-2.3 g) and mineral 

components such as K (248-347 mg), Ca (48-75 mg), Mg (10-11 mg), Na (5-9 mg), Cu 

(0.06-0.30 mg), as well as vitamins, such as vitamin C and vitamins of the B group and 

other secondary metabolites, which can have a positive influence on human health 

(Grzelak-Blaszczyk et al., 2011).  

Research on the nutritive and health benefits of leek is scarce but the medicinal value of 

the other Alliaceae (e.g. garlic and onion), has been recognised for thousands of years 

(Carson, 1987; Augusti, 1990; Lawson, 1998). Eating raw onions helps to reduce 

cholesterol levels because they increase levels of high-density lipoproteins; it also helps 

to control coronary heart disease, thrombosis and blood pressure. Onions are also used 

in the treatment of anaemia, urinary disorders, bleeding piles and teeth disorders. 

Vegetable 2009 (kg capita
-1
) 2010 (kg capita

-1
) 

Tomato 10.44 9.91 

Carrot 9.55 9.58 

Onion 6.88 6.60 

Chicory 6.34 6.25 

Lettuce 3.73 4.04 

Leek 2.70 3.10 

Mushroom 2.09 2.34 

Pepper 2.07 2.29 

Cauliflower 1.85 1.92 

Courgette 1.84 1.78 
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Several researchers have found that onion has an anti-cancer effect, platelet anti-

aggregating agent, anti-hypercholesterolemia, anti-ulcer and anti-gastric cancer activity 

(Mitra et al., 2012). Moreover, epidemiologic studies elucidated the reduction of the risk 

of prostate, colorectal, stomach and breast cancer upon the consumption of Allium 

species, including leek (Bianchini and Vainio, 2001; Hsing et al., 2002). Moreover, a 

population case-control study (238 case subjects and 471 control subjects) conducted in 

Shanghai, revealed a significantly lower risk of prostate cancer upon consumption of leek 

more than 10 g day
-1

 compared to a consumption less than 2.2 g day
-1 

(Bianchini and 

Vainio, 2001; Hsing et al., 2002).  

These health benefits are attributed to a range of bioactive compounds present in Allium 

species (Havey et al., 2004). Bioactive compounds are extra nutritional constituents that 

typically occur in small quantities in food, which vary widely in chemical structure and 

function and are beneficial to consumer’s health (Kris-Etherton et al., 2002). Four 

classes of bioactive compounds are found in Allium species. Organosulfur compounds 

(including S-alk(en)yl-L-cysteine sulfoxides), responsible for the typical organoleptic 

parameters of the species in the Allium genus, are implicated as contributing in part to 

the Allium health-promoting properties (Singh and Shukla, 1998; Mostafa et al., 2000; 

Yin et al., 2002; Xiao et al., 2005; Lanzotti, 2006). In addition, polyphenolic 

compounds are another group of secondary metabolites who constitute a major class of 

phytochemicals found in Alliums and consist of 3 major subclasses, that is phenolic acids 

(and their derivatives), flavonoids (and their glycosides), and flavonoid polymers 

(proanthocyanidins or condensed tannins) (Grotewold, 2006). Allium species also 

contain significant levels of vitamin C, the most important vitamin in fruits and 

vegetables for human nutrition and fructans, oligo- and polysaccharides consisting of 

short chains of fructose units with a single D-glucosyl unit at the non-reducing end.  

These four groups of bioactive compounds in Allium species will be discussed in the next 

sections. Although not discussed, lutein, β-carotene, vitamin E and B may also contribute 

to the health-promoting properties of these species (Hart and Scott, 1995; Proteggente 

et al., 2002; Muir et al., 2007).  

 

2.4.1 The S-alk(en)yl-L-cysteine sulfoxides (ACSOs)  

Allium vegetables have been shown to have beneficial effects against several diseases, 

including cancer (Bianchini and Vainio, 2001; Hsing et al., 2002). The protective effect 

appears to be partly related to the presence of organosulfur compounds and mainly allyl 

derivates, which inhibit carcinogenesis in the forestomach, oesophagus, colon, 

mammary gland and lung of experimental animals. Organosulfur compounds modulate 

the activity of several metabolizing enzymes that activate (cytochrome P450s) or detoxify 
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(glutathione S-transferases) carcinogens and inhibit the formation of DNA adducts in 

several target tissues (Bianchini and Vainio, 2001). 

All Allium species produce sulfur-containing compounds. Up to a few percent of the dry 

weight may be non-protein sulfur amino acids, better known as S-alk(en)yl-L-cysteine 

sulfoxides (ACSOs). These amino acids are enzymatically formed by hydrolysis of the 

corresponding γ-glutamyl-S-alk(en)ylcysteine storage dipeptides (Lancaster and Shaw, 

1989). It has been estimated that approximately 75% of the sulfur in Allium species 

occurs as ACSOs or the storage form γ-glutamyl-ACSOs. These non-volatile, odourless 

ACSOs are the precursors both of flavours, odours and the lachrymatory factor (LF), i.e. 

propanethial sulfoxide (Griffiths et al., 2002; Bloem et al., 2004; Jones et al., 2004).  

 

When the tissue of Allium species is damaged, ACSOs are cleaved by the endogenous 

enzymes alliinase and lachrymatory factor synthase, to yield unstable alk(en)yl sulfenic 

acids, pyruvic acid and ammonia. Alk(en)yl sulfenic acids rearrange non-enzymatically to 

form thiosulfinates that contribute to the flavour perceived. Pyruvic acid and ammonia 

are non-flavour products of the enzymatic reaction (Lancaster and Kelly, 1983) (Figure 

2.3). The lachrymatory factor  is formed only from 1-propenesulfinic acid following from 

hydrolysis of the ACSO trans-S-1-propenyl-L-cysteine sulfoxide. The LF is highly reactive 

and hydrolyses to propionaldehyde, sulfuric acid and hydrogen sulfide. It is also the 

precursor of several sulfur derivatives (Bianchini and Vainio, 2001). 

 

 

 

Figure 2.3 Formation of flavour compounds in Allium species from the precursors S-alk(en)yl-L-
cysteine sulfoxides; with 1-propanethial-S-oxide = lachrymatory factor (Rose et al., 2005) 

ACSOs occur in many plant families, such as Alliaceae and Brassicaceae vegetables, 

but also in fungi and algae (Kubec and Dadakova, 2008). Ten ACSOs have been 

reported in Allium species (Table 2.4), i.e. (1) S-methyl-L-cysteine sulfoxide (methiin, 

present in Alliaceae and some Brassicaceae), (2) S-propyl-L-cysteine sulfoxide (propiin), 

(3) trans-S-1-propenyl-L-cysteine sulfoxide (isoalliin; characteristic for onion), (4) S-(2-
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propenyl)-L-cysteine sulfoxide (alliin; characteristic for garlic), (5) S-ethyl-L-cysteine 

sulfoxide (ethiin), (6) S-butyl-L-cysteine sulfoxide (butiin), (7) S-(3-pentenyl)-L-cysteine 

sulfoxide, (8) S-(1-butenyl)-L-cysteine sulfoxide (homoisoalliin), (9) S-(methylthiomethyl)-

L-cysteine sulfoxide (marasmin) and (10) S-(2-pyrrolyl)-L-cysteine sullfoxide (Kubec et al., 

2000; Kubec et al., 2002; Dini et al., 2008; Kubec et al., 2010; Kubec et al., 2011; 

Kucerova et al., 2011). The content of some of these compounds in Allium species is 

presented in Table 2.5. 

 
Table 2.4 Chemical structure of 10 identified S-alk(en)yl-L-cysteine sulfoxides and their presence in 
Allium species 

General structure Identification 

subgroup 

Trivial name Allium species Ref.  

 R = CH3 

 

methiin leek, garlic, 

onion, Chinese 

chive, bunching 

onion 

Lundegardh et al. (2008); 

Yoo and Pike (1998); 

Kubec et al. (2000); Kubec 

and Dadakova (2008); 

Yamazaki et al. (2011) 

 

R = CH2CH3 

 

ethiin Allium cepa var. 

tropeana 

Dini et al. (2008) 

R = CH2CH2CH3 

 

propiin leek, onion Kubec and Dadakova  

(2008); Hovius and 

Goldman (2005) 

R = CH2CH=CH2 

 

alliin leek, garlic, 

Chinese chive, 

onion 

Kubec and Dadakova 

(2008); Yamazaki et al. 

(2011); Hovius and 

Goldman (2005) 

R = CH=CHCH3 

 

isoalliin leek, garlic, 

onion, Chinese 

chive, bunching 

onion 

Lundegardh et al. (2008); 

Kubec et al. (2000); Kubec 

et al. (2000); Yoo and Pike 

(1998); Kubec and 

Dadakova (2008); 

Yamazaki et al. (2011) 

R = CH2CH2CH2CH3 

 

butiin Allium cepa var. 

tropeana 

Dini et al. (2008) 

R = CH2CH2CHCHCH3 

 

S-(3-

pentenyl)-L-

cysteine 

sulfoxide 

 

Allium cepa var. 

tropeana 

Dini et al. (2008) 

R = CHCHCH2CH3 

 

homoisoalliin 

 

Allium siculum Kubec et al. (2010) 

R = CH2SCH3 

 

marasmin 

 

Allium 

stipitatum 

Kubec et al. (2011) 

R = S-(2-

pyrrolyl)-L-

cysteine 

sulfoxide 

 

Allium 

giganteum 

Kucerova et al. (2011) 

 

Most Allium species do not contain all of these ACSO compounds and the composition is 

species-specific (Lancaster and Kelly, 1983; Yoo and Pike, 1998). It is also found that 
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alliinase acts quickly, but differently on the individual ACSOs, such that some of the 

flavour precursors are more completely degraded than others (Lancaster et al., 1998).  

 
Table 2.5 Content of ACSOs in different Allium species 

Allium 

species 
tissue isoalliin  alliin  methiin  

  mg g
-1
 dw Ref. mg g

-1
 dw Ref. mg g

-1
 dw Ref. 

Leek shaft 

23.0 

 

 

37.4 

Lundegardh et 

al. (2008)  

Yamazaki et al. 

(2011) 

  

1.5 

 

 

7.7 

Lundegardh et 

al. (2008)  

Yamazaki et al. 

(2011)  

Garlic cloves 1.3 
Yamazaki et al. 

(2011) 
21.7 

Yamazaki 

et al. 

(2011) 

3.9 
Yamazaki et al. 

(2011) 

Onion bulb 21.1 
Yamazaki et al. 

(2011) 
  3.5 

Yamazaki et al. 

(2011) 

Bunching 

onion 
leaves 34.8 

Yamazaki et al. 

(2011) 
  7.1 

Yamazaki et al. 

(2011) 

 

Only isoalliin and methiin are found in leek (Lundegardh et al., 2008; Kubec and 

Dadakova, 2008). However, in the study of Kubec and Dadakova (2008), propiin and 

alliin are reported to be present in trace amounts. Yamazaki et al. (2011) determined the 

distribution of flavour precursors in 7 Allium vegetables including leek, and only found 

isoalliin, methiin and cycloalliin in significant amounts. However, cycloalliin does not 

contribute to flavour because of the absence of alliinase sensitivity. 

 

2.4.1.1 Biosynthesis 

Figure 2.4 shows the biosynthesis pathway of S-alk(en)yl-L-cysteine sulfoxides in Allium 

species (Leustek and Saito, 1999; Masamura et al., 2011). However, there is still 

considerable uncertainty about several stages, the relationship between ACSOs and γ-

glutamyl peptides (γGP) relatives and whether the same pathway is followed in all 

tissues (Jones et al., 2004). 
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Figure 2.4 Biosynthesis of S-alk(en)yl-L-cysteine sulfoxides in Alliums (Jones et al., 2004) 

Initially, SO4
2− 

(sulfate) is transported across the root plasma membrane, whereupon it 

accumulates within plant cells. In order for SO4
2−

 to be utilised for cysteine biosynthesis, 

it must be converted to the intermediate compound 5-adenylsulfate (APS). This reaction 

is catalysed by the enzyme ATP sulfurylase (ATPS) in plastids. APS can then be used 

by APS reductase (APSR) to form sulfite prior to its conversion to sulfide by the enzyme 

sulfide reductase (SiR). Next, cysteine is formed from the reaction of sulfide with O-

acetylserine (OAS), a process catalysed by the enzyme OAS thiol-lyase (OASTL). OAS 

is derived from the acetylation of serine by the action of the enzyme serine 

acetyltransferase (SAT). Some of the cysteine is exchanged for glutathione catalysed by 

glutamylcysteine synthase (GCS) and glutathione synthase (GS). Subsequently, some of 

the cysteine and synthesised glutathione forms ACSOs through a chain reaction 

including decarboxylation, oxidation, and transpeptidation. Lancaster and Shaw (1989) 

suggested that the biosynthesis of ACSOs proceeds in onion via γ-glutamyl peptide 

intermediates (Masamura et al., 2011). Two possible pathways are proposed to obtain 

ACSO from glutathione or cysteine (Figure 2.5) (Jones et al., 2004). Pathway (a) 

illustrates the participation of glutathione, which is methylated, and then through loss of 

glycine, oxidation and finally loss of the γ-glutamyl group converted to methyl cysteine 

sulfoxide. Pathway (b) shows an alternative route via direct methylation of O-acetyl 

serine to yield methyl cysteine sulfoxide (Jones et al., 2004). 
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(a) (b) 

 
Figure 2.5 Two proposed pathways for the biosynthesis of methyl cysteine sulfoxide (Jones et al., 
2004) 

 

There is limited information about where the flavour precursors are synthesised in the 

plant cell (Figure 2.6) (Jones et al., 2004). Derived from studies on onion, glutathione 

was identified in the chloroplasts and cytoplasm, while ACSOs and γGPs were located 

within the cytoplasm only (Lancaster and Shaw, 1989). 

 

 

 

 

 

 

 

Figure 2.6 Subcellular location of biosynthetic intermediates, flavour precursors and alliinase 
in Alliums (Jones et al., 2004) 
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2.4.1.2 Physiological role in the plant 

ACSOs play a role in defence against pests and predation, particularly in the 

overwintering bulb. Cysteine sulfoxides in combination with the enzyme alliinase are 

thought to be responsible for chemical protection against herbivores (Keusgen et al., 

2002). High levels of cysteine sulfoxides have also been shown to have antibacterial and 

antifungal properties which are probably beneficial during extreme biotic conditions 

(Fritsch and Keusgen, 2006). In addition, they function as carbon, nitrogen and sulfur 

storage and transport (Lancaster and Boland, 1990; Jones et al., 2004).  

 

2.4.1.3 Factors influencing the ACSO content 

Several factors can influence the Allium ACSO content including biotic and abiotic 

parameters, which are discussed below.  

2.4.1.3.1 Cultivar and tissue type 

 

Differences in ACSOs exist among onion (Allium cepa L.) cultivars when grown under 

similar conditions. These differences can be attributed to the heterogeneity found within 

the Allium cepa germplasm (Kopsell et al., 1999; Lee et al., 2009). Moreover, the content 

of flavour precursor compounds in onion is significantly influenced by cultivar × location 

interaction (Lancaster et al., 1988; Lee et al., 2009). 

In addition, there are differences in ACSO levels in one plant. Leaves of onion contain 

more methiin than the bulbs. Bulbs will contain more isoalliin than the roots and leaves. 

The outer fleshy layers and the top and bottom sections of the onion bulb contain the 

highest content of ACSOs. The lowest levels are observed in the dry brown skin (Bacon 

et al., 1999). Total ACSO concentrations in leek (cv. Tadorna) decrease acropetally and 

mature upper leek leaves contain lower levels of ACSOs (Doran et al., 2007). 

2.4.1.3.2 Pre-harvest factors 

 

Fertilisation. Mineral fertilisation (N 190 kg ha
-1

 and S 21 kg ha
-1

) is responsible for an 

increase in ACSO levels in leek by 37% compared to unfertilized leek, whereas 

fertilisation with direct incorporation of red clover (Trifolium pratense L.), mulch, or red 

clover biodigestate (anaerobically digested red clover biomass) has no influence on the 

ACSO level of leek (Lundegardh et al., 2008). SO4
2-

 and nitrogen availability are known 

to have an influence on onion flavour, thus also on the ACSO content, as ACSOs play a 

role in flavour production (Randle et al., 1995; Randle, 2000). It is known that sulfur 
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supply negatively influences the APS reductase (APSR) activity at bulbing of onion, while 

the ATP sulfurylase (ATPS) is positively influenced (Thomas et al., 2011). 

Temperature. The total ACSO content and the individual ACSO content in onions (cv. 

Granex 33) increase linearly in response to a higher temperature. The ACSO content of 

onion bulbs grown at 15.6 °C were roughly a third of those growing at 32.2 °C (Coolong 

and Randle, 2003). 

Irrigation. Irrigation regime influences onion flavour (Randle et al., 1995; Randle, 2000).  

Light. Onions grown under normal long-day conditions or under short-day conditions, 

extended with incandescent light, show an increase in ACSO levels in the leaves in early 

development, followed by a decline in the leaves and a simultaneous increase in the 

bulbs. 

Harvest time. To our knowledge, no studies report the influence of harvest time on 

ACSO content in Allium species. 

 

2.4.1.3.3 Post-harvest factors 

 

In Alliums, most of the sulfur is stored in the form of ACSOs. This sulfur is taken up from 

the soil by the roots as sulfate and thus, after harvest, no further increase can occur. If 

there is an increase, it should be the result of rearrangement of total sulfur to form 

ACSOs (Bacon et al., 1999). 

Storage. The level of methiin in different onion cultivars decreases significantly upon 6 

months of cool storage, while isoalliin content increases, but differences are cultivar 

dependent. The increase in isoalliin upon storage suggests an increased γ-glutamyl 

transpeptidase activity, as in the biosynthetic flavour pathway, γ-glutamyl transpeptidase 

is responsible for the hydrolysis of the γ-glutamyl moiety from γ-L-glutamyl-S-(1-

propenyl)-L-cysteine sulfoxide to produce isoalliin (Kopsell et al., 1999). In another study, 

methiin concentrations remained unchanged when onion bulbs were stored at 5 °C, 

24 °C or 30 °C for 5 months, while isoalliin continuously increased upon storage at 5 °C 

(Yoo et al., 2012). 

Processing. Blanching garlic in hot water (90 °C for 5 min) hardly affect the individual 

organosulfur compound content, while fermentation and packaging steps negatively 

affect the levels of the ACSOs in garlic (Beato et al., 2012). 
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2.4.1.4 Analysis of ACSOs: state of the art 

Numerous methods for quantitative determination of ACSOs have been developed. A 

leading role among these methods plays high-performance liquid chromatography 

(HPLC) determination after precolumn derivatisation, with ortho-

phthaldialdehyde/tertbutylthiol being the most frequently used derivatisation reagent 

(Krest et al., 2000). Alternatively, ACSOs can be quantified by gas chromatography (GC) 

after derivatisation with ethyl chloroformate and reduction of the thermolabile sulfoxide 

group by sodium iodide (Kubec et al., 2000). ACSOs can also be determined by capillary 

electrophoresis. This method is based on extraction of these sulfur amino acids by 

methanol, their derivatisation by fluorenylmethyl chloroformate and subsequent 

separation by micellar electrokinetic capillary chromatography (Kubec and Dadakova, 

2008). 

 

2.4.1.5 ACSOs and health 

The ACSO compounds and their derivatives show a number of activities that are 

beneficial to human health, such as antidiabetic, antihyperglycemic and antiplatelet 

activities (Kumari et al., 1995; Romanramos et al., 1995; Ali et al., 1999). The degree of 

the respective contributions of these organosulfur compounds to bioactivity depend on 

their alkyl moieties, given in Table 2.4 (Yamazaki et al., 2011). 

Supplements. Regulid (Figure 2.7), a dietary supplement commercialised by BioXtract, 

contains allyl sulfides and vinyldithiins coming from garlic (Allium sativum L.). In garlic, 

allicin is formed upon the reaction of alliin with alliinase. Allicin is the main precursor of 

various other transformation compounds, such as allyl sulfides and vinyldithiins. 

BioXtract uses allyl sulfides to stabilise human weight after a diet and avoid yo-yo dieting 

but also uses to help preventing the metabolic syndrome (BioXtract, 2012). 

 

Figure 2.7 Organosulfur supplement, extracted from garlic (BioXtract, 2012) 

http://www.bioxtract.com/health-conditions/metabolic-syndrome/index.html
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2.4.2 Polyphenolic compounds 

In addition, a wealth of other classes of compounds, such as polyphenolic compounds, 

also referred as polyphenols, are also suggested to contribute to the health-promoting 

properties of the Allium species (Lanzotti, 2006). Polyphenolic compounds are 

secondary metabolites who constitute a major class of phytochemicals found in plants 

(Erdman et al., 2007) and may contribute to the bitterness, astringency, colour, flavour 

and odour of the products (Naczk and Shahidi, 2004). They are synthesised by plants 

during normal development and in response to stress conditions such as infection, 

wounding and UV radiation (Beckman, 2000). Polyphenolic compounds exhibit a wide 

range of physiological properties such as anti-allergenic, anti-artherogenic, anti-

inflammatory, antimicrobial, antioxidant, antithrombotic, cardioprotective and 

vascodilatory effects (Benavente-Garcia et al., 1997; Samman et al., 1998; Manach et 

al., 2005). Over 8000 polyphenolic compounds have been isolated from different natural 

products and consist of 3 major subclasses: phenolic acids (and their derivatives), 

flavonoids (and their glycosides) and flavonoid polymers (proanthocyanidins or 

condensed tannins).  

Phenolic acids contain a phenolic ring and an organic carboxylic acid function and 

consists of 2 subgroups, the hydrobenzoic and hydroxycinnamic acids.  

Flavonoids (Figure 2.8) constitute the largest group of plant polyphenols and consist of 2 

aromatic rings (A and B rings) linked by a 3-carbon chain that forms an oxygenated 

heterocyclic ring (C ring).  

 

 

 

 

 

 

 

 

Based on the degree of oxidation and saturation in the heterocyclic C-ring, the flavonoids 

may be divided into 8 groups (flavan, flavanone, flavones, flavonol, dihydroflavonol, 

flavan-3-ol, flavan-4-ol and flavan-3,4-diol) (Grotewold, 2006). The hydroxyl functional 

groups found on all 3 rings are potential sites for links to carbohydrates, and if bound to 1 

or more sugar molecules, they are known as flavonoid glycosides, whereas those that 

are not bound to a sugar molecule are called aglycones. The structural complexity of 

flavonoids is further increased with the linking of acetyl and malonyl groups to the sugar 

conjugates (Beecher, 2003; Erdman et al., 2007). Flavonols are a major group of 

Figure 2.8 General structure of a flavonoid molecule 

http://en.wikipedia.org/wiki/Phenol
http://en.wikipedia.org/wiki/Carboxylic_acid
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flavonoids, which occur mainly in the form of glycosides in plants. In vegetables, 

quercetin glycosides predominate, but glycosides of kaempferol, luteolin and apigenin 

are also present. Fruits almost exclusively contain quercetin glycosides, whereas 

kaempferol and myricetin glycosides are found in trace amounts (Herrmann, 1988). The 

common sugar residues are glucose and galactose, but rutinose, xylose, arabinose and 

rhamnose are also found.  

The third subclass of the polyphenols comprises the flavonoid polymers such as 

proanthocyanidins, which are oligomers of flavan-3-ols. 

  

Allium species are rich sources of flavonols (Table 2.6). The primary flavonols in onion 

and shallot include quercetin 3,4’-O-diglucoside, quercetin 3-O-glucoside, quercetin 4’-O-

glucoside, isorhamnetin 4’-O-glucoside and quercetin aglycone (Bonaccorsi et al., 2008; 

Lee and Mitchell, 2011a). Quercetin 3,4’-O-diglucoside, quercetin 4’-O-glucoside and 

free quercetin are reported to constitute 68% of the total phenolic content in onion and 

over 85% of the flavonoid content in the bulb (Williamson et al., 1996). Quercetin 3,4’-O-

diglucosides and quercetin 4’-O-glucosides in Alliums are also thought to contribute to 

the health-promoting properties of these species (Lanzotti, 2006). Previous 

investigations have demonstrated that kaempferol is the main flavonoid aglycone in leek 

(Hertog et al., 1992a). Fattorusso et al. (2001) isolated flavonoid glycosides in leek 

based on the aglycone kaempferol, including kaempferol 3-O-glucoside, kaempferol-3-O-

neohesperidoside, kaempferol 3-O-[2-O-(trans-3-methoxy-4-hydroxycinnamoyl)-β-d-

galactopyranosyl]-(1→4)-O-β-d glucopyranoside and kaempferol 3-O-[2-O-(trans-3-

methoxy-4-hydroxycinnamoyl)-β-d-glucopyranosyl]-(1→6)-O-β-d-glucopyranoside. 

 
Table 2.6 Presence and content of flavonols in Allium species 

Flavonoid 
sub class 

Trivial name Allium species Flavonol  
mg 100 g

-1
 dw 

Ref. 

Flavonol quercetin shallot 
leek 

 
2 

Bonaccorsi et al. 
(2008); Wiczkowski 
et al. (2008); Hertog 
et al. (1992a) 
 

 quercetin 3-O-
glucoside 

shallot 
onion 
bunching onion 

 Bonaccorsi et al. 
(2008); Wiczkowski 
et al. (2008); Lee 
and Mitchell 
(2011b); Zill-e-Huma 
et al. (2011); Parvu 
et al. (2010) 
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2.4.2.1 Biosynthesis 

Flavonoids are products of the phenylpropanoid pathway (Figure 2.9). The central 

enzyme in phenylpropanoid metabolism that directs carbon from aromatic amino acids to 

the phenylpropanoids is phenylalanine ammonia-lyase (PAL), which forms cinnamic acid 

from phenylalanine. The biosynthesis of flavonoids occurs in organized multi-enzyme 

complexes, ‘metabolons’, and the transport of flavonoids from the site of synthesis to 

final destinations such as vacuoles or cell wall, requires specific transferases and 

membrane transporters (Winkel-Shirley, 2001). The first enzyme committed to flavonoid 

biosynthesis is chalcone synthase (CHS), which condensates 3 acetate units from 

malonyl-CoA with p-coumaroyl-CoA. The resulting 4,2’,4’,6’-tetrahydroxychalcone 

(naringenin chalcone) is rapidly converted to naringenin by the enzyme chalcone 

isomerase (CHI). These first 2 enzymes of the flavonoid pathway are found in plants 

almost ubiquitously. However, the enzymes that catalyse the subsequent steps of 

flavonoid pathway vary from 1 plant species to another, giving rise to different flavones, 

flavonols, anthocyanins and/or proanthocyanidins.  

 quercetin 3,4’-
O-diglucoside 

shallot 
onion 

 
11-556 

Bonaccorsi et al. 
(2008); Lee and 
Mitchell (2011b); 
Wiczkowski et al. 
(2008); Lee and 
Mitchell (2011b) 
Zill-e-Huma et al. 
(2011) 
 

 kaempferol onion 
leek 

 
29.5 

Galdon et al. (2008) 
Hertog et al. (1992a) 
 

kaempferol 3-
O-glucoside 

onion 
leek 

 
 

Muminova et al. 
(2006); Fattorusso 
et al. (2001) 
 

isorhamnetin onion  Marotti and 
Piccaglia (2002) 

Isorhamnetin 
3-O-glucoside 

onion  Bonaccorsi et al. 
(2005) 
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Figure 2.9 Biosynthesis of polyphenolic compounds. PAL, phenylalanine ammonia-lyase; STS, 
stilbene synthase; CHS, chalcone synthase; CHI, chalcone isomerase; F3’,5’H, flavonoid-3’,5’-
hydroxylase; F3’H, flavonoid-3’-hydroxylase; F3H, flavanone hydroxylase; FNS, flavones 
synthase; FLS, flavonol synthase; ANS, anthocyanidin synthase; IFS, isoflavone synthase; 
DSDG, dehydroshikimate dehydrogenase; AS, aureusidin synthase; UFGT, UDP-glucose 
flavonol 3-O-glucosyl transferase; VR, vestitone reductase; DMID, 7,2’-dihydroxy-
4’metohoxyisoflavanol dehydratase; LCR, leucoanthocyanidin reductase. The flavonoid pathway 
enzymes marked on the left side downstream from the compound pentahydroxyflavanone 
function also on the pathways downstream from naringenin and eriodictyol at the corresponding 
step (Hanhineva et al., 2008) 
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2.4.2.2 Physiological role in the plant 

Flavonoids play an important role in plants as physiologically-active components, 

including  stress-protecting agents, attractants, feeding deterrents, signalling materials 

between plants and soil micro-organisms and defence materials against biotic and 

abiotic stresses (Harborne and Williams, 2000; Treutter, 2006). Polyphenols play a role 

in protecting plants from both insect and mammalian herbivores, by acting as 

phytoalexins or by increasing food astringency, thus making food unpalatable (Bravo, 

1998). Flavonoids generally absorb in the 280-315 nm region and thus are capable of 

acting as a UV filter, thereby protecting the underlying photosynthetic tissues from 

damage. The flavonoids most frequently cited as being UV-protective are flavones and 

flavonol glycosides having hydrocycinnamyl acylation linked through sugars (Harborne 

and Williams, 2000).  

 

2.4.2.3 Factors influencing the polyphenol content 

2.4.2.3.1 Cultivar and tissue type 

 

A lot of studies demonstrate a significant influence of cultivar on the content of 

polyphenols in different crops including onion, artichoke, potato, faba bean and tomato 

(Mogren et al., 2007b, Al-Weshahy and Rao, 2009; Chaieb et al., 2011; Vallerdú-Queralt 

et al., 2011; Lombardo et al., 2012).  

Flavonols and flavones are located predominantly in the leaves and in the outer parts of 

the plants, while only trace amounts can be found below the soil surface (Hertog and 

Hollman, 1996). In contrast to other vegetables, the highest amounts of quercetin in 

onions are found in the parts below the surface, more specifically in the outer dry scales 

(Patil et al., 1995). As a result, the greatest loss of flavonoids takes place when onions 

are peeled (Ewald et al., 1999).  

2.4.2.3.2 Pre-harvest factors 

 

Fertilisation. Nitrogen fertiliser do not affect the flavonoid content or composition in 

onion neither at start of storage nor during 5 months of cold storage, which means that it 

may be possible to grow onions with limited nitrogen leakage without reduced yield or 

polyphenol concentration (Mogren et al., 2007b). 

Light. Flavonoids can either degrade or increase in the presence of light depending on 

the state of the food (fresh or processed). Light causes a stress signal which enhances 

the flavonoid synthesis in fresh foods (Cisneros-Zevallos, 2003). The effect of light and 
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mainly the photo-degradation of polyphenols depends upon different factors such as the 

light wavelength, the pH, the concentration and the structure of polyphenols (Ioannou et 

al., 2012). 

Harvest time. Mogren et al. (2007a) reported an annual variation in quercetin content of 

onion at lifting and observed that late lifting time resulted in higher quercetin content. 

2.4.2.3.3 Post-harvest factors 

 

Processing. With increased processing heating temperatures and exposure times, the 

total contents of polyphenols and flavonoids in onion increased (Woo et al., 2007). 

Mechanical actions such as cutting and slicing increase oxidation, which can lead to a 

decrease of flavonoid content, however, some studies reveal an increase in flavonol 

content in fresh-cut potatoes and fresh-cut onions (Tudela et al., 2002; Perez-Gregorio et 

al., 2011; Ioannou et al., 2012). It has also been reported that a freezing process 

decreases the total phenolic content by 4-20% in 4 cultivars of raspberries (Ancos, 

2000). 

Storage. Some studies show an increase in the concentration of polyphenols during 

storage of fruits and vegetables, although a few reports state constant or decreasing 

levels (Leja et al., 2001; Gennaro et al., 2002; Kevers et al., 2007). It appears that the 

effect of storage depends on many factors including light, temperature and humidity 

(Tudela et al., 2002).   

 

2.4.2.4 Analysis of polyphenols: state of the art 

The quantification of polyphenolic compounds can be carried out by spectrophotometric 

analysis. Generally, the visible region of the spectrum is used to quantify polyphenols, 

flavonoids and tannins, among other substances. The most common and widespread 

methodology used to quantify the total phenolic compounds in foodstuffs originated from 

the methodology developed in 1927 by Otto Folin and Vintila Ciocalteu for the 

measurement of tyrosine (Folin and Ciocalteu, 1927; Everette et al., 2010), and in 1965 it 

was adapted by Vernon Singleton and Joseph Rossi for the evaluation of the total 

phenolic content in wine (Singleton and Rossi, 1965). This methodology is based on 

chemical reduction by a mixture of tungsten and molybdenum oxides (Waterhouse, 

2001). Upon reaction with phenols, a blue colour is produced, which absorbs light at 

765 nm (Everette et al., 2010). The intensity of light absorption at this wavelength is 

proportional to the concentration of phenols (Waterhouse, 2001).  

Reversed-phase high-performance liquid chromatography (RP-HPLC) is the main 

method used for the separation of polyphenolic compounds in plant-food material, in 
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which the stationary phase is less polar than the mobile phase. HPLC systems can be 

equipped with a wide range of detectors (refractive index, fluorescence, electrochemical, 

light scattering, mass spectrometric and UV/Vis), which can be used to detect and 

quantify polyphenols with and without chromophore groups, depending on the 

methodology used (Thompson and LoBrutto, 2007). Sophisticated systems of liquid 

chromatography coupled with modern detectors such as UPLC-DAD-MS/MS (ultra-

performance liquid chromatography-DAD-tandem mass spectrometry), UPLC-DAD/ESI-

MS (ultra-performance liquid chromatography-DAD and electrospray ionisation-mass 

spectrometry), HPLC-PDA-MS/ELSD (HPLC-photodiode array-mass spectrometry and 

evaporative light-scattering detector) and HPLC-ESI-TOF/MS (HPLC-electrospray 

ionisation-time of flight-mass spectrometry) are currently available, which are able to 

determine the chemical structure of a wide range of compounds (Haminiuk et al., 2012). 

Recently, the combination of Orbitrap
TM

 technology with a linear ion trap, known as LTQ-

Orbitrap-MS, was introduced. LTQ-Orbitrap-MS delivers single-stage mass analysis 

providing molecular mass information, 2-stage mass analysis (MS/MS) and multi-stage 

mass analysis (MS
n
) delivering structural information (Vallverdu-Queralt et al., 2010, 

Przybylski et al., 2010). Accurate mass measurement of product ions, formed in MS
n
 

experiments facilitates the elucidation of the structures of unknown compounds 

(Vallverdu-Queralt et al., 2010). 

 

2.4.2.5 Polyphenols and health 

In vitro tests have shown that polyphenolic compounds inhibit cancer cell proliferation, 

protect neurons, improve insulin secretion, reduce vascularisation and stimulate 

vasodilation (Ferguson et al., 2004; Silva et al., 2008; George et al., 2009; Del Rio et al., 

2010; Haminiuk et al., 2012). Quercetin, kaempferol and isorhamnetin, 3 main flavonoid 

aglycones, have been shown to have inflammatory effect on activated macrophages 

(Hamalainen et al., 2007). In addition, quercetin and kaempferol show chemopreventive 

properties in brain tumours and synergistically suppress cell proliferation in human gut 

cancer lines (Ackland et al., 2005; Labbe et al., 2009). Higher intakes of kaempferol 

resulted in a lower risk of coronary heart disease (Lin et al., 2007). 

It is generally accepted that the bioavailability of polyphenols is rather low and the values 

of the relative urinary excretion of the intake range from 0.3% for anthocyanins to 43% 

for isoflavones such as daidzin, demonstrating the great variability in the bioavailability of 

the different polyphenols (Manach et al., 2005). This bioavailability can be even lower 

when the food polyphenols have a large molecular weight, as is the case of hydrolysable 

and condensed tannins and complex flavonoid conjugates with several sugars and 

acylated with hydroxycinnamic acids (Selma et al., 2009). 
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When flavonols are present in the diet as aglycones, they are partially absorbed in the 

stomach, whereas the glycosidic forms of these flavonols are not (Crespy et al., 2002). 

Most polyphenols in their native form (polymeric, glycosylated or esterified) must be 

enzymatically hydrolysed before absorption (Walle, 2004). The rate and extent of 

intestinal absorption of flavonol glycosides depends largely on species as well as degree 

of glycosylation and type of sugar linked to a polyphenol (Hollman et al., 1999; Arts et al., 

2004; Chang et al., 2005; D’Archivio et al., 2010). Likewise, it has been shown that the 

absorption of quercetin from onions is up to 3 times higher than that of apples and is 

52% and 17.5%, respectively. This is due to the fact that the onion contains easily 

absorbable glucosides quercetin compounds, while in apples quercetin occurs as a 

mixture, i.e. quercetin 3-galactoside, -rhamnoside, -arabinoside, -xyloside and -glucoside 

(Olthof et al., 2000). In addition, the peak concentration of quercetin in plasma was much 

higher and was reached much faster after intake of quercetin 3-O-glucoside than after 

the intake of equal amount of quercetin 3-O-rutinoside by man. Quercetin glucoside was 

likely to be actively absorbed from the small intestine, whereas quercetin rutinoside was 

absorbed only from the colon after deglycosylation (Hollman et al., 1999). There is also 

evidence indicating that quercetin 3-O-glucoside may be more readily absorbed than 

quercetin 3-O-galactoside (Chang et al., 2005). 

In addition, their interactions with different macromolecules such as proteins and dietary 

fiber affect their assimilation and metabolic fate in vivo (Faulks and Southon, 2005; 

Parada and Aguilera, 2007; Yang et al., 2008; Palafox-Carlos et al., 2011). In general, 

polyphenols associated with dietary fiber can be partially bioavailable, although the 

bioavailability of polyphenols is usually delayed by a high content of dietary fiber (Perez-

Jimenez et al., 2009).  

Acylation, conjugation, molecular size and solubility also determine the absorption and 

metabolism of plant polyphenols (Scalbert and Williamson, 2000; Yang et al., 2008; Koli 

et al., 2010).  

 

Supplements. Supplements of quercetin are present on the market, but quercetin 

supplements extracted from Allium species are limited (Figure 2.10, extracted from 

seeds of Dimorphandra mollis). It is said to prevent oxidants from attacking nearby 

molecules. It alleviates allergies by stabilizing the membranes of certain immune cells to 

prevent them from releasing histamines. It also blocks enzymes that are responsible for 

producing inflammatory molecules that sensitize the body’s pain receptors. Quercetin is 

a beneficial factor in cardiovascular health. It has been shown to lower mortality rates 

and incidences of heart attack, possibly by decreasing the formation of plaque building 

substances like LDL cholesterol. It is also able to inhibit a main enzyme in the pathway 
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that leads to complications associated with diabetes, such as glaucoma, cataracts, and 

neuropathy (Aor, 2012). 

 

 

 

 

 

 

 

 

2.4.3 L-ascorbic acid (vitamin C) 

 

Vitamin C is the most important vitamin in fruits and vegetables for human nutrition. More 

than 90% of the vitamin C in human diets is supplied by fruits and vegetables (including 

potatoes). Some crops accumulate very high levels, e.g. the fruit of acerola (Malpighia 

glabra L.) contains over 1% of its fresh weight in vitamin C (Loewus and Loewus, 1987). 

Citrus fruits and potatoes are known to be the most important sources of vitamin C in the 

Western diet because of the large quantities consumed (Aditi and Graham, 2012). Allium 

species are also a source of vitamin C, as indicated in Table 2.7. A high 

recommendation of 100–200 mg day
-1

 has been suggested, because the high stress 

typical of modern life is known to increase the requirement for vitamin C.  

Vitamin C is defined as the generic term for all compounds exhibiting the biological 

activity of L-ascorbic acid (AA, Figure 2.11). AA is the principal biologically active form 

but L-dehydroascorbic acid (DHA), an oxidation product, also exhibits biological activity.  

 

 

 
Figure 2.11 General structure of ascorbic acid 

As DHA can be easily converted into AA in the human body, it is important to measure 

both AA and DHA in fruits and vegetables for vitamin C activity. In many horticultural 

crops DHA represents less than 10% of total vitamin C but DHA tends to increase during 

storage (Lee and Kader, 2000). AA is easily oxidised, especially in aqueous solutions, 

Figure 2.10 Quercetin supplement (Aor, 2012) 
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and greatly favoured by the presence of oxygen, heavy metal ions, especially Cu
2+

, Ag
+
, 

and Fe
3+

, and by alkaline pH and high temperature. DHA can be reduced to AA by 

reducing agents and also can be irreversibly oxidised to form diketogulonic acid, which 

has no vitamin C activity (Parviainen and Nyyssonen, 1992). Ascorbate oxidase has 

been proposed to be the major enzyme responsible for enzymatic degradation of AA to 

DHA (Saari et al., 1995).  

 

Table 2.7 Vitamin C content in different Allium species 

Allium species Tissue  Vitamin C 

mg g
-1

 dw 

Ref.  

Leek  white shaft 1.6-2.3 

0.1285 

Lundegardh et al. (2008) 

Ozgur et al. (2011) 

Chives  9.60 Kmiecik and Lisiewska 

(1999) 

Onion  18.89 Mota et al. (2010) 

 

2.4.3.1 Biosynthesis 

Figure 2.12 shows the pathway for the biosynthesis of L-ascorbic acid in plants. The 

enzymes 1–5 convert D-glucose-6-phosphate (D-glucose-6-P) to guanosine diphosphate 

(GDP) D-mannose and GDP-L-galactose. L-galactose, the first dedicated intermediate, is 

provided by hydrolysis of GDP-L-galactose; a 2-step hydrolysis (steps 6 and 7) through 

L-galactose-1-phosphate is shown. L-galactose is oxidised at position C1 by L-galactose 

dehydrogenase (step 8, L-galactose), forming L-galactono-1,4-lactone. This is oxidised 

by mitochondrial L-galactono-1,4-dehydrogenase (step 9) to L-ascorbic acid (Wheeler et 

al., 1998). 
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AA metabolism is evident in the cytosol and in non-photosynthetic organelles including 

the mitochondria and peroxisomes. The enzyme L-galactono-1,4-lactone 

dehydrogenase, which is capable of synthesising, is in fact bound to the inner 

mitochondrial membrane (Pineau et al., 2008). 

 

2.4.3.2 Physiological role in the plant 

AA acts as a key factor for photoprotection and reactive oxygen species clearance 

(Loewus, 1999; Smirnoff, 2000; Muller-Moule et al., 2004). It is also a cofactor for the 

synthesis of hormones, such as ethylene and gibberellins and is thus involved in 

flowering, fruit ripening and senescence (Loewus and Loewus, 1987; De Tullio et al., 

2004; Barth et al., 2006). AA is further suggested to be important in cell division, 

expansion and elongation (Arrigoni and De Tullio, 2000; Davey et al., 2000; Smirnoff and 

Wheeler, 2000; Pastori et al., 2003).  

 

 

 

 

 

 

 

Figure 2.12 Biosynthetic pathway of L-ascorbic acid, with 1, hexose phosphate isomerase; 2, 
phosphomannose isomerase; 3, phosphomannose mutase; 4, GDP-D-mannose 
pyrophosphorylase; 5, GDP-D-mannose-3,5-epimerase; 8, L-galactose dehydrogenase; 9, L-
galactono-1,4-lactone dehydrogenase (Wheeler et al., 1998) 
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2.4.3.3 Factors influencing the vitamin C content 

2.4.3.3.1 Cultivar and tissue type 

 

Vitamin C contents of fruits and vegetables are variable among cultivars (Lee et al., 

1995). 

Usually skin tissues contain more vitamin C to protect the plant from outside stress 

caused by light and oxidation (Lee and Kader, 2000). 

2.4.3.3.2 Pre-harvest factors 

 

Fertilisation. Nitrogen fertilisers at high rates tend to decrease the vitamin C content in 

many fruits and vegetables (Lee and Kader, 2000). 

Light. Although light is not essential for the synthesis of vitamin C in plants, the amount 

and the intensity of light during the growing season have a definite influence on the 

amount of vitamin C formed. The higher the intensity of light during the growing season, 

the greater the vitamin C content in plant tissues (Zhan et al., 2013). 

Temperature. Plants will contain more vitamin C when grown under cool temperatures 

(Lee and Kader, 2000.). 

Irrigation. Vitamin C content of many crops can be increased with less frequent 

irrigation (Lee and Kader, 2000). 

Harvest time. A delay of harvest date from 60 to 120 days after planting of bunching 

onion (Allium fistulosum L.) resulted in a depletion of vitamin C (Kolota et al., 2012). 

Vitamin C concentration decreased during maturation of citrus fruits, although the total 

vitamin C content per fruit tend to increase because the total volume of juice and fruit 

size increased with advancing maturity (Lee and Kader, 2000). 

 

2.4.3.3.3 Post-harvest factors 

 

Storage. Generally, fruits and vegetables show a gradual decrease in vitamin C content 

when the storage temperature or duration increases (Barberis et al., 2012). 

Processing. Vitamin C is very susceptible to chemical and enzymatic oxidation. Cooking 

is often responsible for the greatest loss of vitamin C, and the extent of the loss depends 

upon variation in cooking methods and periods. 
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2.4.3.4 Analysis of vitamin C: state of the art 

Determination of vitamin C can be performed by various methods such as direct titration 

with iodine or flow injection analyses (Arya et al., 2000; Suntornsuk et al., 2002). The 

method based on visual equivalent point 2,6-dichloroindophenol titration has been 

approved by the Association of Official Analytical Chemist for the determination of AA in 

food products (AOAC International, 2005). However, HPLC has emerged over the last 

years as a high-resolution, precise, reliable and sensitive method for the analysis of 

vitamin C in foods (Odriozola-Serrano et al., 2007). In this method, vitamin C is extracted 

from the sample to be analysed using metaphosphoric acid solution. A reducing solution 

is used to transform L(+) DHA to L(+)-AA. Total L(+) AA content is determined by HPLC 

with a UV detection at 265 nm. 

 

2.4.3.5 Vitamin C and health 

Vitamin C is required for the prevention of scurvy and maintenance of healthy skin and 

blood vessels. Vitamin C is also known to have many biological functions in collagen 

formation, absorption of inorganic iron, reduction of plasma cholesterol level, inhibition of 

nitrosoamine formation, enhancement of the immune system, and reaction with singlet 

oxygen and other free radicals. Vitamin C, an antioxidant, reportedly reduces the risk of 

arteriosclerosis, cardiovascular diseases and some forms of cancer and helps to prevent 

diabetes mellitus, stroke and Parkinson’s disease (Harris, 1996; Serra et al., 2008).  

 

2.4.4 Antioxidant capacity  

Bioactive compounds from plant origin behave as antioxidants because they can act as 

free radical scavengers, singlet oxygen quenchers, or metal chelators. Consumption of 

plant products possessing antioxidant potential protects living organisms from the 

oxidative damage of reactive oxygen species (ROS). ROS include a variety of oxygen 

derivatives generated from metabolism, smoking and environmental stress. They are 

also generated in plant products as a by-product of plant metabolism (Roy et al., 2007). 

It is established that oxidation processes are involved in various chronic and 

degenerative diseases and that the intake of antioxidants from plants has beneficial 

effects on health.  

As described in §2.4.1, §2.4.2 and §2.4.3, the antioxidative effect of Alliums are related 

to 3 major groups, including sulfur-containing compounds, polyphenols and vitamins 

(Kim et al., 1997; Lampe, 1999).  
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2.4.4.1 S-Alk(en)yl-L-cysteine sulfoxides 

Sulfur compounds may donate electrons and react with free radicals to convert them to 

more stable products, and thus terminate the free radical chain reaction. According to 

previously published work associated with the antioxidant capacity of sulfur compounds 

in Allium species, it seems that the allyl double bond and the length of the S-substituted 

alk(en)yl group are important in revealing high antioxidant capacity, as well as the 

number of sulfur atoms in molecules. It was also noted that the double bond associated 

with the non-bonding electron on sulfur may enhance antioxidant capacity (Duh, 1998; 

Higuchi et al., 2003). 

 

2.4.4.2 Polyphenols 

It is suggested that the antioxidant capacity of the flavonoids, and therefore their 

pathway in oxidative degradation, are linked with their special structural features. First, 

there is the ortho-dihydroxy structure (often called catechol structure) situated at the B-

ring (Figure 2.8). This structure is responsible for donating protons and for the chelation 

of metal ions. Secondly, there is the 2,3-double bond in combination with the 4-keto 

function and the 3-hydroxyl group located in the C-ring. This feature is mainly 

responsible for the formation of a para-quinoic structure and therefore electron 

delocalisation and stabilisation of the formed radical are possible (Krishnamachari et al., 

2002). 

The food matrix can induce flavonoid degradation and as a consequence can decrease 

the antioxidant capacity. Depending on the flavonoid structure, different interactions can 

occur between flavonoids and the food matrix and thus lead to positive or negative 

synergies on the antioxidant capacity. For example, kaempferol paired with myricetin 

resulted in a synergistic interaction, whereas myricetin with quercetin resulted in an 

antagonistic effect (Hidalgo et al., 2010).  

 

2.4.4.3 Vitamin C 

As described in §2.4.3, vitamin C has also antioxidant properties (Harris, 1996).  

 

2.4.4.4 Analysis of the antioxidant capacity 

The measurement of the antioxidant capacity of food products and ingredients is a 

matter of growing interest. The antioxidative potential of plant extracts and pure 

compounds can be measured using numerous in vitro assays. Each of these assays is 

based on 1 feature of antioxidant capacity, such as the ability to scavenge free radicals 
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or to inhibit lipid peroxidation. However, the total antioxidant activities of vegetables 

cannot be evaluated by any single method, due to the complex nature of phytochemicals 

(Chu et al., 2000). Two or more methods should always be employed in order to 

evaluate the total antioxidative effects of vegetables. 

Antioxidants can deactivate radicals by 3 major mechanisms: hydrogen atom transfer 

(HAT), electron transfer (ET) and combination of both HAT and ET (Prior et al., 2005). 

 

 HAT measures the ability of an antioxidant to quench free radicals by hydrogen 

donation. Most HAT-based assays monitor competitive reaction kinetics and the 

quantification is derived from the kinetic curves. HAT reactions are solvent and pH 

independent and are usually quite rapid (reaction 2.1). 

 

                                                  X° + AH –>  XH +A°                                                   (2.1) 

 

The oxygen radical absorbance capacity (ORAC) assay and the 2,2-diphenyl-1-

picrylhydrazyl (DPPH) are common HAT based competitive assays.  

In the ORAC assay, the radical initiator component 2,2’-azobis(2-methylpropionamidine) 

dihydrochloride (AAPH) decomposes spontaneously at 37 °C to form 2 carbon-centered 

radicals which react with oxygen to generate peroxyl radical, a common radical in human 

biology. Fluorescent probes used in this assay decompose in a pattern that is consistent 

with the HAT mechanism of action when exposed to peroxyl radicals (Prior et al., 2005). 

DPPH is one of a few stable and commercially available organic nitrogen radicals and 

has an UV-vis absorption maximum at 515 nm. Upon reduction, the solution colour fades 

(Figure 2.13). The reaction progress is conveniently monitored by a spectrophotometer. 

The DPPH assay is technical simple, but some disadvantages limits its application. 

DPPH is a long-lived nitrogen radical, which bears no similarity to the highly reactive and 

transient peroxyl radicals involved in lipid peroxidation. Many antioxidants that react 

quickly with peroxyl radicals may react slowly or may even be inert to DPPH (Huang et 

al., 2005). 

 

 
Figure 2.13 Structure of DPPH before and after reaction with antioxidants (A-H) 
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 ET detects the ability of an antioxidant to transfer 1 electron to reduce radicals, 

metals and carbonyls (Huang et al., 2005). ET reactions are pH dependent (reaction 

2.2). 

 

                                            X° + AH –> X
-
 + AH°

+                                                                             
(2.2) 

 

The ferric reducing antioxidant power (FRAP) assay is an example of an ET assay.  

The FRAP assay takes advantage of electron-transfer reactions. Herein, ferric salt, 

Fe(III)(TPTZ)2Cl3 is used as an oxidant, with TPTZ = 2,4,6-tripyridyl-S-triazine (Huang et 

al., 2005). The FRAP assay uses antioxidants as reductants in a redox-linked 

colorimetric method, employing an easily reduced oxidant system. 

 

2.4.5 Fructans  

In addition to sulfur compounds, polyphenols and vitamin C, fructans are also reported to 

contribute to the health benefits of Allium species. Fructans are oligo- and 

polysaccharides consisting of short chains of fructose units with a single D-glucosyl unit 

at the non-reducing end. Fructans with a short chain length of 2-9 units are generally 

referred to as fructooligosaccharides (FOS) or oligofructose and the longer chain 

(DP>10) are called inulins (Muir et al., 2007). Most plants store starch or sucrose as 

reserve carbohydrates, but about 15% of all flowering plant species store fructans, such 

as cereals (e.g. barley, wheat and oat), vegetables (e.g. chicory, onion and lettuce), 

fruits, ornamentals (e.g. dahlia and tulip) and forage grasses (e.g. Lolium and Festuca) 

(Hendry and Wallace, 1993; Vijn and Smeekens, 1999; Jaime et al., 2001).  

In higher plants, 5 major classes of structurally different fructans can be distinguished 

including inulin, levan, mixed levan, inulin neoseries and levan neoseries. Inulin consists 

of linear (2-1)-linked β-D-fructosyl units and is usually found in plant species belonging to 

the order Asterales, such as chicory and Jerusalem artichoke (Bonnett et al., 1994; 

Koops and Jonker, 1996; Baert, 1997). Levan consists of linear (2-6)-linked β-D-fructosyl 

units and is found in some grasses (Bonnett et al., 1997). Mixed levan is composed of 

both (2-1)- and (2-6)-linked β-D-fructosyl units. This type of fructan is found in most plant 

species belonging to the Poales, such as wheat and barley (Carpita et al., 1989; Bonnett 

et al., 1997). The inulin neoseries are linear (2-1)-linked β-D-fructosyl units linked to both 

C1 and C6 of the glucose moiety of the sucrose molecule. This results in a fructan 

polymer with a fructose chain on both ends of the glucose molecule. These fructans are 

found in plants belonging to the Alliaceae and Asparagaceae (e.g. onion and asparagus; 

Shiomi, 1989). Table 2.8 presents the content of fructans in different Allium species, 

including leek. The levan neoseries are polymers of predominantly β(2-6)-linked fructosyl 
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residues on both ends of the glucose moiety of the sucrose molecule. These fructans are 

found in a few plant species belonging to the Poales (e.g. oat) (Livingstone et al., 1993; 

Ernst et al., 1996; Vijn and Smeekens, 1999). 

A fructan-rich diet may have health-promoting effects (Roberfroid, 1993). Fructans are a 

low-calorie food component because they cannot be digested by humans but are instead 

used efficiently as a carbon source by beneficial bifidobacteria in the colon (Gibson et al., 

1995). These bifidobacteria ferment fructans to short-chain fatty acids that have a 

positive effect on systemic lipid metabolism. Small fructans with DPs of 3 to 6 are sweet 

tasting and therefore constitute natural low caloric sweeteners. The most agronomically 

acceptable crop for fructan production is chicory; however, the function of the fructan 

isolated from chicory is limited because of the degradation of long fructan chains by 

fructan exohydrolase upon harvesting. High-DP fructans are now being used in 

alimentary products where they can replace fat. Emulsions of long-chain fructans in 

water have organoleptic properties similar to fat. High-DP fructans also hold great 

promise for a variety of non-food applications (Fuchs, 1993; Vijn and Smeekens, 1999). 

 
Table 2.8 Fructan content in different Allium species 

Allium species Tissue  Fructan  Ref. 

Leek  white shaft 24 g 100 g
-1
 dw Muir et al. (2007) 

  3-10 g 100 g
-1
 fw Grzelak-Blaszczyk et al. (2011) 

 green leaves nd Muir et al. (2007) 

Onion bulb 16.1 g 100 g
-1
 dw Muir et al. (2007) 

  9.5 g 100 g
-1
 fw Grzelak-Blaszczyk et al. (2011) 

Garlic  45 g 100 g
-1
 dw Muir et al. (2007) 

  6.4 g 100 g
-1
 fw Grzelak-Blaszczyk et al. (2011) 

nd: not detected 
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2.4.5.1 Biosynthesis 

Fructan is synthesised from sucrose, and like sucrose, fructans are stored in the vacuole 

(Figure 2.14). Although sucrose is synthesised in the cytoplasm, fructans are produced 

in the vacuole by the action of specific enzymes (fructosyltransferases, FT) that transfer 

fructose from sucrose to the growing fructan chain. Fructan synthesis is modulated by 

light, which changes the availability of sucrose in the cell. The biosynthetic enzymes are 

evolutionarily related to invertases (I), enzymes that hydrolyse sucrose (Vijn and 

Smeekens, 1999). 

 

 

Two classes of enzymes, acid invertases and fructan exohydrolases, are involved in the 

degradation of fructans. Acid invertase is found in the vacuole and normally functions in 

the irreversible breakdown of sucrose into glucose and fructose, but it also has the ability 

to breakdown 1-kestose (Ritsema and Smeekens, 2003). Fructan exohydrolases (FEHs) 

are also localized in the vacuoles and cleave terminal fructose residues. No FEHs have 

been cloned from onion, but 1-FEH activity during storage has been characterized 

(Benkeblia et al., 2004). 

 

2.4.5.2 Physiological role of fructans in plants 

In plants, fructans may have functions other than carbon storage; they could act as 

osmoregulators due to their solubility in water inside the vacuole (Sinclair et al., 1995). 

Fructans have been implicated in protecting plants against water deficit caused by 

Figure 2.14 Schematic representation of carbohydrate metabolism in a plant cell, with FT: 
fructosyltrasferase and I: invertase (Vijn and Smeekens, 1999) 
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drought or low temperatures (Hendry and Wallace, 1993; Pilonsmits et al., 1995; Vijn 

and Smeekens, 1999).  

 

2.4.5.3 Factors influencing the fructan content 

2.4.5.3.1 Cultivar and tissue type 

There are differences in fructan content of different onion cultivars (Galdon et al., 2009). 

Fructans are a carbohydrate reserve in stems and underground organs of the Alliaceae 

family. In the Asteraceae family, including chicory (Cichorium intybus var. sativum), 

fructans serve as a reserve carbohydrate in stems, tubers and taproots (van Arkel et al., 

2012).  

2.4.5.3.2 Pre-harvest factors 

Water stress. The chicory root inulin concentration remained unaffected by water stress 

(Vandoorne et al., 2012). 

Light. As stated in §2.4.5.1, the fructan synthesis is modulated by light (Vijn and 

Smeekens, 1999). 

Harvest time. The content of fructans in chicory roots decreased with harvest time 

(September, November). This degradation process is faster in cultivars with a low total 

sugar content than in those with a high total sugar content (Baert, 1997). 

2.4.5.3.3 Post-harvest factors 

Storage. 26% of fructans in leek (cv. Belton F1) were hydrolysed upon 30 days of 

storage at 0-1 °C, whereas after 90 days of storage, 80% were subject to hydrolysis. 

However, fructan hydrolysis depend on cultivar (Grzelak-Blaszczyk et al., 2011). 

 

2.4.5.4 Analysis of fructans: state of the art 

A number of methods are applied for the analysis of fructans. While gas 

chromatography–mass spectrometry (GC-MS), nuclear magnetic resonance (NMR) and 

matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass 

spectrometry have been mainly used to obtain structural information about fructans, thin-

layer chromatography (TLC) can be used to assess both the level and the composition of 

fructans in plant tissues (Ye et al., 2001; Chatterton and Harrison, 2003; Hincha et al., 

2007). HPLC, especially high-performance–anion-exchange chromatography with pulsed 

amperometric detection (HPAEC-PAD), is the most widely used technique for fructan 

quantification (Huynh et al., 2008; Hisano et al., 2008). However, direct quantification of 

fructans by this technique is difficult due to a lack of standards and poor resolution of 

high DP polymers. The method currently used for total fructan quantification consists of 
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multiple extractions in water or sequential extractions in ethanol and water, hydrolysis of 

fructans to fructose and glucose, and multiple HPLC injections to determine the levels of 

glucose and fructose before and after hydrolysis. The fructan level is then calculated by 

subtracting the level of free hexoses (including sucrose-derived hexoses) present before 

hydrolysis from the total level of hexoses after hydrolysis (Clark et al., 2004; Monti et al., 

2005).  

 

2.4.5.5 Fructans and health 

Fructans stimulate the growth of specific microorganisms in the colon (e.g. bifidobacteria, 

lactobacilli) with generally positive health effects. A minimal dose of 2.5 g of fructans is a 

condition upon which a bifidogenuous effect takes place (Guigoz et al., 2002). A lot of 

pharmacological effects are attributed to fructans such as growth inhibition of tumor and 

microbial cells, reduction of cancer risk, good effects on serum lipids, blood glucose and 

protection against cardiovascular diseases (Magra et al., 2006; Irkin and Korukluoglu, 

2009). Other proposed health benefits of fructans include suppressing the growth of 

potential pathogens in the colon, increased stool bulking capacity and prevention of 

constipation, increased calcium absorption (Nyman, 2002; Abrams et al., 2005; Van Loo 

et al., 2005; Lewis et al., 2005). 
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3.1 Introduction 

The aim of this dissertation is to study the effect of different parameters, including leek 

tissue, leek cultivar, harvest time, related Allium species and post-harvest processing 

(processing on the farm, storage, domestic cooking and valorisation) on the 

concentration of bioactive compounds.  

To evaluate these parameters, with the exception of the processing parameter, different 

leek cultivars and Allium species were grown in 3 repetitions on ILVO-fields in 2 

subsequent experimental years. Representative samples were taken and prepared in the 

laboratory in function of the different analyses that were performed. In order to study the 

effect of post-harvest processing, leeks were collected in real live situations such as on 

the farm or from retail. The sample preparation is described more in detail in §3.2. 

Different analytical procedures (§3.3) were used to detect and quantify the bioactive 

compounds in leek, that is the antioxidant capacity, total phenolic, individual polyphenol, 

ascorbate, ACSO and fructan content. The obtained data was statistically analysed in 

order to evaluate significant differences.  

 

3.2 Plant material 

3.2.1 Plant material to evaluate the influence of leek tissue, 

leek cultivar, harvest time and Allium species (Chapter 

4, 5 and 6) 

Two experiments were set up during 2 subsequent years, but on different ILVO parcels. 

In the first year (2009), 30 leek cultivars were grown in order to evaluate the influence of 

leek cultivar and leek tissue on the content of bioactive compounds (Chapter 4). During 

this year also 6 related Allium species were studied simultaneously (Chapter 6). In a 

second year (2010), 9 leek cultivars, also grown in the first year experiment, were grown 

in order to evaluate the influence of harvest time more in detail (Chapter 5).  

 

3.2.1.1 Selection of plant material 

In the first field trial season (2009), further referring as (I), 30 leek cultivars (Table 3.1) 

were studied from a selection based on 3 criteria: (1) morphological type (pale green 

summer leek, dark green winter leek, intermediate autumn leek), (2) manner of breeding 

and multiplication (F1 hybrids, open pollinated (OP) commercial cultivars, OP farmer 

selections and OP old landraces) and (3) seed company. The most recently developed 
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cultivars, i.e. the F1 hybrids included in this study are a good representation of which 

leek material is commercially grown in the European leek producing areas.  

Leek seeds were obtained from the collection of the Institute for Agricultural and 

Fisheries Research (ILVO). Leek breeding at ILVO started in 1994 under the 

management of ir. Hervé De Clercq as leek breeder. Breeding was initially performed by 

family selection, in fact negative mass selection. Wendy and Fama are 2 leek cultivars 

developed at ILVO. Nowadays, hybrid selection is the current breeding technique. 

Breeding traits on ILVO are pests and disease resistance (rust, thrips, white tip disease), 

uniformity and erectness.  

The ILVO collection is generated from seeds from different farmer selections (not 

commercial) and seed companies. The seeds are stored in long term storage (LTS, 

freezer). At the moment, more than 100 leek cultivar accessions are present. 
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Table 3.1 Overview of the selected leek cultivars of experiment I, cultivars for experiment II are 
indicated in bold, with OP: open pollinated, F1:first generation progeny of male sterile mother lines 

Commercial 
name 

Type 
Breeding 
category 

Seed company 
Harvest 
month 

Growing 
days (I) 

Growing 
days (II) 

Varna summer OP (commercial)  Royal Sluis October ‘09 189  

Albana summer OP (commercial) Nunhems October ‘09 189  

Nelli summer OP (old land-race) Svalöf Weibull October ‘09 190  

Elefant summer OP (old land-race) IPK October ‘09 190  

Miracle F1 summer hybrid Enza October ‘09 193 159/211/263/292 

Zeus F1 summer hybrid S&G October ‘09 198 159/211/263/292 

Striker F1 summer hybrid Bejo October ‘09 200 159/211/263/292 

Electra autumn OP (commercial) Clause November ‘09  213  

Nebraska autumn OP (commercial) Royal Sluis November ‘09 213  

Breugel F1 autumn hybrid Rijk Zwaan November 
‘09 

221 159/211/263/292 

Tadorna autumn OP (commercial) Enza November ‘09 227  

Poribleu autumn OP (commercial) 
Nickerson-
Zwaan 

December ‘09 
248  

Alcazar autumn OP (commercial) Rijk Zwaan December ‘09 248  

Belton F1 autumn hybrid Nunhems January ‘10 291 159/211/263/292 

Pretan F1 autumn hybrid 
Nickerson-
Zwaan 

January ‘10 
291 159/211/263/292 

Musselburh winter OP (old land-race) D.T. Brown February ‘10 305  

Van Limbergen winter 
OP (farmer 
selection) 

Sint Katelijne 
Waver 

February ‘10 
305  

Buelens  winter 
OP (farmer 
selection) 

Onze Lieve 
Vrouw Waver 

February ‘10 
305  

Coolidge F1 winter hybrid Hortiplan February ‘10 305 159/211/263/292 

Apollo F1 winter hybrid S&G  February ‘10 325 159/211/263/292 

Artico winter OP (old land-race) IPK February ‘10 325  

Farinto winter OP (commercial) Nunhems February ‘10 325  

Arkansas winter OP (commercial) Royal Sluis February ‘10 326  

Gavia winter OP (commercial) Enza February ‘10 326  

Toledo winter OP (old land-race) 
Thompson & 
Morgan 

February ‘10 
326  

Uyterhoeven winter 
OP (farmer 
selection) 

Onze Lieve 
Vrouw Waver 

February ‘10 
326  

Engels  winter 
OP (farmer 
selection) 

Putte February ‘10  
326  

Vervloet winter 
OP (farmer 
selection) 

Sint Katelijne 
Waver 

February ‘10 
326  

Harston F1 winter hybrid Nunhems February ‘10 326 159/211/263/292 

Fahrenheit F1 winter hybrid Royal Sluis March ‘10 333  

 

In addition to the 30 leek cultivars, 1 available cultivar of each of the 6 related Allium 

species were also grown in the same field (Table 3.2) in order to make a comparison 

between leek and some of its related species. Seeds of A. ampeloprasum var. kurrat 

(Egyptian leek, CGN18763), A. schoenoprasum L. (chive, CGN23459),  A. cepa L. 
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(onion, cv. Red Creole, CGN19244) and A. fistulosum L. (bunching onion, CGN14764) 

were obtained from CGN (Wageningen, the Netherlands). Seeds of A. odorum L. 

(Chinese leek) were obtained from Tokita seed (Otone, Japan) and A. ascalonicum L. 

(shallot, cv. Creation F1, nr. 545) and A. cepa seeds (onion, cv. Bonus F1) were 

purchased from Tabernal-Seeds (Venhuizen, the Netherlands).  

 
Table 3.2 Overview of the selected related Allium species 

Scientific name Trivial name Harvest month 

Allium ampeloprasum var. kurrat Egyptian leek March ‘10 

Allium odorum L. Chinese leek November ‘09 

Allium schoenoprasum L. Chive October ‘09 

Allium cepa L. 
Red onion October ‘09 

White onion October ‘09 

Allium fistulosum L. Bunching onion October ‘09 

Allium ascalonicum L. Shallot September ‘09 

 

 In a second field trial (2010), further referring as (II), the influence of harvest 

time on 9 leek cultivars, also grown in 2009, was studied. To minimise variation in leek 

plants, 9 leek hybrids (Table 3.1, indicated in bold) were selected for the analyses as a 

function of harvest time as within the leek cultivars, hybrids are considered to be the 

most uniform leek cultivars. Three cultivars were chosen of each type (summer, autumn, 

winter).  

 

Performing these 2 year experiments, 9 leek cultivars were grown and evaluated in 2 

subsequent years, 2009 and 2010. These data can be used to observe differences in 

antioxidants between the two growing years.  

 

3.2.1.2 Growth of plant material 

The 30 leek cultivars (I), 9 cultivars (II) and 6 related Allium species (I) were manually 

sown in triplicate (3 × 75 seeds) on April 6
th

 2009 (I) and on April 15
th

 2010 (II) in an 

unheated greenhouse at ILVO. Trays of 1 m length and 1 cm depth were made in potting 

soil. Each tray was 10 cm separated from the other. Subsequently, 75 seeds were 

manually put into the trays, equally distributed along the 1 m length (Figure 3.1 (a)). 
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(a) (b) 

 

Figure 3.1 Sowing (a) of the 30 leek cultivars and 6 related species and their growth evolution after 
6 weeks (b) 

 

A complete block design was followed, using 3 blocks with 1 block containing 1 repetition 

of all the leek cultivars and related species, in a specific order. Each cultivar in 1 block 

represented 75 seeds. Figure 3.1 (b) shows the situation after 6 weeks growth in the 

green house. 

After approximately 12 weeks (June 29
th

 2009, I and June 30
th

 2010, II), the little plants 

were manually harvested in the green house and classified in 3 groups (A, B and C). The 

A category were plants of good quality and used for planting in the field, while the C 

category was too small and not further used. The B category was a reserve of the A 

category. Subsequently, 3 repetitions of 15 leek plants of each cultivar and Allium 

species were planted in the field (I=N 50°58.86, E 3°46.56, II=N 50°58.53, E 3°46.43), 

using a complete block design (Table 3.3). Each of the three blocks contained 30 leek 

cultivars and 6 related species in a specific order and were planted in 2 rows. The leek 

plants were planted on ridges equivalent to a within row plant-to-plant spacing of 18 cm 

apart, and a depth of 18 cm. Immediately after planting, water was manually added to 

each plant hole. 
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Table 3.3 Complete block design of the field plot, each number representing 15 plants of 1 cultivar, 
with 3 blocks (repetitions) and 30 leek cultivars as treatments 

ridge block 
                     

  

1 
1 

28 29 30 31 32 33 34 75 76 77 78 119 120 121 122 123 169 170 171 172 173 221 

2 199 200 201 202 203 204 205 206 207 208 209 210 211 212 214 215 216 217 218 219 220   

3 
2 

210 211 212 214 215 216 217 218 219 220 28 29 30 31 32 33 34 75 76 77 78   

4 221 119 120 121 122 123 169 170 171 172 173 199 200 201 202 203 204 205 206 207 208 209 

5 
3 

34 75 76 77 78 28 29 30 31 32 33 169 170 171 172 173 221 119 120 121 122 123 

6 205 206 207 208 209 199 200 201 202 203 204 216 217 218 219 220 210 211 212 214 215   

 

The genetic diversity of field trial I is presented in Figure 3.2. The plants were grown next 

to the candivar testing trial of ILVO and were grown and treated under the same 

conditions (soil and disease treatment, etc.), which are presented in §3.2.1.5. 

 

 
 

 

 

 

 

 

 

Figure 3.2 ILVO field plot on September 25
th
 2009 for the determination of the influence of leek 

tissue and leek cultivar in terms of antioxidant properties 

Figure 3.3 shows a photograph of the 6 Allium species. This picture was taken before 

harvest, with the exception of A. ascalonicum. 
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3.2.1.3 Harvest and sample preparation 

For experiment I, 3 × 10 plants (of the 3 × 15) of each cultivar/related species were 

manually harvested during the optimal harvest period. Growing days (from seed to 

harvested plant) of the leek cultivars are indicated in Table 3.1. It should be noted that 

the 30 summer, autumn and winter leek cultivars were grown according to the ILVO 

practices, which means that harvest took place at their commercially mature stage, but 

the three types were sown at the same moment in April. In commercial practice, the 

types are sown at different times and harvested according to their type (as described in 

§2.2.3.2 and §2.2.3.6). The mean growing days in commercial practice for the summer 

types is 200 days, for the autumn types 225-300 days and the winter types 350 days 

(Sanac, 2012). The number of commercial growing days are similar to the growing days 

of the summer, autumn and winter leek cultivars in our experiment. 

For experiment II,  3 × 3 plants (of the 3 × 15) of each cultivar (9 in total) were manually 

harvested on the 8
th

 of September 2010, the 8
th

 of November 2010, the 10
th
 of January 

2011 and the 1
st
 of March 2011.  

Immediately after harvest, the 3 × 10 (I), respectively 3 × 3 (II) plants were pooled, 

keeping each replication separately. The leeks were washed and the roots and decayed 

leaves were removed. The remainder was divided into the white shaft (or bulb) and the 

leafy section, except for A. ascalonicum, where no green leaves were present at the time 

   

(a) (b) (c) 

   

(d) 

 

(e) 

 

(f) 

 
Figure 3.3 A. kurrat (a), A. odorum (b), A. schoenoprasum (c), A. cepa (d), A. fistulosum (e) and A. 
ascalonicum (f)  
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of sampling. The intermediate part was not used. The sections were then chopped into 

~1 cm
2
 pieces. The batches were stored at -80 °C (New Brunswick, Rotselaar, Belgium) 

prior to freeze-drying (I=CD-Energie, Eke, Belgium, II=FreezyFlor, Menen, Belgium). The 

freeze-dried samples were milled to pass through a 1 mm sieve (Fritsch, Rotterdam, the 

Netherlands) and stored in Falcon tubes at 4 °C until the time of analysis.  

 

3.2.1.4 Field properties 

Leeks of the two experiments were grown on different soils as shown in Figure 3.4 

(picture of August 2009).  

 

 

 

Figure 3.4 Plan of the 2 ILVO leek plots (season 2009 and 2010) grown in Lemberge (Belgium) 

Some soil properties of the two fields before planting are presented in Table 3.4. For 

experiment I, soil samples were taken on May 29
th

 2009, while for experiment II, the 

samples date from June 1
st
 2010. 

 

 

 

 

 

 

 

2009 

2010 

ILVO 

Plant 

ILVO 

T&V 
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Table 3.4 Soil properties of the two leek fields 

 Season 2009 (I) Season 2010 (II) Aim value (Maes et 
al., 2012) 

Total NO3-N (kg ha
-1
) 89.0 101.7  

Total NH4-N (kg ha
-1
) 19.1 13.8  

pH 5.88 4.73 6.2 – 6.6 

C (%) 0.84 0.85 1.2 – 1.6 

P (mg 100 g
-1
 dw) 20.2 16 12 – 18 

K (mg 100 g
-1
 dw) 9 5.3 14 – 20 

Mg (mg 100 g
-1
 dw)  15.3 9.9 9 – 14 

Ca (mg 100 g
-1
 dw) 92.8 67.3 100 – 240 

Na (mg 100 g
-1
 dw) 4.5 4 3.1 – 6 

 

A higher mineral content was observed in soil where leek of experiment I were planted. 

It is established that a lack of phosphor (P) will result in a dull leaf colour, with purple leaf 

tops, while a lack of potassium (K) is will manifest in a dull yellow-green colour (personal 

communication De Clercq). Magnesium increases the colour intensity and the hardness 

of the leaves. 

In addition to the higher mineral content, the pH of the soil of season 2009 (pH 5.88) was 

near to the optimum pH for leek growth (pH 5.8) as stated in §2.2.3.4. 

 

3.2.1.5 Fertilisation and disease treatment 

Table 3.5 summarises the fertilisation practice and the treatment of leek pests and 

diseases for experiment I and II. In addition, the most important dates were added for 

both experiments.  
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Table 3.5 Dates for the application of fertilisation, planting and the addition of herbicides, fungicides 
and insecticides for experiment I and II 

 Season 2009 (I) Season 2010 (II) 

fertilisation 

August 26
th

 2008 
25 ton manure hectare

-1
  

(3.5-1.96 N-P) 
 

October 20
th

 2009 
5 ton lime hectare

-1
  

January 27
th

 2009  
30 ton farm yard manure hectare

-1 

(no N-P data available) 

March 17
th

 20010 
40 ton manure hectare

-1
  

(3.0-1.72 N-P) 
 

June 29
th

 2009 
mineral fertiliser (75 kg N hectare

-1
) 

 

June 26
th

 2010 
mineral fertiliser (70 kg N hectare

-1
) 

 

planting June 29
th

 2009 June 30
th

 2010 

herbicide July 20
th

 2009 

Butisan, Stomp 
September 8

th
 2009 

Totril 

July 16
th

 2010 

Butisan 
September 7

th
 2010 

Totril 

fungicide September 14
th

 2009 
Ortiva 

September 16
th

 2010 
Ortiva 

insecticide  August 26
th

 2009 
Vertimec 

* 

*, no insectide used 

 

For experiment I, the herbicides Butisan (active compounds: metazachloor, 400 g l
-1

 

and Quinmerac, 100 g l
-1

), Stomp (active compound pendimethalin, 400.0 g l
-1

) and Totril 

(active compound: ioxanyl, 225 g l
-1

) were used during leek growth. In addition, the 

fungicide Ortiva (active compound: azoxystrobin, 250 g l
-1

) was used against rust, while 

the insecticide Vertimec (active compound: abamectine, 18 g l
-1

) was used against 

thrips. For experiment II, the same herbicides and fungicide were used as in experiment 

I. No insecticide was applied as the abundance of thrips was minimal. 

The herbicides, fungicides and insecticides doses were applied as currently used in 

practice. 

 

3.2.1.6 Meteorological data 

Figure 3.5 presents the meteorological data (average month temperature, sunlight hours 

and precipitation) of growth season 2009 and 2010. The figure also includes the monthly 

averages from 1981 untill 2010 (KMI, 2012). 
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(a) (b) 

 

 

 

 

 

 

 

 

(c) 
Figure 3.5 Average temperature (a), hours sunlight (b) and precipitation (c) for the two leek 
growing seasons and the monthly averages from 1981 to 2010. Arrows indicate the harvest time 
for experiment II (KMI, 2012) 

 

The graphs of Figure 3.5 reveal a lower temperature in December ’10 (II) and January 

’09 (I), a lower photoperiod in February ’10 (I) and November ‘10 (II) and a higher 

amount of rainfall in August ‘10 and September ’10 (II). 

 

3.2.1.7 Statistical analysis 

Influence of leek tissue, leek cultivar and Allium species. The results of the bioactive 

compound analyses are presented as mean ± standard deviation (SD) of 3 

measurements (n = 3) for each cultivar and subjected to analysis of variance (ANOVA) 

by the SPSS V. 17 statistical programme (SPSS Inc., Chicago, USA). ANOVA was 

accomplished because it allows to determine statistical differences in antioxidant 

properties (dependent variables) between different groups. A general linear model 
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ANOVA (univariate) was preferred with ‘leek tissue’ and ‘cultivar’ as factors (independent 

variables). The application of ANOVA is possible when the results of the antioxidant 

capacity, total phenolic content, ascorbate and ACSO values obtained fulfil the following 

criteria: (I) behave as a normal distribution, and (II) have homogeneous variances 

between each group (homocedasticity). Normality was verified by the Kolmogorov-

Smirnov test, homocedasticity by the Levene test. When one of the conditions was not 

fulfilled, a non-parametric test (Kruskal-Wallis) was done. Differences of p<0.05 were 

considered significant. In case of significant differences, multiple comparisons of means 

was established with the post-hoc Scheffé test in order to analyse the significant 

differences between the groups (p<0.05). The Scheffé test was chosen because the test 

has the advantage of giving the experimenter the flexibility to test any comparison that 

appears interesting, although the drawback of this flexibility is that the test has very low 

statistical power.  

A Pearson correlation test was used to determine the correlations between antioxidant 

capacity (AC) results on the one hand and polyphenolic compounds, ascorbate, ACSO 

and fructan content on the other hand using Statistica software (version 10).  

Principal component analysis (PCA), a multivariate technique, was accomplished to 

convert a set of observations of variables (antioxidants) into a set of values of linearly 

uncorrelated variables. Its goal is to extract the important information from the data, to 

represent it as a set of orthogonal variables called principal components, and to display 

the pattern of similarity of the observations and of variables as points in maps. PCA is 

most commonly used to condense the information contained in a large number of original 

variables into a smaller set of new composite variables or dimensions, at the same time 

ensuring a minimum loss of information. In addition, PCA can be used to discover 

important features of a large data set. It often reveals relationships that were previously 

unsuspected, thereby allowing interpretations of the data that may not ordinarily result 

from examination of the data. The PCA was based on correlations and the variances 

were computed as SS/(n-1) using Statistica software (version 10). The PCA score plot 

was used to assess the effect of 3 aspects (leek tissue, type, breeding origin) on the 

analysed parameters (ORAC, DPPH, FRAP, polyphenolic compounds, AA, ACSO and 

fructans). The PCA score plot was also used to assess the differences between leek and 

some of its related Allium species. 

 

Influence of harvest time. The data are presented as mean ± standard deviation (SD) of 

3 measurements (n = 3) for each cultivar and subject to ANOVA by SPSS with ‘plant 

tissue’ and ‘harvest time’ as factors. Repeated measurements were used in SPSS. A 

PCA plot was also performed on the results.  
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3.2.2 Plant material to evaluate the influence of processing 

(Chapter 7, 8 and 9) 

3.2.2.1 Post-harvest processing and storage (Chapter 7)  

To study the influence of post-harvest processing and storage (from ‘harvest to fridge’) 

on the content of bioactive compounds, leeks were not grown at ILVO, but harvested 

leeks (cv. Harston) were obtained from a local leek grower (Fracha BVBA, Meulebeke) in 

January 2012. After harvest, the leeks were processed at the company in order to be 

sold as whole leek or as packaged trimmed leek, both with specific length requirements 

(Table 2.2). Therefore, 2 washing lines, 1 trimming line and 1 packaging line were used. 

In this study, 2 cases were investigated, (1) leek sold as an entire plant and (2) leek with 

a large part of the green leaves removed, where the shafts are sold in a plastic package 

(Figure 3.6).  

 
  

 
(a) 

 
(b) 

 
Figure 3.6 Sampled entire leek (a) and packaged leek (b) 

 

In both cases, leek was harvested on Fracha fields (January 9
th

 2012), hereby cutting 

part of the green leaves, which are left on the field directly.  

In the first case, samples of the harvested leeks (2 × 8 leek plants) were taken after a 

first washing step at the company. After this preparation step, the leeks are brought to 

the auction (REO veiling, Roeselare, Belgium). Because we were not able to sample at 

the auction, we took leeks after washing at the company and stored them for 1 day at the 

refrigerator of the lab before sampling. Thereafter, sampling was accomplished in the 

supermarket (Okay, Zingem, Belgium) of leek processed on January 9
th 

2012
 
in Fracha. 

Household storage conditions were simulated in the lab refrigerator. Therefore, we 

purchased 96 leek plants, harvested and processed at Fracha, at the supermarket and 
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stored them at 4 °C. Sampling was done on day 2, 5, 6, 7 and 13 of refrigerated storage. 

Thirteen days of refrigerated storage was considered as the maximum storage time in 

household practices. In summary, 8 sampling steps in the leek processing and storage 

process were established. 

In the second case (plastic package of leek shafts), samples of the white shaft were 

taken after 2 consecutive washing and cutting steps at the company, after a package 

step, at the auction, in the supermarket and at day 2, 5, 6, 7 and 13 upon storage under 

consumer refrigerator conditions (Figure 3.7). In summary, 10 sampling steps in the leek 

processing and storage process were established. 

 

 

 

The sampled leeks were transported to the lab, where the roots were removed, and the 

remainder was divided into white shaft (and leaf sections for the first case). The 

intermediate part was not used. Each sample comprises a pool of 8 individual plants. 

The sections were then chopped into ~1 cm
2
 pieces. Three portions of 100 g were taken 

for each sample. Subsequently, the samples were stored in bags at -80 °C (New 

Brunswick, Rotselaar, Belgium) prior to freeze-drying (Martin Christ, Osterode am Harz, 

Denmark). The freeze-dried samples were milled to pass through a 1 mm sieve (Fritsch, 

Rotterdam, the Netherlands) and stored in Falcon tubes at 4 °C until the time of analysis. 

Figure 3.7 Schematic overview of the sampling of the post-harvest storage experiment of entire 
leek (blue, 1) and packaged white leek stalks (blue + green, 2). Sampling steps are indicated with  
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3.2.2.2 Domestic food processing (Chapter 8) 

To study the influence of domestic cooking on the content of bioactive compounds, leeks 

were purchased from a Carrefour wholesale distribution centre (Melle, Belgium). The 

samples were prepared according to the following steps: the leeks were washed, the 

roots and decayed leaves were removed, and the remainder was divided into white shaft 

and green leaf sections. The sections were then chopped into ~1 cm
2
 pieces before heat 

treatment.  

The leek samples were processed under different heat treatments, i.e. blanched (to 

simulate the processing step before industrial freezing), boiled (to simulate soup 

preparation) and steamed (to simulate steamed leek in a dish).  

Blanching of the leek samples was done in a stainless steel vessel, containing boiling 

water and covered with a lid. After 90 sec, samples were taken. The boiling preparation 

was similar to blanching, but samples were taken after 10 min, 20 min, 40 min and 60 

min of boiling. Leek samples were steamed during 10 min, 20 min and 30 min in a 

pressure cooker (stainless steel, Seb, Fleurus, Belgium) filled with 1 l of water. These 

protocols are applied in the present study because they are similar to everyday food 

preparation. For each heat treatment, 3 samples of 100 g were taken. A raw chopped 

leek sample was taken as a reference sample. Subsequently, the samples were drained 

and immediately cooled in ice and stored in bags at -80 °C prior to freeze-drying. The 

freeze-dried samples were milled to pass through a 1 mm sieve (Fritsch, Rotterdam, the 

Netherlands) and stored in Falcon tubes at 4 °C until the time of analysis. 

 

3.2.2.3 Stabilisation and valorisation of leek: fermentation and 

drying (Chapter 9) 

3.2.2.3.1 Stabilisation by fermentation 

Spontaneous fermentation 

To determine the influence of a spontaneous leek fermentation process on the content of 

bioactive compounds, leek was purchased from the Interprovincial Research Centre for 

Organic Farming (PCBT, Rumbeke, Belgium). Organically cultivated leek of the Kenton 

F1 cultivar was chosen to eliminate any possible interference in the fermentation process 

from pesticide residues. The green and white parts of the leek were separated for 

fermentation; the intermediate part of the leek plant was not used. The green and white 

leek parts were chopped (Robot Coupe CL 50 Gourmet; Jackson, MS, USA) and 

thoroughly rinsed with water to remove any soil. Leek fermentations were performed in 

ceramic 7.5-l jars (BMS Wijndepot, Kuurne, Belgium) in duplicate to investigate their 
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influence on the antioxidant properties of the leek part (white shaft, green leaves). 

Therefore, 8 fermentation jars were filled with 4 kg of chopped and washed green or 

white leek parts. After addition of 2.5% NaCl (w/w), the leek parts were tamped to 

accelerate brine formation. Thereafter, weights were put on top of the tamped leek parts 

to keep them submerged in the forming brine. Finally, this mixture was sealed airtight 

using a lid with a water closure to avoid contact with light and oxygen. All fermentations 

were carried out in a temperature-controlled room at 18 °C. Throughout fermentation, 

leek particle samples were withdrawn at specific time points, i.e. at the start of the 

fermentation (chopped and tamped), and after 2 days and 21 days of fermentation. To 

avoid interruption of the course of the fermentations by sampling (e.g. disturbance of the 

anaerobic conditions by opening the fermentation jars), 2 jars were withdrawn per 

sampling time point. Leek particle samples were subsequently stored at -80 °C prior to 

freeze-drying (GAMMA 1-16 LSC Martin Christ, Osterode am Harz, Germany). The 

freeze-dried samples were milled to pass through a 1-mm sieve (Fritsch, Rotterdam, the 

Netherlands) and the dry powder obtained was stored in Falcon tubes at 4 °C until 

analysis.  

 

Starter culture fermentation 

The same setup as described above was used for fermentation induced with starter 

cultures, with the exception of the starting plant material. In this experiment, the whole 

leek plant was used, while in the natural fermentation both leek parts were fermented 

separately. The applied starter cultures were Lactobacillus (Lb.) plantarum IMDO
4
 788 

(further referred to as the plantarum fermentation), a mixture of Lb. plantarum IMDO 788 

and Leuconostoc (L.) mesenteroides IMDO 1347 (further referred to as the mixed 

fermentation), and Lb. sakei IMDO 1358 (further referred to as the sakei fermentation). 

The fourth fermentation relied on a spontaneous fermentation process and served as a 

control fermentation. The lyophilized starter culture [± 6.0 log (cfu ml
-1

)] was 

resuspended in 10 ml of saline (0.85% NaCl, m/v) and pipetted over the leek parts during 

tamping. 

Throughout fermentation, leek particle samples were withdrawn at specific time points, 

i.e. at the start of the fermentation (chopped and tamped), after 3 days, and 21 days of 

fermentation. 

 

                                                           
4
 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Department of Bioengineering Sciences, Faculty of 

Applied Sciences and Bioengineering Sciences, Vrije Universiteit Brussel 
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3.2.2.3.2 Stabilisation by drying  

 

In addition to fermentation, 3 drying techniques were investigated as possible 

valorisation routes of leek processing by-products, i.e. freeze-drying (FD), air-drying (AD) 

and refractance window drying (RWD). First, freeze-drying was compared with air-drying 

(performed at ILVO). Secondly, freeze-drying was compared with a relative new drying 

technique, refractance window drying (performed in MCD-Technologies in the United 

States). 

 

After buying leek in a local supermarket, the leeks were washed, the roots and decayed 

leaves were removed, and the remainder was divided into white shaft and green leaf 

sections. The intermediate part was not used. The sections were then chopped into ~1 

cm
2
 pieces. For freeze-drying experiments, samples were first put in a freezer of -80 °C. 

To compare freeze-drying with air-drying, leek was freeze-dried for 5 days (final 

pressure 130 10
-6

 bar, Virtis, Benchtop K, SP Scientific, Suffolk, UK). Air-drying was 

accomplished with a vertical air flow at 70 °C during 7 hours (Dörrex 0075, Stöckli, 

Netstal, Switzerland). In this procedure, chopped leek was put on 4 piled trays with a 

thickness of 5 cm. Afterwards, the dried samples were milled to pass through a 1 mm 

sieve (Fritsch, Rotterdam, the Netherlands).  

When comparing the freeze-drying method with refractance window drying, leek was 

freeze-dried  (2 days, final pressure 46.66 10
-6

 bar) and milled by a milling device at the 

Washington State University (Pullman, USA), while the refractance window drying 

(RWD) technique was done by MCD-Technologies (Tacoma, USA). The RWD 

technology involves applying the product, as a thin layer, to the top surface of a 

transparent plastic conveyor belt. Under the plastic sheet, hot water circulates that 

carries thermal energy to the product (Nindo and Tang, 2007). Therefore, leek was first 

mixed into a puree. The residence time of the white shaft and green leaves on the 

dryer's heated surface was 2 min 8 s and 2 min 22 s, respectively. The circulating water 

temperature was 97 °C, while the maximum product temperature was approximately 

64 °C. The residual moisture content of the dried white part and green leaves was 4.81% 

and 4.72%, respectively. The RWD flakes were packed in aluminium-coated 

polyethylene bags, heat sealed and transported to ILVO.  

 

3.2.2.4 Statistical analysis 

The data are presented as mean ± standard deviation (SD) of 3 measurements (n = 3) 

and subject to ANOVA by the SPSS, with ’cooking times/fermentation time/drying 
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method’ as factor. Differences of p<0.05 were considered significant. The Scheffé test 

was performed to analyse the significant differences between the data (p<0.05). 

 

3.3 Analysis of bioactive compounds 

Different analyses were accomplished to determine the health-promoting compounds 

present in leek and some related Allium species (Table 3.6). The procedure for these 

analyses is described below. Some analyses were implemented on ILVO on the basis of 

literature (ORAC, DPPH, total phenolic content, ACSO and fructans determination), 

other methods (FRAP, vitamin C and polyphenols) were already established in the 

James Hutton Institute (JHI). Validation was only performed for the ACSO analysis, as 

the other methods are well established methods or already validated. 

 
Table 3.6 Chemical analysis for determination of bioactive compounds in leek 

Analysis Method 

Antioxidant capacity 

ORAC  

DPPH  spectrophotometric 
FRAP  

Polyphenolic 
compounds 

Total phenolic content spectrophotometric 
Flavonoids and 
phenolic acids  

U-HPLC-ESI-Orbitrap-MS(/MS) 

L-ascorbic acid  HPLC-PDA 

S-alk(en)yl-L-cysteine 
sulfoxides 

 HPLC-MS/MS 

Fructans  HPLC-RI 

 

3.3.1 Chemicals 

All reagents were of pro analysis (p.a.) quality. 

Antioxidant capacity. 

ORAC - Fluorescein sodium salt, 6-Hydroxy-2,5,7,8-tetra-methylchroman-2-carboxylic 

acid (Trolox), 2,2’-azobis(2-methylpropionamidine) dihydrochloride (AAPH) and 

phosphate buffer were purchased from Sigma-Aldrich (Bornem, Belgium). Ethanol was 

purchased from VWR (Leuven, Belgium). The Trolox stock dilution (1 mM) was made in 

10 mM phosphate buffer (pH 7.4) and was stored at -20 °C for 1 month. The fluorescein 

stock solution (1 µM) was also made in 10 mM phosphate buffer (pH 7.4) and stored at 

4 °C for several months. The fluorescein working solution was prepared daily in 10 mM 

phosphate buffer by diluting the fluorescein stock solution to a final concentration of 1 

nM. 
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DPPH -  2,2-diphenyl-1-picrylhydrazyl was purchased from Sigma-Aldrich (Bornem, 

Belgium). 

FRAP - Aceton was purchased from Fisher Scientific (Loughborough, UK), formic acid 

from Fluka Analytical (Dorset, UK), sodium acetate 3-hydrate from Merck (Darmstadt, 

Germany), 2,4,6-tri(2-pyridyl)-1,3,5-triazine (TPTZ) and ferric chloride from Sigma-

Aldrich (Dorset, UK).  

Total phenolic content.  

Hydrochloric acid (37%), Folin-Ciocalteu’s phenol reagent, sodium carbonate and gallic 

acid were purchased from Sigma-Aldrich (Belgium). Methanol and ethanol from Merck 

(Darmstadt, Germany).  

Flavonoids and phenolic acids. 

U-HPLC-ESI-Orbitrap-MS/MS (James Hutton Institute, JHI) - Methanol, acetonitrile, 

formic acid and acetic acid were of analytical grade and were purchased from Fisher 

Scientific (Loughborough, UK). Water was purified with an Aquatron water purification 

system (Aquatron A4000D, Staffordshire, UK). Luteolin 4’-methylether (diosmetin), 

kaempferol 4’-methylether (kaempferide), kaempferol 3-O-glucoside (astragalin), 

quercetin 3,4’-O-diglucoside, luteolin 7-O-glucoside, luteolin 6-C-glucoside 

(homoorientin), quercetin 3-O-galactoside (hyperin) and isorhamnetin 3-O-glucoside 

were purchased from Extrasynthese (Lyon, France). Quercetin 3-glucoside 

(isoquercitrin) was purchased from Phytolab (Vestenbergsgreuth, Germany). 

Kaempferol, quercetin, luteolin and galangin were purchased from Sigma-Aldrich 

(Bornem, Belgium). Standards were dissolved in methanol and stored at -20 °C.  

U-HPLC-ESI-Orbitrap-MS (De Paepe et al., 2013) - The same chemicals as described 

above were used with the addition of analytical standards of the flavonoids were 

purchased from Phytolab (Vestenbergsgreuth, Germany), i.e. apigenin, apigenin 7-O-

glucoside (apigetrin), luteolin, luteolin 7-O-glucoside (cynaroside), kaempferol 3-O-

glucoside (astragalin), quercetin, quercetin 3-O-glucoside (isoquercitrin), quercetin 3-O-

galactoside (hyperin), quercetin 3-O-rutinoside (rutin), quercetin 3-O-arabinoside 

(avicularin), quercetin 3-O-rhamnoside (quercitrin), phloretin, phloretin O-2'-glucoside 

(phlorizin), (+)-catechin, (-)-epicathecin, (+)-dihydroquercetin ((+)-taxifolin), (+)-

dihydrokaempferol ((+)-aromadendrin), naringenin, naringenin 7-O-neohesperidoside 

(naringin), isorhamnetin, procyanidin B2, galangin, cyanidin chloride, cyanidin-3-O-

glucoside chloride (kuromanin chloride), cyanidin-3-O-galactoside chloride (ideain 

chloride) and cyanidin-3-O-rutinoside chloride (keracyanin chloride). Analytical standards 

of the phenolic acids of the highest purity available were bought from Sigma-Aldrich 

(Bornem, Belgium), i.e. salicylic acid, protocatechuic acid, gallic acid, propyl gallate, 4-p-

hydroxyphenyl acetic acid, p-coumaric acid, ferulic acid, dihydroferulic acid, caffeic acid, 

http://en.wikipedia.org/wiki/Toxicity_Class#Toxicity_Class_II
http://en.wikipedia.org/wiki/Glucoside
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dihydrocaffeic acid, sinapinic acid and chlorogenic acid. These polyphenolic compounds 

are commonly found in plants and have been widely investigated. 

L-ascorbic acid.  

L-Ascorbic acid (>99%) was obtained from Sigma-Aldrich (Dorset, UK). Tris(2-

carboxyethyl)phosphine hydrochloride (TCEP, >98%) was purchased from Fluka 

(Dorset, UK). Potassium dihydrogen orthophosphate (>99%), orthophosphoric acid (85% 

in water), metaphophoric acid (60% + 40% sodium phosphate stabiliser), dithiothreitol 

(>98%) and acetonitrile (≥99.9%) were obtained from VWR International (Poole, UK). 

Ascorbate oxidase (E.C. 1.10.3.3) from Cucurbitaceae sp. was purchased from Roche 

Diagnostics (Lewes, UK).   

ACSOs.  

Acetonitrile (MeCN, LC-MS) and formic acid (99%, LC-MS) were obtained from Biosolve 

B.V. (Valkenswaard, the Netherlands). Water was HPLC grade (generated by a Milli-Q 

Gradient purification system, Millipore, Bedford, MA). The alliin standard (purity ≥ 98%) 

was purchased from Sigma-Aldrich (Bornem, Belgium) and methiin from Enzo Life 

Sciences (Antwerp, Belgium). Because isoalliin was not available as a standard, isoalliin 

was identified based on the mass spectra and quantified as alliin (Lundegardh et al., 

2008). O-(carboxymethyl)hydroxylamine hemihydrochloride (OCMHA) was purchased 

from Sigma-Aldrich (Bornem, Belgium). 

Fructans.  

Potassium hydroxide solution, sodium hydroxide and hydrogen chloride were obtained 

from Fluka (Steinheim, Germany). Citric acid monohydrate was purchased from Merck 

(Darmstadt, Germany). Inulinase from Aspergillus Niger and D-(-)-Ribose (99%) were 

obtained from Sigma-Aldrich (Steinheim, Germany). 

 

3.3.2 Antioxidant capacity 

Three distinct antioxidant capacity assays were used for determining the antioxidant 

capacity in this work: the oxygen radical absorbance capacity (ORAC) assay, the 2,2-

diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay and the ferric 

reducing antioxidant power assay (FRAP).  

ORAC and DPPH analyses were carried out with a FLUOstar OPTIMA plate reader 

(BMG LABTECH, Offenburg, Germany) equipped with a temperature-controlled 

incubation chamber. Filters with a wavelength of 485 nm and 520 nm were purchased 

from Isogen Life Sciences. The control and evaluation software V2.20 from BMG 

LABTECH were used for further calculation. The 96 well plates used for the ORAC and 

DPPH assay were obtained from VWR International. FRAP analyses were carried out 

with an Ultraspec 2100 pro (Amersham Biosciences, Bath, UK). 
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3.3.2.1 Oxygen Radical Absorbance Capacity (ORAC) assay 

For ORAC analysis, extracts were obtained by adding 10 ml of 70% aqueous ethanol 

solution (v/v) to a precisely weighed amount (500 mg) of freeze-dried leek powder 

(FDLP). This mixture was shaken for 2 h on an orbital shaker at 300 rpm (Shaker type 

3500, GFL, Burgwedel, Germany). The homogenates were centrifuged at 4500 rpm for 

10 min (Heraeus Labofuge 400 R, Thermo, Aalst, Belgium) and the supernatants were 

used for the ORAC analysis. 

The ORAC procedure established by Prior et al. (2003) and the application note of 

Ganske and Dell (2006) were followed. Briefly, to each microplate well, 25 μl Trolox 

dilution, 25 µl sample dilution or 25 µl 10 mM phosphate buffer (pH 7.4) was pipetted in 

triplicate for the calibration curve, sample or blank, respectively. 150 µl of the fluorescein 

solution (10 nM) was then added to each well. In the next step, the microplate was 

sealed and incubated at 37 °C for 30 min. The fluorescence (Ex. 485 nm, Em. 520 nm) 

was subsequently determined every 90 s. After 3 cycles, 25 µl of 2, 2'-azobis-2-methyl-

propanimidamide dihydrochloride (240 mM) was added manually to each well. 

Fluorescent measurements were taken up for 90 min. Calculations were based on the 

area under the fluorescence decay curve (AUC) using formula (3.1), with CT-cycle time 

in min, yn-the relative fluorescence unit at cycle n 

 

                                           [
 

 
 (             )]                                                    (3.1) 

 

ORAC values were calculated using a regression equation for a linear regression on the 

range of 12.5-200 µM Trolox standards. The net area under the curve was obtained by 

subtracting the area under the curve for the blank values from the curves of samples and 

standards. ORAC values were expressed in µmoles of Trolox Equivalents per gram of 

dry weight (µmol TE g
-1

 dw). 

 

3.3.2.2 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay 

The extraction method for DPPH analysis was the same as described for the ORAC 

determination (§3.3.2.1). 

The DPPH procedure is essentially as described by Hogan et al. (2009) with some 

modifications. Briefly, an aliquot (100 µl) of DPPH solution in ethanol (0.4 mM) was 

added to the sample extract (100 µl) at various concentrations. The absorption at 520 nm 

was determined immediately after the reaction was initiated. Each well was read once 

every 60 s for 90 min. 
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DPPH values were calculated using a regression equation for a linear regression on the 

range of 12.5-200 µM Trolox standards. The relative scavenging capacity of the leek 

extracts were expressed in µmoles of Trolox Equivalents per gram of dry weight (µmol 

TE g
-1

 dw). 

 

3.3.2.3 Ferric Reducing Antioxidant Power (FRAP) assay 

Extracts for FRAP analysis were obtained by adding 2 ml of extraction solvent (acetone-

water (70:30) with 0.1% formic acid) to an accurately weighed amount (100 mg) of 

FDLP. The mixture was vortexed for 15 s and agitated for 2 h using a tube rotator (Stuart 

Scientific blood tube rotator SB1, Staffordshire, UK). The homogenates were centrifuged 

at 4000 rpm for 15 min (Eppendorf Centrifuge 5810R, Hamburg, Germany). An aliquot 

(1 ml) of the supernatant was centrifuged at 13 200 rpm for another 5 min.  

The ferric reducing power of the leek extracts was determined using the method of 

Deighton et al. (2000) and employed a 100 µl aliquot of the leek extract (1:2) added to 

900 µl of FRAP reagent. Thereafter, the procedure was followed as described. The 

results were expressed as µmoles of ferric reducing/antioxidant power of 1 g FDLP and 

were compared with the standard curve prepared using FeSO4 in a range of 

concentration from 100 to 1000 µM (µmol FeSO4 g
-1

 dw). FRAP analyses were 

performed in collaboration with the research group ‘Enhancing Crop Productivity and 

Utilisation’ of the James Hutton Institute (JHI, Dundee, Scotland). 

 

3.3.3 Polyphenolic compounds 

The analysis of polyphenolic compounds was divided into 2 parts. In a first part, the total 

phenolic content was measured with a spectrophotometric method. In that case, a global 

polyphenol content of the white shaft and green leaves could be obtained. In a second 

part, a more specific analysis was executed to identify and, if possible, quantify 

flavonoids and phenolic acids in leek. 

 

3.3.3.1 Total phenolic content 

Extraction for the total phenolic content was as described by Vinson et al. (1998) with 

some slight modifications. Briefly, a precisely weighed amount (500 mg) of FDLP was 

diluted with 10 ml 1.2 M HCl in 50% aqueous methanol. This mixture was shaken for 2 h 

at 80 °C and centrifuged (4500 rpm, 10 min). The supernatant was used for the total 

phenolic analysis. The TP content was determined according to the Folin–Ciocalteu 

method (Singleton and Rossi, 1965; Deighton et al., 2000). However, a drawback with 
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the Folin-Ciocalteu approach is that compounds such as fructose, amino acids and 

ascorbic acid can contribute to the TP content. Nevertheless, the extraction procedure of 

Vinson et al. (1998) ensures that the interference of vitamin C with the Folin–Ciocalteu 

method was not significant. The determination procedure described by Waterman and 

Mole (1994) was followed with some modifications. An appropriate volume (0.100 ml) of 

the filtrate was added to 0.5 ml Folin–Ciocalteu reagent (1:10) in a volumetric flask of 10 

ml. After 6 min, 20% Na2CO3 (w/v, 1.5 ml) was added. Filling up to 10 ml with distilled 

water, the mixture was shaken and reacted for 2 h at room temperature in the dark. 

Absorbance readings were taken against a blank at 740 nm. The standard curve was 

made using gallic acid standard solution (100-500 mg l
-1

) under the same procedure as 

above; the same applied to the blank. All determinations were carried out in triplicate and 

the results were expressed as milligrams of gallic acid equivalents per gram of dry 

weight (mg GAE g
-1

 dw). 

Total phenolic analyses were carried out with a FLUOstar OPTIMA plate reader (BMG 

LABTECH) equipped with a temperature-controlled incubation chamber. 

 

3.3.3.2 Flavonoids and phenolic acids 

Two methods for the analysis of flavonoids and phenolic acids were used in this project.  

 
3.3.3.2.1 U-HPLC-ESI-Orbitrap MS/MS (JHI, Dundee, Scotland, UK) 

 

A U-HPLC-ESI-Orbitrap-MS/MS system was used for analysis of flavonoids and phenolic 

acids. 

Sample preparation and analyses were performed in collaboration with the research 

group ‘Enhancing Crop Productivity and Utilisation’ of the James Hutton Institute (JHI, 

Dundee, Scotland). 

Sample preparation was as follows; 100 mg of FDLP was extracted with 4 ml of 50% 

aqueous methanol (1% acetic acid). An internal standard galangin was used in a 

concentration of 1.25 mg l
-1

. The mixture was shaken during 60 min at room 

temperature. The extracts were then centrifuged for 10 min (RC 1022, Jouan) and the 

supernatant was filtered through a 0.45 µm PTFE membrane filter (Syringeless filter 

devices 0.45 µm, Whatman) in a vial.  

U-HPLC analyses of the leek samples were performed using a Finnigan Surveyor LC 

system (Thermo Scientific Ltd., Bremen, Germany), which comprised a MS pump, an 

auto sampler and a photo diode array (PDA) detector. The separation of the analytes 

was carried out using an U-HPLC system equipped with a reversed-phase C18 analytical 

column of 50 mm x 2.1 mm and 1.9 µm particle size (Thermo Hypersil Gold) protected 
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with a C18 guard column. The column temperature was maintained at 30 °C. The injected 

sample volume was 5 µl. The mobile phase consisted of a combination of HPLC water 

(solvent A) and 90% acetonitrile (solvent B), containing 0.2% formic acid. The initial 

mobile phase composition (95% A and 5% B) was followed by a linear gradient to 100% 

B in 8.5 min. This composition was held for 30 sec. In the next minute the system was 

placed in the initial condition, to ensure complete elution of the matrix from the column. 

The flow rate used was 400 µl min
-1

. UV spectra recorded were in the range 200-

600 nm. 

For accurate mass measurements, an LTQ Orbitrap XL
TM

 mass spectrometer (Thermo 

Fisher Scientific, Bremen, Germany) was used, equipped with an ESI source. The MS 

was operating in negative electrospray ionization mode in full scan for masses between 

m/z 80 and 2000 at 30 000 resolution at m/z 400. Operation parameters were as follows: 

source voltage, 3 kV; sheath gas flow rate, 45 Arbitrary Units (AU); auxiliary gas flow 

rate, 5 AU; and capillary temperature 300 °C. Default values were used for most 

acquisition parameters. Two scan events were performed: full-scan analysis followed by 

data-dependent MS
2 

of the most intense ions. The MS detector was tuned against 

kaempferol, quercetin, galangin and luteolin.  

The U-HPLC system and mass detector were controlled by Xcalibur 2.0.7 software 

(Thermo Fisher Scientific). Data processing was done by Sieve V 1.2
TM

, LC Quan. Mass 

accuracy data were collected using ToxID software (version 2.2.1.56, Thermo Fisher 

Scientific). 

For identification, accurate masses of the detected compounds were compared with 

data from literature (accurate mass of [M-H]
-
 adducts of 234 flavonoids and 95 phenolic 

acids present in fruits and vegetables), using ToxID (Thermo Fisher Scientific) based on 

accurate mass scan and the following parameters, RT window: 10 min, exact mass 

window: 5 ppm. Mass peaks which matched within a 5 ppm error window were assigned 

putative identities and further identified on the basis of authentic standards or literature 

data. When no standard was available, identification was executed on the basis of their 

retention time (RT) and MS² fragmentation data. Based on the MS fragmentation data in 

ESI negative mode, kaempferol mono-, di- and triglycosides are predicted to produce 

kaempferol aglycone (m/z 285) after the loss of glycosyl units, while the quercetin 

glycosides will produce quercetin aglycone (m/z 301) after the loss of glycosyl units. In 

the case of isorhamnetin glycosides, the aglycone isorhamnetin will be produced (m/z 

315). Assignment of different sugar substitutions to the flavonoid hydroxyl groups and 

their interglucosidic linkage was carried out in accordance with previous studies. These 

studies showed that the first fragmentation of the deprotonated molecular ion [M-H]
-
 is 

due to the breakdown of the O-glycosidic bond at the 7-O position and the remaining 

sugars on the flavonoid molecule should be linked to the hydroxyl group at the 3-O 
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position of the flavonol skeleton (Vallejo et al., 2004). Ferreres et al. (2004) reported that 

both flavonol sophorosides (1->2 glycosidic linkage) and flavonol gentiobiosides (1->6 

glycosidic linkage) are characterised by the fragment ion [M-324]
-
 as their base peak in 

MS
2
 experiments. On the other hand, flavonol diglucosides with sugar moieties linked to 

different hydroxyl positions of the flavonol nucleus have the fragment ion [M-H-162]
-
 as 

their base peak. In addition, flavonol sophorosides were defined by the fragment ion [M-

H-180]
-
 and were also able to produce the fragment ions [M-H-162]

-
 and [M-H-120]

-
 

(Ferreres et al., 2004).  

Polyphenols were quantified on the basis of a calibration curve obtained from standard 

solutions of reference compounds. 

 

3.3.3.2.2 U-HPLC-ESI-Orbitrap-MS (Flemish Institute for Technology 

Research, Mol, Belgium) 

 

In Chapter 9, the validated method to quantify polyphenols, developed by Domien De 

Paepe at the Flemish Institute for Technological Research (VITO), was applied (De 

Paepe et al., 2013).  

The extraction system consists of a consecutive extraction of 0.5 g FDLP weighted in a 

BD Falcon™ conical tube (BD, Sunderland, United Kingdom) added with 10 ml 

MeOH:water (20/80, v/v) in a first step and 100% MeOH in a second step. Each 

extraction was performed by ultrasound-assisted solid-liquid extraction with 5 ml of the 

appropriate solvent by using a 2200 R-4 Ultrasonic sonicator (40 kHz, 100 W) (Branson 

Ultrasonic Corporation, Danbury, USA) for 60 min at room temperature. After adding the 

solvent to the extraction tube and after 30 min of extraction, the solutions were stirred 

with an IKA MS2 Minishaker (IKA® Werke GmbH & Co. KG, Staufen, Germany) for 15 

min. During sonication, the temperature was kept below 40 °C. Following extraction, a 

separation between the solid particles and the liquid phase was obtained by centrifuging 

at 3000 rpm using an Allegra™ Centrifuge (Beckman Coulter Inc., CA, USA). 

Subsequently, the supernatant was collected and stored in a capped vial at 4 °C. When 

the two consecutive extraction cycles were performed, the two supernatants were 

combined in a microtube (50/50, v/v) and centrifuged using a Galaxy 16DH 

ultracentrifuge (VWR, Leuven, Belgium). Finally, the obtained supernatant was diluted 

(dilution factor 1/5 (v/v)) in a microvial by adding MeOH:water (60/40, v/v) and stored at 

4 °C prior to injection into the U-HPLC-ESI-Orbitrap-MS system. The LC system 

consisted of an Accela™ quaternary solvent manager, a Hot Pocket column oven 

(Thermo Fisher Scientific, Bremen, Germany) and a CTC PAL™ autosampler (CTC 

Analytics, Zwingen, Switzerland). A reversed phase separation was performed on a 

Waters Acquity UPLC® BEH SHIELD RP18 column, with dimensions 3.0 mm x 150 mm, 
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1.7 μm (Waters, Milford, USA). To protect the UHPLC column, an Acquity BEH RP18 

VanGuard pre-column, with dimensions 1.7 μm, 2.1 x 5 mm (Waters) was coupled with 

the analytical column. The mobile phase consisted of water + 0.1% formic acid (solvent 

A) and acetonitrile + 0.1% formic acid (solvent B). The gradient was varied linearly from 

0% to 26% B (v/v) in 9.91 min, to 65% B at 18.51 min, and finally set at 100% B at 18.76 

min and held at 100% B to 20.76 min. Afterwards, the initial conditions of 100% A were 

re-equilibrated from 20.88 min to 23 min prior to the next injection. The flow rate was 

500 μl min
-1

 and the column temperature was set at 40 °C. Aliquots of 5 μl of the sample 

extract were injected into the chromatographic system. The U-HPLC system was 

coupled to an Orbitrap mass spectrometer (Exactive™, Thermo Fisher Scientific) 

operating with an Ion Max™ ESI source (Thermo Fisher Scientific) in negative ionisation 

mode (ESI
-
) using the following operation parameters: spray voltage -2.5 kV; sheath gas 

(N2, > 99.99%) 47 (adimensional); auxiliary gas (N2, > 99.99%) 15 (adimensional); 

skimmer voltage -25 V; tube lens voltage -110 V; and capillary temperature 350 °C. The 

mass spectra were acquired using an acquisition function as follows: resolution, high 

(equivalent to a mass resolving power of 50 000 FWHM at m/z 200); automatic gain 

control (AGC), balance (target value of 1×106), and scan speed, 2 Hz. Mass range in the 

full scan experiments was set at m/z 90-1800. To guarantee high mass accuracy during 

run-time, the Orbitrap™ was externally calibrated in both positive and negative ionisation 

mode prior to each measurement. All the analyses were performed using a lock spray 

with internal lock mass of a solution of (D-Ala)2-leucine enkephalin (5000 ng ml
-1

, 12C 

[M-H]
-
, m/z 568.27767) delivered to the ESI source at 5 μl min

-1
 by using an additional 

LC pump (Hewlett Packard HP / Agilent 1100 HPLC Pump, Santa Clara, CA, USA). 

Detection of the targeted polyphenolic compounds was based on theoretical exact mass 

and on retention time. Data were evaluated by Xcalibur 2.2.1 (Thermo Fisher Scientific). 

 

3.3.4 L-ascorbic acid  

L-ascorbic acid (ascorbate, AA) analyses were performed in collaboration with the 

research group ‘Enhancing Crop Productivity and Utilisation’ of the James Hutton 

Institute (JHI, Dundee, Scotland). 

Extracts for ascorbic acid content determination were prepared by adding 1 ml of 

5% metaphosphoric acid (MPA) buffer containing 5 mM tris(2-carboxyethyl)phosphine 

(TCEP) to an accurately weighed amount (60 mg) of FDLP. In that case, the 

dehydroascorbic acid (DHA) form of vitamin C was reduced to ascorbic acid and only the 

AA form of vitamin C was analysed. The samples were vortexed for 3 min, and 

subsequently centrifuged for 10 min at 13 200 rpm at 1 °C. An aliquot (400 µl) of the 

supernatant was transferred directly to miniprep HPLC vials and filtered through 0.22 μm 
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filters prior to HPLC-analysis. Standard solutions of L-ascorbic acid (1-1000 μg ml
-1

) were 

prepared by dilution of a 1 mg ml
-1

 solution in 5% MPA containing 5 mM TCEP. 

Total L-ascorbic acid content was determined as described by Hancock et al. (2000) 

using an HPLC-photodiode array detection approach. Briefly, 20 μl of sample 

supernatant was injected onto a 300 × 7.8 mm ID Coregel 64H ion exclusion column 

(Interaction Chromatography, San Jose, CA, USA) with a 4 × 3 mm ID carbo-H
+
 guard 

cartridge (Phenomenex, Macclesfield, UK) maintained at 50 °C. The eluent flow of the 

mobile phase (8 mM H2SO4) was set at 0.6 ml min
-1

 and AA was detected at 245 nm 

using a Gynkotech UVD 340S diode array detector (Dionex, Camberley, UK). The 

identification of the peak, corresponding to AA, was deduced by their co-elution with 

standards. Under the above mentioned conditions, the retention time of AA was 11.70 

min.  

 

3.3.5 S-Alk(en)yl-L-cysteine sulfoxides  

Extraction of the ACSOs was performed as described by Lundegardh et al. (2008) with 

some modifications. Briefly, a precisely weighed amount (100 mg) of FDLP was diluted 

with 10 ml OCMHA (1.1 g l
-1

). This mixture was shaken on a horizontal shaker for 10 min 

and centrifuged at 4500 rpm during 10 min. Subsequently, the supernatant was 1:5 

diluted by adding HPLC-H2O containing 0.1% formic acid. This extract was filtered 

(Millex GV, Millipore, 0.22 µm) and used for the ACSO HPLC-MS/MS determination.  

ACSO levels were quantified using a model 2695 Alliance LC system (Waters, Milford, 

Massachusetts, USA) interfaced to an MS equipment consisting of a Quattro LCZ 

(Waters) equipped with a Z-spray system. 

Separation of the ACSOs was performed on a Hypurity Aquastar C18 column (2.1 × 150 

mm) with 5 μm particle size protected with a C18 guard column (2.1 × 10 mm; 5 µm) 

(Thermo, Louvain-la-Neuve, Belgium). The HPLC eluent was water with 0.1% formic 

acid. The isocratic eluent flow was set at 0.15 ml min
-1

 and the injection volume at 20 μl. 

The column temperature was held at 20 °C for chromatographic separation. The LC 

effluent was connected to the interface via a divert valve to avoid clogging the cone of 

the mass spectrometer. The instrument operated in the Selected Reaction Monitoring 

(SRM) mode with a dwell time of 0.50 s, an interchannel delay of 0.01 s and an interscan 

delay of 0.10 s. The MS system was controlled by version 4.1 of the MassLynx software 

(Waters, Zellik, Belgium). 

Mass spectrometric characteristics such as cone voltage and collision energy were 

optimised by continuously infusing pure standards (1 µg ml
-1

, 10 µl min
-1

) into the mass 

spectrometer combined with a flow of 200 μl min
-1

 HPLC-H2O + 0.1% formic acid using a 

T-piece. Standard stock solutions of alliin and methiin were prepared in water at a 
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concentration of 1 mg ml
-1

 and stored at –18 °C. Tuning solutions of 1 µg ml
-1

 were 

obtained by diluting the working solution of 10 µg ml
-1

 in acetonitrile/water (50/50, v/v) 

containing 0.1% formic acid. For both compounds, ionisation was performed in the 

electrospray (ES) positive mode. The precursor ion and the two product ions with the 

highest signal-to-noise (S/N) value and the highest peak intensity were selected for both 

analytes. The sum of both ions was used for quantification. The detection parameters of 

alliin and methiin are listed in Table 3.7.  

 
Table 3.7 Mass spectrometer detector settings for S-alk(en)yl-L-cysteine sulfoxide determination 

compound 
ionisation 

mode 

precursor 

ion (m/z) 

cone 

voltage 

(V) 

product ions 

(m/z) 

collision 

energy 

(eV) 

retention 

time 

(min) 

alliin ES+ 178.23 20 88.01 / 70.26 10 / 20 4.21 

methiin ES+ 152.15 20 88.22 / 70.08 10 / 15 3.67 

 

Nitrogen was used as cone gas and desolvation gas at flow rates of 60 l h
-1 

and 700 l h
-1

, 

respectively. The source block and desolvation temperature were set at 120 °C and 

300 °C, respectively. Collision gas pressure was 2.5 × 10
−3

 mbar. 

For quantification of individual compounds from peak areas, external calibration of alliin 

and methiin in a blank leek matrix was used (matrix-matched calibration curves). The 

blank matrix was a leek mixture which was left to stand during 24 h without adding 

OCMHA. Alliin and methiin were completely converted into breakdown products during 

these 24 h (Lundegardh et al., 2008). Results were expressed as mg isoalliin/methiin per 

gram dry weight (mg g
-1

 dw). 

The method was validated before analyses were performed as it was a new developed 

HPLC method. Therefore, the analyte-dependent characteristics of the ACSO method 

concerns specificity, linearity, possible matrix effects, apparent recovery (RA), 

repeatability (RSDr), intralaboratory reproducibility (RSDR), and limits of detection (LOD) 

and quantification (LOQ). These parameters were validated according to the guidelines 

of Commission Decision 2002/657/EC. A blank leek sample was used for spiking 

experiments. Specificity was checked by analysing 1 µg ml
-1

 of each pure liquid standard 

separately and searching for signal interference among the various Multiple Selection 

Monitorings (MRM). To evaluate linearity, possible matrix effects, RA, and RSDr, 3 series 

blank samples were spiked with pure ACSO standards. Each series included 1 specific 

spiking level in 6 replicates. A matrix-matched calibration curve of at least 5 spiking 

concentrations was also taken into account. Linearity of the matrix-matched calibration 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6X0P-4G54HS7-1&_user=794998&_coverDate=06%2F25%2F2005&_rdoc=1&_fmt=full&_orig=search&_cdi=7220&_sort=d&_docanchor=&view=c&_acct=C000043466&_version=1&_urlVersion=0&_userid=794998&md5=c7da2b9dd9153337eade67bd216aaeb9#tbl1
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curves was evaluated on the basis of graphical interpretation of R² (≥0.99) and the F-

statistic (goodness-of-fit). A minimum of 5 data points for each calibration curve was 

used within the concentration range of 0-5 mg g
-1

. RA percentages at the three spiking 

levels were calculated by using the matrix-matched calibration curves for quantification. 

Specifically, for each spiking level, the observed concentration levels were calculated by 

using the peak area and the matrix-matched calibration curve. Subsequently, the 

apparent recovery was expressed as a percentage by comparing these observed values 

to the actual spiked levels. The data obtained from these experiments conducted on a 

single day were used to study the intraday precision repeatability by calculating the 

relative standard deviation (RSDr). For interday precision (RSDR), these experiments 

were carried out on 3 separate days. For both compounds, the limit of detection (LOD) 

and quantification (LOQ) were calculated by 3 and 6 times the standard error of the 

intercept divided by the slope of the calibration curve, respectively. The calibration 

curves of the spiked extracts were used to determine possible matrix effects by 

comparing them to the corresponding calibration curves of the pure standards. These 

effects were expressed in terms of signal suppression/enhancement (SSE) and were 

calculated as follows: SSE (%) = 100 × slopeextract-matched standard/slopepure standard (Van 

Pamel et al., 2011). 

 

Before quantifying the two most abundant ACSOs present in leek (isoalliin and methiin), 

the method was first validated. Calibration curves of matrix-matched standards were 

used to evaluate linearity in terms of R² values and goodness-of-fit testing. For both 

compounds, linearity was found to be adequate; R² = 0.9920 (alliin) and R² = 0.9967 

(methiin). The calibration curves of spiked extracts were used to determine SSE by 

comparing them to the corresponding calibration curves of the pure standards. The 

results shown in Table 3.8 indicate that both compounds seemed to be subject to signal 

suppression (SSE<100%). The observed SSE emphasises the need to quantify ACSOs 

in leek samples by means of matrix-matched calibration curves. Table 3.8 gives an 

overview of the overall percentage apparent recovery (RA), repeatability (RSDr), interday 

precision over 3 days (RSDR), and LOD and LOQ (µg/g) for both compounds. The 

overall RA was calculated as a mean of the three concentrations extracted and was 

within the range of 80-110% for both compounds, the strictest limits set in Commission 

Decision 2002/657/EC. The repeatability and intralaboratory reproducibility were 

considered to be acceptable according to the guidelines stipulated in the performance 

criteria of Commission Decision 2002/657/EC. The HPLC-MS/MS method used had an 

LOD of 31 µg g
-1

 for alliin and 22 µg g
-1

 for methiin, and an LOQ of 62 µg g
-1

 for alliin and 

44 µg g
-1

 for methiin.  
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Table 3.8 Overview of the percentage apparent recovery (RA), repeatability (RSDr), and interday 
precision over 3 days (RSDR) at the three concentrations Used for validation and limits of detection 
and quantification (LOD and LOQ) and signal suppression/enhancement (SSE) for alliin and methiin 

  Low concentration Medium concentration High concentration    

 
Concentration 

(mg/g) 

RA 

(%) 

RSDr 

(%) 

RSDR 

(%) 

RA 

(%) 

RSDr 

(%) 

RSDR 

(%) 

RA 

(%) 

RSDr 

(%) 

RSDR 

(%) 

LOD 

(µg/g) 

LOQ 

(µg/g) 

SSE 

(%) 

alliin 1.0-1.5-2.0 98 3 6 98 2 3 96 1 4 31 62 48 

methiiin 1.0-1.5-2.0 108 4 11 108 2 3 109 2 3 22 44 13 

 

3.3.6 Fructans 

The fructan analysis was based on the method developed by Beneo Orafti (Tienen, 

Belgium). Extracts for fructan analysis were obtained by adding 50 g of boiling water 

(MilliQ) to 1 g of FDLP. When the pH was not in the range of 5.5-8.0 (InoLab pH level 1, 

WTW, Leuven, Belgium), pH was adjusted with KOH (0.05 M) or HCl (0.05 M). The 

mixture was shaken for 1 h in a shaking warm water bath (130 rpm, GFL Shaking Water 

Bath Type 1086, GFL, Burgwedel, Germany) at 75 °C. The homogenates were 

centrifuged at 4000 rpm for 15 min (Eppendorf Centrifuge 5810R). 1 part of the 

supernatant was used for HPLC-analysis of glucose, fructose and sucrose before 

enzymatic hydrolysis. Another part of the supernatant was used for enzymatic hydrolysis, 

therefore, 5 g of the supernatant was added to 5 g citrate buffer. The pH of the solution 

was adjusted to 4.5 (pH 4.45-4.55) with HCl (0.2 M) or NaOH (0.2 M). After adding 

0.40 g inulinase, the solution was shaken for 30 min in a warm water bath of 65 °C and 

the supernatant was used for HPLC-analysis of glucose and fructose.  

An HPLC (Perken Elmer series 2000, Zaventem, Belgium) system was used connected 

with a refractive index detector (Perken Elmer series 2000) to quantify the content of 

glucose, fructose and sucrose. Separation of the sugars was accomplished using an 

Aminex HPX-87P column (Biorad, Nazareth, Belgium). Ribose was added as an internal 

standard. A calibration curve of glucose, fructose and sucrose was made. 
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The fructan content was calculated based on formula (3.2) 

 

          
  [[  (     )] (             )]

     
          (           )      (3.2) 

 

With 

Gt = mg glucose after hydrolysis l
-1

 extract 

Ft = mg fructose after hydrolysis l
-1

 extract 

G0 = mg free glucose l
-1

 extract 

F0 = mg free fructose l
-1

 extract 

S0 = mg sucrose l
-1

 extract 

a = dilution factor 

b = dilution factor 

 

The results were afterwards confirmed by the acid hydrolysis method developed by 

Cosucra (Warcoing). Briefly, 174 g of water was added to 2 g of FDLP. This mixture was 

placed in a warm water bath (85 °C) for 1 h after the addition of 10 ml HCl (3M). 

Subsequently, 10 ml NaOH and 6 ml Al2(SO4)3 were added, the mixture was filtered and 

the filtrate was used for analysis of the sugars after hydrolysation. The same procedure 

(without the addition of HCl) was performed for the determination of the free sugars. 

Using formula (3.2), the present amount of fructans could be determined. 

 

Because of practical reasons, only 1 analysis could be done for each cultivar.  
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3.3.7 Overview of the analyses as a function of the different parameters 

To summarise, Table 3.9 shows an overview of the performed analyses and the place of analysis for each parameter. 

 
Table 3.9 Performed analyses for each chapter 

 

  

Leek tissue 
and leek 
cultivar 

Harvest time 
Leek vs. related 
Allium species 

Post-harvest processing 
and storage 

Domestic 
cooking 

Fermentation Drying 

 

  

     Spontaneous 

Starter 
cultures  

 
 Place of 

analysis Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 9 Chapter 9 

Antioxidant 
capacity 

ORAC ILVO 
        

DPPH ILVO 
        

FRAP JHI 
  

      

Polyphenols 

Total phenolic content ILVO 
        

Flavonoids and 
phenolic acids 

 JHI 
   

    
 

VITO      
 

 
 

Vitamin C  JHI 
  

      

ACSOs  ILVO 
        

Fructans  ILVO 
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4.1 Introduction 

Many papers describe the bioactive compounds in Allium species, such as garlic 

(Gorinstein et al., 2009; Hornickova et al., 2010; Ovesna et al., 2011), onion (Ou et al., 

2002; Coolong and Randle, 2003) and bunching onion (Masamura et al., 2011). Moreover, 

many papers reveal the difference between several Allium cultivars on the antioxidant 

properties (Moon et al., 2010; Perez-Gregorio et al., 2010; Beato et al., 2011).  

Although leek is widely distributed and consumed, little information can be found on the 

composition and the variability of bioactive compounds as a function leek tissue and 

cultivar. As described in Chapter 2, these parameters can influence the content of 

bioactive compounds. Notwithstanding the several bioactive compound analyses on 1 leek 

cultivar (Proteggente et al., 2002; Vandekinderen et al., 2009), little information is available 

on antioxidant properties of the white shaft and green leaves of leek among the range of 

commercial available and less commonly leek cultivars. These data could be of interest for 

all the leek producing countries and can recommend leek growers to use specific cultivars 

and types to maximise the antioxidant concentration. As a consequence, the consumer will 

take advantage by consuming leek, containing higher levels of antioxidants. In the long 

term, implementation of the data in breeding programmes will result in new cultivars with a 

higher antioxidant potential. 

The first aim of this study was to investigate the antioxidant potential of the white shaft and 

green leaves of 30 leek cultivars from different types (summer, autumn, winter) and 

(breeding) origins (hybrid, open pollinated). To this end, 3 distinct antioxidant capacity 

assays were used, the oxygen radical absorbance capacity (ORAC) assay, the 2,2-

diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay and the ferric reducing 

antioxidant power assay (FRAP). The second aim of this study was to investigate the 

major classes of bioactive compounds in leek in more detail such as polyphenols, 

ascorbate, the two major S-alk(en)yl-L-cysteine sulfoxides (ACSOs) present in leek, 

isoalliin and methiin, and the fructans in the white shaft and green leaves of 30 leek 

cultivars.  

In a last part, correlations were made between the antioxidant capacity assays and the 

results of the polyphenolic, ascorbate, ACSO and fructan analyses in order to evaluate the 

antioxidant potential of each class of bioactive compounds. In addition, principal 

component analysis (PCA) was performed to reduce the amount of data in order to assess 

and visualise the results.  

The results presented in this Chapter have been partly established in collaboration with 

Prof. Dr. Derek Stewart of the James Hutton Institute (Enhancing Crop Productivity and 

Utilization Theme) with regard to the FRAP, flavonoids/phenolic acids and ascorbate 

analyses. 
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4.2 Plant material 

§3.2.1 described the selection of plant material and sample preparation for field trial I. 

Briefly, the white shaft and green leaves of 30 leek cultivars (Table 3.1) were studied from 

a selection based on 3 criteria: (1) morphological type (pale green summer leek, dark 

green winter leek, intermediate autumn leek), (2) manner of breeding and multiplication 

(F1 hybrids, open pollinated (OP) commercial cultivars, OP farmer selections and OP old 

landraces) and (3) seed company. 

The leek cultivars were grown in 2009 and harvested at their commercially mature stage 

(from October ‘09 until March ‘10). 

 

4.3 Bioactive compound analysis 

Table 4.1 gives an overview of the analyses (as described in §3.3) performed on the 30 

leek cultivars. Three assays were used in order to determine the antioxidant capacity: the 

ORAC, DPPH and FRAP assay. The analysis of polyphenolic compounds was divided into 

2 parts. In a first part, the total phenolic content was measured with a spectrophotometric 

method. In that case, a global polyphenol content of the white shaft and green leaves of 

the 30 leek cultivars could be obtained. In a second part, a more specific analysis was 

executed to identify and, if possible, quantify flavonoids and phenolic acids in leek. In 

addition, 3 other important groups of bioactive compounds in Allium species were 

analysed as well, i.e. ascorbic acid, the S-alk(en)yl-L-cysteine sulfoxides and fructans. 

 
Table 4.1 Overview of the performed analyses as a function of the 30 leek cultivars 

Analysis Method 

Antioxidant capacity 

ORAC 

Spectrophotometric DPPH  
FRAP 

Polyphenolic 
compounds 

Total phenolic content Spectrophotometric 
Flavonoids and 
phenolic acids  

U-HPLC-ESI-Orbitrap-MS/MS 

L-ascorbic acid  HPLC-PDA 

S-alk(en)yl-L-cysteine 

sulfoxides 
 HPLC-MS/MS 

Fructans  HPLC-RI 
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4.4 Results 

4.4.1 Antioxidant capacity  

4.4.1.1 ORAC 

The ORAC values (Figure 4.1) for the white shaft and green leaves of the 30 leek cultivars 

covered significant ranges; 27-88 and 82-135 µmol TE g
-1

 dw, respectively.  

The highest ORAC value in the white shaft extracts was observed from the leek cultivars 

Pretan F1, Uyterhoeven and Van Limbergen and from the green leaf extracts of Electra, 

Tadorna and Engels. Among all cultivars tested, the whole leek plant (approximately 55% 

white shaft and 45% green leaves) of cultivar Uyterhoeven contained the highest mean 

ORAC value (97.78 µmol TE g
-1

 dw). In all cases, the ORAC values for the green leaves 

were significantly higher than those measured in the white shaft of leek, except for the 

cultivar Pretan F1, where no significant difference between the two distinct plant parts was 

measured.  

In general, the white shaft of the summer, autumn and winter leek types had a mean 

ORAC value of 35, 56 and 68 µmol TE g
-1

 dw, respectively. The antioxidant capacity of the 

white shafts of the winter cultivars was significantly higher than the capacity of shafts of 

the summer and autumn cultivars. The capacity of the white shaft of the autumn cultivars 

on his turn was significantly higher than the capacity of the summer types. Furthermore, 

the green leaves of the summer, autumn and winter types contained a mean ORAC value 

of 97, 107 and 100 µmol TE g
-1

 dw, respectively, but did not show significant differences. 
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4.4.1.2 DPPH 

Similarly, the associated DPPH values (Figure 4.2) of these cultivars covered the ranges 

2-11 and 5-14 µmol TE g
-1

 dw for the white shaft and green leaves, respectively.  

The highest DPPH value from the white shaft extracts was observed from Pretan F1, 

Nebraska and Apollo F1 and from the green leaf extracts of Gavia, Artico and Pretan F1. 
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Figure 4.1 The ORAC-derived antioxidant capacities of the white shaft (□) and green leaves (■) of 30 
leek cultivars (n=3), with dotted line indicating the mean ORAC value of the white shaft of the 30 
cultivars, and the full line indicating the mean ORAC value of the green leaves of the 30 cultivars 
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Among all the cultivars tested, the whole leek plant of the cultivar Pretan F1 contained the 

highest mean DPPH value (10.88 µmol TE g
-1

 dw). Generally the DPPH values for the 

green leaves were significantly higher than those measured in the white shaft of leek, 

except for the cultivars Miracle F1, Breugel F1, Poribleu, Pretan F1, Buelens, Apollo F1, 

Farinto, Arkansas, Kenton F1 and Fahrenheit F1, where no significant difference was 

measured.  

In general, the white shaft of the summer, autumn and winter leek types had a mean 

DPPH value of 3.7, 7.5 and 6.6 µmol TE g
-1

 dw, respectively. The DPPH free radical 

capacity of the white shaft of the autumn and winter cultivars was significantly higher 

compared with the capacity of the summer types. Furthermore, the green leaves of the 

summer, autumn and winter types contained a mean DPPH value of 8.11, 8.83 and 9.42 

µmol TE g
-1

 dw, respectively, and showed no significant differences. 
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4.4.1.3 FRAP 

The FRAP values (Figure 4.3) ranged between 3-18 and 14-37 µmol FeSO4 g
-1

 dw for the 

white stalks and green leaves, respectively. 

The highest FRAP value from the white shaft extracts was observed from Fahrenheit F1, 

Pretan F1 and Apollo F1 and from the green leaf extracts of Vervloet, Fahrenheit F1 and 

Zeus F1. In general, the whole leek plant of the cultivar Fahrenheit F1 contained the 

highest mean FRAP value (26 µmol FeSO4 g
-1

 dw). With the exception of Fahrenheit F1, 

Figure 4.2 The DPPH-derived antioxidant capacities of the white shaft (□) and green leaves (■) of 30 
leek cultivars (n=3), with the dotted line, indicating the mean DPPH value of the white shaft of the 30 
cultivars, and the full line, indicating the mean DPPH value of the green leaves of the 30 cultivars 
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the FRAP values for the green leaves were significantly higher than those measured in the 

white shaft of leek.  

In general, the white shaft of the summer, autumn and winter leek types had a mean 

FRAP value of 5.8, 8.9 and 11.4 µmol FeSO4 g
-1

 dw, respectively. The antioxidant capacity 

of the white shaft of the winter cultivars was significantly higher compared with the FRAP 

value of the summer cultivars. Furthermore, the green leaves of the summer, autumn and 

winter types contained a mean FRAP value of 26, 21 and 28 µmol FeSO4 g
-1

 dw, 

respectively. The antioxidant capacity of the green leaves of the winter cultivars was 

significantly higher compared with the FRAP value of the autumn cultivars. 
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Figure 4.3 The FRAP-derived antioxidant capacities of the white shaft (□) and green leaves (■) of 30 
leek cultivars (n=3), with the dotted line, indicating the mean FRAP value of the white shaft of the 30 
cultivars, and the full line, indicating the mean FRAP value of the green leaves of the 30 cultivars 

 

4.4.2 Polyphenolic compounds 

4.4.2.1 Total phenolic content 

The TP content in the white shaft and green leaves of the 30 leek cultivars varied from 5 to 

14 mg GAE g
-1 

dw and from 5 to 15 mg GAE g
-1

 dw, respectively (Table 4.2).  
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Table 4.2 Total phenolic content and L-ascorbic acid content in the white shaft and green leaves of 30 
leek cultivars (means of replicates ± standard deviation), the mean ascorbic acid values between 
brackets are mean values of the quantified levels (n=3; nd; not detected) 

 
Total Phenolic Content 

 (mg GAE g
-1
 dw) 

L-ascorbic acid 
(mg L-ascorbic acid g

-1
 dw) 

Cultivar name White shaft Green leaves White shaft Green leaves 

Varna 7.98  ± 0.90 7.87 ± 1.35 0.89 ± 0.21 2.77 ± 0.34 

Albana 7.89 ± 0.37 9.57 ± 0.22 2.13 ± 0.49 8.52 ± 1.08 

Nelli 7.41 ± 0.62 7.98 ± 0.34 1.26 ± 0.31 6.33 ± 0.76 

Elefant 7.57 ± 0.59 8.83 ± 0.30 1.89 ± 0.41 6.97 ± 0.57 

Miracle F1 6.98 ± 0.88 7.89 ± 1.11 1.03 ± 0.89 4.15 ± 1.67 

Zeus F1 8.67 ± 0.42 11.30 ± 1.78 2.70 ± 0.92 6.74 ± 2.28 

Striker F1 7.95 ± 0.11 8.89 ± 0.15 2.04 ± 0.61 6.75 ± 0.27 

Mean summer 7.8 8.9 1.7 6.0 

Electra 8.34 ± 0.50 9.15 ± 0.23 nd nd 

Nebraska 7.57 ± 0.26 8.34 ± 0.25 nd nd 

Breugel F1 7.82 ± 0.31 8.76 ± 0.14 nd nd 

Tadorna 5.83 ± 1.22 6.70 ± 1.26 nd nd 

Poribleu 5.31 ± 0.75 5.47 ± 0.81 1.49 ± 0.33 3.73 ± 0.60 

Alcazar 7.60 ± 1.14 7.71 ± 1.54 2.72 ± 0.30 5.42 ± 1.71 

Belton F1 8.11 ± 0.15 9.56 ± 0.37 1.27 ± 0.19 3.25 ± 2.82 

Pretan F1 7.76 ± 0.24 9.20 ± 1.44 3.25 ± 0.55 3.23 ± 0.59 

Mean autumn 7.3 8.1 1.1 (2.2) 2.0 (3.9) 

Musselburh 8.04 ± 0.29 9.52 ± 0.39 1.44 ± 0.50 4.25 ± 0.64 

Van Limbergen 11.29 ± 0.19 11.23 ± 1.22 2.55 ±0.48 5.01 ± 1.75 

Buelens 7.41 ± 0.32 8.57 ± 0.36 1.80 ± 0.48 4.71 ± 0.94 

Coolidge F1 7.79 ± 0.81 9.08 ± 0.67 2.07 ± 0.83 4.09 ± 0.83 

Apollo F1 7.79 ± 0.42 8.87 ± 0.63 1.85 ± 0.51 3.69 ± 0.38 

Artico 9.14 ± 0.29 10.56 ± 0.14 1.05 ± 0.27 5.14 ± 0.78 

Farinto 9.07 ± 0.69 10.50 ± 1.09 1.29 ± 0.26 3.58 ± 0.64 

Arkansas 8.64 ± 0.53 9.95 ± 0.12 1.64 ± 0.23 4.40 ± 0.12 

Gavia 8.71 ± 0.12 9.64 ± 0.52 2.13 ± 0.47 6.74 ± 0.25 

Toledo 13.96 ± 0.71 15.14 ± 0.23 1.75 ± 0.59 6.37 ± 0.45 

Uyterhoeven 7.73 ± 0.09 8.74 ± 0.58 1.64 ± 0.70 7.48 ± 1.05 

Engels  8.50 ± 0.45 10.29 ± 0.45 1.51 ± 0.65 4.51 ± 1.13 

Vervloet 7.91 ± 1.48 9.67 ± 1.73 1.59 ± 0.15 6.36 ± 1.61 

Harston F1 7.33 ± 0.68 8.21 ± 1.05 1.66 ± 0.40 5.29 ± 0.83 

Fahrenheit F1 9.58 ± 0.13 9.02 ± 0.69 3.55 ± 0.82 7.96 ± 0.50 

Mean winter 8.9 9.9 1.8 5.3 

Global mean 8.2 9.2 1.6 5.6 

 

The highest TP content was observed from the white shaft extracts of the cultivars 

Toledo, Van Limbergen and Artico, and from the extracts of the green leaves of the 

cultivars Toledo, Zeus F1 and Van Limbergen. The cultivar Toledo showed a significantly 

higher TP content in both white shaft and green leaves in comparison with the other 
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cultivars. Among the 30 leek cultivars, the whole leek plant of the cultivar Toledo rated 

highest for mean TP content (14 mg GAE g
-1

 dw).  

The leek cultivars Albana, Elefant, Striker F1, Nebraska, Breugel F1, Belton F1, 

Musselburh, Buelens, Artico, Arkansas, Gavia, Uyterhoeven, Engels and Kenton F1 

showed a significantly higher TP content in the green leaves in comparison with the TP 

content measured in the white shaft. For the other cultivars, there was no significant 

difference.  

In general, the white shaft of the summer, autumn and winter leek types had a mean TP 

content of 7.8, 7.3 and 8.9 mg GAE g
-1

 dw, respectively and did not show significant 

differences. Furthermore, the green leaves of the summer, autumn and winter types 

contained mean TP levels of 8.9, 8.1 and 9.9 mg GAE g
-1

 dw, respectively. The green 

leaves of the winter types exhibited a significantly higher phenolic content compared to the 

autumn types, while it was not significantly higher compared to content of the summer 

cultivars. 

 

4.4.2.2 Flavonoids and phenolic acids  

In addition to the global measurement of the total phenolic content of the leek samples, 

analyses were performed to identify and quantify flavonoid glycosides and phenolic acids 

in leek with a U-HPLC-ESI-Orbitrap-MS/MS system (JHI).  

 

4.4.2.2.1 Identification 

 

Based on the MS fragmentation data in ESI negative mode, kaempferol mono-, di- and 

triglycosides are predicted to produce kaempferol aglycone (m/z 285) after the loss of 

glycosyl units, while the quercetin glycosides will produce quercetin aglycone (m/z 301) 

after the loss of glycosyl units. In the case of isorhamnetin glycosides, the aglycone 

isorhamnetin will be produced (m/z 315). Assignment of different sugar substitutions to the 

flavonoid hydroxyl groups and their interglucosidic linkage was carried out in accordance 

with previous studies. These studies showed that the first fragmentation of the 

deprotonated molecular ion [M-H]
-
 is due to the breakdown of the O-glycosidic bond at the 

7-O position and the remaining sugars on the flavonoid molecule should be linked to the 

hydroxyl group at the 3-O position of the flavonol skeleton (Vallejo et al., 2004). Ferreres et 

al. (2004) reported that both flavonol sophorosides (1->2 glycosidic linkage) and flavonol 

gentiobiosides (1->6 glycosidic linkage) are characterised by the fragment ion [M-324]
-
 as 

their base peak in MS
2
 experiments. On the other hand, flavonol diglucosides with sugar 

moieties linked to different hydroxyl positions of the flavonol nucleus have the fragment ion 
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[M-H-162]
-
 as their base peak. In addition, flavonol sophorosides were defined by the 

fragment ion [M-H-180]
-
 and were also able to produce the fragment ions [M-H-162]

-
 and 

[M-H-120]
-
 (Ferreres et al., 2004). The result of the identification process is shown in Table 

4.3.  
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Table 4.3 MS and MS² data of identified polyphenol compounds in leek. Compounds indicated in bold are confirmed with authentic standards (FA, flavonoid aglycones; FM, 

flavonoid monoglucosides; FD, flavonoid diglucosides; PA, phenolic acids) 

MS  MS MS
2
     Presence 

Experimental [M-H]
-

(m/z) 

nr Error 

(ppm) 

[M-H-15]
-
 [M-H-22]

-
 [M-H-34]

-
 [M-H-

50]
-
 

[M-H-

120]
-
 

[M-H-

162]
-
 

[M-H-

180]
-
 

[M-H-

324]
-
 

[M-H-

176]
-
 

RT Compound Class  White 

shaft 

Green 

leaves 

301.03448 1 -3.0  179 (100)  151 (61)      3.62 Quercetin 

FA 

 ■ 

285.03946 2 -3.5   151 (100)       4.13 Kaempferol ■ ■ 

315.04959 3 -4.6 300 (100)         4.17 Isorhamnetin  ■ 

463.08688 4 -2.8     343 (2) 301 (100)    2.72 Quercetin 3-O-

glucoside 
 

 ■ 

447.09183 5 -3.3     327 (16) 285 (100)    2.95 Kaempferol  3-O-

glucoside 

FM ■ ■ 

477.10291 6 -2.0     357 (19) 315 (100)    2.97 Isorhamnetin 3-O-

glucoside 

  ■ 

625.13934 7 -2.7      463 (6) 445 (4) 301 (100)  2.65 Quercetin 3-O-

sophoroside 

FD 

 

 

 

 ■ 

609.14441 8 -2.8      447 (2) 429 (1) 285 (100)  2.88 Kaempferol 3-O-

sophoroside 

 ■ 

609.14441 9 -2.8      447 (66)  285 (100)  2.37 Kaempferol 3-O-

gentiobioside 

■ ■ 

609.14441 10 -2.8      447 (100)  285 (23)  2.03 Kaempferol 3,7-O-

diglucoside 

 ■ 

625.13934 11 -2.7      463 (100)  301 (13)  2.36 Quercetin 3,4’-O-

diglucoside 

■ ■ 

299.05515 12 -3.2 284 (100)         5.23 Kaempferol 4’-

methylether 

  ■ 

355.10239 13 -3      193 (100)    1.98 Ferulic acid 4-O-

glucoside 

PA ■ ■ 
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The flavonol aglycones quercetin, kaempferol and isorhamnetin were identified by their 

deprotonated molecular ions (m/z 301 for quercetin, m/z 285 for kaempferol and m/z 315 

for isorhamnetin) and characteristic mass fragment ions (m/z 151 and 179 for quercetin. 

m/z 151 for kaempferol and m/z 300 for isorhamnetin). They matched with authentic 

standards, corresponding to compound 1, 2 and 3, respectively (Table 4.3). 

The monoglucosides were characterised by the fragment ions [M-H-162]
-
 in the MS

2 

spectra, corresponding to the loss of 1 glucose moiety (162 Da). Peak 4, 5 and 6 matched 

the retention time and MS/MS spectra of the authentic standards quercetin 3-O-

glucoside, kaempferol 3-O-glucoside and isorhamnetin 3-O glucoside. In each MS² 

spectra of these compounds, the cleavage of 120 Da was found.  

Furthermore, different structures of diglucosides were elucidated. According to Ferreres et 

al. (2004), he MS
2  

fragmentations of compound 7 and 8 are typical for 3-O-sophorosides. 

The MS
2 

spectra of these compounds revealed the base peak [M-H-324]
-
, the fragment 

ions [M-H-180]
-
 and [M-H-162]

-
, suggesting a sophoroside (1->2 glycosidic linkage) at the 

3-O position, consequently they were identified as quercetin 3-O-sophoroside and 

kaempferol 3-O-sophoroside, and were also confirmed by the data of Vallejo et al. 

(2004). The absence of fragment ion [M-H-180]
-
 in the MS² data of compound 9 revealed 

the interglycosidic linkage at the 3-O position as a gentiobioside (1->6 glycosidic linkage) 

and was identified as kaempferol 3-O-gentiobioside. Compound 10 lost 1 glucose 

moiety in MS², resulting in the base peak [M-H-162]
-
 (loss at 7-O position) and fragment 

ion [M-H-162-162]
-
 (loss at 3-O position) and was classified as kaempferol 3,7-O-

diglucoside, also confirmed by the data of Vallejo et al. (2004). Compound 11 lost 1 

glucose moiety in MS², resulting in the base peak [M-H-162]
-
 and fragment ion [M-H-162-

162]
-
 and matched with the retention time and MS² spectra of an authentic standard 

quercetin 3,4’-O-diglucoside. The MS spectrum of compound 11 is shown in Figure 4.4. 
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Quercetin, kaempferol and isorhamnetin triglycosides are present in the samples, referring 

their deprotonated molecular ions m/z 787, m/z 771 and m/z 801, respectively, and their 

typical fragment ions (m/z 625, m/z 609 and m/z 639, data not shown). On the base of the 

MS
2
 data it is possible to exclude the 3-O-triglucoside form because the base peak of 463, 

447 and 477, respectively is not present. On the other hand, it is not possible to classify 

them as 3-O-sophoroside-7-O-glucoside or as 3,7,4’-O-triglucoside with only the MS² data. 

The MS spectra of compound 12 showed a deprotonated molecular ion at m/z 299 [M-H]
-
 

and fragment ions at m/z 284 [M-H-15]
-
, corresponding to the loss of a methyl group. The 

peak matched the retention time and MS² spectra of an authentic standard of kaempferol 

4’-methylether. The MS spectra of compound 13 showed a deprotonated molecular ion at 

m/z 355 [M-H]
-
 and fragment ions at m/z 193 [M-H-162]

-
, corresponding to the loss of 1 

molecule of glucose from ferulic acid (Herchi et al., 2011), resulting in ferulic acid 4-O-

glucoside. 

Thirteen compounds were identified in leek and are summarised in Table 4.3, with their 

fragment ions in the MS² spectra. Only 5 polyphenolic compounds could be identified in 

the white shaft, while 13 compounds were present in the green leaves. In addition, 

Table 4.4 shows the chemical structure of the identified compounds 
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Table 4.4 Identified flavonols and phenolic acid with position and type of functional groups. OH: 
hydroxyl. O-Glu: esterified glucoside unit. O-CH3: esterified methyl group. O-Soph: esterified 
sophoroside unit. O-Gent: esterified gentiobioside unit 
Flavonoid subclass Trivial name Carbon position 

  3 5 7 3’ 4’ 

flavonol quercetin OH OH OH OH OH 

Quercetin 3-O-
glucoside 

O-Glu OH OH OH OH 

Quercetin 3-O-
sophoroside 

O-
Soph 

OH OH OH OH 

quercetin 3.4’-
O-diglucoside 

O-Glu OH OH OH O-
Glu 

kaempferol OH OH OH  OH 

Kaempferol 3-O-
glucoside 

O-Glu OH OH  OH 
 

Kaempferol 3-O-
sophoroside 

O-
Soph 

OH OH  OH 

Kaempferol 3-O-
gentiobioside 

O-
Gent 

OH OH  OH 

Kaempferol 3.7-
diglucoside 

O-Glu OH O-
Glu 

 OH 

Kaempferol 4’-
methylether 

OH OH OH  O-
CH3 

isorhamnetin OH OH OH O-
CH3 

OH 

Isorhamnetin-3-
O-glucoside 

O-Glu OH OH O-
CH3 

OH 

       

Phenolic acid subclass Trivial name Carbon position 

  4 5    

Hydroxycinnamic acid Ferulic acid 4-O-
glucoside 

O-Glu O-
CH3 

   

 

      

 
 

4.4.2.3 Quantification 

Polyphenols were quantified on the basis of a calibration curve obtained from standard 

solutions of reference compounds. As a consequence, quantification could only be done 
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for the identified compounds, of which standards were commercially available, i.e. 

quercetin 3,4’-O-diglucoside (Q34’G), kaempferol 3-O-glucoside (K3G), isorhamnetin 3-O-

glucoside (I3G), quercetin 3-O-glucoside (Q3G), quercetin (Q), kaempferol (K), 

isorhamnetin (I) and kaempferol 4’-methylether (K4’M). Only Q34’G, K3G and K could be 

quantified in the white shaft of some cultivars (data not shown). The results were in the 

range of nd to 1.08 mg polyphenols 100 g
-1

 dw. The white shaft of cultivar Breugel F1 

contained the highest polyphenol content.  

The results of the individual polyphenol quantification in the green leaves of the 30 

cultivars are shown in Figure 4.5. Seven compounds could be quantified in the green 

leaves of the leek samples, i.e. Q34’G, K3G, I3G, Q3G, Q, K and I. A lot of variation in 

polyphenol content was observed between the green leaves of the 30 leek cultivars. K3G 

was present in the highest amount, and was in the range of 6.17-104.96 mg 100 g
-1

 dw, 

followed by Q3G, which was in the range of nd – 61.60 mg 100 g
-1

 dw. The content of 

Q34’G varied from 0.12 to 25.99 mg 100 g
-1

 dw. The content of I3G and I in the green 

leaves were in the same range, whilst the aglycones Q and K were present in the lowest 

concentration. The green leaves of the cultivars Breugel F1, Artico and Pretan contained 

the highest amount of polyphenol compounds. The average content of polyphenols in the 

green leaves of the 30 cultivars was 45.70 mg 100 g
-1

 dw. 
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Figure 4.5 Polyphenol content (mg 100 g

-1
 dw) in the green leaves of the analysed leek cultivars, with 

■, isorhamnetin, ■, kaempferol, ■ quercetin, ■ quercetin 3-O-glucoside, ■ isorhamnetin 3-O-glucoside, 
■ kaempferol 3-O-glucoside and □ quercetin 3,4’-O-glucoside, with  the full line, indicating the mean 
quantified polyphenol content of the green leaves of the 30 cultivars (n=3) 

In general, there were no significant differences in individual polyphenol concentrations 

between the green leaves of the three leek types, except for K3O and kaempferol, where 

the autumn cultivars had a higher concentration than the winter cultivars. 

 

4.4.3 L-ascorbic acid 

The ascorbate content in the white shaft and green leaves varied from 0.89 to 3.55 mg g
-1 

dw and from 2.77 to 8.52 mg AA g
-1

 dw, respectively (Table 4.2). In most cases, the 

ascorbate levels in the green leaves were significantly higher than those measured in the 

white shaft, except for the cultivars Alcazar, Belton F1, Pretan F1 and the farmer selection 

of Van Limbergen, where no significant difference was measured. For some cultivars no 
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detectable ascorbate even appeared to be present using the method described (Electra, 

Nebraska, Breugel F1 and Tadorna). The highest total L-ascorbic acid content was 

observed in the white shaft extracts from Fahrenheit F1, Pretan F1 and Alcazar, and in the 

green leaf extracts of Albana, Fahrenheit F1 and Uyterhoeven. Of all the cultivars tested, 

the whole leek plant of the cultivar Fahrenheit F1 contained the highest mean ascorbate 

content (5.54 mg ascorbate g
-1

 dw).  

In general, the white shaft of the summer, autumn and winter leek types had a mean 

ascorbate content of 1.7, 1.1 and 1.8 mg g
-1

 dw, respectively, but did not change 

significantly. Furthermore, the green leaves of the summer, autumn and winter types 

contained mean ascorbate levels of 6.0, 2.0 and 5.3 mg g
-1

 dw, respectively. The winter 

and summer cultivars had a significantly higher ascorbate concentration compared to the 

autumn cultivars. 

 

4.4.4 S-Alk(en)yl-L-cysteine sulfoxides  

The results of the isoalliin and methiin content as a function of leek cultivar are shown in 

Figure 4.6 (a) and Figure 4.6 (b), respectively.  

The isoalliin content of the white shaft and green leaves of the 30 leek cultivars varied from 

14.56 to 53.17 mg g
-1

 dw and from 8.73 to 44.90 mg g
-1

 dw, respectively. For half of the 

leek cultivars, the isoalliin content was significantly higher in the white shaft than the green 

leaves. The highest isoalliin content was obtained from the white shaft extracts of the 

cultivars Artico, Alcazar and Harston F1 and from the extracts of the green leaves of the 

cultivars Uyterhoeven, Musselburh and Coolidge F1. Among the 30 leek cultivars, the 

whole leek plant of the cultivar Artico rated the highest for the mean isoalliin content (46.69 

mg isoalliin g
-1

 dw).  
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(a) 

 
(b) 

Figure 4.6 Isoalliin (a) and methiin (b) content (mg g
-1
 dw) in the white shaft (□) and green leaves (■) 

of the analysed leek cultivars (n=3), with the dotted line, indicating the mean isoalliin/methiin content 
of the white shaft of the 30 cultivars, and the full line, indicating the mean isoalliin/methiin content of 
the green leaves of the 30 cultivars 
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The methiin content of the white shaft and green leaves of the 30 leek cultivars varied from 

2.93 to 15.52 mg methiin g
-1

 dw and from 1.24 to 10.34 mg methiin g
-1

 dw. The white shaft 

of the 30 cultivars contained significantly higher amounts of methiin than the green leaves, 

except for cultivar Uyterhoeven. The highest methiin content was observed from the white 

shaft extracts of the cultivars Apollo F1, Kenton F1 and Toledo, and from the extracts of 

the green leaves of the cultivars Apollo F1, Uyterhoeven and Toledo. Among the 30 leek 

cultivars, the whole leek plant of the cultivar Apollo F1 rated highest for mean methiin 

content (13.19 mg methiin g
-1

 dw).  

In general, the white shaft of the summer, autumn and winter leek types had a mean 

ACSO content (isoalliin + methiin) of 30.11, 40.02 and 45.81 mg g
-1

 dw, respectively. The 

ACSO content of the white shafts of the winter cultivars was significantly higher than the 

ACSO content of white shafts of the summer cultivars. Furthermore, the green leaves of 

the summer, autumn and winter types contained a mean ACSO content of 19.87, 25.35, 

and 39.15 mg g
-1

 dw, respectively. The green leaves of the winter cultivars contained a 

significantly higher ACSO content than the green leaves of the summer and autumn 

cultivars as well. In general, the whole leek plant of the winter cultivars contained a 

significantly higher amount of ACSOs.  

 

4.4.5 Fructans 

Results of the fructan quantification in the white shaft and green leaves are shown in 

Figure 4.7. However, because of practical reasons, only 1 analysis could be done for each 

cultivar and as consequence statistical analysis could not be performed.  

The fructan content of the white shaft and green leaves of the 30 leek cultivars varied from 

7.36 to 83.10 g fructan 100 g
-1

 dw and from 2.45 to 11.01 g fructan 100 g
-1

 dw, 

respectively. Large variation in the fructan content could be observed between the white 

shaft and green leaves of the 30 cultivars. In general, the white shaft of the summer, 

autumn and winter leek types had a mean fructan content of 51, 26 and 30 g 100 g
-1

 dw, 

respectively. The fructan content of the white shaft of the summer cultivars was higher 

than the content of shafts of the autumn and winter cultivars. Furthermore, the green 

leaves of the summer, autumn and winter types contained a mean fructan content of 6, 5, 

and 8 g 100 g
-1

 dw, respectively. The fructan concentration in the green leaves of the 

winter cultivars was higher than the concentration in the autumn cultivars. 
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Figure 4.7 Fructan content (g 100 g
-1
 dw) in the white shaft (□) and green leaves (■) of the analysed 

leek cultivars (n=1), with the dotted line, indicating the mean fructan content of the white shaft of the 
30 cultivars, and the full line, indicating the mean fructan content of the green leaves of the 30 
cultivars 

 

4.4.6 Correlation 

To explore the influence of the major phytochemical constituents on the antioxidant 

capacity in the leek extracts of the 30 leek cultivars, we determined the correlation 

between the antioxidant capacity and the different classes of antioxidant substances and 

fructans. The correlation coefficients for the white shaft and green leaves are shown in 

Table 4.5. 

Results of the ORAC and FRAP assay were positively but weakly correlated to the 

ascorbate and ACSO content, while the assays were negatively correlated with the fructan  

content in the white shaft. The DPPH results were only correlated with methiin and 

fructan content. The ORAC value of the green leaves was positively correlated with the 

flavonoids K3G, Q and K, while the FRAP results correlated well with the ascorbate and K 
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content. The content of Q34’G was positively correlated with the DPPH free radical 

scavenging activity of the green leaves. 
 

Table 4.5 Pearson’s correlation coefficients of the antioxidant activities (ORAC, FRAP and DPPH) 
with the antioxidant capacity, total phenol (TP), L-ascorbic acid (AA), ACSO, polyphenol and fructan 
content of the white shaft (first line) and green leaves (second line) of 30 leek cultivars 

 TP AA isoalliin methiin Q34’G K3G I3G Q3G Q K I fructans 

ORAC 
0.34 

0.09 

0.40* 

-0.26 

0.48* 

0.01 

0.63* 

0.03 

-0.33 

0.00 

-0.30 

0.44* 

- 

0.10 

- 

-0.04 

- 

0.61* 

-0.31 

0.44* 

- 

0.57* 

-0.66* 

-0.10 

FRAP 
0.28 

0.24 

0.70* 

0.52* 

0.52* 

0.28 

0.50* 

0.34 

-0.36 

-0.03 

-

0.39* 

- 

-0.05 

- 

-0.05 

- 

-0.32 

-

0.37* 

- 

-0.11 

-0.56* 

0.04 

DPPH 
0.17 

0.19 

0.24 

0.25 

0.35 

0.18 

0.49* 

-0.07 

-0.31 

0.56* 

0.09 

-0.13 

- 

0.32 

- 

0.50* 

- 

-0.16 

0.12 

-0.20 

- 

0.03 

-0.60* 

0.25 

With Q34’G, quercetin 3,4’-O-diglucoside, K3G, kaempferol 3-O-glucoside, I3G, isorhamnetin 3-O-glucoside, Q3G, quercetin 3-O-

glucoside, Q, quercetin, K, kaempferol and I, isorhamnetin 
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4.4.7 Principal component analysis  

To reveal the internal structure of the results of the antioxidant capacity assays, 

polyphenol, ascorbate, ACSO and fructan analyses, principal component analysis (PCA) 

was applied on the whole data set of the white shaft and green leaves of the 30 leek 

cultivars. The dimensionality of the data was reduced from 15 partially correlated variables 

to 2 uncorrelated principal components, PC1 and PC2, accounting for 62.62% of the 

variation. The PCA plot (Figure 4.8 (a) and (b)) convincingly segregated the white shaft 

and the green leaves on the basis of the different parameters. More specifically, the white 

shaft of the 30 leek cultivars contained a higher isoalliin, methiin and fructan level, whilst 

the green leaves gave the best value for the other analysed parameters. It is clear that the 

green leaves of the 30 leek cultivars possessed stronger antioxidant properties than the 

white shaft. 

A second PCA was applied on the data set of the results of the white shaft of the 30 leek 

cultivars. PC1 and PC2 accounted for 62.56% of the variation. The PCA plot (Figure 4.8 

(c) a (d)) showed a clear segregation between the white shaft of the summer, autumn and 

winter types on the basis of the different parameters as well. More specifically, the summer 

cultivars were the cultivars with the highest content of fructan and quercetin 3,4’-O-

diglucoside, while half of the autumn cultivars (Electra, Breugel F1, Tadorna and 

Nebraska) were highest in the kaempferol and kaempferol 3-O-glucoside. The winter 

cultivars and the other half of the autumn cultivars contained the highest amount of 

ACSOs, ascorbate, total phenolic content and possess the highest antioxidant capacity. 

A third PCA was applied on the data set of the results of the green leaves of the 30 leek 

cultivars, where PC1 and PC2, accounted for 51.79% of the variation. The PCA plot 

(Figure 4.8 (e) and (f)) showed a clear segregation between the green leaves of the 

summer, autumn and winter types on the basis of the different parameters. More 

specifically, the winter cultivars contained the highest amount of ACSOs, fructan, total 

phenolic content, ascorbate and FRAP, while half of the autumn cultivars (Electra, Breugel 

F1, Tadorna and Nebraska) were highest in the three flavonoid aglycones quercetin, 

kaempferol and isorhamnetin, kaempferol 3-O-glucoside and ORAC value. The cultivars 

Elefant, Pretan F1 and Artico contained the highest amount of the other quantified 

polyphenolic compounds and DPPH free radical scavenging activity. 
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(a) (b) 

 

  
(c) (d) 

 

  
(e) (f) 

Figure 4.8 PCA plot of the scores (a, c, e) and loadings (b, d, f) of the whole dataset (a,b), white shaft 
(c,d) and green leaves (e,f) of 30 leek cultivars
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As stated in §3.2.1.1, leek cultivars were selected on the basis of morphological type 

(summer, autumn, winter) and breeding origin (hybrid, open pollination). In order to 

evaluate the influence of plant tissue (white shaft, green leaves), type of cultivar and 

breeding origin on the antioxidant properties, ANOVA was performed. The results of the 

tests are shown in Table 4.6. 

 
Table 4.6 Analysis of variance of the antioxidant properties in 30 leek cultivars of different types and 
breeding origin  

  ORAC DPPH FRAP TP AA methiin isoalliin 

Plant tissue   * * * * * * * 

type of cultivar 
white shaft * * * * * * * 

green leaves   * * * * * 

breeding origin 
white shaft   *     

green leaves   *   *  

With * p<0.05 

 

Table 4.6 indicated that the antioxidant properties of the leek extracts were significantly 

influenced by leek tissue. Type of cultivar had a significant influence on the antioxidant 

properties, except on the ORAC and DPPH activity of the green leaves, while breeding 

origin had a poor influence on the antioxidants, except for the FRAP assay and the methiin 

content. 

 

4.4.8 Summary  

To summarise the results, the average antioxidant values of the white shaft and green 

leaves of 30 leek cultivars are presented in Table 4.7. 

 
Table 4.7 Antioxidant properties (mean ± standard deviation) of the white shaft and green leaves of 
30 leek cultivars 

 White shaft  Green leaves 

ORAC (µmol TE g
-1
 dw) 57.14 ± 16.68 < 101.41 ± 13.64 

DPPH (µmol TE g
-1
 dw) 6.15 ± 1.85 < 8.96 ± 1.83 

FRAP (µmol FeSO4 g
-1
 dw) 9.43 ± 3.69 < 25.90 ± 5.28 

total phenolic content (mg GAE g
-1
 dw) 8.19 ± 1.52 < 9.21 ± 1.66 

Q34’G (mg 100 g
-1
 dw) 0 - 0.32 < 4.65 ± 4.98 

K3G (mg 100 g
-1
 dw) 0 - 0.84 < 24.78 ± 20.78 

I3G (mg 100 g
-1
 dw) nd < 1.35 ± 1.46 

Q3G (mg 100 g
-1
 dw) nd < 13.51 ± 14.59 

quercetin (mg 100 g
-1
 dw) nd < 0.04 ± 0.12 
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kaempferol (mg 100 g
-1
 dw) nd < 0.48 ± 1.13 

Isorhamnetin (mg 100 g
-1
 dw) nd < 0.88 ± 0.75 

ascorbate (mg g
-1
 dw) 1.61 ± 0.89 < 4.59 ± 2.34 

isoalliin (mg g
-1
 dw) 32.99 ± 10.60 > 27.52 ± 11.01 

methiin (mg  g
-1
 dw) 7.26 ± 3.68 > 3.59 ± 2.45 

fructan (g 100 g
-1
 dw) 33.79 ± 14.34 > 6.84 ± 2.47 

                    nd: not detected 

Table 4.7 indicates the higher antioxidant capacity, the higher quantity of polyphenols and 

ascorbate in the green leek part compared to the white shaft. The white shaft was more 

rich in ACSOs and fructans. 

 

4.5 Discussion 

4.5.1 Antioxidant capacity 

Antioxidant capacity methods differ in terms of their assay principles and experimental 

conditions. Because multiple reaction characteristics and mechanisms are usually involved 

in the assays, no single assay will accurately reflect all antioxidants in a mixed or complex 

system. Thus, to fully elucidate a full profile of antioxidant capacity, different antioxidant 

capacity assays may be needed (Ma et al., 2011). Therefore, the antioxidant capacity of 

the white shaft and green leaves of 30 leek cultivars was determined using 3 antioxidant 

capacity assays, including ORAC, DPPH and FRAP. 

 

For the ORAC assay, the white shaft and green leaves of the 30 leek cultivars covered 

ranges of 27-88 and 82-135 µmol TE g
-1

 dw, respectively. The U.S. Department of 

Agriculture
5
 (2010) measured the ORAC value of 277 selected foods and reported a total 

ORAC value of 569 µmol TE 100 g
-1

 fresh weight (fw) in the bulb and lower leaves of leek. 

Our results are expressed in g
-1

 dw, however a precise recalculation to 100 g
-1

 fw is not 

possible, because the water content was not determined for all the leek samples. For the 

samples that were analysed for their water content, the mean water content was 87% in 

the white shaft and 85% in the green leaves, resulting in a mean water content of 86% in 

the whole leek plant. Using this conversion factor to convert our results to g
-1

 fw, the 

ORAC values reported by the USDA are in the same range as those reported in this study, 

379 to 1242 µmol TE 100 g
-1

 fw in the white shaft and 1150 to 1904 mg TE 100 g
-1

 fw in 

the green leaves. In the study of Proteggente et al. (2002) leek exhibited an ORAC value 

of 413 µmol TE 100 g
-1

 fw, which is in the range of our ORAC value of the white 

                                                           
5
 USDA 



                                                                                                   CHAPTER 4 

115 

 

shaft of leek. 

Comparing with other vegetables, the ORAC value for leek as reported by the USDA was 

in the same range as raw cabbage (529 µmol TE 100 g
-1

 fw), higher than the ORAC of raw 

tomatoes (387 µmol TE 100 g
-1

 fw) but lower than the ORAC in raw broccoli (1510 µmol 

TE 100 g
-1

 fw), raw garlic (5708 µmol TE 100 g
-1

 fw) and onion (913 µmol TE 100 g
-1

 fw).  

 

DPPH results of the white shaft and green leaves of the 30 leek cultivars, covered ranges 

2-11 and 5-14 µmol TE g
-1

 dw, respectively. Similarly, Mladenovic et al. (2011) reported a 

higher DPPH free radical capacity in the green leaves of leek (cv. Varna) compared to the 

shaft. Comparing with other Allium species, Gorinstein et al. (2009) investigated the 

antiradical activity against the DPPH radical for the Allium species garlic (7 µM TE g
-1

 dw), 

red onion (22 µM TE g
-1

 dw), white onion (21 µM TE g
-1

 dw) and yellow onion (20 µM TE g
-

1
 dw), values which were higher than found in our study of leek, especially for onion. 

 

The FRAP values ranged between 3-18 and 14-37 µmol FeSO4 g
-1

 dw for the white shaft 

and green leaves of the 30 leek cultivars, respectively. This concurs with Nencini et al. 

(2011) who reported a higher antioxidant capacity in the leaves of 4 Allium species 

(A. neopolitanum Cyr., A. roseum L., A. subhirsutum L. and A. sativum L.) compared to the 

the bulb. Halvorsen et al. (2002) analysed the total antioxidant capacity in a variety of 

dietary plants, including leek, by the reduction of Fe
3+

 to Fe
2+

. Leek contained a higher 

antioxidant capacity than tomato, cauliflower and cucumber, but a lower FRAP value than 

spinach, broccoli and red cabbage. In the study of Proteggente et al. (2002), leek exhibited 

a FRAP value of 160 µmol FeSO4 100 g
-1

 fw, which is in the range of our results using the 

conversion factor described above. 

 

Each antioxidant component in a complex sample has a different activity pattern in each 

antioxidant capacity assay, resulting in different data for each assay (Prior et al., 2005; 

Serrano et al., 2007; Perez-Jimenez et al., 2008; Tafulo et al., 2010). Therefore, to ensure 

that a specific sample exhibits significantly higher antioxidant capacity than the other 

samples, several methods were used. The ORAC, DPPH and FRAP assays are the most 

widely used methods for determining antioxidant capacity in vitro and were applied in this 

study. The ORAC assay is the only method that takes free radical action to completion and 

uses the Area Under the Curve (AUC) technique for quantification. It combines both 

inhibition percentage and the length of inhibition time of the free radical action by 

antioxidants into a single value (Prior and Cao, 1999). The ORAC assay is considered to 

be a preferable method because of its biological relevance to the in vivo antioxidant 

efficacy (Gu et al., 2006). However, the ORAC only measures water soluble antioxidants. 

Although, there is convincing evidence showing that the water-soluble part of commonly 
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consumed foods contain the majority of the phytochemicals and antioxidants compared 

with the lipophilic fraction (Chu et al., 2000; Wu et al., 2004). For example, the study of Wu 

et al. (2004) showed that the hydrophilic part of onion contributes to over 98% of its total 

antioxidant capacity.  

The DPPH assay is simple to use, but has some disadvantages that limits its application. 

Many antioxidants that react rapidly with peroxide radicals may have a very slow reaction 

to DPPH or may even be inert to it (Kurechi et al., 1980; Huang et al., 2005).  

FRAP is the only assay that directly measures antioxidants in a sample. The other assays 

are indirect because they measure the inhibition of reactive species (free radicals) 

generated in the reaction mixture, and these results also depend strongly on the type of 

reactive species used. The FRAP assay uses antioxidants as reductants in a redox-linked 

colorimetric reaction. Furthermore, the other assays use a lag phase type of measurement 

(Halvorsen et al., 2002). One disadvantage with the FRAP assay is that this assay does 

not react with thiols, because the reduction potential for thiols are generally below that of 

Fe
3+

/Fe
2+

 half-reaction. However, vegetables from the Alliaceae family contain a high 

number of sulfur-containing compounds. In the study of Cao et al. (1993) garlic had the 

highest antioxidant capacity, analysed by the ORAC assay, while Halvorsen et al. (2002) 

showed that it had a very low ferric reducing potential. 

The combination of the results of the three antioxidant capacity analyses gave an insight in 

the variation observed in function of leek tissue and leek cultivar. As these antioxidant 

capacities are due to the presence of antioxidants, specific bioactive compounds were also 

determined in the white shaft and green leaves of 30 leek cultivars and are described in 

the next sections.  

 

4.5.2 Polyphenolic compounds 

All of the leek cultivars tested, contained significant levels of total phenolic content (white 

part 5.31-13.96 mg GAE g
-1

 dw and green leaves 5.47-15.14 mg GAE g
-1

 dw) and 

compare favourably against those of the sister species such as onion (2-30 mg GAE g
-1

 

dw) and garlic (20 mg GAE g
-1

 dw) (Kahkonen et al., 1999; Gorinstein et al., 2009). 

Turkmen et al. (2005) determined 3 mg GAE g
-1

 dw in leek, which was less than found in 

our study. Proteggente et al. (2002) reported a TP content in the whole leek plant of 22 mg 

GAE 100 g
-1

 of fw, while Vandekinderen et al. (2009) found a content of 38-56 mg GAE 

100 g
-1

 fw. Assuming a water content of 86% in our leek samples, the TP contents 

reported by Proteggente et al. (2002) and Vandekinderen et al. (2009) are much lower 

than found for the cultivars tested here (75 to 197 mg GAE 100 g
-1

 fw in the white shaft 

and 77 to 213 mg GAE 100 g
-1

 fw in the green leaves). These variations could be due to 

differences among cultivars, growing seasons, agricultural practices and variations in 
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applied total phenolic determination assays.  

The U.S. Department of Agriculture (2010), reported a TP content of 47 mg GAE 100 g
-1

 

fw in the bulb and lower leaves of leek.  Again, this TP content is lower than our results. 

The TP content of leek reported by the USDA was in the same range as iceberg lettuce 

(50 mg GAE 100 g
-1

 fw), higher than the TP content of raw carrots (35 mg GAE 100 g
-1

 

fw), raw cucumber (22 mg GAE 100 g
-1

 fw) and raw onions (23 mg GAE 100 g
-1

 fw), but 

lower than the TP content in raw broccoli (316 mg GAE 100 g
-1

 fw) and raw cabbage (202 

mg GAE 100 g
-1

 fw).  

Half of the leek cultivars analysed in this study contained a significantly higher total 

phenolic content in the green leaves compared to the white shaft, while this was not the 

case for the other half. These results are in contrast with other studies and the expectation 

that the green leaves in all cases would contain a significantly higher amount of total 

phenolic content in comparison with the white part (Mladenovic et al., 2011). It is reported 

that polyphenol synthesis is stimulated by light, and as a result polyphenols will 

accumulate in the outer and aerial plant tissue, in case of leek the green leaves (Cortell 

and Kennedy, 2006). Accordingly, several reports identified a correlation between 

enhanced polyphenol production and exposure to UV-B radiation (sunlight) in St. John’s 

wort (Germ et al., 2010), barley (Kaspar et al., 2010) and Arabidopsis (Jordan et al., 1998). 

The explanation for why this is only true for half of our analysed leek cultivars could be 

attributed to other environmental factors and stress conditions that the white shaft can 

experience (Michalak, 2006). Besides UV light exposure, insect and microorganism 

pressure, low temperatures and low nutrient conditions correlate with the synthesis of 

polyphenols and can be responsible for a similar value of both leek tissues (Duval et al., 

1999; Michalak, 2006). Environmental factors are not the only possible explanation for this 

phenomenon; the method employed to analyse the polyphenols can also result in varying 

results. The Folin-Ciocalteu method may also determine other reducing compounds such 

as reducing sugars, which are present in leek. These sugars can interfere with the Folin 

method if they are present in high concentrations (Vinson et al., 2001). Muir et al. (2007) 

reported 13.07 g and 6.43 g fructose 100 g
-1

 dw in the white shaft and green leaves of 

leek, respectively, while 9 g glucose 100 g
-1

 dw was present in both parts (own results). 

Because the white shaft of leek contains higher levels of sugars, it might result in a higher 

contribution to the interference with Folin-Ciocalteu method. In addition, the Folin-

Ciocalteu reagent also reacts with some nitrogen compounds such as amino acids (e.g. 

tyrosine, tryptophan), vitamin C and amines (Peterson, 1979; Ikawa et al., 2003). 

Nevertheless, the applied extraction procedure of Vinson et al. (1998) ensures that the 

interference of vitamin C with the Folin–Ciocalteu method was not significant.  

 

In addition to the general assay which determines the total phenolic content, a U-HPLC-
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ESI-Orbitrap-MS/MS method was used to identify and quantify a set of flavonoids and 

phenolic acids in leek. Thirteen compounds could be identified based on RT, MS, MS² 

data and authentic standards. Seven of the 13 identified compounds were already 

reported in Allium species. For example, Q, Q3G and Q34’G were found in significant 

amounts in shallot and onion (Wiczkowski et al., 2008; Bonaccorsi et al., 2008; Lee and 

Mitchell, 2011a). K, I and I3G were present in onion cultivars (Bonaccorsi et al., 2005; 

Galdon et al., 2008; Lee et al., 2012) while K3G was identified both in onion (Muminova et 

al., 2006) and in leek (Fattorusso et al., 2001). Kaempferol/quercetin 3-O-sophoroside-7-

O-glucuronide could be identified in guard cells of onions, but not the compounds 

kaempferol/quercetin 3-O-sophoroside (Urushibara et al., 1992). The remaining 6 

identified polyphenols in leek, including  kaempferol/quercetin 3-O-sophoroside, 

kaempferol 3-O-gentiobioside, kaempferol 3,7-O-diglucoside, kaempferol 4’-methylether 

and ferulic acid 4-O-glucoside are, to our knowledge, not yet identified in Allium species. 

However, these compounds have been identified in other species. Quercetin 3-O-

sophoroside and kaempferol 3,7-O-diglucoside were found in broccoli florets by Price et al. 

(1998). Quercetin 3-O-sophoroside and kaempferol 3-O-sophoroside were also found in 

cowpea seeds. In addition kaempferol 3-O-gentiobioside was also identified in Senna 

leaves (Demirezer et al., 2011). Singh et al. (2006) isolated kaempferol 4’-methylether 

from Echinops echinatus and ferulic acid 4’-O-glucoside could also be detected in different 

berries (0.27-0.55 mg 100 g
-1

 dw) (Phenol-Explorer
6
, 2011). 

 

Quantification of flavonoids studied in leek revealed that the green leaves contained the 

highest amount, with an average of 48.70 mg polyphenols 100 g
-1

 dw.  

Only Q34’G, K3G and K could be quantified in the white shaft of some cultivars (nd to 1.08 

mg polyphenols 100 g
-1

 dw), while seven compounds could be quantified in the green 

leaves of the leek samples, i.e. Q34’G, K3G, I3G, Q3G, Q, K and I.  

K3G was the most prominent flavonoid compound in leek (6.17-104.96 mg 100 g
-1

 dw). 

Analysis of leek by the method of Justesen et al. (1998), which was based on an acid 

hydrolysis, resulted in a K content of 3.1 mg 100 g
-1

 fw. The study of Hertog et al. (1992b) 

also quantified flavonoids in leek on the base of acid hydrolysis, and reported 2 mg Q 100 

g
-1

 dw and 29.5 mg K 100 g
-1

 dw. Lugasi and Hovari (2000) also found trace amounts of Q 

(0.50 mg 100 g
-1

 fw) in leek. Comparing with other Allium species, the level of Q34’G was 

the highest in red onion (556 mg 100 g
-1

 dw) compared with the content in white onion (11 

mg 100 g
-1

 dw). Q3G was not detected in the white onion, while 5 mg 100 g
-1

 dw was 

present in red onion (Zill-e-Huma et al., 2011). Lee et al. (2012) revealed that onion 

contained 73 mg Q34’G kg
-1

 fw and 0.7 mg Q3G kg
-1

 fw, while quercetin and isorhamnetin 

                                                           
6
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could not be detected. 

Some compounds were identified in leek, but could not be quantified, while other studies 

succeed in quantifying these compounds. Similarly, quercetin 3-O-sophoroside (6.50 mg 

100 g
-1

 dw) and kaempferol 3,7-O-diglucoside (1.50 mg 100 g
-1

 dw) were quantified in 

broccoli florets in the study of Price et al. (1998). Ferulic acid 4’-O-glucoside was also 

quantified in different berries (0.27-0.55 mg 100 g
-1

 dw) (Phenol-Explorer, 2011). 

 

4.5.3 L-ascorbic acid 

Our reported L-ascorbic acid levels of the white shaft of leek (nd - 3.55 mg ascorbate g
-1 

dw) were in the same range as reported by Lundegardh et al. (2008) (1.6-2.3 mg 

ascorbate g
-1 

dw). Proteggente et al. (2002) reported a total vitamin C content in leek of 16 

mg 100 g
-1

 fw and Vandekinderen et al. (2009) reported a content of 8.26-15.78 mg 

ascorbate 100 g
-1

 fw, which is in the same range as our results using the dry weight 

conversion factor (12-50 mg ascorbate 100 g
-1

 fw in the white shaft and 39-120 mg 

ascorbate 100 g
-1

 fw in the green leaves). However, the AA concentration in the edible part 

of leek (cv. Inegol-92), reported by Ozgur et al. (2011) (0.1285 mg g
-1

 dw) was lower than 

the average concentration in our analysed leek samples. 

In general, higher ascorbate levels were found in the green leaves (nd – 8.52 mg 

ascorbate g
-1 

dw) of the leek cultivars compared to the white part. The higher levels in the 

sunexposed plant tissue is because AA is essential for protection against harmful side-

effects of light during photosynthesis. AA is important for the detoxification of superoxide 

and hydrogen peroxide in chloroplasts (Hancock and Viola, 2005). Additionally, based on 

various experiments, Lester (2006) has reported that vegetable and fruit size majorly 

affects the concentration of available phytonutrients such as ascorbic acid. In general, 

ascorbic acid decreases with increasing size. Indeed, in our results, we found a significant 

but weak negative correlation for the green leaves (r = -0.44, p < 0.05) between the 

average weight of the leek plant for each cultivar and its ascorbate content (data not 

shown). 

 

4.5.4 S-Alk(en)yl-L-cysteine sulfoxides 

The most prominent ACSOs in leek, that is isoalliin and methiin, were analysed in this 

study. The isoalliin content of the white shaft and green leaves of the 30 leek cultivars 

varied from 14.56 to 53.17 mg g
-1

 dw and from 8.73 to 44.90 mg g
-1

 dw, respectively, while 

the methiin content of the white shaft and green leaves of the 30 leek cultivars varied from 

2.93 to 15.52 mg methiin g
-1

 dw and from 1.24 to 10.34 mg methiin g
-1

 dw. Lundegardh et 

al. (2008) reported an ACSO content in the edible leek plant of ± 23.0 mg isoalliin g
-1

 dw 
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and ± 1.5 mg methiin g
-1

 dw. These values are in the range of our results, but less than the 

average amount of ACSOs quantified in our study. These variations could be due to 

differences among cultivars, growing seasons, agricultural practices and variations in the 

analytical method. Yamazaki et al. (2011) on the other hand, reported a mean isoalliin and 

methiin content of 37.4 mg g
-1

 dw and 7.7 mg g
-1

 dw, respectively, analysing 3 leek pools 

from 3 regions (USA, Belgium and Australia). These results are in the same range of our 

results. 

Although quantified, the absolute content of these ACSOs is less important for their 

olfactory properties than their relative composition (Fritsch and Keusgen, 2006). In this 

study, we found that isoalliin predominated in leek. It constituted 87% of the total ACSOs 

analysed in the white shaft of the summer cultivars, 82% in the autumn cultivars and 80% 

in the winter cultivars. The same relative decreasing trend of isoalliin can be observed in 

the green leaves, 93% isoalliin in the summer cultivars, 88% in the autumn cultivars and 

87% in the winter cultivars. In the study of Lundegardh et al. (2008), isoalliin constituted 92 

to 96% of the ACSOs present in leek. In the study of Yamazaki et al. (2011), the molar 

ratio of isoalliin/methiin in the edible portion of leek was 81/19 (%), while Yoo and Pike 

(1998) found a ratio of 91.9/8.1 (%) in the leek leaves. Fritsch and Keusgen (2006) 

reported an isoalliin/methiin ratio in leek of 79/13 and also found 7% propiin. Yamazaki et 

al. (2011) concluded that onion, Welsh onion and leek generate similar flavours and result 

in an isoalliin/methiin/alliin ratio of 81-89/11-19/0 (%). Based on their research, Yoo and 

Pike (1998) identified 3 distinctive groups: the isoalliin, the methiin and the alliin dominant 

groups. Leek belongs, along with onion, shallot and bunching onion, to the isoalliin group. 

Species in this group contain no alliin or an undetectable amount of alliin. Garlic belongs to 

the alliin-dominant group, with an isoalliin/methiin/alliin ratio of 1/16/83 (%) (Hornickova et 

al., 2010). 

 

4.5.5 Fructans 

In a last test, fructans were determined in the range of 30 leek cultivars. The data set is 

based on 1 experimental analysis, therefore the conclusions should be restricted to 

reporting tendencies.  

An average amount of 33.79 g fructans 100 g
-1

 dw and 6.84 mg 100 g
-1

 dw could be 

quantified in the white shaft and green leek leaves, respectively. The content of fructans is 

variable and depends on the cultivar. In the study of Grzelak-Blaszcyk et al. (2011), the 

highest content of fructans was observed in the shaft of leek cultivar Parton F1 (5.8 g 100 

g fw
-1

), whereas the least content in cultivar Belton F1 (3.8 g 100 g fw
-1

), values which 

were in the range of our results. 

Muir et al. (2007) determined the fructan content in leek, using the megazyme fructan 
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assay, and reported a value of 24 g fructans 100 g
-1

 dw in the white bulb of leek, while 

they did not detect fructans in the green leaves. Our reported values are higher compared 

to the results of Muir et al. (2007). To compare with related species, the same authors 

determined 16.1 g fructans 100 g
-1

 dw in the bulb of onion and 45 g in garlic. The highest 

content was quantified in Jerusalem artichoke (48.8 g fructans 100 g
-1

 dw).  

The high fructan concentrations found in the present study in leek were also confirmed by 

the standardised method used in Cosucra (Warcoing) to quantify fructans in chicory roots 

(data not shown). 

 

4.5.6 Correlation between the antioxidant capacity and the 

bioactive compounds of leek 

A large number of different types of antioxidant compounds might contribute to the total 

antioxidant capacity. Therefore, to explore the influence of the analysed phytochemical 

constituents on antioxidant capacity in leek, we determined the correlation between the 

antioxidant capacity and main antioxidant substances (total phenolic content, flavonoids, 

ascorbate and ACSOs) and fructans.  

The correlation study elucidated the correlation of the antioxidant capacity assays with the 

kaempferol content in the green leaves. Additionally, the ORAC antioxidant capacity 

correlated strongly with quercetin in the green leaves.  

In general, the antioxidant capacity of polyphenolic compounds depends on several factors 

as described in §2.4.4.2 such as chemical structure of the individual component, 

synergistic interaction among them and specific conditions applied in different assays 

(Huang et al., 2005). The antiradical potential of polyphenolic compounds is due to their 

ability to donate hydrogen, which closely depends on the number of hydroxyl groups, the 

substitution pattern of hydroxyl groups and the chemical structure of the compound. It is 

reported that glycosylation of polyphenolic compounds reduces its activity when compared 

to their aglycone forms (Shahidi et al., 1992). Similarly, studies report the high in vitro 

antioxidant capacity of quercetin when compared with other polyphenolic compounds 

(RiceEvans et al., 1996).  

Moreover, a significant correlation was observed between the antioxidant capacity assays 

and the ACSOs of the white shaft, indicating the antioxidative potential of the ACSOs. 

Similarly, the ORAC and FRAP assays were positively correlated with the AA content. 

Interestingly, the fructans in the white shaft were negatively correlated with the results of 

the three antioxidant capacity assays. 

Moreover, some compounds correlated well with 1 antioxidant capacity assay, while other 

correlated with 2 or 3 antioxidant capacity assays. Some authors have reported that each 

polyphenol has different accessibility to the radical centre of DPPH, which may influence 
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the antioxidant power measured by this method (Sanchez-Moreno et al., 1998). It was 

found that quercetin can reduce more than 4 molecules of DPPH whereas ascorbic acid 

reduces nearly 2 DPPH molecules (Davalos et al., 2004).  

 

4.5.7 Factors influencing the bioactive compounds of leek 

All the results together showed that the antioxidant properties of the leek extracts were 

influenced by leek tissue (white shaft/green leaves) and type of cultivar 

(summer/autumn/winter) to a large extent, whilst the breeding origin (hybrid/open 

pollinated) had no influence on the antioxidant properties.  

 In general, the white shaft of the 30 leek cultivars contained a higher isoalliin, 

methiin and fructan level, whilst the green leaves gave the best value for the other 

analysed parameters. It is clear that the green leaves of the 30 leek cultivars possess 

stronger antioxidant properties than the white shaft. 

 In addition to leek part, leek type had a significant influence on the antioxidants as 

well. The white shaft of the summer cultivars had the highest content of fructan and 

quercetin 3,4’-O-diglucoside, while half of the autumn cultivars (Electra, Breugel F1, 

Tadorna and Nebraska) were highest in the kaempferol and kaempferol 3-O-glucoside. 

The winter cultivars and the other half of the autumn cultivars contained the highest 

amount of ACSOs, ascorbate, total phenolic content and possess the highest antioxidant 

capacity. The green leaves of the winter cultivars contained the highest amount of ACSOs, 

fructan, total phenolic content, ascorbate and FRAP, while half of the autumn cultivars 

(Electra, Breugel F1, Tadorna and Nebraska) were highest in the three flavonoid 

aglycones quercetin, kaempferol and isorhamnetin, kaempferol 3-O-glucoside and ORAC 

value. The cultivars Elefant, Pretan F1 and Artico contained the highest amount of the 

other quantified polyphenolic compounds and DPPH free radical scavenging activity.  

The lower fructan content in the winter leek cultivars can be attributed to the hydrolysis of 

fructans as also observed in Jerusalem artichoke bulbs during winter seasoning (Grzelak-

Blaszczyk et al., 2011). 

The higher ascorbate content in the green leaves of the summer and winter cultivars may 

be due to climatic conditions, including light and average temperature during growth and 

development of plant tissues, which have a strong influence on the ascorbic acid content 

of horticultural crops. Although light is not essential for the synthesis of AA in plants, the 

amount and intensity of light during the growing season have a definite influence on the 

amount of AA formed (Lee and Kader, 2000). In general, the lower the light intensity during 

growth, the lower the AA content of plant tissues (Harris, 1975), which can explain the high 

values in the summer cultivars. Average growth temperature also influences the 

composition of plant tissues during growth and development. It is stated that plants will 

http://www.sciencedirect.com/science/article/pii/S0925521400001332#BIB26
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contain more vitamin C when grown under cool temperatures, which can be an 

explanation for the higher ascorbate levels in winter cultivars (Lee and Kader, 2000). 

The observed increase of the ACSO content towards the winter cultivars can be attributed 

to the role of these sulfur compounds in plants (defence against pests and predation, 

particularly in the overwintering bulb) and carbon, nitrogen, and sulfur storage and 

transport (Lancaster and Boland, 1990). These stress conditions can result in the 

conversion of the corresponding γ-glutamyl dipeptides to sulfoxides (Hornickova et al., 

2010). The different accumulation pattern of ACSOs between the summer, autumn and 

winter leek types can also be explained by the genetic background and other 

environmental stress factors. Light radiation and water stress is reported to affect the 

biosynthesis of organosulfur compounds in onion (Freeman and Mossadeg, 1973). In 

addition, the average growing temperature as well as the root zone temperature (RZT) 

could strongly affect the flavour composition of onion (Coolong and Randle, 2006). 

However, a detailed understanding of the influence of environmental factors and their 

interactions with agricultural practices in relation to ACSOs present in leek is still lacking.  

 Breeding origin had a poor influence on the antioxidants, except for the FRAP 

assay and methiin content 

 

This study revealed the variability in antioxidants between a range of leek cultivars. This 

variability is necessary in breeding experiments, because it allows to distinguish possible 

cross parents (cultivars), rich in a specific bioactive compounds. Similarly, phenolic content 

in asparagus spears is considered an important characteristic in selecting breeding lines 

that show high antioxidant capacity and its determination might make the screening 

process relatively easy (Maeda et al., 2005). 

 

4.6 Conclusion  

To our knowledge, this is the first study that reveals the antioxidant properties among the 

range of commercially available and less commonly leek cultivars.  

There were significant differences between the 30 leek cultivars with regard to the 

metabolites analysed including antioxidant capacity, total phenolic content, ascorbate and 

ACSOs. Dedicating from our results, cultivars Uyterhoeven, Pretan and Fahrenheit F1 

gave the highest ORAC, DPPH and FRAP value, respectively, while Toledo and Breugel 

F1 had the highest polyphenol levels. Fahrenheit F1 contained the highest ascorbic acid 

levels, while Apollo and Artico were rich in ACSO levels. Zeus F1 was the cultivar with the 

highest fructan content. Based on our results, it is difficult to recommend a specific cultivar 

to leek growers, because it depends on the antioxidant compounds preferred, as shown in 

Figure 4.8. For example, some cultivars will have high kaempferol 3-O-glucoside levels, 
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but a low fructan content. Therefore, a choice has to be made between the desired 

properties.  

In addition, this study reported the identification of 13 individual polyphenols in the white 

shaft and green leaves of leek. Six polyphenols identified in this study, including  

kaempferol/quercetin 3-O-sophoroside, kaempferol 3-O-gentiobioside, kaempferol 3,7-O-

diglucoside, kaempferol 4’-methylether and ferulic acid 4-O-glucoside are, to our 

knowledge, not yet identified in Allium species. 

The antioxidant properties of the leek extracts were influenced by part and type of cultivar 

to a large extent, whilst the manner of breeding had no influence on the antioxidant 

properties. The distinction between the three types can be explained by their genetic 

background, but due to different harvest times, stress factors such as temperature, solar 

radiation, pathogens etc. may also partly explain the different accumulation patterns of 

health-related compounds between the summer, autumn and winter leek. However, an 

understanding of the influence of environmental factors and their interactions with 

agricultural practices in relation to antioxidants present in leek is still lacking.  

The cultivars of the 3 types were harvested in their commercial harvest period for each of 

the types. Therefore, it is not clear whether the difference in type is attributed to the 

genetic background or harvest time. In Chapter 5, the influence of harvest time on the 

antioxidant capacities will help to elucidate the differences between cultivars and may lead 

to recommended practises to maximise the antioxidant properties of leek.  
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5.1 Introduction 

The results obtained from Chapter 4 revealed that leek tissue (white shaft, green leaves) 

and type of cultivar (summer, autumn, winter) mainly affects the antioxidant properties of 

leek whilst the manner of breeding (hybrid, open pollinated) did not have a large 

influence. As mentioned in Chapter 3, the different leek types studied in Chapter 4 were 

all sown at the same moment in April, but harvested in their respective commercial 

season (I). In commercial practice the different leek types are sown and harvested at 

different times. Because of the different times of harvest, it is not clear whether the 

observed difference between the leek types is attributed to the time of harvest or to the 

genetic background of the cultivars. As reported in other studies, this distinction could be 

due to the environmental factors, such as climatic (sun exposure, temperature, rainfall) 

or biotic factors (Torelli, 2000; D’Archivio et al., 2007). To elucidate the role of genetic 

background and harvest time, further detailed analyses were accomplished in growing 

season 2010 (II) and are described in this Chapter. Therefore, nine leek hybrids (3 

cultivars from each type) were harvested at 4 subsequent time points along the growth 

season, whereupon the antioxidant properties were evaluated. Nine hybrids, also grown 

in season 2009, were chosen because of the uniformity of each object compared to open 

pollinated cultivars. 

The results presented in this Chapter have been partly established in collaboration with 

Prof. Dr. Derek Stewart of the James Hutton Institute (Enhancing Crop Productivity and 

Utilization Theme) with regard to the flavonoid and phenolic acid analyses. 

 

5.2 Plant material 

§3.2.1 described the selection of plant material and sample preparation for field trial II. 

Briefly, 9 F1 leek hybrids (Table 5.1) were grown in 2010 and harvested at 4 subsequent 

time points along the growth season, that is September ’10, November ’10, January ’11 

and March ’11. 
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Table 5.1 Nine leek hybrids grown in field trial II 

Commercial name Type Breeding category Seed company Growing days 

Miracle F1 summer hybrid Enza 159/211/263/292 

Zeus F1 summer hybrid S&G 159/211/263/292 

Striker F1 summer hybrid Bejo 159/211/263/292 

Breugel F1 autumn hybrid Rijk Zwaan 159/211/263/292 

Belton F1 autumn hybrid Nunhems 159/211/263/292 

Pretan F1 autumn hybrid Nickerson-Zwaan 159/211/263/292 

Coolidge F1 winter hybrid Hortiplan 159/211/263/292 

Apollo F1 winter hybrid S&G 159/211/263/292 

Harston F1 winter hybrid Nunhems 159/211/263/292 

 

5.3 Bioactive compound analysis 

A summary of the analyses (as described in §3.3) performed on the leek samples 

harvested as a function of harvest time is given in Table 5.2.  

 
Table 5.2 Overview of the performed analyses as a function of harvest time 

Analysis  Method 

Antioxidant capacity 
ORAC 

spectrophotometric 
DPPH 

Polyphenolic 
compounds 

Total phenolic content spectrophotometric 
Flavonoids and phenolic 
acids  

U-HPLC-ESI-Orbitrap-MS/MS 

S-alk(en)yl-L-cysteine 
sulfoxides 

 
HPLC-MS/MS 

 

Because of practical reasons, FRAP, ascorbate and fructan analysis were not performed 

on these samples. 

 

5.4 Results  

As shown in Chapter 3 (Table 3.1), the nine leek hybrids were harvested after 159, 211, 

263 en 292 growing days (from sowing to harvesting), corresponding with harvest in 

September ‘10, November ‘10, January ‘11 and March ‘11, respectively. 
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5.4.1 Antioxidant capacity 

5.4.1.1 ORAC 

The ORAC values (Figure 5.1) of the white shaft and green leaves covered significant 

ranges; ranging from 24.69-73.08 and 86.91-142.87 µmol TE g
-1

 dw, respectively.  

  
(a) (b) 

Figure 5.1 ORAC value of the white shaft (a) and green leaves (b) of 9 leek cultivars harvested in 
September ’10 (□) , November ’10 (■ ), January ‘11 (■) and March ’11 (■), n=3 

 

The white shaft of cultivars Zeus F1, Belton F1 and Pretan F1 contained significantly 

higher antioxidant capacities when harvest took place in January, compared with harvest 

in November. Harvest of Miracle F1, Striker F1 and Breugel F1 in March resulted in a 

significantly higher ORAC value compared with harvest in November. November harvest 

of Zeus F1, Belton F1 and the three winter cultivars resulted in the lowest antioxidant 

capacity of the white shaft.  

Time of harvest did not have an influence on the ORAC value of the green leaves of 

Striker F1 and Pretan F1. When Miracle F1, Zeus F1, Breugel F1, Pretan F1, Apollo F1 

and Harston F1 were harvested in March, the antioxidant capacity in the green leaves 

was the lowest. Harvest of Belton F1 and Coolidge F1 in November resulted in the 

highest ORAC value.  
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5.4.1.2 DPPH 

Similarly, the associated DPPH values of these cultivars covered the ranges 3.91-6.57 

and 2.67-7.20 µmol TE g
-1

 dw for the white shaft and green leaves, respectively (Figure 

5.2).  

 

 

(a) (b) 

Figure 5.2 DPPH value of the white shaft (a) and green leaves (b) of 9 leek cultivars harvested in 
September ’10 (□) , November ’10 (■ ), January ’11 (■) and March ‘11(■), n=3 

 

Harvest time did not influence the antioxidant capacity of the white shaft of Striker F1, 

Coolidge F1 and Apollo F1, measured with the DPPH assay. Harvest of the white shaft 

of Zeus F1, Belton F1, Pretan F1 and Harston F1 in November resulted in the highest 

antioxidant capacity in comparison with harvest in March. When Miracle F1 and Breugel 

F1 were harvested in March, the antioxidant capacity was significantly higher compared 

with harvest in November and January. 

Harvest time did not influence the antioxidant capacity of the green leaves of Miracle F1 

and Coolidge F1, measured with the DPPH assay. The DPPH value of the green leaves 

of the cultivars Striker F1, Breugel F1 and Pretan F1, harvested in March was 

significantly higher compared with harvest in November and January. When Zeus F1, 

Belton F1, Apollo F1 and Harston F1 were harvested in November the DPPH value was 

the lowest compared with harvest in January and March. 
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5.4.2 Polyphenolic compounds 

5.4.2.1 Total phenolic content 

Figure 5.3 shows the results of the phenolic content evolution in the white shaft and 

green leaves of 9 leek cultivars, harvested at 4 different time points. 

The TP content of the white shaft and green leaves of the nine leek cultivars varied from 

2.89 to 7.69 mg GAE g
-1 

dw and from 5.56 to 8.91 mg GAE g
-1

 dw, respectively.  

The white shaft of cultivars Miracle F1, Striker F1, Breugel F1, Belton F1 and Coolidge 

F1 contained a significant higher phenolic content when harvest took place in January or 

March compared with harvest in September. For the white shaft of cultivar Zeus F1, the 

highest polyphenol content was observed when harvest took place in November and 

January. Harvest of Pretan F1 in March resulted in the highest polyphenol levels, whilst 

January was the optimal month for Apollo F1. Harvest of Harston F1 in November 

resulted in the lowest level of total phenolic content. 

The total phenolic content in the green leaves of cultivars Zeus F1, Belton F1 and 

Coolidge F1 did not change significantly during the growth season. Harvest in March, 

resulted in the highest polyphenol content in the green leaves of Breugel F1, whilst 

harvest in January ends in higher phenol content in the green leaves of Apollo F1. When 

Miracle F1, Striker F1 and Harston F1 were harvested in November, the polyphenol 

content was the lowest.  

 

  

(a) (b) 

Figure 5.3 Total phenolic content of the white shaft (a) and green leaves (b) of 9 leek cultivars 
harvested in September ’10 (□) , November ’10 (■ ), January ’11 (■) and March ’11 (■), n=3 
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5.4.2.2 Flavonoids and phenolic acids 

In Chapter 4 (§ 4.3.2.3), we quantified 7 polyphenolic compounds among a range of leek 

cultivars, that is quercetin 3,4’-O-diglucoside (Q34’G), kaempferol 3-O-glucoside (K3G), 

quercetin 3-O-glucoside (Q3G), isorhamnetin 3-O-glucoside (I3G), quercetin (Q), 

kaempferol (K) and isorhamnetin (I). In the current chapter, the same method (U-HPLC-

ESI-Orbitrap-MS/MS) was used to quantify polyphenols as a function of harvest period. 

However, Q and Q34’G could not be quantified in these samples. Kaempferol 4’-

methylether (K4’M) was not quantified in the samples of Chapter 4, but quantification 

was performed in the samples as a function of harvest period. 

Figure 5.4 shows the content of the quantified flavonoids in green leaves of the nine 

cultivars harvested at 4 different moments. Only K3G, I and K4’M could be quantified in 

the white shaft of the samples (data not shown). K3G and Q3G were present in the 

highest amount in the green leaves of the 9 cultivars, followed by I3G (Figure 5.4). A 

great deal of variation was noticed in individual polyphenol content of the green leaves. 

For example, cultivars Breugel F1, Pretan F1 and Apollo F1 contained higher K3G levels 

compared to the other cultivars. Pretan F1 contained the highest level of Q3G, I3G and I. 

Q3G and I3G could not be quantified in the green leaves of Zeus F1. I3G was not 

present when Belton F1, Apollo F1 and Harston F1 was harvested in September and 

November, but could be quantified when harvested in January.  
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 (a), K3G (b), Q3G 

 
 

(c), I3G (d), K 

  
(e), I (f), K4’M 

 

Figure 5.4 Kaempferol 3-O-glucoside (a), quercetin 3-O-glucoside, isorhamnetin 3-O-glucoside (c), 
kaempferol (d), isorhamnetin (e) and kaempferol 4’ methylether (f) content of the green leaves of 9 
leek cultivars harvested in September ’10 (□) , November ’10 (■ ), January ’11 (■) and March ’11(■), 
n=3 
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5.4.3 S-Alk(en)yl-L-cysteine sulfoxides  

To determine whether differences in antioxidant properties between the leek types 

(summer, autumn, winter) were attributed to the genetic background or time of harvest, 

ACSOs were also quantified in 9 leek hybrids at 4 different periods during their growth. 

The results of the isoalliin and methiin content in the white shaft are shown in Figure 5.5. 

The ACSO content in the white shaft of the nine leek cultivars varied from 14.38 to 44.85 

mg isoalliin g
-1 

dw and from 2.68 to 15.94 mg methiin g
-1

 dw, respectively.  

The isoalliin content in the white shaft was significantly higher for all cultivars (except 

Pretan F1) when leek was harvested in September as compared by November harvest. 

For some of the cultivars (Miracle F1, Breugel F1, Apollo F1 and Harston F1), the 

isoalliin content was significantly higher when harvested in September in comparison 

with the other 3 harvest periods.  

For most of the cultivars, November harvest resulted in a significant lower isoalliin 

content in the white shaft as compared with the plant material harvested at the other 3 

harvest periods. The extracts of the white shaft of the autumn cultivars contained in 

general the highest amount of isoalliin, irrespective of the time of harvest. 

Next to the isoalliin content, also the methiin content in the white shaft was significantly 

higher for all cultivars (except for Pretan F1, Harston F1, Zeus F1 and Apollo F1) 

harvested in September in comparison with November. For some of the cultivars 

(Miracle F1, Breugel F1 and Coolidge F1), the methiin content was significantly higher 

when harvested in September in comparison with the other 3 harvest periods. November 

harvest resulted in a significant lower methiin content in the white shaft of most of the 

cultivars in comparison with harvest at the other 3 periods. The methiin content of the 

summer cultivars Miracle F1 and Striker F1 was significantly lower than the autumn and 

winter cultivars, irrespective of the date of harvest. The autumn cultivars contained the 

highest amount of methiin, followed by the winter cultivars. 
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(a) (b) 

 
Figure 5.5 Isoalliin (a) and methiin (b) content of the white shaft of 9 leek cultivars harvested in 
September ’10 (□) , November ’10 (■ ), January ’11 (■) and March ’11 (■), n=3 

 

5.4.4 Principal component analysis   
 

To visualise the results of the antioxidant capacity assays, polyphenol content and 

ACSO levels, PCA was applied on the data set of the white part of the nine cultivars 

harvested on 4 time points. The dimensionality of the data was reduced from 5 partially 

correlated variables to 2 uncorrelated principal components, PC1 and PC2, accounting 

for 69.10% of the variation. The PCA plot (Figure 5.6) segregated the samples which 

were harvested in September and November from the other samples on the basis of 

the different antioxidant parameters. The white shaft of the cultivars harvested in 

November contained lower levels of antioxidants compared with harvest at the other 3 

time points. The cultivars harvested in January and March are a good source of 

polyphenolic content and possess a high ORAC value, while harvest in September 

resulted in a higher isoalliin content. Cultivar Miracle F1 was clearly high in 

polyphenols, while Pretan F1 gave a high value for the other antioxidants, irrespective 

the time of harvest. 
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(a) 
 

 
 
 

(b) 

Figure 5.6 PCA plot of the scores (a) and loadings (b) of the white part of 9 leek cultivars 
harvested in September (-), November (-), January (-) and March (-) 

 

5.4.5 Influence of harvest time  

Analysis of variance was accomplished in order to evaluate the influence of harvest 

time on the antioxidant properties. Table 5.3 summarises the effect of cultivar and 

harvest time on the antioxidant properties of the white shaft of 9 leek cultivars. Cultivar 

and harvest time had a significant effect on the antioxidants, with the exception of the 

non-significant influence of harvest time on the DPPH free radical scavenging activity. 
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Table 5.3 The analysis of variance results for the variables: ORAC, DPPH, total phenolic content, 
isoalliin and methiin for the white shaft 

  ORAC DPPH TP isoalliin methiin 

cultivar * * * * * 

harvest time *  * * * 

cultivar × harvest time * * * * * 

* p<0.05 

 

The interaction term was significant for each parameter, indicating the importance of 

the choice to harvest a certain cultivar at a specific time on the content of antioxidants. 

The results indicate that harvest time obviously plays a role in the antioxidant content of 

leek. 

 

5.4.6 Influence of year 

As described in Chapter 3, 9 leek F1 cultivars were grown both in 2009 and 2010. As a 

result, samples of the two years were analysed for their antioxidant properties, and the 

mutual data for the two years consist of ORAC, DPPH, TP, isoalliin and methiin data. 

 

Table 5.4 presents the ranges of the antioxidant properties of the nine cultivars grown 

in 2009 and 2010. For the cultivars grown in 2010, the mean value and range was 

calculated on the basis of the harvest moment closest to the harvest moment of 2009.  

 
Table 5.4 Antioxidant ranges in the white shaft and green leaves of the 9 leek cultivars grown in 
2009 and 2010 

 2009 2010 

 White shaft Green leaves White shaft Green leaves 

ORAC (µmol TE g
-1
 dw) 33.13-88.07 81.57-112.18 24.69-73.09 86.92-142.88 

DPPH (µmol TE g
-1
 dw) 2.27-11.18 5.25-10.52 3.97-6.57 2.33-7.20 

Total phenolic content 
(mg GAE g

-1
 dw) 

6.98-8.67 7.89-11.30 2.89-7.69 5.22-8.91 

Isoalliin (mg g
-1 

dw) 23.13-46.68 15.96-44.43 14.38-44.85 12.93-38.11 

Methiin (mg g
-1 

dw) 3.31-15.52 1.42-10.34 2.68-15.93 1.15-8.63 

 

Table 5.5 shows the results of the analysis of variance in order to evaluate the 

influence of year. Significant differences were found among cultivars within years, but 

also between the two years (2009 and 2010), except for the methiin content. The 

methiin content in the 9 cultivars did not differ between the two years. 
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Table 5.5 The analysis of variance results for variables: ORAC, DPPH, TP, isoalliin and methiin 
  ORAC DPPH TP Isoalliin Methiin 

 DF F-
value 

P-
value 

F-
value 

P-
value 

F-
value 

P-
value 

F-
value 

P-
value 

F-
value 

P-
value 

Cultivar 8 19.9 <0.000
1 

24.3 <0.00
01 

3.2 0.008 13.6 <0.00
01 

32.5 <0.00
01 

Year 1 24.8 <0.000
1 

56.8 <0.00
01 

256.1 <0.0001 38.5 <0.00
01 

0.3 0.619 

Cultivar 
× year 

8 4.5 0.001 15.6 <0.00
01 

4.0 0.002 7.6 <0.00
01 

8.8 <0.00
01 

 

5.5 Discussion 

To elucidate the role of harvest time on the antioxidant properties (as potentially 

observed in Chapter 4), further detailed analyses were accomplished in growing 

season 2010 and were described in this Chapter. Therefore, nine leek hybrids (3 

cultivars from each type) were harvested at 4 subsequent time points along the growth 

season, whereupon the antioxidant properties were evaluated.  

 

In general, the results of the antioxidant capacity demonstrate the significant effect of 

harvest period on the antioxidant capacity of the nine cultivars. The ORAC results of 

the white shaft revealed the lowest antioxidant capacity of the samples harvested in 

November. Harvest in January or March resulted, in most of the cultivars and in both 

parts, in a higher DPPH antioxidant capacity. Between the nine cultivars, few 

differences were noticed.  

The results of the TP analysis demonstrated the effect of harvest time as well. Harvest 

in January or March resulted, in most of the cultivars and in both parts, in a higher TP 

content. The differences in harvest period were not significant for the individual 

polyphenols. Few differences could be seen in the TP content between the nine 

cultivars, while the individual polyphenol content varied significantly, with the exception 

of kaempferol 4’-methylether. In general both parameters, i.e. harvest time and cultivar, 

play a role in the content of polyphenolic compounds. These results are in accordance 

with Yang et al. (2009), who concluded that the content and profile of flavonol 

glycosides in sea buckthorn berries depended highly on the origins, subspecies and 

cultivars and were strongly influenced by the harvesting dates and annual variations. In 

addition, the flavonoid concentration in the baby spinach leaves also varied as a result 

of the influence of several factors, such as plant age and seasonal variation in 

environmental conditions (Bergquist et al., 2007). In contrast, the phenolic content of 

asparagus spears was largely influenced by the genetic background, while harvest time 

did not have an effect (Papoulias et al., 2009). Similarly, Patil et al. (1995) studied the 

variation of the flavonoid quercetin in onion bulbs in 5 growth stages. The quercetin 

content varied slightly, but concentrations at the final growth stage were similar to the 
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first growth stage. The same study revealed that meteorological factors (including 

temperature and rainfall patterns) have a stronger influence on quercetin concentration 

in onion cultivars than soil factors or plant maturity. Higher flavonoid levels in onion 

could be related to a higher global radiation and lower rainfall during the growing 

season. These meteorological conditions can enhance secondary metabolism in 

onions, favouring the synthesis of flavonoids (Rodrigues et al., 2011). Similarly, 

extreme climatic conditions in terms of salinity, low rainfall and high radiation are likely 

related to the increase of the Tunisian halophytes antioxidant potentialities as a 

response to the oxidative stress generated by the formation of reactive oxygen species 

in these hostile environments (Ksouri et al., 2008). Significant relationships were also 

revealed among meteorological (rainfall, sunshine incidence and temperature) and 

antioxidant variables for strawberries (Wang and Zheng, 2001).  

The meteorological conditions during leek growth from September 2010 to March 2011 

were monitored (KMI, 2012). Figure 3.5 presents the average month temperature, 

hours sunlight and precipitation during the leek harvest season 2010. These graphs 

revealed the lower temperature in December and January, the limited photoperiod in 

November, December, January and February, the high rainfall in November and the 

low precipitation in February and March. These different conditions between the 

harvest months of 2010 can explain the distinction in polyphenol content at 4 harvest 

times. For example, the lower temperature in January can explain the higher total 

phenolic content. Similarly, Mori et al. (2005) demonstrated that higher temperature can 

result in less accumulation of anthocyanins in berries and variation in polyphenolic 

composition. While, Pineli et al. (2011) found the lowest amount of anthocyanins in 

berries in the month with the lowest average temperature and highest photoperiod. 

 

Little has been written on the variation of ACSOs related to harvest time or 

environmental parameters. Our results demonstrated that harvest of leek in September, 

corresponding with a high average temperature (Figure 3.5) resulted in the highest 

amount of ACSOs for each cultivar. These findings are in accordance with Coolong and 

Randle (2003), who reported a significantly higher total ACSO content in onions grown 

at high temperatures in comparison with ACSO content of onions grown at lower 

temperatures. However, our results do not agree the results of the study of Hornickova 

et al. (2010), indicating that the content of ACSOs in 52 garlic genotypes primarily 

depends on various genetic factors and post-harvest storage conditions, whereas the 

climatic conditions (e.g. temperature, irrigation) during the growth influence their levels 

to a lesser extent.  

 

In general, we can observe significant differences between the four harvest times, 
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based on the different parameters, except for the DPPH radical scavenging capacity. 

Based on the principal component analysis, there is a clear distinction between harvest 

in September and harvest in November, and between September/November and the 

other 2 months. Harvest in January or March resulted, in most of the cultivars and both 

parts, in a higher antioxidant capacity and polyphenol levels. Harvest in September had 

a positive influence on the ACSO content. 

In addition to the influence of harvest time, leek cultivar has also an influence on the 

antioxidant properties. More specifically, leek cultivar Miracle F1 was clearly high in 

polyphenols, while Pretan F1 gave a high value for the other antioxidants, irrespective 

the time of harvest. Although, these trends were not observed in the results of 

Chapter 4. 

 

The significant differences in antioxidant levels (except for methiin) for the 9 cultivars 

between the two subsequent years (higher levels in 2009 plant material) could be 

attributed to different meteorological conditions (Figure 3.5) between the two years, but 

also to the different soil properties (mineral content, pH) and fertilisation and disease 

treatment (Table 3.4 and Table 3.5).  

Figure 3.5 gives the differences in average month temperature, sunlight hours and 

precipitation for the region between the two growing seasons (KMI, 2012). The mean 

month temperature in November and December was much lower in year 2010 in 

comparison with year 2009. In addition there was higher rainfall in August ’10 and 

September ’10. These stress conditions can be a reason why the antioxidants of the 

leek cultivars show significant differences. 

The soil data indicate that the soil of season 2009 had a higher mineral content (P, K, 

Mg, Ca, Na) compared to the soil of 2010. A higher mineral content can be responsible 

for higher antioxidant levels in the plant as some studies report a correlation between 

minerals and antioxidants. For example, an enhanced K-fertilisation increased the level 

of phenolic compounds and the corresponding antioxidant capacity in sweet potatoes 

leaves (Redovnikovic et al., 2012). 

The difference in N-fertilisation and disease treatment (no insecticide in 2010 because 

no thrips) could be another explanation for the difference between the two years. For 

example, soaking plants in a fungicide (phosphite) solution prior planting was effective 

in activating strawberry defence mechanisms, since fruit ascorbic acid and anthocyanin 

content increased (Moor et al., 2009). Similarly, different levels of ACSOs were found in 

white rot (Sclerotium cepivorum) resistant onions compared to susceptible cultivars.  

In addition, the pH of the soil of 2009 was in the range of the optimum pH for leek, while 

this was not the case for the soil of 2010. 
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5.6 Conclusion 
 

In Chapter 4, we revealed that leek tissue and type of cultivar (summer, autumn, winter) 

mainly affects its antioxidant properties, rather than breeding origin. In that 

experimental set-up, the leek cultivars were collected at the time the particular leek 

cultivar is harvested in normal commercial agricultural practices. In this chapter, 9 leek 

F1 hybrid cultivars were harvested at 4 time points during the leek growth season and 

antioxidant properties were determined. In general, we could observe differences 

between the cultivars and between the four harvest times, based on the different 

antioxidant parameters, except for the DPPH antioxidant capacity. There is a clear 

distinction between harvest in September and harvest in November, and between 

September/November and the other 2 months. Harvest in January or March resulted, in 

most of the cultivars and both parts, in a higher antioxidant capacity and polyphenol 

levels. Harvest in September had a positive influence on the ACSO content. 

Based on these results, we can conclude that the difference in antioxidants between 

the leek types, as observed in Chapter 4, is attributed both to harvest time and the 

genetic background of the cultivar. 
 

In addition, some dissimilarities were found between the antioxidants in leek grown in 

2009 and 2010. These differences in antioxidant levels could be attributed different 

meteorological conditions or to different soil properties (mineral content, pH) and disease 

treatments between the two years.  
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6.1 Introduction 

Chapter 4 gave an overview of the antioxidant properties of 30 leek (Allium 

ampeloprasum var. porrum) cultivars. We could observe significant differences in health-

promoting compounds between white shaft and green leaves and type of cultivar 

(summer, autumn, winter), while manner of breeding (hybrid, open pollination) did not 

have a large effect. 

It would be of interest to position the obtained data for leek in comparison with some 

members of the same genus as several studies report high antioxidant levels in onion 

(Allium cepa L.), shallot (Allium ascalonicum L.), bunching or Welsh onion (Allium 

fistulosum L.), chives (Allium schoenoprasum L.) and garlic (Allium sativum L.), but 

studies on leek are limited (Bianchini and Vainio, 2001; Griffiths et al., 2002; Benkeblia et 

al., 2004; Bloem et al., 2004; Fritsch and Keusgen, 2006; Aoyama and Yamamoto, 2007; 

Lu et al., 2011). Moreover, garlic and onion extracts have been recently reported to be 

effective in prevention of cardiovascular disease, because of their hypocholesterolemic, 

hypolipidemic, anti-hypertensive, anti-diabetic, antithrombotic and anti-

hyperhomocysteinemia effects, and many other biological activities including 

antimicrobial, antioxidant, anticarcinogenic, antimutagenic, antiasthmatic, 

immunomodulatory and prebiotic activities (Corzo-Martinez et al., 2007).  

Therefore, it is relevant to perform the same antioxidant analyses on species related to 

leek, grown under the conditions as described in Chapter 3. The results of these 

analyses can realise a better comparison of leek and its family members. However, we 

have to take into account that the consumption quantity of different Allium species used 

in human diet differ significantly. Onion, garlic and chives are universally used spice 

plants and are extensively used for food flavouring (Augusti, 1990), while leek and 

bunching onion are more important as vegetables with additional flavouring properties 

(Fritsch and Keusgen, 2006).  

In order to compare leek with some of its related Alliums, the same bioactive compound 

analyses as described in Chapter 4 were performed on the different plant parts of 6 

related species. 

The results presented in this Chapter have been partly established in collaboration with 

Prof. Dr. Derek Stewart of the James Hutton Institute (Enhancing Crop Productivity and 

Utilization Theme) with regard to the FRAP, flavonoids/phenolic acids and ascorbate 

analyses. 
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6.2 Plant material 

§3.2.1 described the selection of plant material and sample preparation for the Allium 

species (Table 6.1) grown in field trial I. The Allium species were grown in 2009 and 

harvested from September ‘09 until March ‘10. 

 
Table 6.1 Overview of the selected Allium species 

Scientific name Trivial name Harvest month 

Allium ampeloprasum var. kurrat Egyptian leek March ‘10 

Allium odorum L. Chinese leek November ‘09 

Allium schoenoprasum L. Chive October ‘09 

Allium cepa L. 
Red onion October ‘09 

White onion October ‘09 

Allium fistulosum L. Bunching onion October ‘09 

Allium ascalonicum L. Shallot September ‘09 

 

6.3 Bioactive compound analysis 

A summary of the analyses (as described in §3.3) performed on the Allium species is 

given in Table 6.2.  

 
Table 6.2 Overview of the performed analyses on leek and some of its related Allium species 

Analysis Method 

Antioxidant capacity 

ORAC  

DPPH Spectrophotometric 
FRAP  

Polyphenolic compounds 

Total phenolic 
content 

Spectrophotometric 

Flavonoids and 
phenolic acids  

U-HPLC-ESI-Orbitrap-MS/MS 

L-ascorbic acid  HPLC-PDA 

S-alk(en)yl-L-cysteine 
sulfoxides 

 HPLC-MS/MS 

Fructans  HPLC-RI 
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6.4 Results  

The overall average antioxidant properties of the 30 leek cultivars (7 summer, 8 autumn 

and 15 winter cultivars) described in Chapter 4, were used to make the comparison 

between leek and its related species and are indicated in Figure 6.1, 6.2, 6.4, 6.5 and 

6.6. 

 

6.4.1 Antioxidant capacity 

The results of the three antioxidant capacity assays (ORAC, DPPH and FRAP), are 

shown in Figure 6.1 (a), (b) and (c), respectively. The mean value for the white shaft and 

green leaves of the 30 leek cultivars, and the summer, autumn and winter cultivars is 

given in the left-hand side of the graph as well, as a reference.  

 

6.4.1.1 ORAC 

The antioxidant capacity (as measured with the ORAC assay) of the white part of the 

different species ranged from 31 to 230 µmol TE g
-1

 dw (Figure 6.1 a). The lowest ORAC 

value was found in the white bulb of A. cepa, A. schoenoprasum and A. odorum. The 

ORAC value of white part of A. kurrat, A. cepa (cv. Red Creole), A. fistulosum and A. 

ascalonicum was significantly higher than the ORAC of A. odorum and A. 

schoenoprasum. The ORAC results of the green leaves ranged from 81 to 271 µmol TE 

g
-1

 dw. In general, A. cepa (cv. Red Creole) gave the highest results. In all cases, the 

ORAC value of the green part was significantly higher than the white part, except for the 

plant material of A. fistulosum.  

The antioxidant capacity of the white shaft of the leek cultivars was in the same range as 

the capacity of the bulb of A. odorum, A. schoenoprasum and A. cepa, but was 

significantly lower than A. kurrat, A. cepa (cv. Red Creole), A. fistulosum and A. 

ascalonicum. The ORAC values of the green part of the related species were 

significantly higher than the green leaves of the leek cultivars, except for the ORAC of 

the green leaves of A. fistulosum which was in the same range of leek. 

 

6.4.1.2 DPPH 

The DPPH results of the white bulb ranged from 2 to 14 µmol TE g
-1

 dw (Figure 6.1 b). 

The DPPH value of the bulb of A. cepa (cv. Red Creole) was higher than the other 

related species. The DPPH results of the green leaves ranged from 5 to 14 µmol TE g
-1

 

dw. The DPPH value of the green leaves of A. kurrat and A. cepa (cv. Red Creole) were 
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significantly higher than the green part of the other species. In all cases, the DPPH value 

of the green part was significantly higher than the white part, except for plant material of 

A. cepa (cv. Red Creole) and A. fistulosum.  

 

The DPPH results of the white shaft of leek were in the same range as the DPPH value 

of the white bulb of the other related species, except for A. cepa (cv. Red Creole). Only 

the green leaves of A. kurrat and A. cepa (cv. Red Creole) contained significantly higher 

DPPH levels than leek and the other related species. 

 

6.4.1.3 FRAP 

The FRAP results of the white bulb ranged from 5 to 28 µmol FeSO4 g
-1

 dw (Figure 6.1 

c). The antioxidant capacity of the white bulb of A. cepa (cv. Red Creole) and A. 

fistulosum were significantly higher than the other species. The FRAP results of the 

green leaves ranged from 17 to 100 µmol FeSO4 g
-1

 dw. The green leaves of A. odorum 

and A. cepa (cv. Red Creole) had significantly higher FRAP values than the other 

species.  

The results of the white shaft of the leek cultivars were in the same range of A. kurrat, A. 

odorum, A. schoenoprasum, A. cepa and A. ascalonicum. The FRAP value of the green 

part of the leek cultivars was significantly lower than the green leaves of the related 

species, except for A. kurrat. 
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(a)  (b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                 
 

(c) 

 
Figure 6.1 Results of the ORAC (a), DPPH (b) and FRAP (c) assay of the white part (□) and green 
leaves (■) of leek and related species (n=3) 
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6.4.2 Polyphenolic compounds 

6.4.2.1 Total phenolic content 

The total phenolic (TP) content of the related species is shown in Figure 6.2. The mean 

value of the white shaft and green leaves of the 30 leek cultivars, as well as the mean 

value of the summer, autumn and winter cultivars is given in the left-hand side of the 

graph as well as a reference. The graph lacks data of the TP content in the green leaves 

of kurrat and A. odorum.  

The total phenolic content of the white bulb ranged from 7.43 to 11.89 mg GAE g
-1

 dw. 

The phenolic level of the white bulb of A. schoenoprasum and A. cepa was significantly 

lower than the content in the bulb of A. fistulosum and A. odorum. The TP content of the 

green leaves ranged from 9.02 to 11.57 mg GAE g
-1

 dw. In the case of A. 

schoenoprasum and A. cepa, the TP content of the green part was significantly higher 

than the white part. The bulb of the A. cepa (cv. Red Creole) contained a significantly 

higher TP level (9.44 mg GAE g
-1

 dw) compared with the white A. cepa (7.58 mg GAE g
-1

 

dw).  

The levels of the total phenolic content in the white bulb of the related species were in 

the same range as the white shaft of leek, except for the bulb of A. odorum and A. 

fistulosum which were higher than the concentration in leek. Only the TP content of the 

green leaves of A. cepa was significantly higher than the green part of leek.  
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Figure 6.2 Total phenolic content in the white part (□) and green leaves (■) of leek and related 
species, with *, missing results, n=3 

6.4.2.2 Flavonoids and phenolic acids 

6.4.2.2.1 Identification 

 

In Chapter 4, 13 polyphenolic compounds could be identified in leek. The same U-HPLC-

ESI-Orbitrap-MS/MS (JHI) method was also used to identify polyphenolic compounds in 

the six related Allium species. In addition to the thirteen identified compounds in leek, 5 

other polyphenolic compounds, which were not present in leek, could be identified in the 

related Allium species, namely quercetin 7-O-glucoside, quercetin 4’-O-glucoside, 

isorhamnetin 4’-O-glucoside, quercetin 3,7-O-diglucoside and isorhamnetin 3,4’-O-

diglucoside. The presence of the 18 identified compounds in leek and related species is 

given in Table 6.3. 
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 Table 6.3 Presence of phenolic compounds in leek and Allium species; with grey colour: new identified compounds 

 A. porrum A. kurrat A. odorum A. schoenoprasum A. cepa A. fistulosum 
A. 

ascalonicum 

Compound 
White 
shaft 

Green 
leaves 

White 
bulb 

Green 
leaves 

White 
bulb 

Green 
leaves 

White 
bulb 

Green 
leaves 

White 
bulb 

Green 
leaves 

White 
bulb 

Green 
leaves 

White bulb 

Quercetin  ■ 
 

■ 
   

 ■ ■ ■  ■ 

Kaempferol ■ ■ 
■ 

■ 
 ■ ■ 

■  ■ ■ ■ ■ 

Isorhamnetin  ■ 
 

■ 
   

■ ■ ■ ■ ■ ■ 

Quercetin 7-O-glucoside   
 

 
   

 ■ ■ ■  ■ 

Quercetin 3-O-glucoside  ■ 
 

■ 
 ■  

■ ■ ■ ■ ■ ■ 

Kaempferol 3-O-glucoside ■ ■ 
■ 

■ 
■ ■ ■ 

■ ■ ■ ■ ■ ■ 

Isorhamnetin 3-O-glucoside  ■ 
 

■ 
  ■ 

■ ■ ■ ■ ■ ■ 

Quercetin 4’-O-glucoside   
 

 
   

 ■ ■ ■ ■  

Isorhamnetin 4’-O-glucoside   
 

 
   

 ■ ■ ■  ■ 

Quercetin 3-O-sophoroside  ■ 
 

■ 
 ■  

■  ■ ■ ■  

Kaempferol 3-O-sophoroside  ■ 
■ 

■ 
   

■ ■ ■ ■ ■ ■ 

Kaempferol 3-O-
gentiobioside 

■ ■ 
■ 

■ 
 ■  

■ ■ ■ ■ ■ ■ 

Kaempferol 3,7-O-
diglucoside 

 ■ 
 

■ 
 ■  

■ ■ ■ ■ ■  

Quercetin 3,7-O-diglucoside   
 

■ 
 ■  

■ ■  ■ ■  

Quercetin 3,4’-O-diglucoside ■ ■ 
 

■ 
 ■  

■ ■ ■ ■ ■ ■ 

Isorhamnetin 3,4’-O-
diglucoside 

  
 

 
 ■  

■ ■ ■ ■  ■ 

Kaempferol 4’-methylether  ■ 
■ 

■ 
■ ■ ■ 

■ ■ ■ ■ ■ ■ 

Ferulic acid 4’-O-glucoside ■ ■ 
 

■ 
  ■ 

■ ■ ■  ■  
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The bulb as well as the green part of A. cepa and A. fistulosum contained almost all of 

the 18 identified polyphenolic compounds. The white bulb of A. kurrat, A. odorum and A. 

schoenoprasum contained fewer different polyphenolic compounds than their green part, 

while 12 compounds were detected in the white bulb of A. ascalonicum. All the Allium 

species contained significant amounts of kaempferol 3-O-glucoside in the white 

shaft/bulb as well as in the green leaves. 

 

6.4.2.2.2 Quantification 

 

Polyphenols were quantified on the basis of a calibration curve obtained from standard 

solutions of reference compounds. As a consequence, quantification could only be done 

for the identified compounds, where standards were available, that is quercetin 3,4’-O-

diglucoside (Q34’G), kaempferol 3-O-glucoside (K3G), isorhamnetin 3-O-glucoside 

(I3G), quercetin 3-O-glucoside (Q3G), quercetin (Q), kaempferol (K), isorhamnetin (I) 

and kaempferol 4’-methylether (K4’M). Figure 6.3 shows the results of the quantification 

of 7 identified flavonoids in the white part (a) and green leaves (b) in leek (mean value of 

the 30 cultivars) and related Allium species. K4’M could not be quantified in these 

samples. 

The red cultivar of A. cepa contained the highest flavonoid content in the bulb (6210 mg 

100 g
-1

 dw), while the white bulb of A. fistulosum and A. ascalonicum had a flavonoid 

content of 2942 mg 100 g
-1

 dw and 2270 mg 100 g
-1

 dw, respectively. The main 

compounds in the bulb of these related species were Q3G and Q34’G. The seven 

flavonoids could not be detected in the white bulb of A. odorum, while 9.14, 9.04 and 

6.50 mg flavonoids 100 g
-1

 dw were present in the bulb of A. cepa, A. kurrat and A. 

schoenoprasum. 

The green leaves of the red cultivar of A. cepa contained the highest flavonoid content 

(2176 mg 100 g
-1

 dw), while the green leaves of A. schoenoprasum and A. kurrat had a 

flavonoid content of 720 mg 100 g
-1

 dw and 556 mg 100 g
-1

 dw, respectively. The leaves 

of A. cepa, A. fistulosum and A. kurrat contained 222, 105 and 67 mg flavonoids 100 g
-1

 

dw. The main compounds in the leaves of these related species were K3G, Q3G and 

Q34’G.  
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                        (a) 

 
(b) 

 
Figure 6.3 Individual polyphenol content of the white part (a) and green leaves (b) of leek and 
related species, with ■, isorhamnetin, ■, kaempferol, ■ quercetin, ■ quercetin 3-O-glucoside, ■ 
isorhamnetin 3-O-glucoside, ■ kaempferol 3-O-glucoside and □ quercetin 3,4’-O-glucoside, n=3, 
with *, no detected levels 

 

The Q34’G content ranged from not detected levels to 926 mg 100 g
-1

 dw in the white 

bulb of the Allium species, and from 5 to 1481 mg 100 g
-1

 dw in the green leaves. The 

bulb of A. fistulosum and the leaves of A. cepa (cv. Red Creole) contained the highest 

Q34’G amount. The Q3G content ranged from nd to 4594 mg 100 g
-1

 dw in the white 

bulb, and from not detected levels to 636 mg 100 g
-1

 dw in the green leaves of the Allium 

species. The bulb and the leaves of A. cepa (cv. Red Creole) contained the highest Q3G 

amount.  

K3G ranged from not detected levels to 108 mg 100 g
-1

 dw in the bulb of Allium species, 

while the content in the green leaves varied from 14 to 572 mg 100 g
-1

 dw. Kaempferol 

was present in relative low amounts, except for the white part (6.10 mg 100 g
-1

 dw) and 

green leaves (1.48 mg 100 g
-1

 dw ) of A. schoenoprasum.  

0

500

1000

1500

2000

2500

A
lli

u
m

 a
m

p
e

lo
p

ra
s
u

m
 v

a
r.

p
o

rr
u

m

A
lli

u
m

 a
m

p
e

lo
p

ra
s
u

m
 v

a
r.

K
u

rr
a

t

A
lli

u
m

 o
d

o
ru

m

A
lli

u
m

 s
c
h

o
e
n

o
p

ra
s
u

m

A
lli

u
m

 c
e

p
a
 (

re
d

 c
re

o
le

)

A
lli

u
m

 c
e

p
a

A
lli

u
m

 f
is

tu
lo

s
u
m

m
g

 1
0

0
 g

-1
 d

w
 

0

1000

2000

3000

4000

5000

6000

7000

A
lli

u
m

 a
m

p
e

lo
p

ra
s
u

m
 v

a
r.

p
o

rr
u

m

A
lli

u
m

 a
m

p
e

lo
p

ra
s
u

m
 v

a
r.

k
u

rr
a

t

A
lli

u
m

 o
d

o
ru

m

A
lli

u
m

 s
c
h

o
e
n

o
p

ra
s
u

m

A
lli

u
m

 c
e

p
a
 (

re
d

 c
re

o
le

)

A
lli

u
m

 c
e

p
a

A
lli

u
m

 f
is

tu
lo

s
u
m

A
lli

u
m

 a
s
c
a

lo
n
ic

u
m

m
g

 1
0

0
 g

-1
 d

w
 

* 

0

2

4

6

8

10

A
lli

u
m

 a
m

p
e
lo

p
ra

s
u
m

v
a
r.

 p
o
rr

u
m

A
lli

u
m

 a
m

p
e
lo

p
ra

s
u
m

v
a
r.

 k
u
rr

a
t

A
lli

u
m

 s
c
h
o
e
n
o

p
ra

s
u
m

A
lli

u
m

 c
e
p
a

m
g

 1
0
0
 g

-1
 d

w
 



                                                                                               CHAPTER 6 

155 

 

The isorhamnetin content ranged from not detected levels to 1.95 mg 100 g
-1

 dw in the 

white bulb, and from 0.04 to 0.66 mg 100 g
-1

 dw in the green leaves. Quercetin could 

only be quantified in the white bulb of red A. cepa (26 mg 100 g
-1

 dw), A. fistulosum (5 

mg 100 g
-1

 dw) and A. ascalonicum (3 mg 100 g
-1

 dw), while quercetin was also 

quantified in the green leaves of red (1.71 mg 100 g
-1

 dw) and white A. cepa (0.11 mg 

100 g
-1

 dw) and A. odorum (0.02 mg 100 g
-1

 dw). The level of isorhamnetin 3-O-

glucoside (I3G) was the highest in white bulb of A. ascalonicum (88.79 mg 100 g
-1

 dw).  

 

The polyphenol levels in leek were remarkably lower compared to the content in the 

related species. 

 

6.4.3 L-ascorbic acid 

The results of the ascorbate determination in the bulb and the green leaves of the related 

Allium species are shown in Figure 6.4. A higher ascorbate level could be quantified in 

the green leaves of the Allium species, compared with the content in the white part. The 

ascorbate content ranged from not detected levels to 3.55 mg g
-1

 dw in the white bulb, 

and from not detected levels to 9.40 mg g
-1

 dw in the green leaves. No ascorbate could 

be detected in the white bulb and green leaves of A. schoenoprasum, A. cepa and A. 

ascalonicum.  

The ascorbate content of A. odorum and A. cepa was in the same range as the content 

in the white shaft of leek, while the content in the white shaft of leek was significantly 

higher than the content in A. kurrat. The ascorbate content in the green leaves of A. 

fistulosum was significantly lower than the content in the green leaves of leek, while the 

content in A. odorum was significantly higher. 
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Figure 6.4 Ascorbate content in the white part (□) and green leaves (■) of leek and related species, 
with *, no detected levels, n=3 

6.4.4 S-alk(en)yl-L-cysteine sulfoxides 

Figure 6.5 shows the results of the isoalliin and methiin content in the white part and 

green leaves of leek and related species. The isoalliin content ranged from 10.24 to 

36.01 mg isoalliin g
-1

 dw and from 7.86 to 53.46 mg isoalliin g
-1

 dw in the white part and 

green leaves, respectively. The methiin content of the white part and green leaves 

ranged from 3.41 to 83.26 mg methiin g
-1

 dw and from 1.86 to 59.87 mg methiin g
-1

 dw, 

respectively.  

The green leaves of A. kurrat and A. cepa (cv. Red Creole) contained a higher methiin 

and isoallin content in the green leaves compared with their white bulb. The white bulb of 

A. odorum contained the highest ACSO (sum isoalliin and methiin) amount (97 mg g
-1

 

dw), while A. kurrat had highest level in the green leaves (75 mg g
-1

 dw). 
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(a) (b) 
 

Figure 6.5 Isoalliin (a) and methiin (b) content of the white part (□) and green leaves (■) of leek and 
related species, n=3 

 

Interestingly, A. odorum also contained 3.94 ± 0.34 mg alliin g
-1

 dw in the white part, and 

1.28 ± 0.18 mg alliin g
-1

 dw in the green leaves.  

The methiin content of A. odorum, A. kurrat and A. ascalonicum was significantly higher 

than the methiin content of leek. The content in the other related species was in the 

same range as leek. The isoalliin content of A. odorum, A. cepa and A. ascalonicum was 

significantly lower than the content in leek. The green leaves of kurrat contain a 

significantly higher isoalliin content in comparison with the green leaves of leek.  

 

6.4.5 Fructans 

Figure 6.6 shows the results of the fructan analysis of the white part and green leaves of 

leek and related species. However, only 1 analysis could be performed as described in 

Chapter 4. As consequence statistical analysis could not be performed. 

The fructan content ranged from 5.98 to 52.82 g 100 g
-1

 dw in the white bulb, while the 

fructan content in the green leaves ranged from 3.67 to 7.54 g 100 g
-1

 dw.  
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Figure 6.6 Fructan content of the white part (□) and green leaves (■) of leek and related species, 
n=1 

The fructan content of the bulb of A. schoenoprasum, A. fistulosum and A. ascalonicum 

was higher than the content in the white shaft of leek. The fructan content in the green 

part of the related species was in the same range as the content of leek. 

 

6.4.6 Principal component analysis 

In order to visualise the results of the antioxidant capacity assays, polyphenolic, ACSOs, 

ascorbate and fructan content, PCA was performed on the whole data set of the white 

part and green leaves of leek and some of its related species. The dimensionality of the 

data was reduced from 15 partially correlated variables to 2 uncorrelated principal 

components, PC1 and PC2, accounting for 53.93% of the variation. The PCA plot 

(Figure 6.7 a and b) convincingly segregated the white part and the green leaves on the 

basis of the different antioxidant parameters. More specifically, the green leaves 

possessed a higher antioxidant capacity and contained a higher isoallin, kaempferol 3-O-

glucoside and ascorbate content. The bulb of A. cepa (cv. Red Creole) is situated in the 

left bottom quadrant, indicating a high level of polyphenolic compounds except for 

kaempferol. 
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(a) (b) 

 

 
(c) (d) 

 
 

(e) (f) 

 
Figure 6.7 PCA plots of the scores (a,c,e) and loadings (b,d,f) of the entire data set (white-, green-), 
the white shaft and the green leaves of leek and 6 related species 
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In a second PCA, the data set of the white part of leek and its related species was used. 

The dimensionality of the data was reduced to PC1 and PC2, accounting for 69.28% of 

the variation. The PCA plot (Figure 6.7 c and d) convincingly segregated the bioactive 

compound content of the white part from the different species. A. cepa (cv. Red Creole) 

and A. fistulosum were dissimilar from the other Allium species. The bulb of A. fistulosum 

was rich in kaempferol and kaempferol 3-O-glucoside, while the bulb of red onion 

contained high amounts of the other quantified flavonoids. 

PCA was then applied on the data set of the green leaves of leek and its related species. 

PC1 and PC2 accounted for 58.24% of the variation. The PCA plot (Figure 6.7 e and f) 

convincingly segregated the bioactive compound content of the green leaves from the 

different species. The leaves of A. cepa (cv. Red Creole) were rich in flavonoid 

glycosides. 

 

6.5 Discussion 

The present chapter compared the antioxidant properties of leek with some related 

family members, including A. kurrat, A. odorum, A. schoenoprasum, A. cepa, A. 

fistulosum and A. ascalonicum. The same analyses as performed in Chapter 4 were 

accomplished.  

Firstly, the antioxidant capacity was measured using 3 assays, ORAC, DPPH and 

FRAP. The green parts had the highest antioxidant capacity in most of the cases, with 

the exception of A. fistulosum (ORAC, DPPH). Similarly, Stajner et al. (2011) reported a 

significantly higher FRAP value in the green leaves of A. schoenoprasum (5266 µmol 

dm
-3

 Fe
2+

), compared to the white stalk (2566 µmol dm
-3

 Fe
2+

). In general, our results 

showed that A. cepa (cv. Red Creole) possessed the highest antioxidant capacity. 

A lot of studies already reported the antioxidant capacity of different Allium species, 

including brown (278 µmol TE g
-1

 dw), red (201 µmol TE g
-1

 dw), yellow (121 µmol TE g
-1

 

dw) and white A. cepa (76 µmol TE g
-1

 dw) (Rautenbach and Venter, 2010; Zill-e-Huma 

et al., 2011). These values are all in the range of our results. Moreover, Ou et al. (2002) 

reported an ORAC of 85 and 143 µmol TE g
-1

 dw in white onion and purple onion, 

respectively, which were lower than our results. Halvorsen et al. (2002) have found that 

the FRAP value for red onion was about 54-57 µmol Fe
2+

 g
-1

 dw, while our results of the 

bulb of red onion were much lower.  

Some studies made the comparison of different Allium species. Like that, Lu et al. (2011) 

determined the antioxidant capacity of A. cepa (white and red) and A. ascalonicum using 

the FRAP and DPPH assay, and concluded that A. ascalonicum contained the highest 

antioxidant capacity, whilst in our research red A. cepa gave the best results. Aoyama 
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and Yamamoto (2007) concluded that the antioxidant capacity of green Welsh onion (A. 

fistulosum), measured with the FRAP and TEAC assay, was at the same level of yellow 

A. cepa, but lower than red A. cepa as also observed in our results. However, there was 

no study yet who compared leek with some Allium species. 

It is clear that the three antioxidant assays, i.e. ORAC, DPPH and FRAP, gave different 

antioxidant capacity trends. Ou et al. (2002) explained that the discrepancy in the results 

is based on the chemistry principles upon which these methods are built and is yet 

explained in Chapter 4. 

In addition to the antioxidant capacity assays, the total phenolic content was 

measured. In the case of A. schoenoprasum and A. cepa, the TP content of the green 

part was significantly higher than the white part. This is in accordance with Stajner et al. 

(2011) who report a higher total phenolic content in the green leaves of A. 

schoenoprasum (52.65 mg GAE 100 g
-1

 fw) compared with the TP content of the white 

shaft (33.16 mg GAE 100 g
-1

 fw). Similar to our results, Gokce et al. (2010) and 

Gorinstein et al. (2009) found that red A. cepa had the greatest TP content (2.2 mg GAE 

g
-1

 dw; 15.56 mg GAE g
-1

 dw) compared with the white group (1.1 mg GAE g
-1

 dw; 11.92 

mg GAE g
-1

 dw). 

Some studies on Allium species (Stratil et al., 2006) report a similar total phenolic 

content as our results while others found values which are twice as high as our results 

(Gorinstein et al., 2009) or much lower (Nuutila et al., 2003; Gokce et al., 2010). This is 

most likely due to the use of different cultivars, the part analysed, extraction methods, 

etc. In the study of stratil et al. (2006), the same extraction procedure as our method, 

based on Vinson et al. (1998) was used, while Nuutila et al. (2003) only used methanol 

as extraction solvent.  

Eighteen polyphenolic compounds could be identified in the bulb and leaves of the 

related Allium species. Ten of these were already reported in previous studies to be 

present in Allium species. Similarly, Q34’G, Q3G, Q, I4’G and I34’G were found in A. 

ascalonicum (Wiczkowski et al., 2008; Bonaccorsi et al., 2008). Significant amounts of 

Q34’G, Q4’G, Q3G, I4’G, I3G, I34’G, K3G, Q, I and K were found in A. cepa (Muminova 

et al., 2006; Bonaccorsi et al., 2008; Lee and Mitchell, 2011a; Perez-Gregorio et al., 

2011). The remaining 8 identified polyphenols in the Allium species (Table 6.2), including 

quercetin 7-O-glucoside, kaempferol/quercetin 3-O-sophoroside, kaempferol 3-O-

gentiobioside, kaempferol/quercetin 3,7-O-diglucoside, kaempferol 4’-methylether and 

ferulic acid 4-O-glucoside are, to our knowledge, not yet identified in Allium species. 

However, these compounds have been identified in other species. Similarly, quercetin 7-

O-glucoside was detected in hops (Humulus Lupulus L.) (Hubacek, 1970), while 

quercetin 3-O-sophoroside and kaempferol 3,7-O-diglucoside were also found in broccoli 

florets (Brassica olearacea) (Price et al., 1998). Quercetin 3-O-sophoroside and 
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kaempferol 3-O-sophoroside were also found in cowpea seeds. In addition, kaempferol 

3-O-gentiobioside was also identified in Senna leaves (Demirezer et al., 2011). Singh et 

al. (2006) isolated kaempferol 4’-methylether from Echinops echinatus, while ferulic acid 

4’-O-glucoside has been detected in different berries, including blackcurrant, gooseberry, 

highbush blueberry and jostaberry (0.27-0.55 mg 100 g
-1

 dw) (Phenol-Explorer, 2011).  

Of the eighteen identified polyphenols, 7 polyphenols could be quantified in the related 

Allium species, including Q34’G, K3G, I3G, Q3G; Q, K and I. The white bulb of the 

related species contained more I3O, Q3G, Q and K than their green leaves, while the 

green leaves were rich in Q34’G, K3O and I. The white bulb and green leaves of A. cepa 

(cv. Red Creole) contained the highest amount of polyphenols, while the concentration in 

A. odorum and leek was the lowest.  

The main compounds in the bulb of the related species were Q3G (nd-4594 mg 100 g 

dw
-1

) and Q34’G (nd-926 mg 100 g dw
-1

). Similar as our results, Bonaccorsi et al. (2008) 

revealed a higher Q34’G and Q3G content in A. ascalonicum compared to the content in 

white A. cepa. As observed in our results, number of studies report high polyphenol 

levels in red A. cepa (Prakash et al., 2007). In the study of Zill-e-Huma et al. (2011), the 

level of Q34’G was the highest in red A. cepa (556 mg 100 g
-1

 dw) compared with the 

content in white A. cepa (11 mg 100 g
-1

 dw). However, these values are lower than the 

concentrations found in this study. In the same study, Q3G was not detected in the white 

A. cepa, while 5 mg 100 g
-1

 dw was present in red A. cepa. However, in our study, Q3G 

was present in both red (4594 mg 100 g
-1

 dw) and white ones (1 mg 100 g
-1

 dw). 

Differences in quantities with our results could be due to the genetic diversity, growth 

conditions (climate, soil, fertiliser) and analytical method. Moreover, different parts and 

scales of the A. cepa can contain different concentrations of quercetin (Slimestad and 

Vagen, 2009; Soininen et al., 2012). 

K3G ranged from not detected levels to 108 mg 100 g
-1

 dw in the bulb of Allium species, 

while the content in the green leaves varied from 14 to 572 mg 100 g
-1

 dw. Our results 

show that K3G is the major flavonoid in the green leaves of A. fistulosum and in the 

whole plant of A. schoenoprasum and A. kurrat. Kaempferol was present in relative low 

amounts, except for the white part (6.10 mg 100 g
-1

 dw) and green leaves (1.48 mg 100 

g
-1

 dw ) of A. schoenoprasum. Our results are in accordance with Nuutila et al. (2003), 

who reported a higher kaempferol content (based on hydrolysis) in the leaves of A. 

schoenoprasum, A. cepa (cv. Giant) and yellow A. fistulosum compared to quercetin, 

while quercetin was predominant in yellow and red onion. 

The isorhamnetin content ranged from not detected levels to 1.95 mg 100 g
-1

 dw in the 

white bulb, and from 0.04 to 0.66 mg 100 g
-1

 dw in the green leaves. Quercetin could 

only be quantified in the white bulb of red A. cepa (26 mg 100 g
-1

 dw), A. fistulosum (5 

mg 100 g
-1

 dw) and A. ascalonicum (3 mg 100 g
-1

 dw), while quercetin was also 
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quantified in the green leaves of red (1.71 mg 100 g
-1

 dw) and white A. cepa (0.11 mg 

100 g
-1

 dw) and A. odorum (0.02 mg 100 g
-1

 dw). Isorhamnetin and quercetin could also 

be quantified in A. cepa in the study of Marotti and Piccaglia (2002). The level of 

isorhamnetin 3-O-glucoside (I3G) was the highest in white bulb of A. ascalonicum 

(88.79 mg 100 g
-1

 dw).  

In general, quercetin glucosides largely prevail in the edible portion of most of the Allium 

species, however, the sugar moieties strongly lower the antioxidant capacity of the 

aglycone due to the conjugation of the OH groups at C3 and C4’, which are critical to the 

H-donating activity (Zill-e-Huma et al., 2011). Based on their research, it can be 

assumed that the quercetin glucosides only make a marginal contribution to the overall 

antioxidant capacity of Allium extracts. Other compounds with antioxidant properties will 

be responsible for the antioxidant capacity of the Allium samples. 

Differences in content of polyphenols between different Allium species can be explained  

by the enzymes that catalyze the subsequent steps of flavonoid pathway. These 

enzymes vary from one plant species to another, giving rise to different flavones, 

flavonols, anthocyanins and/or proanthocyanidins (Hanhineva, 2008).  

 

The Allium species were also analysed for their ascorbate content. A higher ascorbate 

level could be quantified in the green leaves, compared with the content in the white part. 

It is found that, among the Allium vegetables, A. schoenoprasum held the highest level of 

vitamin C (9.60 mg g
-1

 dw) (Kmiecik and Lisiewska, 1999). This finding does not endorse 

our results, where we could not detect ascorbate in A. schoenoprasum. Stajner et al. 

(2006) determined the vitamin C content of different Allium species, and found a content 

of 0.122, 0.005 and 0.161 mg g
-1

 fw in the fresh leaves of A. schoenoprasum, A. cepa 

and A. fistulosum, respectively. The vitamin C content of A. cepa (18.89 mg g
-1

 dw) 

reported by Mota et al. (2010) was higher than found in leek, which is not consistent with 

our results. 

Most of the Allium species, contained more ACSOs in the white part, compared to the 

green leaves, while this was not the case for A. kurrat and A. cepa (cv. Red Creole). The 

white bulb of A. odorum and the green leaves of A. kurrat contained the highest ACSO 

(sum isoalliin-methiin) amount (97 mg g
-1

 dw; 75 mg g
-1

 dw). 

To compare, Yamazaki et al. (2011) reported a mean methiin and isoalliin concentration 

in onion bulbs of 3.5 mg g
-1

 dw and 21.1 mg g
-1

 dw, respectively, which are in the same 

range as our results. Moreover, the study of Yamazaki et al. (2011) revealed that the 

leaves of A. tuberosum (also referred as A. odorum), contained 35.5 and 3.4 mg g
-1

 dw 

methiin and isoalliin, respectively, while the authors found a mean content in the leaves 

of A. fistulosum of 7.1 and 34.8 mg g
-1

 dw. In addition, 5 and 48.8 mg g
-1

 dw was found 

in the bulbs and roots of A. schoenoprasum (Yamazaki et al., 2011). These values are 
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again in the same range as the concentration found in our study, with the exception of 

the levels of A. odorum. 

Interestingly, A. odorum also contained significant amounts of alliin, another ACSO found 

in Allium species. In general, the isoalliin/methiin/alliin ratio in the related species ranged 

from 10-89/11-85/0-4 (%) in the white part and from 11-93/7-87/0-2 (%) in the green 

leaves. Fritsch and Keusgen (2006) reported a codomination of alliin and isoalliin in A. 

odorum, while our study found that methiin dominated in A. odorum (11/85-87/2-4). 

Growth conditions can affect the dissimilarity in the data. In addition, the content of 

cysteine sulfoxides is naturally rather variable, which results in high coefficients of 

variation (Fritsch and Keusgen, 2006). In addition, methiin dominated in A. ascalonicum 

(42/58/0), while isoalliin dominated in the other Allium species.  

Several authors have suggested (Keusgen, 1999) that the content of the four major 

cysteine sulfoxides (alliin, isoalliin, methiin and propiin) underlies the different tastes of 

common onion, garlic and leek. Isoalliin is responsible for the typical onion-smell, while 

methiin is associated with an unpleasant and “hard” taste and smell (Fritsch and 

Keusgen, 2006). As stated in Chapter 4, Yoo and Pike (1998) identified 3 distinctive 

groups: the isoalliin, the methiin and the alliin dominant groups. Leek belongs, along with 

onion, shallot and bunching onion, to the isoalliin group. Species in this group contained 

no or an undetectable amount of alliin. Also Yamazaki et al. (2011) found that onion, 

Welsh onion (A. fistulosum) and leek generate similar flavours and result in an 

isoalliin/methiin/alliin ratio of 81-89/11-19/0 (%). Garlic belongs to the alliin-dominant 

group, with an isoalliin/methiin/alliin ratio of 1/16/83 (%) (Hornickova et al., 2010). In 

addition, alliin dominates in wild leek (A. obliquum) and sand leek (A. scorodoprasum) 

(Fritsch and Keusgen, 2006).   

The bulb of all related Allium species contained much more fructans compared to the 

green leaves. Muir et al. (2007) measured the fructan content in 43 fruits and 60 

vegetables, including species from the Alliaceae family and reported a content of 11.5 g 

fructans 100 g
-1

 dw in the bulb of white A. cepa, 16.1 g 100 g
-1

 dw in A. fistulosum bulbs, 

33 g 100 g
-1

 dw in A. ascalonicum and 45 g 100 g
-1

 dw in A. sativum. Our values are 

higher compared with the data reported in the literature. There may be several reasons 

for this difference, as many factors affect fructan levels in foods including storage time, 

storage temperature, food variety, seasonal variation and climate (Benkeblia et al., 2004; 

Monti et al., 2005). Muir et al. (2007) found that the onion family is a good source of 

fructans, in addition to the members of the Compositae family (e.g, Jerusalem 

Artichoke), even when serving size was taken into consideration (see below). 

 

Principal component analysis of the data revealed that the white shaft of leek was closely 

related to the white bulb of A. kurrat and A. cepa with regard to the antioxidant 
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properties. This can be explained by the fact that leek (A. porrum) and kurrat (A. kurrat) 

are cultigens of wild forms of A. ampeloprasum. The green leaves of leek on the other 

hand, were more related to green part of A. schoenoprasum and A. fistulosum. 

To evaluate a possible link between the content of antioxidants in Allium species and 

their genetic background, a comparison of Figure 6.7 was made with Figure 6.8. The 

data presented in Figure 6.8 is based on data from the AFLP (Amplified Fragment 

Length Polymorphism) analysis of 16 leek accessions and related species (Filjushin et 

al., 2011). In the study of Filjushin et al. (2011) the largest genetic distances were 

detected between the accessions of A. porrum and the section of A. cepa, which was 

also observed in the antioxidant data (in case of A. cepa cv. Red Creole).  

 

 
Figure 6.8 Analysis of the main components PCoA – a plot of genetic diversity of the studied 
accessions of A. porrum and related Allium species according to the results of the AFLP analysis 
(Filjushin et al., 2011) 

 

The present chapter compared the antioxidant properties of leek to a number of its 

famous family members with regard to antioxidant properties. However, these data are 

based on the comparison of 30 leek cultivars with only 1 cultivar of the related species. 

Variation will exist between the cultivars of 1 species, as observed for leek (Chapter 4) 

but also in some other studies on garlic (Beato et al., 2011) and onion (Leon et al., 2009; 

Moon et al., 2010). 
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When comparing the bioactive compound profile of different Allium species, however, the 

consumption and use of the Allium species can be totally different and must be taken 

into account. Onion, garlic and chives are universally used spice plants and are 

extensively used for food flavouring (Augusti, 1990), while leek and bunching onion are 

more important as vegetables with additional flavouring properties (Fritsch and Keusgen, 

2006). Chives are usually served in small amounts and never as the main dish (Stajner 

et al., 2011). Table 6.4 shows data concerning serving size for each Allium species, 

derived from Foodworks Version 4 (Muir et al., 2007). However, the table lacks data for 

kurrat, Chinese leek and chives. 

 
Table 6.4 Average serving size and antioxidant properties of Allium species (Muir et al., 2007) 

Allium species Average 

serving size 

(g fw) 

ORAC (µmol 

TE serve
-1

) 

DPPH 

(µmol TE 

serve
-1

) 

FRAP (µmol 

FeSO4
 

serve
-1

) 

TP (mg GAE 

serve
-1

) 

AA 

(mg serve
-1

) 

Isoalliin (mg 

serve
-1

) 

Methiin 

(mg serve
-1

) 

Fructans 

(g serve
-1

) 

Leek, white 
shaft 

83 616.49 66.35 101.73 88.36 17.34 359.08 80.90 3.60 

Leek, green 
leaves 

83 1262.51 111.51 322.51 114.62 57.09 342.62 45.43 0.69 

Bunching 
onion 

16 325.70 19.77 51.90 23.18 0 58.98 7.37 0.99 

Onion 16 65.47 11.41 16.27 15.76 0 38.70 8.67 0.61 

Shallot 12 257.23 8.15 18.48 14.72 0 19.08 26.79 0.82 

 

From Table 6.4, we can conclude that when leek is consumed in a meal, it is 5 times the 

quantity of that of (bunching) onion and 7 times the proportion of shallot. Taking this data 

into account, there will be a higher intake of antioxidants coming from leek, compared to 

the related species (based on these serving sizes).  

However, not only data regarding serving size has to be evaluated, also statistics about 

the consumption per capita per year should be considered. We obtained data concerning 

the purchased amount of leek and onion per capita per year in Belgium; 3.10 kg leeks 

per capita were bought in Belgium in 2010, while each Belgian purchased 6.60 kg onion, 

more than twice the amount of leek (VLAM, 2012). However, based on the serving sizes 

of Table 6.4, the data of purchase and the antioxidant properties of leek and onion, still 

more antioxidants will come from the consumption of leek compared to onion. 

 

6.6 Conclusion 

This chapter compared the antioxidant properties of leek to a number of its famous 

family members with regard to antioxidant properties. Based on the results, the 

antioxidant properties of the white shaft of leek are closely related to the antioxidant 

potential of the bulb of A. kurrat and A. cepa, while the green leaves of leek resemble the 
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antioxidant profile of A. schoenoprasum and A. fistulosum. A. odorum and A. cepa (cv. 

Red Creole) differ from leek in terms of antioxidant properties. These species are higher 

in methiin and flavonoid content, respectively.  

In addition to the 13 polyphenols identified in leek, 5 additional compounds could be 

identified in the related Allium species, including quercetin 7-O-glucoside, quercetin 4’-O-

glucoside, isorhamnetin 4’-O-glucoside, quercetin 3,7-O-diglucoside and isorhamnetin 

3,4’-O-diglucoside.  

 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

CHAPTER 7. INFLUENCE OF 

POST-HARVEST PROCESSING 

AND STORAGE ON THE 

ANTIOXIDANTS OF LEEK – 

FROM ‘HARVEST TO FRIDGE’ 

Redrafted from 

 

Bernaert, N., De Clercq, H., Van Bockstaele, E., De Loose, M. and Van Droogenbroeck, 

B. Antioxidant changes during post-harvest processing and storage of leek (Allium 

ampeloprasum var. porrum). Accepted with revisions in Postharvest Biology and 

Technology 
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7.1 Introduction 

After harvest of leek, several days can elapse before leeks reach the market. During this 

period, the nutritional and physiological quality of the vegetable can deteriorate. In 

addition, on-farm processing, including cutting the leaves, packaging, etc. can change 

the antioxidant profile, including the content of polyphenols, organosulfur compounds 

and vitamins. For example, mechanical actions such as cutting and slicing increase 

oxidation and can lead to a decrease of the polyphenol content. On the other hand, 

wounding enhances polyphenol biosynthesis through the induction of phenylalanine 

ammonia-lyase enzyme which is related to the wound-healing process in order to fight 

pathogen attack after tissue wounding (Tudela et al., 2002). As a result, some studies 

reveal an increase in flavonol content in fresh-cut potatoes (Solanum tuberosum L.) and 

fresh-cut onions (Allium cepa L.) (Tudela et al., 2002; Perez-Gregorio et al., 2011; 

Ioannou et al., 2012).  

After purchase of leek in the market, leek is prepared in the consumer’s kitchen. 

However, time can elapse between purchase and cooking. During that time, leek is 

normally stored at cool temperatures (4 °C). Refrigerated storage is known to extend the 

shelf life of fresh fruits and vegetables by delaying the biochemical and microbial 

changes. However, during storage, vegetables undergo various physiological changes 

such as weight loss due to water evaporation, decay, internal shoot growth and 

compositional changes (Yoo et al., 2012). Some studies indicate an increase in 

antioxidant capacity and concentration of polyphenols during storage of vegetables (Leja 

et al., 2001; Kevers et al., 2007), although a few reports report constant or decreasing 

levels (Gennaro et al., 2002; Kevers et al., 2007). It appears that the effect of storage on 

the antioxidants depends on many factors including light and temperature. Light can act 

as a stress signal and can induce flavonoid synthesis. For example, storage of potato 

strips at 4 °C under light exposure is reported to induce a higher flavonol accumulation 

rate than in darkness (Tudela et al., 2002). Storage temperature is also reported to have 

an influence on the antioxidants. For example, strawberry fruits (Fragaria x ananassa cv. 

Chandler) stored at 5 °C and 10 °C showed a higher antioxidant capacity and contained 

higher levels of polyphenols and anthocyanins than those stored at 0 °C (Ayala-Zavala et 

al., 2004). Moreover, when garlic (Allium sativum L.) was stored at 4 °C for 150 days, a 

marked conversion of the γ-glutamyl peptides, γ-L-glutamyl-S-allyl-L-cysteine and γ-L-

glutamyl-S-(trans-1-propenyl)-L-cysteine (GSPC), to sulfoxides, alliin and isoalliin, was 

observed. Interestingly, however, when garlic was stored at 23 °C, a decrease in GSPC 

and a marked increase in cycloalliin, rather than isoalliin, occurred (Ichikawa et al., 

2006). 
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In general, post-harvest processing and storage of vegetables can influence the 

antioxidant properties. In some cases, these factors can induce the formation of 

compounds with novel antioxidant properties, which can maintain or even enhance the 

overall antioxidant potential of foods (Nicoli et al., 1997). However, post-harvest 

processing and storage can cause loss of antioxidants or formation of compounds with 

pro-oxidant action which may lower the antioxidant capacity.  

The evaluation of processing at the farm and the impact of subsequent storage on the 

antioxidants of vegetables is of great practical importance. However, reports on their 

effect on the antioxidant capacity, polyphenol and ACSO content of the vegetable leek 

are limited. The objective of this study was to determine the evolution of the antioxidant 

capacity, total phenolic and ACSO content in leek from harvest until purchase by the 

consumer and their subsequent refrigerated storage after purchase or in summary the 

determination of the antioxidant properties in leek from ‘harvest to fridge’.  

 

7.2 Plant material  

The selection of plant material and sample preparation are described in §3.2.2.1. Briefly, 

2 cases were investigated, (1) leek sold as an entire plant and (2) leek with a large part 

of the green leaves removed, where the shafts are sold in a plastic package. Sampling 

was performed during post-harvest processing at the farm and upon 13 days of 

refrigerated storage (~maximum domestic storage time), and is illustrated in Figure 7.1 

(blue arrows). 

 

 
Figure 7.1 Schematic overview of the sampling of the post-harvest storage experiment of entire 
leek (blue, 1) and packaged white leek shafts (blue + green, 2). Sampling steps are indicated with  
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7.3 Bioactive compound analysis 

A summary of the analyses (as described in §3.3) performed on the samples is given in 

Table 7.1.  

 
Table 7.1 Overview of the analyses performed 

Analysis Method 

Antioxidant capacity 
ORAC 

Spectrophotometric 
DPPH 

Polyphenolic compounds Total phenolic content Spectrophotometric 

S-alk(en)yl-L-cysteine sulfoxides  HPLC-MS/MS 

 

Because of practical reasons, FRAP, individual polyphenols, ascorbate and fructan 

analysis were not performed on these samples. 

 

7.4 Results 

7.4.1 Antioxidant capacity 

7.4.1.1 ORAC 

Figure 7.2 shows the evolution of the ORAC value during post-harvest processing of leek 

at the farm and upon 13 days of refrigerated storage of the white shaft and green leaves 

of the entire leek plant (EL) and the white shaft of packaged leek (PL).  

The ORAC value of the white shaft (EL) did not change significantly during processing 

and cool storage for 13 days. The antioxidant capacity of the green leaves in the market 

was significantly lower compared to the washed samples and leek sampled at the 

auction, but increased again starting at 2 days storage in the refrigerator.  

The ORAC value of the packaged white shaft stored for 6 days was significantly higher 

compared with leek after the first washing step as well as leek after 7 days of storage. 

Storage for 13 days resulted again in a higher ORAC value compared to storage for 7 

days, but not compared to the initial antioxidant capacity.  
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(a) (b) 

  
(c) (d) 

 
Figure 7.2 ORAC results of the white shaft (-) and green leaves (-) during post-harvest processing 
of the entire leek (a) and packaged leek (c), and during post-harvest storage of the entire leek (b) 
and packaged leek (d), a, b, c: points with a different subscript show statistical significance (n=3)    
 
 

7.4.1.2 DPPH 

Figure 7.3 shows the evolution of the DPPH value during post-harvest processing and 

storage of the entire leek plant and packaged leek.  

The white shaft of leek (EL) had a significantly higher antioxidant capacity at the auction, 

and after 5 and 6 days of storage compared with the DPPH value of the washed white 

shaft. The green leaves (EL) of samples taken at day 2 in the refrigerator possessed a 

significantly higher antioxidant capacity compared with the other samples, but at the end 

of the storage experiment no significant difference was observed compared to the initial 

antioxidant capacity. 
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The DPPH radical scavenging activity of the packaged leek was significantly lower after 

the first washing step compared with washing step 2, however the end DPPH value did 

not differ from the antioxidant capacity of the start of the experiment. 

 

  
 (a) (b) 

  
(c) (d) 

 
Figure 7.3 DPPH results of the white shaft (-) and green leaves (-) during post-harvest processing 
of the entire leek (a) and packaged leek (c), and during post-harvest storage of the entire leek (b) 
and packaged leek (d), a, b, c: points with a different subscript show statistical significance (n=3)    
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7.4.2 Polyphenolic compounds 

7.4.2.1 Total phenolic content 

Figure 7.4 shows the evolution of the total phenolic content during post-harvest 

processing and storage of the entire leek plant and packaged leek. 

  

  
(a) (b) 

 
 

(c) (d) 
 

Figure 7.4 Total phenolic contents of the white shaft (-) and green leaves (-) during post-harvest 
processing of the entire leek (a) and packaged leek (c), and during post-harvest storage of the 
entire leek (b) and packaged leek (d), a, b, c: points with a different subscript show statistical 
significance (n=3)    
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significantly different from the initial TP content. The same phenomenon was seen in the 

green leaves. A significant decrease in TP content of the green leaves was observed 

when the leek was sold in the market and after a storage of 5 days, but the TP content 

increased again upon 7 days of storage. 

The total content of polyphenolic compounds in the white shaft of packaged leek was 

stable during processing at the farm and 13 days of storage. 

 

7.4.3 S-Alk(en)yl-L-cysteine sulfoxides 

Figures 7.5 and 7.6 show the evolution of the isoalliin and methiin content, respectively, 

during post-harvest processing and storage of entire leek and packaged leek. 

A significantly higher isoalliin content of the white shaft (EL) was seen after 5 days of 

storage compared with the isoalliin content of the washed and auction samples (Fig. 

7.5). In addition, the isoalliin content after 13 days of storage was significantly higher 

compared to the initial content. The isoalliin content in the green part did not change 

during processing and subsequent storage, however. No remarkable loss of isoalliin 

during the storage of packaged leek was observed. 

Storage of the white shaft of EL for 5 days resulted in a significantly higher methiin level 

compared with the content immediately after harvest at the first washing step (Fig. 7.6). 

The methiin content in the green leaves of the whole leek did not change significantly 

after a refrigerated storage during 13 days. At the auction, a significantly lower methiin 

level was observed compared with the methiin content when the leaves were stored for 6 

days.  

After 5, 6, 7 and 13 days of storage, the methiin content in the white shaft of packaged 

leek increased significantly compared with the samples taken after washing step 2, 

packaging and in the market. The end methiin content, however, was not significantly 

higher compared to the methiin content after harvest. 
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(a) (b) 

  

(c) (d) 

  
Figure 7.5 Isoalliin content of the white shaft (-) and green leaves (-) during post-harvest processing 
of the entire leek (a) and packaged leek (c), and during post-harvest storage of the entire leek (b) 
and packaged leek (d) a, b, c: points with a different subscript show statistical significance (n=3)    
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(a) (b) 

  
(c)  (d)  

  

Figure 7.6 Methiin content of the white shaft (-) and green leaves (-) during post-harvest processing 
of the entire leek (a) and packaged leek (c), and during post-harvest storage of the entire leek (b) 
and packaged leek (d), a, b, c, d: points with a different subscript show statistical significance (n=3)   

 

7.5 Discussion 

This chapter discussed the influence of leek processing at the farm and the impact of 

subsequent refrigerated storage on the health-promoting compounds, including 

antioxidant capacity, polyphenols and organosulfur compounds.  

Despite the slight change in antioxidant capacity during storage, at the end of a 13 

day-storage, the ORAC and DPPH value of leek did not show any decrease or increase. 

This stable antioxidant capacity result is in contrast with Kevers et al. (2007), who 
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studied the white shaft of leek during storage of 23 days, 10 days longer than our 

experiment, and concluded that the antioxidant capacity, measured with the ORAC and 

DPPH assay, decreased. However, the stable DPPH value during our storage-

experiment agrees with the study of Tsouvaltzis et al. (2007), who reported no significant 

change in DPPH free radical scavenging activity upon storage of leek for 7 days at 

10 °C. Similarly, the total antioxidant capacity of leek upon 7 days of storage, using the 

Trolox Equivalent Antioxidant Capacity (TEAC), decreased by 47.3%. The variance 

observed between the reported data can be explained by various factors as post-harvest 

losses in nutritional quality are enhanced by physical damage, extended storage 

duration, high temperatures, low relative humidity and chilling injury of chilling-sensitive 

commodities (Lee and Kader, 2000; Navarro et al., 2006). In addition to the difference 

due to methods used, the variance observed between reported data can be explained by 

various factors such as extraction procedure, cultivar and weather conditions of the 

production season (Michiels et al., 2012). 

Comparing with other vegetable matrices, storage of onions during 6 weeks in different 

conditions, all of them mimicking home storage habits, resulted in a decrease of 29% to 

36% of the total antioxidant capacity (Gennaro et al., 2002). However, these studies 

cover a longer storage than our study, and can result in higher antioxidant losses. 

Similarly as our results, storage of white asparagus for 6 days (2 °C) did not affect the 

DPPH free radical scavenging activity (Papoulias et al., 2009). However, by contrast, 

Leja et al. (2001) reported an increase in antioxidant capacity of broccoli (Brassica 

oleracea var. italica, cv. Lord) flower buds during short-term storage at 20 °C and at 5 °C 

for 3 and 7 days, respectively, when they were either unpackaged or packaged in 

polymeric films.  

 

The stable total phenolic content in the post-harvest processed samples do partly 

confirm the findings of Kevers et al. (2007), who concluded that the total phenolic content 

in leek increased during the first days of storage at 4 °C but stabilised afterwards. 

Comparing with other vegetables, storage (2 °C) of asparagus spears for 6 days 

significantly affected the total flavonoid content resulting in an increase from 0.179 to 

0.292 mg rutin equivalents g
-1

 fw (Papoulias et al., 2009). When onion was kept under 

refrigeration (4 °C) in darkness for 6 months, no effect was noticed in the quercetin 

conjugate content (Price et al., 1997). In contrast, the total flavonols in onion increased 

up to 64% after 6 or 7 months of storage, with an increase of 58% during the first 3 

months (Rodrigues et al., 2010). However, the study of Rodrigues et al. (2010) and Leja 

et al. (2003) observed that the increase of total phenols during storage in most cases 

was accompanied by a decrease of anthocyanins.  
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It has been demonstrated that polyphenolic compounds undergo oxidative 

polymerisation during food processing or storage increasing the chain-breaking activity 

as well as the antioxidant capacity (Manzocco et al., 1998). Monitoring specific classes 

of polyphenolic compounds, has indicated that not all polyphenols are affected in the 

same manner (Kevers et al., 2007). Interestingly, the concentrations of different 

quercetin glucosides react differentially during storage. Quercetin 4-glucoside levels 

have been demonstrated not to change during storage, whereas the levels of quercetin 

3,4-O-diglucoside increased by 30–50% (Olsson et al., 2010). These different 

behaviours can finally result in a stable total phenolic content, as observed in our results. 

It is also observed that the effect of storage on the polyphenolic content depends on 

many factors including temperature and light as stated in the introduction (§7.1). 

Regarding the effect of storage temperature on the biosynthesis of polyphenolic 

compounds, several reports have shown that low temperatures can increase the 

susceptibility to induce flavonoid accumulation (especially anthocyanins) in apple (Marais 

et al., 2001) or strawberries (Cisneros-Zevallos, 2003). These results differ from those 

reported by Kalt et al. (1999), who suggests that storage at ambient or above ambient 

temperatures will positively affect polyphenolic metabolism to enhance the antioxidant 

capacity. Similarly, it is reported that strawberry fruits stored at 5 °C and 10 °C show 

higher antioxidant capacity, polyphenols and anthocyanins than those stored at 0 °C 

(Ayala-Zavala et al., 2004). However, the post-harvest life based on overall quality was 

longer at 0 °C than at 5 °C and 10 °C.  

In addition to the role of temperature, storage of potato strips at 4 °C under light 

exposure is reported to induce a higher flavonol accumulation rate than in darkness 

(Tudela et al., 2002). Light keeps flavonoids synthesis active even if the temperature is 

low, 4 °C. In this study, leeks were stored in darkness, resulting in a stable total phenol 

content. 

Relating to the ACSOs, a significant increase of the isoalliin content was observed after 

13 days of refrigerated storage of the white shaft (EL), while a stable ACSO 

concentration was observed for the other cases. To our knowledge, this is the first study 

who determined ACSOs in leek as a function of post-harvest processing and refrigerated 

storage. Although, studies were performed who describe the evolution of sulfur 

compounds during storage of other Allium species. Storage of onion for 6 months at 5 °C 

resulted in a significant increase in isoalliin content, while methiin levels remained 

unchanged (Yoo et al., 2012). When garlic (Allium sativum L.) was stored at 4 °C for 150 

days, marked conversion of the γ-glutamyl peptides, γ-L-glutamyl-S-allyl-L-cysteine and 

γ-L-glutamyl-S-(trans-1-propenyl)-L-cysteine (GSPC), to sulfoxides, alliin and isoalliin, 

was observed. Interestingly, however, when garlic was stored at 23 °C, a decrease in 

GSPC and a marked increase in cycloalliin, rather than isoalliin, occurred (Ichikawa et 

http://www.sciencedirect.com/science/article/pii/S0889157511001955#bib0155
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al., 2006). Similarly, from the study of Beato et al. (2012), it can be concluded that the 

three γ-glutamyl peptides in pickled blanched garlic were significantly degraded during 

storage at room temperature (49% loss after 1 year of storage). However, Hughes et al. 

(2006) did not find a variation in the alliin content when garlic was stored for 6 months at 

4 °C, but isoalliin increased significantly from 0.6 mM to 7.1 mM in the outer cloves. It is 

reasonable to argue that the γ-glutamyl peptides were slowly degraded by an increased 

activity of a transpeptidase during storage to yield the corresponding S-alk(en)yl-L-

cysteine, isoalliin, which increased during storage as also observed in our study.  

 

Comparing the two cases, the entire leek and processed/packaged leek, the antioxidant 

activities and TP content were similar. However, it is reported that pre-cut on foods, as in 

the second case, can increase oxidation and as a consequence decrease the flavonoid 

content and antioxidant capacity. On the other hand, wounding enhances flavonol 

biosynthesis through the induction of phenylalanine ammonia-lyase enzyme which is 

related to the wound-healing process in order to fight pathogen attack after tissue 

wounding (Tudela et al., 2002). As our results indicate a stable antioxidant value, these 2 

reactions were not performed or in balance.  

The ACSO content (sum of isoalliin and methiin) in the white shaft of packaged leek, on 

the other hand, was much lower than the content in the white part of the entire leek. 

Therefore, the minimal processing step, that is, cutting the green leaves and roots, had a 

negative influence on the ACSO levels. Similarly, packaging steps negatively affect the 

levels of the ACSOs in garlic (Beato et al., 2012). Similarly, in the study of Tsouvaltzis et 

al. (2007), thiosulfinate levels of base removed leeks decreased significantly upon 

storage for 7 days (10 °C).  

 

7.6 Conclusion 

The evaluation of the effect of post-harvest processing and storage on the health-

promoting compounds of vegetables is of great practical importance. Reports on the 

effect of storage on the antioxidant capacity, polyphenol and ACSO content of the white 

shaft and green leaves of leek are limited. 

In general, the results indicated that refrigerated storage during 13 days did not affect 

negatively the antioxidant capacity and the total phenolic content in the white shaft and 

green leaves of the entire and packaged leek. Leek will visually spoil before any 

significant antioxidant capacity loss. 
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A slight increase in isoalliin level could be observed after a cool storage period. The 

difference between the antioxidant properties of the white shaft of the entire leek and the 

packaged leek was minimal, except for the lower ACSO values in packaged leek.  
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8.1 Introduction 

Vegetables are usually processed (boiling or steaming) before consumption and/or 

storage (blanching, freezing or canning), which improves flavour and palatability of foods 

(Delchier et al., 2012).  

The Allium species are usually consumed after a heat treatment, including blanching, 

boiling, steaming and stewing (Chau and Cheung, 1997). The vegetable leek can be 

consumed in raw form in salads, however it is usually consumed after a cooking process, 

such as in soups, oven dishes, stewed with béchamel sauce, etc. (Compernol and De 

Ryck, 2011). 

 

Although, it is widely considered that vegetables exposed to a thermal treatment, show a 

reduced content of thermolabile compounds such as vitamins C, E and A and some 

polyphenols. For example, processing can drastically affect the polyphenol content and 

behaviour and can, by consequence, influence the antioxidant capacity (Seruga et al., 

2011; Ioannou et al., 2012). A number of studies report the effect of heat treatment on 

the antioxidant capacity of foods, but their conclusions do not all agree. In general, 

processing often results in either depletion or increase of the antioxidant properties of 

foods. As stated in §7.1, processing can induce the formation of compounds with novel 

antioxidant properties, which can maintain or even enhance the overall antioxidant 

potential of foods (Nicoli et al., 1997). However, during processing, loss of antioxidants 

or formation of compounds with pro-oxidant action may lower the antioxidant capacity.  

In previous studies, leek extracts lost 20% of its total phenolic content when subjected to 

a thermal treatment (100 °C, 60 min ~ soup preparation). However, the same heat 

treatment increased its antioxidant capacity (Roy et al., 2007). The same authors 

suggest that heating Alliums may generate or modify some components which are more 

antiradical than their status in raw vegetables. Moreover, they reported, in addition to an 

increase in the total antioxidant capacity, a reduction in the pro-oxidant elements upon 

thermal treatment (Gazzani et al., 2000). This observation indicates that pro-oxidant 

molecules in Alliums are thermolabile. However, it is not clear to what extent the pro-

oxidant elements interfere with the measurement of the total antioxidant capacity (Roy et 

al., 2007). Interestingly, Wangcharoen and Morasuk (2009) reported a decrease in 

antioxidant capacity of heated garlic by the decomposition of some polyphenolic and 

sulfur-containing compounds. But, when browning pigments developed, the antioxidant 

capacity of the heated brown garlic increased with the degree of browning.  

The degree to which antioxidants change during processing depends on the sensitivity of 

the compound to modification or degradation, and the length of exposure to a processing 

technique (Breene, 1994). But losses (or gains) of antioxidants can also vary with 
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cooking or processing method (Ewald et al., 1999; Ioku et al., 2001; Lee et al., 2008). In 

case of onion and broccoli, highest losses have been observed in boiled products 

compared to frying and microwave cooking (Masrizal et al., 1997; Price et al., 1998a, b; 

Ioku et al., 2001). 

For an understanding of antioxidants before absorption and digestion, it is essential to 

determine the loss (or gain) of these compounds in cooking processes. Therefore, the 

evaluation of the impact of domestic food processing on the antioxidants of vegetables is 

of great practical importance. However, reports on their effect on the antioxidant 

capacity, polyphenol and ACSO content of the leek matrix are limited as lot of studies 

have essentially focused on raw foods. Because leek is usually consumed after a heat 

treatment, the aim of this study was to evaluate the antioxidant properties during 

common domestic processes (blanching, cooking and steaming) in order to mimic the 

consumer’s food processing habits – ‘from fridge to fork’. 

 

8.2 Plant material 

The plant material and sample preparation is described in §3.2.2.2. Briefly, the leek 

samples were processed under different heat treatments, i.e. blanched (to simulate the 

processing step before industrial freezing), boiled (to simulate soup preparation) and 

steamed (to simulate steamed leek in a dish) with different duration times. 

 

8.3 Bioactive compound analysis 

A summary of the analyses (as described in §3.3), performed on the processed samples 

is given in Table 8.1.  

 
Table 8.1 Overview of the analyses performed on cooked leek samples 

Analysis Method 

Antioxidant capacity 
ORAC 

Spectrophotometric 
DPPH 

Polyphenolic compounds Total phenolic content Spectrophotometric 

S-alk(en)yl-L-cysteine sulfoxides  HPLC-MS/MS 

 

Because of practical reasons, FRAP, individual polyphenols, ascorbate and fructan 

analysis were not performed on these samples. 
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8.4 Results  

8.4.1 Antioxidant capacity 

8.4.1.1 ORAC 

Figure 8.1 shows the results of the ORAC assay of blanched/boiled (a) and steamed (b) 

leek samples.  

Blanching and boiling did not influence the antioxidant capacity of the white shaft of 

leek, as measured with the ORAC assay. Blanching of the green leaves resulted in a 

19% higher antioxidant capacity compared with the raw samples. When the green leaves 

were boiled for 40 min or 60 min, the ORAC values were significantly higher compared 

with raw leek, corresponding with an increase of 12% and 21%, respectively. 

Steaming the white shaft during 20 min resulted in a significantly lower ORAC value 

compared to 10 min of steaming, although the steamed samples showed no significant 

difference with the raw samples. When the green leaves were steamed, a significant 

increase in the antioxidant capacity was measured compared with the raw samples. 

Steaming during 10 min resulted in an increase of 38% of the initial capacity of the green 

leaves, and decreased gradually after a longer period of steaming, but still with a higher 

end antioxidant capacity. 

 

 
(a) (b) 

 
Figure 8.1  ORAC value of the white shaft (□) and green leaves (■) after boiling (a) and steaming 
(b) with Bl: blanched, B10, 20, 40, 60: boiled for 10, 20, 40 and 60 minutes respectively and ST10, 
20, 30: steamed for 10, 20 and 30 minutes respectively; a, b, c, d: bars with a different subscript 
show statistical significance (n=3)    
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8.4.1.2 DPPH 

Figure 8.2 shows the results of the DPPH assay of blanched/boiled (a) and steamed (b) 

leek samples. 

The DPPH value of the boiled (60 min) white leek shaft decreased significantly (39%) 

compared to the capacity before boiling, while the DPPH value of the green leek leaves 

decreased with 46%. 

Steaming did not influence the DPPH value of the white shaft. When the green leaves 

were steamed for 20 or 30 min, a significant increase of 41% and 51% of the initial 

antioxidant capacity in DPPH value was observed. 

 

 

 
(a) (b) 

 
Figure 8.2  DPPH value of the white shaft (□) and green leaves (■) after boiling (a) and steaming 
(b) with Bl: blanched, B10, 20, 40, 60: boiled for 10, 20, 40 and 60 minutes respectively and ST10, 
20, 30: steamed for 10, 20 and 30 minutes respectively; a, b, c, d, e: bars with a different subscript 
show statistical significance (n=3)    
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8.4.2.1 Total phenolic content 

Figure 8.3 shows the results of the total phenolic content in the white shaft and green 

leaves after a blanching/boiling (a) and steaming (b) process.  

The total phenolic content of the white shaft was significantly lower when leek was 

boiled for 10 and 20 min compared with the raw samples. When the white shaft of leek 

was boiled for 60 min, the content decreased with 34% compared with the raw samples. 

When the green leaves of leek were boiled for 20 min and 60 min, a significant decrease 

of 34% and 38% respectively, of its initial TP content was observed.  
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In contrast with boiling, steaming did not have a significant influence on the total 

phenolic content. 

 

 
(a) (b) 

 
Figure 8.3 Total phenolic content of the white shaft (□) and green leaves (■) after boiling (a) and 
steaming (b) with Bl: blanched, B10, 20, 40, 60: boiled for 10, 20, 40 and 60 minutes respectively 
and ST10, 20, 30: steamed for 10, 20 and 30 minutes respectively; a, b, c: bars with a different 
subscript show statistical significance (n=3)    

 

 

8.4.3 S-Alk(en)yl-L-cysteine sulfoxides 

Figure 8.4 shows the results of the isoalliin (1) and methiin (2) content in the white shaft 

and green leaves after a blanching/boiling (a) and steaming (b) process. 
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blanching process, by 26% and 62% respectively. A longer boiling time resulted in a 

gradual decrease of the methiin content. Steaming of the white shaft of leek did not 
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(1a) (1b) 

 

 
(2a) (2b) 

 
Figure 8.4 Isoalliin (1) and methiin (2) content of the white shaft (□) and green leaves (■) after 
cooking (a) and steaming (b) with Bl: blanched, B10, 20, 40, 60: boiled for 10, 20, 40 and 60 
minutes respectively and ST10, 20, 30: steamed for 10, 20 and 30 minutes respectively; with *, not 
detected; a, b, c, d: bars with a different subscript show statistical significance (n=3) 

 

8.5 Discussion 

As leek is usually consumed after applying a heat treatment, the present chapter 

elucidated the influence of domestic food processing, including blanching, boiling and 

steaming on the antioxidant properties of the white shaft and green leaves of leek.  

With respect to the influence of antioxidant capacity, the decreasing trend of the DPPH 

radical scavenging activities of leek after boiling, agrees with a lot of studies. Turkmen et 

al. (2005) noticed a 20% decrease of the DPPH capacity after boiling leek for 5 min. Our 

results are also consistent with Jastrzebski et al. (2007), who reported a significant 

decrease in DPPH value of garlic boiled at 100 °C for 40 min and 60 min. A study on 

onion juice showed a decrease in antioxidant capacity which was 63% of the capacity 

before boiling. Some studies, however, reported a significantly higher DPPH value upon 
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thermal treatment of leek (Roy et al., 2007), onion (Woo et al., 2007) and garlic 

((Wangcharoen and Morasuk, 2009). However, the above results may not be 

comparable because of the different food matrix. This food matrix can act as a barrier to 

imposed heat effects or induce degradation (Ioannou et al., 2012). Accordingly, Aoyama 

and Yamamoto (2007) found that during thermal treatment, the antioxidant capacity of 

white Welsh onion (Allium fistulosum L.), yellow and red onions (Allium cepa L.) 

decreased as measured with the TEAC and FRAP assay, while the antioxidant capacity 

of green Welsh onion increased. 

The results of the ORAC and DPPH assay for the leek boiling processes are dissimilar. 

The ORAC assay indicates an increase in antioxidant capacity of the green leaves, while 

the DPPH assay shows a decrease. These opposite findings are in contrast with the 

study of Xu and Chang (2008), who observed a reduction in the DPPH free radical 

scavenging capacity of boiled legumes with 60-70% in green pea (Pisum sativum L. cv. 

Stratus) and 9-30% in lentils (Lens culinaris cv. CDC Richlea), as well as in the ORAC 

value, i.e. 58-77% in green pea and 54-62% in lentil. The two assays can differ for many 

reasons, including differences in experimental methodology used, e.g. in the free radical 

that was applied, different reaction times, different absorption wavelength, etc. The 

different trends in antioxidant capacity could also be attributed to the increase or the 

formation of specific compounds, which could provide more or less hydrogen atoms 

during oxidation-reduction reaction. Different classes of compounds may have different 

contributions to ORAC and DPPH values.  

The decrease of DPPH free radical scavenging activity of boiled leek samples can be 

due to the decomposition of some polyphenolic compounds and also some sulfur 

containing compounds such as ACSOs, as seen in Figures 8.3 and 8.4, but also diallyl 

sulfide, S-ethyl cysteine, N-acetyl cysteine, which would be lost when the temperature 

reaches 65 °C (Yin et al., 2002). The decrease in DPPH value can also be the result of a 

decrease in ascorbic acid content, an antioxidant which is known to decompose during a 

thermal treatment and is measured in the antioxidant capacity assays (Rumm-Kreuter 

and Demmel, 1990).  

The increase in ORAC value can be the result of the fact that thermal treatments can 

break the glucosides of flavonoids to form aglycones which possess higher antioxidant 

properties (Buchner et al., 2006). As stated in the introduction (§ 8.1), it is assumed that, 

heating Alliums for a longer period may generate or modify some components which are 

more antiradical than their status in raw vegetables (Roy et al., 2007). The authors 

proposed 2 possible mechanisms: (1) formation of brown products; (2) destruction of 

pro-oxidant substances. Numerous reports have shown that thermal treatment enhances 

non-enzymatic browning that includes the Maillard reaction, chemical oxidation of 

phenols and caramelisation. The brown products formed upon thermal treatment have 
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been shown to be associated with high antioxidant capacity (Payet et al., 2005; Papetti 

et al., 2006). In addition, the decrease of 2’,7’-dichlorofluorescein (DCF), a pro-oxidant, 

in thermally treated Allium products showed that destruction of pro-oxidant molecules 

may be another factor in the increased antiradical activity of the Allium samples (Roy et 

al., 2007). 

 

In contrast with boiling, our study demonstrated an obvious increase in the antioxidant 

capacity of the green leek leaves after steaming. The difference between steaming and 

boiling can be attributed to the higher contact of the leek particles with water in case of 

boiling, resulting in leachate of water soluble antioxidants in the boiling water.  

The two applied antioxidant capacity assays executed on the steamed samples revealed 

the same trend. This last observation is not in accordance with Xu and Chang (2008), 

who found that the ORAC value of pressure steamed legumes increased with 69-175% 

in green pea and 5-13% in lentil, while the DPPH value decreased (Xu and Chang, 

2008).  

Similarly, boiling was responsible for a significant decrease in total phenolic content of 

leek, while steaming did not have an influence. The lower total phenolic content upon 

boiling agree with the results of Roy et al. (2007), who showed that garlic, leek and onion 

lost about 35%, 20% and 7%, respectively, of their respective total phenolic content 

when the raw extracts were subjected to thermal treatment (100 °C, 60 min). Similarly, 

Turkmen et al. (2005) noticed a decrease of 36% TP after boiling leek for 5 min, while 

steamed leek (7.5 min) lost 15% of its initial TP content.  

The losses in the total phenol content of processed leek upon boiling are not generally 

attributed to a chemical breakdown of flavonoid conjugates or formation of new 

compounds, but rather leaching of phenolic compounds into the cook water (Price et al., 

1997; Crozier et al., 1997; Hirota et al., 1998; Makris and Rossiter, 2001; Xu and Chang, 

2008). Therefore, soups are a good source of flavonoids. Some studies, however, report 

an increase in phenols after a heat treatment on onion and tomatoes (Stewart et al., 

2000; Woo et al., 2007). This can be explained by the fact that processing could increase 

the flavonoid extractability from the matrix in subsequent assays resulting in a higher 

apparent content.  

As mentioned in the introduction (§8.1), the degree to which phytochemicals change 

during processing depends on the sensitivity of the compound to modification or 

degradation, processing method and the length of exposure to a processing technique 

(Breene, 1994). Studies who examined the effect of heat treatment on flavonoids in 

aqueous solutions show different sensitivity to degradation depending on the flavonoid 

structure. For quercetin 3-O-rutinoside (rutin), a higher stability compared to its aglycone 

form (quercetin) is observed (Buchner et al., 2006). Essential for the degradation is the 
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3-hydroxy-function at the C-ring of the flavonoid. Due to the blocking of this position by a 

sugar moiety in the case of rutin, the degradation of rutin differs from that of quercetin 

where this position is unoccupied (Makris and Rossiter, 2000). However, whatever their 

structure, a significant degradation is observed for temperatures above 100 °C. 

Losses (or gains) of polyphenols can also vary with cooking or processing method 

(Ewald et al., 1999; Ioku et al., 2001; Lee et al., 2008). Based on our results, we can 

conclude that steaming is a better method to maintain the polyphenolic compounds 

present in leek than boiling. This result is partly consistent with the study of Lee et al. 

(2008), who compared different thermal processes and reported the following losses of 

flavonoids in onion: frying, 33%; sautéing, 21%; boiling, 14-20%; steaming, 14%; 

microwaving, 4% and baking, 0%.  

The degradation of polyphenols is not only a function of sensitivity of the compounds and 

magnitude of heating; it may also depend on other parameters such as pH, the presence 

of oxygen and the presence of other phytochemicals in the medium. For pH, Buchner et 

al. (2006) and Friedman (1997) showed that degradation of rutin and quercetin is higher 

under weakly alkaline and neutral reaction conditions. For oxygen, Buchner et al. (2006) 

and Makris and Rossiter (2001) observed that the presence of oxygen highly induces 

quercetin and rutin degradations while the absence of oxygen has the opposite effect. 

From these results it is obvious that the presence of oxygen accelerates the degradation 

of quercetin and rutin. The decay is caused by the so-called reactive oxygen species 

(ROS). These radicals (e.g. superoxide anion radical, hydroperoxide radical and hydroxyl 

radical) are often formed in aqueous solution and can be captured by the flavonols.  

Moreover, it has been shown that the presence of other phytochemicals in the medium 

like chlorogenic acid plays a protective role in the maintenance of polyphenols 

(Murakami et al., 2004). In contrast, additional ferrous ions accelerate the loss of 

flavonoids (Ioku et al., 2001). 

With concern to the sulfur compounds, it is remarkable that blanching resulted in a slight 

increase in the ACSO content. This finding contradicts with the study of Beato et al. 

(2012), who observed that blanching of garlic (90 °C, 5 min) did not significantly affect 

the individual organosulfur compound contents. It is also notable that the time of 

steaming does not play a role in ACSO losses, while this is at least the case for boiling. 

Applying a thermal treatment (> 90’’) to leek samples negatively influenced the content of 

isoalliin and methiin. Steaming seems to be responsible for better retention of the 

ACSOs compared with boiling, however. Methiin was less susceptible to cooking 

compared to isoalliin. To explain this, it is found that alliinase acts quickly, but differently 

on the individual ACSOs, such that some of the flavour precursors are more completely 

degraded than others (Lancaster et al., 1998). The decrease in ACSOs during cooking 

will result in the formation of volatile sulfur compounds. In a study of Kubec et al. (1998) 
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methiin was heated in closed model systems at different temperatures (from 80 to 

200 °C) in the presence of variable amounts of water (0-98%) for 1-60 min. It was found 

that thermally generated breakdown products of methiin can significantly contribute to 

the typical aroma of culinary processed Allium vegetables. Dimethyl disulfide was 

identified as the predominant volatile compound generated by thermal degradation of 

methiin. Dimethyl trisulfide, dimethyl thiosulfinate, dimethyl thiosulfonate, and alkyl- and 

alkylthio-substituted pyridines were identified as minor volatile breakdown products 

arising from methiin.  

 

With relation to the health aspects, an important pharmacological aspect attributed to the 

Allium species is the ability to inhibit platelet aggregation which is mainly attributed to the 

synergistic action of organosulfur compounds and flavonoids present. Platelet 

aggregation plays a key role in the development of atherosclerosis, a systemic 

proliferative and inflammatory disease of the vascular wall of arteries (Nitin, 2004).  Raw 

onions inhibit platelet aggregation, however antiplatelet activity was destroyed between 3 

and 6 min of steaming, and at 10 min of steaming, onions stimulated platelet activity, 

while steaming did not affect the polyphenolic concentration (Hansen et al., 2012). It is 

possible that the generation of oils or polysulfides from thiosulfinates are partially 

responsible for this effect. This phenomenon is a concern, however studies on leek, 

relating to the antiplatelet activity, are to our knowledge, not performed yet. 

 

8.6 Conclusion 

Several studies have focused on the determination of antioxidants in raw foods. 

However, the evaluation of domestic food processing on the health benefits of 

vegetables is also of great practical importance.  

The antioxidant capacity of leek was highly influenced by cooking. However, the 

antioxidant capacity of the boiled green leaves gave contradictory results. ORAC values 

indicated an increase, while DPPH results show a decrease. An obvious increase (more 

than 30%) could be observed in the antioxidant capacity of the steamed green leaves. 

Boiling had a negative effect on total phenolic content in the white shaft and green 

leaves. In contrast with boiling, steaming did not have an influence on the polyphenolic 

content. It is remarkable that blanching results in a slight increase in the ACSO content. 

Applying a longer thermal treatment turned out to have a negatively influence on the 

content of isoalliin and methiin. In general, methiin was less susceptible to cooking. 

Steaming seems to be responsible for a better retention of the bioactive compounds 

present in leek. 
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9.1 Introduction 

Leek is grown in Belgium for its thickened cylindrical white shaft made up of long leaf 

bases. Despite its interesting bioactive compound profile as described in Chapter 4, a 

large part of the green leek leaves remains unused because preparations of this part are 

restricted compared to the white shaft. Two fractions of the unused green leaves can be 

established, a first fraction is immediately cut off on the field during harvesting (industry), 

while a second fraction is removed during processing at the farm. To be able to use this 

large quantity of valuable plant biomass, a way to stabilise the green leaves is needed. 

Therefore, the application of some alternative value-adding processing and preservation 

methods such as fermentation and drying was investigated in this chapter.  

 

Preservation of food, including fermentation of perishable raw materials has been used 

since ages (Prajapati and Nair, 2003). Nowadays, cabbages, cucumbers and olives are 

fermented on industrial scale (Rodriguez et al., 2009). Sauerkraut, the result of lactic 

acid fermentation of shredded and brined white cabbage, is an important dietary 

ingredient in Central Europe (Martinez-Villaluenga et al., 2012). Efforts have been made 

to enhance the shelf-life of Allium species, such as onions and garlic, by fermentation 

(Desai and Sheth, 1997; de Castro et al., 1998; Roberts and Kidd, 2005; Bisakowski et 

al., 2007), but studies investigating the fermentation of leek are limited. Leek has only 

been included in a vegetable fermentation as flavouring ingredient in addition to other 

vegetables in kimchi, which is probably the most indispensable food for Koreans (de 

Castro et al., 1998; Roberts and Kidd, 2005). Recently, fermentation of leek has been 

investigated in collaboration with prof. dr. ir. Luc De Vuyst and dr. ir. Dorrit Wouters from 

VUB (IMDO
7
) as a potential processing method to valorise the green leaves (Wouters et 

al., 2012). In the latter study, a thorough characterisation of the spontaneous 

fermentation of the green and white leek parts revealed that Leuconostoc mesenteroides 

(initial fermentation phase), Lactobacillus (Lb.) sakei (middle and final fermentation 

phase) and Lb. plantarum, Lb. brevis and Lb. parabrevis (final fermentation phase) are 

the main isolated lactic acid bacteria (LAB) species involved in spontaneous leek 

fermentation. The presence of Lb. sakei was more explicit in fermentations of the green 

leek parts, whereas the opposite was observed for the presence of Lb. plantarum.  

In addition to preserving food, fermentation improves the food safety and influences the 

organoleptic quality of food (Adams and Mitchell, 2002; Sicard and Legras, 2011). 

Additionally, fermentation can improve the nutritional value of food (van Boekel et al., 
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2010). Accordingly, Kusznierewicz et al. (2008) reported an increase of the antioxidant 

capacity of white cabbage upon fermentation. Other studies have demonstrated an 

increase in DPPH free radical-scavenging activity during fermentation of carrot juice by 

Lb. bulgaricus and Lb. rhamnosus (Nazzaro et al., 2008). In addition to an increase in 

the antioxidant capacity, the total phenol content increased upon fermentation of 

buckwheat, barley and rice, while it decreased in fermented sorghum (Dlamini et al., 

2007; Dordevic et al., 2010). In addition, lactic acid fermentation may lead to a qualitative 

modification of proteins, often resulting in an increase of water soluble proteins and 

amino acids in fermented sorghum products (Dlamini et al., 2007).    

 

Another possible way to stabilise and valorise the green leaves is to apply a drying step. 

Fresh leek contains 85-87% water, and water levels need to be lowered to less than 15% 

for their preservation (Diaz-Maroto et al., 2002). Drying is one of the most efficient and 

ancient ways to preserve foods. It reduces the product's water activity, which inhibits 

microbial growth and decreases degrading reactions, resulting in enhanced stability. 

Therefore, various methods can be used. Freeze-drying (FD) is a multi-step process that 

employs freezing, sublimation and desorption. Freeze-dried products are known to have 

high quality, since the technique preserves bioactive compounds, colour, texture and 

flavour. The solid state of water during freeze-drying protects the primary structure and 

the shape of the products with minimal reduction of volume. However, due to the use of 

vacuum, sub-zero temperatures and long drying time, freeze-drying is one of the most 

expensive drying technologies (Hammami and Rene, 1997; Khalloufi and Ratti, 2003). 

Studies have demonstrated that FD is the best drying method to retain antioxidants 

(Desobry et al., 1997; Abonyi et al., 2002; Nindo et al., 2003); however, some 

antioxidants may still be lost because of the long drying time (Kaspar et al., 2012). Other 

possible drying methods include air-drying (AD) and the recent Refractance Window® 

(RW
TM

) drying (RWD). Air-drying is the most extensively used drying method, which 

involves blowing hot air through the plant material to remove the water from the surface. 

This creates a diffusion gradient in the food that moves the water from the interior to the 

outer surface (Gowen et al., 2006). Generally, air-drying is favoured due to processing 

cost and speed (Katsube et al., 2009). Although very common, the method involves high 

temperatures and long processing times, which causes losses in nutritional values and 

sensory properties of foods (Ratti, 2001). Refractance window dehydration method is a 

relatively new drying method introduced by MCD Technologies, Inc. (Tacoma, 

Washington, USA). The technology involves applying the product, as a thin layer, to the 

top surface of a transparent plastic conveyor belt. Under the plastic sheet, hot water 

circulates that carries thermal energy to the product (Nindo and Tang, 2007). The 

method uses moderate temperatures and short drying times, which has been reported to 
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result in low energy costs and high quality products (Abonyi et al., 2002; Nindo et al., 

2003; Caparino et al., 2012). 

However, the effect of a particular drying method on the quality is not predictable and 

depends on the involved compounds and the specific plant concerned. 

Although a lot papers describe the influence of fermentation and drying on the 

antioxidant properties of vegetables, very little has been published on the influence of 

fermentation and drying on health-promoting compounds of Allium species, especially for 

leek. As the lactic acid bacteria naturally present on leek are capable of initiating 

fermentation, the first part of this chapter aims to investigate the effect of spontaneous 

fermentation of the green leaves and white shaft in terms of the antioxidant capacity, 

polyphenol profile (flavonoids and phenolic acids) and ACSO content. In addition to 

natural fermentation, the effect of starter culture induced fermentation was investigated 

on the antioxidant properties of a leek mix (whole leek plant). In addition, 3 different 

drying methods were applied to determine their influence on the antioxidant properties of 

white shaft and green leaves of leek. As such, the use of these potential valorisation 

routes were evaluated. 

The results presented in this Chapter have been partly established in collaboration with 

prof. dr. Derek Stewart of the James Hutton Institute (Enhancing Crop Productivity and 

Utilization Theme) with regard to the flavonoids/phenolic acids analyses of the air-dried 

and freeze-dried samples. The analysis of flavonoids/phenolic acids in the fermented 

and RWD samples are performed in collaboration with ir. Domien De Paepe 

(ILVO/VITO). 

 

9.2 Plant material 

Selection of plant material and sample preparation are described in §3.2.2.3. Briefly, 

spontaneous and starter culture fermentation (21 days) of leek was investigated. In 

addition to fermentation, 3 drying techniques were investigated as possible valorisation 

routes of leek processing by-products, i.e. freeze-drying (FD), air-drying (AD) and 

refractance window drying (RWD). First, freeze-drying was compared with air-drying 

(performed at ILVO). Secondly, freeze-drying was compared with a relative new drying 

technique, refractance window drying (performed in MCD-Technologies in the United 

States). 

 

9.3 Bioactive compound analysis 

A summary of the analyses (as described in §3.3) performed on the fermented and dried 

leek samples is given in Table 9.1.  
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Table 9.1 Overview of the analyses performed as a function of processing techniques 

Analysis  Method 

Antioxidant capacity 
ORAC  

spectrophotometric 
DPPH  

Polyphenolic compounds 

Total phenolic 
content 

 
spectrophotometric 

Flavonoids 
and phenolic 
acids 

Spont. 
fermentation 

U-HPLC-ESI-
Orbitrap-MS 

Freeze-drying 
vs. air-drying 

U-HPLC-ESI-
Orbitrap-MS/MS 

Freeze-drying 
vs. 
Refractance 
Window 
Drying 

U-HPLC-ESI-
Orbitrap-MS 

S-alk(en)yl-L-cysteine 
sulfoxides 

  
HPLC-MS/MS 

 

FRAP, ascorbate and fructan analysis were not performed on these samples. Individual 

polyphenols were determined in all the samples, with the exception of starter culture 

fermented leek samples. 

 

9.4 Results  

9.4.1 Stabilisation by fermentation 

The application of a potential alternative value-adding processing and preservation 

method of leek, namely fermentation, was investigated in terms of antioxidant changes 

(antioxidant capacity, polyphenols and organosulfur compounds). 

 

9.4.1.1 Spontaneous fermentation 

9.4.1.1.1 Antioxidant capacity 

 

Figures 9.1 (a) and (b) illustrate the evolution of the antioxidant capacity during 

fermentation of the green leaves and white shaft as determined using the ORAC and 

DPPH assay, respectively. 

The antioxidant capacity of the green leaves, measured using the ORAC assay, was 

significantly higher after a 2 day-fermentation compared to the antioxidant capacity of 

fresh, cut and tamped leek leaves. Fermentation of the green leaves for 21 days resulted 

in an increase of 62% and 79% in antioxidant capacity compared to the fresh and 

tamped samples, respectively. The antioxidant capacity of the white shaft, measured 
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using the ORAC assay, did not change significantly after 21 days of fermentation 

compared to the capacity of fresh white leek, but was significantly higher than the 

tamped samples (increase of 44%). Tamping the white shaft resulted in a 29% reduction 

of its antioxidant capacity of the white shaft compared to its initial antioxidant capacity.  

In addition to the ORAC assay, the results of the DPPH test after tamping indicated a 

significant decrease (32% and 38%) of the antioxidant capacity in the green leaves and 

white shaft, respectively. The DPPH free radical scavenging activity of the green leek 

leaves did not change significantly after a 21-day spontaneous fermentation compared to 

its initial condition, while it was significantly higher than tamped (54%) and 2-day 

fermented (47%) samples. The end DPPH free radical scavenging activity of the white 

shaft did not differ from the initial activity, but was significantly higher than the tamped 

samples (27%).  

Both assays revealed an increase in antioxidant capacity upon fermentation of both leek 

parts compared to the tamped leek samples. In addition, the increase was also 

significant compared to the fresh samples for the green leaves (ORAC) and white part 

(DPPH). 

 

 
(a) (b) 

 
Figure 9.1 Antioxidant capacity, measured using the ORAC (a) and DPPH (b) assay, of the green 
leaves (■) and the white shaft (□); a, b and c: bars with a different subscript show statistical 
significance, n=3 
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9.4.1.1.2 Polyphenolic compounds 

Total phenolic content 

The total phenolic content in the green leaves at the end of the fermentation was 

significantly higher compared with the tamped samples. The TP content of the white 

shaft, on the other hand, did not change significantly after a fermentation process, when 

compared with the tamped samples, but was significantly lower compared to the TP 

content in the fresh white shaft (Figure 9.2).  

Flavonoids and phenolic acids 

The effect of fermentation on the polyphenolic composition and the content of the green 

leaves and white shaft of leek is represented in Table 9.2. Of the selected polyphenol 

standards, 14 polyphenolic compounds could be quantified, including 5 phenolic acids 

and 9 flavonoids.  

The main compounds found in the freshly, cut green leaves were (in decreasing order of 

importance) kaempferol 3-O-glucoside (3.192 mg 100 g
-1

 dw), ferulic acid (2.707 mg 100 

g
-1

 dw), quercetin 3-O-galactoside (2.173 mg 100 g
-1

 dw), sinapenic acid (0.376 mg 100 

g
-1

 dw), quercetin (0.267 mg 100 g
-1

 dw) and propyl gallate (0.209 mg 100 g
-1

 dw). After 

21 days of fermentation, new polyphenolic compounds, such as hydroferulic acid, 

quercetin 3-O-rutinoside, quercetin 3-O-arabinoside, naringenin and dihydroquercetin 

were found in the green leaves. Sinapinic acid disappeared after a fermentation of the 

green leaves. The contents of ferulic acid, astragalin and luteolin increased significantly 

by 39%, 57% and 13%, respectively, after a leek fermentation process of 21 days 

compared with the initial concentration. Tamping was responsible for significant losses of 

 

Figure 9.2 Total phenolic content of the green leaves (■) and white shaft (□); a, b and c: bars 
with a different subscript show statistical significance, n=3 
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polyphenols in the green leaves; for example the kaempferol 3-O-glucoside content 

decreased with 55% after tamping.  

The main flavonoids and phenolic acids found in the freshly, cut white shaft of leek 

before fermentation were (in decreasing order of importance) ferulic acid (2.971  mg 100 

g
-1

 dw), quercetin 3-O-galactoside (2.323 mg 100 g
-1

 dw), kaempferol 3-O-glucoside 

(0.350 mg 100 g
-1

 dw), quercetin (0.263 mg 100 g
-1

 dw) and propyl gallate (0.211 mg 100 

g
-1

 dw). Sinapenic acid was present in the fresh green leaves, but was not found in the 

white shaft. The concentration of kaempferol 3-O-glucoside was 10 times lower in the 

white shaft compared with the content of the green leaves. After fermenting the white 

shaft, new polyphenolic compounds, such as hydroferulic acid, were found, whereas the 

contents of ferulic acid, kaempferol 3-O-glucoside and naringenin increased by 51%, 

113% and 50%, respectively, compared with the initial concentration. The caffeic acid 

content, decreased by 19%. Again, tamping was responsible for great losses in 

polyphenol content. 
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Table 9.2 Polyphenol content (mg 100 g
-1
 dw) of the green leaves and white shaft before and after fermentation, means ± standard deviation, nd: not detected 

(a, b and c: values with a different subscript show statistical significance) (n=3) 

 Green leaves White shaft 

Polyphenol Fresh, cut Tamped Day 21 Fresh, cut Tamped Day 21 

Propyl gallate 0.209 ± 0.002
a
 0.207 ± 0.001

a
 0.210 ± 0.003

a
 0.211 ± 0.001

a
 0.206 ± 0.002

b
 0.207 ± 0.002

ab
 

Ferulic acid 2.707 ± 0.143
a
 1.334 ± 0.097

b
 3.770 ± 0.071

c
 2.971 ± 0.039

a
 2.584 ± 0.319

a
 4.505 ± 0.456

b
 

Hydroferulic acid nd nd 2.230 ± 0.130 nd nd 2.079 ± 0.018 

Caffeic acid 0.093 ± 0.003
a
 0.088 ± 0.005

ab
 0.083 ± 0.001

b
 0.103 ± 0.006

a
 0.096 ± 0.005

ab
 0.083 ± 0.001

b
 

Sinapenic acid 0.376 ± 0.020
a
 0.161 ± 0.012

b
 nd nd nd nd 

Luteolin 0.074 ± 0.002
a
 0.071 ± 0.001

a
 0.084 ± 0.002

b
 0.071 ± 0.001

a
 0.070 ± 0.001

a
 0.071 ± 0.002

a
 

Kaempferol 0.085 ± 0.005
a
 0.073 ± 0.003

b
 0.079 ± 0.000

ab
 0.077 ± 0.001

a
 0.070 ± 0.001

b
 0.071 ± 0.002

b
 

Kaempferol 3-O-

glucoside 
3.192 ± 0.266

a
 1.451 ± 0.054

b
 5.025 ± 0.261

c
 0.350 ± 0.012

a
 0.199 ± 0.010

b
 0.747 ± 0.069

c
 

Quercetin 0.267 ± 0.004
ab

 0.258 ± 0.002
a
 0.271 ± 0.006

b
 0.263 ± 0.002

a
 0.258 ± 0.003

a
 0.262 ± 0.003

a
 

Quercetin 3-O-

galactoside 
2.173 ± 0.012

a
 2.227 ± 0.122

a
 2.256 ± 0.043

a
 2.323 ± 0.013

a
 2.296 ± 0.024

a
 2.299 ± 0.030

a
 

Quercetin 3-O-

rutinoside 
nd nd 0.160 ± 0.009 nd nd nd 

Quercetin 3-O-

arabinoside 
nd nd 0.055 ± 0.008 nd nd nd 

Naringenin nd nd 0.023 ± 0.000 0.016 ± 0.000
a
 0.016 ± 0.001

a
 0.023 ± 0.002

b
 

Dihydroquercetin nd nd 0.073 ± 0.10 nd nd nd 

sum 9.193 5.871 14.320 6.383 5.795 10.348 
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9.4.1.1.3 S-Alk(en)yl-L-cysteine sulfoxides 

 

Figures 9.3 (a) and (b) show the evolution of the isoalliin and methiin contents of the leek 

samples throughout fermentation. The tamping process is responsible for a significant 

decrease of the isoalliin and methiin content in the green leaves (32% and 62%, 

respectively) and for a decrease of 32% and 48% in the white shaft, respectively, in the 

white shaft. Moreover, 3 weeks of fermentation resulted in a complete loss of isoalliin 

and 93% decrease of the methiin content in the green leaves, compared with the fresh 

samples, while a total loss of isoalliin and a decrease of 91% of methiin was determined 

in the white shaft. 

  
(a) (b) 

 
Figure 9.3. Isoalliin (a) and methiin (b) content during fermentation of the green leaves (■) and 
white shaft (□); with *, not detected; a, b, c and d: bars with a different subscript show statistical 
significance, n=3 

 

In this part, we described the influence of a spontaneous fermentation process of leek on 

its antioxidant properties. The second part elucidates the influence of LAB starter 

cultures on the health-promoting compounds in leek. 

 

9.4.1.2 Starter culture fermentation 

9.4.1.2.1 Antioxidant capacity 

 

Figure 9.4 (a) presents the results of the ORAC values of the leek samples (mix of white 

shaft and green leaves) during starter culture fermentation. Tamping of leek did not 

change the antioxidant capacity significantly, while 3 day-fermented samples, except for 

those of the sakei fermentations, exhibited a significant increase. After 3 weeks of 

fermentation, the antioxidant capacity of all leek fermentation was significantly higher 

compared to the cut, tamped and 3 day-fermented leek samples. This increase was most 
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pronounced for the spontaneous fermentations (51%), followed by the fermentations with 

the mixed (42%), sakei (33%) and plantarum (17%) starter cultures. The antioxidant 

capacity of plantarum fermented leek was significantly weaker than that of the naturally 

fermented leek but did not vary from the other starter culture-induced fermentations. In 

contrast with the ORAC values, a significant decrease of 26% in DPPH values was found 

after tamping the leek particles (Figure 9.4 (b)). Afterwards, DPPH values of the 

spontaneous, plantarum and mixed fermentations exhibited again a significant decrease, 

both after 3 days and 3 weeks of fermentation. This decrease was most pronounced for 

the plantarum fermentations (76%). In the case of the sakei fermentations, the 

antioxidant capacity did not change significantly during the fermentation process 

compared to the capacity of fresh samples, but increased significantly (44%) compared 

to the tamped samples.   

 

  
(a) (b) 

 
Figure 9.4 Antioxidant capacity determined with the ORAC (a) and DPPH (b) assay of leek 
samples of the spontaneous (×); plantarum (◊) ; mix (▲); and sakei (■) fermentations, n=3  

9.4.1.2.2 Polyphenolic compounds 

Total phenolic content 

Figure 9.5 presents the evolution of the TP content of the leek samples during 

fermentation. During fermentation, the total phenolic content of the different leek 

samples, except for the mixed fermented leek samples, did not change significantly. At 

the end of the mixed fermentations, the total phenolic content was significantly higher 

compared to 3 day-fermented leek samples. However, no significant differences were 
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found between the TP content at the end of the mixed fermentation and that of the cut 

and tamped leek samples. The total phenolic content of the end-products of the different 

fermentations did not differ significantly.  

 

Figure 9.5 total phenolic content of leek samples of the spontaneous (×); plantarum (◊) ; mix 
(▲); and sakei (■) fermentations, n=3  

 

9.4.1.2.3 S-Alk(en)yl-L-cysteine sulfoxides 

 

The evolution of isoalliin and methiin concentrations during fermentation is shown in 

Figure 9.6 (a) and 9.6 (b), respectively. The isoalliin content of leek reduced significantly 

with 34% after the tamping process. The subsequent 3 day-fermentation process 

resulted in an additional significant decrease of the isoalliin content for all fermentations. 

However, this decrease was more pronounced for the spontaneous and plantarum 

fermented leek samples (51% and 58%, respectively), while that of the mixed and sakei 

fermented leek samples only scarcely decreased (3% and 11%, respectively). Upon 3 

weeks of fermentation, isoalliin was depleted in all fermentations studied.   

For all fermentations, the methiin content decreased (47%) significantly after the tamping 

process. After 3 days of fermentation, methiin levels of the sakei and mixed 

fermentations dropped again (62% and 70%, respectively) again significantly, while upon 

further fermentation no significant change of the methiin content was noticed. In the case 

of spontaneous and plantarum fermentation, the methiin level did not change 

significantly after 3 days of fermentation, whereas a 3 week-fermentation resulted in a 

significant decrease of 70% and 73%, respectively, in comparison with the initial methiin 

content. 
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(a) 
 

(b) 
 

Figure 9.6  Isoalliin (a) and methiin (b) content of leek samples of the spontaneous (×); plantarum 
(◊) ; mix (▲); and sakei (■) fermentations, n=3  

 

 

9.4.2 Stabilisation by drying  

The application of a second potential alternative value-adding processing and 

preservation method of leek, namely drying, was also investigated in terms of antioxidant 

changes (antioxidant capacity, polyphenols and organosulfur compounds). Three drying 

techniques were examined, that is freeze-drying (FD), air-drying (AD) and Refractance 

Window Drying (RWD). 

 

9.4.2.1 Antioxidant capacity 

9.4.2.1.1 ORAC 

 

Figures 9.7 (a) and (b) show the ORAC values of the comparison between FD and AD 

leek samples and between FD and RWD leek samples. 
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(a) (b) 
 

Figure 9.7 Difference in antioxidant capacity (ORAC) between freeze-dried (■), air-dried (□) and 
refractance window dried (■) white shaft and green leaves; a,b: bars with a different subscript show 
statistical significance, n=3    

 

The antioxidant capacity of the AD white shaft was significantly weaker than the FD 

shaft, whereas the green leaves of AD powder possessed a stronger antioxidant 

capacity. FD and RWD samples possessed comparable ORAC antioxidant capacity.  

9.4.2.1.2 DPPH 

 

Figure 9.8 (a) and (b) show the DPPH values of the comparison between FD and AD 

leek samples and between FD and RWD leek samples. 

 
 

(a) (b) 
 

Figure 9.8 Difference in antioxidant capacity (DPPH) between freeze-dried (■), air-dried (□) and 
refractance window dried (■) white shaft and green leaves; a,b: bars with a different subscript show 
statistical significance, n=3    
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The AD white shaft had a significantly higher DPPH free radical scavenging activity than 

FD samples, while this was not the case for the green leaves. There was no difference 

between FD and RWD white shaft samples in terms of antioxidant capacity, while the 

RWD green leaves had a higher DPPH value.  

 

9.4.2.2 Polyphenolic compounds 

9.4.2.2.1 Total phenolic content 

 

Figure 9.9 shows the total phenol content of the FD, AD and RWD leek samples. 

  
(a) (b) 

 
Figure 9.9 Difference in total phenol content between freeze-dried (■), air-dried (□) and refractance 
window dried (■) white shaft and green leaves; a,b: bars with a different subscript show statistical 
significance, n=3   

 

The AD samples contained a significantly higher TP content compared to the freeze-

dried samples. RWD and FD retained the same amount of total phenolic content for both 

leek parts.  
 

9.4.2.2.2 Flavonoids and phenolic acids 

 

Figure 9.10 presents the comparison of FD and AD samples in terms of individual 

polyphenol content. In Chapter 4, we discussed the identification of 13 polyphenolic 

compounds in 30 leek cultivars using the U-HPLC-ESI-Orbitrap-MS/MS technique (JHI). 

Eight identified compounds were available as a standard, and could be quantified with 

the exception of kaempferol 4’-methylether. In this experiment, freeze-dried vs. air-

dried, 5 polyphenol compounds could be quantified in the dried leek samples.  
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(a) (b) (c) 

  

(d) (e) 
 

Figure 9.10 Concentration of kaempferol 3-O-glucoside (K3G, a), kaempferol (b), quercetin 3-O-
glucoside (Q3G, c), isorhamnetin (I, d) and kaempferol 4’-methylether (K4’M, e) in freeze-dried (■) 
and air-dried (□) white shaft and green leaves; with *, not detected, n=3  

 

Kaempferol 3-O-glucoside (K3G), kaempferol (K), quercetin 3-O-glucoside (Q3G), 

isorhamnetin (I) and kaempferol 4’-methylether (K4’M) were present in significant 

amounts. On the basis of these data, we could observe some remarkable differences 

between the two drying techniques. The AD leek samples were obviously rich in K3G, K, 

Q3G and K4’M, while I was more abundant in the FD samples. 

Q3G could only be quantified in the dried green leaves. Moreover, the green leaves 

contained significantly higher amounts of K and K3G, while the white shaft was rich in I. 

K4’M, on the other hand, was equally distributed in the two leek parts. 
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The levels of K3G, K and Q3G in the freeze-dried and air-dried leeks are in the same 

range as the concentration determined in the green leaves of the 30 leek cultivars 

(§4.3.2.3).  

Figure 9.11 shows the results of the polyphenol composition of the freeze-dried and 

refractance window dried leek samples.  

Figure 9.11 Polyphenol profile of freeze-dried and refractance window dried leek samples, n=3 

 

Analyses were accomplished using a U-HPLC-ESI-Orbitrap-MS method, developed at 

VITO (De Paepe et al., 2013). Using the U-HPLC-ESI-Orbitrap-MS method, 9 

compounds could be quantified in the dried green leaves, while only 3 polyphenolic 

compounds, i.e. kaempferol 3-O-glucoside (K3G), quercetin 3-O-rutinoside (Q3R) and 

quercetin 3-O-rhamnoside (Q3Rh), were present in significant amounts in the white 

shaft. Q3Rh and K3G were the two most abundant compounds in the dried leek 

samples. Q3Rh, K3G and K were more present in the FD green leaves, while RWD 

green leaves were rich in Q3R, Q3G; Q3Ga and I were present in the same amount.  
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The FD white shaft contained higher amounts of Q3Rh and K3G, while Q3R was higher 

in the RWD white shaft. Epicatechin and catechin, 2 flavanols, were found in the dried 

green leaves samples in similar amounts 

Based on the quantification of these individual polyphenols, freeze-drying retained more 

polyphenols compared with refractance window drying. 

Comparing Figure 9.10 with 9.11, 4 mutual compounds were quantified, i.e. K3G, K, 

Q3G and I. Air-drying resulted in the highest levels of K3G, K and Q3G compared to FD, 

while FD gave better results for these compounds than RWD. Freeze-drying revealed a 

higher I content compared to AD, while FD and RWD samples gave similar amounts of I.  

 

9.4.2.3 S-Alk(en)yl-L-cysteine sulfoxides 

Figure 9.12 shows the results of the isoalliin and methiin content of the FD, AD and RWD 

leek samples. 

 
 

(a) (b) 

 
(c) 

 
Figure 9.12 Difference in isoalliin (a) and methiin (b,c) content between freeze-dried (■), air-dried 
(□) and refractance window dried (   ) white shaft and green leaves, n=3   

 

 

0

2

4

6

8

10

12

14

16

18

white shaft green leaves

m
g

 i
s

o
a

ll
ii

n
 g

-1
 d

w
 

a 

b 

a 

b 

0

0,2

0,4

0,6

0,8

1

1,2

white shaft green leaves

m
g

 m
e

th
ii

n
 g

-1
 d

w
 

a 

b 

a 
a 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

white shaft green leaves

m
g

 m
e

th
ii

n
 g

-1
 d

w
 

a 

b 

a 

b 



Stabilisation and valorisation of leek 

216 

 

AD leek samples contained remarkably lower amounts of isoalliin and methiin compared 

to FD samples. Isoalliin could not be quantified in the FD vs. RWD samples, probably 

because of their loss during transport or because of their loss during processing. The 

methiin content in the RWD samples, on the other hand, was significantly higher than the 

content in FD leek samples. 

 

9.4.3 Innovative leek products 

As stated in the introduction (§9.1), a large part of the green leaves remains unused, 

despite its interesting nutritional profile. A first fraction is left behind on the field during 

harvesting and a second fraction is removed during processing because of specific 

requirements (Figure 9.13). Groentenhof (Bornem, Belgium), growing 50 ha of leek, 

obtained a waste of green leaves ranging from 400 to 600 ton a year. This amount of 

waste corresponds with 8 to 12 ton per hectare, resulting in 38 400 to 57 600 ton in 

Belgium in 2012 (4800 ha). This biomass is usually brought back to the field, however, 

this large quantity of plant biomass could be better valorised in food and feed given an 

adequate stabilisation method.  

 

 
 

Figure 9.13 Losses of green leaves upon harvest and processing of leek during the preparation for 
the fresh market (Fracha, Meulebeke) 
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Dried leek powder (investigated in §9.3.2) can create opportunities for applications in 

different food products, as it is a source of a range of bioactive compounds. Therefore, 

the development of different food products, fortified with different concentrations of leek 

powder (green leaves) made by applying different drying methods (FD and AD), were 

preliminary investigated in collaboration with HoGent, Beverse Kaasmakerij, KaHoSint-

Lieven. Leek bread, cheese, pasta and croquettes are promising products (Figure 9.14), 

though the commercial implementation is a complex process depending on several 

parameters that should be considered.  

  

(a) (b) 

  

(c) (d) 

 

Figure 9.14 Innovative products based on dried leek powder, (a) leek bread, (b) leek cheese, (c) 
leek pasta and (d) leek croquettes 

 

9.5 Discussion 

In the current chapter, we present an investigation of the application of 2 alternative 

value-added processing and preservation methods including fermentation and drying. 

Fermentation is a preservation technique used throughout the ages, which includes the 

conversion of sugars to lactic acid by the presence of lactic acid bacteria. Besides 

inhibiting growth of non-desirable bacteria, lactic acid fermentation also influences the 

sensory quality (colour, flavour, aroma and texture) and nutritional properties of the 
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fermented vegetables (Demir et al., 2006; Kusznierewicz et al., 2008; van Boekel et al., 

2010).  

Both spontaneous and starter culture induced fermentation were evaluated in this study. 

The two antioxidant assays (ORAC and DPPH) revealed an increase in antioxidant 

capacity upon spontaneous fermentation of both leek parts compared to the tamped 

leek samples, while the increase was not significant compared to the fresh samples 

(except ORAC results for green leaves and DPPH results of the white shaft). The 

obtained ORAC results are in accordance with the study of Martinez-Villaluenga et al. 

(2012), who revealed an increase of the ORAC value in white cabbage upon 

fermentation (up to 2-fold). Our increase in DPPH partly agrees with Kusznierewicz et al. 

(2008), who reported an increase of the initial DPPH free radical scavenging activity of 

white cabbage upon a 2-week fermentation process. Similarly, Pyo et al. (2005) 

observed an increase in DPPH radical scavenging in soybeans fermented by LAB, 

essentially due to the presence of compounds, such as mineral salts and polyphenols. 

However, Nazzaro et al. (2008) observed an increase in the DPPH radical scavenging 

ability of carrot juice after 2 days of fermentation with Lb. delbrueckii subsp. bulgaricus, 

while it decreased after 4 weeks of fermentation.  

To account for the increase in antioxidant capacity, the results from the study of 

Kusznierewicz et al. (2008) suggests that some compounds with antioxidant properties 

are released during cabbage fermentation. More in detail, during fermentation of white 

cabbage, glucosinolates undergo complete hydrolysis to form an array of health-

promoting products such as ascorbigen, indol-3-carbinol, sulforaphane, allyl thiocyanate, 

butyl isothiocyanate and phenyethyl isothyocyanate (Tolonen et al., 2002). In addition to 

the formation of new compounds with antioxidant capacity, the increased antioxidant 

capacity measured in the green leek leaves in this study can also be attributed to the 

chemical structure of polyphenols present as the formation of free hydroxyl group(s) by 

linkage cleavages of flavonoids has been reported to result in a higher antioxidant 

capacity (Harbaum et al., 2008).  

An increase in total phenolic content of the green leek leaves was observed after 21 

days of fermentation compared to tamped leek samples. Similarly, Dordevic et al. (2010), 

reported a significantly higher total phenol content of buckwheat, barley and rice after 

fermentation. A higher value in TP content can be attributed to the release of bound 

sugar moieties as reducing sugars have been reported to interfere with the determination 

of polyphenols through the Folin-Ciocalteu assay (Prior et al., 2005; Harbaum et al., 

2008).  

In addition to the total phenolic assay, a U-HPLC-ESI-Orbitrap-MS analysis was 

performed to quantify the individual polyphenols in leek before fermentation, after 

tamping and after 21 days of fermentation. The increase in individual polyphenol 
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concentrations upon fermentation was partly in accordance with other studies. 

Fermentation of sorghum resulted in an increase of naringenin and taxifolin as well 

(Svensson et al., 2010). The increase of naringenin can be the result of the 

deconjugation of naringenin-7-O-glucoside as observed in the study of Svensson et al. 

(2010). The increase of the ferulic acid (in fact trans-ferulic acid) content after 

fermentation was in accordance with the findings of Duenas et al. (2005), who noticed a 

remarkable increase in trans-ferulic acid content upon fermentation of cowpeas. Ferulic 

acid and hydroferulic acid were also substantially higher in grass silage inoculated with 

LAB strains than in control silos without added LAB, indicating that LAB facilitate the 

production of these two phenolic acids (Broberg et al., 2007). Although, some LAB are 

capable of metabolizing ferulic acid, such as Lb. plantarum and Lb. fermentum, while 

neither Lb. casei and Lb. reuteri degraded ferulic acid (Svensson et al., 2010). Ferulic 

acid is also the most abundant phenolic acid found in cereal grains (80-200 mg 100 g
-1

 

dw) (Lempereur et al., 1997). Ferulic acid in natural resources has some interesting 

properties, as it can be transformed by microorganisms to biovanillin, a bioflavour 

(Zamzuri and Abd-Aziz, 2012). Production is already accomplished from ferulic acid of 

wheat bran, sugar beet pulp and rice bran oil (Walton et al., 2000; Mathew and Abraham, 

2008). 

The decrease in the content of caffeic acid, as observed in both white shaft and green 

leaves, can be the result of the decarboxylation to vinyl catechol or the reduction of 

dihydrocaffeic acid (Svensson et al., 2010). In contrast with our results, Ariffin et al. 

(2011), reported a decrease in the kaempferol content upon fermentation of Centella 

asiatica herbal teas. More specifically, tamped leek samples exhibited a lower level of 

kaempferol compared with the fresh samples, while the kaempferol content increased 

again upon leek fermentation.  

Some of our findings contradict similar reports for other plant species, although these 

plant species are different in metabolite composition, enzymes etc. Some studies 

revealed a decrease in the quercetin 3-O-rutinoside, luteolin and quercetin content upon 

fermentation of Centella asiatica herbal teas (Martin and Matar, 2005; Ariffin et al., 2011) 

which was not the case for these compounds in leek. Furthermore, Duenas et al. (2005) 

reported a decrease in the quercetin 3-O-galactoside and quercetin 3-O-glucoside 

content upon fermentation of cowpeas. Harbaum et al. (2008) concluded from their 

results that in addition to a degradation of flavonoids in pak choi and Chinese leaf 

mustard by fermentation, the flavonoid contents also changed by the cleavage of sugar 

moieties. During the fermentation process of these Brassica vegetables, more flavonoid 

derivatives with a lower molecular mass (di- and triglucosides) and aglycones of 

flavonoids and hydroxycinnamic acids are detected compared to non-fermented 

vegetables (tri- and tetraglycosides of flavonoids and hydroxycinnamic acid derivatives) 
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(Harbaum et al., 2008). This evolution could not be seen for our results, but the increase 

of kaempferol 3-O-glucoside, the aglycones kaempferol and quercetin, and (hydro)ferulic 

acid after fermentation can indicate such an evolution. Similarly, during fermentation of 

onion, quercetin 3,4’-O-diglucoside and quercetin 4’-O-glucoside were converted into 

quercetin 3-O-glucoside and quercetin, respectively (Yang et al., 2012). Bisakowski et al. 

(2007) also noticed a substantial increase in the proportion of quercetin monoglucoside 

upon fermentation of onion. Moreover, fermentation of Hamamelis virginiana leaf 

extracts resulted in a conversion of flavonol glycosides into their aglycones quercetin and 

kaempferol (Duckstein et al., 2012). These qualitative changes in polyphenols during 

fermentation could indicate that LAB are capable of producing β-glucosidase, which 

catalyses the cleavage of sugar linkages during fermentation (Tsangalis et al., 2002). 

Moreover, as several forms of glycosides conjugated to quercetin in onion have showed 

lower antioxidant capacity than that of the quercetin aglycone (Manach et al., 1998), the 

conversion of quercetin glucoside into quercetin by fermentation is a promising strategy 

to enhance the bioavailability and bioactivity of onion (Yang et al., 2012). 

In contrast with fermentation, tamping was responsible for great losses in polyphenols. 

Harbaum et al. (2008) also observed losses of polyphenols in the kneading step of 

cabbage before fermentation. These losses are mainly due to leaching from cut or 

bruised tissue surfaces and enzymatic reactions as upon cellular fragmentation, 

enzymes are free to react with polyphenols leading to significant losses. 

The losses in isoalliin and methiin upon leek fermentation, can be explained by 

damaging of the leek tissues during tamping, which results in a cleaving of the ACSOs 

by the endogenous enzymes alliinase and lachrymatory factor synthase (Lancaster and 

Kelly, 1983). Upon tissue damage, the first chemical compounds that are formed are 

sulfenic acids and thiosulfinates, which are intermediates in the formation of the majority 

of sulfur volatiles, such as dipropyl disulfide and 1-propanethiol (Rose et al., 2005). Next 

to the decomposition of the ACSOs, leaching could also be the main mechanism causing 

the losses. Microbial degradation of ACSOs by the LAB has not been investigated, 

although Beato et al. (2012) deduced from their data that losses of ACSOs in garlic due 

to microbial action are negligible.  

In addition to the analysed components, fermentation is reported to be responsible for a 

decrease in the antioxidant vitamin C. The study of Martinez-Villaluenga et al. (2009) 

revealed that cabbage fermentation leads to a decrease in the ascorbic acid content of 

34-48%, resulting in a product with decreased antioxidant properties. Moreover, 

reduction in vitamin C levels was found after the fermentation of carrots, green beans 

and marrows as well (Di Cagno et al., 2008). 

 

http://www.sciencedirect.com/science/article/pii/S0278691512002499#b0120
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Relating to the starter culture induced fermentation experiment, the influence of 

fermentation on the antioxidant capacity of the leek particles differed according to the 

applied test, ORAC analyses revealed a positive influence of fermentation, especially 

natural fermentation, on the antioxidant capacity, whereas DPPH analyses, except for 

the sakei fermentation, showed a rather negative influence of fermentation on the 

antioxidant capacity. In general, leek fermented with Lb. plantarum IMDO 788 resulted in 

the lowest antioxidant capacity, for both antioxidant capacity assays, while natural 

fermented and sakei fermented leek pointed out to have highest ORAC and DPPH value, 

respectively. Accordingly, Chen et al. (2009) showed that the antioxidant capacity is 

influenced by the starter culture used. Our findings are partly consistent with other 

studies in which the influence of fermentation on the antioxidant capacity was 

determined (Nazzaro et al. 2008; Kusznierewicz et al. 2008; Martinez-Villaluenga et al. 

2012). ACSO levels decreased significantly during starter culture induced fermentation, 

regardless the use of starter cultures, which was also observed upon spontaneous 

fermentation. 

Despite its nutritional value, the introduction of fermented leek as a new food product 

onto the market will require its acceptance by the consumer, a key factor for its potential 

marketing success (Sivakumar et al., 2010). In the study of Wouters et al. (2013) the 

acceptability of fermented leek was evaluated through consumer tasting sessions. 

Therefore, different preparations of fermented leek samples were judged for appearance, 

odour, taste, texture and overall appreciation. The sensory analysis of this study 

revealed that fermented white leek samples are generally more appreciated than 

fermented green leek samples, independent the preparation method. Fermented green 

leaves were less pleasant because of toughness and dryness. Nevertheless, acceptable 

end-products were obtained through the fermentation of white and green leek parts 

together, which masked the odour and flavour intensity of the fermented green parts. In 

addition, the application of a mixed starter culture of Lb. Plantarum and L. mesenteroides 

delivered end-products of a good flavour and quality, at the same time improving the 

controllability of the fermentation process. However, more work is needed to introduce 

fermented leek as a new product on the market, which might be achieved through the 

addition of herbs and/or other flavour ingredients as well as by the use of other starter 

culture mixtures. 

 

In addition, the application of a second alternative value-adding processing and 

preservation method, that is drying, was investigated. Drying brings a substantial 

reduction in weight and volume, which minimises packaging, storage and transportation 

costs (Sobukola et al., 2007). Moreover, products with low moisture content can be 

stored at ambient temperature for longer periods of time due to a considerable decrease 
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in the water activity of the material, reduced microbiological activity and minimised 

physical and chemical changes (Ozgur et al., 2011). However, food products are 

sensitive to drying temperature, which can induce degradation (e.g. oxidation, loss of 

colour, shrinkage or loss in texture) and nutritional/functional properties (Attanasio et al., 

2004). Three drying techniques, including freeze-drying (FD), air-drying (AD) and 

Refractance Window Drying (RWD) were compared in terms of antioxidant changes. 

We could conclude that leek samples, subjected to the three drying methods, retain 

almost the same antioxidant capacity, with the exception of the higher ORAC value of 

AD green leaves, FD white shaft and the higher DPPH value of the AD white shaft. The 

good results of the AD leek samples are in accordance with the results of Katsube et al., 

2009). They found that the radical scavenging activity and levels of polyphenolic 

compounds in air-dried mulberry leaves (60 °C or below) were not different from those of 

freeze-dried leaves, whereas the activity in mulberry leaves air-dried at 70 °C decreased 

significantly. Mejia-Meza et al. (2010) also reported a comparable antioxidant capacity in 

air-dried and freeze-dried raspberries. Some studies show better antioxidant properties 

of air-dried samples as well. For example, air-dried Rabdosia serra samples exhibited a 

higher ORAC antioxidant capacity than freeze-dried samples (Lin et al., 2012). Air-dried 

Lamiaceae herbs had a higher antioxidant capacity than freeze-dried samples. Similarly, 

the air-dried Rabdosia serra samples exhibited a higher DPPH antioxidant capacity than 

freeze-dried samples (Lin et al., 2012).  

The similar results between FD and RWD leek samples are consistent with the 

comparable antioxidant activities of FD and RWD asparagus and potatoes (Abonyi et al., 

2002). Moreover, Kaspar et al. (2012) determined the total antioxidant capacity of FD 

and RWD potato cultivars and did not observe a difference between the two drying 

methods, but the antioxidant capacity of the RWD dried material of the white cultivar was 

significantly lower than the FD samples.  

The higher level of total phenolic content in AD leek is in accordance with the results of 

Mejia-Meza et al. (2010). They reported a higher TP content in air-dried raspberries 

compared to FD samples. The high retention of polyphenols by air-drying was also 

verified by Hossain et al. (2010). However, the higher TP levels in air-dried leek, are in 

contrast with Katsube et al. (2009), who found that air-drying at 60 °C resulted in 

significantly greater loss of polyphenol compounds in mulberry leaves than freeze-drying. 

Additionally, Asami et al. (2003) noted that freeze-drying preserved higher levels of TPs 

in berries in comparison with air-drying. Similar to our results, Kaspar et al. (2012) found 

equal amounts of total phenolic content present in FD and RWD potatoes. The same 

study demonstrated that FD retained as much anthocyanins as RWD. Nevertheless, a 

significant higher total phenol content was observed in RWD potato flakes compared to 

FD flakes (Nayak et al., 2011). 
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In our experiment, 5 polyphenol compounds could be quantified in the FD vs. AD dried 

leek samples. The AD leek samples were obviously rich in K3G, K, Q3G and K4’M, while 

I was more abundant in the FD samples.  

Nine individual polyphenols could be identified in the RWD vs. FD samples (this is in 

contrast with the fermented samples, where 14 individual polyphenols were quantified in 

the green leaves and 10 in the white shaft). Q3Rh, K3G and K were more present in the 

FD green leaves, while RWD green leaves were rich in Q3R, Q3G; Q3Ga and I were 

present in the same amount. Based on the quantification of these individual polyphenols, 

FD retained more polyphenols compared with RWD. 

In general, there is a tendency for glycosides to be more sensitive to dehydration 

compared to aglycones suggesting that deglycosylated polyphenols may have higher 

thermal resistance (Mejia-Meza et al., 2010). As air-drying operates at higher 

temperatures compared to freeze-drying, we expect higher amounts of glycosylated 

polyphenols in freeze-dried samples, which was not the case for our results. 

The observed higher polyphenol levels in AD leek samples are in accordance with the 

lower amounts of polyphenols including rosmarinic acid, salicylic acid, rutin and pedalitin 

in FD Rabdosia serra leaves compared with AD leaves (Lin et al., 2012). However, our 

results generally contrast with other studies. A higher polyphenol level was quantified in 

FD raspberries, kale leaves, mulberry leaves and purple willow leaves compared with the 

AD plant material (Julkunen-Tiitto and Sorsa, 2001; Asami et al., 2003; Katsube et al., 

2009; Mejia-Meza et al., 2010; Korus, 2011). 

Air-drying at temperatures higher than 60 °C is regarded unfavourable due to the 

possibility of inducing oxidative condensation or decomposition of thermolabile 

compounds. Freeze-drying, on the other hand, is reported to lead to higher extraction 

efficiency of polyphenols because freeze-drying can lead to the development of ice 

crystals within the plant matrix. Ice crystals can result in a greater rupturing of plant cell 

structure, which may allow for better solvent access and extraction (Keinanen and 

JulkunenTiitto, 1996). However, it has also been reported that freeze-drying showed a 

less pronounced damaging effect on the tissue structure than other drying methods 

(Yousif et al., 1999). Intact tissue structure might be very useful for a good appearance 

but, in relation to the antioxidant capacity of the extract, it acts as a barrier for the release 

of phenolic compounds in the extracts and results in lower antioxidant capacity, which 

can clarify our results. With air-drying there is little or no cell rupture and there is the 

added effect of heat, which can cause losses in polyphenols (Asami et al., 2003). In the 

study of Caparino et al. (2012), the microstructure of RWD mango powder was smooth, 

and flaky with uniform thickness as, during RWD drying, the thinly spread puree on the 

surface of the plastic film conveyor is undisturbed, except for the removal of moisture. 

The two sides of a single particle are smooth indicating more flow-ability and less 
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susceptibility to oxidation because of lesser surface area. FD mango powder showed a 

skeletal-like structure and was more porous than RWD powder. This is because the ice 

in the material during freeze-drying helps prevent shrinkage and collapse of the structure 

and shape resulting in an insignificant change in volume (Ratti, 2001).  

 

Based on the sum of the quantified individual polyphenols, air-drying pointed out to be 

the best technique in retaining polyphenols, followed by freeze-drying and refractance 

window drying. Similarly, Topuz et al. (2011) compared the influence of refractance 

window drying, freeze drying, oven drying and natural convective drying on carotenoids 

of pepper. The natural convective dried samples retained the highest amount of 

carotenoids. The losses of carotenes in carrots under freeze-drying (5.4%) and RW 

drying (9.9%) were low and of comparable magnitude, although freeze-drying 

consistently showed the highest retention (Abonyi et al., 2002). 

The lower ACSO levels in AD leek samples can be explained by the high temperature 

(70 °C) of the air-flow applied during air-drying in this study. Due to this, ACSOs will 

convert into volatile compounds, as discussed earlier (Chapter 8). The short drying 

period when applying RWD could be the reason for the higher retention of methiin 

compared to FD. 

Despite the studies in literature which prove the poor retention of antioxidants in air-dried 

plant material, our results revealed the antioxidative quality of air-dried leek. 

Moreover, this dried leek powder can create opportunities for applications in food/feed 

applications, as it is a source of a range of bioactive compounds. Similarly, studies were 

accomplished to investigate the effect on the antioxidant properties and sensory value of 

bread upon adding ground onion skin (OS). The antioxidant potential of bread with 2-3% 

OS was significantly higher than the activity noted in the control (Gawlik-Dziki et al., 

2013). 

 

9.6 Conclusion 

Despite the interesting antioxiant profile of the green leaves of leek, a large part remains 

unused. This large quantity of plant biomass could be valorised given the availability of 

an adequate stabilisation method. The application of 2 alternative value-adding 

processing and preservation methods (fermentation and drying) were investigated and 

described above. Our results demonstrate that application of natural fermentation of leek 

results in a higher antioxidant capacity and polyphenol content especially in the green 

leaves. These results indicate the nutritional relevance of fermentation, which can be a 

promising stabilisation technique for leek. Fermentation does not require extensive 

materials and is an inexpensive way to stabilise and preserve plant biomass such as 
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leek. In addition to fermentation, a second stabilisation route was investigated, namely 

drying. Many papers describe the poor quality of conventional dried products, compared 

to freeze-dried samples. Our results, however, are in contradiction with these studies, 

and suggest that this statement should not be generalised. Derived from the results of 

the antioxidant capacity assays, we can conclude that the leek samples analysed in this 

study, subjected to 3 drying methods, retained the same antioxidant capacity, with the 

exception of the higher ORAC value of air-dried green leaves and the higher DPPH 

value of the air-dried white shaft. Similarly, air-drying resulted in the highest total 

phenolic content compared with freeze-drying, while freeze-dried and refractance 

window dried samples exhibited equal amount of polyphenols. The analysis of individual 

polyphenols revealed again that, air-dried samples contained higher quantities of 

polyphenols than freeze-dried leek, while freeze-dried leek exhibited higher levels of 

polyphenols compared to refractance window dried samples. Although air-drying was the 

best drying technique in terms of retaining the antioxidant capacity and polyphenols, air-

drying resulted in high losses of the ACSOs compared to freeze-drying. In fact, 

refractance window drying was the best drying technique to retain methiin. In conclusion, 

when applying these methods under the described conditions, air-drying was evaluated 

to be good and inexpensive technique for the retention of antioxidants, such as 

polyphenols, but it was poor for retaining ACSOs. Freeze-drying and refractance window 

drying were comparable in retaining the antioxidants present in leek.  

In addition, this dried leek powder can create opportunities for applications in food/feed 

applications, as it is a source of a range of bioactive compounds but merits a more 

profound investigation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

CHAPTER 10. GENERAL 

DISCUSSION  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 



                                                                                                     CHAPTER 10  

229 

 

10.1 General discussion 

Leek (Allium ampeloprasum var. porrum) is one of the most important vegetables 

cultivated outdoors in Belgium, where it is cultivated on 4800 ha (Eurostat, 2012). It is 

grown for its cylindrical pseudo stem, which is blanched white from growing underground 

and is made up of long leaf bases. The main area of leek production in Belgium is 

situated in the region of West Flanders, which houses more than 75% of the leek 

production. Around 80% of harvested leek is sold for direct consumption, while the 

remainder is used in the agri-food processing industry. In 2010, 3.10 kg leek was 

purchased per capita in Belgium, which was higher than the purchase of courgette 

(1.78 kg), cauliflower (1.92 kg) and sweet pepper (2.29 kg) (VLAM, 2011). The white 

shaft is used in many culinary preparations, whereas the green leaves are considered 

inferior and are, therefore, usually only used in soups or discarded during harvesting and 

processing. 

Relating to health aspects, epidemiologic studies elucidated the reduction of the risk of 

colorectal, stomach, gastric and breast cancer upon the consumption of leek (Bianchini 

and Vainio, 2001; Zhou et al., 2011). Moreover, a population case-control study (238 

case subjects and 471 control subjects) conducted in Shanghai, revealed a significantly 

lower risk of prostate cancer upon a consumption of leek of more than 10 g day
-1

 

compared to a consumption of less than 2.2 g day
-1 

(Bianchini and Vainio, 2001; Hsing et 

al., 2002). These health benefits are attributed to a range of bioactive compounds 

present in Allium species, i.e. (1) sulfur-containing compounds, (2) polyphenols, (3) 

vitamins and (4) fructans (Havey et al., 2004). 

Although leek is a popular vegetable in many European countries, the limited scientific 

knowledge concerning its health-promoting compounds is in sharp contrast with the well-

documented health aspects of its related Allium species, i.e. onion, shallot, garlic. The 

objective of this PhD thesis was to develop knowledge on the presence of health-

promoting compounds in leek in order to complement the many reports focusing on 

these compounds in related Allium species. On the basis of novel scientific knowledge 

on health-promoting compounds in leek obtained in the present study, the dissertation 

aims to stimulate innovation in leek breeding, production, marketing and the 

consumption pattern of leek. 

To fulfil the objectives, the most important bioactive compounds present in Allium 

species, i.e. S-alk(en)yl-L-cysteine sulfoxides (ACSOs), polyphenols, vitamin C 

(ascorbate, AA) and fructans were analysed in leek as a function of different parameters. 

The specific research questions connected to this PhD research project were: (1) Which 

bioactive compounds are present in the white shaft and green leaves of leek? (2) Is there 

a difference in bioactive compound concentration among the range of current, 
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commercial and old leek cultivars? (3) Is there a difference in leek type (summer, autumn 

and winter types) with regard to its antioxidant properties, when harvested in their 

respective harvest season? (4) Does harvest time have an influence on the antioxidant 

concentration? (5) Where is leek, based on its content of health-promoting compounds, 

situated in the Allium genus? (6) Can we see a change in antioxidants upon post-harvest 

processing at the farm and subsequent refrigerated storage? (7) What is the amount of 

remaining antioxidants after domestic cooking processes? (8) How can we stabilise and 

valorise the amount of leek by-products generated during the currently used harvesting 

and processing methods? And finally, (9) what is the influence of these stabilisation 

processes on the content of antioxidants?  

These questions were answered in the present study.  

 

(1) Leek comprises a compact white shaft, growing underground and green leaves, 

which are more exposed to biotic and abiotic stress factors. The white shaft of the 

analysed leek cultivars was rich in ACSOs and fructans, while the green leaves 

possessed higher antioxidant capacities and higher amounts of AA and polyphenols. It is 

reported that polyphenol synthesis is stimulated by light, and as a result polyphenols will 

accumulate in the outer and aerial plant tissue, in case of leek the green leaves (Cortell 

and Kennedy, 2006). The higher AA levels in the sunexposed plant tissue is because AA 

is essential for protection against harmful side-effects of light during photosynthesis 

(Hancock and Viola, 2005). The lower ACSO content in the green leaves can be 

explained by the fact that sulfur is taken up from the soil by the roots as sulfate and 

therefore mature upper leek leaves will contain lower levels of ACSOs (Doran et al., 

2007). In addition, fructans are a carbohydrate reserve in stems and underground organs 

and will be more prominent in the white shaft of leek. 

 

(2) Statistically significant differences were observed among the 30 leek cultivars in 

terms of antioxidant capacity, total phenolic content, AA, ACSO and fructan content. Our 

results show that cultivars Uyterhoeven, Pretan and Fahrenheit F1 gave the highest 

oxygen radical absorbance capacity (ORAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) free 

radical scavenging activity and ferric reducing antioxidant potential (FRAP) value, 

respectively, while cultivars Toledo and Breugel F1 had the highest polyphenol levels. 

Fahrenheit F1 contained the highest AA levels, while Apollo F1 and Artico were 

especially rich in ACSOs. Zeus F1 was the cultivar with the highest fructan content. 

Based on these results, it is difficult to recommend a specific cultivar to leek growers, 

because it depends on the antioxidant compounds preferred. For example, some 

cultivars will have high kaempferol 3-O-glucoside levels, but a low fructan content. 

Therefore, the data generated from the present study can offer information on which 
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cultivar has high levels of specific antioxidants. Cultivars with complementary antioxidant 

profiles can serve as parent cultivars for crosses, resulting in a mapping population.  

 

(3) Concerning leek type, the white shaft of the summer cultivars had the highest 

content of fructans and quercetin 3,4’-O-diglucoside, while the white shaft of half of the 

autumn cultivars (Electra, Nebraska, Breugel F1 and Tadorn) was rich in kaempferol 

and kaempferol 3-O-glucoside. The white shaft of the winter cultivars and the other half 

of the autumn cultivars (Poribleu, Alcazar, Belton F1 and Pretan F1) contained the 

highest amount of ACSOs, AA, total phenolic content and possessed the highest 

antioxidant capacity. The green leaves of the winter cultivars contained the highest 

amount of ACSOs, fructans, total phenolic content, AA and FRAP, while the green part 

of half of the autumn cultivars (Electra, Breugel F1, Tadorna and Nebraska) was rich in 

3 flavonoid aglycones, i.e. quercetin, kaempferol and isorhamnetin and were also rich in 

kaempferol 3-O-glucoside and had a high ORAC value. The distinction between the 

three types can be explained by their genetic background, but as they were harvested on 

different moments, stress factors such as temperature, solar radiation, pathogens etc. to 

which the plants are subjected during their corresponding growth period, may also partly 

explain the different accumulation patterns of health-related compounds between the 

summer, autumn and winter leek.  

The lower fructan content in the winter leek cultivars can be attributed to the hydrolysis of 

fructans as also observed in Jerusalem artichoke bulbs during winter seasoning 

(Grzelak-Blaszczyk et al., 2011). 

The higher AA content in the green leaves of the summer and winter cultivars may be 

due to climatic conditions, including light and average temperature during growth and 

development of plant tissues, which have a strong influence on the AA content of 

horticultural crops. Although light is not essential for the synthesis of AA in plants, the 

amount and intensity of light during the growing season have a definite influence on the 

amount of AA formed (Lee and Kader, 2000). In general, the lower the light intensity 

during growth, the lower the AA content of plant tissues (Harris, 1975), which can explain 

the high values in the summer cultivars. In addition; average growth temperature also 

influences the composition of plant tissues during growth and development. It is stated 

that plants will contain more vitamin C when grown under cool temperatures, which can 

be an explanation for the higher AA levels in winter cultivars (Lee and Kader, 2000). 

The observed increase of the ACSO content towards the winter cultivars can be 

attributed to the role of these sulfur compounds in plants, that is defence against pests 

and predation, particularly in the overwintering bulb) and carbon, nitrogen, and sulfur 

storage and transport (Lancaster and Boland, 1990). These stress conditions can result 

in the conversion of the corresponding γ-glutamyl dipeptides to sulfoxides (Hornickova et 

http://www.sciencedirect.com/science/article/pii/S0925521400001332#BIB26
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al., 2010). The different accumulation pattern of ACSOs between the summer, autumn 

and winter leek types can also be explained by the genetic background and other 

environmental stress factors. Light radiation and water stress is reported to affect the 

biosynthesis of organosulfur compounds in onion (Freeman and Mossadeg, 1973). In 

addition, the average growing temperature as well as the root zone temperature (RZT) 

could strongly affect the flavour composition of onion (Coolong and Randle, 2006). 

However, a detailed understanding of the influence of environmental factors and their 

interactions with agricultural practices in relation to ACSOs present in leek is still lacking.  

 

(4) In order to investigate the influence of harvest time on the antioxidant levels of leek in 

more detail, 9 leek hybrids were harvested on 4 harvest times along the next growing 

season (2010). In general, we could observe a significant difference between the four 

harvest times (Sept ’10, Nov ’10, Jan ’11, Mar ’11), based on the different antioxidant 

parameters. More specifically, there was a clear distinction in antioxidant levels between 

harvest in September and harvest in November, and between harvest in 

September/November and the other 2 months. Harvest in January or March resulted, for 

most of the cultivars and both leek parts, in a higher antioxidant capacity and polyphenol 

levels, while harvest in September had a positive influence on the ACSO content.  

In addition, there were dissimilarities between the 9 leek hybrids grown in 2009 and 2010 

based on the antioxidants, except for methiin. The cultivars from 2009 showed higher 

levels compared with those of 2010. These differences in antioxidant levels could be 

attributed to the different meteorological conditions or different soil properties (mineral 

content, pH) and disease treatments, affecting the results obtained during these two 

growing seasons. The average month temperature in November and December was 

much lower in year 2010 in comparison with year 2009, which can be a reason for the 

year differences. The soil analyses indicated that the soil of season 2009 had a higher 

mineral content (P, K, Mg, Ca, Na) compared to the soil of 2010. A higher mineral 

content can be responsible for higher antioxidant levels in the plant as some studies 

report a correlation between minerals and antioxidants. For example, an enhanced K-

fertilisation increased the level of phenolic compounds and the corresponding antioxidant 

capacity in sweet potatoes leaves (Redovnikovic et al., 2012). The difference in N-

fertilisation and disease treatment between the two years (no insecticide in 2010 

because no thrips appearance) could be another explanation. For example, soaking 

plants in a fungicide (phosphite) solution prior planting was effective in activating 

strawberry defence mechanisms, since fruit ascorbic acid and anthocyanin content 

increased (Moor et al., 2009). Similarly, lower levels of isoalliin were found in the roots 

and bulbs of white rot (Sclerotium cepivorum) resistant onions compared to susceptible 

cultivars (Hovius and Goldman, 2005).  
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(5) Because it is relevant to have knowledge on the (dis)similarities between leek and its 

related Allium species with regard to the antioxidant properties, analyses were performed 

on 6 related Allium species, including A. kurrat, A. odorum (Chinese leek), A. 

schoenoprasum (chives), A. cepa (white and red onion), A. fistulosum (bunching onion) 

and A. ascalonicum (shallot). Based on the results, the antioxidant properties of the 

white shaft of leek was closely related to the antioxidant potential of the bulb of A. kurrat 

and A. cepa (white onion), while the green leaves of leek resemble the antioxidant profile 

of A. schoenoprasum and A. fistulosum. A. odorum and A. cepa (cv. Red Creole) were 

the species with largest antioxidant differences compared to leek. These species were 

higher in methiin and flavonoid content, respectively.  

Our analyses proved the bioactive compound value of leek and the intake of antioxidants 

coming from Allium species. In addition to the difference in antioxidant properties of 

Allium species, consumption and way of use of the Allium species are different as well. 

Onion, garlic and chives are universally used spice plants and are extensively used for 

food flavouring (Augusti, 1990), while leek and bunching onion are more important as 

vegetables with additional flavouring properties (Fritsch and Keusgen, 2006). Chives are 

usually served in small amounts and never as the main dish (Stajner et al., 2011). In 

conclusion, taking serving sizes and consumption habits into account, daily intake of 

antioxidants coming from leek is of larger importance than that from other Allium species.  

 

(6,7) Chapters 4, 5 and 6 have focused on the determination of antioxidants in raw and 

freshly harvested Alliums. However, the evaluation of the impact of post-harvest storage 

and domestic food processing on the health benefits of vegetables is also of great 

practical importance.  

Our results showed that cooking highly influenced the antioxidant capacity of leek, while 

storage did not have an impact on the antioxidants. Similarly, the antioxidant capacity 

and total phenolic content of asparagus spears were also highly influenced by domestic 

preparation practices (peeling and cooking) but not by storage (Papoulias et al., 2009). 

In general, the antioxidant capacity and the total phenolic content in the white shaft and 

green leaves of the entire and packaged leek was stable during 13 days of refrigerated 

storage. However, a slight increase in isoalliin level could be observed after a period of 

cool storage. It is reasonable to argue that the γ-glutamyl peptides were slowly degraded 

by an increased activity of a transpeptidase during storage to yield the corresponding 

ACSOs. The difference between the antioxidant properties of the white shaft of the entire 

leek and the packaged leek was minimal, except for the lower ACSO values in packaged 

leek.  

 



General discussion 

234 

 

In contrast with boiling, our study demonstrated an obvious increase in the antioxidant 

capacity of the green leek leaves after steaming. Roy et al. (2007) assumed that, heating 

Alliums for a longer period may generate or modify some components which are more 

antiradical than their status in raw vegetables caused by 2 possible mechanisms: (1) 

formation of brown products and (2) destruction of pro-oxidant substances.  

Boiling had a negative effect on total phenolic content in the white shaft and green 

leaves. Moreover, the losses in the total phenolic content of processed leek upon boiling 

are generally not attributed to a chemical breakdown of flavonoid conjugates or formation 

of new compounds, but rather to the leaching of phenolic compounds into the cooking 

water (Price et al., 1997; Crozier et al., 1997; Hirota et al., 1998; Makris and Rossiter, 

2001; Xu and Chang, 2008). Therefore, soups are a good source of polyphenols. Some 

studies, however, report an increase in polyphenols after a heat treatment on onion and 

tomatoes (Stewart et al., 2000; Woo et al., 2007). This can be explained by the fact that 

processing could increase the flavonoid extractability from the matrix in subsequent 

assays resulting in a higher apparent content.  

In contrast with boiling, steaming did not have an influence on the polyphenolic content.  

In general, the degradation of polyphenols is a function of the sensitivity of the 

compounds, processing method, magnitude of heating, pH, the presence of oxygen and 

other phytochemicals in the medium (Friedman, 1997; Buchner et al., 2006). 

It is remarkable that blanching resulted in a slight increase in the ACSO content. But, 

applying a longer thermal treatment on leek samples had a negative influence on the 

content of methiin and isoalliin. Methiin was less susceptible to cooking compared to 

isoalliin. To explain this, it is found that alliinase acts quickly, but differently on the 

individual ACSOs, such that some of the flavour precursors are more completely 

degraded than others (Lancaster et al., 1998). 

In general, steaming seemed to be responsible for a better retention of the bioactive 

compounds present in leek. The difference between steaming and boiling can be 

attributed to the higher contact of the leek particles with water in case of boiling, resulting 

in leachate of water soluble antioxidants in the boiling water.  

 

(8,9) Despite the interesting bioactive compound profile of the green leek leaves, it is 

often only the white shaft that is used in many culinary applications, whereas the green 

leaves are considered inferior and are therefore, usually only used as ingredient in 

soups. A large part of the green biomass of leek is left behind on the fields during 

harvest (leek for processing industry) or removed during product preparation for the fresh 

market and processing. This large quantity of leek biomass in Belgium, i.e. 38 400 – 

57 600 ton year
-1

, could be valorised given the availability of an adequate stabilisation 
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method, as there is an increasing demand towards the agri-food sector for recovery, 

bioconversion and maximal utilisation of valuable constituents from food wastes.  

The application of 2 alternative value-adding processing and preservation methods, 

including lactic acid fermentation and drying, were therefore investigated with regard to 

the retention of the antioxidant properties. Fermentation does not require extensive 

materials and is an inexpensive way to stabilise and preserve plant material. 

Fermentation of leek resulted in a higher antioxidant capacity and polyphenol content 

especially for the green leaves. After 21 days of fermentation, new polyphenolic 

compounds were found such as hydroferulic acid, quercetin 3-O-rutinoside, quercetin 3-

O-arabinoside, naringenin and dihydroquercetin, while sinapinic acid disappeared. The 

contents of ferulic acid, kaempferol 3-O-glucoside, luteolin and naringenin increased 

significantly after a leek fermentation process of 21 days compared with the initial 

concentration, while the caffeic acid content decreased.  

The qualitative changes in polyphenols during fermentation could indicate that lactic acid 

bacteria are capable of producing β-glucosidase, which catalyses the cleavage of sugar 

linkages during fermentation (Tsangalis et al., 2002). Moreover, as several forms of 

glycosides conjugated to quercetin in onion have showed lower antioxidant capacity than 

that of the quercetin aglycone (Manach et al., 1998), the conversion of quercetin 

glucoside into quercetin by fermentation is a promising strategy to enhance the 

bioavailability and bioactivity of onion (Yang et al., 2012). In contrast with fermentation, 

tamping was responsible for great losses in polyphenols. These losses are mainly due to 

leaching from cut or bruised surfaces and enzymatic reactions, as after harvest or upon 

cellular fragmentation enzymes are free to react with polyphenols leading to significant 

losses.  

In general, these fermentation results indicate the nutritional relevance of fermentation, 

which can be a promising stabilisation technique for leek. Furthermore, the introduction 

of fermented leek as a new food product or ingredient onto the market will require its 

acceptance by the consumer, a key factor for its potential marketing success (Sivakumar 

et al., 2010). In the study of Wouters (2013), the acceptability of fermented leek was 

evaluated through consumer tasting sessions. The sensory analysis of this study 

revealed that acceptable end-products were obtained through the fermentation of white 

and green leek parts together, masking the odour and flavour intensity of the fermented 

green parts.  

In addition, a second possible stabilisation method was investigated, namely drying. 

Drying brings a substantial reduction in weight and volume, which minimises packaging, 

storage and transportation costs (Sobukola et al., 2007). Moreover, products with low 

moisture content can be stored at ambient temperature for longer periods of time due to 

a considerable decrease in the water activity of the material, reduced microbiological 

http://www.sciencedirect.com/science/article/pii/S0278691512002499#b0120
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activity and minimised physical and chemical changes (Ozgur et al., 2011). However, 

food products are sensitive to drying temperature, which can induce degradation (e.g. 

oxidation, loss of colour, shrinkage or loss in texture) of nutritional/functional properties 

(Attanasio et al., 2004). Many papers describe the poor quality of conventional air-dried 

products, compared to freeze-dried samples. Our results, however, are in contradiction 

with these studies, and suggest that this statement should not be generalised. Derived 

from the results of the antioxidant capacity assays, we can conclude that leek samples, 

subjected to 3 drying methods, retained the same antioxidant capacity, with the 

exception of the higher ORAC value of air-dried green leaves and the higher DPPH 

value of the air-dried white shaft. Similarly, air-drying resulted in the highest total 

phenolic content compared with freeze-drying, while freeze-dried and refractance 

window dried samples exhibited equal amount of polyphenols. The analysis of individual 

polyphenols revealed again that, air-dried samples contained higher quantities of 

polyphenols than freeze-dried leek, demonstrating the thermostability of polyphenols. 

Freeze-dried leek on his turn exhibited higher levels of polyphenols compared to 

refractance window dried samples. Although air-drying was the best drying technique in 

retaining the antioxidant capacity and polyphenols, air-drying resulted in high losses of 

the ACSOs compared to freeze-drying. In fact, refractance window drying was the best 

drying technique to retain methiin.  

 

In addition, the present study reported the identification of 13 individual polyphenols in 

the white shaft and green leaves of leek with the U-HPLC-Orbitrap-MS/MS method (JHI). 

Six polyphenols, including kaempferol/quercetin 3-O-sophoroside, kaempferol 3-O-

gentiobioside, kaempferol 3,7-O-diglucoside, kaempferol 4’-methylether and ferulic acid 

4-O-glucoside, had not yet been identified in leek and other Allium species. In addition to 

the 13 polyphenols identified in leek, 5 extra compounds could be identified in the related 

Allium species, including quercetin 7-O-glucoside, quercetin 4’-O-glucoside, 

isorhamnetin 4’-O-glucoside, quercetin 3,7-O-diglucoside and isorhamnetin 3,4’-O-

diglucoside. The U-HPLC-Orbitrap-MS (VITO) additionally identified the polyphenols 

luteolin, quercetin 3-galactoside, quercetin 3-rutinoside, quercetin 3-arabinoside, 

quercetin 3-rhamnoside, naringenin, dihydroquercetin, propyl gallate, ferulic acid, 

hydroferulic acid, caffeic acid, epicatechin and catechin in leek. In summary, 26 

polyphenols were identified in leek using both U-HPLC-Orbitrap methods.  
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10.2 Innovative leek products 

There is an obvious increase in demand for the valorisation of the green leek leaves, by 

companies such as Groentenhof (Bornem, Rudy Croket), Ons dagelijks groen (Meldert, 

Luc De Neef), Fracha (Meulebeke, Franky Neirynck) and Provalor (Vijfhuizen, Piet Nell). 

Therefore, dried leek powder can be part of the valorisation process and can create 

opportunities for applications in different food products. A preliminary investigation of 

different food products, fortified with different concentrations of dried (AD or FD) leek 

powder derived from green leaves was accomplished, e.g. leek bread, leek cheese. 

These food products were investigated in collaboration with Hogeschool Gent, 

Katholieke Hogeschool Sint-Lieven (Gent), Katholieke Hogeschool Zuid West-

Vlaanderen (Roeselare), Bakkerij Schepens (Schelderode) and Beverse Kaasmakerij 

(Bever). Preliminary tests (texture, taste, etc.) were accomplished, but further studies 

and product development is needed to exploit the full potential of these products. Leek 

bread, cheese, pasta and croquettes are promising products. 

 

Our explorative research resulted in the collaboration with ‘Ons dagelijks groen’, an 

innovative leek company. In October 2012, they started to sell leek soup, leek bread and 

leek cheese in roadside dispensers to create a direct relation with the consumer and 

contribute to a sustainable environment. Green leek leaves, dried using the excessive 

thermal energy available within the company ‘Ons Dagelijks groen’, are used in the 

production of leek bread and leek cheese which is marketed in this way. 

The exploitation of by-products from vegetable processing for application in food is a 

promising field which requires interdisciplinary research. Many efforts have been made 

to valorise by-products of vegetables (Schieber et al., 2001). Similarly, because of the 

demand for processed onions, an increase was established in waste production (more 

than 500 000 tonnes annually). Therefore, onion producers and processors, regulatory 

authorities and consumer groups were all interested in developing alternative means for 

the valorisation of the onion waste to promote its profitable usage and it subsequent 

conversion into food grade products (Gonzalez-Saiz et al., 2008). The major by-products 

resulting from industrial peeling of onion bulbs are the brown skin, the outer 2 fleshy 

leaves and the top and bottom bulbs. Owing to their strong characteristic aroma and their 

susceptibility to phytopathogens, onion wastes are not suitable as fodder. However, they 

are a source of flavour components, fiber compounds and are particularly rich in 

quercetin glycosides (Schieber et al., 2001; Benitez et al., 2012). In fact, several studies 

have reported the valorisation of onion by-products as potential source of different 

valuable food ingredients, including several biological approaches dealing with ethanol, 

vinegar and lactic acid production from onions by fermentation (Horiuchi et al., 2000; 
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Roberts and Kidd, 2005). Production of snacks from onion pomace has also been 

reported (Kee et al., 2000). 

This could be achieved for leek production as well. Figure 10.1 presents a possible 

strategy to valorise the green leek leaves. After a drying and milling step, the obtained 

powder can be used in many food commodities.  

 

 

 
Figure 10.1 Strategy for the valorisation of the green leek leaves 
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However, in addition to the technical feasibility, the economic and commercial aspects 

deserve further attention. 

To solve the challenges of implementing innovative products on the market, the 

GeNeSyS (Use of By-Products as System Innovation) project was developed. The 

GeNeSyS project is the first Coordinated Action within ILVOs research strategy, entitled 

ILVO2020. The aim of GeNeSyS is to perform trans disciplinary research in an 

innovative way: bundling the expertise present in various scientific disciplines. This study 

will include different analyses, including an economic assessment. Freeze-drying for 

example, demands additional energy consumption, and therefore it will result in a higher 

operational cost. An additional transportation cost should be accounted as well. 

Moreover, logistic aspects have to be taken into account. In general, the commercial 

implementation is a complex approach depending on several parameters that should be 

considered in future research projects. 

Besides a better closure of the cycles of resource use, valorisation of green leek leaves 

could also contribute in solving some ecological problems. Such biowastes constitute an 

environmental problem on the field as they contain large quantities of nitrogen and 

phosphorous and they also have a high water content. This makes them susceptible to 

rapid modification by micro-organisms, with leachate formation and gas emission, e.g. 

N2O, a major greenhouse gas and air-pollutant.  

 

10.3 Relation with human health 

Interest in the role of bioactive compounds in human health has promoted research in 

the field of horticulture and food science to evaluate fruit and vegetables antioxidants 

and to determine how their content and activity can be maintained or even improved 

through crop breeding, cultural practices and post-harvest storage and processing. 

The present study elucidated the antioxidant capacity of 30 leek cultivars and different 

processed samples. Importantly, the antioxidant capacity cannot be used to predict what 

effect or benefit an antioxidant substance will have within the human body in attenuating 

free radical production or coping with oxidative stress. As an in vitro test, the antioxidant 

capacity assays cannot predict such in vivo effects. In addition to the antioxidant 

capacity, specific bioactive compounds were analysed which are attributed to the health 

benefits of Allium species. 

The present study reported the identification of 26 individual polyphenols in the white 

shaft and green leaves of leek. Different health benefits are attributed to these 

polyphenolic compounds. For example, quercetin, kaempferol and isorhamnetin, 3 main 

flavonoid aglycones, have been shown to have inflammatory effect on activated 

macrophages (Hamalainen et al., 2007). In addition, quercetin and kaempferol show 
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chemopreventive properties in brain tumours and synergistically suppress cell 

proliferation in human gut cancer lines (Ackland et al., 2005; Labbe et al., 2009). The 

consumption of 300 g of onion per day was shown to clearly increase the amount of 

quercetin in plasma (Moon et al., 2000). High intakes of kaempferol resulted in a lower 

risk of coronary heart disease (Lin et al., 2007). 

Ferulic acid, a phenolic acid, which increased during fermentation experiments, acts as a 

well-known antioxidant, effective in scavenging peroxyl radicals and other active oxygen 

species like superoxide and hydroxyl radical (Kikuzaki, 2003). It has an inhibitory effect 

on 4-nitroquinoline 1-oxide induced rat tongue carcinogenesis (Tanaka et al., 1993).  

It is known that Alliums possess induced antiplatelet activity which is mainly attributed to 

the organosulfur compounds and flavonoids. Data show that 150 mg and 300 mg 

quercetin 4’-O-glucoside ingested orally in humans resulted in platelet inhibition 30 min 

and 120 min after ingestion. Subjects given a diet containing onion slices 3 times a day 

(260-360 g day
-1

) for 1 week resulted in an equivalent of 67.6-93.6 mg day
-1

 of quercetin 

ingestion. It’s concentration in the plasma increased from 0.04 ± 0.04 µM before the trial 

to 0.63 ± 0.72 µM after the trial. These studies suggest that onion quercetin conjugates 

are accumulated in the plasma and may provoke antiplatelet effects if ingested at a high 

enough dose (Moon et al. 2000; Hubbard et al. 2004). However, cooking can destroy this 

antiplatelet activity (Hansen et al. 2012).  

Flavonol (subclass of the flavonoids) intakes have been reported to vary widely across 

countries, with some of the lowest intakes being reported for northern European 

populations, whereas populations from the United States and other European countries 

have among the highest reported intakes. In Western populations, estimated daily intake 

is in the range of 20-50 mg flavonols day
-1

 (Hertog et al., 1994; Knekt et al., 1996; Hertog 

et al., 1997), which corresponds with approximately 100 g of dried green leek leaves or 

666 g fresh green leaves (85% water content), depending on the cultivar. However, a 

daily consumption of 180 mg of flavonoids expressed as the quercetin equivalent 

demonstrates a positive health effects (Harwood et al., 2007). 

The recommended daily intake for an adult of vitamin C amounts 70 mg, which 

corresponds with approximately 12.5 g of dried green leaves or 83.3 g fresh green 

leaves (85% water content), depending on the cultivar. 

Fructans stimulate the growth of specific microorganisms in the colon (e.g. bifidobacteria, 

lactobacilli) with generally positive health effects. A minimal dose of 2.5 g of fructans is a 

condition upon which a bifidogenuous effect takes place (Guigoz et al., 2002). This 

amount corresponds with 36.54 g dried green leaves or 243.6 g fresh green leaves, 

depending on the cultivar.  

 

 

http://www.sciencedirect.com/science/article/pii/S0014299912005390#bib34
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10.4 Originality  

Reports on the effect of different parameters (genetics, harvest time and processing) on 

the antioxidant capacity, polyphenol, vitamin C, ACSO and fructan content of the white 

shaft and green leaves of leek are scarce. Moreover, this is the first study that revealed 

the antioxidant properties of a range of commercial and less common leek cultivars, a 

collection which was mainly realised by the ILVO research group Crop Husbandry and 

Environment. In addition, this study revealed the presence of polyphenolic compounds, 

which have never been identified in Allium species. To our knowledge this is the first 

report on the evolution of antioxidants based on leek season, post-harvest storage and 

processing. Moreover, the initial phase in the valorisation of the leek leaves, i.e. 

stabilisation by fermentation and drying, was executed. This study is original and can 

result in an added value to the leek breeding community, leek growers and processors 

and finally to the consumers. 

 

10.5 Recommendations and future perspectives 

Recent trends encourage breeders to use health benefits and antioxidant characteristics 

as a quality parameter of fruits and vegetables in plant breeding programs. Therefore, 

novel tools are developed to improve future coupling of genetic and metabolomic data. 

However, despite the fact that leek is an important vegetable crop, it is poorly known in 

the genetic and molecular aspects as compared to A. cepa. Conventional leek breeding 

could benefit from the use of molecular marker technology, the so-called marker-assisted 

breeding. At present, there are only a limited number of studies reporting about the 

development and use of molecular markers in leek breeding (HRI, 2004). For example, 

Filjushin et al. (2011) reported the development of 24 AFLP markers in leek in order to 

analyse the leek genome, i.e. the choice of restriction endonucleases and primer 

combinations for revealing polymorphism and genotyping of the accessions. A detailed 

genetic map of leek is not available within the public domain (Filjushin et al., 2011), but is 

most likely developed by commercial leek breeding companies. In the future, the 

knowledge of positions of markers closely linked to the presence of health-promoting 

compounds on the leek genetic maps, will help in marker assisted breeding towards 

genotypes with higher content of the phytochemicals of interest. Examples of this 

approach appear more and more and were e.g. demonstrated for apple (Khan, 2012).   

The availability of data on antioxidant levels in leek can be considered as an important 

criterion for selection of genotypes from a gene bank for use in crop improvement or 

other research-related or commercial activities. This study revealed the variability in 

antioxidants between a range of 30 leek cultivars. This variability is necessary in 
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breeding experiments, because it allows to distinguish possible cross parents (cultivars), 

rich in a specific bioactive compounds or with complementary biochemical profiles.  

 

Similarly, the Nunhems seed company has embarked on the challenging endeavour to 

identify and manage the host of plant compounds that influence flavour and nutrition 

(Nunhems, 2012). In addition, the seed company Bejo is also focussing on healthier 

cultivars, for example the ‘scheutjebroccoli’ (Figure 10.2). The ‘scheutjesbroccoli’ 

contains 10 times more glucoiberin, a glucosinolate, compared to standard broccoli 

(Bejo, 2012). 

 

 

 

Health-promoting compounds can also be linked to the resistance of pests and diseases. 

Based on the results from the study of Hovius and Goldman (2005), breeders can screen 

onions for resistance to white rot (Sclerotium cepivorum Berk.) by comparing onion root 

or bulb isoalliin levels. White rot incidence in the field should be higher in those plants 

whose roots and bulbs have the highest levels of isoalliin.  

In general, the present study can recommend leek growers to use specific cultivars, 

types and practices in order to maximise content of specific health-promoting 

compounds and antioxidant concentrations more specifically and as such improving 

existing leek cultivars. 

Moreover, the related species analysed in Chapter 6 can be used for interspecific 

hybridisation in order to widen the genetic variation of leek. More specifically, they can 

be introduced in leek breeding programmes in order to allow the introgression of 

desirable traits such as disease resistance, but also taste, flavour and health-promoting 

compounds (HRI, 2004; Chuda and Adamus, 2009). For example, Q 7-G, Q 4-G and I 4-

G were polyphenols which were present in A. cepa, A. fistulosum and A. ascalonicum, 

but were not detected in A. ampeloprasum var. porrum. In addition, A. odorum had 

significantly higher levels of ascorbate and methiin compared with leek. Moreover, alliin, 

http://www.google.be/url?sa=i&rct=j&q=scheutjesbroccoli&source=images&cd=&cad=rja&docid=1CKh5ypa3nuA5M&tbnid=dGeHNJJqBv5mxM:&ved=0CAUQjRw&url=http://www.bejo.nl/nl/ipaper/scheutjesbroccoli.aspx&ei=CVw3UbfUF4el0AXrwoGQCQ&bvm=bv.43287494,d.ZWU&psig=AFQjCNFQUP1d8P-Q1msTVG-PRLfcrAc9FA&ust=1362668910047527
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an ACSO which was not detected in leek, was present in significant amounts in A. 

odorum. 

Additionally, the present study can recommend consumers with regard to the maximum 

maintenance of antioxidants upon domestic processing. Moreover, the study can 

stimulate the valorisation of the green leaves of leek or waste streams of other plant 

material in general. In addition, the increasing demand from leek growers for the 

development of new possibilities for the limited used green part is a positive trend. ‘Ons 

dagelijks groen’ (Meldert, Belgium), is an innovative leek company, who started in 

October 2012 with a new concept relating to short chain sale. The combination of 

research on bioactive compounds and the increasing demand for innovation is a good 

basis for the realisation of leek innovation and diversification. 

In the present study, the bioactive compound value of leek was described, but other 

crops in Flanders can be interesting as well. They can be interesting in terms of their 

bioactive compound profile, but moreover, they can be of interest relating to their 

valorisation potential. Leaves of cauliflower (16500 ton dw of waste) and Brussels 

sprouts stems (6500 tonnes dw of waste) are possible projects (CINBIOS, 2011). 

In addition, the fructan analysis should be further optimized as some problems arise 

running the method. 

 

Furthermore, this research fits in the scope of stimulation of the consumption of 

vegetables. According to the World Health Organization (WHO) an intake of minimum 

400 g of fruit and vegetables per day is recommended (excluding potatoes and other 

starchy tubers) for the prevention of chronic diseases such as heart disease, cancer, 

diabetes and obesity, as well as for the prevention and alleviation of several 

micronutrient deficiencies, especially in less developed countries. In addition to 

antioxidants, dietary fibres play an important role in the prevention of these diseases. In 

line with the request by the WHO, a number of programs have been started in various 

countries all around the globe to encourage the sufficient consumption of fruit and 

vegetables each day. They are carried out under different names, but most widely known 

is probably the “5 A Day” campaign (eating at least 5 portions of fruits and vegetables 

per day). However, the general message is in many countries transformed into other 

campaign names, such as “2x2” in the Netherlands, “3x3” in Hungary or “6 om dagen” in 

Denmark and ‘all day long’ in Belgium (Enjoy Fresh, 2012), all promoting the 

consumption of fruits and vegetables. 

In addition to promotion, diversification in product assortment will be another way to 

increase vegetable consumption around the world. That’s why the seed company Rijk 

Zwaan has selected a number of varieties that suit the wishes of the modern consumer 

perfectly: ready-to-eat, bite-size vegetables with a great taste. Examples are ready-to-
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eat, honey-sweet plum tomatoes and small, handy-sized and crunchy cocktail 

cucumbers (Rijk Zwaan, 2012).  

 

10.6 Conclusion 

This study focused on 2 aspects. First, the health promoting compounds were evaluated 

in leek, an important vegetable in Flanders, as a function of genetic diversity, harvest 

time and processing. Second, this project investigated potential valorisation routes for 

the large amount of leek by-products, generated during harvesting and processing.  

Leek tissue, type of cultivar and harvest time had a clearly impact on the antioxidant 

properties. Leek could be stored for 13 days under refrigerated conditions without a 

negative impact on the antioxidant properties. Steaming of the green leaves resulted in 

an increase of antioxidant capacity, while boiling had a negative effect on total phenolic 

content in the white shaft and green leaves. Heating (boiling and steaming) leek samples 

had a negative influence on the content of methiin and isoalliin. In general, steaming 

seems to be responsible for a better retention of the bioactive compounds present in 

leek. 

Moreover, we have shown evidence for the potential of stabilisation of the green leaves 

of leek in order to valorise the leek by-products. Two stabilisation methods, including 

fermentation and drying, were evaluated and revealed nutritional advantages. Using leek 

powder as ingredient in different food products can be a first step in the valorisation of 

the by-products in leek production. However, economic risks need to be significantly 

reduced, before companies and/or leek growers will be willing to invest in the 

stabilisation of leek and the commercialisation of leek products. 

The combination of the two aspects in this study can help to strengthen the position of 

leek in Belgium and can stimulate the consumption of leek and vegetables in general.  
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SUMMARY 

Leek (Allium ampeloprasum var. porrum) is one of the most important vegetables 

cultivated outdoors in Belgium. Besides their economic importance, they are a source of 

several bioactive or health-promoting compounds including 4 important chemical groups 

that have perceived benefits to human health, i.e. the S-alk(en)yl-L-cysteine sulfoxides 

(ACSOs), polyphenols, vitamins and fructans. Moreover, epidemiologic studies 

elucidated the reduction of the risk of prostate, colorectal, stomach and breast cancer 

when leek is consumed. On the one hand, the present study identified and quantified 

bioactive compounds in fresh leek for a range of leek cultivars and as a function of 

harvest time. On the other hand, the behaviour of these compounds was investigated 

during different processing/stabilisation techniques. 

 

Although leek is a popular vegetable in many European countries, the limited scientific 

knowledge concerning its health-promoting compounds is in sharp contrast with the well-

documented health aspects of its related Allium species, i.e. onion, shallot, garlic. The 

objective of this PhD thesis was to develop knowledge on the presence of health-

promoting compounds in leek in order to complement the many reports focusing on 

these compounds in related Allium species. On the basis of novel scientific knowledge 

on health-promoting compounds in leek obtained in the present study, the dissertation 

aims to stimulate innovation in leek breeding, production, marketing and the 

consumption pattern of leek. 

 

Chapter 1 included a general introduction and the objectives of the present study. 

Chapter 2 gave a brief summary concerning the current position of leek production in 

Belgium and abroad. Leek was described from two different angles: leek as a crop and 

leek as a food product. Moreover, the presence and properties of bioactive compounds 

was discussed in Chapter 2. Chapter 3 described the experimental design, including the 

selected plant material, the sampling procedure and further sample preparation for each 

experiment. The analytical and statistical methods were discussed in this chapter as 

well. 

In Chapter 4, statistically significant differences among 30 commercial and less common 

leek cultivars were discussed in terms of antioxidant capacity, polyphenols, ascorbate, 

ACSOs and fructan content. The antioxidant properties of the leek extracts were 

influenced by leek tissue (white shaft/green leaves) and type of cultivar 

(summer/autumn/winter type) to a large extent, whilst the manner of breeding (F1 

hybrids/open pollinated) had no significant influence on the antioxidant properties. The 

green leaves of most cultivars contained a higher antioxidant capacity, ascorbate and 
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polyphenol content, while the white shaft was rich in ACSOs and fructans. The 

dissimilarities between the three leek types could be explained by their genetic 

background, but because of their different harvest times, stress factors such as 

temperature, solar radiation, pathogens etc. to which the plants were subjected may also 

partly explain the different accumulation patterns of health-promoting compounds 

between the summer, autumn and winter leek. Therefore, Chapter 5 elucidated the effect 

of harvest time on the antioxidant properties in 9 F1 leek cultivars, harvested at 4 times 

during the leek growing season. Harvest time had a clear effect on antioxidant levels, in 

addition to the effect of cultivar. A clear distinction between harvest in September and 

harvest in November was observed, together with the difference between 

September/November and the other 2 months (January/March). Harvest in January or 

March resulted, for most of the cultivars and both parts, in a higher antioxidant capacity 

and polyphenol levels. Harvest in September had a positive influence on the ACSO 

content.  

Chapter 6 elucidated the difference between leek and some of its related Allium species 

with regard to the antioxidant properties. Based on the results, the antioxidant properties 

of the white shaft of leek were closely related to the antioxidant potential of the bulb of A. 

kurrat (Egyptian leek) and A. cepa (onion), while the green leaves of leek resembled the 

antioxidant profile of A. schoenoprasum (chives) and A. fistulosum (bunching onion). A. 

odorum (Chinese leek) and A. cepa (cv. Red Creole, red onion) were the species with 

different antioxidant properties compared to leek. These species were higher in methiin 

and flavonoid content, respectively.  

The evaluation of the impact of post-harvest storage and domestic food processing on 

the health benefits of vegetables is also of great practical importance and was 

demonstrated in Chapter 7 and Chapter 8, respectively. The antioxidant capacity was 

highly influenced by cooking but not by storage. In general, the antioxidant capacity and 

the total phenolic content in the white shaft and green leaves of the entire and packaged 

leek was stable during 13 days of storage at 4 °C. A slight increase in isoalliin level could 

be observed after a cool storage period. The difference between the antioxidant 

properties of the white shaft of the entire leek and the packaged leek was minimal, 

except for the lower ACSO values in packaged leek.  

An obvious increase could be observed in the antioxidant capacity of the steamed green 

leaves. Boiling had a negative effect on total phenolic content in the white shaft and 

green leaves. In contrast with boiling, steaming did not have an influence on the 

polyphenolic content. It is remarkable that blanching resulted in a slight increase in the 

ACSO content. Applying a longer-duration thermal treatment to leek samples negatively 

influenced the content of methiin and isoalliin. In general, steaming seemed to be 

responsible for a better retention of the bioactive compounds present in leek. 
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The white shaft is used in many culinary applications, whereas the green leaves are 

considered inferior and are, therefore, usually only used in soups or even left behind on 

the fields or during processing. The application of 2 alternative value-adding valorisation 

methods, including lactic acid fermentation and drying, were therefore investigated in 

Chapter 9 with regard to the retention of the antioxidant properties. The results of 

Chapter 9 demonstrate the higher antioxidant capacity and polyphenol content upon 

fermentation especially in the green leaves. These results indicated the nutritional 

relevance of fermentation, which can be a promising stabilisation technique for leek. 

Fermentation does not require extensive materials and is an inexpensive way to stabilise 

and preserve plant material such as leek.  

Leek samples subjected to 3 drying methods retained their antioxidant capacity, with the 

exception of the higher ORAC value of air-dried green leaves and the higher DPPH 

value of the air-dried white shaft. Similarly, air-drying resulted in the highest total 

phenolic content compared with freeze-drying, while freeze-dried and refractance 

window dried samples exhibited equal amounts of polyphenols. The analysis of 

individual polyphenols revealed again that, air-dried samples contained higher quantities 

of polyphenols than freeze-dried leek, while freeze-dried leek exhibited higher levels of 

polyphenols compared to refractance window dried samples. Although air-drying was the 

best drying technique in retaining the antioxidant capacity and polyphenols, air-drying 

resulted in high losses of the ACSOs compared to freeze-drying. In fact, refractance 

window drying was the best drying technique to retain methiin.  

 

The present study revealed novel scientific knowledge on the content of health-

promoting compounds in leek. This information can help to stimulate innovation in leek 

breeding, production, marketing and the consumption pattern of leek. In addition, the 

present study can give the onset to valorise the green leaves of leek, plant material 

which is rich in antioxidants. 
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SAMENVATTING  

Prei (Allium ampeloprasum var. porrum) is met zijn areaal van 4800 ha één van de 

voornaamste vollegrondsgroenten in België. Van een aantal gewassen uit dezelfde 

plantenfamilie – zoals ajuin en look – is de waaier aan bioactieve of 

gezondheidsbevorderende stoffen bekend. Fundamentele kennis omtrent inhoudstoffen 

bij prei ontbreekt daarentegen. Allium species zijn een bron van 4 belangrijke groepen 

van bioactieve componenten, nl. S-alk(en)yl-L-cysteine sulfoxides (ACSO’s), polyfenolen, 

vitamines en fructanen. Dit onderzoeksproject identificeert en kwantificeert 

gezondheidsbevorderende componenten enerzijds in verse, rauwe prei en dit voor een 

brede waaier van verschillende preicultivars, zowel voor de witte schacht als de groene 

bladeren. In een volgende stap werd bepaald hoe deze componenten zich gedragen 

tijdens de verschillende verwerkingsprocessen (vb. bewaring, koken, drogen, 

fermentatie, etc.). 

Hoofdstuk 1 lichtte naast een algemene inleiding, de objectieven van deze studie toe. 

Hoofdstuk 2 vatte de positie van de groente prei samen in België en omstreken. Dit werd 

besproken in 2 delen, enerzijds ‘prei als een gewas’, anderzijds ‘prei als een 

voedingsproduct’. In dit hoofdstuk werden ook de voornaamste bioactieve componenten 

in Allium species uitvoerig behandeld.  

Hoofdstuk 3 beschreef de experimentele proefopzet, zoals het geselecteerde 

plantmateriaal, de staalnameprocedure en verdere staalvoorbereiding voor elk 

experiment. De statistische en analytische methodes werden ook in dit hoofdstuk 

uitvoerig besproken. 

In Hoofdstuk 4 werden statistische verschillen gevonden tussen een brede range van 

preicultivars naar antioxidantcapaciteit, totale fenolen, ascorbaat, ACSO’s en fructanen. 

De groene preibladeren bevatten de hoogste antioxidantcapaciteit, de hoogste ascorbaat 

en polyfenoleninhoud, terwijl de witte schacht rijk was aan ACSO’s en fructanen.  

Naast verschil in preideel, werden ook verschillen vastgesteld tussen de drie preitypes. 

Deze verschillen tussen zomer, herfst en winter types kunnen verklaard worden door 

genetische achtergrond, maar ook mede door de verschillende oogsttijdstippen kunnen  

stressfactoren zoals temperatuur, zonnestraling, pathogenen, … een reden zijn voor de 

verschillen tussen de 3 types. Daarom werd in Hoofdstuk 5 het effect van oogsttijdstip op 

de inhoud aan antioxidanten meer in detail onderzocht. Hiervoor werden negen 

preicultivars geoogst op 4 tijdstippen in het preigroeiseizoen. Oogsttijdstip had een 

significant effect op de antioxidanten, naast het effect van cultivar. Een duidelijk verschil 

kon vastgesteld worden tussen oogst in september en oogst in november, én tussen 

oogst in september/november en oogst in januari/maart.  Oogst in januari of maart 

resulteerde voor de meeste cultivars en beide preidelen in een hogere 
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antioxidantcapaciteit en polyfenollevels. Oogst in September daarentegen had een 

positieve invloed op de ACSO inhoud.  

Hoofdstuk 6 beschreef het verschil tussen prei en enkele van zijn verwante soorten. De 

antioxidanteigenschappen van de witte preischacht waren meest gerelateerd aan de 

bulb van A. kurrat (Egyptische prei) en A. cepa (ui), terwijl de groene preibladeren dicht 

aansloten bij het antioxidantprofiel van A. schoenoprasum (bieslook) en A. fistulosum 

(stengelui). A. odorum (Chinese prei) en A. cepa (cv. Red Creole, rode ui) waren de 

species die het minst aanleunden bij de antioxidantwaarde van prei. Deze species 

scoorden hoger in methiin- en flavonoidinhoud, respectievelijk.   

De evaluatie van de impact van naoogstbewaring en keukenbereidingen op de 

gezondheidsbevorderende componenten in prei is ook van groot belang en werd 

beschreven in Hoofdstuk 7 en Hoofdstuk 8, respectievelijk. Keukenbereidingen hadden 

een significante invloed op de antioxidantcapaciteit, terwijl bewaring de antioxidanten 

nauwelijks beïnvloedde. De antioxidantcapaciteit en totale polyfenoleninhoud van de 

witte schacht en groene preibladeren was stabiel gedurende een bewaarperiode van 13 

dagen (4 °C). Een lichte stijging van isoalliin kon echter vastgesteld worden na een koele 

bewaarperiode. Het verschil tussen antioxidanten van de witte schacht van volledige prei 

en verpakte prei was minimaal, behalve de lagere ACSO gehaltes in verpakte prei.  

Een significante stijging kon vastgesteld worden in de antioxidantcapaciteit van 

gestoomde groene bladeren. Koken had echter een negatief effect op de totale 

polyfenoleninhoud van de witte schacht en groene bladeren. In tegenstelling tot koken, 

had stomen geen invloed op de totale polyfenoleninhoud. Het is opvallend dat 

blancheren resulteerde in een lichte stijging in de ACSO-inhoud. Wanneer een langere 

hittebehandelingsduur werd toegepast, werd een negatieve invloed op de ACSOs 

vastgesteld. In het algemeen bleek stomen een betere techniek te zijn dan koken naar 

behoud van bioactieve componenten in prei.  

 

De witte schacht wordt gebruikt in vele culinaire gerechten, terwijl de groene bladeren 

vaak alleen in soepen worden gebruikt, of zelfs verwijderd worden op het veld bij 

oogst/verwerking. De toepassing van twee valorisatiemethodes, nl. melkzuurfermentatie 

en drogen, werd daarom onderzocht in Hoofdstuk 9 naar behoud van bioactieve 

componenten. De resultaten van Hoofdstuk 9 demonstreerden dat de toepassing van 

fermentatie resulteerde in een hogere antioxidantcapaciteit en totale polyfenoleninhoud, 

voornamelijk in de groene bladeren. Deze resultaten duidden de nutritionele relevantie 

van fermentatie aan, welke een veelbelovende stabilisatietechniek kan zijn voor de 

groene bladeren van prei. Fermentatie vereist weinig materiaal en is een goedkope 

manier om plantenmateriaal te stabiliseren en te bewaren.  



                                                                                                   Samenvatting 

250 

 

Naast fermentatie, werden 3 droogtechnieken onderzocht als mogelijke 

stabilisatiemethode. Gedroogde prei behield zijn antioxidantcapaciteit, met uitzondering 

van de hogere ORAC waarde van luchtgedroogde bladeren en de hogere DPPH waarde 

van de luchtgedroogde witte schacht. Luchtdrogen resulteerde in de hoogste totale 

polyfenoleninhoud vergeleken met vriesdrogen, terwijl gevriesdroogde en refractance 

windowgedroogde stalen gelijke hoeveelheden bezaten. De analyse van de individuele 

polyfenolen toonde opnieuw aan dat luchtgedroogde stalen hogere polyfenolengehaltes 

bevatte dan gevriesdroogde stalen, terwijl gevriesdroogde stalen hogere gehaltes 

bevatten dan refractance windowgedroogde stalen. Ook al was luchtdrogen de beste 

droogtechniek naar behoud van de antioxidantcapaciteit en polyfenolen, luchtdrogen 

resulteerde in de grootste verliezen aan ACSO’s vergeleken met vriesdrogen. 

Refractance windowdrogen was de beste droogtechniek naar behoud van methiin.  

Deze studie leverde nieuwe wetenschappelijke kennis op naar de inhoud aan 

gezondheidsbevorderende componenten in prei. Deze informatie kan helpen om 

innovatie in preiveredeling, -productie, -marketing en -consumptie te stimuleren. 
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DANKWOORD 

Een doctoraat is zoals het beklimmen van een Alpencol, het is afzien tot aan de top, 

meermaals denk je aan stoppen, maar eens boven is de voldoening des te groot.  

Deze berg kon ik alleen beklimmen met de hulp en duwtjes in de rug van talrijke 

personen.  

  

Allereerst wil ik mijn promotoren, prof. dr. ir. Erik Van Bockstaele en dr. ir. Bart Van 

Droogenbroeck bedanken om me enerzijds de kans te geven mij in dit thema te 

verdiepen, alsook voor de begeleiding tijdens de 4 jaar. Bart, graag wil ik je bedanken 

voor de vele hulp tijdens mijn doctoraat: van het nalezen van teksten tot het zaaien, 

planten, oogsten, drogen en fermenteren van prei. Van de eerste tot de laatste dag kon 

ik steeds op jouw kennis, ervaring en praktisch inzicht rekenen. Prof. dr. Marc De Loose 

wil ik graag bedanken om me enerzijds warm te maken voor dit onderzoek, maar ook 

voor de vele tips die dit doctoraat tot een beter geheel maakten. I would also like to 

thank prof. dr. Derek Stewart to give me the oppurtunity to explore the world of UPLC-

Orbitrap analyses and to guide my through the James Hutton Institute.  

Ook de overige leden van de examencommissie, prof. dr. ir. Luc De Vuyst, prof. dr. ir. 

John Van Camp, dr. ir. Paul Demyttenaere, prof. dr. ir. Dirk Reheul en prof. dr. ir Guy 

Smagghe wil ik bedanken om de tijd te nemen dit doctoraat kritisch te bekijken. Jullie 

opmerkingen en suggesties betekenden zeker een meerwaarde voor dit doctoraat. 

 

Voor de financiële steun wens ik het agentschap voor Innovatie door Wetenschap en 

Technologie (IWT) te bedanken. 

 

Gedurende dit doctoraat heb ik op heel wat kennis 

en expertise kunnen rekenen binnen het ILVO. 

Hiervoor wil ik graag enkele collega’s in het 

bijzonder bedanken. Zonder Hervé De Clercq en zijn 

team, geen prei, en zonder prei, geen doctoraat rond 

prei. Bedankt Hervé voor de vele hulp bij het zaaien 

in de serre en tijdens het plantseizoen op het veld. 

Dit was één van de zaken die dit doctoraat zo 

aangenaam en gevarieerd maakte.  

 

Dankjewel aan de collega’s van T&V 370. In het bijzonder Els Daeseleire voor het 

beschikbaar stellen van jullie HPLC-toestel, voor het vinden van oplossingen voor HPLC 

problemen en voor het schrijven van artikels. Els Van Pamel, bedankt voor de hulp bij de 
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validatiestudie. Ook een welgemeende dankuwel aan Martine Merchiers, want ook al 

werkten de inulineketens soms niet goed mee, het was een plezier om met jou samen te 

werken. Bedankt Jan De Block om jouw uitgebreide chemische kennis te delen. Geert 

Van Royen en Katleen Coudijzer ben ik ook veel dank verschuldigd voor het in goede 

banen leiden van de experimenten in de Food Pilot. Bedankt Barbara Duquenne en 

Claudine Roels bij de opstart en het organiseren van smaaktesten. De geurtjes moesten 

jullie er helaas bij nemen. Chris Van Waes, jou wil ik ook zeker bedanken enerzijds voor 

je hulp bij de inulineanalyses, maar ook omdat ik talrijke keren gebruik mocht maken van 

het maaltoestel en vriesdrooginstallatie. 

 

Daarnaast wens ik de Onderzoeksgroep Industriële Microbiologie en 

Voedingsbiotechnologie (IMDO) van de VUB te bedanken, meer specifiek dr. ir. Dorrit 

Wouters en prof. dr. ir. Luc De Vuyst voor de productieve samenwerking bij de 

fermentatieproeven, voor de wetenschappelijke inbreng en de daaruitvloeiende 

publicaties. 

 

Ook Saskia Buysens en Elise Vandewoestijne van het Provinciaal Proefcentrum voor de 

Groenteteelt Oost-Vlaanderen (PCG) wil ik graag bedanken voor de samenwerking en 

het tot stand komen van de verschillende vulgariserende publicaties. 

 

Voor de inuline-analyses ben ik veel dank verschuldigd aan Christian Fougnies 

(Cosucra) en Monique Steegmans (Beneo-Orafti). 

 

De volgende personen verdienen zeker en vast een plaatsje in dit dankwoord: De vele 

thesisstudenten die mij meegeholpen hebben Charlotte Bouten, Sophie Van Ranst, Bert 

Michels, Lien Goetghebeur, Liesbeth Colpaert, Dries Segers en Nick Glorieux, maar ook 

de studenten van HoGent en KATHO Roeselare (preibrood), KaHo Sint Lieven (enqûete 

prei) en KHLeuven (agrocycle), die ook een deel van hun stage/eindwerk gewijd hebben 

aan de groente prei. Ik hoop dat ik niemand vergeten ben, want het waren er heel wat. 

Zonder deze studenten zou het werk half niet geworden zijn van wat het nu is. Want 

onder het motto, samen zijn we sterk, hebben we samen bergen werk verzet. Denk maar 

aan onze ontwikkeling van de pretkroket, het vele oogst- en versnijdwerk. Also a special 

word of thanks to Fiona from Scotland, who did a lot of analyses on leek. 

Daarnaast wil ik zeker en vast ook de stage-en eindwerkbegeleiders bedanken voor hun 

bijdrage in het project: bedant Kathy Messsens, Marianne De Meerleer, Ingrid De Leyn, 

Ingrid De Man, Jos Parmentier, Yvon Ijsseldijk en Karolien Van den Bergh. 
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Bedankt Fracha voor de preistalen die we mochten nemen tijdens de verwerking van 

prei. Ook Ons Dagelijks Groen wil ik bedanken voor de samenwerking, en voor de 

verdere innovatieve toekomst die jullie geven aan de groente prei. 

 

Naast het werk op het veld en in de labo’s, heb ik ook veel leuke momenten beleefd op 

het kantoor, eerst in onze grote bureau vooraan, nadien in het vroegere Agrolab 

koffielokaaltje. Bedankt Bart, Domien en Rolinde om de sfeer er steeds in te houden. 

Ook Mieke, Cindy, Annique, Isabel en ex-collega’s Tom, Nina en Céline hebben voor 

een leuke atmosfeer gezorgd in het grote labo. Ook een welgemeende dankjewel voor 

jullie hulp tijdens het zaaien, planten en oogsten. Een speciaal woordje van dank gaat uit 

naar, enerzijds Bart E: jouw enthousiasme werkte aanstekelijk en zorgde er voor dat ik 

met plezier de dingen aanpakte, en anderzijds Domien, voor de humor van de bovenste 

plank, jouw onuitputtelijke kennis én beiden voor jullie massa’s steun! 

 

De vrienden/stammertjes mogen hier ook in staan, 

want jullie hebben gezorgd voor een mooi evenwicht 

tussen werk en ontspanning. Met een speciale dank 

aan de vaste kern!! Ook Lien, bedankt voor jouw 

aangenaam bezoek in Schotland. Op die manier heb 

ik tijdens het werk door, heel wat moois van 

Schotland kunnen ontdekken.   

 

Mijn ouders wil ik bedanken, want jullie hebben er voor gezorgd dat ik dit kon 

verwezenlijken. Mama, ik hoop dat ik je met dit wetenschappelijk onderzoek heb kunnen 

overtuigen van het belang van prei, vergeet wat Hildegard van Bingenen zei . Ook 

lieve (schoon)zussen en (schoon)broers, merci voor jullie interesse. 

 

Mijn schoonouders mogen hier zeker niet ontbreken, want zij stonden steeds achter mij. 

Op hen kon (en kan) ik steeds rekenen bij eender wat. Ook bedankt voor jullie bezoekje 

aan het prachtige Schotland. Tine en lieve Aïda, wat een plezier om na een werkweek te 

worden opgewacht door zo’n een enthousiaste meid.  

 

Ward, ik ga op jouw ‘speech’manier eindigen, namelijk eindigen met het belangrijkste, en 

dat ben jij! Als er 1 persoon is aan wie ik veel te danken heb dan ben jij het. Bedankt om 

er steeds te zijn, mij steeds te steunen, zaken te relativeren en mij zo goed te soigneren. 
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“Een doctoraat over prei?” Ik kreeg veel bedenkelijke reacties wanneer ik vertelde wat ik 

precies onderzocht. Ik hoop dat ik nu op deze manier vele mensen heb kunnen 

overtuigen dat er meer in prei zit dan je denkt! 

 
Een welgemeende dankuwel aan iedereen (en vooral aan jou, nu nog zo klein, maar je 

betekent al alles voor mij)! 

Nathalie 
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