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Woord vooraf 

Door je jonge jaren heen word je heen en weer geslingerd tussen verwondering en 

verontwaardiging. Je probeert dan ook de wereld te begrijpen maar botst daarbij op een 

paradox tussen complexiteit en eenvoudigheid, zoals verwoord door Steve Jobbs: “When you 

start looking at a problem and it seems really simple, you don't really understand the 

complexity of the problem”. Dit doctoraatswerk was voor mij dan ook een enorme verrijking 

om zaken te (trachten) doorgronden en ik ben enorm dankbaar dat ik de kans heb gehad om 

hieraan te werken. Hierbij wil ik enkele personen in het bijzonder bedanken die dit onderzoek 

mogelijk gemaakt hebben. 

Eerst en vooral mijn oprechte dank aan de promotor van dit werk, Prof. Jo Dewulf. Ik 

herinner me dat Jo me na de proclamatie vroeg wat ik wou doen in de toekomst. Ietwat naïef 

antwoordde ik daarop: “Iets met betrekking tot energie, milieu en duurzaamheid”. Uiteindelijk 

kreeg ik de kans om dit ‘iets’ concreet te maken in een doctoraatsonderzoek. Eerst kon ik 

meewerken aan de FISCH haalbaarheidsstudie en nadien voornamelijk in het FP7 project 

PROSUITE. Tijdens het uitvoeren van deze boeiende projecten ben ik steeds meer 

gefascineerd geraakt in de analyse van de complexiteit van duurzaamheid, in de kwantificatie 

van dit begrip en in manieren om dit dan concreet te implementeren. Ik vermoed dat Jo wel af 

en toe eens op mij gevloekt heeft, bijvoorbeeld toen ik met een iets te groot uitgevallen 

‘review’ toekwam in zijn bureau, maar anderzijds heb ik veel geleerd van zijn no nonsense 

aanpak. Hierbij kreeg ik alle ruimte om zelfstandig te werken terwijl ik toch altijd terecht kon 

voor advies en een concrete boodschap/richting om gericht verder te werken.  

Natuurlijk wil ik ook de andere leden van de onderzoeksgroep EnVOC bedanken. Niet in het 

minst Geert Van der Vorst om mij in de eerste jaren van mijn onderzoek wegwijs te maken in 

de materie en om geduldig op al mijn onwetende vragen te antwoorden. Dit geldt eigenlijk 

voor alle collega’s van onze groep. Duurzaamheidsanalyse is een typisch onderwerp waarbij 



 

 

 

inzichten kunnen opborrelen tijdens het discussiëren en ik heb het gevoel dat we dit geregeld 

gedaan hebben. Vanzelfsprekend stond de boog niet altijd gespannen en heb ik ook erg 

genoten van de aangename sfeer in het algemeen en van de vele gesprekken, zowel tijdens de 

koffiepauze als ergens bij een Duveltje. 

In bredere zin wil ik al mijn vrienden bedanken. Of jullie nu in het binnen- of buitenland 

zaten, altijd was het een aangenaam weerzien en was ik blij dat we ons iedere keer 

amuseerden of gewoon met elkaar konden praten over de dingen des levens.  

Speciale dank gaat uit naar mijn familie, in het bijzonder naar mijn mama, broer, tante en 

nonkel, omdat jullie mij altijd gesteund hebben en ik altijd op jullie kon rekenen. Natuurlijk 

ook omdat het bij een goed glas wijn altijd gezellig is. Dit geldt evenzeer voor mijn 

schoonfamilie bij wie het altijd aangenaam vertoeven is. Dat brengt me als laatste maar zeker 

niet als minste bij Lotte, mijn vriendin en levensgezellin. Bedankt om bij mij te zijn en om 

mijn steun en toeverlaat te zijn. 

In het algemeen wil ik dan nog u bedanken, de lezer, om interesse te tonen in mijn werk. 

Indien u ook belastingen betaalt, denk dan aan het feit dat je wetenschappelijk onderzoek 

mogelijk maakt, waardoor af en toe de complexiteit van de dingen terug iets simpeler kan 

worden… 

Steven De Meester, 2013 
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1. Context and goal of the work 

The world as we know it is rapidly evolving. Industrial revolutions have allowed humanity to 

grow both in numbers and in standard of living. Basically these evolutions were built on the 

ability to transform nature in order to increase man’s capacities (Kasa, 2009). Better human 

capacities then allow a faster transformation of nature. The drawback is that at a certain point 

this cascade evolution overgrows earth’s carrying capacity which in its turn has an influence 

on the social system. Fossil resources play a central role in this progress as they have removed 

a part of the human constraints; by using coal instead of wood, more land was available for 

agriculture, allowing a growing food supply and thus growing population (Pomerantz, 2001). 

However, alongside these positive effects, the downsides such as city smog and working 

accidents in coal plants were already noticed in the nineteenth century (Kasa, 2009). 

Afterwards, industrial revolutions have faced several negative side-effects such as toxicity 

from the use of dichlorodiphenyltrichloroethane (DDT) as insecticide, mercury pollution, the 

Seveso disaster, etc. (Heaton, 1994). These effects have been treated for a long time case per 

case and end of pipe. It is only at the end of the twentieth century that better insight was 

obtained in the advantages of preventing pollution by clean technology rather than solving 

problems ad hoc (Clift, 1995). Furthermore, several emerging global issues such as climate 

change and the depletion of resources require a more systematic approach.  

For this purpose, the United Nations initiated a series of conferences and stimulated the 

creation of the World Commission on Environment and Development (WCED). In 1987, this 

lead to the Brundtland definition of sustainable development, i.e. 'the development that meets 

the needs of the present without compromising the ability of future generations to meet their 

own needs (WCED, 1987). This is a valuable concept that has the merit that society started 

thinking of the earth’s capacity and the social system on a longer term. 
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In this context it is clear that the current generations should try to find renewable resources 

instead of building welfare on depleting non-renewables. Mankind has to search for a more 

sustainable supply of mass and energy, or in other words, exergy. Replacing the fuel of our 

economy is a challenging task and will probably be achieved by a combination of 

technologies such as wind power, photovoltaics and biomass valorization. It is however only 

the latter that is a direct source of renewable carbon and it is therefore expected to take an 

indispensable place in our future economy. In this transition, lessons need to be learnt from 

the historical end of pipe strategy which can be connected to a citation of Paulo Coelho: 

“human beings are in a hurry to grow, then lament their lost childhood, and soon lose the 

money they need to keep their health". New solutions such as biomass valorization pathways 

should thus be analyzed more in depth if there are no potential direct or indirect effects 

counteracting sustainable development. A decent quantification of this concept is necessary, 

but for this purpose, the Brundtland definition is not very tangible. More tailored for practical 

implementation is the “Triple Bottom Line” introduced by Elkington (1994), stating that 

sustainable development should benefit the three P’s: People, Planet and Profit, changing the 

perception that environmental and social considerations are not compatible with economic 

benefits. This definition already gives a good overarching direction of something sustainable, 

but it still does not give a concrete answer on how to get there. It is for this purpose that a 

sound framework and clear guidelines are necessary, in which macro scale improvement is 

induced by sustainable development at the micro scale (Huppes and Ishikawa, 2009).  

This is especially true for the use of biomass as a resource in the food, feed, fuel and chemical 

industry which has its advantages, but there are obviously also restrictions. Different 

valorization strategies are being developed to maximize the benefit from biofeedstock. 

Usually this relies on a combination of different reaction types such as fermentations, 

anaerobic digestion, pyrolysis, etherification, etc. and different separation techniques such 
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centrifuges, cyclones, mills, … Also new techniques are being developed that can become 

competitive in the future such as microbial fuel cells and microbial electrolysis cells (Foley et 

al., 2010). These different pathways can be coupled in a biorefinery which is defined by the 

IEA Bioenergy Task 42 (2009a) as: “the sustainable processing of biomass into a spectrum of 

marketable products (food, feed, materials, chemicals) and energy (fuels, power, heat)”. Since 

the focus is on sustainable processing, a profound assessment is necessary to evaluate the 

sense or nonsense of specific applications of biomass as a renewable feedstock (Ponton, 

2009). A meaningful assessment should however consider not only the processing, but also 

the other parts of the life cycle, as the major impact of biobased products is often situated in 

the supply chain of the biomass (Zah, 2007). In order to make a complete analysis and to have 

fair comparisons between different options, this supply chain should thus be included and 

analyzed. Biomass can indeed origin directly from different types of agricultural crops such as 

maize, sugar beet, etc. or it can origin from industrial or domestic organic waste streams such 

as lignocelluloses. The latter is becoming more and more important as it faces less 

competition with the food chain. The advantages and disadvantages of these different 

feedstock options and their valorization pathways can be analyzed by using life cycle 

assessment (LCA) which is a structured framework focusing on the interactions between the 

cradle to grave chain in the technosphere and the natural environment. The LCA methodology 

dates back to the 1960’s  and 1970’s and has developed fast since then. Starting from energy 

and waste analysis, it has developed to full life cycle inventory systems that are analyzed in 

many impact categories. Furthermore, it became broader by dealing with issues such as spatial 

differentiation, input-output based modeling, temporal differentiation, etc. (Guinée and 

Heijungs, 2011). Yet, sustainability assessment is a holistic and complex task that still needs 

elaboration in many directions (Guinée et al., 2011).  
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In this context this work has a double goal: 

• As the transition to renewable resources and a more sustainable economy is ongoing 

and should accelerate, the available assessment methodologies have to be used to give 

guidance to decision makers on current and future developments. For this purpose, this 

works analyses several biorefinery case studies.  

• The LCA methodology still has points requiring elaboration and improvement. 

Therefore, in this work several aspects of the methodology are analyzed, and it is 

attempted to search for ways to improve the understanding of the concept of 

sustainable development and the life cycle assessment methodology. 
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2. Overview of the study 

To achieve the goal this dissertation is subdivided in five chapters as visualized in Figure I.1. 

After an introductory Chapter 1, the first step is to gain insight in the process of assessing 

sustainability of biorefinery systems. For this purpose, Chapter 2 elaborates the which 

methodologies and tools are available for the (semi-quantitative) assessment of 

environmental, economic and social impact caused by products and services. Based on this 

information, Chapter 3 focuses on the environmental sustainability of biorefinery systems. In 

the first subpart, the efficiency of cultivation and cascade processing of wheat to food, feed 

and fuel is analyzed and compared to fossil based products based on a resource footprint. In 

the second subpart, the supply chain of different sources of biofeedstock is studied more in 

depth. A case study is conducted on anaerobic digestion of domestic organic waste, farm 

residues and energy crops, including an analysis of the environmental benefit and burden of 

recycling nutrients in agriculture.   

Although the used life cycle assessment framework has illustrated its significance in Chapter 

3, several methodological issues are identified and elaborated in Chapter 4. In the first 

subpart the difficulty to assess novel technologies is analyzed. As the main bottleneck for 

prospective assessments is gathering a life cycle inventory, basic engineering approaches are 

developed to gather mass and energy balances of the studied processes. Subsequently the 

reliability of these modules is tested in a biorefinery case study. In the second subpart of this 

chapter, the allocation procedure is identified as a key methodological feature in multipurpose 

biorefineries and a link is made with the goal and scope of the study. The final part of Chapter 

4 analyses the conceptual framework of sustainability assessment. An indicator is constructed 

that focuses both on the inclusion of macro-scale conditions and on the integration of 

environmental impacts with socio-economic considerations.  
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In the final Chapter 5, a general conclusion is reached, combined with an outlook on 

potential further developments. 

 

Figure I.1: A schematic overview of the different chapters in this dissertation 
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1.  Introduction 

 

The concept of sustainable development can easily be agreed upon. Conversely, the 

quantification of this concept and an appropriate analysis of all the complex interactions is not 

straightforward. Much work has already been carried out in social, environmental and 

economic research groups, but while this information is valuable, it is very extended and 

fragmented. This has resulted in the development of different combinations of principles, 

depending bottom-up on the available methodologies and top-down on the chosen concept 

(Figure II.1). In this chapter, an overview is presented of which methodologies and tools are 

available and for which purpose they can be used; i.e. the goal and scope of the sustainability 

assessment. Determining the latter, i.e. constructing an assessment framework in the light of 

the available means, is the first and essential phase of assessments.  

  

Figure II.1: A sustainability assessment starts top-down from a concept and is bottom-

up dependent of the available methodologies.  
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2.  Sustainability assessment framework and inventory 

 

In order to perform a sound assessment, a framework should be constructed in which several 

conceptual and methodological choices have to be made. The ISO 14040/44 guidelines (ISO, 

2006) propose an iterative four step procedure: 

• Definition of goal and scope 

• Construction of a data inventory  

• The impact assessment 

• The interpretation 

Whereas this framework is originally set up specifically for life cycle assessment, it can be 

valid for all sustainability assessment methodologies.  

2.1.   Definition of goal and scope 

 

The first aspect of the goal and scope definition is determining a starting point within the 

studied system; a ‘function’ that has to be assessed and to which the results can be linked. 

This functional unit can range from a process, product or service to a company, sector or a 

region. In this chapter, focus is on the micro scale aspects of biorefinery assessment, as macro 

scale improvement is the net sum of improvements at the micro scale.  

As soon as the function is identified, a system boundary can be defined to decide which part 

of a system is included and which can be excluded or cut-off (ISO, 2006). This means that a 

micro scale sustainability assessment focuses on a specific part of the life cycle of a product 

or service which can be: a process within a company (process level); a process chain 

including all supporting utilities at the company level (“gate to gate” boundary); a cradle to 

gate system, including the production chain, or a full cradle to grave system, which 

encompasses the use phase and end-of-life strategy on top of the previous phases of the life 
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cycle. The amount and nature of the unit operations that is included in the study depends 

mainly on the concept of the study and the available time and means. As it is impossible to 

give one ‘absolute’ advice, a simple and sound suggestion is to start thinking with involved 

stakeholders: “if we had no budget or time limitations, what would we include?” and then to 

include what is possible in the scope and with the means available for the study (UNEP 

SETAC LCI, 2009). To avoid confusion, each study should include a system diagram, where 

the system boundary is well defined with respect to the 3 different spheres and to which 

phases of the life cycle that are included.  

2.2.   Construction of a data inventory 

 

The actual impact of the functional unit is caused by interactions crossing the system 

boundary and having a positive or negative effect on the ecosphere or anthroposphere. These 

interactions are quantified in the inventory phase and then converted to impact at the third 

phase of the ISO 14040/44 framework, namely the impact assessment. This is done by 

converting ‘elementary flows’ in case of the ecosphere and ‘elementary interactions’ or 

positive and negative ‘pressure’ in the case of the anthroposphere (Figure II.2) to actual 

impact. Economic assessments are more straightforward as the focus is on monetary flows 

thus solely requiring a decision on the costs and benefits that are of interest of the practitioner. 

Some economic assessments however also try to grasp environmental and social interactions 

by monetizing the ‘external’ costs. This however, could lead to double counting if a 

sustainability assessment is performed assessing three dimensions simultaneously. 
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Figure II.2: The system boundary of a sustainability assessment includes unit operations 

within the technosphere and determines interactions with the ecosphere and 

anthroposhpere. Based on (European Commission, JRC, IES, 2010) 

Collecting a detailed and reliable quantitative or (semi-)qualitative inventory is the most 

challenging, labor- and time-intensive phase (Finnveden et al., 2009), but it is the key to 

useful results. Data can be site specific and thus collected within a real production process 

chain or modeled with software. Alternatively to save time, generic/average data can be used. 

For this purpose, a foreground and background system can be chosen within the selected list 

of unit operations. The first is defined as “those processes of the system that are regarding 

their selection or mode of operation directly affected by decisions analyzed in the study” or as 

the “case specific processes”, whilst the second is defined as “those processes that are 

operated as part of the system but that are not under direct control or decisive influence of the 

producer of the good” or as the “market average processes” (European Commission, JRC, 

IES, 2010). Generally specific data is used for the foreground system and generic data for the 

background processes. For the latter, two sources exist; firstly, databases can be used that 
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contain previous studies, such as ecoinvent (The ecoinvent Centre), the European Reference 

Life Cycle Database (ELCD) (European Commission, JRC, IES, 2011), etc., secondly, a 

hybrid assessment can be chosen, which couples micro scale assessments to meso or macro 

scale input output (IO) databases. This approach uses lower quality IO data to fill data gaps in 

a more detailed assessment (Suh et al., 2004) in which the gaps are ‘purchased’ from the IO 

database (Peters and Hertwich, 2006). In the best case, the input output tables are 

disaggregated to a more detailed level, such as a sector or a product group, where the best 

fitting and most specific IO is used or created (Suh, 2009). 

Depending on the scope of the study, the assessment can be executed in a backward looking 

way, i.e. attributional, or in a forward looking way, i.e. consequential (or previously marginal, 

prospective, …) (Curran et al., 2005; Thomassen et al., 2008; Sandén and Kalström, 2007). 

The latter approach is very promising, as it is able to grasp the larger picture of the impact of 

decisions in the foreground system on the background system, the ecosphere and the social 

system. The research question of for example milk production changes from “what is the 

impact of 1kg of milk?” to “What is the impact of changing demand in the protein and fat 

market if 1 kg milk is introduced extra?”. In this way issues such as partial equilibrium 

modeling can be included and several market mechanisms in the supply/demand system can 

be modeled (Ekvall, 2002) such as the occurrence of rebound effects (Thiesen et al., 2008). A 

hypothetical example in the case of the additional milk production is the fact that the profit 

margin of the farmer can increase, which can induce an extra investment with additional 

impact. Another aspect that can be included is experience curves of technologies meaning that 

future developments and large scale implementation can lead to efficiency gains (Zamagni et 

al., 2008). All these aspects can be coupled to (sectoral) input-output databases in a hybrid 

approach to model the impact of a change in a micro system on the meso and macro level, 

allowing a better understanding of the sustainability of the total system. However, this 
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research area needs further development, as many IO databases are still based on attributional 

data (Finnveden et al., 2009) and furthermore, it might lead to an unachievable data collection 

and increased uncertainty. 

As a final step, the resulting data inventory should be allocated to the ‘function’ of the studied 

system, allowing to express the final impact per unit of function. For example when it is 

required to allocate the impact of growing a cow to meat or milk. Whilst it is suggested by 

ISO (ISO, 2006) to first try to avoid allocation through system expansion or by division in 

subsystems, Lundie et al. (Lundie et al., 2007) conclude that this is not always possible (the 

cow inherently produces both milk and meat) and state that in most cases a choice is made 

between a physical parameter such as mass, energy and exergy or an allocation based on 

economical value. Weidema however, states that system expansion is a sound strategy to 

avoid allocation in consequential assessments (Weidema et al., 2003). To know the impact of 

cow meat for example, a displacement of soy milk can be modeled, whereas alternatively the 

cow meat can be displaced by poultry meat if the impact of the milk is required. 

3.  Impact indicators and assessment methodologies 

 

The interactions included in the inventory phase should then be converted to actual impact. 

Assessing the impact of a product system is a very complex task, as it tries to grasp the 

different aspects of the broad concept of sustainability in the 3 P’s; People Planet Profit. All 

economic interactions and the impact of elementary flows on the ecosystem and pressure on 

the social system have to be characterized with as a final outcome a list of indicators that give 

an indication on the sustainability of the studied function. It is therefore very important to 

understand how these indicators are constructed and applied in assessment methodologies. 

Furthermore, for the purpose of decision making and external communication, the different 



Chapter II 

- 16 - 

 

indicators are often aggregated, which simplifies decision making on the one hand, but often 

results in a loss of relevant information on the other hand.  

Two strategies can be applied to construct indicators, as is demonstrated in Figure II.3 (Jolliet 

et al., 2004): 

- Assessing impact at the midpoint level. Indicators are chosen at an intermediate 

position of the cause-effect impact pathway. It is stated that this point should be taken 

where it is judged that further modeling includes too much uncertainty (European 

Commission, JRC, IES, 2010).  

- Assessing impact at the endpoint level. This strategy includes the effect of midpoints 

on Areas of Protection (AoP) (Udo de Haes et al., 1999) that have an intrinsic value 

and give an indication on the relevance of importance to society, making it better 

understandable for a broader audience. On the other hand, they are more uncertain and 

also result in a loss of information, hiding the complexity behind the calculations. 

Therefore, it can be useful to present both midpoints and endpoints (Bare et al, 2000). 

 

Figure II.3: Midpoint and endpoint indicators in the cause effect chain (DALY = 

Disability Adjusted Life Years) 

In case of endpoint modeling further aggregation is often not necessary as the number of 

endpoints is limited. In case of aggregation of midpoint indicators, a choice can be made 

between the concept of strong and weak sustainability, where weak sustainability has a 

viewpoint that one impact category can be compensated by another, whereas strong 
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sustainability does not accept this substitutability (Cabeza Gutés, 1996). Following the 

definition of strong sustainability, each indicator has a value which cannot be compensated 

and therefore results are left as they are, without aggregation. In the case of weak 

sustainability, a Composite Indicator (CI) (Gasparatos et al., 2008) can be constructed through 

normalization and weighting.  

Normalization, i.e. putting the result in perspective to reference information, can be internal or 

external. Internal normalization is especially useful for comparison of different options and 

takes case specific data by using for example a division by the maximum or average value 

(Xu et al., 2006; Krajnc and Glavic, 2005; Diaz-Balteiro and Romero, 2004). External 

normalization is more often used and is aimed at understanding the relative magnitude of each 

indicator. The impact of the studied function can then be expressed relative against the impact 

of a certain region, population (e.g. per capita (European Commission, JRC, IES, 2010) or 

sector (ISO, 2006; van Oers and Huppes, 2001)). The following weighting step quantifies the 

relative significance of each indicator within the goal and scope of the assessment. Doing so 

is an arbitrary and controversial step and therefore often the simplest methodology is chosen, 

i.e. assigning equal weights to the different impact categories (Singh et al., 2009). When this 

approach is not suitable, three options are possible (Soares et al., 2006; Seppälä and 

Hämäläinen, 2001): 

o Using a distance to target approach. In this approach impacts are considered being more 

if society's activities are further away from achieving the desired targets for the 

pollutants. This could also be seen as an additional normalization step, and does not give 

any information on the relative importance of impact categories to each other (Soares et 

al., 2006). 
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o Using a monetization approach by using for example the Willingness To Pay approach to 

rank the impact categories according to the cost that one is willing to pay to lower the 

impact (Huppes and van Oers, 2011). 

o Using a panel approach with involved stakeholders. As this is often preferred, more 

systematic approaches to assign weights are used, mainly borrowed from the long 

existing Multi-Criteria Decision Analysis (MCDA) discipline where alternatives can be 

ranked based on expert judgment (Linkov et al., 2004). A promising approach to support 

this process is the Analytic Hierarchy Process (AHP) (Saaty, 1990) consisting out of four 

steps (Figure II.4): 

� Structuring the problem in a goal, in criteria for ranking the indicators, and finally 

in the different options that can be chosen  

� Comparing the criteria pair wise and give scores from 1 (equal importance) to 9 

(one is extremely more important compared to the other). 

� Pair wise comparison of options within each criterion by giving scores from 1 to 9. 

� Combining scores of options and criteria 

Zhou and Schoenung (2007) use this approach to assign weights to impact categories in a life 

cycle assessment case study of computer display technology. Twenty impact categories are 

selected (renewable resource use, energy use, radioactivity, photochemical smog, ...) which 

are the ‘options’. These impact categories are compared to each other based on criteria that 

indicate the perceived risk of that category (Figure II.4). This includes aspects such as 

distribution (spatial and geographic scales of the impact), frequency or intensity (the extent of 

impact in the affected environmental area), duration (duration of impact and remediation or 

reversibility time), etc . Afterwards, the impact categories (the options) are weighted pair wise 

within each criterion. In this study the impact categories energy use, nonrenewable resource 
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use and global warming obtained the highest weight because of the high scores in the most 

important criteria: durability, distribution and irreversibility. 

 

Figure II.4: The Analytic Hierarchy Process (AHP) to determine weighting factors in 

sustainability assessment. 

In this context, several assessment methodologies have been developed, each with their 

specific starting assessment framework and list of midpoint and endpoint indicators. In the 

following, first the impact categories will be discussed and secondly, an overview will be 

presented of different methodologies that use a specific framework with selected impact 

categories. This structure will be followed for the three dimensions of sustainability; 

environmental, economic and social. 
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3.1.   Environmental impact assessment 

 

The concept of sustainable development actually grew mainly from environmental concerns. 

This, together with the large complexity of the environment has led to a large list of indicators 

with many resulting impact assessment methodologies, and therefore this is the most 

elaborated research area discussed in this chapter. Impact categories and methodologies 

related to emissions are discussed first. Resource use will be treated separately, as this is a 

very relevant and important parameter in modern industry and in the switch to a bio-based 

economy. On top of this, specific technology indicators can be constructed focusing on 

internal performance. 

3.1.1.   Emission impact indicators 

3.1.1.1.    Midpoint indicators 

 

The overall approach to convert an inventory to a midpoint impact indicator is given by: 

�������� 
������� ���������������� ������ ��� � 
�������� ���� ���
�

 

The inventory data of substance s is given per functional unit, whilst the characterization 

factor expresses the contribution of substance s to an impact category (in a unit of the 

equivalence factor) per unit of inventory data (Pennington et al., 2004), as such giving an 

estimation of the relative importance of that inventory data in a given impact category 

(Pennington, 2001). An overview of the most commonly used midpoint indicators assessing 

emissions is given in Table II.1. 
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Table II.1: An overview of the most common midpoint impact categories, together with the characterization and equivalence factors 

Impact category Impact specification 

Most commonly used 

characterization factor(s) 

or formula to calculate 

the indicator 

Most commonly used equivalence 

unit(s) for the characterization 

factor(s). Expressed per unit of 

inventory 

Ozone depletion 

 
Accounts for the depletion of the protective ozone in the earth’s 

stratosphere due to emissions mainly of halogens (Singh et al., 2007). 
 

Ozone Depletion Potential 
(ODP) 

CFC-11-eq 

Climate change 
Refers to the change of the climate and temperature due to 

anthropogenic emissions disturbing the adsorption capacity of the 
atmosphere (Pennington et al., 2004). 

Global Warming Potential 
(GWP) 

CO2-eq 

Photochemical smog / 
ozone creation 

Refers to excessive concentrations of ozone and its intermediate 
reaction products. It is influenced by different volatile chemicals such 
as NOx, OH-reactive hydrocarbons and CO (Pennington et al., 2004). 

Photochemical ozone 
creation potential (POCP) 

ethylene-eq (Jolliet et al., 2003; 
Goedkoop and Spriensma, 2001; 
Itsubo and Inaba, 2003; Guinée et 

al., 2002) 
VOC-eq (Goedkoop et al., 2009; 

Potting and Hauschild, 2005) 
NOx-eq (Singh et al., 2007)  

(Heijungs et al., 2002) 
Acidification 

(can be subdivided into 
terrestrial and aquatic 

acidification 

Acidification gives an indication about the increase in the hydrogen 
ion concentration in water and soil systems due to deposition of 

inorganic substances (Goedkoop et al., 2009). 

Acidification Potential (AP) 
 

SO2-eq (Goedkoop et al., 2009) 
H+ moles-eq (Singh et al., 2007) 

m² unprotected ecosystem (Potting 
and Hauschild, 2005) 

Eutrophication 
In many cases subdivided 
into terrestrial and aquatic 

eutrophication 

Aquatic eutrophication is the result of anthropogenic nutrients 
(specially N and P) enriching and disturbing the natural nutrient 

balance in aquatic environments (Pennington et al., 2004) through 
giving rise to biomass (algae, etc) growth (Singh et al., 2007). 

 
Terrestrial eutrophication occurs when a soil is enriched with the 

otherwise restricting nutrient nitrogen and nitrogen-adapted species 
thus get a competitive advantage (Pennington et al., 2004). 

Phosphorus is of less importance in the terrestrial environment, 
because it is seldom a restrictive nutrient (Potting and Hauschild, 

2005). 

Eutrophication Potential 
(EP) 

N-eq (Singh et al., 2007) 
NO3-eq 

P-eq / PO4
3--eq (Jolliet et al., 2003) 

Or combination of previous 
 

SO2-eq (Jolliet et al., 2003) 
N-eq (Toffoletto et al., 2007) 

m² unprotected ecosystem (Potting 
and Hauschild, 2005) 
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Species and organism 

dispersal + gene dispersal 

 
The dispersal of invasive species and organisms due to anthropogenic 

actions or processes can result in substantial change of the natural 
animal and plant populations of an invaded region. Also the dispersal 

of invasive genes from genetically modified organisms can cause 
harm to a region’s natural composition (Jolliet et al., 2004). This 

indicator is still under development. 

Noise 

A noise indicator is often not calculated in LCA studies, because it is 
stated that the existing noise of processes is taken for granted (Potting 

and Hauschild, 2005) or is very local and difficult to interpret in 
relation to other impact categories. 

��� � �� � ��� ! � ���"# 
NNd = noise nuisance at 

distance d from point 
source 

Pd = number of persons at 
distance d 

Tproc = duration of noisy 
process (h) 

NNFLP = noise nuisance 
factor 

person hour (Potting and Hauschild, 
2005) 

Odour 

Odour is a subjective nuisance, but above a certain level, some 
odours from emissions are ‘experienced’ as stench by everyone 

(Guinée et al., 2002). Despite the fact that odour is mentioned several 
times as a possible impact category (Toffoletto et al., 2007), it is not 

often calculated. 

It is calculated as the 
reciprocal of the odour 

threshold value (1/OTV). 
(Guinée et al., 2002) 

m³ (Guinée et al., 2002) 

Ionizing radiation 
 

This impact category is related to the release of radioactive material 
to the environment (Goedkoop et al., 2009). 

Ionizing Radiation Potential 
(IRP) 

kBq (Becquerel) U-235 air-eq  
(Goedkoop et al., 2009) 

Bq-eq carbon 14 in air (Jolliet et al., 
2003) 

Soil salination 
 
 
 
 
 

 

Soil salination refers to the increasing salt concentrations in the soil. 
It can be calculated for irrigation practices based on the Sodium 

Adsorption Ratio (SAR) and Electrical Conductivity (EC) (Feitz and 
Lundie, 2002). 

 
 
 
 
 

Salination Potential (SP) $� � %�& � '��&( � )& 
With EFi the site specific 

equivalence factor based on 
EC and SAR, NAi the 

sodium concentration and 
Vi the total volume of 

irrigation water 
 
 
 
 
 

Na+ -eq (Feitz and Lundie, 2002) 
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Human toxicity 

Human toxicity is an adverse effect on humans as a result of exposure 
to a chemical (Pennington et al., 2004). Further distinction can be 

made between carcinogenic and not carcinogenic or even respiratory 
impacts for indoor air pollution (Singh et al., 2007). Midpoint 

indicators for this category are mainly based on reference substances, 
but can alternatively be more qualitative by the numbers of persons 

exposed. 
 

 
Human Toxicity Potential 

(HTP) 
 
 
 
 
 
 
 
 
 
 
 

Particulate Matter 
Formation Potential 

(PMFP) 

1,4-dichlorobenzene-eq. (Goedkoop 
et al., 2009) 

Chloroethylene-eq (Jolliet et al., 
2003) 

person.µg.m-³ (Potting and 
Hauschild, 2005) 

Carcinogenic: 

Benzene eq (Singh et al., 2007) 
Non carcinogenic: 

Toluene-eq (Singh et al., 2007) 
 

Respiratory: 

PM 2.5-eq (Singh et al., 2007) 
 

PM 10-eq (Goedkoop et al., 2009) 

Ecotoxicity 

Ecotoxicity is an adverse effect on organisms and/or the functioning 
of the ecosystem as a result of exposure to a chemical released in the 

environment (Pennington et al., 2004). Apart from reference 
substances, the volume of water and soil that is exposed can also be 

seen as a midpoint indicator. In this case spatial diversity can be 
introduced by a site factor (SF) (Potting and Hauschild, 2005). 

Ecological Toxicity 
Potential (ETP) 

2,4-dichloro-phenoxyacetic acid-eq 
(Singh et al., 2007) 

1,4-DCB-eq (Guinée et al., 2002) 
triethylene glycol-eq (Jolliet et al., 

2003) (Toffoletto et al., 2007) 
m³ (Potting and Hauschild, 2005) 
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3.1.1.2.    Endpoint indicators 
 

Endpoint or damage categories are at the level of ultimate societal concern and thus easier to 

link with the sustainability concept. The best known endpoint model is presented in the Eco-

indicator 99 impact assessment methodology (Goedkoop and Spriensma, 2001) and uses two 

damage categories for emissions, following the so-called Areas of Protection (AoP) proposed 

by Udo de Haes et al. (Udo de Haes et al., 1999): 

- Damage to human health 

- Damage to ecosystem quality or diversity 

Calculating the impact of a certain flow on one of these endpoints is not straightforward as it 

requires complicated cause-effect models. Current environmental endpoint modeling has 

learnt much from the longer existing risk assessment (RA) approach, which starts from hazard 

identification and is followed by a release and exposure assessment and hazard 

characterization phase (dose/response) to obtain a final risk characterization and 

interpretation. Similarly, endpoint modeling typically uses four steps (Goedkoop and 

Spriensma, 2001): 

- Fate analysis linking an emission to a temporary concentration. This requires 

extensive data and good models. A harmonized approach to do so is presented in “The 

Tool” (Wegmann et al., 2009). Three parameters are calculated in this model, which 

can also be used as midpoint indicators: overall persistence, characteristic travel 

distance and transfer efficiency.  

- Exposure analysis, linking this temporary concentration to a dose (used for human 

health, not for ecosystem quality) 

- Effect analysis, linking the concentration or dose to the effects. Typically dose-

response curves are constructed, allowing comparisons between the Predicted 
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Environmental Concentration (PEC) and the Predicted No Effect Concentration 

(PNEC) based on acute (EC50 / LC50) or preferably chronic (No Observed Effect 

Concentration NOEC) data (Van Leeuwen and Hermens, 1995). Whilst this should 

actually be determined for all species, often a more generic Species Sensitivity 

Distribution (SSD) approach is used, focusing on a full community or ecosystem, 

based on Hazardous Concentrations (HC) (Larsen and Hauschild, 2007). 

- Damage analysis, linking the effects to a damage indicator. Most used endpoint 

indicators are: 

o  Disability Adjusted Life years (DALY) for human health, representing years 

of “healthy” life lost (WHO, 2011). 

o Potentially Affected Fraction (PAF) or Potentially Disappeared Fraction (PDF) 

of the species, for ecosystem quality. The first giving an indication on the 

fraction of species affected above their NOEC and the second adding what 

happens beyond this NOEC (Pennington, 2001).  

Figure II.5 is an example of the determination of the endpoint indicator from a SSD curve, 

plotting the NOEC of a set of species. A benchmark can then be put on the concentration 

where the NOEC value is exceeded for 5% or 50% of the species; respectively HC5NOEC and 

HC50NOEC (Smit, 2007). 
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Figure II.5: A species sensitivity distribution based on NOEC values, where the 

exposure concentration is plotted versus the Potentially Affected Fraction (PAF) 

of the species. HC5 is the point where 5% of the species is potentially affected 

(Smit, 2007). 

These curves are typically sigmoid, implying that there is a non-linear relationship between 

the dose/concentration and the impact. Due to the limitations of the current LCA 

methodology, accounting for this is not possible. However, linearity can be assumed when 

using marginal models, as the changes of the emission levels are often relatively small 

compared to the total level (Heijungs et al., 2002). On top of this, some impact curves are 

assumed to be of the non-threshold linear type, which means that marginal and average 

approaches are equal (Heijungs et al., 2002), implying that linearity can also be assumed at 

concentrations less than the PNEC or HC5 (Huijbregts et al., 2000). The assumption of 

linearity by using an average or marginal approach has led to sound LCIA endpoint 

methodologies such as RECIPE 2008 (Goedkoop et al., 2009), or the consensus model for 
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toxicity USEtox (Rosenbaum et al., 2008), the latter based on previous work in the 

OMNIITOX project (Molander et al., 2004). Nevertheless, this assumption of linearity could 

be flawed if larger systems are studied, for example if LCA is combined with input-output 

tables and the impact of market penetration of technologies is studied. In this case, more 

research might be necessary to improve the characterization factors of different scales.   

3.1.2.    Resource impact indicators 
 

The assessment of environmental impacts has been dominated for a long time by the 

characterization of emissions, but now, in the post Brundtland era, there are numerous 

indications that assessments should account for the emerging depletion of resources as well in 

order to allow future generations to fulfill their needs. The environment (ecosphere) can 

indeed be considered as a reservoir for energy, material and land needs (for the technosphere). 

From this point of view, industry and other economic activities can only exist as long as they 

exploit these (Dewulf et al., 2008). On top of this, mass and energy resources cost money and 

are thus directly coupled to economic profit. Because of this relevance, several methodologies 

were developed to account for the resource use of processes and products. Elaborating on the 

work of Steen (2006), resources can be subdivided into 5 midpoint types: 

- Mass and energy 

- Land use  

- Exergy consumption 

- Emergy consumption  

- Relation to use of deposits  

On top of this one endpoint indicator is constructed, focusing on future consequences of 

resource extractions.  
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3.1.2.1.    Midpoint indicators 

Mass and energy 

Mass and energy are very tangible concepts, which are easily applicable due to their 

omnipresent use in industrial applications. For material use, the Material Input Per Service 

Unit (MIPS) indicator quantifies (in kg) how much resources are needed to manufacture a 

product or service (Ritthoff et al., 2002). All materials taken away from the ecosphere and 

technosphere, depending on the system boundary of the study, are counted and subdivided 

into five different input categories: 

• Abiotic or non renewable resources 

• Biotic or renewable resources 

• Earth movements in agriculture and silviculture (consumption/erosion and alteration 

through farming and forestry) 

• Water 

• Air 

When applying a similar approach at the level of national economies this is called the Total 

Material Requirement (TMR) (Ritthoff et al., 2002). In recent years, water use is becoming a 

more and more relevant indicator, especially in regions with low water availability. Recent 

developments focus not only on surface and ground water use, but also on the available levels 

(Milà i Canals et al., 2009) . Furthermore, the water quality which is discharged back to the 

environment can also be included (Goedkoop et al., 2009).  

For energy use, the concept of Cumulative Energy Demand (CED) or Cumulative Energy 

Requirement Analysis (CERA) is used as a measure for the primary energy demand of a 

product or service, meaning that the energy content (in Joules upper heating value) of energy 

carriers that have not yet been subjected to any conversions is quantified (Wrisberg and Udo 
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de Haes, 2002), whilst taking losses due to transformation and transport fully into account 

(Klöpffer, 1997). Generally eight categories are used:  

• Non-renewable resources: 

- Fossil 

- Nuclear 

- Primary forest 

• Renewable resources 

- Biomass 

- Wind 

- Solar 

- Geothermal 

- Water (Hydro-energy) 

Land use 

In a world where biomass is gaining importance as an alternative for fossils, the inclusion of 

land use in assessments is essential. Two starting points can be taken: 

- From an inventory point of view i.e. occupation in m², that is occupied area 

multiplied with time, in m²a (Krajnc and Glavic, 2005), not considering the 

differentiation in occupation intensities.  

- From an impact point of view: i.e. including transformation and resulting effects 

such as impact on biodiversity, soil organic carbon, erosion, biotic production or 

ecological soil quality, etc. (Milà i Canals et al., 2007; Mattila et al., 2012). 

Despite the difficulty to find a starting point for transformation impacts, since in 

modern times used land is usually already transformed (Schmidt, 2008) assessing 

these types of impact is indispensable. This can also be seen in the amount of work 

done on the assessment of biodiversity, where Delbaere (2002) has identified over 
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600 impact indicators. Examples focus on threatened vascular plant species 

(Schmidt, 2008), red listed species (Kyläkorpi et al., 2005), threatened and 

endangered species (Singh et al., 2007), global species diversity (Jeanneret et al., 

2006), etc.  

Exergy consumption and entropy production 

Whilst energy is based on the first law, exergy is based on the second law of thermodynamics, 

which states that all processes and activities generate entropy. Exergy thus quantifies (in Jex) 

the quality of all types of mass and energy (Dewulf et al., 2000) and the amount of useful 

work that can be obtained from a system or resource when it is brought to equilibrium with 

the chosen surroundings, or “dead state” through reversible processes (Dewulf et al., 2008). 

As such materials are delivered by the ecosphere and their exergy content is degraded in the 

technosphere.  

Similarly to CED, the Cumulative Exergy Consumption (CExC) can be defined as the sum of 

the exergy contained in all resources entering the supply chain of the selected product system. 

This resource indicator can be subdivided into 10 categories (fossil, nuclear, wind, solar, 

water, primary forest, biomass, water resources, metals and minerals), including both flows 

and stocks (Boesch et al., 2007). 

This approach can be applied in LCA, as an Exergetic Life Cycle Assessment (ELCA) 

(Dewulf et al., 2008), which is elaborated by Dewulf et al. (2007) in the CEENE (Cumulative 

Exergy Extracted from the Natural Environment) methodology, where wind, solar, primary 

forest and biomass equivalents are elaborated as ‘renewable resources’ and ‘Land occupation 

and Transformation’.  

As the concept of exergy is a measure of ‘usefulness’, it has often been coupled to economics 

in two directions. Extended Exergy Accounting (EEA), gives an exergetic equivalent to a 

monetary cost. By doing so other production costs such as labour, capital and environmental 
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remediation activities can be added to the exergy of the resources (fuel) needed. The 

conversion can be made by using a case-and time-dependent equivalence coefficient equal to 

the total influx of exergy in a given society in a certain year divided by corresponding 

monetary circulation (Sciubba and Ulgiati, 2005). Thermo economics does the opposite by 

giving monetary values to exergy streams by writing monetary balances on components or 

subsystems of a system (Dewulf et al., 2008).  

Emergy 

The starting principle of emergy is solar (equivalent) energy/exergy which creates, helps 

developing and maintains all biophysical processes on earth. The emergy concept draws up a 

balance of all solar energy/exergy flows which were necessary and are thus ‘embodied’ in the 

final product (in solar emJoules sej) (Bastianoni et al., 2007). Apart from the constant input of 

solar energy on earth, geothermal and tidal energy are the two other constant forms of energy, 

which can be rescaled to solar equivalent (Odum, 1988; Hau and Bakshi, 2004). Emergy is 

calculated based on the transformity concept, which is defined as “the Solar Emergy required 

to make 1 J of a service or product” (Odum, 1996). This approach is interesting for ecologists, 

as it includes the contribution of ecological processes to human welfare (Hau and Bakshi, 

2004), and is furthermore comprehensive in communication. However, putting the system 

boundary to the sun, might be of less interest in industrial applications. 

Relation to use of deposits 

Methods based on deposits use an R factor, which is a function of natural reserves (Ri in kg) 

of the resources i combined with their rate of extraction (DRi in kg per year). An example is 

the Abiotic Depletion Potential (ADP), which is used in the CML 2002 (Guinée et al., 2002) 

method, where the ADPi is derived for each extraction of element i and is seen relative to the 

depletion of antimony as a reference (DRref and Rref in Sb-eq). 
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The Biotic Depletion Potential can be constructed in the same way, with another reference, 

e.g. the reserve of African elephants (Guinée et al., 2002).  

3.1.2.2.    Endpoint indicators 

Future consequences of resource extractions 

As it is often difficult to estimate the total reserves of a certain resource, an alternative 

approach can be chosen, by accounting for the consequences of future extractions. This can be 

elaborated in an environmental context by quantifying the energy needed to extract the 

resource as MJ per kg (Singh et al., 2007; Goedkoop and Spriensma, 2001) or economically 

as money per kg extracted (Goedkoop et al., 2009). 

3.1.3.   Technology indicators 
 

Technological indicators are frequently used in industry and give specific information of the 

performance of the studied system within a specific chosen system boundary; often at the 

level of the gate to gate boundary. Examples are: 

• Yield, dividing the mass of product by the mass of raw material needed 

• Waste indicators, dividing the amount of waste by the amount of product 

• Recyclability, being the quotient of the amount of recycled material and the sum of all 

materials used 

• Renewability, quantifying the share of renewable materials in the total amount of raw 

materials  

• Energy efficiency, giving an indication how much energy is used for the product, and 

how much is directed to waste 
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3.2.   Assessment methodologies 

 

The impact indicators explained in the previous section are used in many different assessment 

methodologies with different names. These methodologies can be distinguished mainly by 

choices in goal and scope (in the functional unit and the system boundary) and by choices in 

impact indicators. 

3.2.1.   Life Cycle Assessment 
 

Life Cycle Assessment (LCA) is basically a framework focusing on a product or service 

within a cradle to gate or full cradle to grave production chain boundary and following the 

principles of the ISO 14040/44 (ISO, 2006) and ILCD (International Reference Life Cycle 

Data System (European Commission, JRC, IES, 2010)) guidelines. Whereas the framework is 

similar in most cases, a choice can be made between many impact assessment methodologies 

such as the Eco-indicator 99 (Goedkoop and Spriensma, 2001), Recipe 2008 (Goedkoop et al., 

2009), USES-LCA (Huijbregts et al., 2000), LIME (Itsubo and Inaba, 2003), IMPACT 2002+ 

(Jolliet et al., 2003), EDIP2003 (Potting and Hauschild, 2005), LUCAS (Toffoletto et al., 

2007), CML 2002 (Guinée et al., 2002), Carbon Footprint (European Commission, JRC, IES, 

2007), etc. A strong communicative alternative is the Ecological Footprint (EF). It is 

originally developed by Wackernagel and Rees (1996) and defined as “the biologically 

productive land and water a population requires to produce the resources it consumes and to 

absorb part of the waste generated by fossil and nuclear fuel consumption”. The basic 

principle to convert these impacts to biologically productive land however, can be applied in 

any system boundary (JRC, 2011). For this purpose, the equivalence and yield factors used in 

the original Ecological Footprint method can be converted to characterization factors for 

application in the LCA framework (Huijbregts et al., 2008). This is also suggested by the 

Global Footprint Network (2009) who make a distinction between a process-based Life Cycle 
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Assessment (P-LCA) and Extended Input-Output LCA (EEIO-LCA). It is stated that a 

combination of the Ecological Footprint with another LCIA method can complement each 

other, since both approaches have specific attributes such as the characteristic to introduce the 

earth’s capacity in the EF and the possibility of including end-of-life scenario’s in LCA for 

example to account for land regeneration after use (Castellani and Sala, 2011). This 

methodology has been extended in the Sustainable Process Index (SPI) (Narodoslawsky and 

Krotscheck, 1995 and 2000; Dewulf and Van Langenhove, 2006). Similarly, a Water 

Footprint can be constructed for nations (Chapagain et al., 2006), or for use in LCA, 

accounting for blue water, i.e. ground and surface water, green water, i.e. rainwater stored as 

soil moisture, and grey water, i.e. water polluted during production (The Water Footprint 

Network, 2011). Unlike these more ‘default’ LCA methodologies, the ECEC/ECOLCA 

approach uses a hybrid approach with exergy or emergy as impact indicator (Ukidwe and 

Bakshi, 2007; Zhang et al., 2008b).  

3.2.2.   Gate to gate methodologies 
 

If the assessment focuses on the gate to gate boundary of a production chain, the Green 

Degree (Zhang et al., 2008a) methodology, based on and thus very similar to, the WAR 

(WAste Reduction) algorithm (Young et al., 2000) can be used. A flow sheet of this 

methodology is presented in Figure II.6. The green degree of substances (GDi
su in gd per kg 

substance) is calculated by: 
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In which: 
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αi,j is the weighting factor of substance i for impact category j  

φi,j is the environmental impact potential of substance i for the nine midpoint impact 

categories j  

φi,j
N is the relative impact potential obtained by normalizing φi,j by φj

max which is the 

maximum value for category j among all the substances reported. The consequence is that for 

each impact category the indicator is normalized from 0 to 1. For mixtures, the Green Degree 

value of the substances is linearly added to each other. 
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Figure II.6: The process flow sheet of the Green Degree methodology consisting of a unit 

operation and an energy generation process 

The Green Degree value of the production of a unit (∆GDu in gd/h) expresses the change that 

is caused by the material and energy conversions taking place in the unit. It therefore required 

that the green degree of a substance GDisu is multiplied with the respective quantity of 

substances entering and leaving the system per time (Figure II.6). The overall Green Degree 

of the unit is calculated by following equation:  
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With 3+EL�,&M the green degree value of the input streams of the unit operation. k1 Indicates the 

different input streams, such as raw materials, solvents, or catalysts. 3+ENI,&M indicates the 

green degree value of an energy source fed into the energy generation system, such as natural 

gas, coal or oil. 3+EF�,�� ! represents the green degree value of the process streams exiting the 

unit, possibly to another unit, and 3+EH�,I>&� is the green degree value of the emissions or 

discharge streams from that unit directly to the environment. 3+EJI, 4K is the green degree 

value of emissions or discharge streams from the energy-generation system into the 

environment. It is stated that when assessing the production of a unit, a ∆GDu > 0 indicates 

that the unit operation is benign to the environment and ∆GDu < 0 indicates that the unit 

operation adds pollution to the environment.  

A semi-quantitative methodology for process assessment in the early phase of development is 

presented by Biwer and Heinzle (Biwer and Heinzle, 2004), where substances get A/B/C 

scores in 14 impact categories, which can further be aggregated to two environmental factors. 

3.2.3.   Methodologies using technology indicators  
 

Several methodologies focus on performance of a system by using technological indicators: 

• Fijal (2007) proposes a methodology including a raw material unit index, an energy 

unit index, a waste generation unit index a production unit index and a packaging unit 

index. 

• The Green Chemistry metrics (Anastas and Warner, 1998) have been extensively 

discussed by Lapkin and Constable (Lapkin and Constable, 2008) and have been 

elaborated in the EATOS (Environmental Assessment Tool for Organic Synthesis) 
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methodology (Eissen and Metzger, 2002). These indicators focus on mass and energy 

efficiency, emissions, the amount of redox reactions quantified as an hypsicity 

indicator and on economic cost associated with reactions. 

• Dewulf and Van Langenhove (2005) combine exergy with principles of industrial 

ecology, to account for efficiency, re-use of materials, recoverability of waste 

materials, renewability and toxicity.  

• Lou et al. (2004) use emergy to assess efficiency and emissions of a production plant. 

3.2.3.1.    Shortcut toolkits  
 

If the means for the assessment are limited, several shortcut toolkits can be used to have a first 

indication of the sustainability of the functional unit, which is in this case often a single 

process or product, not considering for supporting processes or supply chains: 

• The Green Alternatives Wizard uses a database to replace hazardous chemicals based 

on properties (Massachusetts Institute of Technology, 2006). 

• A Solvent selection guide (Curzons et al., 1999) accounting for Environmental Health 

and Safety aspects of different solvents. 

• The EcoScale (Van Aken et al., 2006) and the iSustain (Sopheon Corporation, 2011), 

semi-quantitative methodologies based on the twelve principles of green chemistry, 

using a system of scores or penalties for process parameters and technological 

properties of organic synthesis routes. 

• The PBT profiler, assessing persistence, bioaccumulation and aquatic toxicity based 

on chemical structure (USEPA, 2011). 
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3.3.   Economic impact assessment 

 

Economic performance is the main driver of the industrial system. It will probably even be the 

decisive factor for the inclusion of biomass alternatives in the production chain. Nevertheless, 

the assessment of economics is rather straightforward in comparison to environmental and 

social assessment, as only one type of flow, namely the monetary one, has to be assessed. As 

such, the discussion of midpoint and endpoint indicators and aggregation is not necessary. 

A very determining factor for the result of the assessment however, is selecting a relevant cost 

breakdown structure to decide which direct and indirect costs and benefits should be included. 

Here, two main approaches are distinguished: 

- Using a company/user perspective. Kawauchi and Rausand (Kawauchi and 

Rausand, 1999) define three cost categories for the oil and chemical process 

industry: 

 

O�� � O*� G OP� G OO� 

 

With LAC the life acquisition cost (for example: equipment purchase, installation 

cost, commissioning cost, insurance spares, reinvestment cost, design and 

administration cost), LOC the life ownership cost (for example: man-hour cost, 

spare parts consumption cost, logistics support cost, energy consumption cost, 

insurance cost), and LLC the life loss cost (for example: cost of deferred 

production, hazard cost, warranty cost, loss of image and prestige cost). Utne 

(2009) goes further and defines costs as: 
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Where CAPEX + OPEX are the capital (production) and operational cost 

respectively. RISKEX are the costs caused by accidents and fatalities, ENVEX are 

the environmental expenditures, mainly based on eco-taxes for climate change and 

acidification, whilst DISPEX are the costs for disposal.  

- Using a societal perspective. This approach focuses on top of the previous cost 

categories on the indirect or ‘external’ costs. These externalities, arise when the 

social or economic activities of one group of persons have an impact on another 

group and when that impact is not fully accounted, or compensated for, by the first 

group (ExternE, 2011). Efforts to quantify these costs, mainly by using the 

Willingness To Pay (WTP) and Willingness to Accept (WTA) principles, are made 

by the Environmental Priority Strategy (EPS) (Steen, 1999), the ExternE projects 

(ExternE, 2011) and the NEEDS project (NEEDS, 2011), the latter two available 

in the software tool EcoSense (Stuttgart University, 2011). Including these 

external costs however, might not be an appropriate approach in sustainability 

assessments, since double counting issues with the environmental and social 

assessment might occur. Furthermore, within economic assessment, several eco-

taxes already include some external costs (Pearce and Turner, 1990; Hanley, 

1997). 

 

Determining the ‘value’ of money is another point influencing economic assessments. First, 

the value of the benefits should be considered, as indirect, revenue-enhancing effects, can be 

generated next to the direct profit (Wynstra and Hurkens, 2005). Second, the value of money 

changes in time due to market mechanisms. The time dependency of the value of money can 

be included by discounting, based on changes in inflation, cost of capital, investment 
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opportunities and personal consumption preferences (Gluch and Baumann, 2004). This is 

mostly captured with the Net Present Value principle, calculated by: 

��) � � �K�1 G ��K
K T M
K T U

 

 

With n the number of years of analysis, r the discount or interest rate and Ct the estimated 

costs in year t. 

3.3.1.   Economic impact indicators 
 

The result of the cost breakdown should result in a final indicator which aggregates the 

different values obtained during the assessment and at the same time cover the discounting 

issue. In this context, Huppes et al. (Huppes et al., 2004) suggest 7 different indicators: 

- The NPV  

- The Average Yearly Cost (AYC), which is the sum of all yearly costs divided by 

the functional running time. This is called the Steady State Cost (SSC) when the 

functional time is infinite. 

- The Annuity factor (A), which accounts for the regularly paid constant amount 

over the functional lifetime (fn). An eternal annuity factor has an infinite 

functional lifetime. 

 

* � ��) � �1 5 �1 G ��VWM 

 

- The Internal Rate of Return (IRR) is the discount rate (r) which makes the NPV 

equal to 0, and thus makes the present value of benefits equal to the present value 

of costs. 
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- Profit is the benefits minus the costs. 

- Pay-back time is the measure of the time required to return the initial investment 

and can thus be calculated by dividing the initial investment costs with the yearly 

net benefits. 

- Benefit-Cost Ratio (BCR) is the ratio of the present value of the future benefits to 

the present value of the future costs, discounted at the same rate. 

3.4.   Economic Assessment methodologies 

 

Due to the relevance of money, economic assessment has a widespread use. Therefore many 

different names have been assigned to this type of study, mostly depending on the sector 

where it is applied. Originating from the building sector, Whole Life Costs (WLC) and Life 

Cycle Costing (LCC), are used, where WLC is seen broader than LCC, by including all 

indirect, tangible and intangible social, environmental and business costs, and the benefits 

from consumption and production (ISO, 2008). The Center for Waste Reduction Technologies 

(CWRT) introduced Total Cost Assessment (TCA) to include environmental and health risks 

and costs (AIChE, CWRT 1999). Similarly, Total, Full or True Cost Accounting or Full Cost 

Pricing, Total Cost of Ownership, Cost Effectiveness Analysis (CEA) or Cost Benefit 

Analysis can be used. However, it can be questioned what the difference between these 

methodologies really is. It is indeed stated that Life Cycle Costing is the theory behind all 

economic assessment methodologies, but depending on the perspective and application, 

choices are being made concerning the costs to be included (which and whose) and the time 

frame of the assessment (Huppes et al., 2004). 

 

 

 



Chapter II 

- 42 - 

 

3.5.   Social impact assessment 

 

The third dimension of sustainable development differs quite significantly from 

environmental and economic assessments, as there are no ‘flows’ going in and out a system, 

complicating the boundary, inventory and impact assessment. At the same time, social issues 

are often hardly distinguishable from their economic context. This is why some sources such 

as Kruse et al. (Kruse et al., 2009) rather mention socio-economic assessment. Aspects such 

as fair trade have been implemented for a longer time, but methodological developments 

concerning a quantified social impact assessment, compatible with environmental and 

economic impact assessments in industry, are still in a state of infancy and research has not 

advanced significantly last decades (Hunkeler and Rebitzer, 2005). This is why the UNEP 

SETAC Life Cycle Initiative started a working group and published its report “Guidelines for 

Social Life Cycle Assessment of Products” in 2009 (UNEP SETAC LCI, 2009). The merit of 

this report is not only solving some of the obstacles, but it also boosted the debate and 

research.  

In comparison to environmental assessment, the natural link between the physical 

input/output and an impact such as the change in environment is absent (Dreyer et al., 2006). 

Collecting social data is therefore not straightforward, and could result in a never ending data 

collection (Nazarkina and Le Bocq, 2006). It is stated that the causal link of social issues is 

situated at a company/stakeholder level, and not at process level (Dreyer et al., 2006; 

Nazarkina and Le Bocq, 2006; Spillemaeckers et al., 2004). Furthermore, social data is 

difficult to quantify, and sometimes a more qualitative or semi-quantitative approach might be 

preferred. In this context, Swarr (Swarr, 2009) quotes Einstein: “Not everything that can be 

counted counts, and not everything that counts can be counted”. However, this is not 

necessarily a problem as Jørgensen et al. (Jørgensen et al., 2009) questioned several large 

Danish companies and concluded that a full list of quantitative life cycle indicators for the 
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social aspects is not essential. Industry just wants to take well informed decisions, so it might 

be sufficient to simply define a process to assess the social impact in a reliable way (Swarr, 

2009), rather than to construct a complete quantitative methodology.  

3.5.1.   Social impact indicators 
 

The UNEP SETAC LCI selected a list of midpoint and endpoint impact categories (Table 

II.2) based on the definition: “social impacts are consequences of positive or negative 

pressures on social endpoints (i.e. well-being of stakeholders)”. These categories should then 

be assessed by indicators which are appropriate and fitting in the study. However, the 

midpoint – endpoint modeling might become very difficult. Further work on this topic is thus 

required, optionally using work done by other assessment frameworks such as GRI (Global 

Reporting Initiative) indicators, IChemE Sustainability metrics, etc. A suggestion for a 

generic methodology could be to include an obligatory and a mandatory list of indicators 

(Dreyer et al., 2006; Kruse et al., 2009). 
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Table II.2: The structure of the social assessment methodology developed by the UNEP 

SETAC LCI (2009) with stakeholder categories and impact indicators at the midpoint 

and endpoint level 

Stakeholder categories Impact categories 

midpoint endpoint 

Workers/employees Freedom of association and collective bargaining, 
child labour, fair salary, working hours, forced 
labour, equal opportunities/discrimination, health 
and safety, social benefits/social security 

Human rights 

Working conditions 

Health and safety 

Cultural heritage 

Governance 

Socio-economic 
repercussions 

Consumer Health and safety, feedback mechanism, 
consumer privacy, transparency, end of life 
responsibility 

Society (national and global) Public commitments to sustainability issues, 
contribution to economic development, 
prevention and mitigation of armed conflicts, 
technology development, corruption 

Local Community Access to material and immaterial resources, 
delocalization and migration, cultural heritage, 
safe and healthy living conditions, respect of 
indigenous rights, community engagement, local 
employment, secure living conditions 

Value chain actors Fair competition, promoting social responsibility, 
supplier relationships, respects of IP rights 

 

As social impacts are site specific, Dreyer et al. ( 2006) consider unlimited generic data 

unacceptable, regardless the high data demand. Therefore it is suggested that site specific data 

from the most relevant processes should be gathered. For example impacts that are not under 

the assessment executer’s influence could then be handled with generic data. A hotspot 

approach is thus suggested to identify unit operations located in a region where problems risks 

or opportunities occur, where in these hotspots site specific data is assessed (UNEP SETAC 

LCI, 2009; Hauschild et al., 2008). Furthermore, a hybrid approach can be used, where macro 

data, for example social data coupled to GNP (Gross National Product)/GDP (Gross Domestic 

Product), can be coupled to micro assessments (Norris, 2006; Hutchins and Sutherland, 2008; 

UN, 2005).  
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3.6.   Social impact assessment methodologies 

 

Parallel to the construction of an impact assessment structure, several authors have tried to 

develop quantitative methodologies. Amongst others: 

• A societal LCA is developed by Hunkeler (2006), which transforms the indicator 

‘working hours’ to the ability to acquire four regionalized societal necessities: 

housing, health care, education and necessities.  

• A Working Environment (WE) LCA can be used to grasp the direct impact, as Lost 

Work Days (LWD), of health and safety in the working environment (Schmidt et al., 

2004; Kim and Hur, 2009). 

• The Gabi methodology suggests a Qualified Working Time (QWT) approach based on 

working time and qualification profile. This can be extended with a health and safety 

aspect and humanity of working conditions (Back et al., 2009; Makishi et al., 2006). 

• Weidema (2006) focuses on one endpoint indicator: the Quality Adjusted Life Years 

(QALY) concept, which is the elaborated version of the DALY indicator, including 

health-related quality of life. Six damage categories are addressed: life and longevity, 

health, autonomy, safety security and tranquility, equal opportunities and participation 

of influence. It is furthermore stated that this indicator can be linked to an overall 

endpoint indicator of human wellbeing. 

• Labuschange and Brent (Labuschagne and Brent, 2006) construct a Social Impact 

Indicator (SII) based on 18 impact indicators in 4 resource groups (internal human 

resources, external population, stakeholder participation and macro-social 

performance). 
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3.7.   Multi-dimensional assessment 

 

According to Elkington’s three dimensions of sustainability, a win-win-win situation should 

be obtained. Therefore, the assessment should in the best case focus on the people, planet and 

profit related issues similarly. Originally most research was aimed at the concept of eco-

efficiency and dematerialization or decoupling economic growth from environmental impact 

(WBCSD, 2005), but nowadays, the inclusion of social issues is high at the agenda.  

It is generally assumed that the life cycle approach will take an important role in sustainability 

assessment due to its holistic viewpoint (Klöpffer, 2003 and 2005), which seems essential to 

grasp the broad concept of sustainable development. Indeed, a good evolution in one part of 

the life cycle, can still have negative overall consequences. As such, Klöpffer (2008) proposes 

two possibilities for Life Cycle Sustainability Assessment (LCSA): 

- O�$* � O�* G O�� G $O�* 

- O�$* � ��X O�* 

Whereas the first option is most chosen, the second option would mean that a completely new 

methodology should be constructed. In this context, LCSA can also be seen as a framework of 

different approaches with life cycle thinking as a common basis (Guinée et al., 2011). The 

assessment should in this case include the three dimensions of sustainability and it should not 

be considered exclusively as a micro scale assessment of products or services. The scope of 

the assessment should be elaborated from micro to meso (product groups) to economy-wide. 

Future research is necessary on posing exact research questions that have to be answered by a 

full sustainability assessment and on the additionality and overlap between different available 

methodologies at different levels. 
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3.8.   Sustainability assessment methodologies 

 

Whereas many issues are unresolved for a full sustainability assessment, several 

methodologies are already available. The most known example is the SEEbalance tool 

(Saling, 2010) developed by BASF, building on their previously developed eco-efficiency 

methodology (Saling et al., 2002; Kicherer et al., 2007; BASF, 2011). The environmental 

impact assessment consists out of 11 midpoint categories: GWP, ODP, AP, POCP, solid 

wastes, water emissions, energy consumption, raw material consumption, land use, toxicity 

potential and a risk (of accidents) potential. This is combined with an economic LCC value 

and social indicators in five stakeholder groups: employees, consumer, local and national 

community, future generations and international community. Afterwards, an external 

normalization is executed based on national statistics such as the GDP or impact per GDP 

whilst weights are determined by so-called relevance and societal factors. Doing so allows 

this methodology to have a communicative visualization; the so-called SEE-cube. 

Other methodologies using the same strategy are the BEES (Building for Environmental and 

Economic Sustainability) tool (Lippiatt, 1999 ) using MCDA principles (Lippiatt and Boyles, 

2001) and the Green Productivity methodology (Hur et al., 2004) accounting for eco-

efficiency, whilst Öko-Institut has developed a PROduct Sustainability Assessment (PROSA) 

framework for sustainability assessment (Öko-Institut, 2007). The latter proposes a ‘usual’ 

LCSA, such as the SEEbalance, but gives more attention to a broader analysis of the product 

system in the market to allow a better scoping of the study. Furthermore, it has the unique 

feature that it also includes a fourth dimension of sustainability, i.e. utility, based on three 

perspectives:  

- Practical utility from the perspective of the users/consumers (durability, 

performance, reliability, …) 
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- Symbolic utility accounting for the perception of stakeholders (prestige, 

enjoyment, …) 

- Societal utility or “public value” which focuses on the essential contribution of the 

product or service to societal objectives (basic needs, education, poverty reduction, 

…) 

A simpler and user-friendly LCSA is presented in the Life cycle INdeX (LINX) (Khan et al., 

2004), which accounts for 4 impact categories: environment and resources (11 indicators), 

cost (3 indicators), technology (4 indicators) and socio-political factors (3 indicators). Each of 

these parameters is assessed with the use of a specific monograph where the value of the 

calculated parameter is directly linked to a penalty score, which eases the aggregation and 

interpretation step.  

Other methodologies assess sustainability or eco-efficiency on a non-life cycle basis. 

Examples are Sustain-Pro (Carvalho et al., 2008), which uses the WAR algorithm and 

indicators from the IChemE metrics list, added with safety indices and seven own developed 

indicators and the Quotes for environmentally WEighted RecyclabiliTY and Eco-Efficiency 

(QWERTY/EE) methodology (Huisman et al., 2003), which is originally designed to assess 

the eco-efficiency of waste treatment and recycling options for electronic products. 

4.  Interpretation 

 

The interpretation phase of the results of a sustainability assessment is of essential 

importance. It requires knowledge of the assessment framework with the choices and 

assumptions that are made in the study and the used indicators and possible aggregation steps. 

Only in this case, well founded conclusions can be made at the end of the study. Determining 

the uncertainty of the final result can be a helping tool for the interpretation. According to 
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Huijbregts (2011) three types of uncertainty can be determined, where only the last one is 

often quantified in assessment studies:  

• Decision rule uncertainty includes the methodological choices that are made.  

• Model uncertainty is caused by limitations in knowledge or techniques to quantify the 

impacts (e.g. endpoint cause-effect models, characterization factors, …) 

• Statistical uncertainty is mainly related to uncertainty in the data inventory and is the 

uncertainty which is currently most analyzed by using a semi-quantitative pedigree 

matrix base on scores in five criteria: reliability, completeness, temporal differences, 

geographical differences and further technological differences (Lundie et al., 2007).  

5.  Conclusions 

 

According to the Brundtland the abilities of future generations should not be compromised. 

Therefore renewable resources should be sought instead of building welfare on depleting non-

renewables.  Yet, it is clear that renewable resources also have drawbacks and that different 

applications and processing routes have to be assessed to enhance sustainable development in 

industrial and societal progress.  

As the concept of sustainable development originates mainly from environmental concern, 

most efforts have been made to assess environmental impacts. This also seems the most 

obvious dimension to make comparisons between fossil-based and bio-based products, since 

the aimed change of resources is mainly triggered by environmental concerns such as resource 

depletion and climate change. Furthermore, the life cycle perspective is identified as a useful 

framework to assess full supply chains and trade-offs between different processes and 

impacts. Nevertheless, while the relations with the ecosphere are relatively well characterized, 

performing an environmental sustainability assessment is still challenging and several 

methodological aspects such as the system boundary definition, allocation, inventory 
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collection and impact assessment still require improvement. Whereas the economic 

assessment is quite well established, the social dimension is elaborated, but still in a state of 

infancy for quantitative sustainability assessment as it faces essential methodological 

challenges such as identifying the cause-effect link between a technical system and the 

sociosphere, which currently impedes its practical implementation. 
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 CHAPTER III: Environmental sustainability 
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1.  Introduction 

 

The valorization of fossil resources was probably one of the main catalysts for welfare 

generation and human development over the last decades. No other type of resource has 

changed the world so fast and to that extent; it has become a vital part of industry, agriculture, 

transport and society as a whole (Youngquist, 1999). But as this source of hydrocarbons was 

formed by the long term conversion of ancient biogenic material, their stock is not endless 

and is depleting due to disproportional exploitation rates, with price increase as a 

consequence. This together with climate change forces society in the direction of renewable 

resources, which can offer similar functionalities as fossils. Different alternatives are 

available, such as using the quasi infinite energy from the sun, which can be used in a direct 

way, e.g. photovoltaics (PV) or concentrated solar power, or indirectly, e.g. relying on 

photosynthesis. A first judgment would favor the first option, since the solar light capture 

efficiency of photosynthesis is limited and lower than for direct capture (Bolton and Hall, 

1991; FAO, 1997; Green et al., 2007). However, to date the applications of direct solar 

capture are limited to energy generation, whilst on the other hand, biomass obtained from 

photosynthesis is a carbon source that can serve as food, feed, chemical, material, textile, fuel 

and energy resource. This offers the possibility to create a broad and valuable product mix 

from the starting resource. Due to this multifunctionality, the valorization possibilities in a so-

called biorefinery are even bigger than in fossil refineries. Whereas such a diversity of options 

allows a large range of configurations they also imply environmental consequences such as 

arable land use and impact from agriculture and processing in general. Decisions taken 

regarding the valorization of biomass should therefore be well-thought-out and based on 

sound assessments to achieve an optimal sustainable development in the post fossil era. Two 

points seem to be critical for the sustainability of the biorefinery sector: 
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- Serve market demands 

- An ecologically sound production chain  

1.1.   Serve market demands 

 

Society has several demands of which some rely on depleting fossils and some on biomass 

and hence land use. In the future, slowly but surely there will be a shift to the utilization of 

renewable resources for many services. However, because of limited arable land availability 

and the limitation in photosynthesis efficiency, it is uncertain and even quite unlikely that 

biomass will be able to cover all these demands fully (IEA Bioenergy, 2007; Fischer et al., 

2007; Ponton, 2009). Therefore a maximal valorization of each quantity of biomass should be 

pursued. Lessons can be learned from fossils: crude oil consists of different types of 

hydrocarbons, which are fractionated and valorized in oil refineries. Similarly, biomass 

consists out of different types of molecules, ranging from the plant reserves, mainly starches 

and lipids, to plant structure, mainly lignocelluloses, to proteins and microcomponents such as 

vitamins and pigments. Valorizing these types of molecules for specific purposes is called 

‘biomass cascade utilization’, and is aimed at maximizing the socio-economic benefits per 

quantity of biomass (Haberl and Geissler, 2000). 

Figure III.1.1 shows the cascade scheme of biomass valorization. After cultivation, biomass 

fresh matter is obtained. The different types of molecules in the dry matter can be separated if 

necessary and used for their specific purpose. This figure shows clearly that all molecules can 

be used for three different levels: food and feed, biobased products and bioenergy. This means 

that no biomass molecules can be considered as waste. From an economic perspective 

producing according to this cascading system is a major opportunity for biorefineries. For 

example a company specialized in processing wheat gluten to thermosetting biomaterial can 

valorize the other parts of the plants by making ethanol from the sugars for the fuel sector and 
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animal feed from the DDGS (Dried Distillers Grains with Solubles) to maximize the 

economic profit (Raquez et al., 2010). 

 

 

Figure III.1.1: The biomass cascading scheme. Three levels of products can be 

identified: food and feed, biobased materials and bioenergy. All molecules from the 

feedstock can be valorized for different applications inducing economic opportunities on 

the one hand, but creating an extra demand on the other hand. Obtaining biomass 

depends thus on the fragile basis of this scheme, i.e. the resource input from nature and 

technosphere during cultivation. 
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1.2.   An ecologically sound production chain 

 

At the other side of the coin however, Figure III.1.1 already illustrates the bottleneck of the 

bio-based economy, namely that these economic opportunities all rest on the shoulders of the 

cultivation of biomass. Whilst fossils originate from ancient and converted biogenic material, 

current biomass production requires the cultivation of a certain amount of surface area and 

needs inputs for growth and harvest. So whilst the limiting factor for fossils is the historically 

built up stock of hydrocarbons and the price it costs to obtain the next quantity of resources, 

the limiting factor for a large scale implementation of biomass in our economy is the physical 

chemical “fuel and feedstock” taken away from the natural environment for production and 

consumption. Such a resource footprint concerns not only consumption of fossils and arable 

land use and transformation, but also other natural resource stocks and flows that come from 

the natural environment into the technosphere such as minerals, metals, water, nuclear, 

renewable and atmospheric resources (Dewulf et al., 2007). This includes also the effort of the 

natural environment for the use of utilities such as fertilizer and pesticide, diesel for machines, 

water and minerals from the soil, etc. (Cherubini, 2010). Even agricultural residues or 

lignocelluloses, which are often seen as waste, require a certain input of natural resources, 

since they originally depend on agricultural processes where the agricultural system has 

‘invested’ resources in creating the molecules. This means that the production chain of 

biomass is more extensive than their fossil equivalent.  

Several studies pinpoint that the agricultural phase is often the main contributor to the 

environmental impact of the production chain of biobased products (Zah et al., 2007; Farrell, 

2006). Therefore it is essential that this step is executed in a sustainable way. However, since 

the demand for biofeedstock will rise due to the depletion of fossils and since the arable land 

is limited, this implies that higher agricultural yields will be pursued. A significant yield 

increase per hectare is indeed expected, however, these innovations are often not focused on 
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the simultaneous acceleration of yield and environmental protection of the natural resources 

(Cassman and Liska, 2007). Whilst on the one hand the extra demand can be beneficial for 

agricultural development, on the other hand the risk exists that a blind striving for higher 

yields will cause severe damage to the natural environment which would have a reverse effect 

on the longer term (Matson et al., 1997). For example the use of field crop residues is an extra 

source of useful biomass, but it is also an important precursor for soil erosion and nutrient 

depletion, which could induce the use of additional inputs during cultivation. Using this part 

of biomass, which is often seen as ‘a sustainable resource’ might thus actually turn out to be 

worse on the longer term (Reijnders, 2006). 

Summarizing the previous discussion, the transition to a ‘renewable’ bio-based economy, 

offers several opportunities, for example replacing services that were previously fulfilled by 

fossils, but faces the main bottleneck that inputs, including land, are required during 

cultivation. So whilst the current industrial system exists mainly of dedicated food, dedicated 

bioenergy and petrochemical industry, these three sectors should think how obtained 

feedstock can be valorized to the fullest to obtain the lowest resource footprint per output 

product. In this chapter we aim to show that the cascade use of biomass in an ‘integrated 

biorefinery’ is a sound strategy to achieve a high valorization efficiency of the biobased 

molecules and that the integration of these sectors can indeed serve as a solution to replace 

fossil services. Furthermore a resource footprint can be obtained which quantifies how much 

additional basic inputs during cultivation and processing are necessary to replace a certain 

amount of fossils. This allows to offer a sound comparison between different options in the 

biosector and to calculate the ‘environmental cost’ of for example striving for higher yields. 

As a demonstration, a case study is executed to assess the decision of a food and feed 

company to integrate fuel bioethanol in its production. It focuses on a Belgian processing 

facility where wheat, sugar and flour are used as starting material and which initially 
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produced starches, sugars, gluten and animal feed. To cope with the growing demand for 

renewable energy, a part of the wet sugar-starch streams that were previously dried to produce 

animal feed, is now fermented to fuel bioethanol.  

2.  Method  

 

The assessed production plant consists of dry and wet milling, different separation and drying 

steps, and the processing of the obtained streams to salable products (868 kton in 2009). Also 

included is the on-site energy supply of a CHP working on natural gas, a wastewater 

treatment plant with biogas generation in the anaerobic treatment and all internal transport. 

The study is carried out before, and after the switchover to bioethanol production, where the 

main difference is a new ethanol fermentation and purifying section, and a decrease in animal 

feed production requirements. 

Thermodynamics are used as a basis for the assessment in order to quantify the resource 

related issues in this sector in a scientifically sound manner. The first thermodynamic law 

states that energy is conserved, which would mean that there is no resource problem, whilst 

the second law states that every process generates entropy, and thus the ‘quality’ of the energy 

decreases in every step. The latter is quantified by the concept of exergy, which represents the 

maximum amount of useful work that can be obtained from a resource when it is brought to 

equilibrium with the reference environment (Dewulf et al., 2008). This is very relevant as 

parameter in the biorefinery sector as it can be used to quantify both: 

- the efficiency of the cascade use of the raw material in the biorefinery, and 

- the amount and origin of inputs necessary from nature to obtain a certain product mix 

from biofeedstock, i.e. the resource footprint 
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The first point is analyzed by an Exergy Flow Analysis (ExFA) in the gate-to-gate boundary 

of the processing plant. The quality decrease of the main feedstock and the relative amount of 

energy and utility resources used per useful output product can be quantified by calculating 

the rational thermodynamic efficiency of each process, with the Rational Exergetic Efficiency 

(Ψ): 

Ψ � ∑Exergy content of the useful outputs ∑ Exergy content of the inputs  

The exergy is quantified based on chemical and physical properties collected at the production 

plant by means of data available in literature, the group contribution method, the macro 

nutrient method, and data from Gibbs energy of formation.  

Concerning the second point, life cycle assessment (LCA) is used to grasp the impact of the 

production chain on the natural environment. The different steps of the LCA are executed 

according to the recommendations of the ISO 14040/44 standards. The functional unit is 

processing 1 ton of incoming biofeedstock (wheat, sugar and flour) with the Belgian 

processing facility as foreground system, whilst the system boundary is the full cradle to gate 

out production. A physical allocation procedure is chosen, based on the Exergy Flow 

Analysis. This means that the incoming and outgoing flows per process are quantified and that 

the related impacts are allocated proportionally to their exergy content. The data inventory of 

the system is collected at the facility of Syral Aalst, Belgium. A year average of 2009 is made, 

based on analytical measurements, company reports and completed with information received 

from process engineers of the production plant. As such, an accurate data inventory is 

constructed, which reduces the uncertainty of the final results as much as possible. Whilst 

efforts are made to obtain a reliable data set, uncertainty of the results is not quantified. 

However this would be an interesting added value, current calculation techniques still face 

several limitations (Finnveden et al., 2009).  
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Background data for the supply chain of the facility, including transport per ‘tkm’, are taken 

from the ecoinvent database. Table III.1.1 lists the most dominant ecoinvent processes used to 

model the life cycle inventory of the incoming resources. On top of this, 5 types of transport 

and 56 types of chemicals and utilities are used. The natural gas used in the CHP is allocated 

to the produced electricity, the used steam and the used heat of the flue gas, based on their 

exergy content. 

Table III.1.1: List of the most dominant resources processed in the studied biorefinery 

and the ecoinvent processes which are used to model the data inventory 

Material or energy carrier (+origin) Ecoinvent process 

Wheat (France) Wheat grains conventional, Barrois, at farm (FR) 

Flour (France) Maize starch, at plant (DE) 

Potato starch (France) Potato starch, at plant (DE) 

Sugars (France) Sugar, from sugar beet, at sugar refinery (CH) 

Natural gas burned in CHP (Belgium) Natural gas, burned in cogen 1MWe lean burn (CH) 

 

To quantify the resources necessary in the life cycle of the biofeedstock and the final 

products, the Cumulative Exergy Extraction from the Natural Environment (CEENE) 

methodology has been chosen (Dewulf et al., 2007). This methodology is a resource footprint 

methodology which traces back the origin of the inputs necessary to obtain the final 

product(s) and the related amount of exergy deprived from the environment. Eight 

subcategories are used: renewable resources (excl. biomass), fossils, nuclear energy, metal 

ores, minerals, water resources, land resources (incl. biomass), and atmospheric resources. 

This is different from many case studies which are executed in the sector of biorefineries and 

bioenergy which focus only on the carbon footprint, or the net energy balance, whilst also the 

other categories, and especially the inputs during cultivation such as land occupation and 

transformation and water use should not be forgotten. Another option often chosen is the 



Chapter III 

- 61 - 

 

fossil resources saved per hectare, an indicator which is relatively sound in the sector of 

bioenergy, but which is less suitable for other sectors such as the food industry.  

Finally a scenario assessment is executed to analyze the decision to change the services 

delivered by the wet sugar-starch streams and the related consequences of the decision in the 

foreground system on the background system. Producing ethanol from the streams saves a 

certain amount of fossil fuel, but also might displace the animal feed production to another 

facility. A comparison between the two scenarios is made for the eight resource impact 

categories of the CEENE methodology, with data ‘after transition’ taken from the current 

production facility (company A) and data ‘before transition’ taken from data files from the 

same company (company A’) supplemented with ecoinvent data for fossil fuel production 

(company B). 

3.  Results and discussion 

3.1.   Cascade valorization efficiency 

 

A thorough analysis has been made of the different steps in the production facility before and 

after the integration of fuel ethanol production. Figure III.1.2 shows the exergy flows through 

the plant in the two situations. In both cases three major biomass streams; wheat, flour and 

sugars are processed to specialty sugars, starches, gluten and animal feed, whilst in the newer 

situation an additional fermentation section is added. The different parts of the wheat plant are 

‘refined’, allowing cascade processing to serve different markets: firstly the wheat brans and 

germs are separated to serve as animal feed and the gluten proteins are separated in a wet 

milling process to serve as an additive in the food industry. Afterwards the starches and 

sugars fractions are valorized for the food industry. In the new situation the wet sugar-starch 

streams that were previously dried and used as animal feed are now first fermented to ethanol, 

whilst the DDGS is processed further to animal feed. Table III.1.2 shows the exergy content 
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of the categorized inputs and the sold outputs. Furthermore it summarizes the exergy flows 

going in and out the studied system after transition relative to 1 ton incoming biomass. The 

complete plant was and is very efficient: in the situation after transition, the Rational 

Exergetic Efficiency of the complete facility is 81.1%, whilst it reached 81.5% in the situation 

before transition. The most prominent, but inevitable losses are located at the energy 

generation processes: the CHP (Ψ = 58%) and the steam boiler working on biogas from the 

anaerobic wastewater treatment (Ψ = 23%). On a mass basis almost no incoming biogenic 

material is wasted; only in the ethanol fermentation step, 17% of carbon of fermented biomass 

is wasted through CO2 production, however the related exergy loss is small (1%), due to the 

fact that the exergy content of ethanol is higher per mass unit and the fact that the exergy 

content of carbon dioxide is low. An additional factor causing the small change in efficiency 

between the situations is the fact that a unit ethanol requires relatively more utilities in 

comparison to a unit of animal feed. The efficiency in both situations is thus very similar, 

since the biomass was previously used as animal feed, however, the newer configuration 

offers the possibility to be flexible and to deliver a range of services to different markets, 

including previously fossil based services without losing efficiency. For example, gluten and 

cellulosic materials can be used as food or feed but can also be used as a resource in the 

plastic industry. Similarly, the bioethanol can serve as fuel or as a basic building block in the 

petrochemical industry. In all these cases it is essential that the biobased product is used as 

efficient as possible after its production as well. For example the combustion of bioethanol as 

a transport fuel can induce an efficiency loss that cancels the higher upstream efficiency and 

therefore makes alternatives such as bio-electricity more attractive (Campbell et al., 2009).   
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Table III.1.2: The categorized inputs and outputs of the factory after transition relative to 1 ton incoming biomass (wheat, sugars and 

flour), with exergy contents of the incoming and outgoing products, their relative share of the total and their total quantity. The CEENE 

values of the inputs are indicated and allocated to the outputs, first as absolute value and secondly relative per kg product. Mass units 

are on a wet basis, i.e. salable products. 

 INPUT 
Exergy content (MJ/kg 

input) 

MJ CEENE/ kg 

input 
INPUT  

INPUT 

UNIT 

Total exergy at 

gate in (GJ) 

% of total exergy 

input at plant 

Total CEENE input 

(GJ) 

Wheat 16.3 107.2 568.7 kg 9.3 48.4% 61.0 

External flour 16.7 131.9 33.4 kg 0.6 2.9% 4.4 

Sugars 13.4 71.7 397.9 kg 5.3 27.9% 28.5 

Chemicals 6.8 32.1 39.3 kg 0.3 1.4% 1.3 

Nat. gas 41.3- 49.5 65.0 80.5 kg 3.7 19.4% 5.2 

Transport  n.a.  n.a. 322.6 ton.km n.a. n.a. 0.5 

  Total 19.1 100% 100.9 

   

 OUTPUT 
Exergy content (MJ/kg 

output) 

MJ CEENE/ kg 

output 
OUTPUT  

OUTPUT 

UNIT 

Total exergy at 

gate out (GJ) 

% of total useful 

exergy output 

Total CEENE output 

(GJ) 

Dried starch 16.4 134.0 98.0 kg 1.6 10.4% 13.1 

Gluten 23.4 170.1 38.0 kg 0.9 5.7% 6.5 

Animal Feed 17.3 126.3 180.0 kg 3.1 20.2% 22.7 

Sugar 12.7 78.1 622.3 kg 7.9 51.1% 48.6 

Ethanol 29.5 216.5 37.6 kg 1.1 7.1% 8.1 

Electricity to net n.a. n.a. 0.2 MWh 0.8 5.5% 1.9 

  Total 15.5 100% 100.9 
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Figure III.1.2: Exergy flow diagrams (Sankey) on an hour basis of the main processing 

steps in the biorefinery before and after fuel bioethanol integration. The thickness of the 

flows indicates the relative amount of exergy. The different process steps: WhD: Dry 

wheat processing, WSep: Wet separation, GSep: Gluten separation, WMill: Wet milling, 

Slu: Slurry processing, Glu: Gluten processing, AnF: Animal feed production, EfE: 

Effluent evaporation, Eth: Ethanol production, Sug: Sugar refining. Energy originates 
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from the CHP and biogas steam boiler; wastewater is treated in a WWTP. The latter 

ones are not visualized for the sake of simplicity. 

3.2.   Life Cycle resource use 

 

Whilst the processing plant itself is rather efficient, the steps necessary to produce the inputs 

of the factory from elementary flows from nature contribute to additional resource quality 

losses in both the agricultural phase of biobased resources and in the industrial system of the 

utilities. Table III.1.2 summarizes the origin of the environmental impact according to the 

CEENE methodology and how the life cycle resource consumption is captured in the end 

products. From an environmental life cycle perspective, the Rational Exergetic Efficiency is 

calculated by dividing the total exergy of the useful outputs by the CEENE value. In the 

situation before transition this efficiency reached 15.6% in comparison to 15.3% in the 

situation after transition. This means that currently only 15.3% of the exergy of the 

elementary resources deprived from the environment (CEENE) is captured in the final 

products. It should be noted that in the calculation of the CEENE impact category land use, 

2% of the solar irradiation is included to account for biomass production, since this is 

approximately the maximum energy that is captured by photosynthesis per land area and 

which is therefore not available for a natural ecosystem.  

Table III.1.2 clearly demonstrates that the biofeedstock used in biorefineries is responsible for 

a large share (93%) of the life cycle resource requirements and the related impacts of the 

output products. Utilities to process it further in the biorefinery account only for 7.0% of the 

total exergy extracted from nature (1.3% for chemicals, 5.2% for natural gas used in the CHP 

and 0.5% for transport). A more detailed picture of the resource footprint of the different end 

products can be obtained by considering the different categories in the CEENE methodology, 

which represent the relative amount of exergy deprived from nature per category for a kg of 
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end material. Figure III.1.3 depicts this footprint for the situation after transition. The main 

difference between the two situations is the footprint of the animal feed which is slightly 

lower before transition (A’) because of the larger production rate on a mass basis. The highest 

resource extraction from nature is the land use, mainly originating from agricultural 

production of the incoming biomass. Indeed, in contrast to fossil resources, biobased materials 

require a land intensive cultivation step depriving the natural ecosystem from this potential 

territory. The second highest resource extraction is the use of fossils, which originates mainly 

from natural gas used in the CHP of the production plant (49.7%), whilst the life cycle of the 

biobased resources accounts for 39.9%, the life cycle of the chemicals for 6.5% and the 

transport for 3.9%,  

Due to the fact that the allocation procedure was based on exergy flows per process, insights 

on the origin and size of the environmental impact per product can be obtained. As such, the 

amount of fossils used indicates the energy intensity to obtain the direct processing and 

production chain of the different products. For example the gluten are separated with energy 

intensive centrifuges and the ethanol needs a significant amount of steam for the purification 

section, both requiring fossil natural gas from the CHP. Furthermore, more impact from the 

agricultural phase is allocated to the gluten and ethanol because they both have a higher 

exergy content than the sugar/starch streams. The sugar stream has the lowest resource 

footprint. However, it should be considered that the incoming sugar stream is accounted for as 

‘sugar, from sugar beet’, since the ecoinvent database does not contain sugar syrup from 

wheat. In comparison to wheat, sugar beet has a dry matter yield which is approximately three 

times higher per hectare than wheat and a relatively larger sugar concentration. However, on 

the other hand it is more difficult to store and furthermore it offers fewer opportunities for 

refining.  
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Figure III.1.3: The resource footprint of the different output products expressed in MJ 

CEENE per kg end product, which expresses the relative amount of exergy deprived per 

resource category. The difference between the situation before (A’) and after (A) 

transition is situated in the footprint of the animal feed. 

 

3.3.   Scenario assessment 

 

A scenario assessment is used to analyze the dynamic character of decisions in the 

bioresource sector and the implications of taking the opportunity to replace fossil services 

with biomass. In the case study ±30% of the previously produced animal feed is now 

converted to fuel bioethanol. Per ton animal feed replaced, 13.6 GJ fuel bioethanol is 

obtained, thus replacing 13.6 GJ fossil fuel. It is supposed that the market demand for animal 

feed remains constant and that the production of the replaced tons animal feed is displaced to 

another facility. Table III.1.3 summarizes the consequences on the resource impact of this 
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decision. The transition to the valorization of the biomass stream as a biofuel results in an 

overall saving of 7GJ fossil resources per ton animal feed displaced, resulting in an 

automotive fuel based on 43% less fossils than regular petrol. It should be noted that this 

number could be higher, because the studied production facility uses mainly energy from a 

CHP working 100% on natural gas, thus saving nuclear energy which is related with grid 

power. However, when considering the other categories, the pressure on nature increases. In 

this case, the production of biofuel requires overall more electricity (nuclear and renewable), 

uses more water and furthermore, the amount of minerals, metals and land use and 

transformation nearly doubles (193%), mainly due to the fact that fossils do not need current 

land cultivation. This means that replacing fossils by biomass decreases the pressure on the 

atmosphere by mitigating GHG emissions but on the other hand it increases the pressure on 

the inputs from the earth’s crust. Assuming that electricity will become renewable in the 

future through solar energy and that metals can be recycled, the water, land and minerals 

demand remains problematic. In other words, there is a tradeoff in the biosector between the 

Carbon Footprint of products and the Land Footprint, Water Footprint and Minerals Footprint. 

Figure III.1.4 visualizes this by using internal normalization by using the average of the two 

scenario’s. Biomass is thus a renewable resource, but definitely not a ‘gratuite’ or an ‘endless’ 

resource. 
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Table III.1.3: The consequences of a strategic decision regarding the valorization of a biomass stream according to the eight resource 

impact categories of the CEENE methodology (in GJ). The animal feed production is displaced to another company (A’), whilst a certain 

amount of petrol, previously produced at company B, can be substituted by bioethanol. Company A represents the company after 

transition and A’ before transition. 

Reference situation 

 
Amount Renewable Fossil Nuclear Metal ores Minerals Water Land Atmospheric 

Animal feed 
company A' 

1 ton 0.14 9.03 0.39 0.01 0.02 0.28 111.02 0,00 

Petrol company B 13.6 GJ 0.05 17.53 0.18 0.00 0.00 0.18 0.07 0,00 

Total CEENE GJ 0.19 26.56 0.57 0.01 0.02 0.45 111.09 0.00 

          
Situation after transition 

 
Amount Renewable Fossil Nuclear Metal ores Minerals Water Land Atmospheric 

Animal feed 
company A 

1 ton 0.15 9.38 0.42 0.01 0.02 0.32 116.04 0,00 

Bioethanol 
company A 

13.6GJ 0.19 9.96 0.56 0.01 0.02 0.41 98.99 0,00 

Total CEENE (GJ) 0.34 19.33 0.98 0.02 0.04 0.73 215.03 0.00 

 

 

 



Chapter III 

- 70 - 

 

 

Figure III.1.4: Normalized (internal normalization by using the average of the two 

scenarios, higher is worse) fossil resource savings versus the mineral, water and 

land use according to a scenario assessment with the CEENE methodology. The 

savings of 27% fossil resources in the scenario assessment ‘costs’ 93% additional 

inputs of land, minerals and water, mainly due to higher cultivation requirements. 

4.  Conclusions  

 

Refining biomass to different end products is a major opportunity to offer different 

market services. As such, fossil resources can be replaced without losing 

thermodynamic efficiency in biomass processing. However life cycle assessments show 

that the production chain of biomass requires a demanding cultivation step nuancing the 

renewability of bio-based products. Furthermore, every decision to change a product 

mix results in a displacement of production due to a constant demand, implying that a 

certain amount of biomass and the related inputs are necessary for every quantity of 

food, feed, bioproducts and bioenergy needed by society. Because of the fact that the 
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availability of these factors is limited, even if the inputs are minimized, it is highly 

uncertain if biomass will be able to deliver all required services to replace fossils. 

Therefore, the decisions concerning biomass taken in the political and industrial system 

should be well-thought-out and based on sound assessments. Apart from economic 

concerns, these decisions are currently mainly driven by greenhouse gas emission 

targets or in other words, lower Carbon Footprints. However, the main limiting factors 

for the development of biorefineries, are the use of the inputs during cultivation such as 

land, water and minerals. This chapter has stressed the importance of quantifying these 

inputs and of weighting the ‘cost’ of lowering GHG emissions through the use of 

biomass. Introducing such calculations, e.g. as a basis for subsidies, allows objective 

comparisons and might encourage sustainable agriculture and efficient production. 

Furthermore, it might also deliver a more balanced market regulation, by including the 

limiting factors for feedstock production for food, feed and bioproducts in the energy 

sector. The large range of opportunities for biorefining should thus be taken, but it 

should be considered that replacing the carefully built-up stock of valuable fossils will 

always require other types of natural resources.  
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1.  Introduction 

 

Mankind currently depends heavily on depleting fossil resources and although it is clear 

that they will keep on taking an important place in our resource supply for the next 

decades, it is also clear that a transition to more sustainable sources of material and 

energy is necessary. Biomass is such an alternative resource, which has a large potential 

in application range and in the mitigation of climate change. On the other hand it is not 

an endless renewable feedstock as it depends on its resource footprint caused by 

agriculture and limited photosynthetic efficiency, resulting in competition with the food 

and feed chain. For this purpose, a detailed environmental sustainability assessment of 

different sources of biomass can give more insight in future possibilities of the bio-

based economy. Biomass can origin from arable field crops such as maize, sugar beet, 

wheat, etc. whereas also lignocellulosic crops can be produced on marginal lands. 

Alternatively domestic and industrial waste streams can be used or in the longer term, 

aquatic biomass (algae) could make a significant contribution (McPhail et al., 2012). In 

this chapter, the currently most implemented resource choices, i.e. energy crops, field 

residues and organic waste are assessed with a focus on anaerobic digestion as a 

biomass valorization strategy. 

Anaerobic digestion, basically defined as “a process that converts biomass to biogas 

under oxygen free conditions”, exists in many configurations depending on temperature 

(psychrophilic, mesophilic and thermophilic), moisture content (less than 15% dry 

matter is considered as wet, a higher dry matter is considered to be dry), reactor type, 

(plug flow, completely mixed, film, …), horizontal and vertical, single- or multistep 

reaction, and continuous or batch (NorthEast Biogas, 2010). In general however, 
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anaerobic digestion is able to convert almost all sources of biomass, including different 

types of organic wastes, slurry and manure to a highly energetic biogas (Holm-Nielsen 

et al., 2009) as long as conditions such as C/N ratio are within an acceptable range. 

Only strongly lignified organic substances such as wood are not suitable for digestion 

(Weiland, 2010). When using digestable biomass, the different molecules such as 

carbohydrates, proteins and lipids can be hydrolyzed to soluble sugars, amino acids and 

long chain fatty acids in order to start the further microbial conversions. Afterwards, 

during acidogenesis these components are degraded to acetate, hydrogen, carbon 

dioxide and a number of organic acids, the latter converted further by acetogenesis. 

Methanogens then convert this mixture to biogas (Gujer and Zehnder, 1983) consisting 

of approximately 50-70% methane, 30-50 carbon dioxide and smaller amounts of N2, 

H2O, NH3 and H2S (IEA Bioenergy, 2009b). The remaining fraction in the digester, the 

digestate, can be further treated and processed, or can be used directly as a fertilizer. 

These complex microbiological reaction pathways allow conversion of all types of 

biomass which is a major advantage in comparison to other forms of bioenergy such as 

bioethanol and biodiesel. In these options respectively the Saccharomyces cerevisiae 

convert only the glucose fraction to ethanol and only the oil and fat fractions undergo 

transesterification to biodiesel. This results in better conversion efficiencies of biomass 

to biogas compared to other biofuel production alternatives (Börjesson and Tufvesson, 

2011) which is an essential parameter in the environmental sustainability of bioenergy 

because the cultivation of biomass is generally responsible for the largest impact over 

the life cycle of bioenergy (Zah et al., 2007). As a result, a better overall energy balance 

of biogas compared to for example ethanol can be achieved, where extra pre- and post 
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treatment steps might enhance higher yields but do not have a beneficial effect on the 

energy balance (Schumacher et al., 2010). 

Although it is a promising technology, up to now biomass contributes by only 3 to 13% 

of the total energy supply of industrialized countries in which incineration for heat or 

electricity, in many cases by fuelwood, covers most of this supply. Liquid biofuels 

represent a smaller contribution, mainly as biodiesel and bioethanol. Energy from 

biogas from anaerobic digestion is producing only a small but steadily growing share 

(IEA Bioenergy, 2010a). However, the role of biogas can become more substantial. The 

broad applicability and relatively simple setup of anaerobic digestion, is a major 

opportunity for the worldwide implementation of this technology as a way to treat 

waste, i.e. a stabilization of the waste can be achieved and to produce energy 

simultaneously (Weiland, 2006). It is also implemented more frequently for the 

digestion of energy crops, by using a large diversity of possible plant materials (IEA 

Bioenergy, 2010a), whilst furthermore, digestion is a potential option for (organic) 

farmers to become energy self-sufficient where digestate application can maintain soil 

fertility (Oleskowicz-Popiel et al., 2012).  

These opportunities have resulted in a growing interest in anaerobic digestion; for 

example in Germany, a leading country in biogas production, it is considered as a key 

technology to meet the renewable energy and GHG mitigation targets (Pöschl et al., 

2010). On a more international scale, it is stated that up to 18% of primary energy 

demand can be fulfilled by cultivating energy crops on 30 % of the arable land (IEA 

Bioenergy, 2010a), excluding the potential of organic waste streams and possible new 

bioresources such as biodegradable polymers (Guo et al., 2011). To highlight the 

potential, in 2010 already 197 plants were already operational in Europe converting the 
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organic fraction of municipal organic waste with an average capacity of 29170 tons per 

year (Mattheeuws, 2012). 

In this context, this chapter makes a detailed analysis of the environmental sustainability 

of using different types of biofeedstock in dry anaerobic digestion for the production of 

electricity and heat to contribute to renewable energy targets in Northwestern Europe. 

As input materials the currently most common biomass sources are studied, namely 

domestic organic waste, farm residues and energy crops. These feedstock alternatives 

are analyzed by using energy and exergy efficiency assessment and by performing a 

resource and emission fingerprint based on ISO 14040/44 LCA with an additional focus 

on the benefits of the valorization of the produced heat and digestate, the latter as a 

fertilizer. The limitation that many studies base themselves on small-scale test data or 

literature was avoided by studying full scale and operational dry digesters. The 

conclusions of this study are thus based on a high quality dataset with realistic data of 

for example the input composition, internal material and energy use, industrial 

conversion efficiencies, transport distances, digestate application in agriculture, etc.  

The assessment is thus performed at two levels: 

- First, the conversion efficiency of the different types of biomass to energy is 

assessed by using an energy and exergy balance, as an efficient use of the 

feedstock is a critical factor in the sustainability of biomass valorization chains. 

Exergy assessment was used to identify process inefficiencies based on the 

second law of thermodynamics (Dewulf et al., 2008). 

- Second, Life Cycle Assessment was used to obtain a more holistic view on the 

environmental profile of the different types of biomass feedstock. For this 
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purpose, a combination of a resource based and emissions based LCA approach 

was chosen.  

2.  Method 

In the following, the two studied full scale case studies are elaborated with a process 

diagram, followed by a system description and a clarification of the data sources (year 

average of 2010) used to construct the inventory. Afterwards, the assessment techniques 

are explained more in detail. The inventory of the studied cases is confidential, but can 

be obtained upon request. 

2.1.   System description 

2.1.1.   Case study 1 
 

The first case study focuses on a typical setup of dry digestion in an agricultural context 

situated in Germany and having a capacity of approximately 20,000 tonnes biomass 

inputs per year (Figure III.2.1). The vertical digester is currently mainly fed by silage 

maize, supplemented with smaller amounts of rye silage and poultry manure. After 

storage, biomass is fermented with a residence time of approximately 21 days. The 

produced biogas is collected in a gas bag, where water is condensed. Afterwards, the 

biogas is converted into electricity and heat in generators of 250kW. The digestate is 

stored and used as a fertilizer on the surrounding fields. Because of the importance of 

agriculture in environmental LCA studies, the farming of silage maize was studied more 

in depth, with a specific focus on the impact of using digestate instead of traditional 

(organic and mineral) fertilizers. Data of these processes were collected together with 

the involved farmers and experts. Methane emissions from the digestate storage tank are 

taken from Liebetrau et al. (2010). Emissions from agriculture are calculated by 
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applying the models used by Nemecec and Kägi (2007), with more detailed data of 

metal emissions and of nitrogen leakage taken from Freiermuth (2006) and Svoboda et 

al. (2011) respectively. Data of diesel consumption was obtained from the involved 

farmers and the resulting air emissions are taken from EMEP/CORINAIR (2000). Two 

alternative digester feeds were elaborated for this system in collaboration with involved 

experts, where all parameters of the inventory can remain constant, except for the 

agricultural inputs and the energy and digestate output; in the first alternative sugar beet, 

grass silage and poultry manure, whilst in the second alternative corn stover, cow 

manure and poultry manure are digested.  

 

Figure III.2.1: Process flow sheet of the agriculture based anaerobic digestion 

setup 

2.1.2.    Case study 2 
 

In the second case study a Belgian production plant was studied where domestic organic 

waste (±45,000 tonnes per year) is converted into electricity, heat and compost by dry 

digestion (Figure III.2.2). Biomass is collected by selective municipal organic waste 

collection. The collection in one part of the region is organized by using a temporary 
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waste terminal, whilst the municipal waste collectors in the second part of the region 

supply the organic waste directly to the facility. The transport distances were collected 

in collaboration with the involved stakeholders. Because of the diversity of organic 

waste and contamination due to sometimes careless waste sorting, a specific 

pretreatment is necessary by means of drum sieves and magnets. Afterwards a piston 

pump feeds the digester, where the organic fraction is converted to biogas with a 

residence time of approximately 20 to 25 days. After a water condensation step, the 

biogas is burned in engines of 625kW to produce electricity and heat. The resulting 

digestate is post treated by means of a press, centrifuge and sieve, where the separated 

heavy fractions are landfilled and the wastewater is treated in a treatment plant. The 

lighter fraction is further composted in an aerobic composting hall where air is extracted 

and filtered in a biofilter. All data of resource use and emissions of this plant, including 

the composting process and the wastewater treatment is collected based on 

measurements and judgement of involved stakeholders and experts.  
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Figure III.2.2: Process flow sheet of the organic waste based anaerobic digestion 

setup 

2.2.   Technological Assessment based on energy and exergy efficiency 

 

The efficiency of electricity production per digested biomass is calculated based on 

energy (Lower Heating Value) and exergy. This is a sound strategy, as the efficiency of 

the conversion of biomass to energy is a bottleneck in the environmental sustainability 

of this technology. Including heat would not contribute to the results since a fixed 

amount of heat is produced per kWh electricity generated and since this would be less 

comparable with literature. Other aspects such as agriculture and required material and 

energy inputs are considered in the LCA part of this chapter. Two types of efficiencies 

are calculated: 



Chapter III 

- 81 - 

 

- First, a ‘traditional’ electricity efficiency is calculated by dividing the exergy 

(Ext) or energy (Ent) content of the produced electricity by the ex(n)ergy content 

of the input biomass. 

%jK  �� %�K � %j������� �k �l�������%j������� ������� �k �mn� o�p��� 

- Second, a ‘rational’ electricity efficiency based on exergy (Exr) or energy (Enr) 

is calculated by subtracting the ex(n)ergy content of the not digested matter from 

the ex(n)ergy content of the total biomass input, as this exergy/energy is still 

available for other purposes such as fertilizing, incineration, etc.: 

%j�  �� %��
� %j������� �k �l�������%j������� ������� �k �mn� o�p��� 5 %j������� ������� �k ��� ������� p����� 

In the case of organic waste digestion, the total ‘not digested’ incoming biomass 

is considered. This means not only the final compost fraction, but also the 

fractions that are separated in the pre -and post-treatment steps. 

The energy and exergy calculations are based on experimental and literature data, where 

heating values are calculated according to Sheng and Azevedo (2005) and Fowler et al. 

(2009). Exergy is calculated by using Gibbs calculations, the group contribution method 

and by using the β LHV methodology (de Vries, 1999).  

2.3.   Life Cycle Assessment assumptions and value choices 

 

Life Cycle Assessment was executed according to the ISO 14040/44 guidelines 

(International Organization for Standardization, 2006) and the ILCD handbook 

(European Commission - JRC, IES, 2010). The study includes the cradle to gate 
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production of electricity, heat and digestate/compost by anaerobic digestion in full scale 

plants in Belgium and Germany. Infrastructure was excluded from this study, except for 

the land use of the facilities and for the agricultural phase. The ecoinvent database 2.0 is 

used to model datasets in the background system. The life cycle assessment is structured 

in three comparisons which are elaborated in Table III.2.1. The detailed allocation 

factors based on energy and exergy are presented in Table III.2.2. 

Table II.2.1: A clarification on the life cycle assessment based comparisons 

elaborated in this chapter 

 

C1: 

Electricity production from 

waste and energy crops 

C2: 

Agricultural fertilization 

C3: 

Options in agricultural 

digestion 

Goal 

a) Compare electricity 

production of domestic organic 

waste, energy crops and 

reference electricity from the 

grid. 

b) Study the influence of using 

heat 

Studying the effect of 

using digestate as a 

fertilizer compared to 

‘traditional’ mineral and 

organic fertilization 

Comparing different 

feedstocks available in 

an agricultural context 

in North West Europe 

Functional 

unit 
1MJ electricity 1kg silage maize 1MJ electricity 

Allocation 

Based on exergy. 

 In the case of energy crops: a 

part of the digestate remains 

within the system boundaries 

(no allocation on internal 

stream) 

Domestic organic waste: 

compost fully out of system 

(allocation applied) 

n.a. 

Based on exergy. 

Digestate leaves system 

boundary: allocation 

applied in all cases. 

Heat 
Heat used and heat not used 

compared 
n.a. Heat used 

Feedstock 

data 
Real data from case study 

Real data for digestate 

agriculture, ecoinvent 

studies for alternatives 

Real data for maize 

digestion, data from 

ecoinvent for the others 

Impact 

assessment 
Resource and emission based 

Resource and emission 

based 
Resource based 
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Table III.2.2: Exergetic ( and energetic) allocation factors (in %). HU = heat used, 

HNU = heat not used 

 
 

Electricity Heat 
Digestate/ 

compost 

C1 

Domestic organic waste digestion, compost used 

outside system boundary, HU 
36.7 (28.4) 22.1 (44.8) 41.2 (26.8) 

Domestic organic waste digestion, compost used 

outside system boundary, HNU 
47.2 (51.5) 0 (0) 52.8 (48.5) 

Silage maize digestion, digestate used within 

system boundary, HU 
51.0 (47.3) 26.1 (49.3) 22.9 (3.4) 

Silage maize digestion, digestate used within 

system boundary, HNU 
69.1 (93.4) 0 (0) 30.9 (6.6) 

C3 

Silage maize digestion, digestate used outside 

system boundary, HU 
33.7 (44.0) 17.2 (45.8) 49.1 (10.2) 

Corn stover and manure digestion, digestate used 

outside system boundary, HU 
19.5 (26.1) 8.2 (28.8) 72.3 (45.1) 

Sugar beet and grass silage digestion, digestate 

used outside system boundary, HU 
31.7 (42.4) 13.0 (45.7) 55.3 (11.9) 

 

As a life cycle impact methodology, the Cumulative Exergy Extracted from the Natural 

Environment (CEENE) (Dewulf et al., 2007) methodology is chosen to construct a 

resource fingerprint consisting out of seven resource categories: renewable resources 

(excl. biomass), fossil fuels, nuclear energy, metal ores, minerals, water resources and 

land occupation (incl. biomass). To account for emissions, six categories are taken from 

the RECIPE methodology with midpoint indicators and the hierarchist perspective: 

climate change, ozone depletion, photochemical oxidant formation, terrestrial 

acidification, freshwater and marine eutrophication (the latter also influenced by 

emissions from the field). Other categories such as toxicity have not been taken into 

account due to the requirement of a very detailed and specific inventory. Especially in 

studies involving agriculture, the emissions of metals and pesticides are determining for 

life cycle toxicity results. These flows are difficult and very case specific to quantify, 

and therefore, the authors consider the used models of Nemecek and Kägi (2007) not 



Chapter III 

- 84 - 

 

sufficient for further impact modeling of toxicity. The uncertainty of the results is 

analyzed by using the most commonly used approach relying on the pedigree matrix 

followed by a Monte Carlo simulation. In this type of uncertainty quantification it 

should be considered that only data uncertainty is taken into account, without analyzing 

the impact of model uncertainty, allocation choices, etc. (Huijbregts, 2011).  

3.  Results and discussion 

3.1.   Technological assessment: energy and exergy efficiency 

 

Table III.2.3 summarizes the exergy and energy efficiency of the studied biomass to 

energy routes. When considering the traditional efficiencies, electricity from silage 

maize production is the best strategy, with a Ent of almost 33%. Electricity production 

from sugar beet and grass is less efficient and is therefore less suitable from a 

technological perspective. The digestion of agricultural residues and municipal organic 

waste has a lower efficiency compared to the digestion of energy crops as the molecules 

in these fractions such as lignocelluloses are less straightforward for biological 

decomposition. However, especially the digestion of agricultural residues produces a 

highly energetic and stabilized digestate resulting in the highest (36%) rational energy 

efficiency. Organic waste digestion performs worse compared to the agricultural 

options, however, the Enr reaches 22.6%, demonstrating that the digestable fraction of 

the organic waste is converted approximately as efficient as solid waste incineration 

(22% according to IEA Energy Technology Essentials, 2007), however, efficiency of 

incineration will lower rapidly for fractions with a higher moisture content. In this 

discussion the ‘traditional’ efficiency ignores the fact that not all biomass is lost or 

converted. After biological conversions, a digestate remains with a high energetic value 

(in the dry matter) and containing valuable macro- and micronutrients. This fraction can 



Chapter III 

- 85 - 

 

therefore be useful as a fertilizer (compost), or can be pyrolized/incinerated for 

additional energy production. The rest product after incineration, ash, can cause 

additional phosphorus leaching and is not a carbon and nitrogen source (Piirrainen et al., 

2013). Therefore it obtains lower credits compared to digestate as a fertilizer which 

often results in a better performance on a life cycle basis of anaerobic digestion 

compared to incineration (Bernstad and la Cour Jansen, 2011; Hermann et al., 2011). 

Recently, the more effective valorization of highly concentrated metals, phosphorus and 

micronutrients receives more attention and evolutions in this field could have an 

influence on this balance (Simon and Adam, 2012). 

A clear difference between the internal use of energy of domestic organic waste 

digestion and digestion in an agricultural facility can be observed. In the agricultural 

facility, 5.6% of the produced electricity is used internally, whilst 6.4% of produced 

heat is necessary, mainly for heating the digester. In contrary, the domestic organic 

waste digestion process, requires 36.1% of the produced electricity and 1.6% of the 

produced heat. The large share of internal electricity consumption, mainly needed for 

the separation of non-fermentable/compostable fractions is a drawback for domestic 

organic waste digestion and lowers the rational exergetic (energetic) efficiency to 9.8% 

(14.5%).  
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Table III.2.3: Exergy and energy efficiency of electricity production from different types of biomass by anaerobic digestion 

 

 

Electricity from organic 

waste digestion 

Electricity from corn stover 

and manure digestion 

Electricity from silage 

maize digestion 

Electricity from sugar beet 

and grass silage digestion 

Electricity produced (MJ) 1.0 1.0 1.0 1.0 

Exergy in (MJ) 10.2 6.7 4.4 5.3 

Energy in (MJ) 6.6 4.5 3.0 3.5 

Ext 9.8% 14.8% 22.8% 18.9% 

Ent 15.1% 22.2% 32.9% 28.8% 

Exergy out in side streams/digestate (MJ) 3.7 3.7 1.4 1.7 

Energy out in side streams/digestate (MJ) 2.2 1.7 0.2 0.3 

Exr 15.3% 32.9% 33.3% 28.3% 

Enr 22.6% 36.0% 35.4% 31.3% 
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3.2.   Life Cycle Assessment 

3.2.1.   Comparison 1: electricity production  
 

From a resource perspective, Figure III.2.3 shows that anaerobic digestion of both 

energy crops and domestic organic waste scores ‘significantly’ better than the current 

electricity mix in almost all categories. Only metal and mineral consumption results in 

relatively comparable values; however in absolute terms, they are of minor importance. 

A very good performance is achieved for other categories such as renewables, fossils, 

nuclear and water resources. Compared to the current electricity reference (of 

Germany), a saving of over 90% is achieved for all these categories, except for the 

fossil fuel use in domestic organic waste digestion. The latter is mainly caused by the 

transport distances necessary for a selective municipal organic waste collection, 

however a positive balance is still achieved with a consumption of 0.59MJ fossil exergy 

consumption (0.76MJ if heat is not used) per MJ electricity. Furthermore, waste 

collection is a service to society which is indispensable, independently to what finally 

happens to the waste. Regarding land use, a saving is achieved for domestic organic 

waste scenarios, but for energy crop digestion, a significant amount of land is needed 

for the agricultural processes. In this case 6.1MJ land (8.3MJ if heat is not used) or 

0.09m² (0.12m²) for 1 year is necessary to produce 1.0 MJ of electricity. This means 

that an average German inhabitant, using approximately 6642kWh/y (Nationmaster, 

2007), would need an arable area of 2144m² (2903m²) cultivated with silage maize to 

fulfill his yearly electricity demand, whilst Germany has approximately 1500m² arable 

land available per inhabitant (Worldstat, 2007). Covering 20% of electricity demand 

with energy crops would thus require 29% of the arable land available on a life cycle 

basis (39% if heat is not used). Using organic waste as a feedstock does not have this 
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direct land necessity, and the digestion of this biomass source can thus be seen as a 

valorization pathway with an overall positive balance (0.67MJ primary exergy inputs 

from nature per MJ electricity if heat is used and 0.86 MJ primary exergy inputs from 

nature if heat is not used). The different studied options of anaerobic digestion in 

general thus score relatively good from a resource point of view. In this assessment, the 

utilization of the generated heat is an important factor, with an overall poorer 

performance of 32% in the scenarios where heat is not used. A maximum amount of 

energy contained in the valuable biogas should thus be used as the waste of heat would 

detract from the efforts and accompanying resource footprint necessary to obtain the 

biomass resources. This is logic from a thermodynamic point of view, but causes 

difficulties in reality, since both the agricultural and organic waste digesters are mainly 

located in rural, non-industrial areas. Nevertheless, solutions should be sought for this 

problem, where heat demanding processes can be executed in the proximity of digesters 

(e.g. drying steps, domestic and rural heating such as greenhouses, stables, etc.). An 

alternative is a transportation of the heat or the biogas itself. An upgrade to biomethane 

for example, is stated to have a positive environmental effect when being burned in a 

small-scale CHP unit (Pöschl et al., 2012), whereas the biomethane could be transported 

in the currently available gas supply. 

The emissions assessment (Figure III.2.3) obtained by the Recipe midpoint 

methodology shows that climate change gives similar results to the fossil fuel use 

except for digestion relying on agriculture, where methane emissions occur at the 

digestate storage tank and during digestate application on the field. Controlling these 

emissions would give a balance which performs almost 50% better in the mitigation of 

climate change. Whilst the data was collected in 2010, more recently a post-digester 
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was installed, eliminating a significant part of these emissions and increasing electricity 

yield, which is expected to lower the overall impact (Pöschl et al., 2012). Ozone 

depletion and photochemical oxidant formation are mainly caused by transport, which 

results in the highest impact for the organic waste digestion due to a transport intensive 

waste collection step. Acidification, freshwater and marine eutrophication are mainly 

caused by agriculture and therefore, the agriculturally cultivated feedstock digestion 

scores bad on these impacts except for freshwater eutrophication which is also caused 

by the disposal of coal in the current electricity mix. 

 



 

Figure III.2.3: Resource and emission footprint of electricity alternatives by using the CEENE and RECIPE methodology with 

uncertainty indication. Internal normalization is used, meaning that all alternatives are divided by the

options. Absolute values are given on top for the maximum value per MJ electricity
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3.2.2.   Comparison 2: agricultural fertilization 
 

The byproduct of anaerobic digestion is a digestate containing valuable nutrients that 

can be used as fertilizer on the surrounding fields, as such evolving to a ‘closed loop’ 

system which is a sound strategy in the light of renewability, but which could also 

induce risks, that are studied more in depth by analyzing a comparison of the silage 

maize with digestate fertilization with the ‘traditional’ intensive production and organic 

cultivation (Figure III.2.4). Concerning yield and resulting land necessity, the studied 

system scores average compared to the intensive and organic production, whilst for 

most other resource categories it scores best. The main reason for this is the replacement 

of fertilizers by nutrients available in the digestate. This internal use of nutrients is a 

major advantage compared to the traditional intensive production which requires 

resource consumption for the production of mineral fertilizers. As such a saving of over 

70% minerals and approximately 35% fossils is achieved. The high water use of the 

silage maize production can be explained by the production of diammonium phosphate, 

which is added as only fertilizer, but which might be omitted when digestate application 

practices are improved.  

The good performance on a resource basis is linked to a better score in related emissions 

categories such as climate change, ozone depletion and photochemical oxidant 

formation. The difference, however, is smaller compared to fossil fuel use in the 

resource assessment, mainly due to direct emissions from the field such as N2O and 

CH4. The best performance for ozone depletion is achieved by organic agriculture. This 

can be explained mainly by the production of pesticides which are applied in both the 

intensive production and in the digestate fertilization scenario. In contrary to these 
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impact categories, digestate application on the field causes more problems with 

acidification and eutrophication. Acidification is mainly caused by ammonia emissions 

during application, while marine eutrophication occurs when nitrate leaks to the 

groundwater. Freshwater eutrophication is mainly caused by the diammonium 

phosphate production and could be lowered by omitting this additional mineral fertilizer 

from the cultivation if digestate application would be sufficient as a nitrogen and 

phosphorus source.  

The environmental impact assessment of digestate application thus shows that digestate 

is a rich source of nutrients with often a high dry matter content, making it useful as a 

fertilizer, but also inducing risks of pollution. Whilst the total nitrogen content remains 

constant before and after the digestion (IEA Bioenergy, 2010b), the pH of this 

biological matter is higher, causing high NH4
+-N concentrations and thus more 

ammonia emissions during field application (Amon et al., 2006). This was also 

confirmed by experiments comparing digested with not-digested slurries (Immovilli et 

al., 2008). Nitrogen leaching could also become a problem, but the quantities are stated 

to be comparable to cattle slurries (Svoboda et al., 2011). Heavy metal components such 

as copper (42mg/kg DM) and zinc (217mg/kg DM) measured in the digestate of this 

study do not exceed concentrations in different types of manure (IEA Bioenergy, 

2010b) and would therefore not require additional precautions. Other risks include the 

contamination of digestate with pathogens, pesticides, seed residues and other toxic 

compounds (IEA Bioenergy, 2010b), especially in digestates obtained after solid waste 

digestion.  

Nevertheless, using digestate as a fertilizer can be beneficial for crop growth (e.g. 

maintaining carbon balance) and saves resources compared to traditional agriculture. 
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The large scale introduction of these nutrients however, is subjected to legislation. For 

example the stringent phosphate regulations in the Manure Action Plan of Flanders 

restrict the application of digestate as a fertilizer (VLM, 2012). On the other hand, from 

an ecological micro-scale perspective it can be stated that the benefits exceed the risks, 

especially if good agricultural practice is applied (e.g. injection of fertilizer, lowering of 

pH by acids, timing of application, etc.) (IEA Bioenergy, 2010b; Holm-Nielsen et al., 

2009; Mokry et al., 2008).  



 

Figure III.2.4: Resource and emission footprint of fertilization alternatives in silage maize cultivation by using the CEENE and 

RECIPE methodology with uncertainty 
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: Resource and emission footprint of fertilization alternatives in silage maize cultivation by using the CEENE and 

RECIPE methodology with uncertainty indication. Internal normalization is used, meaning that all alternatives are divided by 

options. Absolute values are given on top for the maximum value per kg silage maize
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3.2.3.   Comparison 3: options in agricultural digestion 
 

In an agricultural context, several feedstocks are possible of which three scenarios are 

analyzed in this study; silage maize, corn stover and cow manure, and sugar beet and grass 

silage (Figure III.2.5). From a resource perspective, the digestion of agricultural residues such 

as manure and corn stover is favorable. Conversion efficiencies are relatively high compared 

to the limited inputs needed during the life cycle. Especially manure is seen as a ‘free’ 

resource, whilst the use of corn stover is beneficial as the impact of grain maize is allocated 

over the grains and stover, therefore making better use of the biomass yield obtained by 

cultivation. It should however be noted that this study excludes the effects of additional work 

processes and a possible destabilization of the soil or necessity of additional fertilizer 

compensating the extra harvest of biomass. This seems acceptable in most cases, as digestate 

is returned on the field after biogas production restoring the nutrient balance, whereas 

otherwise CO2 would be emitted directly from the field during organic decomposition. When 

considering the digestion of energy crops, the use of silage maize performs better compared to 

the sugar beet and grass silage scenario. This can be explained by a better conversion 

efficiency of maize, as can be seen from Table III.2.2. A relatively simple but scientifically 

sound parameter for the environmental performance is given in IEA Bioenergy (2010a), 

where the yield per hectare is multiplied with the biogas potential per mass of biomass. As 

such, silage maize has a potential of maximally 18540m³/ha whilst grass and sugar beet have 

lower maxima (6538 and 6096m³/ha respectively). Biomass sources such as potatoes and 

fodder beet also achieve high yields, however, underground crops can result in other 

disadvantages such as difficult handling, higher moisture content and sand clogging in the 

digester (IEA Bioenergy, 2010a). As such, silage maize conversion to biogas can be seen as 

one of the most efficient energy crop pathways, where in this study only 0.14MJ fossil exergy 

is required per MJ electricity. This positive balance, which is even better for the digestion of 



 

farm residues (0.10MJ/MJ), is therefore an opportunity for (organic) farmers to become 

energy self-sufficient. 

Figure III.2.5: Resource footprint of electricity alternatives in an agricultural context by 

using the CEENE methodology with uncertainty indication
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agriculture step or do not need arable land for cultivation. This is also has an influence on the 

economics of anaerobic digestion. Only a few crops such as fodder beet, wheat, sugar beet 

and forage maize are stated to be profitable for conversion of biogas to electricity (Jones, 

2010). Apart from the ecological impact of arable land use, the economics are therefore also a 

limiting factor for several feedstock options. Generally waste streams have a low price or 

induce a gate fee, whereas competition for other sources of biomass with the food industry 

can have an increase in feed price as a consequence, threatening profitability of different 

digester feed configurations. Since electricity is still a relatively cheap commodity, new 

markets for biogas could however lead to a more competitive business. If the methane is 

purified for example, it can be injected in the natural gas grid, used as fuel in cars or even 

used as building block in the chemical industry.  

Nevertheless, anaerobic digestion is identified as an efficient technology for the conversion of 

different types of biomass and also from a life cycle perspective, anaerobic digestion performs 

well in most categories by inducing significant resource savings compared to reference energy 

production. The technology is able to produce biogas from many different sources of biomass 

whilst co-producing a rich digestate that can be used for ‘closed loop’ nutrient recycling, as 

such lowering the resource footprint of biofeedstock by excluding the need for mineral 

fertilizers. Therefore this technology can become a sound strategy in the production of 

renewable energy. On the other hand, to increase environmental sustainability of this system, 

it is necessary to control (agricultural) emissions in the biogas production chain.  
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1.  Introduction 

 

In the transition to a more sustainable society, Life Cycle Assessment (LCA) is considered as 

a valuable assessment framework for the quantification of the environmental impact of 

products and services (European Commission, 2003). For this purpose it is more and more 

included in the decision making process at different levels of policy and industry. The LCA 

supported decision should then make a choice between options by outweighing the positive 

and negative environmental effects of each option. Obtaining meaningful results requires that 

all options are thoroughly known; LCA is indeed a data intensive procedure (Mueller et al., 

2004) that typically requires full material and energy balances of the system under study. 

However, this might not be available for the different options in development, which is a 

major shortcoming for the implementation of prospective environmental assessments.  

Especially in biorefineries this is an important issue. The transition from fossil based to 

biobased refineries is seen as a big step in greening the economy mitigating climate change 

and giving the ability to obtain renewable and thus more sustainable products and services 

(IEA Bioenergy, 2009c). Nevertheless, it is already shown that this transition is challenging as 

renewable resources also have a production chain with significant environmental impact, e.g. 

through land use (De Meester et al., 2011). Strategic choices should therefore be made before 

final implementation in order to achieve the highest degree of sustainability with the biomass 

that is available. 

A typical question would be if a biorefinery should change configuration and what kind of by-

products can be produced. It could for example make sense to analyze the environmental 

consequences of including a wet milling step to separate proteins before fermentation of corn 

grains (Figure IV.1.1).  
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Figure IV.1.1: The product system of traditional corn ethanol (left) versus an alternative 

product system where the proteins are first separated (right). DDGS = Dried Distillers 

Grains with Solubles. 

To address such a typical question with Life Cycle Assessment, a choice can be made 

between the ‘usual’ options to compile a data inventory, namely data collected in a real 

facility or taken from literature, life cycle databases or process simulation software. The first 

option is often not possible as the question is prospective and data is therefore not readily 

available. Alternatively looking at similar installations is a possibility, but these are not likely 

to be identical and furthermore this can result in confidentiality issues. The second option is 

only applicable in a few cases. In the example presented in Figure IV.1.1 the current product 

system is available in a life cycle database (Jungbluth et al., 2007), but the new option with 

the additional milling step is not at hand. These life cycle databases indeed use static, often 

aggregated and generic data, not being flexible for case specific modifications. This leaves 

only the last option open, where process simulation software such as ASPEN, SuperPro 
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Designer and GProms can be used. Following this last approach however has several 

disadvantages in the use of life cycle assessment; first the software tools are not open source 

and expensive, second, they are not compatible with common life cycle practice (types of 

flows, units, reports, …) and third they are not easy to use and offer moderate flexibility. It is 

often a time consuming process to work with these tools requiring a lot of detailed data which 

might not be available at the time of decision making. 

As an alternative to the aforementioned three possibilities, this work, performed in the 

framework of the European FP7 project PROSUITE (Prospective Sustainability Assessment 

of Technologies), aims at developing engineering modules that can be used as parameterized 

unit operations where raw data and formulas are used to determine the data inventory, instead 

of fixed values (Cooper et al., 2012). This allows the completion of the life cycle inventory by 

assembling material and energy balances of basic unit operations (BUO; single process steps 

such as a distillation column) whilst being flexible and straightforward in use and easily 

accessible to life cycle scientists as the modules can be implemented in LCA software such as 

OpenLCA (Greendelta, 2012). Returning to the example given in Figure IV.1.1, the process 

flowsheet can indeed be assembled with the BUO approach, based on engineering approaches 

combined with rules of thumb and default values, in order to model the extra milling step in 

the production of bioethanol. In this chapter, the modules developed in the PROSUITE 

project are elaborated and tested in a biorefinery case study to demonstrate the operability and 

accuracy of the proposed approach.  
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2.  Methodology 

2.1.   The BUO approach: structured parameterization 

 

The starting point of the presented approach is the so-called ‘basic unit operation’ as these 

single processes are the fundament of each production chain. Every factory is indeed the 

combination of a specific sequence of processes. In this light, parameterized modules were 

elaborated for 22 common processes applied in (bio)refineries and chemical industry. The list 

is subdivided in four types of processes: 

• Reactions: chemical reactions, incineration for heat and power, fermentation  

• Separation processes: evaporation, distillation, filtration, sedimenting centrifuges, 

electrostatic precipitation, electrodialysis, pressure swing adsorption  

• Physical mechanical processes: mechanical compression – single stage, mechanical 

compression – multi stage, pumping incompressible fluids, pumping incompressible 

fluids through packing, agitation and mixing of liquids and suspensions, comminuting, 

fluidization, pneumatic drying and pneumatic conveying, conveying solids, fans, 

blowers & vacuum pumps  

• Utilities: heating, cooling, steam generation  

For all these processes, a systematic approach is presented where the system is analyzed at α, 

β and γ system boundary level. The structure of this work is visualized in Figure IV.1.2, being 

a further elaboration of Van der Vorst et al. (2009).  

The BUO is situated within the α boundary where the scope and exact boundary of the 

module is clearly defined per process to avoid confusion. The description then considers not 

only the processes that are included, but also the range of application. The β system includes 

supporting unit operations (SUO) such as pumping, mixing, etc which are excluded from the 

calculations within the α level, and which should therefore be modeled separately. Afterwards 
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the information of the α and β boundary, which is typically a material and energy balance, 

delivers Unit Process Raw data, which can be coupled to life cycle databases such as 

ecoinvent or the ELCD database to obtain the life cycle inventory at the γ boundary (cradle to 

gate/grave). This stepwise procedure should be executed for every BUO in the production 

chain. The information on the material and energy balance of the process obtained can be 

used in modeling the subsequent process. 

To facilitate the calculations, three databases are established: 

- DATAPHYSCHEM: delivers data on the physical and chemical properties of material 

flows such as chemicals, biomass, .. 

- DATABUO: delivers typical data of the BUO, such as efficiency factors 

- DATAROT: delivers rules of thumb values that can be used as first estimate of order 

of magnitude 
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Figure IV.1.2: An overview of the structure of the basic engineering modules  
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In the following, two modules are presented for clarification, which will also be elaborated with 

an example in the results section. The other twenty calculation procedures can be found in the 

Appendix (A1). 

2.1.1.   Mechanical compression – single stage 
 

Compression uses mechanical energy to increase the pressure of a gas. This can be used for 

steam to recover the latent heat, or for other gases such as air to obtain higher driving forces.  

System boundary description 

The BUO ‘single stage mechanical compression’ includes the mechanical energy consumption 

of compression in a reciprocating or centrifugal compressor. It assumes the adiabatic 

compression of ideal gases, which is a reasonable approximation for most compressors (Perry 

and Green, 1999). Supporting operations (SUO) such as pumping are not included in the α 

system boundary and should be modeled separately (Figure IV.1.3). 

 

 

Figure IV.1.3: System boundary of the BUO compression 
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Calculation algorithm 

The mechanical energy needed for the compression (P, in kW) can be obtained by: 

� � pqq �r 

With m the gas mass flow in kg/s, MM the molar mass of the gas and the specific compression 

work W (in kJ/kmol). In the case of ideal gases, the specific work can be obtained by (Perry 

and Green, 1999):  

r � s � R � �&t � �s 5 1� uvm!m&w
�xyz�x 5 1{ 

With  

R = universal gas constant (J/mol K) 

pc = pressure after compression (Pa)  

pi = initial pressure (Pa)  

Ti = initial temperature (K) 

η = efficiency factor  

ζ = ratio of specific heats, adiabatic coefficient.  

 

To facilitate this calculation procedure, DATAPHYSCHEM and DATABUO contain default 

values for adiabatic coefficients (Table IV.1.1) and efficiencies (Table IV.1.2) respectively. 

The first depends mainly on the type of flow (The Engineering Toolbox, 2012), whereas the 

second depends on the type of compressor and compression ratio or flow rate (Chemical and 

Process Engineering Resources, 2012). 
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Table IV.1.1: Information from DATPHYSCHEM: default adiabatic coefficients for 

different flow types (The Engineering Toolbox, 2012) 

Range Typical ratio of heat capacities 

 

Steam 0.068 atm 50 – 316 °C 

 

1.32 

Steam 1 atm 107 –316 °C 1.31 

Steam 10.2 atm 182 – 316 °C 1.28 

Air 

 

1.41 

 

 

Table IV.1.2: Information from DATABUO: default evaporator efficiencies for different 

types of evaporators (Chemical and Process Engineering Resources, 2012). 

Compression ratio (pc/pi) Efficiency (%) 

Reciprocating compressors 

1.5 65 

2 75 

3-6 80-85 

 

Gas flow rate (m3/s) Efficiency (%) 

Centrifugal compressors 

2.8 to 47 76-78 

 

In order to facilitate further calculations with the output flow, the following equation can be 

used to link temperature and pressure before and after compression (Perry and Green, 1999): 

 

�! � �& � vm!m&w
�xyz�x

 

With Ti the initial and Tc the temperature after compression. 

This module is summarized in Table IV.1.3. 
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Table IV.1.3: Summary of the BUO Mechanical compression – single stage 

Input values required DATABUO DATAPHYSCHEM Output 

 

Mass and type of feed 

Feed temperature 

Type of compressor 

Compression ratio 

 

Efficiency Adiabatic coefficients 

 

Electricity use 

Physical properties of 

output stream 

 

 

2.1.2.   Evaporation 
 

The module ‘evaporation’ calculates the energy required to concentrate a solution consisting of 

a non-volatile solute and a volatile solvent, where the latter is typically water. Unlike drying, 

the residue of an evaporation is a (sometimes highly viscous) liquid, whereas the main 

difference with distillation lies in the efforts to obtain a concentrated vapour product (McCabe 

et al., 2004).  

System boundary description 

The BUO ‘evaporation’ includes 1 to 3 effect evaporators. Vacuum pumps and possible 

recompression systems are not included in the α system boundary (Figure IV.1.4). These 

operations should be added as SUO if necessary. Calculations are valid over a broad 

temperature range, as long as the substance dependent coefficients for heat calculations remain 

valid.  
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Evaporation

α System boundary

Thin liquor

Thick liquor

β System boundary

Pumping
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Vapor
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Condensate
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Figure IV.1.4: System boundary of the BUO evaporation 

Calculation algorithm 

The heat required for evaporation processes (q) can be obtained by making an enthalpy 

balance, with a thin liquor coming in as feed (f) and thick liquor going out (o) (McCabe et al., 

2004): 

| � }~pW 5p � � �� 5pW � �W Gp �� � t�  

With m the respective masses of feed and thick liquor, Hv the specific enthalpy of the generated 

vapour, Hf the enthalpy of the incoming feed, Ho the enthalpy of the thick liquor and η an 

efficiency factor accounting for heat losses.  

This equation can be converted to: 

| � }~pW 5p � � � G pW � �� � ~�� 5 �W�� t�   
With λ the latent heat of vaporization, cp the mean heat capacity of the feed, Tb the boiling 

temperature of the mixture and Tf the temperature of the feed. This last equation assumes a 
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negligible heat of dilution, which is a reasonable assumption for flows such as sugars, organic 

salts and paper mill liquors (McCabe et al., 2004).  

In order to save energy, a part of the enthalpy in the vapour is recovered in sequencing vessels 

or ‘effects’, which is called multi-effect evaporation. To estimate the amount of heat savings 

per effect and assuming no recompression, the default values in Table IV.1.4 from DATABUO 

can be used for one to triple effect evaporators (Earle and Earle, 2004). The effective heat 

required (qeff) then becomes: 

|IWW � | � �IWW 

Table IV.1.4: Default steam savings in one to triple effect evaporators (Earle and Earle, 

2004) 

Number of effects Calculated amount of heat required per amount evaporated (Feff) 

 

1 effect 

 

1.00 

2 effects 0.52 

3 effects 

 

0.37 

 

 

The module is summarized in Table IV.1.5. 

Table IV.1.5: Summary of the BUO evaporation 

Input values required DATABUO DATAPHYSCHEM Output 

 

Mass and type of feed 

Temperatures 

Pressure 

Mass flow of thick liquor 

Number of effects 

 

Steam savings for 1 

to 3 effect 

evaporators 

Heat capacities 

Enthalpy of vaporization 

Boiling temperature 

Required heat 

Output product flows 

with temperature 
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2.2.   The biorefinery case study 

 

The presented approach is tested in a case study where a biorefinery processes wheat, flour and 

sugars as into specialty sugars, starch, gluten, ethanol and animal feed. The conversion of the 

biofeedstock concerns typical processes of a biorefinery, starting with dry and wet milling steps 

and further separations mainly with centrifuges and sieves. Afterwards the intermediate flows 

are upgraded to final products, mainly by drying and evaporation. In this type of biorefinery, 

few ‘reactions’ occur as it is more the separation of the different molecules of the biofeedstock 

as such, possibly after a hydrolysis step. There are two exceptions, namely the fermentation of 

wet starch streams to bioethanol with a subsequent distillation section, and a combined heat & 

power (CHP) engine where natural gas is converted into steam, hot water and electricity.  

The case study is a complex system with a large number of single processes where an extensive 

dataset was gathered as a year average of 2009 for many of these processes. Yet, it was not 

possible to collect all data of all processes. Therefore a selection has been made of ten of the 

twenty-two elaborated processes based on confidentiality, availability of detailed data and 

availability of a specific BUO that is applicable for the considered process. This is still valuable 

as it gives a first indication of the accuracy of the results and it can serve as guidance for 

further work on the quantification of life cycle inventories for prospective assessments by 

means of parameterized modules. In total, ten of the twenty-two BUO approaches were tested, 

often based on several subsamples within their own α boundary. This test is elaborated in Table 

IV.1.6, where also the sample size is given. In total, 41 subsamples were tested, where identical 

processes that are in a parallel configuration (e.g. two centrifuges), are only counted once. 
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Table IV.1.6: The elaborated BUO categories with case specific information and sample 

size 

BUO Case specific process information Sample size 

Comminuting The wheat grains are first dry-milled by using a complex 

system of rolls and rotors 

3 

Agitation and mixing of 

liquids and suspensions 

Both the agitation in the fermentation tanks and the dough 

mixer are studied 

3 

Sedimenting centrifuges Centrifuges are mainly used for wet separation of dough, 

gluten, etc. 

7 

Evaporation After wet separation, the dry matter content of flows is 

increased by evaporators with 1 or more effects. 

3 

Mechanical compression – 

single stage 

Recompression is used to upgrade vapor of evaporators 4 

Fermentation Wet starch streams of the factory that are less suitable as food 

or feed are fermented to bioethanol 

1 

Binary distillation The ‘beer’ solution obtained from fermentation is distilled to 

purify the ethanol 

1 

Heating Several flows are preheated before evaporation, drying, etc. 5 

Incineration for heat and 

power 

A CHP working on natural gas produces hot water, steam and 

electricity to supply the factory with energy. Excess electricity 

is sold to the local grid 

1 

Conveying solids Before the wet milling steps, biomass is mainly transported 

and ensilaged by different types of conveyors 

13 

 

The results of the modeling of mass and energy balances within the α system boundary are 

validated with the actual mass and energy balances of the factory. As the sample size (n) was 

limited for some operations, no statistical uncertainty is elaborated. Instead, per calculation of a 

basic unit operation within the α system boundary, an Accuracy Factor and a Relative 

Approximation Error (RAE) is calculated, which are defined as respectively: 

Accuracy Factor �AF� � calculated valueactual value  
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Relative Approximation Error �RAE� � ∑ |1 5 AF|� n  

2.3.   The application in a Carbon Footprint calculation 

 

In this chapter, the greenhouse gas emissions caused by products of a biorefinery are assessed 

in a life cycle perspective. The parameterized BUO modules are used mainly to predict energy 

consumption of the different processes. The accuracy of this calculation is then tested with the 

actual data obtained from the factory. Afterwards, the results are linked to life cycle assessment 

by calculating a Carbon Footprint based on the IPCC 2007 (Solomon et al., 2007) impact 

assessment method, relying on the ecoinvent database for the datasets to model the γ system 

boundary. 

3.  Results and discussion 

 

Within the aforementioned limitation, it was possible to calculate 27% of heat and 42% of the 

electricity use of the factory. In the following, first two examples of BUO validations are 

presented. Second, an overall overview on the tests is discussed and third, the application in a 

Life Cycle Assessment is analyzed. 

3.1.   Validation examples 

 

3.1.1.   Mechanical compression – single stage 
 

Most compressors in the factory are used for recompression of vapour in evaporator systems. 

One of the compressors upgrades the vapour of 377K to usable steam of 439K and has an 

actual energy use of 2599kJ/kmol. Using the calculation procedure for this BUO with the 

values given in yields a predicted energy use of 2829 kJ/mol (Table IV.1.7), obtaining a 

Relative Approximation Error of 9% for this process. By applying this BUO approach, the 

output temperature and pressure are obtained, allowing further calculations with the available 
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heat of the steam, and the electricity use of the compressor is known when linked to the flow 

rate. Coupling this to a life cycle database allows obtaining the carbon footprint of the 

operation. Based on the Belgian electricity mix (medium voltage), the carbon footprint of 

compression of 100 kg steam according to the parameters in Table IV.1.7 results in an emission 

of 1.48 kg CO2-eq according to the calculations, whereas the actual emission is 1.36 kg CO2-

eq. 

Table IV.1.7: Parameters in the calculation procedure of the BUO mechanical 

compression – single stage 

DATA source Symbol Value Unit 

 

INPUT 

 

pi 

 

101325 

 

Pa 

INPUT Ti 377 K 

INPUT Tc 439 K 

DATAPHYSCHEM R 8.31 J/mol*K 

DATAPHYSCHEM γ 1.31 
 

DATABUO α 77 % 

OUTPUT Pc 192769 Pa 

OUTPUT pc/pi 1.90 
 

OUTPUT 

 

W 

 

2829 

 

kJ/kmol 

 

 

3.1.2.   Evaporation 
 

After the different wet milling and separation steps, different starch streams require higher dry 

matter concentrations. One of the stream enters in an evaporator at a dry matter concentration 

of 2.8% and leaves at 4.9%. The actual energy delivered by the steam is 998kJ per kg incoming 

feed, whereas the calculated value indicates 973kJ per kg (Table IV.1.8), resulting in a RAE of 

3%. Using this BUO thus allows to estimate the heat requirement of the evaporation process. 

Coupling this to a life cycle database gives a Carbon Footprint of 2.65 kg CO2-eq according to 
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the calculations, and 2.72 kg CO2-eq based on the actual data (by using Heat, at cogen 1MWe 

lean burn, allocation exergy/RER). 

Table IV.1.8: Parameters in the calculation procedure of the BUO evaporation 

DATA source Symbol Value Unit 

 

INPUT mf 1.00 kg 

INPUT mo 0.56 kg 

INPUT Ti 108.0 K 

INPUT Tb 108.6 K 

DATAPHYSCHEM cp 4.10 kJ/kg*K 

DATAPHYSCHEM λ 2230 kJ/kg 

DATABUO η 90 % 

OUTPUT q 

 

973 

 

kJ 

 

 

3.2.   Overview of the validation  

 

Figure IV.1.5 summarizes the Accuracy Factors obtained by the validation of the different 

samples, where 1 would be a perfect fit of the actual mass and energy balance of the factory. 

An overall average relative approximation error of 22% is obtained, whereas the majority of 

parameterized modules give estimates within a reasonable 10% RAE range.  
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Figure IV.1.5: A summary of the Accuracy Factors of the different Basic Unit Operations 

that are tested in a case study. A value of 1 means a Relative Approximation Error of 0%. 

The Combined Heat and Power (CHP) plant is the starting point and is accurately predicted 

with a RAE of 0% for electricity and 2% for heat production. The standard efficiency factors 

for an efficient CHP on natural gas producing electricity and heat are thus reliable in this case, 

which is essential in the sustainability assessment of the factory as this CHP delivers energy to 

all other operations and thus has a large influence on the final result. It should however be 

noted that the heat availability is predicted accurately, but not necessarily all heat is required in 

the processes. The allocation factors in LCA studies should thus be based on the real heat use 

instead of the potential heat use. 

The calculations for milling (comminuting) result in a RAE of 7%. A good Bond Work Index 

(information on this can be found in the appendix (A1)) should however be found for the milled 

material, which might not be available in some cases. For wheat grains however, a reliable 

value was found in literature (Das, 2005). It should also be noted that the calculations are valid 
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if the power of the mill is put directly on the particle. In case the particle size is reduced by 

rotational forces causing friction between the particles, other calculation procedures should be 

sought.  

The deviation in the agitation model is larger; the validation highlights RAE values of up to 

107% for the fermentation and 27% for the dough mixer. As a clarification the used equations 

in the parameterized module of agitation power (P) should be considered (McCabe et al., 

2004): 

� � �# � � � �F � +?J 

for the turbulent region and  

� � S" � µ � �N � +?F 

for the laminar region. With µ the viscosity, ρ the density and Np and KL flow regime 

dependent pump numbers. The prediction of equipment power thus depends heavily on the 

impeller velocity (N) and diameter (Da). As these parameters are in most cases approximated, 

small deviations from the real value result in a large sensitivity of the final result. Furthermore, 

this calculation requires fluid properties, which are approximated by the Power Law for ‘slurry’ 

type of flows, resulting in an additional potential source of deviation. The same is true for 

pumping incompressible fluids in a biorefinery. It is very difficult to obtain all exact parameters 

for the calculation (e.g. amount of turns, length of pipes, etc.). This is more straightforward for 

conveyors where the module basically requires only the type of conveyor, the flow rate and an 

approximation of the length. The calculations based on 13 samples yield RAE of 23%, which is 

reasonable as a first estimate, knowing that this operation is of a smaller relevance relative to 

the total power use in the factory. 
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The average RAE for sedimenting centrifuges is 25% if each type is counted once. This factor 

is lower for the total absolute centrifuge power (10%) as the most accurately predicted 

centrifuges have the largest contribution to total power use. In 4 of 7 samples the power was 

predicted accurately (average RAE = 8%), but in the other samples a larger RAE was obtained 

(33 to 60%). This is the disadvantage of the fact that this module is not based on a continuous 

equation, but on integer ranges depending on typical combinations of liquid and solid 

throughput. The largest deviation occurs when it is not obvious to which exact range the 

centrifuge should be assigned.  

The fermentation section was predicted with a RAE of 3% for the fermentation yield and 4% 

for the energy use of the distillation column. This module is however highly sensitive to the 

reflux ratio applied in the column, as this is multiplied with the latent heat, causing the largest 

part of the energy requirement. The (pre)heating steps are predicted with a relative 

approximation error of 4% and also the heat use per evaporator is predicted fairly accurate 

(RAE = 8%) based on the thermodynamic balance. The configuration of the different 

evaporators can however be complex, with different effects and with intermediate compressors 

to upgrade vapor streams. As a result, the total heat required is not the sum of each heat 

requirement separately. Instead the BUO modules for heat consumption also require heat 

integration and consideration of valorization of ‘waste’ heat from other processes and of the use 

of recompressors to upgrade vapor. The compressors themselves are relatively accurately 

predicted (RAE = 6%). It should however be noted that two adjustments had to be made; first 

one of the compressors is known to have a lower efficiency than ‘traditional’ current equipment 

where a default value of 77% is assumed for centrifugal compressors. Second, it is possible that 

in industry equipment is reused from a previous application and therefore not optimally sized 

for their current task, which might lead to additional energy consumption, but which is sound 

from an economic perspective.  
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3.3.   Applying the BUO approach in a Carbon Footprint case study 

 

The carbon footprint (γ system) of the calculated modules of the factory is 96% of the carbon 

footprint based on actual data when excluding the ‘milling’ steps based on rotational forces 

causing friction and including only the optimally designed compressors (87% including these 

excluded processes). This good score can be explained by the fact that the results of the 

parameterized modules with the highest accuracy factor have a large share in the absolute 

carbon footprint of the factory (Figure IV.1.6). Additionally, the obtained impact is the sum of 

energy use in the α system boundary of the ten applied BUO approaches and has a better score 

than each BUO separately, which can be explained by considering Figure IV.1.5, from which 

no generic trend of over- or underestimation can be observed resulting in a compensation of 

higher and lower approximations. Furthermore, when assembling the results of each BUO 

separately, we performed a similar heat integration over the different modules compared to the 

real factory. This aspect requires care, as the sum of heat calculated per module is much higher 

than real total heat use. The degree of heat integration however, cannot be generalized as it 

depends on the specific process chain, availability of ‘waste heat’ and company policy. Another 

difficulty is integration of the β system boundary in the assessment. In the studied biorefinery 

these SUO operations are not negligible: approximately 22% of total electricity use is used for 

pumping liquid fluids and as the biorefinery is situated in a densely populated area, an 

elaborated system of controlling air streams by ventilation and aspiration is used. This SUO 

system accounts for approximately 16% of the plant’s electricity use and was also not validated 

because of its complexity. This system of SUO is difficult to generalize or to model separately; 

information such as length and amount of turns in piping systems or the pressure drop in 

ventilators is essential but needs detailed designing which is not straightforward. Another 

shortcoming is the unavailability of the BUO drying, which accounts for almost all heat use 
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that was not incorporated in this validation. It is indeed a challenging task to find a suited 

generic engineering module for this process, as there is a large range of dryer types each with 

their specific configuration. The energy demand of this process depends on this configuration 

and is a combination of interlinked factors such as air humidity, temperature, velocity, surface 

area, equilibrium moisture content, etc. A large range of company specific choices is possible 

impeding generic calculations, such as the balance between more electricity to achieve a higher 

air flow rate over the material or using hotter air to increase efficiency per volume of air used. 

On top of the parameterization of energy consumption, also the mass flows in a studied system 

should be studied, as the impact of the agriculture of the biofeedstock should also be allocated 

to the output products. In this work, the fermentation yield was approximated with an relative 

approximation error of 3%. Apart from the various hydrolysis steps (chemical reaction), the 

other mass flows are separations of different molecules of the plant (e.g. gluten, starch, …). 

The latter are user specific choices that are rather straightforward and are therefore not included 

in this work. The use of utilities such as foam inhibitors, silica, cleaning agents, buffers and 

enzymes is case specific and requires expert judgment rather than generic parameterization. 

While the contribution to the Carbon Footprint of the latter is relatively small (approximately 

6%), the combination of the different drawbacks might cause a significant increase in the 

deviation of the total carbon footprint of a prospective LCA with the BUO approach might 

increase significantly. 



Chapter IV 

- 122 - 

 

 

Figure IV.1.6: A comparison of the real and calculated value based on the relative 

contribution of the different processes to the final carbon footprint 

4.  Conclusions 

 

The proposed approach of using engineering calculations, rules of thumbs and default values to 

obtain the mass en energy balance of a system by applying a modular BUO approach is 

identified as a useful and reliable way to support prospective life cycle assessments. Of the 

twenty-two parameterized modules, ten were tested in the case study. Apart from agitation, 

most of these modules yield relatively good results with an overall average relative 

approximation error of 22%. The carbon footprint of the tested sample was approximated with 

an accuracy of 96%, partly corrected by over- and underestimation. Three major shortcomings 

were identified however. Firstly, whereas the inventory of the α boundary was obtained with an 

acceptable error, the supporting unit operations such as pumping are very specific and difficult 

to obtain whilst not being negligible. Secondly, a factory is complex and processes are not 
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independent from each other; a successful application of the BUO approach therefore requires a 

careful integration of heat use instead of a linear summation of heat use of different processes. 

Thirdly the list of selected BUO is still limited to twenty-two, whereas other operations also 

occur in industry. For example in biorefineries, operations such as cyclones and dryers are 

frequently used. More parameterized modules should thus be developed in the future.  

Nevertheless, while more case studies are necessary for confirmation of the results in this 

study, the currently available modules produce relatively reliable results. The possibility of 

integration of these modules as parameterized unit operations in LCA software can be of major 

value to obtain a detailed data inventory necessary for prospective assessments. The modules 

should however be used with care and with a realistic design of a production chain in mind. 
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2. Allocation in multipurpose biorefineries: a critical choice 

affecting scope and study outcome 

 

 

Redrafted from: 

De Meester, S., Callewaert, C., Van Langenhove, H. and Dewulf, J. Allocation in multipurpose 

biorefineries: a critical choice affecting scope and study outcome. In revision: International 

Journal of LCA. 
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1.  Introduction 

 

Life Cycle Assessment (LCA) is a valuable approach to assess the environmental burden of 

products and services by identifying and quantifying flows between the technosphere and the 

natural environment. Applying LCA is therefore sound from a scientific perspective, but it is 

also an ambitious task, which has led to several methodological issues that often do not have a 

simple solution. One of the most discussed methodological issues is the allocation procedure 

used in LCA (Finnveden et al., 2009). The ISO 14040/14044 series define allocation as “the 

partitioning of the input or output flows of a process or a product system between the product 

system under study and one or more other product systems”. The guideline furthermore 

suggests a three step procedure for dealing with the allocation problem; first, allocation should 

be avoided by subdivision of the process or by system expansion. The second and third point of 

the ISO guidelines are the partitioning allocation procedures and propose the use of physical 

causations, or the use of another measure as the last preference. In practice however, 

subdivision only solves multi-functionality by gathering more detailed data of separable 

processes, but it is not sufficient if the studied process is inherently multifunctional such as in 

the case of a centrifuge (Azapagic and Clift 1999; Ekvall and Finnveden 2001). Allocation 

methodologies most often applied are therefore using system expansion and applying allocation 

on a mass, energy or economic base (Lundie et al. 2007).  

While the ISO guideline still leaves a relatively arbitrary choice between these options, it is 

necessary to understand that the base of the allocation problem is actually inherent to the nature 

of the (initial) LCA methodology which starts from a functional unit approach, often a product 

or service, to which the life cycle inventory and thus impact should be assigned to. On the other 

hand it is obvious that all these products and services are part of a complex multifunctional 

economic system. This actually raises the question if it is required to separate the functional 

unit from reality, or if reality should be assessed as an integral system. This question is 
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obviously linked to the goal and scope of an assessment. In the CALCAS project (Zamagni et 

al., 2009) three study objects are identified: 

- Product oriented technosystems 

- Meso-level technosystems 

- Economy-wide technosystems 

The first is the area of ISO LCA studies and focuses on single products with an equal function. 

Doing so inherently faces the challenge to distill one functional unit out of the complex reality, 

which is stated to be an artifact requiring an artificial solution (Guinée et al., 2004). The second 

and third study objects focus on groups of products and on geographical or political entities 

respectively. While the time frame can be retrospective or prospective in all three study objects, 

it is clear that the main difference is the inclusion of additional processes and interactions in the 

technosphere, also known as the distinction between attributional and consequential 

assessment. The latter indeed includes those processes that are affected by the consequences of 

the decision at hand (Zamagni et al., 2012). 

In this context, this study focuses on the role of allocation in the assessment of different study 

objects and the challenges accompanying its practical implementation. For the purpose of 

demonstration, the Carbon Footprint of a multipurpose biorefinery product system is 

calculated. As an exponent of the increasing popularity of life cycle assessment, the Carbon 

Footprint is more and more introduced by governments and industry in legislation and 

marketing, especially regarding to biorefineries and the biobased economy. This has resulted in 

several methodological documents with different allocation procedures, but often without a 

clear rationale why that specific allocation procedure was chosen. It is therefore the goal of this 

study to compare the impact of the allocation procedure between the different methodologies, 

similar to other studies such as the work of Curran (2007a), Mendoza et al. (2008), Luo et al. 



Chapter IV 

- 127 - 

 

(2009), Kaufman et al. (2010) and Sayagh et al. (2010) next to analyzing why these results vary 

and which consequences of the specific allocation choice can be expected in biorefineries. This 

work is therefore subdivided in three parts: 

• First, the link between the study object and the allocation procedure is made for 

biorefineries. A distinction can be made between partitioning methods and system 

expansion (Frischknecht, 2000; Ekvall and Finnveden, 2001), of which Weidema 

(2003) argues to use partitioning, preferably economic allocation, in attributional 

studies and system expansion in consequential assessments.  

• Second, the inherent properties to characterize flows of each partitioning allocation 

option are discussed. This study deals with allocation based on monetary value, dry 

matter fractions, energy (LHV; Lower Heating Value) and exergy content.  

• Third, allocation is considered as a source of variation following the conclusions by 

Curran (2007b) who states that one should not question the variation in calculation 

results, but determine the amplitude of variation. From this perspective, variation can be 

quantified and incorporated in the final result. This phenomenon can eventually be 

called decision rule uncertainty (Huijbregts 2011). If the term ‘uncertainty’ however is 

defined as ”the fact that measured values frequently do not match the true values, but 

differ from them in a probabilistic manner” (Ciroth et al. 2004), using it in the context 

of model uncertainty would be slightly misplaced. The authors therefore prefer to use 

the terminology decision rule variation, defined as “the coefficient of variation caused 

by the subjective choice of allocation methodology”. This variation can then be 

quantified and combined with the more commonly calculated data uncertainty which is 

likely to be determined by the pedigree approach and a subsequent Monte Carlo 

simulation. 
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2.  Methodology 

2.1.   Case study specification 

 

A case study has been executed, focusing on a Belgian biorefinery processing wheat, flour and 

sugars to starches, specialty sugars (amongst others fructose-glucose syrup, maltodextrin, high 

maltose and dextrose), gluten, animal feed and bioethanol. The complexity of the factory can 

be demonstrated in the process diagram of the gate to gate production facility as shown in 

Figure IV.2.1. The assessed production steps include dry and wet milling, several separation 

and drying steps and a fermentation section for ethanol production. Furthermore, a wastewater 

treatment facility with biogas generation and a CHP (Combined Heat and Power) fed by natural 

gas are included, of which part of the produced electricity is consumed within the factory gates 

and part is redistributed to the local electricity grid. In this type of biorefinery, the difference 

between main products and byproducts or waste is not relevant, since all molecules of the 

incoming biomass are used for certain end applications and are therefore considered to be 

‘useful’. This factory is thus a typical example where a certain type of allocation is necessary 

and where a Carbon Footprint is required because of regulations on biofuels (European 

Commission, 2009).  
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Figure IV.2.1: Process diagram of the gate to gate boundary of the studied biorefinery 

2.2.   Life Cycle Assessment specification 

 

The LCA was performed according to the ISO 14040/14044 guidelines in which the impact of 

the studied system is allocated to the different functions delivered by the system. The results 

are scaled to 1 kg animal feed, 1 kg gluten, 1 kg starch, 1 kg bioethanol and 1 kg sugars. The 

system boundary includes the full cradle to gate production chain, for which data of the 

foreground system, within the gate to gate boundary, was collected at the Belgian processing 

facility as a yearly average of 2009 and data of the background system was retrieved from 

ecoinvent v2.1 datasets. Key datasets used are: ‘wheat grains conventional, Barrois, at farm 



Chapter IV 

- 130 - 

 

(FR)’ for the incoming wheat, ‘maize starch, at plant (DE)’ for flour, ‘potato starch, at plant 

(DE)’ for potato starch, ‘sugar, from sugar beet, at sugar refinery (CH)’ for the incoming sugars 

and ‘natural gas, high pressure, at consumer (BE)’ for the natural gas delivered to the CHP. 

This was combined with the necessary background processes for 56 different chemicals and 

transportation by means of truck, train or boat. The direct emissions at the CHP were taken 

from analytical measurements in the factory and checked by constructing mass balances.  

First, system expansion was applied by using the ‘substitution or avoided burden method’ by 

subtracting the impact of equivalent market products from the total impact of the product 

system (Guinée et al., 2002). In the theoretical framework of system expansion a detailed 

market assessment is required to approximate consequences on production volumes and 

changes in demand (Weidema, 2001). This is a challenging aspect, as for example ethanol can 

be used as base chemical or as fuel. Similarly, gluten can be used as protein source for 

vegetarians replacing meat or other protein sources or as additive in bakeries where it can be 

replaced by xanthan gum or guar gum. On top of this complex market mechanisms, it is also 

difficult to find reliable datasets to model the inventory of the displaced products. Therefore in 

this study the substitution method was applied in two possible, but theoretically imperfect 

scenarios in which wheat starch is replaced by starch from other sources of biomass, gluten is 

considered as a protein source, ethanol is used in the fuel market, the specialty sugars such as 

maltodextrin are replaced by generic sugars and animal feed is substituted by soybean meal. 

The used ecoinvent processes are ‘potato starch (DE)’, ‘protein concentrate, from whey, at 

fermentation (CH)’, ‘soybean meal, at oil mill (US)’ and sugar, from sugar beet, at sugar 

refinery (CH)’ in scenario 1. Alternatively, ‘maize starch, at plant (DE)’, ‘proteins, from grass, 

at fermentation (CH)’ and ‘soybean meal, at oil mill (BR)’ are used in scenario 2. In both 

scenarios bioethanol is considered as fuel and substituted by the petrol reference as defined by 

the European Directive 2009/28/EC (European Commission 2009).  



Chapter IV 

- 131 - 

 

For the partitioning methods, allocation was applied at two levels; first, the factory was 

considered as a ‘black box’, where dry matter, energy (LHV), exergy and economic allocation 

were used, and second, a ‘subprocess level’ allocation, was executed for the dry matter, energy 

(LHV) and exergy factors. At the subprocess level an economic allocation was not possible due 

to unavailability of data on prices and costs of the intermediate flows. The black box economic 

allocation was based on annual average selling prices of 2009. Dry matter allocation was based 

on data of proximate analysis of process streams. This approach was combined with energy 

(LHV) allocation at the CHP, because of the limitations of mass as a physical parameter in 

energy systems.  

Lower Heating Values were obtained by combining experimental data on compositions with 

literature data on heating values. To calculate the exergy content of substances chemical and 

physical properties were required. These were collected at the production plant by means of 

different analytical measurement methodologies and data available in literature. Based on these 

compositions, the exergy contents were calculated by using the values presented by Szargut 

(1988) or by using the group contribution method, the macro nutrient method or data from 

Gibbs free energy of formation (Szargut, 2005). Generally, the group contribution method can 

be used to estimate the exergy content of organic substances. An example for glucose is given 

in Table IV.2.1, where the chemical exergy of this substance is calculated to be 2976.09 kJ/mol 

or 16.53 MJ/kg.  
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Table IV.2.1: The chemical exergy calculation of glucose by using the group contribution 

method 

Group Specific Chemical Exergy (kJ) Number of groups 
Total chemical exergy 

from this group (kJ) 

 

CH (ring) 

 

543.05 

 

5 

 

2715.25 

CH2 651.46 1 651.46 

-O- (ring) -106.64 1 -106.64 

OH (to CH ring) -58.16 4 -232.64 

OH (to CH2) 

 

-51.34 

 

1 

 

-51.34 

 

Total 
  

2976. 09 kJ/mol 

The macro nutrient method can be based on the group contribution method by analyzing 

carbohydrate, protein, fat, ash and water content of the biomass, eventually generating the total 

exergy content of the biomass as the weighted sum of its components. For inorganic substances 

the exergy content can be calculated based on the Gibbs free energy of formation by using the 

following formula: 

�j!� � ∆3WU G��E � �j!�,EE
 

With ∆Gf
° the standard Gibbs free energy of formation of the compound and vk and exch,k 

respectively the amount of moles and specific chemical exergy of products and reactants k. 

Due to confidentiality, only a limited data inventory can be shown (Table IV.2.2), in which also 

the dry matter, energy and exergy contents of the biomass streams are represented. This table 

also highlights that, apart from some small mass losses in the fermentation section and some 

loss in the wastewater, the incoming biomass is converted with a rather high efficiency (De 

Meester et al., 2011). 
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Table IV.2.2: The mass, energy and exergy balance of the factory per 1000 kg incoming 

biomass 

IN 
Mass 

(kg) 

DM 

content 

Dry matter 

(kg) 

Energy content 

(MJ/kg) 
Energy (GJ) 

Exergy content 

(MJ/kg) 

Exergy 

(GJ) 

 

Wheat grains 

 

568.7 

 

84.0% 

 

477.7 

 

13.9 

 

7.9 

 

16.3 

 

9.3 

External 

Flour 
33.4 86.0% 28.7 14.3 0.5 16.7 0.6 

Sugars 

 

397.9 

 

76.1% 

 

302.8 

 

12.3 

 

4.9 

 

13.4 

 

5.3 

 

OUT 
Mass 

(kg) 

DM 

content 

Dry matter 

(kg) 

Energy content 

(MJ/kg) 
Energy (GJ) 

Exergy content 

(MJ/kg) 

Exergy 

(GJ) 

 

Dried starch 

 

98.0 

 

88.1% 

 

86.3 

 

14.7 

 

1.4 

 

16.4 

 

1.6 

Gluten 38.0 92.8% 35.3 22.4 0.8 23.4 0.9 

Animal feed 180.0 84.5% 152.0 16.3 2.9 17.3 3.1 

Ethanol 37.6 99.9% 37.6 27.0 1.0 29.5 1.1 

Sugar 

 

622.3 

 

74.1% 

 

461.0 

 

12.0 

 

7.4 

 

12.7 

 

7.9 

 

 

As an impact assessment methodology the GWP 100 of the IPCC 2007 report was chosen 

(Solomon et al., 2007). As such the total life cycle GHG emissions and the resulting Carbon 

Footprint of the output products of the factory is known.  

3.  Results and discussion 

3.1.   Linking the allocation procedure to the scope of the assessment 

 

According to the ISO guidelines, the first step of an LCA is to define the goal and scope of the 

study. In many cases this phase seems disconnected from the choice of allocation procedure. 

However when comparing system expansion and the partitioning approach, it is clear that the 

theory of system expansion has a completely different starting point. Expanding the system 

inherently means that the functional unit of the system is expanded from 1 product or service to 

a basket of products and services (Guinée et al., 2002; Wardenaar et al., 2012). Furthermore, 

because the displacement of products is often only practically feasible for marketable products 
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and not so easily for intermediates, the study automatically becomes a ‘black box’ assessment. 

In the studied biorefinery, the basket of services (the different products produced in the factory) 

has an impact of 680 kton non biogenic CO2-eq per year whereas the production chain of 

equivalent products in scenario 1 and 2 emit 538 and 734 kton non biogenic CO2-eq per year 

respectively. When applying system expansion consistently over the full life cycle by including 

all background datasets, automatically more functions become involved (e.g. all products from 

the oil cracker if petrol is replaced by bioethanol) elaborating the assessment to the complete 

economy. This choice in allocation procedure thus changes the research question from: “what is 

the impact of this product”, to “what is the impact of this activity on the economy”. The latter is 

an interesting research question to analyze for example which product mix a biorefinery should 

produce and to which markets the products should be delivered to save most fossil fuels. 

Furthermore, it allows companies to attribute energy intensification in the gate to gate 

boundaries to the complete product mix. On the other hand, the functional unit has been 

extended in such a way that the product specific information is lost. Knowing the impact of one 

function in the created service basket is actually not the purpose of system expansion and it 

requires the solution to substitute other functions in the basket with equivalent market products. 

The consequence is that the impact strongly depends on the configuration of the factory which 

makes comparisons between functions difficult. In the performed case study for example, the 

impact of bioethanol by applying substitution is obtained from the research question “is the 

produced food of the biorefinery more sustainable than food from the food industry”. Such 

meso-level or economy-wide technosystem assessment indeed ‘trades’ emissions between 

product systems and sectors, allowing impacts to become negative such as for gluten in this 

case study. The gluten is thus a ‘good’ product mainly because the animal feed of the factory 

potentially displaces soybean from Brazil (and the related land transformation). This larger 

scope can therefore give interesting insights for scenario modeling, but induces a loss in 
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information that might be required in product specific research and policy questions. A biofuel 

for example is seen as a ‘renewable resource’ that should typically save fossils and meet 

emission targets at the level of the product and production processes. This difference in scope is 

commonly overlooked in Carbon Footprinting, where the goal can be to attribute a guilt or 

responsibility (Weidema, 2003) to one product and not necessarily to a basket of products. 

System expansion might therefore not be used to ‘avoid allocation’ in any kind of study, but 

rather it might be used to perform a different type of study. 

Apart from this theoretical difference, there are also practical aspects. This work has elaborated 

two scenarios in which a comparison is made between system expansion and the average values 

of the different partitioning allocation approaches with lower and upper limits to be discussed 

in the second part of this work (Figure IV.2.2). The Carbon Footprints obtained by using these 

two scenarios show a larger variation compared to using different partitioning approaches 

confirming the high dependency on the reference scenario and the increase of uncertainty by 

introducing this approach in LCA studies (Lundie et al. 2007). This dependency on factory 

configuration and the uncertainty involved in market scenario modeling might be misleading 

for product policies (Wardenaar et al., 2012). 
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Figure IV.2.2: The comparison between system expansion and the average (with lower 

and upper value; n=7) of the different partitioning procedures 

Nevertheless, this induced uncertainty can gradually be decreased in the future and should not 

inhibit the interesting theoretical perspective of meso or economy wide assessments. This will 

however require further research; first it is required to collect more data inventories, because all 

functions of the economy are required to have a complete analysis, second, functions should be 

recognized as equivalent to each other, and third, detailed market studies are necessary to 

understand and quantify how these equivalent functions react on changes within the market. 

Suh et al (2010) developed a generalized framework for system expansion based on matrix 

calculations taken from input-output literature, however the presented approach is only feasible 

when the process and product matrices can be inverted and thus are rectangular. This 

rectangularity problem, which is actually the basis of the allocation problem, is already known 

for a long time (Konijn, 1994; Heijungs and Frischknecht, 1998), but still causes difficulties 

because solving the system expansion problem is basically solving a number of equations with 

a number of unknowns. A possible solution is the partitioning of the product systems based on 

economic value (Weidema et al., 2012) allowing straightforward integration with meso or 
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macro scale input output tables. On the other hand this procedure parts the impact from datasets 

similarly to economic black box allocation. Furthermore, the linking and trading between 

sectors should ideally be based on the actual functionality of the product (e.g. amount of 

proteins, effectivity of pesticides, …) and not necessarily on the economic value. 

3.2.   Properties of partitioning allocation approaches 

 

System expansion thus has its merits in consequential meso or macro scale assessments and in 

maintaining mass balances of datasets (Weidema and Schmidt, 2010), but for some research 

questions that are typically required in biorefineries, a partitioning approach might still be 

useful. In this part of this chapter the obtained allocation factors for the specific product groups 

can be found in Table IV.2.3. Within the black box approach, the physical allocation factors are 

relatively similar to each other (limited to a difference factor of 1.58 (7.6/4.8)) whereas the 

economic factors are different from these physical factors (up to a factor 4.1 (21.4/5.2)). The 

choice between an economical or physical ground for allocation can be heavily debated, as it 

can be argued that economics is the actual inventive of the production facility, but on the other 

hand price fluctuations in time and space can devaluate the meaning of the results in the context 

of ecological sustainability (Pelletier and Tyedmers 2011). Two identical factories in other 

countries could indeed have another life cycle resource efficiency. When considering the scope 

of environmental life cycle assessment with a partitioning allocation approach, we argue that 

for product policies a physical value should be preferred whereas the use of an economic ratio 

has its merit in the meso and macro level modeling. Similarities can be made with the REACH 

regulation (Registration, Evaluation and Authorisation of CHemicals) where the impact of 

chemicals on human health and on the environment is also fixed, not depending on the price of 

the chemical. When the amount of released chemical in the same type of environment remains 

identical, there is no physical ground to argue that the impact should change. 
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Furthermore, when assessing product oriented technosystems, the assessment should include as 

much detail as possible requiring a focus on the different subprocesses and not considering the 

factory as a black box. From Figure IV.2.3, where the life cycle greenhouse gas emissions are 

allocated according to the allocation factors in Table IV.2.3, it can easily be deducted that the 

black box approach has its drawbacks. The total impact, including cradle to transport, transport 

to gate and gate to gate is allocated linearly, resulting in one factor of 17% contribution of gate 

to gate emissions to the total Carbon Footprint of the different products, systematically 

underestimating energy intensive production routes and overestimating less intensive 

processing steps. This is different to subprocess level allocation, where it can be seen that for 

example gluten is separated with energy intensive centrifuges (35 to 42% of the total impact 

origins from gate to gate emissions), and ethanol is purified in a distillation step and a 

molecular sieving section (21 to 37% origins from gate to gate emissions). Similarly, the causal 

link between the factory inputs and outputs should be respected. For this purpose, the allocation 

procedure should be applied at the level where the partitions actually occur.  

Table IV.2.3: The final allocation factors of the different partitioning allocation 

approaches (%) 

 
Black box Subprocess level 

 
Economic Dry matter Energy Exergy Dry matter Energy Exergy 

 

Dried starch 

 

11.5 

 

11.2 

 

10.5 

 

11.0 

 

12.6 

 

14.7 

 

12.0 

Gluten 13.2 4.6 6.2 6.1 7.4 9.5 8.2 

Animal Feed 5.2 19.7 21.4 21.3 21.9 16.2 21.8 

Ethanol 8.4 4.8 7.5 7.6 7.2 4.7 8.4 

Sugars 

 

61.7 

 

59.7 

 

54.4 

 

54.0 

 

50.9 

 

54.9 

 

49.6 

 

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Figure IV.2.3: The Carbon Footprints per kg salable product according to the different allocation approaches
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When choosing a physical allocation procedure, several options are possible. In this work, only 

dry matter, energy and exergy allocation are discussed as these are most commonly applied, 

especially in biorefineries. Dry matter allocation however, fails in addressing the ISO guidance 

to apply a uniform allocation procedure over the full life cycle, because masses face limitations 

in the characterization of energy flows. Furthermore, the mass of a substance does not give any 

information on the composition of a product; one kg of sand would indeed be treated exactly 

similar to one kg of ethanol. Using energy or exergy allocation is a solution for both of 

aforementioned issues as they can be used for both mass and energy flows and depend on the 

composition of the substance. 

Remarkable is the difference between energy and exergy partitioning. When using a black box 

approach, the difference is small for all products (<5%), whilst for the subprocess approach, the 

difference between energy and exergy allocation can amount up to 44%. It is therefore essential 

to identify the different starting points of heating values and exergy. Whereas the former 

focuses only on the heat being released during combustion, the latter focuses more generically 

on the difference with the reference environment, usually expressed in potential, kinetic, 

physical and chemical exergy. For carbon, the reference is usually taken as carbon in carbon 

dioxide in air. The breakdown reaction of these carbon based fuels to their respective ‘dead 

state’ is thus an oxidation, explaining the analogy for some fuels between the LHV and the 

chemical exergy. Therefore, in some cases these values can be linked to each other by using a β 

factor (de Vries, 1999; Dewulf et al., 2008). Despite these similarities, this study clearly 

highlights that the LHV approach is limited to energy carriers as all wet intermediate flows are 

not valuable from a Lower Heating Value perspective. For example all wet starch streams that 

are directed to the ethanol fermentation can hardly be combusted due to their high moisture 

content, explaining the low energy subprocess allocation for bioethanol. Unlike this 

penalization of liquid water in the LHV approach, the exergy content of the different 
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components of the mixture is determined by the sum of the different components and a certain 

amount of mixing exergy. The distance to reference environment approach is therefore 

applicable for all streams such as biomass, chemicals, electricity, metals, etc. and gives relevant 

physical information on these streams. For example the exergy content of metals and minerals 

depends on the abundance in and the reference reactions with the earth’s crust (Szargut, 1989). 

Its universal applicability therefore makes exergy an attractive allocation approach within the 

aforementioned scope of the partitioning approach. Furthermore, the attribute of studying the 

relation between a substance and the natural environment seems to fit in the methodological 

framework of a life cycle assessment. However, exergy also faces its limitations. First, the 

exact composition of all substances is required to be able to calculate the exergy content, and 

second, the exergy content depends on the chosen reference environment. For all carbon 

containing molecules for example, this means that the value is determined by oxidation and that 

the practical utility of products (e.g. a plastic) is missed. The exergy value of a flow is also 

based on the current situation of the molecules without considering the efforts of the industrial 

production process. A possible improvement could be using cumulative exergy as an allocation 

basis, which would be more in line with economic allocation, as prices are also the result of 

cumulative efforts over the life cycle. Such an approach however, would require more research 

for its practical operability.  

3.3.   Considering allocation as decision rule variation 

 

An alternative approach to choose one partitioning allocation approach is to avoid making a 

choice of allocation base and to consider allocation as a source of decision rule variation. In 

Figure IV.2.4, the Carbon Footprint of bioethanol is visualized with the different partitioning 

allocation procedures and the uncertainty of the data indicated, calculated with the combination 

of a pedigree matrix and a Monte Carlo simulation. All foreground data used in this study was 

retrieved from from real measurements in the biorefinery, and therefore the coefficient of 
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variation of data uncertainty is rather limited, varying from 4 to 10%. On the other hand, the 

coefficient of variation of the different allocation approaches can be determined, which is 21% 

in this study. This is thus larger than the variation caused by data uncertainty (as calculated 

with the ‘traditional’ approach). These two sources of variation are combined in Figure IV.2.4, 

in which the average value of different allocation approaches is chosen as the final carbon 

footprint, and where the uncertainty bars indicate the lowest (from energy subprocess 

allocation) and highest (from economic allocation) points within the 95% intervals. This is 

represented relative to the default carbon footprint of fossil fuel of 83.8g CO2-eq/MJ (European 

Commission 2009). As such, it can be concluded that greenhouse gas emissions are saved in 

every scenario, but savings vary from 21% to 56% for the different allocation procedures with 

an average value of 35%. In the light of product policies, LCA practitioners should thus attempt 

to achieve consensus on handling these different sources of uncertainty (both in the datasets 

and in the models) and in the variation caused by value choices (system boundary, allocation, 

…). For the latter this can be avoided by making a specific rational choice, possibly per product 

category, or included by quantifying the variation. 
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Figure IV.2.4: The Carbon Footprint of bioethanol calculated by using different 

allocation approaches with uncertainty and the average value with the combination of the 

decision rule variation and the data uncertainty  

4.  Conclusions 

 

Since the beginning of LCA, this framework has faced a major methodological issue studying 

the impact of a functional unit on the natural environment. It is shown in this chapter that 

allocation is actually an essential methodological attribute in determining the goal and scope of 

the assessment. Therefore, the rationale to choose one specific allocation procedure should 

better be justified.  

System expansion can be used in meso or macro scale assessments to study the impact of a 

certain basket of functions on the economy. This approach can be a very valuable contribution 

for policy makers and industry to analyze the environmental sustainability of certain product 

mixes and markets to which the products are delivered. On the other hand, several research 

questions, typical for a biorefinery, aim at product policy. In this case, allocation should be 

applied at the level where the partitioning actually occurs and furthermore, a fixed physical 
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value might be preferred for this purpose. It is shown that the universal applicability of exergy 

is therefore an interesting attribute. Alternatively, it is also possible to consider allocation as a 

source of variation which can be combined with data uncertainty by taking the average value 

and the lower and upper boundaries of the uncertainty flags of the different approaches.  
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3. A conceptual life cycle sustainability indicator 

integrating environmental and socio-economic impacts of 

biorefineries 

 

Redrafted from: 

De Meester, S., Alvarenga, R.A.F., Dewulf, J. and Sanders, M. A conceptual life cycle 

sustainability indicator balancing anthropospheric and ecospheric impacts in an economic 

context. To be submitted to Environmental Science and Policy. 
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1.  Introduction 

 

Sustainable development is a hot topic. Many people seem to realize that rising ambitions and 

increasing population numbers both put unacceptable pressures on our planet and social 

structures. More sustainable alternatives have to be found to allow future generations to fulfill 

their needs and ambitions with the same potential as current and/or previous generations. As 

this seems obvious, the definition of ‘more sustainable’ is still not absolute and neither is the 

way to achieve it (Ness et al., 2007; Zamagni, 2012). In this context, sustainability assessments 

often follow the Triple Bottom Line in a life cycle perspective to combine a good performance 

on the social, economic and environmental dimension. These assessments have clearly shown 

that human activity, even when relying on renewable resources such as biomass, always has 

ecological and social impacts over the life cycle and so trade –offs seem unavoidable. That 

said, however, there typically is ample room to improve the existing situation. A lot of policy 

emphasis is currently being put on such assessment-guided, stepwise improvements. On the 

other hand one might point out that most global ecological impacts and social strains are still 

rising (UNEP, 2012). Despite huge progress in our understanding of ecological, social and 

economic dynamics, we seem unable to steer away from unsustainable social and ecological 

impacts and balance human development. To overcome this paradox, three major challenges in 

sustainability assessment should be addressed, namely aggregation, integration and 

measurement of value. 

1.1.   Aggregation issues 

  

First, current economic policy is focused on growth, generally measured by the GDP indicator, 

as a central goal. This assumes an endless availability of natural non polluted resources, future 

substitutes and a perfectly inelastic labor supply (Töpfer, 2005). Such assumptions may have 

been less restrictive in earlier times, when economies could still increase their footprint without 
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stepping on other people’s toes or overstepping the planet’s carrying capacity. The “go-west” 

mentality, where tightening environmental constraints could simply be avoided by moving on 

to the next resource (wood to peat to coal to oil to gas) and taking more and more marginal 

lands into production, is gradually coming to an end. As the limits are clearly reached, 

exponential economic growth as currently conceptualized is problematic; it implies that 

production increases in quantity, quality or variety, resulting in more life cycle chains and more 

related and potential sources of social and ecological impact. Innovation drives growth and 

profit drives innovation. But even if innovation increases resource efficiency and reduces 

environmental and social impacts at the micro-level, the process may well go at the cost of 

people and planet in the aggregate. This phenomenon is known as the Jevons paradox 

(Polimeni et al., 2008). The most obvious example is the use of natural resources: resource 

productivity (economic output per consumed resource) can be increased profitably by 

innovations that allow a more efficient use. As a consequence prices drop, resulting in more 

consumption and a rising overall resource use. The decoupling of economic value creation from 

resource use is thus ‘relative’ instead of ‘absolute’ (Eurostat, 2011; Hertwich et al., 2012; 

Jackson, 2009). Related to this are aggregate rebound effects indirectly driven by the income 

effects of such economic growth. When real income increases because of savings in one life 

cycle, this additional income will be spent on other and new products with higher income 

elasticities of demand. For example if a family saves on gas due to a more efficient boiler, 

money is saved to buy luxury goods such as a tablet pc. Attributional sustainability assessment, 

mainly performed on products and services (micro level) misses all these essential aspects 

occurring at the macro-level. For this reason, consequential assessments are gaining popularity. 

It should, however, be questioned whether this approach will help guiding society to 

sustainable development. The consequential approach is based on a lot of rather restrictive 

assumptions and uncertain parameters to predict the consequences of activities and functions. It 
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differs only from attributional assessments in the fact that it includes additional, inherently 

uncertain and complex processes (Zamagni et al., 2012). It does not suggest if the assessed 

function itself is actually a step in the direction of sustainability without possible indirect 

consequences. The assumptions indeed face a high level of arbitrariness. A family with extra 

real income could buy a tablet pc, start traveling more, or do both or buy a tablet in one year 

and travel the next. And although conceptually a consequential assessment is a good approach 

to understand society better and to test some hypotheses, its uncertainty and arbitrariness can 

confuse decision makers more than help them.  

1.2.   Integration Issues  

 

Second, the current way of life cycle sustainability assessment (LCSA) is based on the 

aforementioned Triple Bottom Line (Klöpffer, 2008): 

O�$* � O�* G O�� G $O�* 

With LCA the environmental Life Cycle Assessment, LCC economic Life Cycle Costing and 

SLCA Social Life Cycle Assessment. This is indeed a good starting point to realize that these 

three dimensions should be considered, but separating them is relatively artificial, since the 

ecosphere, econosphere and anthroposphere are obviously interconnected. The assessment of 

sustainable development focuses exactly on the interaction between these dimensions and 

should thus be more than adding together the three dimensions separately. Moreover, it is not 

trivial to value performance or costs in these three spheres in a common currency or unit and 

therefore we face a challenge in the measurement of value. 
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1.3.   Measurement of value 

 

Third, we fail to measure value adequately in our economic assessments. Traditional life cycle 

costing starts from an individual (company) perspective; the goal is to minimize the cost and 

maximize the profit margin of the system under study. This puts pressure on the other actors in 

the supply chain and thus may oppose sustainable development, which should aim at a fair 

distribution of wealth (Wood and Hertwich, 2012). For example lowering the cost also induces 

lowering the wages of employees or alternatively resulting in the necessity to increase labor 

productivity (by harder work or automation) or a movement of production to countries with 

lower wages, where accompanying working conditions are often worse. This is obviously not 

sustainable and therefore these issues have already raised discussion to the inclusion or 

exclusion of LCC in a sustainability assessments (Jørgensen et al., 2010; Klöpffer and Ciroth, 

2011). Similar counteracting forces act also at the macro-level; as long as extracting and 

burning natural gas adds to GDP and spending time and effort on training young people 

reduces it, we clearly miss important elements in our assessments when we rely on GDP as our 

measure of success. A more fruitful approach would be to bring these elements into our 

traditional systems of assessments by not only quantifying and tracking the flows in the 

economic system (investment, income, transactions) but also quantify and link these flows to 

the capital stocks in the balance sheets. In this way, the burning of natural gas enters as a flow 

measuring the value of the service rendered, but at the same time a reduction of the natural 

capital is caused. And spending time and effort on teaching our children will be registered as a 

flow cost, representing the value of time spent, and an increase in human capital. For this 

purpose social assessment should also be rethought. Many social aspects, however, cannot be 

directly allocated to a production chain of one product or service as should be done in a 

‘traditional’ life cycle approach. There is indeed a lack of a clear cause-and-effect chain for 

many possible impact categories, as they often depend on the surroundings with the related 
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policy and the fulfillment of needs rather than on one specific technical system. It should be 

recognized that social sustainability assessment in the absence of a uniform and well-defined 

yardstick to measure social well-being, inevitably requires people to discuss and agree on the 

social sustainability of activities. This makes social sustainability assessment highly context 

specific. What is sustainable in one period and at one place, may be less sustainable at another 

place and time.  

2.  Methodological concept 

 

The three pillar approach with life cycle assessment at the micro-level is thus useful, but has 

several shortcomings concerning measurement, aggregation and integration. Solving these 

problems is a very challenging task and will not be achieved in a few weeks or with one study. 

However, in the following, we propose a sustainability indicator for the assessment of products 

and services by building the concept for the indicator starting from tabula rasa and to open 

further discussion and improvement.  

As a starting point we go back to the basic idea of sustainable development, where generally 

two perspectives are identified: the anthropocentric and ecocentric approach where the human’s 

and the earth’s wellbeing is respectively centralized (Rao, 2000). Considering this, an efficient 

economy that minimizes ecological impact whilst sustaining humans is essential.  

The indicator should therefore be a ratio of human well-being or adequately measured by social 

value (satisfaction) creation delivered by a function, to the ecological burden of this function, 

measured by value destruction (capital creation or destruction) while accounting for viability in 

the economic system. The resulting framework for the indicator is represented in Figure IV.3.1, 

where the life cycle production chain of a product or service is embedded in economy and 

where the interactions with the ecosphere and sociosphere should be quantified and put in 

balance with the condition of the capital stock of that sphere. The ecological burden is based on 
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the resource extraction and emission profile of the production chain in reference to the current 

condition and limits of the ecosystem resilience whereas the interaction with the sociosphere 

should also be quantifiable in a relevant and feasible way. For the latter, the two aspects that 

seem to fulfill these conditions and which can be linked to a technical production chain are 

labor aspects in the light of labor capital and satisfaction obtained from the final function 

delivered by the production chain versus the ‘satisfaction stock’.  

 

Figure IV.3.1: The conceptual framework of the indicator. The satisfaction of needs by a 

products or service and the positive and negative effects of labor quality and quantity are 

put relative to the environmental impact under the condition of profitability 

3.  From concept to practice 

 

As a first condition for sustainable development, there is a need for economic profitability. 

Provided we keep track of value creation and value destruction accurately and we define profit 

as the net creation of value, we can consider profit as desirable outcome and suitable 
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intermediary target for achieving economic sustainability. Profit in this sense, however, is a 

‘mean’ rather than an ‘end’. In this context, it is worth mentioning that traditionally measured 

economic growth does not necessarily contribute to average life satisfaction and that the link 

between financial wealth or income and happiness typically found to be concave or even non-

linear and dynamic (Frey and Stutzer, 2002; Jackson, 2009). There are interfering aspects such 

as the relativity of wealth compared to others, the indifference at a certain level of welfare and 

a possible lower (time) freedom due to income duties (Kenny, 1999). For these reasons a 

traditional life cycle costing approach would be irrelevant in the assessment of sustainability as 

the aim of a production chain should be to deliver net value to humans, which can be measured 

as satisfaction, and not to gain as much private monetary profit as possible. However, whereas 

this traditional profit maximization might not be the overall goal, liquidity and solvability are 

still conditions for survival in the financial-economic system. Traditional profit defined as 

revenue minus costs will ensure such viability, but that could be accounted for by including a 

‘boolean’ in the indicator where zero means ‘not economically feasible’ and 1 means that a 

‘threshold economic feasibility (ECF)’ is reached. The definition of the latter would then be 

“sufficient income received above the break-even point with which a business can be sustained 

in competitive markets”, thus including a certain profit margin that allows for necessary 

replacement investment, marketing, etc. This condition holds for well-implemented 

technologies and should thus not be applied on research or pilot scale assessments and could 

only obtain an intermediate value if the technology is supported by subsidies (e.g. 50% 

subsidies necessary for economic survival would result in a factor 0.5 instead of 1).  

Taking this factor into account for economic feasibility, a balance should be made between the 

anthropocentric and ecological aspects of sustainable development. Two interactions with the 

anthroposphere are considered. First going deeper into satisfaction, this factor gives an 

indication on the potential wellbeing delivered by a product or service. The starting point 
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chosen for this subindicator is Maslow’s pyramid of human needs (Maslow, 1943), as it is 

assumed that the fulfillment of these needs would indeed result in satisfaction and thus ‘social 

improvement’ and in the same time it is possible to assign different product categories to the 

five levels of the pyramid: 

1. Self-actualization: entertainment, beauty, travel, hobbies, … 

2. Esteem: education, availability of information, … 

3. Social: products and services enhancing social activities, including means of basic 

transportation and communication, … 

4. Safety: hygienic aspects, pharmaceuticals, property, … 

5. Physiological: food, water, sleep, clothing, … 

A basic satisfaction factor based on the pyramid of Maslow (Satisfaction by the pyramid of 

Maslow, SPM) to account for the satisfaction flow caused by the product system could thus 

range from 1 to 5. A critique given on this hierarchy is that needs depend on the current 

satisfaction situation (capital). Modern utility theory indeed suggests that all people react 

differently according to a revealed preference, and that it is possible to identify a dependence 

with the amount of ‘utils’ a person already has (Binmore, 2007). This idea, in which we prefer 

the terminology satisfaction, holds for diverse regions and individuals, but the scale of the 

quantification depends on the level of the previous satisfaction (Harsanyi, 1955). For this 

purpose, we propose an adjusted satisfaction factor trying to incorporate aspects of fairness and 

the so-called ‘preference drift’ based on the surroundings (Frey and Stutzer, 2002). 

The approach accounting for the current satisfaction capital is based on the Human 

Development Index (HDI). In this way, the utilitarian approach considering satisfaction of 

individuals is put in the perspective of the capability approach as proposed by Sen (1985). The 

latter serves as a weighting factor (wHDI) to equalize opportunities to satisfaction for the world’s 
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population. In our approach, the HDI of 187 countries for which an average value (HDIav) and 

standard deviation (SD) can be determined is used. As a result, countries can be grouped in five 

classes (Table IV.3.1). Different weighting factors can then be obtained for each value of 

Maslow’s pyramid for the groups of countries, giving to the lower HDI countries higher values 

for the most basic products and lower values for the higher need levels whilst doing the 

opposite for the higher HDI countries. These weighting factors are then normalized, generating 

the adjusted satisfaction factor according to Table IV.3.2. 

Table IV.3.1: Grouping of countries according to their HDI values 

Group Range of values for the HDI 

 

Very High HDI 

 

HDIav + SD < HDI 

High HDI  HDIav + 1/4 SD < HDI � HDIav + SD 

Average HDI HDIav - 1/4 SD < HDI � HDIav + 1/4 SD 

Low HDI HDIav - SD < HDI � HDIav - 1/4 SD 

Very Low HDI HDI � HDIav - SD 
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Table IV.3.2: Adjusted satisfaction factors based on the HDI for five groups of countries 

Basic 

satisfaction 

factor 

Adjusted satisfaction factors 

Very Low 

HDI 
Low HDI 

Average 

HDI 

High 

HDI 

Very High 

HDI 

 

1 

 

0.36 

 

0.63 

 

1.00 

 

1.58 

 

2.22 

2 1.07 1.46 2.00 2.63 3.33 

3 2.14 2.50 3.00 3.16 3.33 

4 4.29 4.17 4.00 3.68 3.33 

5 7.14 6.25 5.00 3.95 2.78 

Footnote: The basic idea to create the adjusted satisfaction factors was to give countries with a very low HDI the double of the 

value given to average HDI countries for the physiological category of products and half of the value for the self-actualization 

category of products; while for countries with very high HDI the opposite; and in between groups of countries (e.g. low HDI) 

or in between category of products (e.g. safety), values should be in between. For instance, the satisfaction factor of self-

actualization would be 0.5 for very low HDI, 0.75 for low HDI, 1.0 for average HDI, 1.5 for high HDI, and 2.0 for very high 

HDI. Since the sum of satisfaction factors should be 15 (as in the average HDI countries), those values were properly 

normalized, obtaining the adjusted satisfaction factor. 

The second anthropogenic aspect that is considered is the labor associated with production. 

This concerns both quantity (L), the fact that a job is created or maintained, and secondly the 

quality of the job (JQ). Whereas the HDI weighting factor serves as an indication for macro-

scale capability, the labor quantity is seen as relevant micro-scale feature of capability. The 

amount of working hours is not a direct goal as such, but it should rather allow people to have a 

‘threshold income’ to be able to have opportunities in society, resulting in a certain degree of 

fairness and in a ‘working’ economy. This factor is normalized with the average amount of 

regional working hours (AL). The quality of jobs (JQ) includes different aspects accounting for 

the fact that it is ‘pleasant’ to be able to earn the necessary money and is normalized with the 

average job quality (AJQ) for that sector. Both these labor factors are weighted with the capital 

labor availability wUER which is the unemployment rate of the studied country. The idea behind 

is that the amount of jobs is more significant if the unemployment rate is higher whereas the 

quality of the jobs is more important if the unemployment rate decreases. 
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The interactions with the anthropogenic capital should be put in perspective with the ecological 

impact. Accounting for the environmental impact can build on single score LCA practices to 

include the impact from resource use (R) and emissions (E). These impacts caused by the 

system under study are then normalized with an average value of its sector (AR and AE 

respectively) which can be obtained from extended input output tables. The normalized impact 

of resource use and emissions is weighted exponentially by the current status of the ecological 

capital (wEC). By doing so, the ecological impacts gain importance if the earth’s condition gets 

worse, thus allowing an increase in anthropogenic services if the ecosystem is recovering. The 

earth’s carrying capacity is indeed an essential characteristic of long term sustainable 

development of society that may impose a certain restriction on human growth aspects such as 

overproduction and rebound effects. A potential suggestion in this light could be using the 

world ecological footprint approach (Global Footprint Network, 2012). The value could be 

quantified based on the current human ecological footprint (CHEF, in global hectares) and the 

similarly calculated resilience threshold footprint of the earth (RTF in global hectares): 

X�� � �}������� VL� 

Summarized, the proposed Indicator of Sustainable Development (ISD) is a conceptually 

developed ratio of human benefit and burden, quantified by satisfaction and work quantity and 

quality, and the ecological burden caused by resource use and emissions under the precondition 

of economic feasibility (ECF). Macro-economic weighting factors are added; a higher 

unemployment rate causes an increase in the importance of job quantity and a decrease of job 

quality whereas a higher world ecological footprint gives more weight to the environmental 

impact. The indicator is always positive (above zero), but should be maximized. It is thus 

aimed to be used for comparison between different options. The functional unit of this indicator 

is a monetary value of a product or service (e.g. 1€). This has two major advantages; first, 
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different types of products and services can be compared based on a universal parameter that is 

tangible and that has direct interaction and thus possible influence on behavior of people. 

Second, it is a meaningful basis for decision makers (policy, company, family, …) as it is a 

return on investment type of indicator, where per invested flow of money the return in social 

value is balanced with the ecological burden. The indicator is thus able to give a direct 

guidance of sustainable development for investment over different product systems in a life 

cycle (n) and can be calculated by: 


$+ �  �$�q � X�,�� G ∑ } "�"
L� ���� � �����

NV ����� M  
∑ } -�- � ����M �X��

� %�� 

The parameters from this equation are summarized in Table IV.3.3 in which also possible data 

sources are proposed and a probable approximation range is given. Applying these ranges 

allows conducting a preliminary sensitivity check that gives possible values for the indicator. 

The indicator is constructed in such a way that it becomes 1 when taking the average of all 

parameters. Varying these factors simultaneously -50 to +50% from this average results in an 

ISD of 0.09 and 16.21 respectively for the 25th and 75th  percentile boundary (Figure IV.3.2). 

 

Figure IV.3.2: The sensitivity of the ISD by varying all parameters simultaneously from 0 to 50% 

of their median resulting in the most probable values in the 25
th

 to 75
th

 percentile of the ISD 
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Table IV.3.3: A summary of the used symbols with a definition, possible data sources and 

an approximate range of the values 

Symbol Definition Possible data sources 
Approximate 

range 
Possible unit 

SPM x 

wHDI 

Adjusted satisfaction 

factors 
Table IV.3.2 0.4 - 7.1 Unitless 

L/AL 

Amount of working hours 

per euro (L) normalized by 

an average of the studied 

sector 

Detailed assessments and input 

output tables 
0.1 - 2.0 

� €¡� €¡  

JQ/AJQ 

Job quality normalized by 

an average of the studied 

sector 

Detailed assessments, the social 

hotspots database (2012), the 

United Nations Economic 

Commission for Europe (2010) 

0.1 - 2.0 

Possible semi-

quantitative score (e.g. 

Likert type) 

wUER 
Weighting factor for labor 

capital stock 

The unemployment rate in the 

country of implementation 
0 - 1 Unitless  

R/AR 

Resource consumption 

impact per euro normalized 

by an average of the studied 

sector 

LCA studies and input output 

tables 
0.1 - 2.0 

LCA endpoint unit, 

e.g. Recipe Pts/Pts 

E/AE 

Emission impact 

normalized per euro by an 

average of the studied 

sector 

LCA studies and input output 

tables 
0.1 - 2.0 

LCA endpoint unit, 

e.g. Recipe Pts/Pts 

wEC 
Weighting factor for the 

environmental impact 

The Ecological Footprint 

versus earth’s resilience 
0.7 – 20.1 Unitless 

ECF Economic feasibility factor 

ECF is a Boolean factor, except 

for subsidies, of which the 

values can be found in 

legislative documents 

0 – 1 Unitless 
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Example of a sustainability assessment with the ISD 

To clarify the results the ISD could generate, it is applied to a hypothetical case study where 

the sustainability is assessed in an average HDI country where € 1 is spent on a bread and a 

book both produced locally and an imported bread and a diamond ring, assuming that all these 

options are sufficiently profitable (Table IV.3.4).  

The results suggest that locally produced bread in an average HDI country (e.g. Bolivia) has 

the best score on the ISD because it has a high satisfaction of needs, a good quantity and 

quality of jobs and a fair environmental. The imported bread has a relatively higher 

environmental impact and worse social conditions, and therefore scores worse than the book, 

which has an intermediate level of satisfaction, but has better working conditions and a 

relatively lower environmental impact. The diamond has the lowest score because of its lower 

level of satisfaction per euro spent, its worse working conditions and higher environmental 

impact.  

Table IV.3.4: A hypothetical example to illustrate the potential operability of the ISD 

  Local bread Imported bread Local book 
Imported 

diamond ring 

 

SPM x wHDI 

 

5.0 

 

5.0 

 

3.0 

 

1.0 

L/AL 1.2 1.0 0.7 1.4 

WUER 0.1 0.5 0.1 0.6 

JQ/AJQ 1.3 0.9 1.5 0.2 

R/AR 1.0 1.2 1.4 1.6 

E/AE 1.0 1.4 0.8 1.6 

wEC 1.6 1.6 1.6 1.6 

EF 1.0 1.0 1.0 1.0 

Numerator 7.9 6.9 5.8 2.8 

Denominator 1.6 2.8 1.8 4.2 

ISD 

 

4.8 

 

2.5 

 

3.2 

 

0.7 

 

The numbers are currently hypothetical as this is a conceptual exercise, but more research 

could be done in choosing exact options.  
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4.  Conclusion 

 

In the transition to sustainable development, three main obstacles, namely aggregation, 

integration and measurement of value, were identified that counteract the stepwise 

improvement that would be expected from the broader implementation of sustainability 

assessments. This chapter suggests research could progress by elaborating a conceptual 

indicator for sustainable development that balances anthropospheric and ecospheric impacts in 

an economic context. The issue of aggregation is countered by using macro-economic 

weighting factors for micro-scale actions. Furthermore, integration and measurement of value 

could be solved by going back to the basics of sustainable development. As a starting point, a 

monetary value is proposed as the functional unit to allow fair comparisons and to give 

guidance for investment decisions. However, per invested money, traditional maximization of 

private profit is not a goal as such. Therefore, this factor is replaced by an economic feasibility 

factor aiming at a threshold profit margin allowing competitiveness without putting pressure on 

other actors in the supply chain. The anthropospheric and ecospheric endpoints are put relative 

to each other instead of separating them. In this way, it is an (ecological) cost – (human) benefit 

assessment, which fits into the basic concept of sustainable development. The environmental 

impact on resource use and emissions can be calculated with traditional life cycle assessment 

whereas the impacts on anthroposphere are subdivided in labor quantity, quality and 

satisfaction with the final product (per euro). These values are normalized with sectoral 

averages to account for improvement and decline compared to the current situation and are 

weighted with factors accounting for ecological and labor capital. While it is feasible to 

calculate results for the indicator without highly uncertain macro-economic projections, it gives 

a meaningful indication on the sustainability of human consumption accounting for several 

externalities that are inherent to human activity and which are currently often excluded from 

life cycle assessments. At the same time the results can be used to compare something relative 
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to something else (the indicator does not deliver an ‘absolute’ physical value on a state). The 

approach presented is a proposition, which needs further discussion and elaboration, but aims at 

putting the basics of sustainable development back in the center of sustainability assessments 

rather than adapt sustainability assessment to our current economic models.  
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1.  The sustainability of biorefineries 

 

This goal of this work was analyzing the sustainability of biorefinery systems. For this purpose, 

the literature survey in chapter 2 indicated that the life cycle assessment framework is a 

valuable approach to account for complex interactions between production systems such as 

biorefineries and the natural environment. In chapter 3, the LCA methodology was therefore 

applied in biorefinery case studies. 

In the first case study it was shown that biorefining feedstock into a wide range of products is a 

thermodynamically efficient (81%) way of processing molecules of bioresources for specific 

purposes in different segments of the market demand. On the other hand, it is demonstrated that 

replacing fossils requires a certain amount of inputs from the natural environment causing 

additional thermodynamic losses in the production chain (15.3%) based on the resource 

footprint of the Cumulative Exergy Extracted from The Natural Environment (CEENE) 

methodology. A scenario assessment demonstrated the resulting tradeoff between the Carbon 

Footprint of bioproducts and the Land, Water and Minerals Footprint; in the case study 

executed 27% fossil resources are saved at the cost of 93% extra land, water and mineral input 

from the natural environment. This means that replacing 1kg of crude oil by wheat based 

bioethanol requires approximately 10 m² of land for one year, 36 L water and 0.0077 kg 

minerals. Constructing a resource footprint thus allows to have a more balanced overview on 

the cost of saving fossil resources and lowering GHG emissions. 

Thinking of the vast amounts of oil that are used, arable land use and the resource footprint of 

biomass in general poses an obvious restriction on the growth of the biorefinery sector. 

Therefore, the available biomass should be maximally valorized. In a second case study, 

anaerobic digestion of several types of biomass is analyzed.  The valorization of energy crops 

such as silage maize, sugar beet and grass, is compared to the valorization of farm residues 
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(cow manure & corn stover) and domestic organic waste. It is shown that the energy crops and 

farm residues are converted with a high rational exergy efficiency compared to waste because 

the latter contains more difficult molecules to convert such as lignocelluloses. This type of 

biomass therefore requires more pre- and post-treatment. From a life cycle perspective, all 

options are environmentally competitive to national grid electricity inducing a resource saving 

of over 90% in most impact categories. Not using the heat however, results in a poorer 

performance (-32%) whereas the valorization of organic waste (domestic and agricultural 

residues) avoids land resources and is therefore the best option to use as biofeedstock. The use 

of digestate as a fertilizer is beneficial for resource use, since it contains nutrients such as 

nitrogen, phosphorus, potassium and trace elements. Recycling these nutrients by using 

digestate as a fertiliser, is a sound strategy to become partially independent from imported 

minerals. However, nutrient leaching and ammonia emissions can increase by using digestate 

instead of mineral fertilizers, but these can be reduced by 50% by a better agricultural practice.  

2.  The assessment methodology 

 

Sustainable development is a holistic concept, and its assessment is a difficult task. The 

required life cycle assessment framework is a useful approach to gain insight in different types 

of interactions between the technosphere, ecosphere and possibly the anthroposphere. 

Nevertheless, due to its complexity, sustainability assessment is far from a finished research 

area. Many examples with a very high relevance can be determined in the sector of 

biorefineries such as the assessment of biodiversity, long term soil fertility, erosion, invasive 

species, risk of diseases, further regionalization, etc. Another example is the fact that it is not 

sufficiently possible to assess the advantage of biodegradation, as we do not know how to 

quantify the impact of a material such as a plastic that is thrown away in nature (e.g. the plastic 

soup in the ocean). Furthermore, improvement could be made in the cause-effect chain of 

endpoint modelling and in the quantification of uncertainty. 
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Whereas we acknowledge these potential interesting research areas, the methodological part of 

the dissertation has focused on the inventory collection phase, on the life cycle assessment goal 

and scope and on quantifying the sustainability concept in general. 

Inventory modelling is indeed an extremely relevant part of the assessment, as the value of the 

result is directly linked to the quality of the data. This aspect is even more important when 

analyzing novel technologies because in this case often no direct data source is available. This 

impedes prospective assessments and therefore the relevance of LCA in general. For this 

purpose, this work has elaborated engineering modules for 22 processes commonly applied in 

industry in order to use parameters and formulas to obtain mass and energy balances of these 

processes. The approach proved to be useful and relatively accurate on a process basis. 

Nevertheless it is a very challenging task and requires further elaboration and as indicated, a 

certain degree of caution is crucial. Apart from the need of including more processes, it is for 

example required to use heat integration in order to avoid overestimation of total heat use. 

Furthermore, more rule of thumb values should be acquired to estimate supporting unit 

operations such as pumping and ventilation.  

Another methodological aspect studied is the allocation procedure which is very relevant in the 

sector of multipurpose biorefineries. It is illustrated that allocation is more than an arbitrary 

step in the assessment of sustainability, but that is rather a methodological attribute that has a 

strong link to the goal and scope of a study. When relying on system expansion, the scope 

changes from one specific functional unit to an economy wide assessment with a whole basket 

of functions, whereas applying a partitioning approach is useful in product specific 

assessments. The first is therefore useful to analyze scenarios and establish links between 

product systems and sectors, whereas the second can be used to determine the impact of one 

product or service as such which might be required in product policy. Within the partitioning 

approach, several options can be chosen, but a fixed physical parameter for allocation seems 
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more appropriate to fulfil the goal of supply chain improvement. In this case the concept of 

exergy, based on the second law of thermodynamics has useful properties as a universally 

applicable physical value for mass and energy flows. 

In the last part of the methodological chapter of this dissertation it is chosen to broaden the 

assessment in scale and scope. For this purpose the concept of sustainable development is 

revisited in the context of the actual goal of sustainability analysis. As a result, an indicator of 

sustainable development is constructed that balances an ‘anthropospheric return’ on an 

‘ecospheric investment’. The former is quantified as satisfaction obtained by a final function 

and labor quantity and quality associated with a production chain whereas the latter relies on 

LCA practices. This indicator uses weighting factors based on macro-scale sustainability 

conditions such as the human development index of countries, unemployment rates and the 

worldwide ecological footprint. As such a link between bottom-up and top-down sustainability 

assessments can be made. While probably not being the final solution, this type of work is 

highly required in the future because: 

• If only top-down approaches are used, the distance between policy and practice may be 

too large for practical implementation of improvement strategies 

• If only bottom-up approaches are applied, this is like rearranging the deck chairs on the 

titanic without changing track  

The integration of both different scales and different research areas is one of the main 

challenges for the future. Coordination is therefore required to implement sustainable 

development and its assessment as the link between different research areas and decision 

makers. 
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3.  Outlook 

 

Based on research performed in this manuscript it can be stated that the ‘easy’ welfare creation 

caused by the use of fossil resources is gradually coming to an end. It seems unlikely that 

mankind will ever find a source of exergy that is so easily and constantly available. Many 

resource options and conversion technologies will need to be researched in the future, however, 

unlike most other renewable technologies, biomass is a source of carbon and will therefore take 

an indispensible place in future developments. Applying life cycle assessment shows that the 

valorization of biomass indeed saves fossils in all studied systems of this dissertation. On the 

other hand, it is clear that each offset by biomass of fossils and related greenhouse gas 

emissions indirectly goes at the cost of other resources such as water, land and minerals and 

that biomass is a precious resource. It is therefore necessary to make a balance between 

environmental burden and services delivered by the resources. Apart from the optimization of 

supply chains, also strategic choices are necessary concerning the use of biomass for food, 

feed, fuel or material purposes, in which life cycle assessment can give guidance on the 

environmental sustainability of these different options. 

It seems obvious that a strong worldwide environmental policy is desired for biomass 

cultivation and processing. From a theoretical viewpoint the only way to obtain a sustainable 

society is a stepwise procedure that is probably valid for all other materials as well: 

• First it is required to determine the resilience of the earth. For each type of resource and 

emission a maximum allowable limit should be determined that guarantees the long 

term health of the planet 

• Second a uniform life cycle assessment of all products and services that can possibly be 

delivered to society should be performed whilst maintaining a closed mass and energy 

balance  
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• Third, the population numbers should be checked 

• Fourth, based on the limitation of earth and on the population number, a choice should 

be made which products and services can be delivered and how these means are divided 

• And fifth, if mankind wants a higher average standard of living, population numbers 

should decrease or more environmentally benign production chains should be developed 

A specific simplified procedure could be designed for biomass based on a possible cascade 

pyramid: 

• Biomass for food (including animal feed) 

• Biomass as material (excl. food and feed) resource 

• Biomass as energy resource  

A first step is the collection of an inventory of all arable land and the potential yields that can 

be attained without degrading other ecosystem functions. Subsequently, one can determine the 

food requirement mix of the world population. The remaining biomass, including food wastes, 

can then be used for the replacement of fossils as material or energy resource. This can be 

summarized as follows: 

¢R� � �¢ 5 �� � �� 

With BRF the biomass available for fossil resource replacement (as material or energy), HB the 

total worldwide harvested biomass, FC the food and indirect feed consumption per capita and 

HP the human population. The biomass fraction available for energy (BFE) can then be 

determined by subtracting the biomass required as material resource (BFM): 

¢�% � ¢R� 5 ¢�q 

Life Cycle Assessment takes an indispensible place in this procedure. It can be used top-down 

to quantify market mechanisms, indirect impacts and boundary conditions such as water 
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consumption, soil depletion, air and water emissions, etc. that should be quantified to link 

products and services and their respective chains to the earth’s resilience. Furthermore, a 

bottom-up life cycle assessment can be used in product policies to compare production chains 

and in the search for improvement potential along supply chains. 

For example if biomass would be the only material source, it would have to provide all non 

recycled molecules delivered to society (MP), but it would also include all material losses (ML) 

in the supply chain. In this case: 

¢�q � q� GqO 

Obviously ML should be minimized, for which a life cycle assessment can give valuable 

insight in possible supply chain improvements.  
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Fossil resources are gradually depleting and becoming more expensive. Therefore, new ways to 

fuel our economy should be sought. Being a renewable carbon source, biomass will take a key 

role in the transition to a more sustainable economy. However, while potentially renewable, 

biomass relies on an intensive cultivation step and it will not be able to deliver a constant and 

endless supply without inducing other harmful effects. Therefore sustainability assessments of 

biorefineries are highly relevant.  

After an introductory first chapter, the sustainability concept and assessment methodologies are 

studied in chapter two. Based on this information, the life cycle framework is applied in chapter 

three, in which it is shown that a food and feed company processing wheat can switch to a 

fossil fuel replacing biorefinery without inducing efficiency losses. On the other hand, the 

replacement of fossil fuels goes at the cost of other resources such as land, water, minerals, etc. 

A profound study of the supply chain of different sources of biomass illustrates that the 

valorization of domestic organic waste and farm residues is an environmentally benign 

opportunity. These types of biomass however, have lower conversion efficiencies compared to 

agricultural crops such as silage maize because they often contain more difficult molecules to 

process such as lignocelluloses requiring more pre- and post-treatment. It is demonstrated that 

these different types of organic resources can be efficiently converted to a highly energetic 

biomethane by anaerobic digestion while maintaining nutrients in the digestate, which can be 

used as fertilizer. Additional emissions causing acidification and eutrophication should 

however be avoided by good agricultural management. 

The fourth chapter of this dissertation focuses on methodological development. The 

quantification of sustainability is a complex task and therefore more research is required to 

improve assessment techniques. A first identified bottleneck is the acquirement of reliable data. 

While this is the key to obtain useful results from a life cycle study, it is especially difficult to 

gather mass and energy balances of future production processes. For this purpose, engineering 
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modules are developed of 22 processes that are commonly used in industry which can be used 

in prospective sustainability assessments. Although challenges are identified, an application in 

a case study illustrated the operability and reliability of the approach. The second part of this 

chapter focuses on the allocation procedure of LCA. It is illustrated that this methodological 

attribute should be linked to the goal and scope of the assessment. System expansion can give 

interesting insights in economy wide assessments to assess different product mixes and 

markets, whereas partitioning is a useful approach in product policies and supply chain 

improvement. For the latter, exergy is identified as a useful parameter to quantify the physical 

value of both mass and energy. In a last part of the methodological chapter, an indicator of 

sustainable development is proposed that focuses on the broader concept of sustainable 

development. The indicator weighs the antropospheric benefit, quantified as satisfaction by a 

product or service and the labor quality and quantity, with the ecological burden, quantified as 

resource and emission impact. These factors are weighted with macro-scale aspects such as the 

human development index, unemployment rate and the world’s ecological footprint.  

Overall, it can be concluded that society will have to take better care of its available resources. 

Biorefineries can have a role in this development by optimally utilizing the available biomass. 

However, a strong policy is needed that analyzes supply and demand interactions and related 

impacts such as land use, water use and field emissions. Life cycle assessment will take an 

essential role in these developments, both in a top-down perspective by analyzing direct and 

indirect effects of product mixes and markets, as in a bottom-up approach by analyzing and 

optimizing production chains. On the other hand, more collaborative research is required to 

better understand different aspects of sustainable development and to search for better ways for 

a proper assessment of different scopes and scales.  
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Door de dalende beschikbaarheid van goedkope fossiele brandstoffen en door de opwarming 

van de aarde, is het noodzakelijk een nieuwe en duurzame motor voor de economie te zoeken. 

In deze transitie kan biomassa een belangrijke bron van hernieuwbare koolstof worden. Het 

verkrijgen van deze grondstof hangt echter samen met een intensieve en oppervlakte 

afhankelijke landbouw stap, waardoor er geen eindeloze voorraden beschikbaar zullen zijn. 

Bovendien zijn er in de productieketen van biomassa ook verschillende types emissies 

mogelijk. Een grondige duurzaamheidsanalyse is dus noodzakelijk in deze opkomende sector.  

 

In dit doctoraatswerk wordt eerst het concept duurzame ontwikkeling uitgediept en worden 

daarna de bijhorende kwantitatieve meetmethoden geanalyseerd. Op basis van deze informatie 

worden levenscyclusanalyses uitgevoerd en wordt enerzijds aangetoond dat een bedrijf uit de 

voedingssector zich op performante wijze kan omschakelen tot een bioraffinaderij die ook 

bioethanol produceert. Anderzijds blijkt dat het vervangen van fossiele brandstoffen ten koste 

gaat van andere grondstoffen zoals land, water, mineralen, enz. Een diepere studie van de 

productieketen van de biomassa toont aan dat het valoriseren van organische afvalstromen een 

waardevolle aanpak is. De conversie van dit type materiaal is nochtans vaak minder efficiënt 

dan de efficiëntie van het verwerken van landbouwgewassen zoals maïs, aangezien zij een 

groter aandeel moeilijker om te zetten moleculen bevatten zoals lignocellulose. Hierdoor is dan 

ook vaker een intensieve voor- en nabehandeling noodzakelijk, maar dit wordt gecompenseerd 

doordat er geen noodzaak is aan extra landbouwactiviteiten. Ook wordt geconstateerd dat 

anaerobe vergisting een efficiënte technologie is voor het omzetten van verschillende soorten 

organisch materiaal tot een hoog calorisch biomethaan. Bovendien worden nutriënten die 

kunnen gerecycleerd worden als meststof behouden in het digestaat. Hierbij is een goede 
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toepassing in de landbouw wel noodzakelijk voor het vermijden van extra emissies die 

verzuring en eutrofiëring veroorzaken. 

Hierna focust dit doctoraatswerk op de methodologische ontwikkeling van 

duurzaamheidsanalyse. Eerst wordt onderzoek gedaan naar het verbeteren van de data-

inventarisatie in de levenscyclusanalyse. De resultaten van een LCA studie zijn namelijk maar 

van waarde als er gewerkt wordt met betrouwbare data, wat zeker relevant is bij het bepalen 

van de duurzaamheid van toekomstige technologieën waarvoor vaak geen gedetailleerde data 

beschikbaar is. Hiervoor zijn in dit doctoraatswerk op basis van ingenieursberekeningen 22 

modules uitgewerkt voor frequent gebruikte industriële processen, wat toelaat om de massa- en 

energiebalans van productieketens te verzamelen. De aanpak werd toegepast in een case en er 

werd aangetoond dat de modules, rekening houdend met hun restricties, bruikbaar kunnen zijn 

bij het analyseren van de duurzaamheid van toekomstige productieketens. Hierna wordt het 

belang van de allocatiemethode bestudeerd en wordt de link tussen deze methodologische 

keuze en het doel en de reikwijdte van de studie aangetoond. Systeemexpansie biedt hierbij 

nuttige informatie over de duurzaamheid van verschillende product mixen en markten. De 

verdelingsmethoden daarentegen, hebben hun nut in beleidsstrategieën voor producten en in de 

optimalisatie van productieketens. Voor deze laatste toepassing blijkt dat het concept exergie 

door zijn fysische relevantie en universele toepasbaarheid erg bruikbaar is als allocatiemethode. 

In het laatste deel wordt een indicator ter kwantificatie van duurzame ontwikkeling uitgewerkt 

die de anthroposferische winst, uitgedrukt als tevredenheid met een product of dienst en de 

kwaliteit en kwantiteit van arbeid, uitdrukt tegenover ecologische belasting, gemeten als impact 

door emissies en grondstofextractie. Door het gebruik van onder andere de Human 

Development Index, werkloosheidscijfers en de ecologische voetafdruk van de totale bevolking 

worden ook macro-schaal aspecten mee in rekening genomen. 
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Als algemene conclusie kan gesteld worden dat de maatschappij anders en beter zal moeten 

omgaan met zijn mogelijkheden. Bioraffinaderijen zullen een belangrijke rol spelen door het 

optimaal verwerken van biomassa tot finale producten. Eén van de belangrijkste aspecten zal 

echter zijn om een sterk beleid te ontwikkelen betreffende de mogelijkheden van biomassa, 

waarbij rekening gehouden dient te worden met neveneffecten zoals het gebruik van extra land 

en water en verschillende types emissies tijdens de landbouw. Levenscyclusanalyse kan in deze 

ontwikkelingen een belangrijke rol spelen. Eerst en vooral kan in een top-down perspectief 

geanalyseerd worden welke directe en indirecte effecten zich voordoen van verschillende 

producten en afzetmarkten. Bovendien kan een analyse vanuit een bottom-up perspectief 

bijdragen aan procesanalyse, procesoptimalisatie en product specifiek beleid. 

In al deze ontwikkelingen is het noodzakelijk om meer collectief onderzoek te organiseren om 

een beter vat te krijgen op de alle mogelijke aspecten van duurzaamheid op verschillende 

niveaus en op verschillende gebieden. 
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Appendix 

1.  Reactions 

1.1.   Chemical reactions 

 

Chemical reactions, are modelled with the thermodynamic equilibrium model. This is a very 

useful approach for generic modelling, since it is stated that this approach is independent of 

reactor design (Puig-Arnavat et al., 2010). However, for each specific case, several 

assumptions will have to be made. Most importantly: a thermodynamic equilibrium should be 

reached, which is not always the case. Therefore, residence time in the reactor should be high 

enough. On top of this, the process is assumed to be adiabatic (no heat losses), the conditions in 

the reactor should be constant without spatial variation and gaseous products are assumed to be 

ideal. The model does not include effects with byproducts such as tar, ash, micro-organisms, 

etc. However, for the latter the amount of such byproducts formed can be deducted from the 

original amount of reactants if this quantity is known. 

 

System boundary description 

The α system boundary for this BUO includes the reaction of the reactants to products in gas or 

liquid (including slurries) state in any type of vessel that allows a thermodynamic equilibrium. 

It is valid over a broad temperature range, as long as the coefficients for the heat capacity 

calculations remain valid; often between 200 and 1500K. Apart from the quantity of output 

products (useful (UO) and wastes (WE)), the module calculates the amount of heating or 

cooling energy, if required (in MJ). Possible SUO are mixing, pumping and cooling.  
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Calculation algorithm 

Three type of equations are used to solve chemical reactions of which the reactants and reaction 

products are known. Firstly an elementary balance can be performed. If this is not sufficient, 

extra equations can be added by considering the thermodynamic equilibrium of the different 

reaction mechanisms. The third type of equation is solving the enthalpy balance of the reaction, 

which can be used to obtain additional stoichiometric information or to have an estimate of 

temperature. The three types of equations are elaborated below: 

Elementary balance 

The thermodynamic equilibrium links input and output flows to each other by means of an 

equilibrium constant (Coker, 2001):  

�* G o¢ £ �� G �+ 

S � *? � ¢�
�! � +�  
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The equilibrium constant should thus be calculated with the Gibbs free energy of reaction, the 

temperature and the gas constant: 

ln S � 5∆3�R�  

The temperature dependent Gibbs free energy of reaction ∆Gr in its turn is obtained with the 

enthalpies and entropies of the different products and reactants: 

∆3� � ∆��¤ 5 �∆$�¤ 

With ∆H the temperature dependent heat of formation, and ∆S the temperature dependent 

entropy. This equation requires the heat of formation ∆Hr that can be obtained by: 

∆��¤ � ∆��¤¥ G ∆��� �4!K� 5 ∆��I?!K?MK� 
Without phase changes the enthalpy difference between the products and reactants can be based 

on the heat capacity:  

∆��� �4!K� 5 ∆��I?!K?MK� � ¦∆�� � ��¤

¤¥
  

With T the actual temperature and T0 the reference temperature (298K). 

¦∆�� � ��¤

¤¥
� ∆� � �� 5 �U� G ∆o2 � ~�N 5 �UN� G ∆�3 � ~�F 5 �UF� G ∆�4 � ��H 5 �UH� 

With a, b, c and d the regression coefficients of the heat capacity temperature dependence 

equation, which can be found for many chemicals in ‘The Chemical Properties Handbook’ 

(Yaws, 1998). Thus the heat of formation ∆Hr is obtained from: 

∆��¤ � ∆��¤¥ G ¦∆�� � ��¤

¤¥
 

Where the standard heat of reaction (∆��¤¥) is determined by: 
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∆��¤¥ ��8� � ∆��� �4!K� ?K ¤¥  5�8� � ∆��I?!K?MK� ?K ¤¥ 

With αp and αr the stoichiometric coefficients. The ∆Hr factor can also be used to calculate 

heating or cooling requirements of the reaction. 

Similarly, the entropy balance can be calculated by: 

∆$�¤ � ∆$�¤¥ G ¦∆��� � ��¤

¤¥
 

With: 

¦∆��� � ��¤

¤¥
� ∆� � ln ��U G ∆o � �� 5 �U� G ∆�2 � ~�N 5 �UN� G ∆�3 � ~�F 5 �UF� 

As a third equation, the enthalpy balance of the reaction can be formulated: 

 

��� G o�ª � ��� G ��, 

This BUO is summarized in Table A.1. 

Input values required  DATAPHYSCHEM Output 

Flow rate and type of feed 

Reaction products 

Estimated temperature 

Elementary compositions  

Standard enthalpy and entropy of 

products and reactants 

Heat capacity coefficients 

Quantity and temperature of inputs or 

outputs (e.g. emissions) 

Heating or cooling requirement 

Table A.1: Summary of the BUO chemical reactions 

1.2.   Incineration for heat and power 

 

Incineration is a technology which is typically used to gain energy from different types of 

resources by oxidation. The engineering module calculates the energy in the form of heat, 

electricity or a combination, generated in different types of industrial combustion 

configurations. In the first step, the Lower Heating Value (LHV) of the energy source(s) is 

calculated, whilst in the second step efficiencies to convert LHV to electricity (and steam) are 
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accounted for. Other calculated outputs are: the auxiliary power needed, ash production and 

emission and a rough estimation of the other main flue gas components H2O, CO2, NOx, SO2, 

P2O5. 

System boundary description 

The BUO “incineration for heat and power” includes the reaction of the incoming fuel in an 

industrial combustion chamber, and the optional conversion of the flue gas to steam and 

electricity in a boiler and/or turbine and generator. A certain amount of power is needed to 

support the combustion process in the β system boundary. Literature numbers found vary from 

2%(Henderson, 2004) to 6% (Bedi) of total feed LHV. A value of 3% is chosen (Kehlhofer et 

al., 2009) which can be subtracted from LHV before calculating the energy output if no better 

data for the SUO is available. 

 

Calculation algorithm 

The produced electricity (Pe) and heat (Ph) are obtained by multiplying the LHV of the fuel 

with their respective efficiency factor: 

�I � O�)W4I« � �kkI 

�� � O�)W4I« � �kk� 
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The included setups and the electricity and heat efficiency can be found in Table A.2 taken 

from DATABUO. 

Name of the setup Electrical efficiency (effe) Steam/heat efficiency (effh) 

Steam boiler 0 90 

Small burner for electricity (all inputs) 30 0 

Large burner for electricity (all inputs) 40 0 

Efficient burner for electricity with combined 

cycles (fossils, non gas) 
50 0 

High Efficient burner for electricity with 

combined cycles (gas) 
60 0 

CHP (all inputs) 25 45 

Efficient CHP (fossils, non gas) 30 55 

High efficient CHP (gas) 40 50 

Table A.2: Included setups of the BUO incineration for heat and power 

For fossil fuels standard LHV’s are available in a database, whilst for organic chemicals (e.g. 

waste solvents) standard net enthalpies of combustion are documented in literature. These 

values can be found in DATAPHYSCHEM. 

Since the composition of coal and biomass can differ substantially, the LHV should in best case 

be calculated specifically per fuel, which is done by obtaining the HHV (Higher Heating 

Value) based on the ultimate analysis of the fuels. For different types of coal the Milne 

equation can be used (Institute of Gas Technology, 1978; Hoinkis & Lindner, 2007): 

 

��)��¬ � 0.341 � � G 1.322 � � 5 0.12 � P 5 0.12 � � G 0.0686 � $ 5 0.0153 � ��� 

Where C, H, O, N, S and ash are the elementary compositions on a weight basis. 

For biomass this can be calculated with the most appropriate equation for biomass (R² = 0.834) 

(Sheng & Azevedo, 2005):  

��)��¬ � 51.3675 G 0.3137 � � G 0.7009 � � G 0.0318 � P� 
Where: 
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P� � 100 5 � 5 � 5 ��� 

The database contains default elementary compositions (based on dry weight) for different 

types of coal and biomass. The LHV is in both cases calculated by (Phyllis; Fowler et al., 

2009): 

O�)��¬ � ��)��¬ 5 2.442 � 8.936 � �/100 

The LHVwet can be correlated to the LHVdry by: 

O�)�IK � O�)��¬ � �1 5q�� 5 2.442 � q� 

With MC the Moisture Content of the wet feed in wt%. The LHVwet value in MJ/kg is then 

multiplied with the feed flow in kg/s to give the total LHVwet in MW. If the energy source is a 

mixture of fuels, it is assumed that the LHV can be added linearly for input mixtures. For 

example for two input streams x and y: 

O�)K K � O�)@ � kl�X@ G O�)¬ � kl�X¬ 

Based on elementary composition, either from the database DATAPHYSCHEM or from the 

user, a rough calculation can be made to estimate the main flue gas components H2O, CO2, 

NOx, SO2, P2O5. A complete oxidation of the basic components is assumed for simplicity and 

the emissions are expressed in kg/s. 

Thus making a mass balance: 

 

1kg H � 9kg H2O 

1kg C � 3.67kg CO2 

1kg N � 3.29kg NOx 

1kg S � 2kg SO2 

1kg P � 2.29kg P2O5 

CO formation depends on local temperature differences in the combustion chamber and 

therefore it is very difficult and data intensive to make generic models for CO formation 
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(Velicu and Koncsag, 2009). For the mass balance, NOx is calculated as NO2. The main NOx 

component formed at the incineration is NO, but this is instable and will react further with 

oxygen to NO2 when released in air. Only fuel NOx is considered: the Zeldovich mechanism 

accounting for thermal NO formation from N2 originating from fuel or air is not considered, 

because of uncertainties in the currently existing models and high required input data (the 

reactions depend amongst others on residence time, local oxygen concentrations and local 

temperature) (Schwerdt, 2006).  

 

Ash production is calculated for biomass and coal based on data from the ultimate analysis in 

the database (DATAPHYSCHEM). Of this ash content, 98% is retained, whilst 2% is emitted 

in the case an ash filter installation (Röder et al., 2004). If this is not the case, 80% is retained, 

and 20% is emitted (Schobert, 2002). To predict the amount of air required, potentially useful 

for SUO operations, the relationship of Borman and Ragland (1998) can be used which states 

that the air fuel ratio is equal to a + 0.25b-0.5c if the fuel has a composition of CaHbOcNd. 

A summary of this module can be found in Table A.3. 

Input values required DATABUO DATAPHYSCHEM Output 

Mass flow rate and composition 

of feed 

Type of energy generation setup 

Ash filter; yes/no 

Efficiencies 

Ash retention 

Enthalpies of combustion 

Ultimate analysis of the fuel 

Fuel requirement 

Energy output 

Emissions and 

ash production 

Table A.3: Summary of the BUO incineration for heat and power 

1.3.   Fermentation  

 

The BUO fermentation includes the conversion of a starch/glucose feed stream to a 

product/water/rest products/biomass mixture and optionally a CO2 gas stream. Calculations are 
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based on default reactions, which can be complemented with extended Haldane kinetics if 

reactor volume or time is required.  

System boundary description 

The α system boundary includes only the conversion of the feed stream in the fermenter. The 

module is also able to calculate the mixing time and the potential need of cooling or heating, 

which can be used to calculate the UPR of the SUO in the β system boundary. Most relevant 

SUO are thus mixing, pumping and heating/cooling. 

Fermentation

α System boundary

Feed (M)

Products (UO)

β System boundary

Mixing Pumping Cooling

Heating (En)

CO2 emissions (WE)

Nutrients (A)

 

Calculation algorithm 

If the feed stream is starch, it is assumed to be completely hydrolysed according to: 

�CµHLUOJ�� G n HNO ¸ n CµHLNOµ 

This means that the mass of starch should be multiplied with 180/162 to include the additional 

water in the final mass of glucose. The glucose available is then fermented to an end product 

according to one of the reactions in Table A.4, depending on the reaction conditions and type of 

micro-organism used: 
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Product Reaction products 

Product yield; YP/S 

(g product /g substrate) 

C F 

Ethanol CµHLNOµ ¸ 2  �N�µP G 2 �PN 0.46 0.47 

PDO (1,3 – 

Propanediol) 
CµHLNOµ G  0.31 ON ¸ 1.42 CF�¹PN G 1.73 �PN G 0.32 �NP 0.41 0.54 

ABE (butanol) CµHLNOµ ¸ 0.20  �F�µP G 0.82 CH�LUP G 0.08  �N�µP G 1.50 �PN G 12 �N 0.42 0.50 

Acetic acid CµHLNOµ ¸ 3 CN�HPN 0.50 0.90 

Acrylic acid CµHLNOµ ¸ 2 CF�HPN G 2 �NP 0.72 

Lactic acid CµHLNOµ ¸ 2  CF�µPF 0.93 0.95 

Succinic acid CµHLNOµ G 2 �PN G 4 H ¸ 2  CH�µPH G 2  �NP 0.88 1.01 

Adipic acid 3 CµHLNOµ G 7 ON ¸ 2 Cµ�µPH G 6 �PN G 12 �NP 0.17 0.47 

Citric acid  CµHLNOµ G 0.5 ON ¸ Cµ�¹Pº G 4 � 0.86 0.96 

Table A.4: Stoichiometric fermentation reactions and current and future product yields per substrate consumed (Patel et al., 2006) 

*C = Current, F = Future potential yield 
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The generic reaction which occurs when 1 mole of substrate is consumed includes the 

formation of the product(s) and the production of biomass: 

CµHLNOµ G u ON Gw �PN G �B �m�N source G �B � n�S source G �B � o�P source
¸  YÁÂ  � MMÄÅÆ

MMÇÈÉÊ  CËHÌOÍNÊ G ¢ CLHÎOÏNÐS�PÉ G R rest products 
Where R is the amount of moles carbon in the reaction specific rest products, which can be 

found in the reaction equations of Table A.4, and B is the amount of moles of biomass which is 

formed per mole of substrate consumption and which is based on the carbon balance:  

¢ � 6 G X 5 R 5 � � ÑÒÓ  � qqÔ«4
qq�� �  

YP/S is the yield of product per substrate (g/g) and can be found in Table A.4. The elementary 

balance of hydrogen and oxygen is not checked due to the complexity of bacterial growth, but 

standard values of bacterial composition can be found in Table A.5 (Harding, 2008). Based on 

these compositions, the amount of nitrogen, sulphur and phosphorus nutrients to be added in 

the fermenter can be calculated. 

Organism C H O N S P 

Aerobacter aerogenes 1 1,83 0,55 0,25 
  

Aspergillus niger 1 1,74 0,711 0,117 
  

Azohydromonas lata 1 1,76 0,48 0,19 
  

Candida sp. 1 1,84 0,52 0,16 
  

Escherichia coli 1 1,77 0,49 0,24 
  

Klebsiella sp. 1 1,75 0,43 0,23 
  

Paracoccus denitrificans 1 1,66 0,49 0,2 
  

Pseudomonas C12B 1 2 0,52 0,23 
  

Saccharomyces cerevisiae 1 1,76 0,53 0,17 0,005 0,01 

Other 1 1,82 0,53 0,2 
  

Table A.5: Elemental formula for micro-organisms (Harding, 2008) 

The total output mass flow (kg/s) of end product formed is: 

q�� � � Ñ#/Õ � $&M 
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In continuous mode, the enthalpy change of the reaction allows the calculation of amount of 

cooling or heating medium required to maintain a certain temperature. For example for ethanol 

fermentation by Saccharmoyces cerevisiae, following reaction enthalpy can be used: 

∆� � 5120,6Ö×/p�l (Chongvatana, 2007-2008) 

To determine the reaction time, and thus reactor volume, necessary for the fermentation, 

Haldane kinetics with product inhibition can be used. The rate of biomass formation (rb) can be 

calculated by multiplying the biomass concentration (B) with the specific growth rate, µ (h-1) 

(Ghose & Tyagi, 1979): 

�� � ¢ � μ 

The latter can be determined by: 

μ � μ>?@ � �ÕÙÚSÕ G �ÕÙÚ G �ÓÙÚ/Û.
� v1 5 ��>?@w

Ü
 

In this equation Ks is the Monod constant (g/L), KI the inhibition constant (g/L), µmax the 

maximum specific growth rate (h-1), P the ethanol concentration in the fermentor (g/l), α the 

product inhibition constant, Pmax the maximum ethanol concentration (g/l) and CSun = substrate 

concentration (g/L). Assuming a perfectly mixed fermenter implies that the concentration in the 

tank is the same as the concentration in the outlet flow. In a continuous reactor, this can be 

determined by: 

�ÕÙÚ � $4M$4M �4M¡ Gq�/Ý ��/Ý¡ Gq�� � ��� �¡ Gqª �ª¡ Gq�I�K �� � ��I�K �� �¡  

 

With M and ρ the mass and density (kg/l) of the unused product (un), the water (H2O), the end 

product (prod), the biomass (B) and the rest products respectively and assuming that density 

can be added linearly.  

These kinetics can be simplified to 
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μ � μ>?@ 

in the case that substrate and product inhibition are negligible, and if substrate concentration is 

high in comparison to the Monod constant. However in industrial practice this might not 

always be the case, since it is the goal to consume as much as the substrate as possible to form 

high concentrations of end products. Furthermore, the product inhibition factor }1 5 ##Þßà�Ü 

and substrate inhibition 
�ÓÙÚ/Û.  factor can be neglected if no influence of product and substrate 

concentration is expected. Based on these reaction rates, the residence time in the reactor can 

be estimated. 

A summary of this BUO can be found in Table A.6. 

Input values required DATABUO DATAPHYSCHEM Output 

Fermentation reaction 

Type of micro-organism 

Mass and composition of 

input flow 

Yield coefficient 

Kinetic parameters 

Reaction enthalpy 

(preferably entered by 

user) 

Composition of feed 

streams 

Mass input and output 

(including nutrients and 

emission) 

Heating and cooling 

required 

Table A.6: Summary of the BUO fermentation 

2.  Separation processes 

2.1.   Binary distillation  

Distillation is used as a separation process based on different boiling points. In contrary to 

evaporation, all components are appreciably volatile. Furthermore, the vapour phase is 

condensed in an overhead condenser, optionally with a reflux, the latter returning a part of the 

condensed vapour to the distillation column.  

System boundary description 

The BUO can be used for non extractive binary distillations with or without reflux. It calculates 

the heat required for the evaporation process (often in a reboiler) and the cooling energy 

required in the condensation (incl. reflux). This is valid over a broad temperature range, as long 

as the coefficients for the heat capacity calculations remain valid. Pumping operations for the 
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different liquid and gas streams, vacuum pumps and possible mixing operations are not 

included in the α system boundary. Furthermore, cooling (in the condenser) should be added as 

a SUO in the β system boundary. 

 

 

 

Calculation algorithm 

The general equation for calculating the energy requirements of a distillation is very similar to 

the equation for an evaporation, but includes the fraction of reflux that has to be added to the 

enthalpy of vaporization: 

| � }�1 G RR� � ~pW 5p�� � �� GpW � �� � ~�� 5 �W�� t�  

With mf and mb the mass of the feed and the bottoms respectively, λv the latent heat of the 

vapor, cp the mean heat capacity of the feed, Tb the pressure dependent boiling point of the 

vaporized component and η an efficiency factor, typically 0.9, accounting for heat losses. 

The Reflux Ratio (RR, or L/D) can be calculated based on the minimum reflux ratio (RRmin) 

with a rule of thumb (Perry & Green, 1999): 
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RR � 1.35 � RR>&M 

Assuming negligible holdup of liquid on the trays, in the column, and in the condenser, the 

minimum reflux ratio can be obtained by: 

R>&M � �O/+�>&M �
¬áV¬â.@áV@â.1 5 ¬áV¬â.@áV@â.

 

With ypi and xpi the initial molar fraction of the more volatile component and yd and xd the 

molar fraction of the more volatile component in the distillate in the vapour phase and liquid 

phase respectively. Where xd and yd are equal assuming a total condensation (Figure A.1 (Perry 

& Green, 1999)). 

 

 

Figure A.1: Determination of the minimum reflux ratio from the Equilibrium curve and 

operating line in a distillation. Point D is the composition of the distillate, whilst point F is 

the composition of the feed (Perry & Green, 1999) 
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Assuming that the vapor is cooled to obtain a phase change, the cooling duty for the 

condensation (qc) of is: 

|! � �1 G RR� � ~pW 5p�� � �� 

Aforementioned theory is generally applicable, however does not include the specific cases of 

azeotropes. A frequently used example is the case of an ethanol – water – biomass mixture 

obtained after a fermentation. Table A.7 gives a summary of this BUO 

Input values required DATAPHYSCHEM Output 

Composition feed 

Compositions distillate 

Heat capacities 

Enthalpy of vaporization 

Pressure dependent boiling temperature 

Heating and cooling required 

Temperatures 

Table A.7: A summary of the BUO binary distillation 

2.2.   Filtration 

In chemical processes, filtration is the mechanical or physical operation which is used for the 

separation of solids from fluids (liquids or gases) by leading them through a medium that 

allows only the fluid to pass and that retains oversize solids. As a filtration medium, normally a 

solid sieve or a membrane (surface filter) is applied although filtration can also occur through a 

bed of granular material (depth filter). Fluids flow through a filter due to a difference in 

pressure – fluids flow from the high pressure side to the low pressure side of the filter, leaving 

solids behind. The application of gravity is the simplest way to achieve this, but in the 

laboratory, pressure in the form of compressed air on the feed side or vacuum on the filtrate 

side may be applied to enhance the filtration process. In industry, when a reduced filtration 

time is important, the liquid may flow through a filter by the force exerted by a pump. 

 

System boundary description 
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The α system boundary for this BUO includes the filtration of a suspension and the pumping 

operation applied to create a pressure difference. Depending on the requirements, either the 

filtrate or the solids are the useful output. 

 

 

Calculation algorithm 

The power for filtration (Pf in W) is calculated according to (Harding, 2008): 

�W � ∆� � ã�kk.  

In which: 

∆P = Pressure difference across the filter (Pa) 

Q = Flow through the filter (m³/s) 

eff. = Pumping efficiency (dimensionless) 

Alternatively, rule of thumb values for different type of filtration can be used, which can be 

found in Table A.8 (Patel et al., 2006). 

Type of membrane filtration Unit Value range Chosen value 

Microfiltration kWh/m3 permeate 1.2-2.6 2 

Ultrafiltration kWh/m3 permeate 3.5-16 5 

Diafiltration kWh/m3 permeate 5 5 

Nanofiltration kWh/m3 permeate 1-7 7 

 

Filtration 

α System boundary 

Pumping 

β System boundary 

Suspension 

(M) 

Filtrate 

(UO/WE) 

Solids 

(UO/WE) 

Electricity 

(En) 
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Reverse osmosis kWh/m3 permeate 2.5-10 9 

Table A.8: Default electricity consumption values for different types of filtration 

A summary of this BUO can be found in Table A.9. 

Input values required DATABUO DATAROT Output 

Flow of fluid 

Pressure difference if available 
Pumping efficiency 

Default electricity 

consumption 
Electricity use 

Table A.9: A summary of the BUO filtration 

2.3.   Sedimenting Centrifuges 

 

Sedimenting centrifugation is a broadly used, but energy intensive equipment to separate solids 

from liquids based on a difference in density, without using a filter (Perry & Green, 1999). 

 

System boundary description 

This BUO focuses in the α system boundary on the electricity use of the sedimenting 

centrifuges. Data is available for tubular, disk, disk with nozzle discharge and decanters/helical 

conveyors. Necessary pumping operations are situated in the β system boundary. An 

approximation can be made of the separation efficiency, to serve as input for further BUO. 

 

Calculation algorithm 
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Due to the complexity of the process, where the settling speeds and power consumption 

depends heavily on type of centrifuge and particle size and shape of the solids, it is very 

difficult to obtain one generic equation. Therefore, the power consumption is modelled by 

using default powers of different types of equipment, which can be taken from DATABUO 

(Table A.10 (Perry & Green, 1999)). 
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Type 
Bowl 

diameter (cm) 

Typical speed 

(r/min) 

Maximal centrifugal 

force x gravity 

Liquid throughput 

min (l/s) 

liquid throughput 

max (l/s) 

Solids 

throughput min 

(kg/s) 

Solids throughput 

max (kg/s) 

Typical 

motor size 

(kW) 

Tubular 

4.45 50000 62400 0.003 0.016 
  

1 

10.48 15000 13200 0.006 0.630 
  

1.5 

12.70 15000 15900 0.013 1.260 
  

2.2 

Disk 

17.78 12000 14300 0.006 0.630 
  

0.2 

33.02 7500 10400 0.315 3.150 
  

4.5 

60.96 4000 5500 1.260 12.600 
  

5.6 

Disk; nozzle 

discharge 

25.40 10000 14200 0.630 2.520 0.028 0.278 14.9 

40.64 6250 8900 1.575 9.450 0.111 1.111 29.8 

68.58 4200 6750 2.520 25.200 0.278 3.056 93.3 

76.20 3300 4600 2.520 25.200 0.278 3.056 93.3 

Decanter / Helical 

conveyor 

15.24 8000 5500 
 

1.260 0.008 0.069 3.7 

35.56 4000 3180 
 

4.725 0.139 0.417 14.9 

45.72 3500 3130 
 

6.300 0.278 0.833 37.3 

60.96 3000 3070 
 

15.750 0.694 3.333 93.3 

76.20 2700 3105 
 

22.050 0.833 4.167 149.2 

91.44 2250 2590 
 

37.800 2.778 6.944 223.8 

111.76 1600 1600 
 

44.100 2.778 6.944 298.4 

137.16 1000 770 
 

47.250 5.556 16.667 186.5 

Table A.10: Typical centrifuge configurations and power (pw) (Perry & Green, 1999) 

                                                           
1 Turbine driven, 372kPa necessary (steam or air compressor) 
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Alternatively for yeast and bacteria a rule of thumb value can be used. The values for yeast 

centrifugation range from 0.7-2.5 kWh/m3 of feed. The recommended value was 

determined at 1.5 kWh/m3 of feed. The values for bacteria centrifugation range from 6.2-

25 kWh/m3 of feed. The recommended value was determined at 7 kWh/m3 of feed. 

A summary of the BUO sedimenting centrifuges can be found in Table A.11. 

Input values required DATABUO DATAROT Output 

Type of centrifugation 

equipment 

Liquid/solid 

throughput 

Centrifuge power 

Rotational speed 

Bowl diameter 

Default values for 

yeast and bacteria 
Electricity use 

Table A.11: A summary of the BUO sedimenting centrifuges 

2.4.   Electrostatic precipitation (ESP) 

Electrostatic precipitators use an induced electric charge to separate solids from a gaseous 

stream.  

System boundary description 

This BUO includes the electricity used for the corona generation and is valid for gas 

velocities between 0.5 and 3m/s. The module is aimed at dry electrostatic precipitation of 

particulate matter from 0.01 to 10µm. It does not include pumping operations. 
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Calculation algorithm 

The electrical corona produced requires a certain amount of power, which can be calculated 

by (University of Florida, Environmental Engineering Sciences, Aerosol & Particulate 

Research Lab, 2011): 

� � 519.42 � ã � l��1 5 t� 
P is the Power (in W), Q is the volumetric gas flow (in m³/s) and η is the efficiency of the 

precipitation in %. 

A summary of the BUO electrostatic precipitation can be found in TableA.12. 

Input values required DATABUO DATAPHYSCHEM Output 

Gas flow rate + composition 

Efficiency of solids removal 
- - 

Electricity use 

Mass of solids 

precipitated 

Table A.12: A summary of the BUO electrostatic precipitation 
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2.5.   Electrodialysis 

 

Electrodialysis is a separation technique that uses an applied electric potential difference 

for the transportation of salt ions from one solution to another through ion-exchange 

membranes. This is done in a configuration called an electrodialysis cell. The cell consists 

of a feed (dilute) compartment and a concentrate (brine) compartment formed by an anion 

exchange membrane and a cation exchange membrane placed between two electrodes. 

Under the influence of an electrical potential difference, negatively charged ions in the 

dilute stream migrate towards the positively charged anode. These ions pass through 

positively charged anion exchange membrane, but are prevented from further migration 

toward the anode by the negatively charged cation exchange membrane and therefore stay 

in the concentrate stream, which becomes concentrated with the anions. The positively 

charged species in the dilute stream migrate toward the negatively charged cathode and 

pass through the negatively charged cation exchange membrane. These cations also stay in 

the concentrate stream, prevented from further migration toward the cathode by the 

positively charged anion exchange membrane. Anion and cation migration is enabled by an 

electric current that flows between the cathode and anode. A schematic example of an 

electrodialysis process is given in Figure A.2 for NaCl concentration. Only an equal 

number of anion and cation charge equivalents are transferred from the dilute stream into 

the concentrate stream, maintaining the charge balance in each stream. The overall result of 

the electrodialysis process is an ion concentration increase in the concentrate stream with a 

depletion of ions in the dilute solution feed stream (American Water Works Association, 

1995).  
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Figure A.2: Example of an electrodialysis process (Wikipedia) 

This basic engineering module calculates the energy requirements for the electrodialysis 

process. 

System boundary description 

The α system boundary of this process includes the electrodialysis process in which ions 

are shifted from a diluate stream to a concentrate stream. Either the diluate stream is the 

useful output (if the aim is to get rid of certain substances in a liquid) or the concentrate 

stream is the useful output (if the aim is to concentrate certain substances in a liquid). There 

is an additional flow, i.e. the electrode stream. The electrode stream flows past each 

electrode in the stack. This stream may consist of the same composition as the feed stream 

or may be a separate solution containing different compounds. Depending on the stack 

configuration, anions and cations from the electrode stream may be transported into the 

concentrate stream, or anions and cations from the diluate stream may be transported into 
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the electrode stream. In each case, this transport is necessary to carry current across the 

stack and maintain electrically neutral stack solutions. The β system boundary includes 

pumping requirements for the transport of the streams. 

 

 

Calculation algorithm 

The electricity requirement for electrodialysis is calculated according to (Perry & Green, 

1999): 

n

FU
E

I

ed
⋅

⋅
=

η  

In which: 

Eed = Energy consumption (J/ mol equivalent salt shifted) 

U = Applied voltage (V) 

F = Faraday constant (= 96485.34 Amp.s/mol) 

ηI = Current efficiency (dimensionless) 

n = number of cell pairs (dimensionless) 

 

 

Electrodialysis 

α System 

boundary 

Pumpin

g 

β System 

boundary 

Concentrate feed 

stream (M) 

Diluate feed 

stream (M) 

Concentrate stream 

(UO/WE) 

Diluate stream 

(UO/WE) 

Electricity (En) Electrode 

stream (A) 
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The energy consumption is expressed per mol equivalent salt shifted. An equivalent stands 

for a unit of charge. This means that, e.g., 1 mol SO4
2- equals 2 mol equivalents. And 

likewise, the shift of 1 mol H2SO4 equals 2 mol equivalents. The meaning of expressing 

shifts per equivalent appears from the following formula for current efficiency: 

( )
In

FccQ

In

FN iipi

I
⋅

−
=

⋅

⋅
=

0

η
 

In which: 

Ni = Flow of ionic substance i formed from the splitting operation (mol eq/s) 

I = Current intensity through the stack (A) 

Qp = Volumetric flow of the product (m3/s) 

ci = Concentration of ionic substance i in the product stream (mol eq/m3) 

ci
0 = Concentration of ionic substance i in the inlet stream (mol eq/m3) 

 

The current efficiency basically determines the amount of coulombs shifted per coulomb 

applied by means of external power. The amount of coulombs shifted is determined by the 

charge of the ions. Each coulomb originates from 1 charge equivalent of an ion. It is 

represented by the numerator and expressed in Amp.s/s = Coulomb/s. The amount of 

Coulombs externally supplied is determined by the denominator and is expressed in Amp 

which is also Coulomb/s.  

 

Alternatively, literature values can be found in the BREW study (Patel et al., 2006 for 

different electrodialysis processes. The energy consumption ranges from 0.07-0.34 

kWh/mol eq. The recommended value in this study is to use 0.1 kWh/ mol eq. The 

respective equivalent value from the example above is 0.2 kWh/mol. The difference to the 

generic value according to the BREW study (factor of 2) may be explained primarily by a 
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rather low current efficiency in the lab-scale process (44%). Table A.13 summarizes this 

BUO. 

Input values required DATAPHYSCHEM Output 

Applied voltage 

Number of cell pairs 

Current intensity through the stack 

Volumetric flow of the product 

Concentration of ionic substance i in the product stream 

Concentration of ionic substance i in the inlet stream 

Faraday constant 
Electricity 

use 

Table A.13: A summary of the BUO electrodialysis 

2.6.   Pressure swing adsorption 

 

Pressure swing adsorption is a technology that is used for the separation of gas species from 

a mixture of gases under pressure. It is based on the species molecular characteristics and 

affinity for an adsorbent material. Pressure swing adsorption processes rely on the fact that 

under pressure, gases tend to be attracted to solid surfaces, or ‘adsorbed’. Special 

adsorptive materials are used as a molecular sieve, for example ‘zeolites’. The process then 

swings to low pressure to desorb the adsorbent material. This basic engineering module 

calculates the energy required to separate a gas from a gas mixture by pressure swing 

adsorption. 

 

System boundary description 

The α system boundary of this process includes the separation of (a) gas(es) from a gas 

mixture by means of pressure swing adsorption. Either removed gas(es) or the remaining 

gas mixture can be the useful output product. For this process, energy in the form of 

electricity is needed as well as adsorbent material. The adsorbent material can be reused 
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many times however. In the β system boundary, some pumping is required to transport the 

gases.  

 

Calculation algorithm 

An extensive theoretical analysis of a pressure swing adsorption process is given by Huang 

et al. (2008). The power requirements of a pressure swing adsorption process are calculated 

according to: 

( )

feedfeedbed

atm

feed

feedg cur
p

p
TRP ⋅⋅⋅
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In which: 

P = Power (W) 

ζ = Ratio of heat capacities, cp/cv (dimensionless) 

Rg = Ideal gas constant, i.e. 8.314 J mol-1K-1 

Tfeed = Temperature of the feed (K) 

pfeed = Pressure of the feed (bar) 

patm = Atmospheric pressure, i.e. 1.013 bar 

rbed = Column radius (m) 

ufeed = Interstitial gas velocity (m/s) 

 

Pressure Swing 

Adsorption 

Pumping 

α System 

boundary 

β System 

boundary 

Gas mixture 

(M) 

Separated gas(es) (UO) 

Electricity (En) 

Separated gas(es) (WE) 

Adsorbent (A) 
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cfeed = Concentration of the feed stream (mol/m3) 

The ratio of the heat capacities for various gases can be found in DATAPHYSCHEM or in 

chemical handbooks (White, 1999; Lange and Dean, 1973).  

The interstitial gas velocity is calculated with: 

ε⋅
=

A

Q
u feed

 

In which: 

Q = Volumetric flow rate (m3/s) 

A = Cross sectional area of the bed (m2) 

ε = Void fraction of the bed, i.e. ratio of the void volume to the total volume of the 

bed  

The concentration of the feed stream (all compounds) is calculated based on the ideal gas 

law: 

feedg

feed

feed
TR

p
c

⋅
=

 

If the flow rate of the separated gas is known, the total energy requirements (in J/kg) can be 

calculated: 

v

P
E =

 

 

In which: 

E = Energy use (J/kg) 

P = Power (W) 

v = Flow rate separated gas (kg/s) 

A summary of the BUO pressure swing adsorption can be found in Table A.13 
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Input values required DATAPHYSCHEM DATABUO 
Output 

Temperature of the feed 
Pressure of the feed 

Column radius 
Interstitial gas velocity 
Concentration in feed 

Flow rate separated gas 

Atmospheric pressure 
Ratio of heat capacities 

- Electricity use 

Table A.13: A summary of the BUO pressure swing adsorption 

3.  Physical mechanical processes 

3.1.   Mechanical Compression- Multi stage 

 

In multistage compression, the pressure to which gases can be compressed is much higher 

than when using single stage compression. Another reason for applying multistage 

compression is that the same compression task can be realized with lower energy use. 

Multistage compression is a sequence of compressions. After each compression stage the 

heat that is generated in the compression is removed by cooling, making multistage 

compression less adiabatic and more isothermal. The choice of the compressor type for 

each compression step depends mainly on the flow rate and the differential pressure 

(Damen, 2007). The theoretical energy requirements can be estimated, however. This basic 

engineering module calculates the estimated energy requirements for multistage 

compression of gases. 

System boundary description 

The α system boundary of this BUO includes the multistage compression of a gas. 

Electricity is needed for the compressor. The β system boundary includes the pumping and 

cooling requirements and is therefore not directly included in the calculation algorithm.  
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Calculation algorithm 

For a multistage compression with n stages, power requirements are given by following 

equation (Diomedes Christodoulou, 1984):  

 

















−








−
=

−
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In which: 

W = Specific compression work (J/g or kJ/kg) 

Z = Compressibility factor (Dimensionless) 

R = Universal gas constant i.e. 8.314 J mol-1K-1 

T1 = Suction temperature (K) 

n = Number of stages (Dimensionless) 

ζ = Ratio of heat capacities, cp/cv (dimensionless) 

M = Molar mass (g/mol) 

p1 = Suction pressure (MPa) 

 

Multistage 

compression 

α System boundary  

Pumping 
Cooling 

β System boundary  

Gas 

(M) 

Compressed 

gas (UO) 

Electricity (En) 
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p2 = Discharge pressure (MPa) 

Since this is the theoretical power use of the multistage compression process, a correction 

has to be made for efficiency losses: 

mis

W
P

ηη
=

 

In which: 

P = Power requirements (kJ/kg) 

ηis = Isentropic efficiency (Dimensionless) 

ηm = Mechanical efficiency (Dimensionless) 

A summary of the BUO mechanical compression – multi-stage can be found in Table A.14 

 

Table 1: A summary of the BUO Mechanical compression - multi -stage 

Input values required DATAPHYSCHEM DATABUO Output 

Suction temperature 
Number of stages 
Suction pressure 

Discharge pressure 

Universal gas constant 
Specific heat ratio 

Molar mass 

Compressibility factor 
Isentropic efficiency 

Mechanical efficiency 

Electricity use 
Properties of output 

streams 

 

3.2.   Pumping incompressible fluids 

 

This module includes the pumping of incompressible fluids. Whilst in principle all fluids 

are compressible, the compressibility of liquids is low, and for gases, incompressibility is 

often used as an approximation at lower speeds. 

System boundary description 

The electricity use is calculated to pump an incompressible fluid over a certain distance and 

height. The calculation algorithm can be used for centrifugal, axial, rotary and reciprocating 

pumps, for Newtonian and Power law fluids. Herschel – Bulkley can also be chosen, but 
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larger errors are expected, due to limited knowledge of their behaviour in different pipe 

configurations. Numerous assumptions are made in the equations: constant fluid density, 

the absence of thermal energy effects; single phase, uniform material properties and 

uniform equivalent pressure (Valentas et al., 1997). 

 

 

Calculation algorithm 

The starting point to estimate the pump power is to determine the type of fluid. Three 

different types of fluids are considered depending on the relation between the shear stress 

(σ) and the shear rate (γ): 

Newtonian fluids: ä � μ � å 

Power law fluids: ä � S � åM 

Herschel – Bulkley fluids: ä � äU G S � åM  

With µ the viscosity, K the consistency index, n the flow behavior index and σ0 the yield 

stress. Often the Newtonian equations are used, but in many real cases such as different 

types of slurries the Newtonian theory is not applicable. Even fibrous slurries such as 

fermentation broths, fruit pulps, crushed meal animal feed, tomato puree, sewage sludge, 

and paper pulp, which may not contain a high percentage of solids may flow as non-

Newtonian regimes (Abulnaga, 2002). Because of its ease of use, the empirical Power Law 

is often used (Rao, 1999). 
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Pump power 

The basic equation to estimate pump power for transporting incompressible fluids is: 

 

�M � � � ã � � � ��kk.  

Pn = pump power output in W, H the total dynamic head in Nm/kg, Q the capacity in m³/s, 

ρ the density (kg/m³), g the gravity constant and eff. the efficiency of the pump (Perry & 

Green, 1999). 

The main bottleneck for the calculation of the necessary power is thus determining the 

dynamic pump head to displace the fluid. This factor depends on the conditions at starting 

and end position, on the flow rate, on the type and configuration of the pipes used, and on 

the type of fluid that is pumped. The dynamic head can be obtained from the Bernoulli 

equation: (Valentas et al., 1997). 

� � ∆æ G ∆m� � � G ∆nN� � 8 G �� 

With ∆z the difference in height between the starting and end position, which equals zero in 

closed systems. ∆p is the pressure difference between initial and end situation, α is the 

correction factor for velocity distribution in the pipe and hw is the resistance head. 

Velocity head 

The difference in velocity is represented by ∆u, where the velocity behind the pump can be 

calculated based on the flow rate and the cross sectional area of the pipes (A): 

n � ã* 

According to www.cheresources.com liquid transport pipes should be sized according to: 

n � v1.524 G +0.9144wp/� 
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With D the diameter of the pipe (in m). 

For circular pipes: 

* � ç � +N
4  

 

Merging these equations delivers a link of flow (in m³/s) and diameter (in m): 

ã �  ç � +N
4 � v1.524 G +0.9144w 

ã � 1.197+N G 0.859+F 

This can be solved if the flow is known. 

α is the correction factor for velocity distribution in the pipe. For the turbulent flow this is 

always approximated as 2, whilst for laminar flow it depends on the type of fluid (Ibarz and 

Barbosa-Cánovas, 2003): 

Newtonian fluids: α=1 

Power law fluids (using the flow behavior index n) 

8 � 2 � �2� G 1� � �5� G 3�3 � �3� G 1�N  

Herschel – Bulkley fluids: The correction factor can be deducted from Figure A.3: 
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Figure A.3: The kinetic energy correction factor for Herschel-Bulkley fluid foods 

(Valentas et al., 1997) 

 

The dimensionless yield stress (c): 

� � äUä� � äU�,�∆#H" � �
äUk � � � 4/N

 

σ0 = the yield stress, σw the shear stress at the wall and ∆P/L the pressure drop per unit of 

length. 

Resistance head 

hw is the resistance head (m), which consists out of a basic friction resistance, with f the 

fanning friction factor, and a factor kf accounting for supplementary losses, with b the 

amount of fittings, valves, elbows,... 

�� � 2k � nN � O+ G�ÖW � nN2 � 8
�
L

 

This resistance factor depends heavily on the flow regime. Therefore the Reynolds number 

has to be determined, which can be calculated for Power Law fluids by: 
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R�è � �M � nNVM � �8MVL � S � v 4�1 G 3�w
M

 

For fluids without yield stress, the critical Reynolds number is determined with: 

R�� � 6464�
�1 G 3��N � } LN�M�

/éÚzéÚ  
When the magnitude of n < 1 the fluid is shear-thinning or pseudoplastic, and when n > 1 

the fluid is shear thickening or dilatant in nature (Rao, 1999). For the special case of a 

Newtonian fluid (n = 1), the consistency index K is identically equal to the viscosity of the 

fluid. Thus for Newtonian fluids this becomes: 

R� � � � n � �μ  

 

And the critical Reynolds number is 2100, meaning that a Reynolds numbers lower than 

this value are laminar. Reynold numbers above 4000 are situated in the turbulent region. 

For the intermediate region (2100<Re<4000), it is impossible to obtain the pumping 

equations, thus an approximation should be made. Often Reynolds numbers above the 

critical number (2100 for Newtonian fluids) are assumed to be in the turbulent region. 

 

When a fluid has a non negligible yield stress, the Herschel – Bulkley theory should be 

used. The critical Reynolds number can then be calculated by: 

R�! � 2��è � } �3� G 1�
N � vê� w

/ÚVL
 

With HeG the Hedstrom number (Ibarz and Barbosa-Cánovas, 2003): 

��è � +N � �S � }äUS�
/ÚVL
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The critical Reynolds number can be obtained graphically, however, in this work the 

Herschel-Bulkley fluids are only used in the laminar region, which is realistic due to the 

high viscosity and elasticity of these fluids.  

Fanning friction factor 

Laminar flow 

Since the Herschel – Bulkley equation is the general form of the three previous equations, 

this will be taken as a starting point, where the friction factor can be calculated as: 

k � 16ê � R�è 

With  

ê � �3� G 1�M � �1 5 ��L�M � ë�1 5 ��N3� G 1 G 2� � �1 5 ���2� G 1� G �N� G 1ì
M  

 

For power law and Newtonian fluids c=0, making Ψ=1 and thus the friction factor can be 

simplified to: 

k � 16R�è 

For turbulent flow, it is thus assumed that the fluids are obeying Newton or Power law 

equations. 

Turbulent flow in smooth pipes: 

For Power Law fluids the Dodge and Metzner (1959) equations give good results for (n = 

0.4 to 1): 

1ík � v 4�U.ºJw � l�� }R�è � k}LVÚ/�� 5 �0.4�L.N� 
This equation is simplified to the Von Karman equation for Newtonian fluids (n=1) 

(Chhabra and Richardson, 1999): 
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1ík � 4 � l��~R�è � ík� 5 0.4 

For turbulent flow in rough pipes, the roughness of the pipe has an influence. However, for 

non Newtonian flows, these relationships are not well studied. The Torrance equation is 

used for fluids with n<1 (Liu, 2003). 

1ík � 2.035 � l�� v+2îw G 3.0 5 1.325�  

D represents the inner diameter and ε the absolute roughness which depends on the material 

used. Default values can be found in DATABUO (Table A.15) (Van Der Meeren, 2004). 

For other fluids it is stated that the equations valid for Newtonian fluids can be used as an 

approximation, since the turbulence becomes more important (Abulnaga, 2002). A popular 

equation for Newtonian fluids is given by the Colebrook-White equation (Perry & Green, 

1999): 

 

1ík � 54 � l�� ë 1.256R�è � ~ík� G î3.7 � +ì 
Table A.15: Default roughness factors of different piping material 

Type Absolute roughness ε in m 

PVC, plastic, glass 0 

Drawn tubing 0.0000015 

Commercial steel and wrought iron 0.000045 

Asphalted cast iron 0.00012 

Galvanized iron 0.00015 

Cast iron 0.00026 

Wood stave 0.00018-0.00092 

Concrete 0.00030-0.0030 

Riveted steel 0.00092-0.0092 
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Supplementary losses 

The second term in friction factor accounts for supplementary losses. In general these 

factors are determined experimentally for Newtonian fluids and due to insufficient data 

they are also used for non-Newtonian fluids (Perry & Green, 1999; Chhabra and 

Richardson, 1999). In general two options exist. For elbows, gates, valves, equivalent 

lengths are used: 

�� � 2k � nN � O+  

With equivalent lengths (in m) taken from Table A.16 (Brannan, 2002): 
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Table A.16: Equivalent lengths for different piping parts 
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3.81 16.76 7.92 3.96 2.13 0.30 0.30 0.61 0.91 1.52 0.61 0.91 2.44 2.74 0.61 0.91 
  

  

5.08 21.34 10.06 5.18 4.27 0.61 0.61 0.91 1.22 1.52 0.91 1.22 3.05 3.35 0.91 1.22 
  

  

6.35 24.38 12.19 6.10 3.35 0.61 0.61 - 1.52 - 0.91 - 3.66 0.91 - 
  

  

7.62 30.48 15.24 7.62 5.18 0.61 0.61 1.83 1.22 4.27 1.22 
  

  

10.16 39.62 19.81 9.75 9.14 0.91 0.91 2.13 1.52 5.79 1.52 
  

  

15.24 60.96 30.48 14.63 21.34 1.22 1.22 3.35 2.44 8.53 2.44 
  

  

20.32 79.25 38.10 19.51 36.58 1.83 1.83 4.57 2.74 11.28 2.74 
  

  

25.4 100.58 48.77 24.38 51.82 2.13 2.13 5.49 3.66 14.33 3.66 
  

  

30.48 121.92 57.91 28.96 51.82 2.74 2.74 6.71 4.27 16.76 4.27 8.53 6.40 6.10 

35.56 137.16 64.01 32.00 24.38 3.05 3.05 7.92 4.88 18.90 4.88 9.75 7.32 6.71 

40.64 152.40 73.15 36.58 44.20 3.35 3.35 8.84 5.49 21.95 5.49 11.58 8.23 7.32 

45.72 167.64 85.34 42.67 48.77 3.66 3.66 10.06 6.10 24.99 6.10 12.80 9.14 8.53 

50.8 198.12 91.44 47.24 64.01 4.27 4.27 10.97 7.01 27.43 7.01 14.02 10.06 9.75 

55.88 209.70 102.11 51.82 68.58 4.57 4.57 12.19 7.62 30.48 7.62 15.85 10.97 10.36 

60.96 228.60 112.78 56.39 77.42 4.88 4.88 13.41 8.23 33.53 8.23 17.07 11.89 10.97 

76.2       95.10 6.40 6.40 16.76 12.19 42.67 12.19 21.34 15.54 13.41 

91.44         7.62 7.62 20.12 14.33 51.82 14.33 25.60 18.29 15.85 

106.68         9.14 9.14 23.47 16.76 60.96 16.76 29.87 21.03 19.51 

121.92         10.67 10.67 26.82 19.81 67.06 19.81 34.14 24.69 21.95 

137.16         12.19 12.19 30.18 21.34 76.20 21.34 38.40 27.43 24.38 

152.4         13.72 13.72 33.53 24.38 79.25 24.38 57.91 30.18 28.04 

 

For enlargements and narrowings, a dimensionless coefficient is used: 

�� � ÖW � nN2 � � � 8 

With kf a dimensionless loss coefficient, which depends on several parameters for different 

occasions (Van Der Meeren, 2004): 

From pipe to reservoir  

Kinetic energy gets lost �ÖW = 1 independent of geometry 
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From reservoir to pipe 

Well rounded inlet kf = 0.04 

Chamfered inlet kf =0.25 

Square edge inlet kf =0.5 

Inward projecting pipe kf =1 

For abrupt pipe enlargement (d1<d2) 

ÖW � ï1 5 v�L�Nw
NðN 

For gradual pipe enlargements values from Table A.17 can be chosen. 

Table A.17: Dimensionless loss coefficient for gradual pipe enlargements 

D2/D1 

 

Angle of cone ° 

2 6 10 15 20 25 30 35 40 45 50 60 

1.1 0.01 0.01 0.03 0.05 0.10 0.13 0.16 0.18 0.19 0.20 0.21 0.23 

1.2 0.02 0.02 0.04 0.09 0.16 0.21 0.25 0.29 0.31 0.33 0.35 0.37 

1.4 0.02 0.03 0.06 0.12 0.23 0.30 0.36 0.41 0.44 0.47 0.50 0.53 

1.6 0.03 0.04 0.07 0.14 0.26 0.35 0.42 0.47 0.51 0.54 0.57 0.61 

1.8 0.03 0.04 0.07 0.15 0.28 0.37 0.44 0.50 0.54 0.58 0.61 0.65 

2.0 0.03 0.04 0.07 0.16 0.29 0.38 0.46 0.52 0.56 0.60 0.63 0.68 

2.5 0.03 0.04 0.08 0.16 0.30 0.39 0.48 0.54 0.58 0.62 0.65 0.70 

3.0 0.03 0.04 0.08 0.16 0.31 0.40 0.48 0.55 0.59 0.63 0.66 0.71 

∞ 0.03 0.05 0.08 0.16 0.31 0.40 0.49 0.56 0.6 064 0.67 0.72 

 

Abrupt pipe narrowing (d1>d2) 

ÖW � 0.75 � ï1.00 5 v�&N�&Lw
Nð      k�� v�&N�&Lw

N ñ 0.715 

ÖW � 0.40 � ï1.25 5 v�&N�&Lw
Nð      k�� v�&N�&Lw

N ò 0.715 

For non cylindrical pipes  

D = De with 
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+I � 4 � X�� mm� ����� ����X�� mm� ���npk������ 

Efficiency 

The pump efficiency (Eff.) can be calculated by (Brannan, 2002): 

%kk.� 80 5 0.2855� G 3.78 � 10VH�3 5 2.38 � 10Vº�3N G 5.39 � 10VH�N 5 6.39
� 10Vº�N3 G 4 � 10VLU�N3N 

With F the developed head (in ft) and G the flow (in GPM). To convert to SI units (head H 

in meters and flow rate Q in m³/s): 

� � � � 0.3048 

3 � ã � 4.403 

The equation is valid for F=50-300ft and G=100 – 1000GPM 

If this is not the case, default values from DATABUO can be used (Table A.18) 

(www.cheresources.com): 

Table A.18: Default pump efficiencies for pumping incompressible fluids 

Pump type flow m³/s Efficiency 

Centrifugal pump 

0.0063 45% 

0.0315 70% 

0.63 80% 

Axial pump all 75% 

Rotary pump all  65% 

 
Power (kW) 

 

Reciprocating pump 

7.46 70% 

37.3 85% 

373 90% 

 

A summary of this BUO can be found in Table A.19 

 



Appendix 

- 226 - 

 

Table A.19: A summary of the BUO pumping incompressible fluids 

Input values required DATABUO DATAPHYSCHEM Output 

Mass (flow rate) and type of fluid 

Starting and end temperature and 

pressure 

Type pipe material, distance of 

straight pipes, height difference 

between starting and end point, 

number and type of turns, valves, 

enlargements and narrowings 

Friction coefficients 

and roughness factors 

Efficiencies 

Fluid characterisation 

factors 

 

Electricity 

use 

 

3.3.   Pumping incompressible fluids through packing 

 

This module includes the pumping of incompressible fluids through packings, beds or 

filters. It can thus be used for pumping operations such as adsorption, filtration, catalytic 

beds, etc. However, only the electricity use is modelled of the pumping operation. No 

interactions between the fluid and the bed is included. 

System boundary description 

The calculations in this module can be widely applied, for several unit operations where 

beds and packings are involved. However, the equations are only valid if the characteristics 

of the bed remain constant and if no fluidization occurs. Especially the porosity should be 

constant (Van Der Meeren, 2004). For example clogging filters are out of the range of this 

work. The module can be coupled to the pumping operations since they only include the 

pumping through the bed. The same pumps and pump efficiencies are included as for 

regular pumping. 
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Calculation algorithm 

The approach is similar to pumping incompressible fluids. However, on top of the regular 

friction term, an additional head loss is caused by the packing material. To account for this, 

the approach from Chhabra and Richardson (1999) can be used where the bed head loss is 

added to the modified Bernoulli equation: 

� � ∆æ G �W.�I� 

Which can be used in: 

�M � � � ã � � � ��kk.  

The head loss of the bed (in m) can be calculated from the pressure drop: 

�W.�I� � 5∆mW.�I�� � �  

With: 

5∆mW.�I� � k�I� � � � nN�� � O � v1 5 îîF w � �W 

With ε the pore volume/bed volume, u the superficial velocity (m/s), L the length of the bed 

(m), ρ the density of the fluid (kg/m³), dp is the sphere diameter (m). The latter depends 

strongly on the particle shape: 

�� � Г � �� 
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With Г the sphericity of the particles and dr the equal volume sphere diameter (Table A.20) 

(Ibarz and Barbosa-Cánovas, 2003; McCabe et al., 2004) 

 

Table A.20: Sphericity of different packing particles 

Shape of the particle Sphericity (Г) 

Sphere 1 

Cube 0.81 

Cylinders 

h=d 

h=5d 

h=10d 

 

0.87 

0.70 

0.58 

Discs 

h=d/3 

h=d/6 

h=d/10 

 

0.76 

0.60 

0.47 

Beach sand As high as 0.86 

River sand As low as 0.53 

Other types of sand 0.75 

Triturated solids 0.5-0.7 

Granulated particles 0.7-0.8 

Wheat 0.85 

Raschig rings 0.26-0.53 

Berl saddles 0.3-0.37 

Coal dust 0.73 

Mica flakes 0.28 

Crushed glass 0.65 

 

Cf is a correction factor to account for the fact that the packing material is more dense in 

the center of the column and less dense near the wall. It can be calculated for cylindrical 

vessels: 

�W � v1 G ��3+w
N
 

With D the vessel diameter 



Appendix 

- 229 - 

 

fbed is the friction factor of the bed, which can be obtained from the Ergun equation: 

k�I� � 150R�� G 1.75 

With the Reynolds number for Power law fluids: 

R�� � ��M � nNVM � �S � �1 5 î�M � v 4�1 G 3�w
M � ï15√2îN ðLVM 

It is stated that this equation is a good approximation for ε ≤ 0.41 and Re*<100. 

For ε > 0.41 and Re*>100 

k�I� � 150R�õ G 1.75 

With  

R�õ � ��M � n � �S � �1 5 î�M � v 4�1 G 3�w
M � ï îN12 � n � �1 5 î�ð

MVL
 

Table A.21: A summary of the BUO pumping incompressible fluids through packing 

Input values required DATABUO DATAPHYSCHEM Output 

Mass (flow rate) and type of fluid 

Type and size of packing material 

Pore volume/bed volume (should remain 

constant) 

Sphericity 

Pump efficiency 

Fluid characterisation 

factors 
Electricity use 

 

3.4.   Agitation and mixing of liquids and suspensions 

 

Agitation and mixing are operations often needed in process industry and relying on a 

certain amount of mechanical energy which depends on many different parameters. This 

module includes mixing two or more liquids or suspensions and agitation of one or more 

liquids or suspensions. Whilst these two operations might not exactly have the same 

purpose, their power consumption can be modelled with the same equations. 
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System boundary description  

The mixing and homogenization of liquids operation includes the electricity use necessary 

for the impeller. Several types of propellers and turbines are included, plus a paddle with 2 

blades, an anchor and a helical impeller. Equations are available for Newtonian and Power 

Law fluids, the latter thus also including pseudoplastic and dilatants suspensions. 

Furthermore, the effect of gas bubbling can be included. However, the potential power for 

bubbling the gas and other pumping operations are SUO and thus in the β system boundary. 

 

 

 

 

Calculation algorithm 

One of the most important factor for the power requirement is the Reynolds number. 

Similarly to pumping fluids, a difference can be made between Newtonian and Non-

Newtonian fluids. In the latter case the main complication is related to the shear rate (γ). 

The calculation in the two situations is very similar, starting from the Reynolds number 

(McCabe et al., 2004): 

�-I � � � � � +?Nμ?  
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With N the rotational speed (rps), DA the impeller diameter (m), µa the apparent viscosity 

(Pa.s) and ρ the density of the fluid (kg/m³).  

 

Newtonian fluids  

 

For Newtonian fluids: µa = µ 

The standard equation for the total power needed for mixing and homogenization (P in W) 

is calculated by: 

� � �# � � � �F � +?J 

With Np the power number and N the rotational speed. 

This is valid in for intermediate Reynolds numbers between 100<NRe<10000, whilst for the 

turbulent region, NRe>10000, the modified version is used: 

� � S¤ � � � �F � +?J 

In the laminar region the viscosity and shear become more important, thus the formula is 

converted to: 

� � S" � μ � �N � +?F 

Power numbers for different flow regimes and impellers can be found in Table A.22. 
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TableA. 2: Power numbers for Newtonian fluids in the laminar (KL), intermediate 

(Np) and turbulent region (KT) for different types of impellers (McCabe et al., 2004) 

Typical 

viscosity (cp) 
Type KL Np KT 

<2000 Average small propeller (3 blades) 41.00 0.75 0.32 

<2000 
Average small propeller with pitch of 2 (3 

blades) 
43.50 0.75 1.00 

<2000 Average large propeller (3 blades) 41.00 0.75 0.32 

<2000 
Average large propeller with pitch of 2 (3 

blades) 
43.50 0.75 1.00 

<20000 Turbine 6 flat blades 71.00 5.00 6.30 

<20000 Turbine 6 curved blades 70.00 5.00 4.80 

<20000 Fan turbine 6 blades 70.00 5.00 1.65 

<80000 Paddle (2 blades) 36.50 2.60 1.70 

<100000 Anchor 300.00 10.00 0.35 

<1000000 Helical impeller 300.00 10.00 0.35 

>1000000 Extruders. roll mill. etc 
   

 

Non Newtonian fluids 

For non Newtonian fluids, the apparent viscosity should be used in the Reynolds number 

(Heldman and Lund, 2007): 

 

μ? � S � åMVL 

For dilatants liquids (Perry & Green, 1999) 

å � 13 � � � v+?+Kw
U.J

 

For pseudoplastic and Bingham fluids 

å � 10 � � 

For turbines 10 can be replaced by 11.5. 



Appendix 

- 233 - 

 

Based on the Reynolds number, the Power Number can then be found in Heldman and 

Lund (2007) for different types of impellers  

Vessel design 

The diameter of the impeller is estimated from the volume of the cylindrical tank, on its 

turn calculated from the flow (Q in m³/s), and the residence time (t in s): 

ã � � � ) 

A certain excess volume is added (Ex. in %) to add a buffer volume: 

)õ � ) G %j � ) 

Standard this excess volume is set on 10%. 

A cylindrical vessel is assumed with H = Dt with H the height of the tank and Dt the 

diameter of the tank: 

+K � ö4 � )õ
ç÷

 

Furthermore, we assume that the diameter of the impeller is 1/3rd of the tank diameter: 

+? � 13+K 
Rotational speed and mixing time 

For mixing operations, the residence time and impeller speed are 2 interlinked parameters 

which therefore cannot be fixed by default values. According to Herbert et al. 1994, a 

dimensionless mixing parameter Θ links the mixing time (t) with the impeller speed for 

baffled agitated vessels with a centrally located impeller: 

ø � � � � � 6.7 � �+?+K �V
ù÷ ��#Vz÷ 

With NP the power number. Typical N values for the different impellers are presented in 

Table A.23 and typical power numbers can be found in Table A.22 for laminar, turbulent 

and intermediate region. 
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Table A.23: typical rotational speeds for different impellers in mixing vessels 

(McCabe et al., 2004) 

Type Typical N ranges for mixing 

Average small propeller (3 blades) 1150-1750 

Average small propeller with pitch of 2 (3 blades) 1150-1751 

Average large propeller (3 blades) 400-800 

Average large propeller with pitch of 2 (3 blades) 400-801 

Turbine 6 flat blades 200-400 

Turbine 6 curved blades 200-400 

Fan turbine 6 blades 200-400 

Paddle (2 blades) 20-150 

Anchor 50-350 

Helical impeller 5-20 

 

The rotational speed of disc turbine blades applied in Newtonian fluids can be estimated by 

using a scale of agitation SA based on the pumping number (NQ) which can be found in 

Table A.24 (Chhabra and Richardson, 1999): 

� � $� � }úH +K�N32.8 � �� � +?F 

The scale of agitation ranges from 1, which is mildly mixed, to 10, which can be taken for 

intense mixing. 
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Table A.24: Default pumping numbers for types of impellers 

Type Pumping number (NQ) 

Average small propeller (3 blades) 0.5 

Average small propeller with pitch of 2 (3 blades) 0.5 

Average large propeller (3 blades) 0.5 

Average large propeller with pitch of 2 (3 blades) 0.5 

Turbine 6 flat blades 0.7 

Turbine 6 curved blades 0.8 

Fan turbine 6 blades 0.8 

Paddle (2 blades) 0.6 

Anchor 0.5 

Helical impeller 0.5 

 

For gassed liquids, the power (Pg) for mixing and homogenization can be calculated by: 

�Ô � � � 0.497 � ��VU.F¹ � ��N � +?F � �ä �VU.L¹ 

With σ the surface tension (N/m) of the liquid and NQ the pumping number. 

Alternatively an adjusted power number (Np.g) can be calculated: 

��.Ô � 0.72 � ï�� �� � +?FãKU.Jµ ðU.HJ 

With Qt the volumetric gas flow rate (kg/s). 

A summary of the BUO agitation and mixing of liquids and suspensions can be found in 

Table A.25. 

Table A.25: A summary of the BUOaAgitation and mixing of liquids and suspensions 

Input values required DATABUO DATAPHYSCHEM Output 

Mass flow and type of 

feed(s) 

Type of impeller 

Impeller speed and 

residence time 

Tank volume 

Power number and 

pumping number 

Impeller speed and 

residence time 

information 

Physicochemical 

properties of mixture 

 

Electricity use 

Tank volume 

Residence time 
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3.5.   Comminution 

 

Comminution is a process which is applied to reduce the size of solids and is widely used in 

industry (e.g. in food processing, minerals processing, ceramic industry and so on). The 

purposes of comminution are to liberate certain compounds for concentration processes, to 

reduce the size or to increase the surface area. More recent technologies result in the need 

to modify the surface of solids, prepare composite materials and to recycle the useful 

components of industrial waste. The energy efficiency of comminution is very low and the 

energy required for comminution increases with a decrease in feed or produced particle 

size. In design, operation and control of comminution processes, it is necessary to correctly 

evaluate the comminution energy of solid materials (Kanda and Kotake, 2007). In this basic 

engineering module, the energy for comminution is determined. 

 

System boundary description 

The α system boundary of this BUO includes the comminution of a feed in to a grinded 

product. Electricity is required for this process. No additional processes are assumed in the 

β system boundary. 

 

 

 

 

Comminution 
Feed (M) 

α System boundary 

β System boundary 

Grinded product 

(UO) 

Electricity (En) 
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Calculation algorithm 

Several theories have been developed to estimate the energy requirement of size reduction 

processes. They are in fact all based on the basic assumption that the energy required to 

produce a change dL in a particle of typical size dimension L is a simple power function of 

L: 

n
LKdLdE ⋅=/  

 Where dE is the differential energy required, dL is the change in a typical dimension, L is 

the magnitude of a typical length dimension and K and n are constants. 

The most widely applied are the theories from Kick, Rittinger and Bond. We will now 

discuss each of them (Earle and Earle, 2004). 

 

Kick’s law 

Kick assumed that the energy required to reduce a material in size is related to the change 

in particle diameter, i.e. to the ratio of the diameter of the particles before and after 

comminution. In this case ‘n’ in the above equation is -1. The following formula is known 

as ‘Kick’s law’: 









⋅⋅=

2

1ln
L

L
fKE cK

 

In which: 

E = Energy for size reduction (J/kg) 

KK = Kick’s constant (m3/kg) 

fc = Compressive strength of the material (N/m3) 

L1 = Diameter of the feed particles (m) 

L2 = Diameter of the product particles (m) 

Kick’s law is mainly used for comminution of coarse particles. 
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Rittinger’s law 

Rittinger, on the other hand, assumed that the energy for size reduction is directly 

proportional to the change in surface area and not to the change in length dimensions. This 

means that ‘n’ in the above equation is -2, resulting in ‘Rittinger’s law’: 

 









−=

12

11

LL
fKE cR

 

In which: 

KR = Rittinger’s constant (m4/kg) 

Rittinger’s law is mainly used for comminution of fine particles. 

Bond’s law 

 

Bond has suggested an intermediate course, in which he postulates that ‘n’ is -3/2. This 

leads to: 













−⋅=
qL

EE i

1
1

100

2  

and  

2

1

L

L
q =

 

In which: 

E = Energy for size reduction (kWh/tonne) 

Ei = Work index (kWh/tonne) 

L1 = Feed particle size (m) 

L2 = Product particle size (m) 
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Bond defines work index Ei as the amount of energy required to reduce a unit of mass of 

the material from an infinitely large particle size down to a particle size of 80% passing 100 

µm (Note that therefore L1 and L2 have to be expressed in µm as well!). Table A.26 gives 

an overview of typical values for the work index for various materials (Perry & Green, 

1999). 

 

Table A.26: Work Index for various materials in kWh/tonne (Perry & Green, 1999) 

 

In literature, data for Bond’s work index are readily available, while this is not the case for 

Rittinger’s and Kick’s constants. Since Bond’s law is known to be a general law that is 

intermediate to Rittinger’s and Kick’s law, we propose to use Bond’s law in comminution 

calculations. 

A summary of the BUO comminution can be found in Table A.27. 
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Table A.27: A summary of the BUO comminution 

Input values required DATAPHYSCHEM Output 

Feed particle size 

Product particle size 

Compressive strength of the material 

Rittinger’s constant of the material 

Kick’s constant of the material 

Work index of the material 

Energy use 

3.6.   Fluidization 

 

Fluidization occurs when a bed of granular material is converted from solid to a fluid or 

suspended state through the velocity of a gas or liquid. It thus occurs at a certain velocity, 

where a minimum fluidization velocity is necessary to achieve the fluidized state, higher 

velocities will result in the transport of the particles, and thus in (pneumatic in the case of a 

gas) conveying. Fluidization is often used in the process industries during cracking, 

toasting, roasting( pyrite. lime. coffee), drying (grains, sugars), freezing, heating with sand 

baths, encapsulation and agglomeration of particles, etc. (Van Der Meeren, 2004). 

 

System boundary description 

This BUO includes the mechanical energy (electricity) to obtain a fluidized state. The 

relationship is based on the pressure drop in the bed and is thus valid for fluidization and 

conveying the solids. However, it only accounts for obtaining a static fluidized state. To 

really lift and move the solids, as is the case in conveying, additional energy is required 

which is supplied by the fluid. This additional demand should be calculated with the SUO 

‘pumping’.  
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Calculation algorithm 

The basic equation to estimate pump power for fluidization and pneumatic conveying is 

(Van Der Meeren, 2004): 

�M � 5∆mW.W«4&�&û?K& M � ã 

With Pn = pump power output in W, Q the capacity in m³/s. 

The pressure drop (Pa) over the bed can be calculated by (Richardson, Harker, & Backhurst 

and Harker, 2002): 

5∆mW.W«4&�&û?K& M � O � �1 5 î� � ��� 5 �W� � � 

ρs is the density of the particles and ρf is the density of the fluid (kg/m³). L is the length of 

the bed (m), g is the gravity constant (9.81m/s²), whilst the value of ε represents the 

porosity. If this value is not known, the user can calculate the minimum porosity for 

fluidization where ε = εmf (Ibarz and Barbosa-Cánovas, 2003): 

î>W � 1 5 0.356 � �l��  �� 5 1� 
With dp the diameter of the particles in µm. This equation is valid for particle sizes going 

from 50 to 500µm. 
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A summary of the BUO fluidization can be found in Table A.28. 

 

Table A.3: A summary of the BUO fluidization 

Input values required DATABUO DATAPHYSCHEM Output 

Mass flow and type of feed(s) 

Diameter of particles 
- Densities Electricity use 

  

3.7.   Conveying solids 

 

Conveying is a frequently used application to transport solids. 

System boundary description 

This BUO includes the electricity to move solids over a certain distance with 4 types of 

conveyors: 

Screw conveyors 

Belt conveyors 

Centrifugal-discharge buckets on belt 

Continuous buckets on a chain 
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Calculation algorithm 

Conveying solids requires a certain amount of power which can be found in the Tables 

21.6-21.9 (Perry & Green, 1999) for different types of conveyors for certain capacity flow 

rates. 

 

 

 

TABLE 21 -6 Screw -Conveyor Data for 50-lb/ ft3 Materialand Pipe-Mounted Sectionat Spiral Flights• 

Max. size of lumps hp at motor§ 

Capacityl Diarn. Oiarn. O iam. Max. Feed Max. hp 
of of of Hanger Lumps Lumps torgue section 15-ft . 30-ft 45-ft 60-ft 75-ft capacity 

Tons/ llights, pipe, shafts, cente rs, All 20to 10%or Speed, capacity, d iam., max. max. max. ma\": . max. at speed 
h ft'lh in in ) in ft lumps 25% less r/ min in-lb in length le ngth length length length listed 

s 200 9 2'h 2 10 % 1'h 2\l.i 40 7,600 6 0.43 0.85 1.27 1.69 2.11 4.8 

10 400 10 2'h 2 10 % 1'h 2'h ss 7,600 9 0.85 1.69 2.25 3.00 3.75 6.6 

10 2'h 2 10 % l 'h 2'h 80 7,600 9 1.27 2.25 3.38 3.94 4.93 9.6 
15 600 12 2'h 2 12 1 2 3 45 7,600 10 1.27 2.25 3 .38 3.94 4.93 5.4 

12 3'h 3 16,400 1.27 2.25 3.38 3.94 4.93 11.7 

20 800 12 
2'h 2 12 1 2 3 60 7,600 10 1.69 3.00 3.94 4.87 5.63 7.2 
3'h 3 16,400 1.69 3.00 3.94 4.87 5.63 15.6 

12 
2'h 2 I 2 3 75 7,600 10 2.12 3.75 4.93 5.63 6.55 9.0 

25 1000 3'h 3 12 16,400 2.12 3.75 4.93 5.63 6.55 9.0 
14 3'h 3 1\l.i 2'h 3'h 45 16,400 12 2.12 3.75 4.93 5.63 6.55 11.7 

30 1200 14 3'h 3 12 1\l.i 2'h 3'h ss 16,400 12 2.25 3.94 5 .05 6.75 7.50 14.3 

35 1400 14 3'h 3 12 1\l.i 2'h 3'h 65 16,400 12 2.62 4.58 5 .90 7.00 8.75 16.9 

40 1600 16 3'h 3 12 l 'h 3 4 50 16,400 14 3.00 4.50 6.75 8.00 10.00 13.0 

• Fairfield Engineering Co. data in U.S. customary system. To convert cubic feet per hour to cubic meters per hour, multip ly hl 0.02832; to convert tonsper hour 
to metric tonsper hour, multiply by 0.9078; and to convert screw size in inches to the nearest screw size in centimeters, multiply y 2.5. 

I Capacit ies are based. on screws canying 3 1 percent of their cross section and, in the case of feed secdons with half-pitch flights, basedon I 00 percent o f their cross 
section. 

I l'ipe sizes given are for \l.i-in (6.35-mm) llights. 
~ 1-lo rsepowers listed are calculated for average conditions and are of t he proper motor size with factors fo r lengthof oonveyor, momentary overload.s, etc., taken into 

consideration. 

TABU 2 1 7 Bolt Convoyor Data for Troughocl Antifriction ldlors' 

c,."..""-"">'a' M:.a:imum lump si:"r.e. 
Bekw.dth area of bad Reil speed, ft/mm {mlmm) Beh pl ... m (mm) Cap..,ty .00 hp ror 100-lb'ft' maleriool 

Siu!d Unsil.OO Belt spc«l. C"P""ty N"i:'.!l c't~~·~ Addi<J< 
mawrial, Dl.lllerial, nor flfmin totWh tripper 

;n (cm) ft1 (mt) Normal Maximu m Minimum Maximum .5()11, undcr cwer20'rD ( lnl'min) (met:rictonYb) lift (.""enten hp l 

14 (~] 011 (.OIO) 200 (61) JOO (91) 3 5 !1..0 (51) 30 (ï6) 100 (30.5) 32 (2!l) 034 0-14 
200 (6 1.0) &4 (58) 061! 061! !1..0 
300 (9 1.:1) 96 (81) lOl 1.32 

16 (40) 014 (.013) 200 (61) JOO (91) 3 5 2.5 (641 4.0 (1021 100 (30.5) ... (40) 0.46 0.56 
200 (61.0) ss (liO) 000 112 !1..5 
300 (91.5) 132 ( 120) 1.36 1.68 

IS ('15) 018 (.OI i) 250 (76) 350 ( IOi) 4 6 3.0 (76) 5.0 (127) 100 (30.5) :>1 (49) 0.58 O.iO 
25() {i6.2) 134 (122) 1.41 1.76 3.0 
350 (106.7) 100 ( 172) 2.00 2..42 

20 (50) 0.22 ( _020) 2SO (76) 350 (107) 4 6 3.5 (891 6.0 ( 15.21 100 (30.5) 68 (00) 0.70 0.84 
3.20 

250 (76.2) 1&4 (14/\) Li2 2.06 
350 (106.7) 25() (200) 1..4-t 2.00 

24 (60) 0.33 (_030) 300 (01) 400 (122) 4 'i 41; (1141 8.0 (2031 100 (30.5) 96 (89) 1.0"1 1.02 
300 (01.5) 2!}> (:!67) 3_06 3.0< 3.5 
400 (12LD) :m (356) 4.116 4.0< 

30 (75) 0.53 (.019) 300 (01) 450 (137) 4 8 ï.O (1781 12.0 (305) 100 (30.:1) 15S (1•13) 1.60 1.50 
300 (01.5) 474 (430) 4.lill 4.50 5.0 
4.';0 {137.2) 710 (&IS) 7.2ll 6.74 

36 (90) 0.78 ( .072) 400 122) 600 (183) 4 9 8 0 (2031 15.0 (381) 100 (30.5) 230 (00!1) 2.4-t 1.50 
400 (121.9) 020 (835) 9ï4 6.36 7.0 
600 (182.9) 1381l (12>3) 14 60 9.52 

42 ( I()Oj) 100 (.101) 400 122) 600 (183) 4 10 100 (2$41 180 (~) 100 (30.5) 330 (300) 3.50 !1..28 
400 (121.9) 1320 (1196) 14 00 912 9.5 
600 (182.9) l!lfiCJ (179ï) 2320 13.68 

4-'l ( 120) 146 (.136) 400 122) 600 (183) 4 12 1!1..0 ~~ 21 0 (5331 100 (305) 440 (399) 466 3.0< 
400 (121.9) 176() (1506) 18 ;o 1!1..14 12.8 
600 (182.9) 264() (2397) 2800 1820 

5>1 ( 135) 190 (. 177) 400 13i) 600 (183) 6 14 140 (356' 24.0 (610' 100 (30.5) ~ïO (SI i) 6.01 3_()4 
4.';0 ( 137.2) 25&1 (Z325) 27 2D 17.70 20.0 
600 (lli2.0) 3-l:lCl (3105) 3620 23.60 

60 ( 150) 2.40 ( .223) 4.';0 1137) 600 (183) 6 16 160 (4061 21>.0 (711) 100 (30.5) 72Cl (6.>1) i .&l 4.08 
4.';0 (137.2) 3240 (2!141) 34.40 22..40 23 
600 (lli2.9) -I32Cl (:IOil ) 4S.Iill 29.00 
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A summary of the BUO conveying can be found in Table A.29. 

Table A.29: A summary of the BUO conveying 

Input values required DATABUO DATAPHYSCHEM Output 

Mass flow 

Type of conveyor 

Power of 

equipment 
- 

Electricity 

use 
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3.8.    Fans, Blowers & vacuum pumps 

 

Fans and blowers are used to create a driving force to supply a gas, usually air. Examples of 

applications are ventilation and air blowing in a combustion chamber. A vacuum pump 

works oppositely, by lowering the pressure. 

System boundary description 

This BUO includes the electricity use of a fan or blower used to increase the pressure of the 

gas or the electricity of a vacuum pump, to remove a gas from a certain space. 

 

Calculation algorithm 

The power (P in W) needed can be calculated by (Perry & Green, 1999): 

� � ã � ∆��kk  

Where Q is the flow rate (m³/s), ∆P is the pressure difference in Pa, and eff is the efficiency 

of the device. 

Typical pressure differences for vacuum pumps, fans and blowers can be found in Table 

A.30 (Perry & Green, 1999; Brannan, 2002; Silla, 2003), whilst typical efficiencies can be 

found in Table A.31 (Bureau of Energy Efficiency India). 
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Table A.30: Typical pressure differences covered in vacuum pumps, fans and blowers 

Type of device Typical pressure differences (Pa) 

Vacuum pump 100000 

Fans 7500 

Blowers 50000 

 

Table 4: Default efficiencies of fans and blowers 

Type of fan Efficiency 

Centrifugal fan/blower 

Airfoil, backward curved/inclined 81 

Modified radial 75 

Radial 72 

Pressure blower 63 

Forward curved 62 

Axial fan 

Vane axial 81 

Tube axial 69 

Propeller 47 

Other 

Other 80 

 

A summary of the BUO bans, blowers & vacuum pumps can be found in Table A.32 

 

Table A.32: A summary of the BUO bans, blowers & vacuum pumps 

Input values required DATABUO DATAPHYSCHEM Output 

Mass flow 

Type of device 

Typical pressure 

differences 

Efficiencies 

- Electricity use 
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4.  Utilities 

4.1.   Heating 

 

In many industrial processes, liquid substances are heated to a certain temperature and kept 

at that temperature for a given amount of time. These liquids can be pure chemicals, 

mixtures, solutions or suspensions. Energy is needed to heat the liquid to the required 

temperature but also to compensate for heat losses through the wall of the vessel in which it 

is heated. The latter is specifically relevant when a certain temperature has to be retained 

for a longer period. In this basic engineering module, we will estimate the energy required 

for heating a liquid in a vessel for a given amount of time. 

System boundary description 

The α system boundary for this process includes heating the liquid in a vessel. If, pumping 

or mixing are required, the energy use can be estimated with the algorithms of those 

processes as defined in the respective basic engineering modules for agitation or pumping. 

The β system boundary includes the production of the energy carrier that is needed to heat 

the liquid. This could for example be steam or natural gas. 

 

 

 

 

 

Heating liquid in 

Vessel 

α System boundary 

β System boundary 

Heating 

Feed 

(M) 

Heated feed 

(UO) 

Energy 

carrier 
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Calculation algorithm 

For this process, energy is needed for heating the liquid up to a required temperature and 

maintaining this temperature for a certain amount of time. The energy needed for heating to 

a certain temperature depends on the specific heat of the liquid and can be calculated with: 

( )0TTmcQ eph −⋅⋅=
 

In which: 

Qh = Energy needed for heating (J) 

cp = Specific heat of the liquid (J kg-1K-1) 

m = mass of the liquid (kg) 

T0 = Initial temperature of the liquid 

Te = End temperature of the liquid 

Vessels will have walls that are insulated with isolation material (e.g. polyurethane) to 

prevent the loss of heat through the walls. However, insulation will never be 100% and 

some heat is lost resulting in a decrease of the temperature of the liquid. Extra heating is 

required to compensate for this heat loss. The required heat is determined by (Blok, 2007): 

d

tAT
Qr

⋅⋅∆⋅
=

λ

 

In which: 

Qr = Energy required for remaining the temperature at Te (J) 

λ = Thermal conductivity of vessel wall material (W m-1K-1) 

∆T = Temperature difference across the wall (K) 

A = Surface area of the vessel wall (m2) 

t = Period of remaining temperature at Te (s) 

d = Thickness of the vessel wall (m) 
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The heat required for the two processes just described is the theoretical minimum amount 

of energy needed. There will be an efficiency loss from burning a fuel to transmission of 

heat. In order to calculate the total amount of energy needed (Qt), we have to account for 

the heating efficiency (η) : 

η
rh

t

QQ
Q

+
=

 

A summary of the BUO heating can be found in Table A.33. 

Table A.33: A summary of the BUO heating 

Input values required from user DATAPHYSCHEM DATABUO Output 

Mass of the liquid 
End temperature of the liquid 

Initial temperature of the liquid 
Surface area of the vessel wall 
Thickness of the vessel wall 

Period of remaining Te 

Temperature difference across the 
vessel wall 

Specific heat of the liquid 
Thermal conductivity of 

vessel wall material 

Heating 
efficiency 

Heating energy 
required 

 

4.2.   Cooling 

 

Cooling is a process often used in process industry to lower temperature of gasses, liquids 

or solids. 

System boundary description 

Cooling calculates the amount of cooling medium required to cool/condensate a certain 

feed stream. The electricity use for pumping the cooling medium should be added with the 

SUO ‘pumping’. This is not a separation process, thus in the case of a mixture, all 

components are assumed to end in the same phase at the same temperature and pressure. 
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Calculation algorithm 

The cooling energy (q) needed can be calculated with: 

 

| � pW � ��,Ô � ~�W 5 ��� G pW � �W GpW � ��,« � ��� 5 �I� 
 

With λ the latent heat of the condensed feed stream, cp the mean heat capacity of the feed in 

gas (g) and liquid (l) phase , Tb the boiling temperature of the mixture, Tf the temperature 

of the feed, and Te the end temperature. 

The amount of cooling medium can then be calculated by: 

p � |�� � ∆� 

With cp the heat capacity of the cooling medium and ∆T the temperature difference of the 

cooling medium before and after use. 

A summary of the BUO cooling can be found in Table A.34. 

Table A.34: A summary of the BUO cooling 

Input values required DATABUO DATAPHYSCHEM Output 

Mass flow 

In and output temperature 
- 

Boiling temperature 

Heat capacities and latent 

heats 

Mass flow of cooling 

medium required 
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4.3.   Steam generation 

 

Steam is used in many chemical processes as a heat source. To produce steam, water is 

evaporated with heat coming from the incineration of a fuel such as natural gas. In this 

basic engineering module we will determine the heat requirements for the production of 

steam and the energy that can be obtained when using steam as heat medium. 

 

System boundary description 

The α system boundary of this BUO includes the evaporation of water by means of an 

externally supplied heat source. The water is pre-treated with chemicals in order to remove 

impurities and hence avoid foaming and scaling, resulting in lower boiler efficiency, more 

maintenance, lower boiler life and other problems (Spirax-Sarco Limited, 2001). The 

required chemicals have not been taken into account in the α system boundary but are part 

of the β system boundary. This also holds for the pumping requirements for returning 

condensate. 

 

 

Calculation algorithm 

The energy for heating water to its evaporation temperature, for evaporation of water as 

well as the energy required to further heat steam depends on the pressure of the liquid and 

 

Steam 
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α System boundary  
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the steam. The pressure at which a liquid at a certain temperature evaporates is called the 

‘saturated pressure’. In this basic engineering module, we will assume ‘saturated steam (i.e. 

at the boiling temperature at saturated pressure)’ as a default. 

 

Steam used for industrial purposes will mostly be applied in closed systems. Figure A.4 is a 

schematic representation of such a system; water is evaporated to steam in a boiler at a 

certain pressure and temperature, the steam is transported to the process in which it is 

needed, it condenses back to water transferring heat to the process and the condensate is 

returned to the boiler where it is again evaporated to steam.  

 

 

Figure A.4: Closed steam system 

In such a system, the water that is evaporated to steam comes from the returned condensate 

that has a heat content of hf in case no heat losses are assumed. With heat losses, however, 

the enthalpy of the water arriving at the boiler is referred to as h0 (see algorithms below). 

In the boiler it is evaporated to steam with a heat content of hg. The energy needed for 

generating and delivering a kilogram of steam (useful heat, i.e. 100% of the heat directly 

used in a process) is the enthalpy of evaporation (hfg) at a certain temperature and saturated 

 

Boiler 
Process requiring 

heat 

Steam with enthalpy hg (= hf+hfg) 

Condensate with 

enthalpy hf 

Evaporation 

enthalpy 

(hfg) 

Condensation 

enthalpy (- hfg) 

Efficiency boiler = η1 
Conversion efficiency 

including heat losses in 

transportation system = 

η2 x η3 
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pressure, corrected for the efficiency of the boiler (η1) and the efficiency of steam 

distribution and heat transfer (η2). The amount of energy that can be obtained from the 

steam is equal to the condensation enthalpy (which is identical with the evaporation 

enthalpy): 

%Ô � p � �WÔtL � tN  

In which: 

Eg = Energy required for steam generation (kJ) 

m = Mass of the steam (kg) 

hfg = Enthalpy of evaporation (kJ/kg) 

η1 = Boiler efficiency (dimensionless, generally around 0.9) 

η2 = Efficiency of steam distribution and heat transfer (dimensionless, generally 

around 0.9) 

 

The values for hfg, hf and hg are obtained from steam tables, published by thermodynamic 

handbooks. Table A.35 gives an overview of enthalpies at different temperature- and 

saturated pressure levels. 

In case no closed system is assumed and water has to be heated from room temperature to 

the evaporation temperature or in case heat losses in the returned condensate are taken into 

account, the algorithm is as follows: 

%W � p � ��W 5 �U�tL  

In which: 

Ef  = Energy needed for heating the water (kJ) 

m = Mass of the water (kg) 

hf = Enthalpy of the saturated water (kJ/kg) 
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h0 = Enthalpy of the water arriving at boiler (kJ/kg) 

 

The value of h0 depends on the pressure and temperature of the water as it arrives at the 

boiler. It can be determined with the help of a steam calculator. See for example: 

http://www.steamtablesonline.com/steam97web.aspx  

For water at atmospheric pressure and a temperature of 20 oC, the specific enthalpy (h0) is 

84.01 kJ/kg. In some cases, returned condensate is expanded to lower pressure to generate 

flash steam. This flash steam can then be used to recover part of the heat of the initial 

condensate. After use of flash steam the condensed water has to be reheated to its initial 

saturated pressure and temperature for regeneration to high(er) pressure steam. As a result, 

the energy balance of the total system is equal with or without the use of flash steam 

(assuming no extra heat losses). As a rule of thumb, returned condensate after the use of 

flash steam has a temperature of 80 oC. (US Department of Energy, 2006) At atmospheric 

pressure, h0 then is 335 kJ/kg. 
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Table A.35: Steam tables 

Enthalpy, kJ/kg   Enthalpy, kJ/kg   Enthalpy, kJ/kg 

Temp, 
T oC 

Sat 
press, 
Psat kPa 

Sat 
liquid, 
hf 

Evap., 
hfg 

Sat 
vapor, 
hg 

  
Temp, 
T oC 

Sat 
press, 
Psat kPa 

Sat 
liquid, 
hf 

Evap., 
hfg 

Sat 
vapor, 
hg 

  
Temp, 
T oC 

Sat press, 
Psat kPa 

Sat 
liquid, 
hf 

Evap., 
hfg 

Sat 
vapor, 
hg 

0.01 0.6117 0.001 2500.9 2500.9   130 270.28 546.38 2173.7 2720.1   260 4692.3 1134.8 1661.8 2796.6 
5 0.8725 21.02 2489.1 2510.1   135 313.22 567.75 2159.1 2726.9   265 5085.3 1159.8 1633.7 2793.5 
10 1.2281 42.022 2477.2 2519.2   140 361.53 589.16 2144.3 2733.5   270 5503.0 1185.1 1604.6 2789.7 
15 1.7057 62.982 2465.4 2528.4   145 415.68 610.64 2129.2 2739.8   275 5946.4 1210.7 1574.5 2785.2 
20 2.3392 83.915 2453.5 2537.4   150 476.16 632.18 2113.8 2746.0   280 6416.6 1236.7 1543.2 2779.9 
25 3.1698 104.83 2441.7 2546.5   155 543.49 653.79 2098.0 2751.8   285 6914.6 1263.1 1510.7 2773.8 
30 4.2469 125.74 2429.8 2555.5   160 618.23 675.47 2082.0 2757.5   290 7441.8 1289.8 1476.9 2766.7 
35 5.6291 146.64 2417.9 2564.5   165 700.93 697.24 2065.6 2762.8   295 7999.0 1317.1 1441.6 2758.7 
40 7.3851 167.53 2406.0 2573.5   170 792.18 719.08 2048.8 2767.9   300 8587.9 1344.8 1404.8 2749.6 
45 9.5953 188.44 2394.0 2582.4   175 892.60 741.02 2031.7 2772.7   305 9209.4 1373.1 1366.3 2739.4 
50 12.352 209.34 2382.0 2591.3   180 1002.8 763.05 2014.2 2777.3   310 9865.0 1402.0 1325.9 2727.9 
55 15.763 230.26 2369.8 2600.1   185 1123.5 785.19 1996.2 2781.4   315 10556 1431.6 1283.4 2715.0 
60 19.947 251.18 2357.7 2608.9   190 1255.2 807.43 1977.9 2785.3   320 11284 1462.0 1238.5 2700.5 
65 25.043 272.12 2345.4 2617.5   195 1398.8 829.78 1959.0 2788.8   325 12051 1493.4 1191.0 2684.4 
70 31.202 293.07 2333.0 2626.1   200 1554.9 852.26 1939.8 2792.1   330 12858 1525.8 1140.3 2666.1 
75 38.597 314.03 2320.6 2634.6   205 1724.3 874.87 1920.0 2794.9   335 13707 1559.4 1086.0 2645.4 
80 47.416 335.02 2308.0 2643.0   210 1907.7 897.61 1899.7 2797.3   340 14601 1594.6 1027.4 2622.0 
85 57.868 356.02 2295.3 2651.3   215 2105.9 920.50 1878.8 2799.3   345 15541 1631.7 963.4 2595.1 
90 70.183 377.04 2282.5 2659.5   220 2319.6 943.55 1857.4 2801.0   350 16529 1671.2 892.7 2563.9 
95 84.609 398.09 2269.6 2667.7   225 2549.7 966.76 1835.4 2802.2   355 17570 1714.0 812.9 2526.9 
100 101.42 419.17 2256.4 2675.6   230 2797.1 990.14 1812.8 2802.9   360 18666 1761.5 720.1 2481.6 
105 120.9 440.28 2243.1 2683.4   235 3062.6 1013.7 1789.5 2803.2   365 19822 1817.2 605.5 2422.7 
110 143.38 461.42 2229.7 2691.1   240 3347.0 1037.5 1765.5 2803.0   370 21044 1891.2 443.1 2334.3 
115 169.18 482.59 2216.0 2698.6   245 3651.2 1061.5 1740.8 2802.3   373.95 22064 2084.3 0.0 2084.3 
120 198.67 503.81 2202.1 2705.9   250 3976.2 1085.7 1715.3 2801.0             
125 232.23 525.07 2188.1 2713.2   255 4322.9 1110.1 1689.0 2799.1             
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A summary of the BUO steam generation can be found in Table A.36. 

Table A.36: A summary of the BUO steam generation 

Input values required from 

user 
DATAPHYSCHEM DATABUO Output 

Amount of steam 

Temperature and saturated 

pressure of the steam 

Temperature and pressure of 

water arriving at the boiler 

Enthalpy of evaporation 

Enthalpy of saturated water 

Enthalpy of water arriving at 

boiler 

Boiler efficiency 

Distribution and heat 

transfer efficiency 

Required amount 

of fuel energy 
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