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ABBREVIATION KEY 

α-ZAL    α-zearalanol 
α-ZEL    α-zearalenol 
ABC    ATP-binding cassette 
ACN    acetonitrile 
AcNIV    mono-acetylnivalenol 
a-DON    mono-acetyldeoxynivalenol 
ANOVA   analysis of variance  
ATP    adenosine triphosphate 
AUC    area under the plasma concentration-time curve 
β-ZAL    β-zearalanol 
β-ZEL    β-zearalenol 
BEA    beauvericin 
BEMEFA   Belgian Association of Feed Manufacturers 
BLAST    basic local alignment search tool 
BW    body weight 
Caco-2    human colorectal adenocarcinoma cell 
CAST    Council for Agricultural Science and Technology 
cDNA    copy-deoxyribonucleic acid 
Cl    clearance 
CLDN    claudin 
Cmax    maximum plasma concentration 
Ct    threshold cycle 
CYP    cytochrome P450 
d    day 
Da    dalton 
DAcDON   di-acetyldeoxynivalenol 
DAcNIV   di-acetylnivalenol 
DAS    diacetoxyscirpenol 
DNA    deoxyribonucleic acid 
DOM-1   deepoxy-deoxynivalenol 
DON    deoxynivalenol 
dsDNA    double stranded DNA 
EC    Ethical Committee 
EDTA    ethylenediaminetetra-acetic  acid 
EFSA    European Food Safety Authority 
ELISA    enzyme-linked immunosorbent assay 
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ERK    extracellular signal-regulated kinases 
F    absolute oral bioavailability 
FA    fusaric acid 
FB    fumonisin B 
FUC    fusarochromanone 
FUP    fusaproliferin 
FUS    fusarenone-X 
g    g-force 
GAP    Good Agricultural Practice 
GAPDH   glyceraldehydes-3-phosphate dehydrogenase 
GCY    glucose, yeast extract and peptone 
GI(T)    gastro-intestinal (tract) 
GOIs    genes of interest 
h    hour 
H6PD    hexose-6-phosphate dehydrogenase 
HcK    hematopoietic cell kinase 
HCT    human cell-line derived from colon-carcinoma microtissues 
HIF-1α    hypoxia-inducible factor 1 subunit alpha 
HKG    housekeeping gene 
HMOX    heme-oxygenase 
HPLC    high-performance liquid chromatography 
HPRT    hypoxanthine-guanine phosphoribosyl transferase 
HT-2    HT-2 toxin 
IPEC    intestinal porcine epithelial cell 
IS    internal standard 
iv    intravenous(ly) 
JAMs    junctional adhesion molecules 
JNK    c-Jun N-terminal kinases 
kel    elimination rate constant 
kg    kilogram 
LC    liquid chromatography 
LD50    lethal dose for 50% of subjects 
LOD    limit of detection 
LOQ    limit of quantification 
μg    microgram 
μl    microliter 
μm    micrometer 
MAPK    mitogen-activated protein kinase 
MAS    monoacetoxyscirpenol 
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MDR1    multiple drug resistance 1 
MDZ    midazolam 
mg    milligram 
min    minute 
ml    milliliter 
MON    moniliformin 
mRNA    messenger RNA 
MRP2    multidrug resistance-associated protein 2 
MS/MS   tandem mass spectrometry 
MUCL    Mycothèque de l’Université Catholique de Louvain 
n    number 
NADPH   nicotinamide adenine dinucleotide phosphate 
NCBI    National Center for Biotechnology Information  
NEO    neosolaniol 
ng    nanogram 
NIV    nivalenol 
1-OH-midazolam  1-hydroxy-midazolam 
4-OH-midazolam  4-hydroxy-midazolam 
OTA    ochratoxin A 
p.a.    post administration 
PBS    phosphate buffered saline 
PCD    programmed cell death 
PCR    polymerase chain reaction 
P-gp    P-glycoprotein 
PKR    RNA-activated protein kinase 
po    per os, oral(ly) 
PXR    pregnane X receptor 
(q)RT-PCR   (quantitative) Real-Time Polymerase Chain Reaction 
Raf-1    RAF proto-oncogene serine/threonine-protein kinase 
Rhoa    Ras homolog gene family, member A 
RNA    ribonucleic acid 
ROS    reactive oxygen species 
RPL7    60s ribosomal protein L7 
s    second 
SD    standard deviation 
SRM    selected reaction monitoring 
T-2    T-2 toxin 
t1/2el    elimination half-life 
TEER    trans-epithelial electrical resistance 
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TLR    toll-like receptor 
Tmax    time to maximum plasma concentration 
UPLC    ultra performance liquid chromatography 
Vd    volume of distribution 
vol    volume 
v/v    volume/volume 
wk    week 
XOR    xanthine oxidoreductase 
ZAN    zearalanone 
ZEN    zearalenone 
ZO    zonula occludens 
ZOH    α and β isomers of ZEN 
ZONAB    zonula occludens-associated nucleic acid binding protein 
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1. The poultry industry with emphasis on broiler chickens 

 

The poultry industry is one of the largest and fastest growing agro-based industries in the 

world.  Table 1 summarizes the chicken meat production worldwide. 

Table 1. World chicken meat production (million tones) (adapted from Evans et al., 1012).  

Region 2000 2005 2006 2007 2008 2009 2010 2011 2012 

Africa 2.8 3.4 3.4 3.7 4.0 4.2 4.4 4.6 4.7 

Americas 27.2 32.7 33.7 35.3 37.4 36.7 38.4 39.2 39.4 

Asia 18.7 22.5 23.5 24.9 26.4 27.2 28.6 29.9 31.0 

Europe 9.4 10.7 10.8 11.7 12.1 13.4 13.8 14.2 14.5 

Oceania 0.7 0.9 1.0 1.0 1.0 1.0 1.1 1.3 1.3 

WORLD 58.7 70.2 72.3 76.7 80.8 82.5 86.2 89.2 90.9 

 

The production of chicken meat is expected to grow due to export to ‘emerging markets’, 

namely China, India, Russia and the Middle-East. 

Good management of a chicken husbandry is indispensable. The main goal is to convert feed 

into viable, disease-free poults as efficiently as possible. Over the last decades intensive 

selection programs were set up for broilers. Thanks to this selection, broiler chickens are 

actually the most effective meat-producing animals next to fish (Decuypere et al., 2010). 

Stable equipment has to be appropriate for ad libitum feed and drinking water availability. In 

addition, accurate light schedules have to be applied to allow maximum feeding but also 

taking the animal welfare into account. Owing to the high-density housing, ventilation and 

litter management are important matters to reduce stress and possible lesions (Elson, 2010). 

Besides management and biosecurity, vaccination is necessary to control infectious diseases 

in the modern poultry industry. Although vaccines never assure complete protection, they 

are essential to protect the birds against pathogens that can reduce their performances 



General introduction 
 

 
 

10  

 

(Cserep, 2009). Moreover, it is generally accepted that prevention is more cost effective 

than treatment. In practice, vaccination in poultry is applied to uniform populations and not 

to individuals. Besides viral infections, parasite and bacterial infections are important 

concerns in the poultry industry. Intervention strategies are chosen based on their economic 

and biological efficiency. Spray medication or drinking water medication are the most 

applied methods for mass treatment (Collett, 2009).  

Progress in vaccination schedules and antimicrobial chemotherapy has made respiratory 

problems less important than gut health issues. According to own assessments and from 

veterinary diagnostic labs it can be concluded that actually gut health problems are the most 

important health problem in broilers.  

A lot of pathogens responsible for gut lesions have already been described and methods of 

disease control have evolved with the intensification of the poultry industry. Initially, the 

focus was on clinical diseases of serious nature, but now the focus is on the non-defined 

subclinical diseases and birds’ welfare. Hot topic is the influence of mycotoxins on the 

performance of broilers, with special attention to hepatic, intestinal and reproduction 

problems. 

 

2. Mycotoxins as contaminants of animal feed 

 
2.1  Classification and occurrence of mycotoxins 

Fungi are able to contaminate a multitude of agricultural products such as cereal grains, 

maize, nuts and fruits. A large number of metabolites can be formed by these fungi including 

mycotoxins. Mycotoxins are called secondary metabolites because they are not necessary 

for the survival of the fungi (Keller et al., 2005). Toxins can, however, provide an ecological 

advantage for the fungus in certain environments. Due to mycotoxin production, plants can 

for example become more susceptible which makes the invasion of other fungi easier. 

Mycotoxins are produced by filamentous fungi and are characterized by a low molecular 

weight. Thousands of mycotoxins exist, but only a few present significant food and feed 
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safety challenges. Contamination of feed with mycotoxins leads to heavy economic losses as 

a result of decreased animal production throughout the world (Zain, 2011). 

Mycotoxins of importance for the poultry industry are mainly produced by fungi of the 

genera Aspergillus, Fusarium or Penicillium. From an economic point of view, Fusarium 

mycotoxins are the most significant (Devegowda and Murthy, 2005). The most commonly 

found Fusarium mycotoxins are the trichothecenes, zearalenone, fumonisin and 

moniliformin. The mycotoxins produced by Fusarium species from cereals are illustrated in 

Table 2. Many mycotoxin-producing Fusarium species are common causal organisms of 

Fusarium head blight, foot rot and root rot disease of cereals. 

Table 2. Mycotoxigenic Fusarium species associated with cereals and their mycotoxins 
(adapted from Logrieco et al., 2002). 
 

Fusarium species   Mycotoxins 

F. acuminatum 
F. anthophilum 
F. avenaceum 
F. cerealis 
F. chlamydosporum 
F. culmorum 
F. equiseti 
F. graminearum 
F. heterosporum 
F. nygamai 
F. oxysporum 
F. poae 
F. proliferatum 
F. sambucinum 
F. semitectum 
F. sporotrichioides 
F. subglutinans 
F. tricinctum 
F. verticillioides 

T-2, MON, HT-2, DAS, MAS, NEO, BEA 
BEA 
MON, BEA 
NIV, FUS, ZEN, ZOH 
MON 
DON, ZEN, NIV, FUS, ZOH, a-DON 
ZEN, ZOH, MAS, DAS, NIV, DAcNIV, FUS, FUC, BEA 
DON, ZEN, NIV, FUS, a-DON, DAcDON, DAcNIV 
ZEN, ZOH 
BEA, FB1, FB2 
MON, BEA 
DAS, NIV, FUS, MAS, T-2, HT-2, NEO, BEA 
FB1, BEA, MON, FUP, FB2 
DAS, T-2, NEO, ZEN, MAS, BEA 
ZEN, BEA 
T-2, HT-2, NEO, MAS, DAS 
BEA, MON, FUP 
MON, BEA 
FB1, FB2, FB3 

  
Bold letters indicate the important mycotoxins. Abbreviations: a-DON (mono-acetyldeoxynivalenols: 3-aDON 
and 15-aDON); AcNIV (mono-acetylnivalenol); BEA (beauvericin); DAcDON (di-acetyldeoxynivalenol: 3,15-
aDON); DAcNIV (di-acetylnivalenol: 4,15-AcNIV); DAS (diacetoxyscirpenol); DON (deoxynivalenol); FB1 
(fumonisin B1); FB2 (fumonisin B2); FB3 (fumonisin B3); FUP (fusaproliferin); FUS (fusarenone-X); FUC 
(fusarochromanone); HT-2 (HT-2 toxin); MAS (monoacetoxyscirpenol); MON (moniliformin); NEO (neosolaniol); 
NIV (nivalenol); T-2 (T-2 toxin); ZEN (zearalenone); ZOH (α and β isomers of ZEN) 
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Different factors influence the occurrence of mycotoxins. The temperature, the relative 

humidity and the CO2 concentration in the atmosphere are considered as the main pre-

harvest factors (Ingram 1999; Miraglia et al., 2009). However, good agricultural practice 

(GAP) is essential to reduce contamination during harvest and storage (Magan and Aldred, 

2007). Figure 1 illustrates the different factors affecting the mycotoxins’ occurrence in the 

food and feed chain. 

 

Figure 1. Factors affecting mycotoxin occurrence in the food and feed chain (adapted from 
CAST, 2003). 
 
 
Binder (2007) reported the results of a two-year survey undertaken to evaluate the presence 

of mycotoxins in feed and feed raw materials. In total 2,753 assays were performed on 1,507 

samples from European and Mediterranean markets. The following mycotoxins were 

analyzed: aflatoxin B1, ochratoxin A, deoxynivalenol, T-2 toxin, zearalenone and fumonisins. 

Results revealed that 52% of the samples were contaminated with deoxynivalenol, T-2 and 

zearalenone, as major contaminants. Therefore, in this thesis we mainly focused on these 
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three mycotoxins. Several other studies also reported the occurrence and also the co-

occurrence of mycotoxins in feed in Europe (Streit et al., 2012).  

However, it is difficult to infer trends in the mycotoxin contamination of feedstuffs. One of 

the reasons is the fact that the occurrence patterns are expected to change as a 

consequence of rising average temperatures (Miraglia et al., 2009). For example, the 

prevalence of Fusarium graminearum is likely to increase in Northern Europe due to the 

expected changes in weather conditions for the upcoming years (Parikka et al., 2012). In 

addition, analysis methods used are different and sampling methods are rarely described. 

Nevertheless, sampling is considered as an important source of error in mycotoxin analysis 

due to the frequent inhomogeneous distribution of moulds and/or toxins (Whitaker, 2003).  

An overview of the field contamination with DON, T-2 or ZEN for 2012 is given in Table 3. For 

this study the majority of the samples were taken in Belgium (144 samples). Other samples 

were collected in Germany (15 samples), France (20 samples), the Netherlands (6 samples) 

and Luxembourg (2 samples). 

 

Table 3. Mycotoxin monitoring in Belgium, Germany, France, the Netherlands and 
Luxembourg for 2012 (adapted from Belgian Association of Feed Manufacturers (BEMEFA), 
2012). 
 
 
DON  

DON level (μg/kg) < 
400 

400-
700 

700-
1000 

1000-
1250 

1250-
1750 

1750-
2500 

>2500 

number of 
samples 

154 30 19 6 9 3 2 

 

T-2  

T-2 level (μg/kg) <100 100-200 >200 

number of samples 121 1 0 
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ZEN  

ZEN level (μg/kg) <75 75-100 100-200 >200 

number of samples 155 4 2 5 

 

2.2  Toxicity and metabolism of Fusarium mycotoxins 
 

Trichothecenes contain sesquiterpene rings characterized by a 12,13-epoxy-trichothec-9-ene 

nucleus, responsible for their toxicity (Hussein and Brasel, 2001). This group of toxins is 

characterized by a molecular weight of approximately 200-500 Da (Pestka, 2007). The 

Fusarium trichothecenes can be divided in four groups: A, B, C and D. Type A does not 

contain a carbonyl group on C-8 (represented by R5 in Figure 2). Group B is characterized by 

a carbonyl group on C-8. Members of group C have another epoxy-group between the C-7 

and C-8 or C-8 and C-9 positions, respectively. A macrocyclic ring between C-4 and C-15 is 

typical for group D (Wu et al., 2010). Group A and B represent the most important members. 

 

R
5

R
4

CH3

OCH3

R
1

R
2

O

R
3

 

 

 
Figure 2. Chemical structures of DON, T-2 and their major metabolites. 
 
 
Most toxic type A trichothecene is T-2 toxin (T-2). The mycotoxin T-2 is rapidly metabolized 

to a variety of metabolites and eliminated in the excreta within 48h (Dohnal et al., 2008; 

Yoshizawa et al., 1980a). Different studies and animal models have shown that the major 

metabolic pathway is hydrolysis which occurs at the C-4 position, resulting in HT-2. 

 R1 R2 R3 R4 R5 

DON OH H OH OH O 

3-
aDON OAc H OH OH O 

15-
aDON OH H OAc OH O 

T-2 OH OAc OAc H OCOCH2CH(CH3)2 

HT-2 OH OH OAc H OCOCH2CH(CH3)2 
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Structures of both T-2 and HT-2 are illustrated in Figure 2. HT-2 can be hydroxylated to 3’-

OH-HT-2 in the liver or can be hydrolyzed to T-2 tetraol via T-2 triol. It is also possible that T-

2 is hydroxylated immediately to 3’-OH-T-2. De-epoxidation and glucuronidation of the 

different compounds can also be a metabolic pathway (Weidner et al., 2012; Wu et al., 2010; 

Yoshizawa et al., 1980b). Especially in poultry, several uncharacterized metabolites of T-2 

were found and they are still not identified (Young et al., 2007). Some metabolites are 

equally or even more toxic than T-2 (Dohnal et al., 2008). Increased toxicity of T-2 has even 

been observed owing to enterohepatic circulation (Coddington et al., 1989; Sokolovic et al., 

2008). Retention of a large part of T-2 in the bile has been observed in broiler chickens, 

indicating the important role of the biliary excretion system in the elimination of this 

mycotoxin (Chi et al., 1978).  

The B group includes deoxynivalenol (DON) and its acetylated derivates: 3-aDON and 15-

aDON (Logrieco et al., 2002; Placinta et al., 1999). Figure 2 illustrates the structures of these 

B trichothecenes. DON is one of the least acutely toxic trichothecenes, but of particular 

interest owing to its high prevalence (Rotter et al., 1996). The majority of the ingested DON 

in broilers is quickly, nearly completely, absorbed in the stomach and proximal part of the 

intestines. De-epoxidation of DON to deepoxy-deoxynivalenol (DOM-1) occurs in the 

proximal part of the small intestines (Awad et al., 2011; He et al., 1992; King et al., 1984). 3-

aDON can be metabolized to DON and DOM-1. For 15-aDON, following metabolites can be 

found: deepoxy-15-aDON, DON and DOM-1 (Young et al., 2007). Both 3-aDON and 15-aDON 

were reported equivalently or less toxic than DON for a longtime (Pestka, 2007). However, a 

recent study reported that 15-aDON is more toxic compared to DON and 3-aDON both in 

vitro and in vivo (Pinton et al., 2012).  

Besides the group of trichothecenes, the mycotoxin zearalenone (ZEN) also is an important 

mycotoxin, more precisely as activator of the oestrogen receptor. ZEN is also known as 6-

(10-hydroxy-6-oxo-trans-1-undecenyl)-β-resocylic acid µ-lactone (Bennett and Klich, 2003) 

(Figure 3). An in vitro study demonstrated that ZEN can be metabolized to α-zearalenol (α-

ZEL) and β-zearalenol (β-ZEL), with β-ZEL being the most prominent (Malekinejad et al., 

2006). The affinity of these metabolites for the oestrogen receptor compared to ZEN can be 

ranged as follows: α-ZEL > ZEN > β-ZEL. A recent in vivo study showed that besides the above 



General introduction 
 

 
 

16  

 

mentioned metabolites, ZEN can also be transformed to α-zearalanol (α-ZAL) and β-

zearalanol (β-ZAL) in broiler chickens (Yunus et al., 2012a). Only low rates of glucuronidation 

could be demonstrated in chickens compared to other animals (Malekinejad et al., 2006), 

suggesting that glucuronidation of ZEN is not the main metabolic pathway in chickens. 

 

 

O

R2 R1

OH O CH3

 

 
Figure 3. Chemical structures of zearalenone (ZEN), α-zearalenol (α-ZEL) and β-zearalenol (β-
ZEL).  
 
 
The toxicokinetic profiles of DON, T-2 and ZEN have already been investigated in vivo in pigs 

and ruminants. For poultry, only old data of toxicokinetic studies performed with 

radiolabeled toxins are available. 

 

2.3  Implication for the health of broilers 

 
Intake of rather high doses of mycotoxins may lead to mycotoxicosis, which can be 

characterized by several clinical signs (Binder, 2007). The type and concentration of the 

mycotoxin, the duration of exposure and the species, age, gender, immunological status of 

the animal are determinants for the symptoms. Synergistic effects between several 

mycotoxins can cause different diseases (Conkova et al., 2003). 

The main target of Fusarium mycotoxins are rapidly proliferating and differentiating cells and 

tissues, with a high protein turnover, including the small intestines, liver and immune cells. 

The immunotoxicity of type A trichothecenes, especially T-2, is lower than the type B 

trichothecenes (Sharma, 1993). DON can both suppress and stimulate immunity, even at 

 R1 R2 

ZEN O OH 

α-ZEL OH (α) OH 

β-ZEL OH (β) OH 
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equal doses (Rotter et al., 1996). T-2 and DON induce immunosuppression at high doses, but 

immunostimulation at low doses (Sokolovic et al., 2008). Adverse effects due to the 

presence of trichothecenes include decreased T- and B-lymphocyte counts, reduced 

antibody production and suppression of the lymphocyte proliferation (Girish and Smith, 

2008). The exact mode of action of these mycotoxins on the immune system is beyond the 

aim of the research presented in this thesis.  

Our focus was on the parameters leading to economic losses in the broiler industry, namely 

the zootechnical parameters feed intake and body weight. We also investigated the effects 

of DON and T-2 on the hepatic and intestinal function in broiler chickens. The possible 

effects of ZEN on these organs were not studied as ZEN is known to cause reproduction 

problems, which is of principal interest for laying hens and parent flocks.  

2.3.1 DON mycotoxicosis 

All animal species have been shown to be susceptible to DON, also called vomitoxin. 

However, the degree of susceptibility varies among the different species, ranged from the 

most sensitive to the most resistant: pigs>mice>rats> poultry ≈ ruminants (Prelusky et al., 

1994). Differences in absorption, distribution, metabolism and excretion of DON among 

animal species might account for this differential sensitivity.  

Acute mycotoxicosis due to consumption of DON is rarely seen in poultry. For DON in broiler 

chickens the LD50 is set at 140 mg DON/kg BW (Huff et al., 1981). However, chronic exposure 

to DON at low or moderate levels can cause anorexia, diarrhea, decreased live weight gain 

and altered nutritional efficiency (Pestka and Smolinski, 2005). For broiler chickens, different 

studies already reported the negative effects of DON on zootechnical parameters, such as 

feed intake and body weight (gain). Results of these studies are summarized in Table 4. 
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Table 4. Summary of the effects of DON on feed intake and body weight in broiler chickens. 
 
Dose in feed  Exposure time Decreased feed 

intake 
Decreased body 
weight (BW) 

Reference 

16 mg/kg DON 21 days reduced feed 
efficiency 

no (Kubena et al., 
1989b) 

3.4 mg/kg DON 35 days no no (Bergsjo and 
Kaldhusdal, 1994) 

15 mg/kg DON 21 days no no (Kubena et al., 1997) 
8.2 mg/kg DON, 
20.3 mg/kg fusaric 
acid, 
0.2 mg/kg ZEN 

56 days yes (finisher phase) yes (finisher phase) (Swamy et al., 2002) 

21.2 mg/kg DON, 
1.4 mg/kg NIV, 
500 μg/kg 15-aDON, 
300 μg/kg 3-aDON, 
<50 μg/kg HT-2, 
<20 μg/kg T-2, 
406 μg/kg ZEN, 
< 0.2 μg/kg OTA, 
219 μg/kg ergot 
alkaloids 

35 days yes yes (Dänicke et al., 2003) 

5.9 mg/kg DON, 
19.1 mg/kg fusaric 
acid, 
0.4 mg/kg ZEN, 
0.3 mg/kg 15-aDON 
 
9.5 mg/kg DON, 
21.4 mg/kg FA, 
0.7 mg/kg ZEN, 
0.5 mg/kg 15-aDON 

56 days no (starter period) 
yes, linearly (grower 
phase) 
recovery in the 
finisher phase 

BW gain followed the 
same trend as  the 
feed intake 

(Swamy et al., 
2004b) 

10 mg/kg DON 42 days no  no (Awad et al., 2004) 
12.6 mg/kg DON, 
traces of ZEN, 
traces of 15-aDON 

84 days 
(broiler 
breeders) 

no no (Yegani et al., 2006) 

5 mg/kg DON 21 days no no (Awad et al., 2006b) 
10 mg/kg DON 42 days no no (Awad et al., 2006a) 
1.36-1.52 mg/kg DON, 
traces of 3-aDON, 
traces of ZEN and 
other Fusarium 
mycotoxins 

35 days yes, during the first 
three weeks 

yes (Dänicke et al., 2007) 

18 mg/kg DON 21 days no yes, cubically (Xu et al., 2011) 
1 or 5 mg/kg DON 35 days no no (Awad et al., 2011) 
1.68 mg/kg DON, 
0.145 mg/kg 
 
12.209 mg/kg DON, 
1.049 mg/kg ZEN 

35 days Yes yes, during the first 
three weeks 

(Yunus et al., 2012b) 

Dotted line (----) separates two different experimental groups within one study. 
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Results seem to be variable, making it impossible to establish a simple dose-response 

relationship between growth depression and dietary concentrations of DON. In addition, 

artificially versus naturally contaminated feed seems to give different effects. In general, 

naturally contaminated feed led to more pronounced effects (Rotter et al., 1996). The 

presence of other toxins or other compounds in the feed can also be a possible explanation 

(Smith et al., 1997).  

The way DON causes feed refusal has been investigated and was committed to a 

neuropharmacological effect. DON can act directly on the central nervous system, more 

specific on the serotoninergic system. Via this pathway DON was demonstrated to cause 

anorexia and emesis in pigs (Prelusky and Trenholm, 1993; Swamy et al., 2004a). In addition, 

an effect of DON on the peripheral serotonin receptors has been described in rodents 

(Fioramonti et al., 1993). Especially in broilers, higher cerebral levels of norepinephrine were 

found after exposure to DON, antagonizing the effect of serotonin on appetite suppression 

(Swamy et al., 2004a). This mechanism may explain the less severe feed refusal seen in 

broiler chickens. Conditioned taste aversion has also been reported in the presence of DON, 

mediated by the area postrema, which can be responsible for an emetic action too (Prelusky 

and Trenholm, 1993). The mechanism by which DON induces diarrhea was investigated in a 

human intestinal cell line and was associated with the inhibition of the sodium-glucose 

transport protein 1 transporter, resulting in a decrease of D-glucose associated water 

absorption and thus increased water content in the intestinal lumen (Maresca et al., 2002). A 

decreased glucose uptake was also observed in chickens after exposure to DON (Awad et al., 

2008b; Awad et al., 2007b). 

In addition, it has to be mentioned that broilers seem to be able to adapt to DON-

contaminated diets (Awad et al., 2011). But also in pigs and rats the development of a kind 

of tolerance to low concentrations has been observed (Morrissey and Vesonder, 1985; 

Prelusky et al., 1994). Development of tolerance occurs with most anorexic compounds, 

more specifically with the compounds relying on a central serotoninergic mechanism 

(Silverstone, 1992).  
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2.3.2 T-2 mycotoxicosis 

Symptoms of T-2 mycotoxicosis are almost the same as for DON. The differences are only in 

the extent and the severity of the changes. The mycotoxin T-2 is considered the most acutely 

toxic member of the family of the trichothecenes and exposure can occur through different 

routes (Sokolovic et al., 2008). The LD50 of T-2 is 6.3 mg/kg BW in broiler chickens (Chi et al., 

1977b). A wide range of toxic effects can be caused by chronic exposure to T-2 in animals: 

weight loss, emesis, diarrhea, lesions in liver and digestive system,… (Li et al., 2011). 

Especially in chickens reduced egg production, impaired egg hatch and feather alterations 

are other symptoms of chronic exposure to T-2 (Diaz et al., 1994; Wyatt et al., 1975). Most 

relevant chronic toxicity studies in poultry were summarized in a scientific opinion published 

by the European Food Safety Authority (EFSA) (Anonymous, 2011). Effects of T-2 on 

zootechnical parameters as reported by the EFSA are illustrated in Table 5.  

T-2 is a neurotoxin, able to damage the blood-brain barrier and cause changes in the activity 

of serotonine which explains the reduced feed intake (Wang et al., 1998). An increase in 

brain indoleamines, e.g. serotonin, induced by T-2 can contribute to feed refusal 

(MacDonald et al., 1988). In addition, T-2 causes lesions in the oral cavity which can also be a 

factor responsible for a decreased feed intake (Wyatt et al., 1973). Other authors reported 

that one single dose of 5 mg/kg T-2 or feeding at concentrations of 1 to 5 mg/kg T-2 for at 

least one week, are necessary to cause lesions in the mouth (Sokolovic et al., 2008). 
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Table 5. Summary of the effects of T-2 on feed intake and body weight in broiler chickens 
(adapted from Anonymous, 2011). 
 

Dose in the feed Exposure 
time 

Decreased feed 
intake 

Decreased body 
weight (BW) 

Reference 

1, 2, 4, 8 or 16 mg/kg T-
2 

21 days yes (from a 
concentration of 4 
mg/kg T-2) 

yes (from a 
concentration of 4 
mg/kg T-2) 

(Wyatt et al., 1973) 

0.2, 0.4, 2 or 4 mg/kg T-
2 

63 days yes (from a 
concentration of 4 
mg/kg T-2) 

yes (from a 
concentration of 4 
mg/kg T-2) 

(Chi et al., 1977a) 

4 mg/kg  T-2 21 days  yes (Kubena et al., 1989a; 
Kubena et al., 1989b) 

8 mg/kg T-2 and 3.5 
mg/kg aflatoxin 

21 days  yes (Kubena et al., 1990) 

0.11, 0.53 or 1.05 mg/kg 
T-2 

35 days no no (Sklan et al., 2001) 

2 mg/kg  T-2 28 days no yes (Diaz et al., 2005) 

0.5, 1.5, 4.5 or 13.5 
mg/kg  T-2 

17 days yes (from a 
concentration of 
4.5 mg/kg T-2) 

yes (from a 
concentration of 
4.5 mg/kg T-2) 

(Rezar et al., 2007) 

Starter (D0-D21): 1.04 
mg/kg T-2, 0.49 mg/kg 
HT-2 

Finisher (D22-D39): 0.12 
mg/kg T-2, 0.02 mg/kg 
HT-2 

39 days  yes at 21 days (Weber et al., 2010) 

0.31 mg/kg T-2 

0.26 mg/kg HT-2 

21 days no no (Pal et al., 2009) 

 

From the collected data about dietary exposure to trichothecenes we can conclude that the 

variable effects of trichothecenes on performance of poultry indicate that zootechnical traits 

might not be a sensitive indicator of their toxicity. Only clinical signs and production 

parameters but no suitable biomarkers were evaluated in these studies. Therefore, research 

has to be focused on the negative impact of trichothecenes on the intestines and the liver at 

the molecular level and a possible link to reduced performance.  
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2.4  Implications for men’s health 
 

Besides direct intake of mycotoxin contaminated cereals and related food products, another 

route of exposure for men that has to be considered for Fusarium toxins is the transfer from 

animal feed to poultry tissues, possibly leading to residues in animal products. There is 

limited information available on the occurrence of trichothecenes in eggs or meat. For laying 

hens, very low transmission levels of DON or T-2 to the eggs have been reported, namely 

0.19% and 0.17% of the administered dose, respectively (Chi et al., 1978; Prelusky et al., 

1987). El-Banna et al. (1983) fed hens with rations contaminated with 5 mg/kg DON for 192 

days and no traces of DON were found in the tissues or eggs using a GC-MS method (gas 

chromatography-mass spectrometry) with a detection limit of 10 µg DON/kg. DON and 

DOM-1 were analyzed in the liver of broilers after feeding concentrations of DON up to 5 

mg/kg feed for five weeks. Both DON and DOM-1 were not detected in the liver (Awad et al., 

2011). From these studies we may conclude that if the guidance levels as stated by the EFSA 

are respected for DON, risks are limited. For T-2, no similar studies have been published to 

our knowledge. 

 

2.5  Principles of mycotoxin management 
 

Basically, the best way to minimize the risk for a mycotoxin to come into the food chain 

would be to prevent its formation in crop production and/or during storage of the 

feedstuffs. However, under field conditions the presence of mycotoxins can never be fully 

excluded (Bhat et al., 2010). Whereas there are many factors involved in mycotoxin 

contamination, the climate is the main driving force of fungal colonization and mycotoxins 

production (Miraglia et al., 2009; Paterson and Lima, 2010). It is generally accepted that 

rainfall just before and during flowering of the crop favours the infection of crops with fungi 

belonging to the Fusarium species. It has also been demonstrated that the weather 

conditions during winter may have an influence on the survival of primary inoculums 

(Landschoot et al., 2011, 2012). Management of mycotoxins in livestock comprises all stages 

from ‘farm to fork’ (Miraglia et al., 2009). Pre-harvest prevention strategies are the use of 
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mold resistant crop varieties, GAP and the application of fungicides (Siegel and Babuscio, 

2011). However, the use of fungicides not automatically results in a reduction of the 

mycotoxin contamination (Edwards, 2004). Exposure of Fusarium to sublethal 

concentrations of some fungicides might even stimulate mycotoxin production (Audenaert 

et al., 2011). Post-harvest methods comprise optimal storage conditions (effective drying, 

temperature control,…) (Magan and Aldred, 2007).  

Before further processing of the feedstuffs, mycotoxin concentration and pattern must be 

determined (Döll and Dänicke, 2011) as mycotoxins are resistant to different production 

steps (Scudamore et al., 2008). Trichothecenes are known to be heat stable and are not 

degraded during normal food processing or autoclaving (Bullerman and Bianchini, 2007; 

Pestka and Smolinski, 2005). In Europe, maximum levels for products intended for animal 

feed production have been set by the European Commission. Table 6 illustrates the guidance 

level determined in the Commission Recommendation of 17 August 2006 for DON and ZEN 

(Anonymous, 2006). For T-2, the Belgian Federal Agency for the Safety of the Food Chain 

currently imposes a limit of 0.4 mg/kg feed for T-2 and HT-2 in poultry feed. On the other 

hand, Table 7 shows the very recent European Commission Recommendation of 27 March 

2013 for T-2 and HT-2 (Anonymous, 2013).  

If the mycotoxin concentration is lower than the guidance level, feedstuff can be used for 

feeding. However, if the mycotoxin concentration is higher than the recommended levels, 

action is necessary. There are different possibilities: technical decontamination prior to 

feeding or in vivo decontamination in the animal (Döll and Dänicke, 2011). Physical, chemical 

or biological treatments of contaminated feed is not efficient and expensive (Jouany, 2007). 

In vivo decontamination is frequently applied in livestock using feed additives, called 

mycotoxin detoxifying agents.  

A scientific report was recently submitted to the EFSA with the title: ‘Review of mycotoxin 

detoxifying agents used as feed additives: mode of action, efficacy and feed/food safety’ 

(Anonymous, 2009). In this report, mycotoxin detoxifying agents are divided in two different 

categories: adsorbing agents and biotransforming agents. This distinction is made on the fact 

that the first group is able to bind the mycotoxins in contaminated feed in the 
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gastrointestinal tract of the animal. Ideally, this complex does not dissociate in the 

gastrointestinal tract of the animal, resulting in an efficient elimination via faeces and hereby 

preventing or minimizing exposure of animals to mycotoxins. Adsorbing agents can consist of 

aluminosilicates (e.g. bentonite, montmorillonite, zeolite, phyllosilicates), activated carbon, 

complex indigestible carbohydrates (cellulose, polysaccharides from the cell walls of yeasts 

and bacteria such as glucomannans and peptidoglycans) and synthetic polymers 

(cholestyramine and polyvinylpyrrolidone) (Anonymous, 2009). The biotransforming agents, 

such as bacteria, yeasts, fungi and enzymes, are responsible for the degradation of 

mycotoxins into less or non-toxic metabolites.  

 

The EFSA stated that these detoxifiers have to be registered as feed additives belonging to 

the class of ‘substances for reduction of the contamination of feed by mycotoxins’. Prior to 

registration, both efficacy and safety of the detoxifying agents have to be proven 

(Anonymous, 2010).  
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Table 6. The guidance values on the presence of deoxynivalenol and zearalenone in products 
intended for animal feeding (relative to a feedingstuff with a moisture content of 12%), as 
determined in the Commission Recommendation 2006/576/EC. 
 

(*) Particular attention has to be paid to cereals and cereal products fed directly to the animals that their use in 
a daily ration should not lead to the animal being exposed to a higher level of these mycotoxins than the 
corresponding levels of exposure where only the complete feedingstuffs are used in a daily ration. 
(**) The term ‘cereals and cereal products’ includes not only the feed materials listed under heading 1 ‘Cereal 
grains, their products and by-products’ of the non-exclusive list of main feed materials referred to in part B of 
the Annex to Council Directive 96/25/EC of 29 April 1996 on the circulation and use of feed materials (OJ L 125, 
23.5.1996, p.35) but also other feed materials derived from cereals in particular cereal forages and roughages. 
 

 

 

 

 

 

Mycotoxin Products intended for animal feed Guidance value in 
mg/kg  

Deoxynivalenol Feed materials (*) 
-Cereals and cereal products (**) with the 
exception of maize by-products 
-Maize by-products 
Complementary and complete feedstuffs with 
the exception of: 
-Complementary and complete feedingstuffs 
for pigs 
-Complementary and complete feedingstuffs 
for calves (<4 months), lambs and kids 

       
8 
 
12 
5 
 
0.9 
 
2 

Zearalenone Feed materials (*) 
-cereals and cereal products (**) with the 
exception of maize by-products 
-maize by-products 
Complementary and complete feedingstuffs 
-complementary and complete feedingstuffs 
for piglets and gilts 
-complementary and complete feedingstuffs 
for sows and fattening pigs 
-complementary and complete feedingstuffs 
for calves, dairy cattle, sheep (including lamb) 
and goats (including kids) 

 
2 
 
3 
 
0.1 
 
0.25 
 
0.5 
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Table 7. Indicative levels for the sum of T-2 and HT-2 toxin in cereals and cereals products, as 
determined in the Commission Recommendation 2013/165/EU.  
 

 Indicative levels for the sum of T-2 and 
HT-2 (µg/kg) from which onwards/ 
above which investigations should be 
performed, certainly in case of 
repetitive findings (*)  

1. Unprocessed cereals (**)  

1.1. barley (including malting barley)  and maize  200 

1.2. oats (with husk) 1000 

1.3. wheat, rye and other cereals   100 

 

2. Cereal products for feed and compound feed 
(***)  

 

2.1. oat milling products (husks)  2000 

2.2. other cereal products  500 

2.3. compound feed, with the exception of feed 
for cats 

250 

(*) The levels referred to in this Annex are indicative levels above which, certainly in the case of repetitive 
findings, investigations should be performed on the factors leading to the presence of T-2 and HT-2 toxin or on 
the effects of feed and food processing. The indicative levels are based on the occurrence data available in the 
EFSA database as presented in the EFSA opinion. The indicative levels are not feed and food safety levels.   
(**) Unprocessed cereals are cereals which have not undergone any physical or thermal treatment other than 
drying, cleaning and sorting. 
(***) The indicative levels for cereals and cereal products intended for feed and compound feed are relative to 
a feed with a moisture content of 12 %. 
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3 The gastro-intestinal tract and the liver as a target for trichothecene 

mycotoxins 

The digestive tract of poultry consists of a crop, which is a dilatation of the esophagus. The 

main function of the crop is storage of feed. Absorption of drugs in esophagus or crop is 

minimal since both parts of the digestive tract are characterized by keratinized stratified 

squamous epithelia (Lumeij, 1994). The avian stomach consists of two different parts: a 

proventriculus or glandular stomach and a ventriculus or gizzard, where grit is stored that 

aids in the physical grinding of feed. After the stomach, following parts of the digestive 

system can be distinguished: small intestines, two ceca, a rectum and a cloaca (Martinez et 

al., 2002) (Figure 4). The small intestine can be divided in three different parts in broiler 

chickens, but in the literature some discrepancy exists how this should be done. Therefore, 

our applied criteria are described below. The first part is just behind the gizzard and is also 

called the duodenal loop or duodenum. In the chicken the duodenum is the most important 

site for nutrient digestion and absorption (Vermeulen et al., 2002). The second part is 

situated at the level of the Meckel’s diverticulum and is called jejunum. The last part, the 

ileum, is situated before the ileo-cecorectal transition. In chicken, ingesta can pass through 

the whole digestive tract very quickly. Fifty percent of ingesta pass in 12h and after 24h all 

passage is complete. Besides the movement of ingesta from proximal to distal, also three 

reverse peristaltic cycles are observed in chickens: from the gizzard to the proventriculus 

and the crop, from the duodenum to the gizzard and from the rectum to the caeca (Hoerr, 

1998). 
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Figure 4. Anatomy of chicken’s digestive tract (adapted from Duke, 1984). 
 
 
In addition, the liver also plays an important role as first line defense mechanism by the 

process called first-pass effect. The liver has an exposed position within the body as the 

gateway of the portal blood draining the gastrointestinal tract. Almost all the drugs absorbed 

in the gastro-intestinal tract have to enter the portal vein and encounter the hepatocytes 

(Hu and Li, 2011).  

Both liver and intestines can interact on the oral bioavailability of drugs or xenobiotics. 

Consequently when mycotoxins interact with the intestinal or hepatic function, 

bioavailability of these drugs and xenobiotics can be influenced. 
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3.1  Effects at the gastro-intestinal level 

Mode of action 

Trichothecenes have an affinity for the 60S subunit of ribosomes, which leads to inhibition of 

the protein synthesis at the initiation, elongation or termination step (Rocha et al., 2005) 

(Figure 5). T-2 is active at the initiation phase, while DON acts as inhibitor of the elongation 

and/or termination step (Awad et al., 2008a; Sokolovic et al., 2008). Besides the effects on 

the protein synthesis, trichothecenes exert other effects on eukaryotic cells such as 

inhibition of the RNA and DNA synthesis as well as adverse effects on the mitochondrial 

function (Minervini et al., 2004; Ueno, 1984). 

Trichothecenes can also induce apoptosis, a programmed cell death (PCD) response both in 

vitro and in vivo (Minervini et al., 2004; Pestka et al., 2004; Yang et al., 2000). DON was 

classified as a strong PCD inducer, while T-2 is a weak inducer (Shifrin and Anderson, 1999). 

The induction of apoptosis may require both translational arrest and mitogen-activated 

protein kinase (MAPK) activity. MAPK’s are components of a signaling cascade that regulate 

cell survival in response to stress (Iordanov et al., 1997). T-2 induces apoptosis by activation 

of c-Jun N-terminal kinases (JNK), p38 and MAPK’s, but the precise mechanism has not yet 

been elucidated (Sokolovic et al., 2008). The process is also called ‘ribotoxic stress response’ 

(Iordanov et al., 1997). Sergent et al. (2006) demonstrated that DON inhibits intestinal cell 

proliferation at concentration corresponding to those found in nature. DON induces namely 

the phosphorylation of p38, extracellular signal-regulated kinases (ERK) and JNK and 

concomitantly disrupts the intestinal permeability (Sergent et al., 2006). The trichothecene-

mediated signal transduction pathway in mammalian cells is shown in Figure 5. 

The link between ribosomal RNA damage and the induction of MAPK signaling pathways 

remains an unrevealed paradox (Pestka, 2007). Two different kinases have been pointed out 

until now which potentially mediate signaling of the trichothecene-mediated MAPK 

activation, namely RNA-activated protein kinase (PKR) and hematopoietic cell kinase (Hck) 

(Zhou et al., 2003; Zhou et al., 2005). However, the presence of other signal transducing 

proteins can not be excluded and the exact mechanism of action has still to be elucidated. 
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Different studies also reported that trichothecenes are able to induce the production of free 

radicals, causing membrane and DNA damage (Atroshi et al., 1997; Leal et al., 1999; 

Minervini et al., 2005; Rizzo et al., 1994; Vila et al., 2002). Oxidative stress can thus be 

considered as a possible underlying mechanism involved in the toxicity of trichothecenes. 

However, some contradictory studies were published concerning the induction of oxidative 

stress by DON and T-2. A recent study reported that T-2 is a moderate oxidant mycotoxin, 

while DON is a non-oxidant mycotoxin (El Golli-Bennour and Bacha, 2011). T-2 can generate 

higher reactive oxygen species (ROS) levels which lead to DNA damage, activation of p53 and 

final apoptosis in human cervical cancer cells (Chaudhari et al., 2009). This DNA damage 

occurs as early as 10 min after exposure to the toxin, a time point much earlier than the 

protein synthesis inhibition. However, the mechanism responsible for the DNA damage has 

still to be elucidated. DNA fragmentation of leukocytes in broilers was observed after 

exposure to T-2 at a concentration of 13.5 mg/kg feed for 17 days (Rezar et al., 2007). The 

same effects were seen in broilers even at a lower concentration of 10 mg/kg T-2 after 

exposure for 17 days (Frankic et al., 2006). Awad et al. (2012) demonstrated that the 

genotoxic effects of DON in broilers are not correlated with the induction of oxidative stress 

in the liver. In contrast, diets contaminated with DON and ZEA induced oxidative stress in the 

liver of broilers, but no effect was seen in the duodenal mucosa of the animals (Borutova et 

al., 2008). Besides the p53 pathway, ROS can also activate MAPK’s and thus also lead to 

apoptosis by this pathway (Martindale and Holbrook, 2002). 
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Figure 5. Trichothecene-mediated signal transduction and downstream processes in 
mammalian cells (adapted from Rocha et al., 2005). 
 

Trichothecenes appear to have an impact on the cell cycle depending on the cell type. A cell 

cycle arrest in the G2/M-phase was observed in intestinal porcine epithelial cells from the 

mid-jejunum (IPEC-J2 cells) after incubation with 2000 ng/ml DON for 48h. In contrast, in 

intestinal porcine epithelial cells from the jejunum and ileum (IPEC-1 cells) a significant 

increase in PreG1 phase was observed under the same circumstances (Hegewald et al., 

2010). Another study also demonstrated an arrest in G2/M-phase of the cell cycle after 

exposure to DON in a concentration range of 250 ng/ml and 1000 ng/ml in human HCT-116 

and intestinal-407 epithelial cells (Yang et al., 2008). Prudence is however in order when 

extrapolating these in vitro results to in vivo situations. 
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3.1.1 Gut wall morphology 

The intestinal mucosa functions as a kind of barrier which regulates the uptake of nutrients 

and water, but excludes potential pathogens and toxicants (Oswald, 2006). The epithelial 

surface of the intestine is characterized by a large contact area for absorption. The surface 

consists of a simple columnar epithelium, which is increased by the presence of depressions 

(crypts) and villi (DeSesso and Jacobson, 2001). This monolayer is also called the mucosa of 

the intestinal monolayer. Mature cells migrate along the crypt-villus axis towards the villus-

top, underway these cells become differentiated cells (Booth and Potten, 2000; Simon and 

Gordon, 1995). Especially in chicks, cell proliferation not only occurs in the crypts but also 

along the villi (Uni et al., 2000). In poultry the flattened leaf-shaped villi become shorter and 

broader throughout the length of the small intestines. In mammals, normally a submucosal 

layer is found under the mucosa. However, in poultry the non-existence of a tela submucosa 

is a histological particularity. Furthermore, poultry also possess a thick lamina muscularis 

mucosae which is frequently in continuity with the underlying circular muscle (Hodges, 

1974).  

 
Histological alterations have been described after ingestion of different concentrations of 

trichothecenes. More precisely, cells on the tips of the villi are destroyed and crypt 

epithelium is injured (Hoerr, 1998). Shorter and thinner villi were observed in the duodenum 

and the jejunum of broiler chickens after exposure to 10 mg/kg DON in the feed for 6 weeks 

(Awad et al., 2006a). These authors related the histological changes to the irritant effect of 

DON. No effect on the jejunum villi, but only decreased height and width of villi in 

duodenum was found after 3 weeks exposure of broiler chickens to 5 mg/kg DON in the feed 

(Böhm et al., 2006). The same authors reported also that even concentrations of 1 mg/kg 

DON fed during 5 weeks resulted in a decreased villus height, decreased villus surface area 

and a reduced muscular thickness in the jejunum of broilers (Awad et al., 2011). Recently, a 

study could demonstrate that the increasing levels of DON linearly decreased the villus 

height in both the mid-duodenum and mid-jejunum of broiler chickens (Yunus et al., 2012b). 

T-2 exposure at a concentration of 0.982 mg/kg for 32 days resulted in shorter villi in the 

duodenum and shorter and thinner villi in the jejunum of turkey poults (Sklan et al., 2003). 
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The decrease in enterocyte height is highly indicative that these mycotoxins can alter the 

digestive and absorption function. Besides a direct irritant effect of the toxin, the inhibition 

of the protein synthesis by DON, which results in death of the epithelial cells, was also 

pointed out as explanation for the morphological changes.  

The mitotic index in crypt epithelia was decreased after inoculation with T-2 in mice (Li et al., 

1997). Reduced enterocyte migration was observed in the jejunum of turkey poults fed T-2 

(Sklan et al., 2003). DON is also known to inhibit the intestinal cell proliferation (Sergent et 

al., 2006). Trichothecenes can cause apoptosis via different pathways and can influence the 

cell cycle, which can be an explanation for the reduced proliferation. 

 

3.1.2 The intestinal functional barrier 

Intestinal absorption can be described as the way molecules navigate across the 

enterocytes. The transport through the enterocyte barrier can be divided in active, passive 

and specialized transport; and into a paracellular and a transcellular route. Passive diffusion 

can be defined as the movement of molecules across the lipid bilayer without the need of 

energy. The driving force for this process is the concentration gradient (Park and Chang, 

2011). Active transport is an energy-consuming system, mostly acting against the 

concentration gradient. An example of specialized transport is endocytosis, whereby 

macromolecules are taken up into the cells by vesicles. From the literature, trichothecenes 

are known to interact with the intestinal barrier function, interrupting both paracellular and 

transcellular routes. 

3.1.2.1 Trichothecenes interact with the paracellular pathway 

The epithelial barrier is formed by a lipid bilayer of enterocytes. The enterocytes are adhered 

to each other through complexes that form junctions between the cells, called tight 

junctions. These tight junctions regulate the traffic between the epithelial cells or the 

paracellular pathway. The intestinal barrier is a dynamic barrier, which is characterized by 

the fact that the tight junctions are able to open and close at any time in a response to a 
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variety of stimuli (Forster, 2008). Besides adhesive functions, these intercellular junctions are 

also involved in different signaling pathways that regulate the proliferation and the 

differentiation of the epithelial cells (Matter and Balda, 2003). 

Tight junctions are constituted of different proteins as illustrated in Figure 6. Three different 

types of transmembrane proteins can be distinguished: occludins, claudins and junctional 

adhesion molecules (JAMs) (Matter and Balda, 2003). Occludin was the first identified 

integral membrane protein in chicken (Furuse et al., 1993). However, different studies 

demonstrated that occludin is not indispensable for the formation of tight junction strands 

(Furuse et al., 1996; Saitou et al., 1998), but more supports the role of claudins (Forster, 

2008). The members of the claudin family on the other hand, really form the backbone of 

the tight junctions (Matter and Balda, 2003). So far, at least 24 members of the claudin 

family have been identified in different animal species and these proteins also seem to be 

expressed in a tissue-specific manner (Forster, 2008). Expression studies revealed that 

claudin 1 and 5 are specific for the mediation of transepithelial resistance in poultry and thus 

are important subtypes for the intestinal barrier function (Amasheh et al., 2005; Inai et al., 

1999; Markov et al., 2010). The third group consists of the junction-associated adhesion 

molecules. Three different members have been characterized until know, but only the 

function of JAM-1 is well defined. JAM-1 is involved in the immune cell migration or cell 

adhesion (Bazzoni et al., 2000). Besides these transmembrane proteins, the tight junctions 

also possess a cytoplasmatic plaque responsible for the organization of different processes 

such as morphogenesis, cell polarity, cell proliferation and differentiation. This plaque 

consists of two different categories of proteins: the peripherally associated scaffolding 

proteins (ZO-1, ZO-2, ZO-3 and cingulin) and the signaling proteins (ZONAB, Rhoa and Raf-1) 

(Forster, 2008).  Of special interest are the zona occludens proteins as they act as a kind of 

adaptors, which are connected to the transmembrane proteins and to other cytosolic 

components (Paris et al., 2008).  
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Figure 6. Molecular composition of tight junctions (adapted from Forster, 2008).  
 

To measure the permeability of membranes, probe drugs are frequently used. However, the 

selection of a useful probe drug is not easy. Movement across the paracellular pathway 

depends on 5 different parameters, namely the concentration gradient, the surface area of 

the epithelium, the thickness of the epithelium, the time available for permeation and the 

intrinsic permeability properties of the barrier. To evaluate this last factor, a probe drug has 

to be selected with the guarantee that the four first factors are not changed. In addition, the 

probe drug may not be degraded or transformed by the gut flora (Arrieta et al., 2006).  

Another frequently used method in both in vitro and ex vivo studies is the measurement of 

the trans-epithelial electrical resistance (TEER) across the intestinal membrane. This 

technique is a useful approach in combination with other techniques, since the TEER 

measurements can be influenced by different factors that are difficult to take into account 

(Madara, 1998). For example, a decrease in TEER does not always equate with an altered 

paracellular pathway as migration of neutrophils across the intestinal epithelia may cause 

the same effects. Another example is edge damage of tissue which can occur due to 

manipulation of the epithelial explants when using Ussing chambers for the measurements 

of intestinal TEER. Edge damage consists of a loss of integrity of the tissue, resulting in a 

decreased TEER (Clarke, 2009).  

The application of 2000 ng/ml DON for 48h on IPEC-1 and IPEC-J2 cells led to a 

desintegration of ZO-1 as observed by  immunofluorescence, reinforced by a decreased 

protein expression of ZO-1 as shown by western blot analysis (Diesing et al., 2011; Hegewald 
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et al., 2010). In contrast, another study reported that ZO-1 and occludin staining and 

localization were not affected by DON treatment. However, a reduced intensity for the 

staining of claudin 3 was observed in Caco-2 cells and for both claudin 3 and 4 in IPEC-1 cells 

(Pinton et al., 2009). The overall morphology of the cells remained unchanged during this 

trial, suggesting a direct or specific effect on claudins rather than general cell damage. The 

authors suggested that the tight junction complex structure and function was regulated 

through the activation of the MAPK pathway by DON (see Figure 5). A concentration-

dependent reduction of the expression of claudin 4 was demonstrated by western blot 

analysis in human Caco-2 cells which were exposed to 50, 500 or 5000 ng/ml DON for 24h 

(Van de Walle et al., 2010). The authors reported that this effect was due to the ability of 

DON to inhibit protein synthesis. There is a lack of literature on the effects of trichothecenes 

on the tight junctions after in vivo exposure. One study reported a reduced claudin 4 protein 

expression in pigs after 4 weeks treatment with DON at a concentration of 2.85 mg/kg feed 

for 5 weeks (Pinton et al., 2009). However, no data are available on the effects in broiler 

chickens. 

Barrier disruption is an important etiologic factor of intestinal inflammation because it can 

lead to an increased permeability to luminal antigens with subsequent contact with toll-like 

receptors and potential activation of underlying immune cells (Forster, 2008; Maresca et al., 

2008). TLRs play a key role in microbial recognition, control of adaptive immune responses, 

and induction of antimicrobial effectors pathways, leading to efficient elimination of host-

threatening pathogens (Takeuchi et al., 1999).  

 

3.1.2.2. Trichothecenes interact with efflux transporters involved in the 

transcellular pathway 

Along the entire length of the gastro-intestinal tract, different drug transporters can be 

localized in the apical membrane of the enterocytes. These transporters are able to remove 

xenobiotics from the enterocyte linings and return them into the gastro-intestinal lumen. 

This secretion process is also called efflux transport (Chang et al., 2011). After their return 
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into the gut lumen, drugs continue to move along the GI tract and afterwards the molecules 

can re-enter the enterocytes or they can be eliminated with the faeces. It is generally 

accepted that members of ATP-binding cassette (ABC) are widely involved in the active 

process of efflux transport. The ABC family needs cellular energy for active transport of 

substrates against the concentration gradient (Higgins and Linton, 2004). Another 

requirement is that the transporter protein needs to recognize the specific drug as a 

substrate. Afterwards, the protein undergoes a conformational change which allows the 

substrate to be transported. 

A study of the evolution of the ABC gene family showed that chickens only have 41 ABC 

genes which is lesser than any other higher vertebrates (Annilo et al., 2006). Several efflux 

transporters have already been identified in chickens such as P-glycoprotein (P-gp or MDR1) 

and multidrug resistance-associated protein2 (MRP2). In turkeys another efflux transporter 

has been described, namely breast cancer resistance protein (BCRP) (Haritova et al., 2008b). 

P-gp is highly conserved and is known to be expressed in tumor cells and thus to lead to 

multidrug resistance (Goldstein et al., 1989). However, this protein is also expressed in 

healthy intestines and in other organs such as e.g. the liver of animals (Haritova et al., 2010). 

Another protein which is also found at this level is MRP2. A difference in expression between 

these two efflux transporters has been observed in both mammals and chickens. P-gp 

expression pattern in chickens shows an increasing trend from proximal to distal in the 

intestinal tract. MRP2 on the other hand, is characterized by a decreasing trend along the 

entire length of the GI tract of poultry. Due to their apical localization in the different organs, 

efflux transporters are well positioned to function as a barrier for xenobiotics (Chang et al., 

2011; Schrickx and Fink-Gremmels, 2008). Both induction and inhibition of these transporter 

proteins can occur, which respectively results in a decreased and increased bioavailability of 

a drug (Zhou, 2008). Different factors including disease, diet, endogenous or exogenous 

compounds can be responsible for the up- or down-regulation of the efflux pumps (Fardel et 

al., 2005). Numerous xenobiotics have been found to be good substrates for these 

transporters and can be responsible for the modulation of their expression (Green et al., 

2005). Two fluoroquinolone antibiotics, namely danofloxacin mesylate and enrofloxacin 

have been demonstrated to restore partially the mRNA down-regulation of MDR1 due to E. 
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coli infection in broiler chickens. The antibiotics were, however, not able to restore MRP2 

down-regulation in these infected animals (Haritova et al., 2008a). The same trend was 

observed for danofloxacin mesylate in turkeys (Haritova et al., 2008b). 

Differences in drug bioavailability as described above can be a factor responsible for 

resistance to antibiotics. On the other hand, micro-organisms, such as bacteria, also possess 

ABC transporters to adapt to the environment and to develop resistance to the actions of 

toxic compounds (Chen et al., 2010; Sabri et al., 2006). However, the effects of mycotoxins 

on ABC transporters of micro-organisms have, to our knowledge, not been investigated in 

poultry until now. 

It is suggested that P-gp is strongly involved in the protection of animals against different 

mycotoxins which are substrates of P-gp (De Angelis et al., 2005). The toxin nivalenol has 

been characterized as a substrate for both P-gp and MRP2 in Caco-2 cells (Tep et al., 2007). 

Also DON was demonstrated to be a substrate for both MDR1 and MRP2 in Caco-2 cells 

(Videmann et al., 2007). Immunohistochemical analysis showed a reduced expression of P-

gp at the brush border of the small intestines in pigs receiving 1 mg DON/kg of feed. A higher 

dose of 3 mg/kg DON even resulted in a complete disappearance of P-gp (Van der Heyden et 

al., 2009). A study conducted with laying hens reported the use of the paracellular pathway 

by DON, however, the same authors did not exclude the transcellular pathway (Awad et al., 

2007a).  

 

3.1.2.3 Trichothecenes interact with drug metabolism in the GI tract 

 
The bioavailability of drugs can be limited due to their limited absorption or extensive 

metabolism. Older literature stated that the liver is the main organ for metabolism of drugs. 

However, recent publications reported that the small intestines also play a major role (Paine 

et al., 1996; Thummel et al., 1996). It is important to mention that the intestines are the first 

site of exposure for xenobiotics and in addition, intestinal cells are exposed to higher 

concentrations of drugs compared to the liver cells as the intestine is the place where drugs 

are released from their dosage form (Hu and Singh, 2011). Some studies even reported that 
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the intestinal metabolism may be of greater importance than the hepatic metabolism 

(Fromm et al., 1996; Wu et al., 1995). The principal biotransformation enzymes in the gut 

wall include the phase I cytochrome P-450 (CYP450) subfamily, but also phase II reactions 

can occur. Phase I reactions are usually oxidation, hydrolysis and reduction, while phase II 

reactions are the conjugation of the parent compound and phase I metabolites.  

The most important family of enzymes involved in phase I metabolism is the CYP450 

superfamily of hemeproteins. The CYP superfamily is subdivided into families and 

subfamilies based on the amino acid sequence homology. Enzyme families 1 to 4 are 

primarily responsible for the biotransformation of drugs (Fink-Gremmels, 2008). In humans, 

the predominant CYP isoform in the small intestines is CYP3A4 (Zhang et al., 1999).  An avian 

CYP450 of the CYP3A family has been cloned, namely CYP3A37. A homology of 

approximately 60% with human CYP3A4 and of 62% with pig CYP3A29 was found (Ourlin et 

al., 2000). However, relatively little is known about expression and activity of CYP3A enzyme 

in birds (Vermeulen et al., 2002).  

 

An important remark is that P-gp and CYP3A may be functionally linked due to their co-

localization in the intestinal tract and to their similar substrates, but also because they can 

be co-induced as a response to some xenobiotics (Watkins, 1997). Although some 

information is available about the influence of trichothecenes on intestinal P-gp, little data 

is, to our knowledge, available about the effects of these toxins on intestinal CYP enzymes in 

animals. One study reported that CYP1A1 was induced in Caco-2 cells after exposure to 0.03 

µg/ml T-2 (Kruber et al., 2011). However, in vitro cell response to mycotoxins is not always a 

good predictor for the in vivo situation (Rocha et al., 2005).  
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3.2  Effects at the hepatic level 

 

The liver is responsible for energy homeostasis, cholesterol metabolism, blood filtration, bile 

production and processing of nutrients and hemoglobin. Additionally, an important function 

of the liver is detoxification of toxic substances both from endogenous and exogenous origin 

(Wang and Tompkins, 2011). The liver receives blood directly from the gut, via the portal 

vein, and thus the liver can be directly exposed to intestinal absorbed compounds (Figure 7). 

To accomplish the role of detoxifier, the liver also disposes of metabolizing enzymes of 

phase I and II, as described earlier. The biotransformation of drugs before entering the 

systemic circulation is referred to as first-pass metabolism and the liver CYP enzymes are 

considered to be the major protagonists for this process. 

� 
Figure 7. First-pass effect (adapted from van Herwaarden et al., 2009). 
 
The effect of trichothecenes on hepatic CYP enzymes has been investigated in vitro. Hepatic 

CYP3A22 mRNA expression in primary hepatocyte cultures of piglets was induced after T-2 

exposure (0.1 µg/ml) for 48h (Ge et al., 2010; Wang et al., 2011), while CYP1A expression 

was not affected under the same conditions (Wang et al., 2011).  

 

http://www.sciencedirect.com/science/article/pii/S0165614709000388#gr1b1
http://www.sciencedirect.com/science/article/pii/S0165614709000388#gr1b1
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Some in vivo studies have already been performed in other animal species than chickens to 

study the effects of chronic exposure to T-2. The concerned literature is summarized in Table 

8. 

 

Table 8. Summary of performed in vivo studies concerning the effects of dietary exposure to 
trichothecenes on hepatic CYP proteins. 
 

Mycotoxin  Exposure 
time 

Species Target 

CYP 

Effect in the liver Reference 

T-2 toxin and 
diacetoxyscirpenol: 
1.0 mg/kg feed 

1, 4 or 8 
days 

Rat CYP450 Dose-dependent 
decrease in protein 
expression 

Galtier et al., 
1989 

T-2 toxin: 
0.5, 0.25, 0.1 mg/kg 
feed 

5 days Rabbit CYP1A1 
CYP1A2 
CYP2A1 
CYP2B4 

Dose-dependent 
decrease in protein 
expression 

Guerre et al.. 
2000 

T-2 toxin:  
2.102 mg/kg feed 

28 days Pig CYP1A 

CYP2B 
CYP2C 
CYP3A 

Significant lower 
protein expression. 
Decreasing trend for 
the protein 
expression was 
observed, but no 
significant 
differences 

Meissonnier 
et al., 2008 

T-2 toxin: 0.903 
mg/kg feed 

14 days Pig CYP3A Significant lower 
protein activity 

Goossens et 
al., 2013 

 

In the liver, the efflux pumps MDR1 and MRP2 as described earlier, are also present. The 

mRNA expression of MDR1 is lower in the chicken liver compared to the intestinal 

expression, while for MRP2 the opposite is seen (Haritova et al., 2010). These hepatic efflux 

pumps could possibly be altered due to mycotoxin exposure. However, at the start of this 

research no data was available about this subject. 
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The European Union has established the most comprehensive regulations for mycotoxins in 
food and feed. However, these regulations do not comprise all the mycotoxins. In addition, 
mycotoxins rarely occur as a single contaminant which questions the applicability of the 
proposed individual safety levels. From economical point of view Fusarium mycotoxins are 
the most important in our temperate climate regions. Deoxynivalenol is considered the most 
prevalent Fusarium toxin, whereas T-2 toxin the most acute toxic one. Different studies 
already reported the effects of these mycotoxins on production parameters in poultry, but 
action at mRNA and protein level in target organs may be underestimated. Therefore, the 
general aim of this thesis was to investigate the effects of the Fusarium toxins 
deoxynivalenol and T-2 toxin on the intestinal barrier and hepatic function in broiler 
chickens. 

In general, poultry are claimed to be relative resistant to mycotoxicosis. However, nor clear 
dose-response relationship can be found in this species, nor information on their disposition 
and toxicokinetic characteristics in the body. In practice, there is a need for suitable 
biomarkers to assess mycotoxin exposure in vivo.  

It is generally accepted that the presence of mycotoxins can be reduced, but not completely 
avoided. Therefore, mycotoxin detoxifiers are frequently used as feed additives to prevent 
mycotoxicosis. Mycotoxin detoxifying agents can be divided in two different groups 
according to their mode of action, namely adsorbing and biotransforming agents. However, 
little is known about the safety and efficacy of these feed additives. 

 

The scientific aims of part I of this thesis therefore are: 

1. To perform toxicokinetic studies for deoxynivalenol, T-2 toxin and zearalenone in 
order to evaluate the oral bioavailability and toxicokinetic parameters of these 
different mycotoxins in broiler chickens (Chapter 1) 

2. To evaluate different biomarkers to assess deoxynivalenol exposure after chronic 
feeding in broiler chickens, and to test the efficacy and safety of two types of 
mycotoxin detoxifiers, i.e. an adsorbing agent and a biotransforming agent 
(Chapter 2) 

Being an interface between the outside world and the inside body, the gastro-intestinal tract 
is especially equipped for the absorption of essential nutrients, ions and vitamins. At the 
same time it must function as a first line of defense against exogenous toxins and harmful 
micro-organisms. In addition, the oral bioavailability of xenobiotics may be limited by 
biotransformation and/or efflux in the gut and liver. The principal enzymes responsible for 
biotransformation belong to the cytochrome P450 family, with the CYP3A subfamily being 
important. However, the expression and activity of CYP3A have not been studied in poultry. 
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CYP450 enzymes are also known to interact with efflux transporter proteins such as P-
glycoprotein and other multidrug resistance-associated proteins. The transporter systems 
and biotransformation enzymes are present in both small intestines and liver. These organs 
consist of continuously proliferating and differentiating cells, and are thus important target 
organs of trichothecenes. Moreover, as mycotoxin adsorbing agents pass through the whole 
digestive tract, their influence on the intestinal barrier function may also be questioned. 
Effects of deoxynivalenol are mainly observed at the intestinal level in several animal 
species. On the other hand, significant effects of T-2 on biotransformation enzymes have 
already been reported in other animal species. Therefore, besides deoxynivalenol, also a 
study with T-2 was included in this thesis. 

 

The scientific aims of part II of this thesis are thus: 

1. To evaluate the influence of deoxynivalenol and an adsorbing agent on the intestinal 
barrier and liver function in broiler chickens (Chapter 3) 

2. To evaluate the gene expression and activity of CYP3A in liver and small intestines of 
broiler chickens (Chapter 4) 

3. To investigate the effects of T-2 toxin on the gene expression of CYP450 enzymes and 
drug efflux transporters and on the activity of CYP3A, both in liver and small 
intestines of broiler chickens (Chapter 5) 
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Chapter 1. 
 

Toxicokinetic studies of three important Fusarium mycotoxins: 
deoxynivalenol, T-2 toxin and zearalenone 

 

 

 

 

 

 

 

 

 

 

Adapted from: Osselaere, A., Devreese, M., Goossens, J., Vandenbroucke, V., De Baere, S., 

De Backer, P., Croubels, S. (2013). Toxicokinetic study and absolute oral bioavailability of 

deoxynivalenol, T-2 toxin and zearalenone in broiler chickens. Food and Chemical Toxicology 

51, 350-355. 
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ABSTRACT 

Mycotoxins lead to economic losses in animal production. A way to counteract 

mycotoxicosis is the use of detoxifiers. The European Food Safety Authority stated that the 

efficacy of detoxifiers should be investigated based on toxicokinetic studies. Little 

information is available on the absolute oral bioavailability and the toxicokinetic parameters 

of deoxynivalenol, T-2 and zearalenone in broilers. Toxins were administered intravenously 

and orally in a two-way cross-over design. For deoxynivalenol a bolus of 0.75 mg/kg BW was 

administered, for T-2 toxin 0.02 mg/kg BW and for zearalenone 0.3 mg/kg BW. Blood was 

collected at several time points. Plasma levels of the mycotoxins and their metabolite(s) 

were quantified using LC-MS/MS methods and toxicokinetic parameters were analyzed. 

Deoxynivalenol has a low absolute oral bioavailability (19.3%). For zearalenone and T-2 no 

plasma levels above the limit of quantification were observed after an oral bolus. Volumes of 

distribution were recorded, i.e. 4.99 L/kg, 0.14 L/kg and 22.26 L/kg for deoxynivalenol, T-2 

toxin and zearalenone, respectively. Total body clearance was 0.12 L/min.kg, 0.03 L/min.kg 

and 0.48 L/min.kg for deoxynivalenol, T-2 toxin and zearalenone, respectively. After IV 

administration, T-2 toxin had the shortest elimination half-life (3.9 min), followed by 

deoxynivalenol (27.9 min) and zearalenone (31.8 min). 
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INTRODUCTION 

Many fungi species are able to produce and secrete low-molecular-weight compounds, 

called mycotoxins. The occurrence of mycotoxin-producing moulds is a worldwide problem, 

but the nature and the quantity of produced mycotoxins depend on the interaction of 

several factors (Bhat et al., 2010). Moulds belonging to the Fusarium genus are commonly 

present in moderate climate zones (Edwards, 2011). These fungi are responsible for the 

production of trichothecenes, which are divided in four groups. Type A (e.g. T-2 toxin) and 

type B (e.g. deoxynivalenol) are the most important. Other mycotoxins like zearalenone are 

also produced by these Fusarium moulds (Devegowda and Murthy, 2005).  

Due to the threat for the animal health, the occurrence of these mycotoxins in animal feed 

can lead to important economic losses. Especially the poultry industry is confronted with this 

problem, as cereal grains form the major part of the animals diet (Anonymous, 2011). 

Deoxynivalenol (DON), known colloquially as “vomitoxin”, causes decreased weight gain, 

anorexia and emesis in animals (Pestka, 2007). T-2 toxin (T-2) mostly induces cutaneous 

lesions of the oral cavity and intestinal membrane in poultry (Weber et al., 2010). A decrease 

in egg production has also been reported after chronic exposure to T-2 (Diaz et al., 1994). On 

the other hand, zearalenone (ZEN) induces reproductive disorders (Devegowda and Murthy, 

2005). 

Recommended maximum levels in poultry feed were stated by the European Union for DON 

in complete feed (5 mg/kg). For ZEN, maximum levels were set for cereals and cereal 

products at 2 mg/kg and for maize by-products at 3 mg/kg. For T-2 toxin on the other hand, 

no maximum levels for the feed were pointed out until now (Anonymous, 2006, 2011). 

Although these maximum levels are a good starting-point, other actions have to be 

undertaken to reduce the risk for mycotoxicosis. The use of mycotoxin detoxifying agents is 

a common way to prevent the negative impacts of mycotoxins (Diaz et al., 2005; Döll et al., 

2004). These feed additives can be divided in two different classes, depending on their mode 

of action: adsorbing and biotransforming agents. The first group is able to bind the 

mycotoxin in the intestinal tract of the animal; the second group reduces the mycotoxin to 

(a) less toxic metabolite(s).  
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Evidently, the efficacy of these feed additives has to be proven. The European Food Safety 

Authority (EFSA) states that toxicokinetic studies have to be performed for the investigation 

of the bioavailability and the absorption/excretion of mycotoxins in combination with 

detoxifying agents. Trials have to be performed with respect to the recommended maximum 

levels for the toxins in animal feed. For each mycotoxin different end-points have been 

proposed to test the efficacy of mycotoxin detoxifying agents, except for the emerging toxin 

T-2. For DON and ZEN for example, the blood serum or plasma concentration levels of the 

main toxin and its metabolite(s) have to be determined (Anonymous, 2009). For DON, this is 

deepoxy-deoxynivalenol (DOM-1) as main metabolite, and for ZEN these are α-zearalenol (α-

ZEL) and β-zearalenol (β-ZEL). 

However, little or no information is available on the absolute oral bioavailability and the 

toxicokinetic parameters of mycotoxins in animals, especially for poultry. To the best of our 

knowledge there are only two reported studies: one on the excretion of 14C-labeled DON in 

white leghorns chickens after a single oral bolus (Prelusky et al., 1986) and another study 

about the excretion and tissue distribution of tritium-labeled T-2 toxin in chicks (Chi et al., 

1978). These studies only observed the presence of radio-labeled mycotoxins in function of 

the time, but no toxicokinetic parameters were calculated and thus no data are available 

concerning the absolute oral bioavailability of DON, T-2 and ZEN in broiler chickens. For this 

reason, toxicokinetic trials for DON, T-2 and ZEN were performed with broilers in a two-way 

cross-over design. The mycotoxins were administered by oral and intravenous bolus, in order 

to calculate the absolute oral bioavailability of the mycotoxins. The calculated toxicokinetic 

parameters can be used in further research to investigate the efficacy of mycotoxin 

detoxifying agents, e.g. to study their effect on the absorption and bioavailability of 

mycotoxins. Moreover, knowledge on the kinetic parameters of toxins is essential to 

understand their mode of action and to evaluate animal and human health risks.  In addition, 

we also quantified the plasma levels of the metabolites DOM-1, α-ZEL and β-ZEL as proposed 

by EFSA, after administration of the recommended maximum levels for mycotoxins in animal 

feed. 
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MATERIALS AND METHODS  

Animals  

Twenty-four 3-week-old broiler chickens (Ross 308, local commercial poultry farm) were 

housed according to the requirements of the European Union (Anonymous, 2007). The 

animals were kept in three groups, each consisting of 8 animals (4 ♂ and 4 ♀), in floor pens 

with wood shavings. The applied light cycle was the same as on the commercial farm (20 

hours light/ 4 hours dark). The experiments started after 1 week of acclimatization allowing 

the animals to adapt to the environment. During the whole experiment the animals were fed 

with blank feed ad libitum. This feed was commercially available broiler feed (Bromix Plus®) 

obtained from Versele-Laga (Deinze, Belgium). It was considered as blank feed after analysis 

for the presence of mycotoxins by a validated multi-mycotoxin liquid chromatography-

tandem mass spectrometry (LC-MS/MS) method (Fytolab, Zwijnaarde, Belgium). Following 

mycotoxins were analyzed in the feed with their respective limit of detection: aflatoxin B1 (1 

µg/kg), aflatoxin B2 (1 µg/kg), aflatoxin G1 (1 µg/kg), aflatoxin G2 (1 µg/kg), cytohalasin E (2 

µg/kg), DON (100 µg/kg), 3-acetyl-DON (100 µg/kg), fumonisin B1 (50 µg/kg), fumonisin B2 

(50 µg/kg), HT-2 (50 µg/kg), T-2 (20 µg/kg), nivalenol (100 µg/kg), ochratoxin A (0.5 µg/kg), 

ZEN (10 µg/kg), α-zearalenol (20 µg/kg), β-zearalenol (20 µg/kg). None of the mentioned 

toxins were detected above the limit of detection. The animal experiments were approved 

by the Ethical Committee of the Faculty of Veterinary Medicine, Ghent University (EC 

2010/176). After the experiment, the animals were humanely euthanized with an 

intravenous injection of T61® containing embutramide, mebenzonium iodide and tetracain 

hydrochloride (Intervet, Brussels, Belgium).  

Mycotoxins  

The mycotoxins DON, T-2 and ZEN used for the toxicokinetic studies were purchased in 

powder form from Fermentek LTD (Jerusalem, Israel). Mycotoxins were dissolved in ethanol 

pro analysis and afterwards diluted in water of HPLC quality (1/8 for DON; 1/20 for T-2; 1/2 

for ZEN, v/v) in order to obtain stock solutions (DON: 1 mg/ml, T-2: 50 µg/ml, ZEN: 0.5 

mg/ml), which were used for dosing the broiler chickens.  
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The administered dose of DON was based on the recommended maximum concentrations in 

poultry feed (5 mg/kg feed) (Anonymous, 2006). A dose of 2 mg/kg was applied for ZEN, 

according to the maximum level for cereals and cereal products with the exception of maize 

by-products (Anonymous, 2006). For T-2, the results of the analysis of 67 contaminated feed 

samples by Monbaliu et al. (2010) were taken into account. During this trial the highest 

reported level of T-2 was 112 µg/kg (Monbaliu et al., 2010). Based on these results, the dose 

for T-2 toxin was set at 0.1 mg/kg feed. In addition, the daily feed intake of broilers was 

taken into account (150 g/kg BW). Thus, the administered doses for DON, T-2 and ZEN were 

respectively, 0.75 mg/kg BW, 0.02 mg/kg BW and 0.3 mg/kg BW (Table 1). 

All standards used for the analytical experiments (DON, deepoxy-deoxynivalenol (DOM-1), T-

2 toxin (T-2), HT-2 toxin (HT-2), ZEN, α-zearalenol (α-ZEL), β-zearalenol (β-ZEL), α-zearalanol 

(α-ZAL), β-zearalanol (β-ZAL) and zearalanone (ZAN)) were obtained from Sigma-Aldrich 

(Bornem, Belgium) and stored at ≤ -15°C. The internal standards (IS) 13C15-DON, 13C24-T-2 

and 13C18-ZEN were purchased as 25 µg/ml solutions in acetonitrile (ACN) from Biopure 

(Tulln, Austria) and stored at ≤ -15°C. Stock solutions of 1 mg/ml were prepared for each 

compound in methanol, except for T-2 (0.5 mg/ml in methanol) and for DON (1 mg/ml in 

acetonitrile). The standard of DOM-1 was purchased as a solution of 50 µg/ml in acetonitrile. 

Per group of compounds (i.e. DON and DOM-1, T-2 and HT-2, ZEN and its metabolites), 

combined working solutions were prepared by diluting appropriate volumes of the stock 

solutions with ACN/water (50/50, v/v). These working solutions were used to prepare 

matrix-matched calibrators and quality control samples in plasma. For the internal 

standards, working solutions of 1 µg/ml in ACN/water (50/50, v/v) were prepared. 

 

Experimental protocol 

The twenty-four animals were divided into three groups of eight animals, one group for each 

mycotoxin. The animal experiments were performed in a two-way cross-over design and 

mycotoxins were administered intravenously (IV) or orally (PO). In brief, for each mycotoxin, 

four animals received an oral bolus and four animals received the mycotoxin intravenously. 

After a wash-out period was applied (Table 1), the animals that previously received an oral 
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bolus, received at that time an intravenous bolus and vice versa. For the intravenous 

injection in the wing vein a 25G needle (0.5 x 16 mm, Becton Dickinson, Temse, Belgium) was 

used. The mycotoxin was administered orally using a crop tube. Due to the high 

concentration of lipids in chicken plasma after feeding (Ferlazzo et al., 2011), the obtained 

plasma is more viscous resulting in lower workability. Therefore, feed was withdrawn from 6 

hours before, until 4 hours post-administration (p.a.) of the toxins. Following the toxin 

administration, blood samples were taken from the leg vein at different time points: at 0 

(just before administration) and at several time points post-administration depending on the 

administered mycotoxin (Table 1). Blood was collected in heparinized tubes. Samples were 

centrifuged at 2851 g and 4°C for 10 minutes and plasma was stored at ≤ -15°C until further 

analysis. 

 

Table 1. Design of the animal experiment. 
 
Mycotoxin     Dose 

 (mg/kg BW) 
Wash-out 
period (days) 

Time points of blood sampling  

Deoxynivalenol 0.75 2 0, 10, 20, 30, 40 and 50 min, 1, 1.5, 
2, 3, 4, 6 and 8h 

T-2 toxin 0.02 2 0, 2, 5, 10, 15, 20, 30, 40 and 50 
min, 1h 

Zearalenone  
 
 

0.30 7 0, 10, 20, 30, 40 and 50 min, 1, 1.5, 
2, 3, 4, 6, 8, 10, 12, 24, 30, 36, 48 
and 72h 

 

Plasma analysis 

Quantification of the plasma levels of DON and its major metabolite DOM-1 was performed 

using an in-house developed and validated LC-MS/MS method (De Baere et al., 2011), while 

little modifications were applied for the sample preparation. Briefly, 250 µl of plasma were 

spiked with 12.5 µl of the IS working solution (13C15-DON, 1 µg/ml), followed by the addition 

of 750 µl of acetonitrile. Afterwards, the samples were vortexed (15 sec) and centrifuged (10 

min, 7826 g, 4°C). The supernatant was evaporated using a gentle nitrogen stream (40 ± 

5°C). The dry residue was reconstituted in 200 µl of a 95/5 (v/v) mixture of mobile phase 

A/B. The mobile phase A consisted of 0.1 % glacial acetic acid (VWR, Leuven, Belgium) in 
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water of UPLC quality. Mobile phase B consisted of methanol of UPLC quality. After vortex 

mixing and filtering through a Millex® GV-PVDF filter (0.22 µm), the sample was transferred 

to an autosampler vial, and an aliquot (10 µl) was injected onto the LC-MS/MS instrument.  

The same sample preparation procedure was applied for the analysis of T-2 and its 

metabolite HT-2. 13C24-T-2 was used as the IS. After the evaporation of the supernatant, the 

dry residue was reconstituted in 200 µl of a 70/30 (v/v) mixture of mobile phase A/B with 

mobile phase A consisting of 5 mM ammonium acetate (VWR, Leuven, Belgium) in 

water/methanol/acetic acid (94/5/1, v/v/v) and mobile phase B of 5 mM ammonium acetate 

in methanol/water/acetic acid (97/2/1, v/v/v). A 10-µl aliquot was injected onto the LC-

MS/MS instrument (De Baere et al., 2011). 

The plasma concentrations of ZEN and its metabolites α-ZEL, β-ZEL, α-ZAL, β-ZAL and ZAN 

were determined using an in-house validated LC-MS/MS method. To 250 µl of plasma were 

added 12.5 µl of the IS working solution (13C18-ZEN, 1 µg/ml) and 750 µl of acetonitrile, as for 

DON and T-2 analysis. The dry residue was then reconstituted in 200 µl of a mixture of 

water/methanol (85/15, v/v). After vortex mixing, the sample was passed through a Millex® 

GV-PVDF filter and transferred to an autosampler vial. An aliquot (10 µl) was injected onto 

the LC-MS/MS instrument.  

The LC-MS/MS instrument consisted of a Surveyor® type MS pump Plus and Autosampler 

Plus HPLC in combination with a TSQ® Quantum UltraTM mass spectrometer (Thermo Fisher 

Scientific, Breda, The Netherlands). Chromatographic separation of the analytes of interest 

was achieved on a Hypersil Gold column (50 mm x 2.1 mm i.d., dp: 1.9 μm) using 0.01 % 

acetic acid in water (A) and acetonitrile (B) as mobile phase. A gradient elution was 

performed at a flow rate of 300 μl/min and a column temperature of 45°C. The mass 

spectrometer was operated in the selected reaction monitoring (SRM) mode and for each 

compound the two most intense precursor ion > product ion transitions were selected for 

quantification and qualification, respectively. The following transitions were used: DON: m/z 

355.1 > 265.2 and 355.1 > 295.1, DOM-1: m/z 339.0 > 249.0 and 339.0 > 59.1 and 13C15-DON: 

m/z 370.1 > 279.2 and 370.1 > 310.1; T-2: m/z 484.1 > 215.1 and 484.1 > 185.1, HT-2: m/z  

442.0 > 263.1 and 442.0 > 215.1 and 13C24-T-2: m/z 508.2 > 229.1 and 508.2 > 198.1; ZEN: 

m/z 317.3 > 131.0 and 317.3 > 175.0, α-ZEL: m/z 319.2 > 275.1 and 319.2 > 301.1,  β-ZEL: 
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m/z 319.2 > 301.1 and 319.2 > 275.1, ZAN: m/z 319.2 > 205.0 and 319.2 > 275.1, α-ZAL: 

321.2 > 277.1 and 321.2 > 303.1, β-ZAL: m/z 321.2 > 277.1 and 321.2 > 303.1 and for 13C18-

ZEN: 335.3 > 185.1 and 335.3 > 169.1.  

The limit of quantification (LOQ) of DON, DOM-1, T-2 and HT-2  ranged from 1 to 2.5 ng/ml 

(De Baere et al., 2011), while for ZEN and its metabolites LOQ values between 1 to 5 ng/ml 

were obtained. All values below the LOQ were not included in the plasma concentration-

time curves and the toxicokinetic analysis. Limits of detection (LOD) ranged from 0.01 to 

0.63 ng/ml for DON, T-2 and their metabolites (De Baere et al., 2011) and for ZEN and its 

metabolites from 0.005 to 0.07 ng/ml.  

Toxicokinetic analysis 

The toxicokinetic parameters were analyzed using the software program WinNonlin, Version 

6.2.0 (Phoenix, Pharsight corp., USA). A non-compartmental model was used to determine 

the area under the plasma concentration-time curve (AUC0→∞), elimination rate constant 

(kel), half-life of elimination (t1/2el), volume of distribution (Vd), clearance (Cl), maximum 

plasma concentration (Cmax) and time to maximum plasma concentration (Tmax). The 

absolute oral bioavailability (F) was calculated from the following equation: 

 x 100.  
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RESULTS 

Toxicokinetic study of deoxynivalenol 

The plasma concentration-time profiles of DON, after a single oral or intravenous bolus, are 

shown in Figure 1. No plasma concentrations of the main metabolite of DON, DOM-1, could 

be detected above the LOQ.  Moreover, from 2 hours p.a. no levels above LOQ could be 

detected for DON. Main toxicokinetic parameters of DON are summarized in Table 2.  The 

AUC after IV administration was much higher than after oral administration, which correlates 

with a low absolute oral bioavailability (F). F was determined to be 19.3 ± 7.42%.  

 

Figure 1. Plasma concentration-time profile of DON after a single oral or intravenous 
administration of DON (0.75 mg/kg BW) to eight broiler chickens. Results are presented as 
mean values + SD. 
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Toxicokinetic study of T-2 toxin 

After a single oral bolus of T-2, no plasma levels above the LOQ could be observed for T-2 

and its metabolite HT-2. The plots of the plasma concentration-time curve after an 

intravenous bolus of T-2 are depicted in Figure 2. Plasma concentrations of T-2 were only 

detected until 20 min and of the main metabolite HT-2 only 2 min post intravenous 

administration with a mean concentration of 3.9 ± 0.06 ng/ml. Five minutes post-

administration only half of the animals showed plasma levels of HT-2 above the LOQ (LOQ = 

2.5 ng/ml). Mean plasma concentrations of these four animals were 1.3 ± 0.28 ng/ml. 

Thereafter, no plasma concentrations of HT-2 above the limit of quantification could be 

observed (data not shown). Toxicokinetic parameters of T-2 are shown in Table 2.  

 

Figure 2. Plasma concentration-time profile of T-2 after a single intravenous administration 
of T-2 (0.02 mg/kg BW) to eight broiler chickens. Results are presented as mean values + SD. 
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Toxicokinetic study of zearalenone 

After a single oral bolus of zearalenone (0.3 mg/kg BW) no plasma concentrations above the 

LOQ could be detected for ZEN and its metabolites. The plasma concentration-time profile 

after a single bolus of ZEN given intravenously is shown in Figure 3. No plasma levels of the 

metabolites could be detected (<LOD), except for α-ZEL. However, the detected 

concentrations of α-ZEL were below the limit of quantification of 5 ng/ml. 

 

Figure 3. Plasma concentration-time profile of ZEN after a single intravenous administration 
of ZEN (0.3 mg/kg BW) to eight broiler chickens. Results are presented as mean values + SD. 
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Table 2. Main toxicokinetic parameters of DON, T-2 and ZEN after oral or intravenous 
administration of the toxin in broiler chickens (n=8). Results are presented as mean values ± 
SD. 
 
Toxicokinetic parameters DON (PO) DON (IV) T-2 (IV) ZEN (IV) 

AUC0-inf (ng.min/ml) 1281 ± 481.7 6198 ± 983.4 889 ± 363.2 626 ± 60.0 
Cmax (ng/ml) 26.1 ± 14.64 167.9 ± 56.76 185.4 ± 79.79 32.1 ± 9.91 
Tmax (min) 35.0 ± 8.37 - - - 
Cl/F (PO) or Cl (IV) (L/min.kg) 0.65 ± 0.217 0.12 ± 0.024 0.03 ± 0.008 0.48 ± 0.050 
Vd/F (PO) or Vd (IV) (L/kg) 35.72 ± 15.563 4.99 ± 1.168 0.14 ± 0.045 22.26 ± 15.148 
kel (1/min) 0.02 ± 0.008 0.03 ± 0.006 0.19 ± 0.061 0.03 ± 0.021 
T 1/2el (min) 38.2 ± 11.19 27.9 ± 6.89 3.9 ± 0.98 31.8 ± 20.60 
F (%) 19.3 ± 7.42 - - - 
(AUC, area under the curve; Cmax, maximum plasma concentration; Tmax, time to maximum plasma 
concentration; Cl, clearance; F, bioavailability; Vd, volume of distribution; kel, elimination rate constant; T1/2el, 
half-life of elimination) 
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DISCUSSION 

Recently, new bolus models have been developed at our department for the in vivo efficacy 

testing of mycotoxin detoxifying agents (Devreese et al., 2012).  The bolus models have been 

applied for the mycotoxin DON in broilers, but not for other mycotoxins such as T-2 toxin 

and ZEN. Little or no information is available to this day about the absolute oral 

bioavailability and toxicokinetic parameters of DON, T-2 and ZEN in broilers. This information 

could also be helpful for the evaluation of the health risk caused by the different toxins in 

chickens compared to other animal species.  

To the best of our knowledge, only Prelusky et al. (1986) reported plasma levels of DON in 

chickens 2-2.5 hours after administration of a single oral bolus of 14C-labeled DON to White 

Leghorns hens. Tissue distribution and excretion of tritium-labeled T-2 toxin in chicks was 

reported earlier (Chi et al., 1978). However, these studies did not analyze the parent toxins 

and their possible metabolites separately, but only the disappearance of the radioactivity in 

plasma.  

Toxicokinetic studies were already performed for several mycotoxins in other animal species 

(Goyarts and Dänicke, 2006; Shin et al., 2009). Extrapolation of these results to chickens is 

however not possible, as poultry possess different physiology and biotransformation of 

xenobiotics, and chickens revealed to be less sensitive to the risk of mycotoxicosis compared 

to other animal species (Devegowda and Murthy, 2005).  For these reasons three separate 

toxicokinetic studies were performed for the mycotoxins DON, T-2 and ZEN in broiler 

chickens. Plasma concentrations of the toxins and their main metabolites were analyzed 

using validated LC-MS/MS methods. Mass spectrometry has the important advantage to be 

sensitive and to present an unambiguous identification of specific compounds.  All the 

mycotoxins were administered as a standard solution, thus interaction with other 

mycotoxins was avoided. Moreover, animals received blank feed during one week before the 

start of the study which excludes the presence of baseline levels of the toxins before the 

start of the experiments. 

The toxicokinetic study of DON revealed a low absolute oral bioavailability of 19.3 ± 7.42%. 

Prelusky et al. (1986) already reported a rapid transport of DON-derived radioactivity 
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through the alimentary tract of chickens, contributing to the poor absorption of the toxin.  In 

sheep even a lower F has been reported (7.5%) (Prelusky et al., 1985), but in pigs the 

bioavailability is higher after a single oral bolus (54%) and even much higher (89%) after 

chronic exposure to DON (Goyarts and Dänicke, 2006). These results are in accordance with 

the rank order of susceptibility to the harmful effects of DON; i.e. pigs > poultry and 

ruminants. In the present study, no clinical signs of intoxication were observed following 

administration of DON in broilers. A high plasma clearance (0.12 ± 0.024 L/min.kg) might 

also explain the relative tolerance of poultry to DON. In pigs, after a single intravenous 

administration of DON, the observed clearance was 0.00381 L/min.kg, which is indeed 

significantly lower compared to chickens (Goyarts and Dänicke, 2006).  DOM-1 is known to 

be produced via intestinal microbial activity rather than by the liver or other organs.  

However, no plasma levels of DOM-1 above the LOQ could be detected in this study, maybe 

due to a low absorption. The conjugated forms of DON and its metabolites were not 

analyzed, as the main goal of this study was to evaluate the absolute oral bioavailability of 

the parent toxin. Moreover, the analysis of DON alone without DON-glucuronide was 

reported to be a suitable biomarker for DON exposure and toxicity (Wu et al., 2007).  

The results of the toxicokinetic study of T-2 revealed that no plasma levels of T-2 and HT-2 

could be detected after a single oral bolus of the mycotoxin. Retention of radioactivity in 

liver and bile after oral administration of tritium-labeled T-2 in chickens, indicate elimination 

of the absorbed toxin and its metabolites in the intestinal tract through the biliary excretion 

system (Chi et al., 1978). However, after one intravenous bolus of the toxin, plasma levels 

could be observed for T-2 and its main metabolite HT-2.  Twenty minutes after the single 

bolus IV administration, no plasma levels could be observed for T-2 anymore, which can be 

explained by the limited volume of distribution (0.14 ± 0.045 L/kg) and the rather high 

clearance of this toxin (0.03 ± 0.008 L/min.kg). This results in a rapid elimination half-life (3.9 

± 0.98 min). On the other hand, T-2 toxin is known to be rapidly metabolized to different 

metabolites, which are more polar (Yoshizawa et al., 1980). This is in accordance with our 

results: HT-2 was detected already 2 minutes after administration of T-2. No other 

toxicokinetic studies with T-2 in broilers are available to compare our results with.   

Concentrations of the glucuronide-forms of T-2 and HT-2 were not investigated during our 
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study, as glucuronidation of these compounds was only reported in rats and pigs until now 

(Wu et al., 2009). 

The toxicokinetic parameters of ZEN have already been studied in different animal species, 

especially in pigs due to the high sensitivity to ZEN of this animal species (Malekinejad et al., 

2006).  In the present study, no adverse effects were observed following the administration 

of ZEN or its solvent (ethanol) in broilers. During our study, no plasma levels could be 

observed for ZEN and its metabolites after one oral bolus of 0.3 mg/kg BW in broilers. ZEN is 

known to be rapidly absorbed after oral administration.  However, the degree of absorption 

is difficult to determine in animals due to its extensive biliary excretion (Zinedine et al., 

2007). After administration of a single bolus of 5.8 µg ZEN/kg BW in naturally contaminated 

wheat to broilers, ZEN and α-ZEL could be detected, but only in 6 of the 32 plasma samples 

and values were around the detection limits (10 ng/ml for ZEN and 5 ng/ml for α-ZEL) 

(Dänicke et al., 2001). A likely explanation could be the low oral bioavailability of ZEN, as 

reported in rats where F equals 2.7 % after oral administration of ZEN at a dose of 8 mg/kg 

BW (Shin et al., 2009). In our study, the maximum recommended level of 2 mg/kg for ZEN in 

cereals and cereal products was respected (Anonymous, 2006). Although this concentration 

was probably too low to obtain plasma concentrations after a single oral bolus,it has to be 

noticed that no levels above 1.8 mg/kg feed were reported for ZEN in Europe in cereal grains 

and animal feeds (Gromadzka et al., 2008). Moreover, in the study of Monbaliu et al. (2010), 

where European feed samples were analyzed with LC-MS/MS, the minimum and maximum 

level ranged between 0.058 and 0.387 mg/kg of ZEN.  

However, after one intravenous bolus of ZEN, plasma levels were observed for ZEN and α-

ZEL. In broilers and pigs, α-ZEL has been reported to be the main metabolite of ZEN (Dänicke 

et al., 2005; Dänicke et al., 2001).  These findings are in contrast with the results of an in 

vitro study performed to investigate the hepatic transformation of ZEN. In both the hepatic 

microsomes and the post-mitochondrial fraction ZEN was mainly transformed to β-ZEL in 

chickens (Malekinejad et al., 2006). In turkeys α-ZEL was also reported to be the only 

detectable metabolite of ZEN after 2-weeks of feeding of 800 mg ZEN/kg diet (Olsen et al., 

1986). However, in ruminants β-ZEL is known to be the major metabolite of ZEN (Dong et al., 

2010), which can be a possible determinant of the species differences in susceptibility for 
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ZEN (Malekinejad et al., 2006). Compared to other animals, chickens revealed to have a 

lower glucuronidation capacity for ZEN (Malekinejad et al., 2006), for this reason 

glucuronide-forms of ZEN and its metabolites were not analyzed.  

Compared to other animals, such as pigs (Cl= 0.048 L/min.kg; Vd= 10.48 L/kg) and goats (Cl= 

0.003 L/min.kg; Vd= 7.32 L/kg), broilers seem to have the highest clearance (0.48 ± 0.050 

L/min.kg) and also a high volume of distribution (22.26 ± 15.148 L/kg) for ZEN (Dong et al., 

2010; Dänicke et al., 2005). These results confirm the statement that the susceptibility to the 

estrogenic effects of ZEN cannot be explained by circulating ZEN and its metabolites (Dong et 

al., 2010).  

From our findings, we can conclude that oral bolus models respecting the maximum 

recommended levels in feed to test the efficacy of mycotoxin detoxifying agents in vivo 

cannot be applied for the mycotoxins T-2 and ZEN, due to their low absolute oral 

bioavailability in broilers. Administration of higher doses can offer a possibility, but can lead 

to higher risks for acute mycotoxicosis. On the other hand, it is also clear that plasma or 

blood concentrations of the tested parent toxins and their main reported metabolites as 

stated by the EFSA cannot be used as biomarkers to test the efficacy of mycotoxin 

detoxifiers in broilers, when maximum recommended levels in feed are respected.  
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Chapter 2. 
 

Evaluation of different biomarkers to assess deoxynivalenol exposure and 
efficacy and safety testing of mycotoxin detoxifiers 

 

 

 

 

 

 

 

 

 

 

Adapted from: Osselaere, A., Devreese, M., Watteyn, A., Vandenbroucke, V., Goossens, J., 

Hautekiet, V., Eeckhout, M., De Saeger, S., De Baere, S., De Backer, P., Croubels, S. (2012). 

Efficacy and safety testing of mycotoxin-detoxifying agents in broilers following the 

European Food Safety Authority guidelines. Poultry Science 91, 2046-2054. 
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ABSTRACT 

Contamination of feeds with mycotoxins is a worldwide problem and mycotoxin detoxifying 

agents are used to decrease their negative impact. The European Food Safety Authority 

(EFSA) recently stated guidelines and end-points for the efficacy testing of detoxifiers. Our 

study revealed that plasma concentrations of deoxynivalenol and deepoxy-deoxynivalenol 

were too low to assess efficacy of two commercially available mycotoxin detoxifying agents 

against deoxynivalenol after 3 weeks continuous feeding this mycotoxin at concentrations of 

2.44±0.70 mg/kg feed and 7.54±2.20 mg/kg feed in broilers. This correlates with the poor 

absorption of deoxynivalenol in poultry. A safety study with two commercially available 

detoxifying agents and veterinary drugs showed innovative results with regard to the 

pharmacokinetics of two antibiotics after oral dosing in the drinking water. The plasma and 

kidney tissue concentrations of oxytetracycline were significantly higher in broilers receiving 

a biotransforming agent in the feed compared to control birds. For amoxicillin the plasma 

concentrations were significantly higher for broilers receiving an adsorbing agent in 

comparison to birds receiving the biotransforming agent, but not to the control group. 

Mycotoxin detoxifying agents can thus interact with the oral bioavailability of antibiotics 

depending on the antibiotic and detoxifying agent, with possible implications for practical 

use of these agents. 
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INTRODUCTION 

Food safety is an important issue receiving a lot of scientific attention worldwide. The 

presence of mycotoxins, produced as secondary metabolites of toxigenic moulds, in food 

and feed is one of the most important concerns. Also climate changes, characterized by an 

increase of temperature and relative humidity have a great impact on plants and their 

pathogens (Ingram, 1999; Miraglia et al., 2009). Both parameters, in combination with the 

rising level of CO2 in the atmosphere have an influence on the mycotoxin production. The 

changed production of mycotoxins is correlated mainly to the predominance of Fusarium 

graminearum, a fungus responsible for the production of zearalenone and of mycotoxins 

belonging to the class of trichothecenes (Paterson and Lima, 2010).  

Consequences of climate changes for the food system comprise all the stages from ‘farm to 

fork’ and thus not only the pre-harvest conditions, but also other parameters are important 

such as quality and temperature of the grain storage facilities. Poor management can lead to 

microbial activity and loss of quality, for this reason Good Agricultural Practice (GAP) is 

essential to minimize mycotoxin development (Magan and Aldred, 2007). Mycotoxins are 

very resistant to all kinds of production steps, even brewing, malting and extrusion-

processes are not a threat for these contaminants (Scudamore et al., 2008).  

Mycotoxins exert several direct adverse effects on human and animal health, while the 

excretion of some mycotoxins in animal products such as milk can also contribute to the 

consumers’ exposure (Fink-Gremmels, 2008). Apart from the health problem, mycotoxins 

can cause important economic losses. Their toxic properties depend on the particular 

mycotoxin and its dose. Deoxynivalenol (DON) for example, which is one of the most 

prevalent mycotoxins (Monbaliu et al., 2010), causes vomiting and diarrhea when ingested in 

high doses, especially in pigs.  In lower concentrations it induces weight loss and feed refusal 

(Miller et al., 2001). Poultry on the other hand are very resistant to DON, for example 

concentrations above 5 mg per kg diet are necessary to cause detrimental effects (Awad et 

al., 2006).  

One of the most recent methods to counteract mycotoxicosis in animals is the use of 

mycotoxin detoxifying agents in feed. These detoxifiers are added to animal feed and act in  
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the digestive tract of the animal. The additives can consist of different components and 

depending on their mode of action they are ‘adsorbing’ or ‘biotransforming’ agents. The first 

class is able to bind mycotoxins and to reduce their gastro-intestinal absorption, the second 

one degrades mycotoxins to less or non-toxic metabolite(s) (Anonymous, 2010).  Research 

has already been performed on the efficacy of these feed additives using both in vitro and in 

vivo assays (Avantaggiato et al., 2004; Avantaggiato et al., 2005; Galvano et al., 2001). 

Testing under laboratory circumstances is difficult since the intestinal conditions are almost 

impossible to reproduce. Adsorption isotherms and different models like intestinal cell lines 

and Ussing chambers using intestinal tissues, can be used to study these detoxifiers in vitro 

(Clarke, 2009; Lemke et al., 1998). Although in vitro trials are a rapid screening method to 

choose which agents can be further tested in vivo, animal trials remain essential.  

The set up of in vivo trials is an important point of discussion. The European Food Safety 

Authority (EFSA) has recently published a scientific opinion about the efficacy and safety 

testing of mycotoxin detoxifying agents and focusing on the experimental design of in vivo 

studies (Anonymous, 2010). The EFSA has also pointed out several relevant end-points for 

the different mycotoxins. For DON the analysis of this mycotoxin and its metabolite 

deepoxy-deoxynivalenol (DOM-1) in blood has been indicated as the most relevant end-

point. On the other hand EFSA also pays importance to the safety testing of mycotoxin 

detoxifying agents. Possible interactions with respect to nutrients and/or veterinary drugs 

absorption should also be investigated (Anonymous, 2010). 

The first aim of this present study was to test whether the guidelines published by EFSA can 

be applied for the in vivo efficacy testing of two commercially available mycotoxin 

detoxifying agents with respect to DON in broilers.  We performed an in vivo trial with 

broilers according to these guidelines and tested the most relevant endpoints for the 

mycotoxin DON as stated by EFSA. A second aim of this study was to test if the two selected 

mycotoxin detoxifying agents can have an influence on the pharmacokinetics and tissue 

residues of commonly used antibiotics in poultry medicine. 
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MATERIALS AND METHODS 

Materials 

DON, used for artificial contamination of the feed, was produced with a reference strain 

obtained from the MUCL (Mycothèque de l’Université Catholique de Louvain, Belgium). Both 

antibiotics, oxytetracycline (Oxytetracycline 80%®) and amoxicillin (Amoxicilline 70%®), were 

obtained from Kela Veterinaria (Sint-Niklaas, Belgium). Blood was collected in heparinized 

tubes (Venoject®) obtained from Terumo Corp. (Tokyo, Japan). Standards used for analytical 

experiments (DON and DOM-1) were obtained from Sigma-Aldrich (Bornem, Belgium) and 

stored at ≤-15°C. The internal standard 13C15-DON was purchased as a 25 µg/ml solution in 

acetonitrile from Biopure (Tulln, Austria).  Water, methanol and acetonitrile were of HPLC 

grade, while ammonium acetate, ethyl acetate and glacial acetic acid were of analytical 

grade. All these reagents were obtained from VWR (Leuven, Belgium). Oasis® HLB solid-

phase extraction (SPE) columns (60mg/3cc) were obtained from Waters (Zellik, Belgium). 

Millex®-GV PVDF filter units (0.22 µm) were obtained from Millipore (Brussels, Belgium). 

 

Experimental design for Animals and Diets 

Efficacy testing. Sixty-four one-day-old Ross broiler chicks, in an equal number of both sexes, 

were obtained from a commercial hatchery. During an acclimatization period of ten days, 

the animals were fed blank feed. Males and females were housed separately. Afterwards the 

chickens were randomly assigned to 1 of 8 dietary groups, each consisting of 8 animals (4♀ 

and 4♂). The animals were housed in 8 cages with a floor area of at least 1m2. The concrete 

floor was covered with wood shavings. During the 3 weeks of experimental feeding the 

animals received different diets as illustrated in Table 1. The concentrations of the different 

mycotoxins as shown in Table 1 were determined by a multi-mycotoxin LC-MS/MS method 

(Monbaliu et al., 2010). The feed of group 3, 4 and 5 was the same feed as group 1 (blank 

feed) but it was artificially contaminated with DON in the laboratory. DON was produced 

with the reference strain MUCL 6131. This strain was grown in liquid GCY medium (glucose 

10 g/L, yeast extract 1 g/L, peptone 1 g/L) together with 50 µM hydrogen peroxide (H2O2) 
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which induces an oxidative stress in the fungus that stimulates the production of DON 

(Audenaert et al., 2010). After 14 days of cultivation, with supplementation of H2O2 every 2 

days, the culture was filtered and freeze-dried and mixed into the blank feed to have a final 

DON concentration of 2.44±0.70 mg/kg feed, thus below the maximum level of 5 mg/kg as 

recommended by the EFSA (Anonymous, 2006). For the last three groups (6, 7 and 8) a 

naturally contaminated feed was prepared out of contaminated maize. The concentration of 

DON in this feed (7.54±2.20 mg/kg feed) was higher than the recommended maximum level 

(Anonymous, 2006).  

Two different kinds of commercially available mycotoxin detoxifying agents were 

supplemented to the diets. The adsorbing agent was a smectite type clay mineral (illite-

ambrosite). The biotransforming agent, as classified by the EFSA (2010), was a bentonite-

montmorillonite upgraded with a yeast. The yeast is claimed to be able to detoxify DON in 

vitro by opening the C-12,13 epoxide ring. Group 2 received blank feed supplemented with 

the adsorbing agent to test possible effects of the detoxifier. Water and feed were given ad 

libitum to all broilers. A light regime of 20 hours light and 4 hours darkness was applied. The 

experimental procedures conducted with the chickens were in accordance with the 

European guidelines for the care and use of animals for research purposes. The protocol was 

approved by the Ethical Committee of the Faculty of Veterinary Medicine (Ghent University) 

(EC 2010/064 and EC 2010/076). 

Safety testing. Forty-eight one-day-old Ross broiler chicks, in an equal number of both sexes, 

were obtained from a commercial strain. During an acclimatization period of 7 days, the 

animals were fed blank feed. Males and females were housed separately. Afterwards the 

chickens were randomly assigned to 1 of 6 dietary groups, each consisting of 8 animals (4♀ 

and 4♂) and received experimental diets for 3 weeks. The animals were housed in 6 cages 

with a floor area of at least 1m2 covered with wood shavings. The composition of the dietary 

groups is shown in Table 2 and 3. The blank feed did not contain any mycotoxin above the 

limit of detection of a multi-mycotoxin LC-MS/MS method analyzing 23 mycotoxins 

(Monbaliu et al., 2010). This uncontaminated feed was useful for this study as an interaction 

with natural occurring mycotoxins had to be avoided. Both mycotoxin detoxifying agents, 

the same as used during the efficacy study, were added in a dosage of 1.5 kg/tonne feed. 
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Water and feed were given ad libitum to the broilers. A light regime of 20 hours light and 4 

hours darkness was applied. From day 28 onwards, two different antibiotics, frequently used 

in poultry industry against bacterial diseases, were administered. Oxytetracycline is a broad-

spectrum antibiotic that interacts with the ability of bacteria to produce proteins. On the 

other hand amoxicillin, a moderate-spectrum antibiotic with a bacteriolytic function, was 

tested. The antibiotics were administered to the animals as stated in Table 2 for 

oxytracycline and in Table 3 for amoxicillin. For the oral bolus study on day 28, the 

antibiotics were dissolved in tap water and administered directly in the crop with a tube, in 

order to conduct a pharmacokinetic study. Therefore blood was collected from the leg vein 

in heparinized tubes   at following time points: 0’ (before administration) and 20’, 40’, 60’, 

90’, 2h, 2.5h, 3h, 5h, 8h, 12h p.a. for oxytetracycline and 0’ (before administration), 5’, 10’, 

20’, 30’, 40’, 50’, 1h, 1h15’, 1h30’, 1h45’, 2h p.a. for amoxicillin. The blood samples were 

immediately centrifuged at 3000 rpm for 10 minutes at 4°C and plasma was stored at -70°C 

until analysis. Next, the antibiotics were added to the drinking water during 5 days for 

amoxicillin and 7 days for oxytetracycline, as stated by the leaflet. To be sure that every 

animal received the required dose, an extra oral bolus at half the dosage was administered 

every morning. On day 35 of the experiment with oxytetracycline, the animals were 

euthanized 16 hours after withdrawal of the antibiotic by cervical dislocation and liver and 

kidneys were collected. For amoxicillin, the animals were euthanized on day 33, 12 hours 

after the last antibiotic administration and the same organs as described for oxytetracycline 

were collected. The concentration of both antibiotics in plasma and tissues was determined 

by validated LC-MS/MS methods (based on Reyns et al., 2006; Reyns et al., 2008 for 

amoxicillin, based on Cherlet et al., 2003; Cherlet et al., 2006 for oxytetracycline). Plasma 

pharmacokinetic parameters such as area under the plasma concentration-time curve (AUC0-

>∞ and AUC0->t), maximum plasma concentration (Cmax), time to reach maximum plasma 

concentration (Tmax) and elimination half-life (T1/2el) were calculated using WinNonlin 6.2.0® 

(Pharsight Corporation, Mountain View, Ca, USA). The protocol was approved by the Ethical 

Committee of the Faculty of Veterinary Medicine (Ghent University) (EC 2010/063 and EC 

2011/002).



 

 

Table 1. Composition of 8 dietary groups for the efficacy testing1. 

 

 

              

 

 

 

 

1 Mycotoxin levels (mg/kg feed) in the diets fed to the broilers for three weeks after the acclimatization period. 
2 Group 3 to 5 received artificially DON-contaminated feed. Group 6 to 8 received naturally contaminated feed 
3 DON=deoxynivalenol (LOD = 11.09 μg/kg) , NIV= nivalenol (LOD = 66.26 μg/kg), 3-aDON= 3-acetyldeoxynivalenol (LOD = 8.96 μg/kg), 15-aDON= 15-acetyldeoxynivalenol (LOD = 5.62 μg/kg), FB1= fumonisin 
B1 (LOD = 58.24 μg/kg), FB2= fumonisin B2 (LOD = 44.57 μg/kg), FB3= fumonisin B3 (LOD = 42.40 μg/kg) 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
 

Group2 DON3 NIV3  3-aDON3 15-aDON3 FB13 FB23 FB33 Detoxifying agent  

1 <LOD <LOD <LOD <LOD <LOD <LOD <LOD No 

2 <LOD <LOD <LOD <LOD <LOD <LOD <LOD adsorbing (1.5 kg/tonne) 

3 2.439±0.70 0.086±0.030 0.571±0.22 2.051±0.80 <LOD <LOD <LOD No 

4 2.439±0.70 0.086±0.030 0.571±0.22 2.051±0.80 <LOD <LOD <LOD adsorbing (1.5 kg/tonne) 

5 2.439±0.70 0.086±0.030 0.571±0.22 2.051±0.80 <LOD <LOD <LOD biotransforming (1.5 kg/tonne) 

6 7.540±2.20 <LOD 1.481±0.57 <LOD 0.700±0.08 0.201±0.02 0.207±0.08 No 

7 7.540±2.20 <LOD 1.481±0.57 <LOD 0.700±0.08 0.201±0.02 0.207±0.08 adsorbing (1.5 kg/tonne) 

8 7.540±2.20 <LOD 1.481±0.57 <LOD 0.700±0.08 0.201±0.02 0.207±0.08 biotransforming (1.5 kg/tonne) 



 

 

Table 2. Timetable of the critical events of the bird experiment with oxytetracycline. 
 
 
Time d 8 – d 35  d 28                                     d 29-d 33 d 34 d 35 

8 a.m. 

Administration of the feed 
to 3 different dietary 
groups: 

- Blank feed (n=8) 
- Blank feed supplemented 
with an adsorbing agent 
(n=8) 
- Blank feed supplemented 
with a biotransforming 
agent (n=8) 

Oral bolus (100 mg/kg 
BW) followed by a 
kinetic study during 24 
h 

Oral bolus (50 mg/kg BW) 
Oxytetracycline in water 
(100 mg/kg BW) 

Oral bolus (50 mg/kg 
BW) 

Refreshing of the 
medicated water (100 
mg/kg BW) 

Euthanasia 16 hours 
after withdrawal of 
medicated water 

8 p.m. 
 

 
Refreshing of the medicated 
water (100 mg/kg BW) 

Unmedicated water 
 

BW= body weight; d= day



 

 

Table 3.  Timetable of the critical events of the bird experiment with amoxicillin. 
 

 

Time d 8-d 33 d 28 d 29-d 31 d 32 d 33 

8 a.m. Administration of the 
feed to 3 different 
dietary groups: 

-Blank feed (n=8) 
-Blank feed 
supplemented with an 
adsorbing agent (n=8) 
-Blank feed 
supplemented with a 
biotransforming agent 
(n=8) 

Oral bolus                                
(20 mg/kg BW) 

followed by a kinetic 
study during 2 hours 

Oral bolus                                
(10 mg/kg BW) 

Refreshing of the 
medicated water (20 
mg/kg BW) 

Oral bolus                               
(10 mg/kg BW) 

Refreshing of the 
medicated water (20 
mg/kg BW) 

Euthanasia 12 hours 
after withdrawal of 
medicated water 

8 p.m.  Amoxicillin in water                  
(20 mg/kg BW) 

Refreshing of the 
medicated water (20 
mg/kg BW) 

Unmedicated water  
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Experimental Parameters measured during the Efficacy Testing Study 

Body weight (BW), Feed Consumption and Live Weight Gain. The chickens were weighed 

individually three times a week and feed consumption for each group was measured daily 

during the whole experiment. Live weight gain was calculated according to the formula: (BW 

d32-BW d11)/n, with n equal to the number of days of feeding the experimental diet.  

Analysis of Mycotoxins in Plasma, Bile and Tissues. After the first week (day 18) of feeding 

the experimental diets, blood was taken from the leg vein in heparinized tubes. For animal 

welfare, it was not appropriate to take enough blood of all the birds to perform the LC-

MS/MS analysis for DON and DOM-1 for this particular time point, so the blood of 2 times 4 

birds was pooled to analyze plasma concentrations of DON and DOM-1 for each group. The 

second week (day 25) blood was taken from the leg vein of all the birds, and plasma was 

separated after centrifugation at 2,095 x g at 4°C for 10 minutes. The birds were euthanized 

after the third week (day 32). Blood, liver and kidneys were collected.  The bile fluid was 

collected from each bird and pooled per group. All samples were frozen at ≤ -20°C until 

assayed. Prior to analysis, the tissue samples were minced and homogenized using a 

Moulinette mixer (Moulinex, Paris, France). The concentration of DON and deepoxy-

deoxynivalenol (DOM-1) was determined in plasma and bile by a validated LC-MS/MS 

method (De Baere et al., 2011).  

For the quantitative determination of DON and DOM-1 in liver and kidney samples the 

method of De Baere et al. (2011) was used with minor modifications:  112.5 µL of the 

internal standard working solution (13C15-DON, 1 µg/mL) was added to 2.0 g of tissue 

sample. After vortex mixing, the sample was left at room temperature for 5 min. Thereafter, 

5 mL of a water/acetonitrile mixture (10/90, v/v) was added, followed by a vortex mixing 

step (15 sec). The sample was extracted on a homemade rotary apparatus for 20 min, 

followed by a centrifugation step (10 min, 2,095 x g). The supernatant was transferred to 

another extraction tube and 8 mL of a solution of 7 % acetic acid in ethyl acetate was added. 

After vortex mixing, the sample was extracted for 20 min, followed by a 10-min 

centrifugation step (2,095 x g). The organic phase was transferred to another extraction tube 

and evaporated using a gentle stream of N2 ( ~ 45°C). The dry residue was reconstituted in 1 

mL of a water/methanol (90/10, v/v) solution and vortex mixed for 15 sec. The sample was 
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further purified using an Oasis® HLB column (same procedure as for plasma and bile 

analysis). The dry residue was reconstituted in 150 µL of a 70/30 (v/v) mixture of mobile 

phase A/B (A: 5 mM ammonium acetate in water/methanol/acetic acid (94/5/1, v/v/v); B: 

5mM ammonium acetate in methanol/water/acetic acid (97/2/1, v/v/v)) and filtered 

through a Millex®-GV PVDF filter unit (0.22 µm) (Millipore, Brussels, Belgium). An aliquot (10 

µL) was injected onto the LC-MS/MS instrument. The HPLC settings were as followed: 

gradient elution: 0-2 min (70% A, 30% B), 6 min (linear gradient to 30% A), 6-14 min (30% A, 

70% B), 15 min (linear gradient to 70% A), 15-20 min (70% A, 30% B), flow-rate: 200 µL/min, 

column temperature: 35°C, column oven temperature: 5°C. The LC-MS/MS instrument and 

the MS/MS conditions were the same as for plasma and bile analysis (De Baere et al., 2011).  

Statistical Analysis 

The data were analysed using ANOVA (SPSS® 17.0 software for Windows, IBM, USA) to 

address the significance of difference between the mean values, with significance level set at 

p<0.05. 
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RESULTS 

Efficacy Testing 

Zootechnical parameters: Body Weight, Feed Consumption and Live Weight Gain. Diets 

with(out) different concentrations of DON, with or without the supplementation of 

detoxifying agents, had no significant effect on the body weight and live weight gain of 

broilers after three weeks of feeding (p>0.05). The feed intake was also not affected 

(p>0.05).  

EFSA end-points: DON and DOM-1 in Plasma. Plasma levels were measured above the limit 

of quantification (LOQ = 1.25 ng/mL) in the three groups which received feed naturally 

contaminated at a level of 7.54±2.20 mg DON/kg feed. This means that plasma 

concentrations could not be detected during feeding a contamination level of 2.44±0.70 mg 

DON/kg feed. The plasma levels of the animals that received naturally contaminated feed 

with or without supplementation of detoxifying agents are shown in Figure 1. For group 6 

(naturally contaminated feed without supplementation) a trend was observed: the plasma 

concentrations were higher after one week of feeding than after two weeks. At the end of 

the experiment, after 3 weeks of feeding, even no plasma concentrations were detected for 

this group. For group 7, which received the same feed but with an adsorbing agent, the 

plasma concentrations were much higher than in group 6, but the same decreasing trend 

was observed and also after three weeks of feeding no plasma levels could be detected. The 

group supplemented with a biotransforming agent (group 8) also reached higher plasma 

concentrations than group 6, but the decreasing trend was not so obvious for this group 

within the first two weeks of feeding. After three weeks of feeding also for group 8 no 

plasma concentrations could be detected. The metabolite DOM-1 was also analyzed in the 

plasma samples, but no levels above the LOQ (LOQ = 1.25 ng/mL) could be measured in any 

of the groups. 
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Figure 1. Plasma concentrations of deoxynivalenol (DON) in broilers after 1, 2 and 3 weeks of 
feeding naturally contaminated feed with DON in a concentration higher than the maximum 
guidance level of 5 ppm. The effect of the supplementation of an adsorbing or a 
biotransforming agent was evaluated. Results are presented as mean values + SD. 
 

DON and DOM-1 in Tissues and Bile Fluid. No residues above the LOQ (LOQ=1.25 ng/g) 

could be detected in the liver and kidneys of the animals of the 8 different groups. The 

results of the analyses of bile fluid are shown in Table 4. DON was only detected in the bile 

fluid of the three groups that received naturally contaminated feed containing 7.54±2.20 mg 

DON/ kg feed. The metabolite DOM-1 was detected in all the groups that received 

contaminated feed. However, the concentration of DOM-1 in the groups that received 

artificially contaminated feed (group 3, 4 and 5) was significantly lower than the three 

groups fed naturally contaminated feed (group 6, 7 and 8) (p<0.05). Supplementation of a 

detoxifying agent did not have a significant influence on the concentration in the bile fluid of 

any measured analytes (p>0.05).  
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Table 4. Concentration of DON and DOM-1 in the pooled bile fluid of broilers (n= 8/ group) 
after three weeks of feeding (un)contaminated feed with DON. 
 

 DON 
(ng/mL) 

DOM-1 
(ng/mL) 

Group 1 (control) ND ND 

Group 2 (control + adsorbing agent) ND ND 

Group 3 (artificial DON contaminated) ND 10.0 

Group 4 (artificial DON contaminated + adsorbing agent) ND 12.0 

Group 5 (artificial DON contaminated + biotransforming agent) ND 11.5 

Group 6 (naturally contaminated) 7.5 51.6 

Group 7 (naturally contaminated + adsorbing agent) 8.6 57.4 

Group 8 (naturally contaminated + biotransforming agent) 5.7 52.7 

(ND= not detected, LOQ DON= 1 ng/mL, LOQ DOM-1= 2.5 ng/mL)  

 

Safety Testing 

Influence of two different Detoxifying Agents on the Pharmacokinetics of oxytetracycline 

and amoxicillin. The plasma concentration-time profiles for oxytetracycline in the control 

and two detoxifying agents groups are shown in Figure 2. Remarkably, the area under the 

curve (AUC0→12h) is significantly higher for the group fed a diet with a biotransforming agent 

(32.70 h.µg/mL) compared to the group without detoxifying agent (18.12 h.µg/mL) and the 

group fed an adsorbing agent (24.72 h.µg/mL) (p<0.05). The Cmax of the group with the 

biotransforming agent (5.49 µg/mL) was also significantly higher than for the adsorbing 

agent and the control group (2.37 µg/mL and 3.04 µg/mL, respectively). No significant 

differences in Tmax (p=0.114) and T1/2el (p=0.305) were noticed between the groups. 

 

 



Experimental studies: Chapter 2 
 

  

100  

 

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9 10 11 12

C
on

ce
nt

ra
tio

n 
(µ

g/
m

L
)

Time p.a. (hours)

no detoxifying agent adsorbing agent biotransforming agent

 

Figure 2.  Effects of 3 weeks feeding of detoxifying agents on the plasma concentration 
versus time profile of oxytetracycline, administered as a single oral bolus of 100 mg/kg BW in 
broilers (n=8, mean + SD).  
 

Results for the antibiotic amoxicillin are presented in Figure 3. For this antibiotic, the group 

that received the adsorbing agent reached higher plasma concentrations compared to the 

other groups. The area under the curve (AUC0→2h) for the group with the adsorbing agent 

(608.26 min.µg/mL) was significantly different from the one with the biotransforming agent 

(414.26 min.µg/mL) (p<0.05), but not with the control group (507.52 min.µg/mL). The Cmax of 

the group receiving the adsorbing agent (7.00 µg/mL) was significantly higher than for the 

group with the biotransforming agent (4.19 µg/mL), but no significant differences were 

noticed with the control group (5.20 µg/mL). No significant differences in Tmax (p=0.597) and 

T1/2el (p=0.915) were observed between the groups. 
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Figure 3.  Influence of 3 weeks of feeding detoxifying agents on the plasma profile of 
amoxicillin,  administered as a single oral bolus of 20 mg/kg BW in broilers (n=8, mean + SD). 
 

Influence of two different Detoxifying Agents on the Tissue Residues of Oxytetracycline and 

Amoxicillin.The results of the analysis of oxytetracycline in liver and kidney tissues are 

shown in Figure 4. The residues of oxytetracycline in the liver were not significantly different 

between groups. For the kidneys, the concentration of oxytetracycline was much higher in 

the group that received feed supplemented with a biotransforming agent compared to the 

control group (p<0.05). This is in agreement with the results obtained in plasma (Fig. 2). For 

amoxicillin on the other hand, the residue levels in kidneys and liver were lower than the 

limit of quantification for all the animals (LOQ = 12.5 ng/g) (data not shown). 
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Figure 4.  Influence of 3 weeks of feeding of detoxifying agents on residues of 
oxytetracycline in broiler tissues, obtained 16h after withdrawal medicated drinking water 
(n=8, mean + SD, * = significant difference). 
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DISCUSSION 

This study is, to our knowledge, the first one which fully complies with recent EFSA 

guidelines for in vivo efficacy testing of mycotoxin detoxifying agents in broilers. 

Zootechnical parameters such as feed intake and live weight gain could not be used to 

demonstrate efficacy of the tested detoxifiers for DON in broilers since no significant 

differences were seen between groups. Nevertheless, the same biotransforming agent 

showed potential in diminishing deleterious effects of DON on growth performance and 

other non-specific parameters in pigs (Plank et al., 2009), and of T-2 toxin in broiler chickens 

(Diaz et al., 2005). Moreover, Dänicke et al. (2003) stated that this detoxifying agent even 

decreased the performance of broilers independently of the dietary mycotoxin 

concentration. Negative effects on the performance of the broilers however were not 

noticed during this trial.  

Analysis of DON in plasma only resulted in quantifiable levels in those birds that received 

DON in a concentration of 7.54±2.20 mg/kg feed, which is higher than the guidance level of 5 

mg/kg in feed, during a 3-week feeding period (Anonymous, 2006). It was remarkable that 

supplementation of the naturally contaminated feed with mycotoxin detoxifying agents even 

slightly increased the plasma levels of DON within the first two weeks of feeding. Devreese 

et al. (2012) performed in vivo efficacy testing of detoxifying agents in broilers with different 

oral bolus models. A single oral bolus of DON with or without a detoxifying agent in broilers 

also revealed a significant higher AUC0→∞, Cmax and relative oral bioavailability in the group 

with a detoxifying agent compared to the control group. Possible hypotheses for the 

increased oral bioavailability of DON include unspecific effects such as an increased ratio of 

villus height-crypt depth due to feeding detoxifying agents (de los Santos et al., 2007; 

Baurhoo et al., 2009; Star et al., 2009), but further investigations are needed to confirm this. 

Other  nonspecific effects, such as increased protein digestibility, were also attributed to 

detoxifying agents and should be investigated, as they can have an influence on the 

bioavailability of essential feed constituents (Döll and Dänicke, 2004). Surprisingly, after 

three weeks of feeding, no plasma levels above the LOQ were observed in any of the 

experimental groups. After three weeks of feeding, the birds may have developed a kind of 

tolerance to the negative impact of deoxynivalenol. This resistance may be attributed to the 



Experimental studies: Chapter 2 
 

  

104  

 

age of the animals or to a kind of adaptation process through a variety of metabolic and 

hormonal compensatory mechanisms (Moon et al., 2008; Kobayashi-Hattori et al, 2011). 

Very low plasma concentrations of DON were measured during this trial, which correspond 

with the literature, where 14C-labeled DON was described to be poorly absorbed from the 

gastrointestinal tract of hens since peak plasma levels occurring 2-2.5h post-administration 

accounted for only 0.64% of the administered dose (Prelusky et al., 1986). Our group also 

demonstrated an absolute oral bioavailability of only 19.3% for DON in broilers after a single 

oral bolus of DON (0.75 mg/kg BW) (A. Osselaere, unpublished data).  Other researchers 

reported concentrations of DON and its de-epoxidized metabolite DOM-1 below the LOQ of 

2 ng/mL in plasma after 5 weeks of feeding DON in a concentration of 2.5 mg/kg (Dänicke et 

al., 2007). Because continuous feeding trials with plasma analysis do not seem to be 

promising to test detoxifiers for DON in poultry, bolus models to test the efficacy of 

detoxifying agents were developed at our department. Higher plasma concentrations were 

observed after a single oral administration of DON (0.75 mg/kg BW), which was more 

appropriate to test the efficacy of the detoxifiers compared with continuous feeding trials 

(Devreese et al. 2012). In an effort to look for other possible end-points, the concentrations 

of DON and DOM-1 were determined in liver, kidneys and bile fluid after three weeks of 

feeding. Prelusky et al. (1986) described the important role of biliary excretion in the 

elimination of DON from the body. Again, no residues above the LOQ were detected in the 

collected organs. On the other hand, DON was detectable in the bile fluid, but only for these 

groups which received a diet with an amount of DON higher than 5 mg/kg feed. DOM-1 was 

even found in the bile fluid of all the groups that received DON contaminated feed. This is in 

contrast with the results reported by Dänicke et al. (2007) where no concentrations of DOM-

1 were detected in the bile fluid (LOQ = 4 ng/mL) of chickens after three weeks of feeding. 

Supplementation of the diets with an adsorbing or a biotransforming agent did not have 

significant effects on the concentration of DON and DOM-1 in the bile fluid.  

The safety of mycotoxin detoxifying agents is an important issue that did not receive much 

attention until now (Phillips et al., 2009). Detoxifying agents are able to modify the chemical 

structure of mycotoxins or to exert their activity by binding mycotoxins in the gastro-

intestinal tract. However, interactions with nutrients, feed additives or veterinary drugs, can 

possibly occur. Therefore we also investigated the possible interaction of detoxifying agents 
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with the pharmacokinetic profiles and tissue residues of the antibiotics oxytetracycline and 

amoxicillin, which are frequently used in poultry practice (Abo El-Sooud et al., 2004; Ismail 

and El-Kattan, 2004). To our knowledge, only the recent EFSA scientific opinion (Anonymous, 

2011) and a report of The Bureau of Veterinary Drugs of Canada (Anonymous, 1992) discuss 

a possible interaction between bentonite and tylosin or with coccidiostats. After three weeks 

of feeding diets supplemented with a detoxifier, significant different plasma profiles 

depending on the type of antibiotic were observed. For oxytetracycline, the birds receiving 

feed supplemented with a biotransforming agent had a significantly higher Cmax and AUC 

than the other birds (p<0.05). The results of the residue depletion study of oxytetracycline in 

tissues also showed higher concentrations of oxytetracycline in the kidneys of these birds 

compared to the control group. Kidneys play an important role in the elimination of 

oxytetracycline in poultry (Ismail and El-Kattan, 2004). In contrast, for amoxicillin, the group 

with the adsorbing agent reached significantly higher plasma concentrations and AUC, only 

when compared to the group with the biotransforming agent. For this antibiotic, no tissue 

residue levels above the limit of quantification were observed twelve hours after the last 

administration, which can be explained by the rapid elimination of amoxicillin in poultry 

(Anadon et al., 1996). In this study clay-based detoxifiers were used, which have a non-

specific binding capacity. Moshtaghian et al. (1991) noted that clays can absorb 

micronutrients and thus can have a negative impact on the bioavailability of minerals and 

trace elements. Clays consist of a porous structure with electric elementary charges which 

can trap particles with a particular size and electric charge (Jouany, 2007). Surprisingly, we 

observed an enhancement in bioavailability for these antibiotics rather than a reduction. 

Although the mechanism is still unclear, the possible consequences of these findings are very 

important. Adaptation of the dosage of the antibiotic can be necessary; otherwise the higher 

plasma concentrations of the antibiotic can possibly lead to toxicity and to higher tissue 

residue levels. An advantage could be that the dosage of the antibiotic can be reduced and 

thus could lead to a reduced use of antibiotics. Influence of detoxifying agents on the 

pharmacokinetics of doxycycline has also been demonstrated in pigs by co-authors. 

Significantly higher plasma concentrations were observed in piglets that received T-2 toxin 

contaminated feed supplemented with a mycotoxin-detoxifying agent (Goossens et al., 

2012).  
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In conclusion, we have shown that the analysis of DON and its metabolite in vivo is not a 

relevant end-point for the efficacy testing of mycotoxin detoxifying agents in plasma of 

broilers when fed in a continuous design. The safety testing of two commercially available 

detoxifiers revealed possible interactions with veterinary drugs, which can have important 

consequences and warrants further investigations to elucidate underlying mechanisms. 
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Chapter 3. 
 

The effects of deoxynivalenol and an adsorbing agent on the intestinal barrier 
and liver function 

 

 

 

 

 

 

 

 

 

 

Adapted from: Osselaere, A., Santos, R., Hautekiet, V., De Backer, P., Chiers, K., Ducatelle, R., 

Croubels, S. (2013). Deoxynivalenol impairs hepatic and proximal intestinal gene expression 

of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but 

addition of an adsorbing agent shifts the effects to more distal parts of the small intestine. 
Submitted to PLOS One. 
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ABSTRACT 

Broiler chickens are rather resistant to deoxynivalenol and thus, clinical signs are rarely seen. 

However, effects of subclinical concentrations of deoxynivalenol on both the intestine and 

the liver are less frequently studied at the molecular level. During our study, we investigated 

the effects of three weeks of feeding deoxynivalenol on the gut wall morphology, intestinal 

barrier function and inflammation in broiler chickens. In addition, oxidative stress was 

evaluated in both the liver and intestine. Besides, the effect of a clay-based mycotoxin 

adsorbing agent on these different aspects was also studied. Our results show that feeding 

deoxynivalenol affects the gut wall morphology both in duodenum and jejenum of broiler 

chickens. A qRT-PCR analysis revealed that deoxynivalenol acts in a very specific way on the 

intestinal barrier, since only an up-regulation in mRNA expression of claudin 5 in jejunum 

was observed, while no effects were seen on claudin 1, zona occludens 1 and 2. Addition of 

an adsorbing agent resulted in an up-regulation of all the investigated genes coding for the 

intestinal barrier in the ileum. Up-regulation of Toll-like receptor 4 and two markers of 

oxidative stress (heme-oxigenase or HMOX and xanthine oxidoreductase or XOR) were 

mainly seen in the jejunum and to a lesser extent in the ileum in response to deoxynivalenol, 

while in combination with an adsorbing agent main effect was seen in the ileum. These 

results suggest that an adsorbing agent may lead to higher concentrations of deoxynivalenol 

in the more distal parts of the small intestine. In the liver, XOR was up-regulated due to DON 

exposure. HMOX and HIF-1α (hypoxia-inducible factor 1α) were down-regulated due to 

feeding DON but also due to feeding the adsorbing agent alone or in combination with DON. 
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INTRODUCTION 

Mycotoxin contamination can occur in all agricultural commodities in the field and/or during 

storage, if the conditions are favorable for fungi growth (CAST, 2003). Deoxynivalenol (DON), 

also called vomitoxin, is a trichothecene mycotoxin which is highly prevalent in Europe 

(Binder et al., 2007; Monbaliu et al., 2010; Streit et al., 2012). In poultry, DON rarely causes 

acute mycotoxicosis. However, chronic exposure to the toxin can lead to reduced production 

and an altered immune function (Awad et al., 2011). As poultry seems to be less susceptible 

to DON-mycotoxicosis compared to other animals, infected cereal batches are sometimes 

diverted to the poultry feed production (Awad et al., 2008). Mycotoxin detoxifying agents 

are frequently used feed additives to reduce the adverse effects of mycotoxins. Detoxifiers 

based on clay minerals are classified by the European Food Safety Authority (EFSA) as 

adsorbing agents (Anonymous, 2009).  

Mycotoxins are food and feed contaminants and thus after ingestion the intestine can be 

exposed to high concentrations of the toxins (Maresca et al., 2002; Sergent et al., 2006). The 

epithelial surface of the intestine is characterized by a large contact area for absorption of 

nutrients and xenobiotics. This surface consists of a simple columnar epithelium, which is 

increased by the presence of villi (DeSesso and Jacobson, 2001). Both toxins and mycotoxin 

detoxifiers can interact with this surface area, resulting in altered extent and rate of 

absorption of xenobiotics such as drugs and mycotoxins. For example, we found in a 

previous study higher plasma concentrations of DON in animals fed contaminated feed in 

combination with a clay-based adsorbing agent compared to animals fed DON contaminated 

feed only (Goossens et al., 2012; Osselaere et al., 2012). 

The absorbing epithelial cells (enterocytes) are connected strongly by tight junction proteins. 

These tight junctions seal off the luminal end of the intercellular space and so transport by 

this paracellular route is very limited (Arrieta et al., 2006). Claudins are transmembrane 

proteins which form the backbone of the tight junction strands. Claudin 1 and 5 are known 

to interact and are important to guarantee the intestinal barrier function. Both claudins have 

already been characterized in chickens (Furuse et al., 1998; Krause et al., 2008; Ozden et al., 
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2010). The family of zona occludens, including zona occludens 1 (ZO 1) and zona occludens 2 

(ZO 2), is a group of scaffolding proteins which is part of the cytoplasmic plaque of the tight 

junctions.  

The intestinal epithelial cells also contribute to the regulation of inflammatory conditions 

and create a kind of barrier against invading pathogens. Toll-like receptors (TLR) in the 

intestinal epithelium, particularly TLR4, serve as rapid pathogen sensors. 

After intestinal absorption of mycotoxins these compounds reach the liver as the gateway of 

the portal blood draining the gastrointestinal tract. Both intestine and liver consist of rapidly 

proliferating cells and have a high protein turnover rate. Therefore, we may suppose that 

these organs are more sensitive for the action of DON (Ueno, 1984).  

The toxicity of DON is mediated by various mechanisms. Trichothecenes are potent 

inhibitors of the RNA, DNA and protein synthesis (Eriksen and Petterson, 2004). In addition, 

DON may induce the production of free radicals and cellular oxidative stress. It has been 

shown that oxidative stress causes up-regulation of hypoxia-inducible factor 1, subunit alpha 

(HIF-1α) (Wenger, 2000), a transcription factor which regulates genes involved in 

inflammation and cell death (Lee et al., 2007). Heme-oxigenase (HMOX) is another sensitive 

marker of oxidative injury, which affords protection against hepatocyte death (Carchman et 

al., 2011). Both HIF-1α and HMOX have already been characterized in chickens (Giusti and 

Fiszer de Plazas, 2012; Shan et al., 2004). Xanthine oxidoreductase (XOR) is an enzyme 

associated with the synthesis of reactive oxygen species and is part of the cellular defense 

enzyme systems (Harrison, 2002). In broilers, this enzyme is mainly expressed in the liver, 

but also in the intestine (60% of the amount in the liver) and other organs but in a lower 

amount (Carro et al., 2009). The intestine requires an efficient immune defense at the 

epithelial surface, and among other factors, XOR is secreted by the enterocytes of the small 

intestine (Van Den Munckhof et al., 1995).  

The aim of our study was to assess the effects of three weeks dietary exposure to DON on 

the small intestine and liver in broiler chickens. To this end qRT-PCR analyses were 

conducted to study if genes coding for oxidative stress and inflammation response are 

influenced by DON, both in the liver and the small intestine. In addition, the effects of DON 
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on the intestinal morphology and intestinal barrier function were investigated with 

histopathology and qRT-PCR analysis, respectively. To our knowledge, this is the first in vivo 

study which observes these parameters in broiler chickens. Finally, the effects of a clay-

based mycotoxin-detoxifying agent were also investigated during our trial.  
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MATERIALS AND METHODS 

Ethics statement 

The protocol was approved by the Ethical Committee of the Faculty of Veterinary Medicine 

(Ghent University) (EC 2010/064 and EC 2010/076). All husbandry practices and euthanasia 

were performed with full consideration of animal welfare. 

Animals and diets 

The animals and the experimental design have been described elsewhere (Osselaere et al., 

2012). In brief, 32 1-day-old broiler chickens were fed uncontaminated feed during an 

acclimatization period of ten days. Afterwards, the animals were divided into four different 

dietary groups of 8 animals each: a control group receiving uncontaminated feed, a group 

receiving uncontaminated feed + adsorbing agent, a third group receiving naturally DON 

contaminated feed and a group fed naturally DON contaminated feed + adsorbing agent. 

Analyses of the feed were performed by a multi-mycotoxin LC-MS/MS method (Monbaliu et 

al., 2010). The naturally contaminated feed was contaminated as follows: DON (7.540 ± 2.20 

mg/kg), 3-acetylDON (1.481 ± 0.57 mg/kg), fumonisin B1 (0.700 ± 0.08 mg/kg), fumonisin B2 

(0.201 ± 0.02 mg/kg) and fumonisin B3 (0.207 ± 0.08 mg/kg). The adsorbing agent (illite-

ambrosite clay) was added in a concentration of 1.5 kg/ton feed. After three weeks of 

feeding, the animals were euthanized and liver and intestinal samples were immediately 

collected. From the small intestine, samples were taken at three different locations: 2 cm 

after the gizzard (duodenum), just before Meckel’s diverticulum (jejunum) and two cm 

before the ileo-cecal transition (ileum). Intestinal and liver samples were rinsed in phosphate 

buffered saline (PBS). Afterwards, the samples for qRT-PCR analysis were immediately frozen 

in liquid nitrogen and stored at -80 °C until analysis. Samples for morphological examination 

were also rinsed in PBS and then fixed in 4% (v/v) phosphate buffered formalin.  
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Quantitative RT-PCR method to analyze the intestinal barrier function, inflammation and 

oxidative stress 

RNA from samples of liver and intestine (duodenum, jejunum and ileum) were isolated using 

the SV Total RNA Isolation System (Promega, Madison, WI, USA) according to the 

manufacturer’s instructions, and total RNA was quantified by spectrophotometry (Nanodrop 

ND-1000, Thermo Scientific, Wilmington, NC, USA). Subsequently, 1 μg of extracted total 

RNA was reverse transcribed with the iScriptTM cDNA Synthesis kit (Biorad, Hercules, CA, 

USA). The obtained cDNA was diluted to a final concentration of 30 ng/µL. Primers were 

commercially produced (Eurogentec, Nijmegen, the Netherlands) (Table 1). The primers used 

were selected based on specificity and efficiency by qPCR analysis of a dilution series of 

pooled cDNA at a temperature gradient (55oC to 65oC) for primer-annealing and subsequent 

melting curve analysis. The reaction mixture for the qPCR containing 10 μL of the diluted 

cDNA was mixed with 15 μL iQSYBR Green Supermix (Biorad), forward and reverse primers 

(final concentration of 0.4 pmol/μL for each primer) and sterile water according to the 

manufacturer's instructions. qPCR was performed using the MyiQ single-colour real-time 

PCR detection system (Biorad) and MyiQ System Software Version 1.0.410 (Biorad). 

Amplification efficiency was determined per plate using linregPCR. Data were analyzed using 

the efficiency corrected Delta-Delta-Ct method (Pfaffl, 2001). Housekeeping genes were 

tested for all the test conditions after which most stable housekeeping genes for liver and 

intestinal samples were selected using the geNorm software (data not shown). The most 

stable housekeeping genes had a M-value between 0.2 and 0.5. To determine if the inclusion 

of an additional housekeeping gene was required, the cut-off value for variation was set at 

0.2. The fold-change values of the genes of interest (GOIs) were normalized using two 

housekeeping genes: hypoxanthine-guanine phosphoribosyl transferase (HPRT) and hexose-

6-phosphate dehydrogenase (H6PD). The mRNA expression of proteins involved in oxidative 

stress i.e. HMOX, HIF-1α and XOR were evaluated in the liver and intestine. Furthermore, 

mRNA expression of the tight junctions proteins claudin 1 and 5 (CLDN1 and CLDN5) and 

zona occludens 1 and 2 (ZO1 and ZO2) in sections from the duodenum, jejunum and ileum 

were measured. Two compounds of the immune system, namely Toll-like receptors (TLR) 2 

and 4 were also investigated during our study. For the validation of the qPCR assays 
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following criteria were applied:  slope between -3.6 and -3.1, efficiency between 90 and 110 

%, R2 > 0.99. 

Morphological examination of the gut wall 

Formalin-fixed intestinal samples were dehydrated in xylene and embedded in paraffin. With 

a microtome (Microm, Prosan, Merelbeke, Belgium), sections of 4 μm thickness were cut 

and mounted in glass slides. Afterwards, deparaffination occurred in xylene (2 times 5 min) 

and then rehydratation occurred in isopropylene (5 min), 95 % alcohol (5 min) and 50 % 

alcohol (5 min). Sections were stained with haematoxylin and eosin. Using light microscopy, 

villus height and crypt depth (10 villi per intestinal segment) from each of 8 chickens per 

treatment, were measured. For this, a Leica Camera DFC320 (Leica Microsystems Ltd, 

Wetzlar, Germany) coupled to a computer-based image analysis system LAS v.3.8. (Leica 

Microsystems Ltd) was used. Only intact villi were measured. Measurements were done on 

cross-sections of ring-shaped intestinal segments.   

Data analysis 

Results were compared by ANOVA after determination of normality and variance 

homogeneity. Multiple comparisons were performed using a LSD post-hoc test. Not normally 

distributed data were analyzed using the non-parametric Kruskal-Wallis analysis, followed by 

a Mann-Whitney test using SPSS 19.0 Software (SPSS Inc., Chicago, IL, USA). A P-value of 

<0.05 was considered statistically significant.  



 

 

Table 1. Primers used for the quantification of housekeeping genes (HKG) and genes of interest (GOI). 1 
 2 
Gene Accession N° Primer Sequence Product size (pb)  Annealing T° 

HKG      

HPRT  NM_204848.1 Forward  5' CGTTGCTGTCTCTACTTAAGCAG 3' 90 65 

  Reverse 5' GATATCCCACACTTCGAGGAG 3'   

H6PD XM_425746.2 Forward 5' GGAGAACCAGCACTTCTTAGAC 3' 84 64 

  Reverse 5' GGGTTCAGCAATTCCACTG 3'   

GOI      

CLDN1 NM_001013611 Forward 5’ CTGATTGCTTCCAACCAG 3’ 140 57-59 

  Reverse 5’ CAGGTCAAACAGAGGTACAAG 3’     

CLDN5 NM_204201 Forward 5’ CATCACTTCTCCTTCGTCAGC 3' 111 56-65 

  Reverse 5’ GCACAAAGATCTCCCAGGTC 3’   

HIF-1α NM_204297 Forward 5’ CACCATTACCATACTTCAGCAG 3' 88 65 

  Reverse 5’ CTTCACATCATCCACACGTTC 3’   

HMOX NM_205344 Forward  5' CTTGGCACAAGGAGTGTTAAC 3' 78 61-63 

  Reverse 5' CATCCTGCTTGTCCTCTCAC 3'   

TLR2 NM_204278 Forward  5' CCTGCAACGGTCATCTCAG 3' 135 59 

  Reverse 5' GTCTCAGGGCTTGTTCTTCAG 3'   

TLR4 NM_001030693 Forward  5' CTGACCTACCCATCGGACAC 3' 111 59 

  Reverse 5' GCCTGAGAGAGGTCAGGTTG 3'   

XOR NM_205127 Forward  5' GTGTCGGTGTACAGGATACAGAC 3' 110 61 

  Reverse 5' CCTTACTATGACAGCATCCAGTG 3'   

ZO1 XM_413773 Forward  5' CTTCAGGTGTTTCTCTTCCTCCTC 3' 131 59 

  Reverse 5' CTGTGGTTTCATGGCTGGATC 3'   

ZO2 NM_204918 Forward  5' CGGCAGCTATCAGACCACTC 3' 87 64-65 

  Reverse 5' CACAGACCAGCAAGCCTACAG 3'   
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RESULTS 

Not only DON but also the adsorbing agent alters mRNA expression of oxidative stress 

markers in liver of broiler chickens 

 

In the liver, both HIF-1α and HMOX mRNA were significantly down-regulated for all the 

broiler chickens receiving either DON, an adsorbing agent or DON and the adsorbing agent, 

when compared to the control group. Differently, XOR was significantly up-regulated in the 

group receiving DON. The group receiving an adsorbing agent, whether or not in 

combination with DON was not affect ed. Data are shown in Figure 1. 

 

Figure 1. Effects of DON and an adsorbent on oxidative stress in the liver of broiler chickens. 
Results are presented as mean (± SEM) mRNA expression. Fold change in gene expression 
levels of the chicken liver relative to control group, which is considered 1. * Indicates 
significant differences between treated and control animals.  
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DON leads to oxidative stress in the jejunum and in the ileum of broiler chickens in 

combination with an adsorbing agent  

For the small intestine, the expression of HIF-1α, HMOX and XOR mRNA was investigated in 

the duodenum, jejunum and ileum. Expression of HIF-1α was unaltered in the intestine, 

independently on the treatment or intestinal section. On the other hand, HMOX and XOR 

were significantly up-regulated in the jejunum of animals fed the DON contaminated feed, 

independently on the supplementation of an adsorbing agent.  For the last part of the small 

intestine, the ileum, only XOR was up-regulated when animals were fed with feed containing 

DON and the adsorbing agent (Figure 2).  

DON and adsorbent do not affect duodenal barrier function, but do so in jejunum and 

ileum 

As observed for oxidative stress markers, barrier function of duodenum was unaffected by 

both DON and adsorbing agent, while jejunum presented a significant up-regulation of 

CLDN5 mRNA when animals were fed with DON contaminated feed. Feed supplementation 

with the adsorbing agent did significantly reduce the CLDN5 mRNA expression when 

compared to DON, but its expression remained significant higher than that observed in the 

control. The strongest effect on tight junctions was observed in the ileum when animals 

were fed with feed contaminated with DON and supplemented with the adsorbing agent, 

with a significant up-regulation of CLDN1, CLDN5, ZO1 and ZO2 mRNA (Figure 2).  

DON leads to inflammatory reaction in duodenum and jejunum, but its negative effect in 

the ileum depends on the feed supplementation with an adsorbing agent  

A significant up-regulation of TLR4 mRNA was observed in the duodenum and jejunum of 

animals fed with DON contaminated feed. Although feed supplementation with an adsorbing 

agent was efficient to decrease the TLR4 expression, it was efficient to recover control levels 

only in the duodenum and not in the jejunum. Finally, as observed with tight junctions’ 

analysis, ileum exposure to DON and adsorbing agent resulted in the significant up-

regulation of TLR4 mRNA (Figure 2). 

 



 

Figure 2. Effects of DON and an adsorbent on intestinal barrier in broiler chickens. Results are presented as mean (± SEM) mRNA expression. 
Fold change in gene expression levels of the chicken intestines relative to control group, which is considered 1. a-c Different lower-case letters 
indicate significant differences between groups. 
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DON alters the gut wall morphology in duodenum and jejunum of broiler chickens, but 

addition of an adsorbing agent counteracts these effects 

Feeding DON contaminated feed resulted in a decreased villus length and crypt depth both 

in duodenum and jejunum of the broiler chickens. Addition of an adsorbing agent resulted in 

longer villi, even in combination with DON and this over the entire length of the small 

intestine. The crypt depth however, was not influenced by the addition of an adsorbing 

agent to control feed in the duodenum and jejunum, when compared to the control group. 

On the other hand, the adsorbing agent had a positive effect on the crypt depth in these 

intestinal parts, when added to DON contaminated feed. In the ileum, no effect of feeding 

DON contaminated feed without an adsorbing agent was observed. In this part of the small 

intestine, it was the adsorbing agent in combination with DON or not which resulted in 

higher villi and deeper crypts (Table 2). 

Table 2. Length of villi (μm) and crypt depth (μm) in duodenum, jejunum and ileum after 3 
weeks feeding a control diet or feed contaminated with DON, either or not supplemented 
with an adsorbing agent. Results are presented as mean values and standard deviations of 
fifteen villi or crypts measured from 8 chickens per treatment group. 
 
 Control Adsorbing agent DON DON + adsorbing 

agent 

Duodenum 
Villus height 
Crypt depth 
 

1734 ± 26 a 

131 ± 7 a 
1773 ± 43 c 

134 ± 7 a 
1449 ± 31 b 

114 ± 9 b 

 

1789 ± 39 c 

128 ± 8 a 

 
Jejunum 
Villus height 
Crypt depth 

1343 ± 37 a 

120 ± 8 a 
1521 ± 39 c 

116 ± 10 a 
1184 ± 48 b 

101 ± 8 b 
1509 ± 43 c 

109 ± 7 c 

Ileum  
Villus height 
Crypt depth 

596 ± 30 a 

113 ± 6 a 
773 ± 63 b 

124 ± 17 b 
616 ± 38 a 

110 ± 15 a 
744 ± 63 b 

119 ± 18 ab 

a,b mean values within a row with unlike superscript letters are significantly different 
(p≤0.05)  
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DISCUSSION 

Being an interface between the outside world and the inside body, the gastro-intestinal tract 

(GIT) is a dynamic barrier (Oswald, 2006). This barrier is responsible for two major processes, 

which are on the one hand uptake of nutrients and fluids and on the other hand defense 

mechanism against xenobiotics. We performed a study with broiler chickens fed with 

naturally contaminated feed to investigate the effects of DON on the intestinal barrier and 

hepatic function. Co-contamination of different mycotoxins in naturally contaminated feed is 

common and this was also the case for the experimental feed used in this study. DON was 

the most prevalent mycotoxin and was even present in a concentration higher than the 

European recommended maximum level of 5 mg/kg (Anonymous et al., 2006). The other 

contaminant present, 3-acetylDON, is considered a masked mycotoxin, i.e. a conjugated 

form of DON also produced by Fusarium fungi. It is hypothesized that this conjugated form 

may be hydrolysed and release DON in vivo, but the question remains whether this occurs in 

every animal species and if this occurs already in the GIT and/or liver and/or systemic 

circulation. The sum of the concentration of the co-contaminants fumonisin B1 and B2 of 

0.901 mg/kg was much lower than the European guidance value of 20 mg/kg in poultry feed 

(Anonymous et al., 2006). Thus, the co-contamination with fumonisins can be considered as 

negligible. In our study, three weeks feeding DON at 7.54 mg/kg feed reduced the villus 

height and the crypt depth both in the duodenum and the jejunum. Reduced villi in the 

duodenal and jejunal segment of the small intestine were also observed in broiler chickens 

after 6 weeks feeding a diet of 10 mg/kg DON (Awad et al., 2006). Yunus et al. (2012) 

observed a linear correlation between increasing levels of DON and the decrease in villus 

height in both the mid-duodenum and mid-jejunum (Yunus et al., 2012). Possible 

explanation for these histological changes can be a direct irritant effect of the mycotoxin or 

suppression of mitosis or protein synthesis (Eriksen and Petterson, 2004; Yunus et al., 2012). 

In order to maintain an effective barrier function, the intestinal epithelium needs to 

regenerate continuously. Mature cells migrate along the crypt-villus axis towards the villus-

top, in the mean time these cells become differentiated cells (Booth and Potten, 2000). DON 

can be responsible for a reduced cell proliferation (Bensassi et al., 2009; Kasuga et al., 1998; 

Yang et al., 2008). This can be an explanation for the reduced crypt depth observed during 
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our trial. A decreased crypt depth in the mid-duodenum in broiler after chronic exposure to 

DON (12 mg/kg) has been reported earlier (Yunus et al., 2012). Interestingly, the adsorbing 

agent resulted in longer villi over the entire length of the small intestine. These longer villi 

seen in our study in the chickens receiving the adsorbing agent can be responsible for the 

higher oral bioavailabilities of xenobiotics as observed in our previous study (Osselaere et al., 

2012).  

Several studies both in vitro and in vivo already reported that DON is able to alter intestinal 

permeability. Intestinal physiology can even be affected by DON in the absence of clinical 

signs (Awad et al., 2004). The function of the tight junctions can be evaluated by 

measurements of the trans-epithelial electrical resistance (TEER) and of the paracellular 

efflux of macromolecules (Madara, 1998). These techniques, however, do not give 

information which specific protein of the tight junctions is affected (Van Itallie et al., 2009). 

Therefore, a qRT-PCR method was applied in our study to evaluate the effects of DON on the 

different specific proteins of the tight junctions, namely CLDN1, CLDN5, ZO1 and ZO2. An 

important advantage of this technique is the generation of quantitative results, which makes 

it possible to detect small differences which could otherwise be missed when using 

immunofluorescence. Moreover, due to the lack of suitable commercial avian antibodies, no 

effects at the protein level could be studied. This general lack in anti-chicken antibodies for 

use in Western blot and immunofluorescence is well known in poultry research.  

Major effects of feeding DON without an adsorbing agent on the intestinal barrier were 

observed in the jejunum. A significant up-regulation of CLDN5 was observed in the jejunum 

of the groups fed contaminated feed with or without an adsorbing agent. No significant 

differences were noticed in the jejunum for the mRNA expression of the other genes coding 

for the intestinal barrier function. The ileum on the other hand, is less susceptible to DON 

due to the fact that the majority of ingested DON is absorbed in the proximal parts of the 

small intestine (Awad et al., 2007). However, in the group receiving DON in combination with 

an adsorbing agent, detrimental effects were seen in the ileum. This indicates that addition 

of the adsorbing agent results in a sustained presence of DON in the intestine. 
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The results of our study suggest that DON selectively acts on the different parts of the tight 

junction complex as only an up-regulation of CLDN5 was observed. A selective effect of DON 

has been observed in vitro in intestinal porcine epithelial cells and human Caco-2 cells. After 

48h exposure to DON at a concentration of 9000 ng/mL both claudin 3 and 4 showed 

reduced protein expression, but ZO1 and occludin were not affected (Pinton et al., 2009). 

The same authors also described a reduced claudin 4 expression in growing pigs after in vivo 

exposure to DON (2.85 mg DON/kg feed) for 5 weeks, using Western blot analysis and 

immunohistochemistry. Immunohistochemistry results showing no changes in the overall 

morphology of the cells, but only a decreased staining for the claudins strengthens our 

hypothesis of a selective action of DON (Pinton et al., 2009). Selective action of DON on 

claudin-isoforms was confirmed in other more recent in vitro studies (Diesing et al., 2011; 

Van de Walle et al., 2010). Our study is, to our knowledge, the first one showing the effects 

of DON on the intestinal barrier in poultry after in vivo exposure to DON.  

Different authors also suggest that trichothecenes may be responsible for the production of 

free radicals, causing damage to DNA and membranes and thus suggesting that oxidative 

stress may play an important role in their toxicity (Atroshi et al., 1997; Leal et al., 1999; 

Minervini et al., 2005; Rizzo et al., 1994; Vila et al., 2002). Up-regulation of HIF-1α often 

occurs in the first hours of hypoxia and, thereafter, returns to basal levels. This can be an 

explanation for the basal levels of HIF-1α found in the small intestine during this study. 

However, instead of basal expression of HIF-1α, we have observed its down-regulation in the 

liver of chicken, after exposure to DON or the adsorbing agent alone or in combination. As 

shown recently by Sparkenbaugh et al. (2011), HIF-1α is up-regulated during liver injury in 

the initial phase of inflammation and oxidative stress, and should guarantee cell protection 

when the stress becomes chronic, which was not observed in our study. Furthermore, 

protection against hepatocyte death is related to the up-regulation of HMOX (Carchman et 

al., 2011). In our present study, however, hepatic HMOX was also significantly down-

regulated in animals fed with adsorbent supplemented feed, contaminated with DON, or 

with a combination of both. In contrast, in the jejunum a significant up-regulation of HMOX 

was observed in the animals receiving DON contaminated feed with or without the 

adsorbing agent. XOR, which responds more in the chronic phase, was significantly up-
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regulated in the jejunum in all the animals receiving DON, but in the liver an up-regulation 

was observed only in the group receiving DON without an adsorbing agent. In summary, 

DON caused oxidative stress in the small intestine. This has previously been reported in 

Caco-2 cells, where DON caused a significantly increased production of malondialdehyde, a 

biomarker of lipid peroxidation (Kouadio et al., 2005). The hepatic effects of in vivo exposure 

to 10 mg/kg DON in broiler chickens have previously been reported by Frankic et al. (2006). 

They observed no differences in liver content of malondialdehyde, glutathione peroxidase 

and total antioxidant status, which are all markers for lipid peroxidation (Frankic et al., 

2006). These findings suggest a more direct genotoxic effect of DON, rather than via the 

oxidative pathway (Awad et al., 2012; El Golli-Bennour and Bacha, 2011).  

Due to the damage to the intestinal barrier, an increased passage of non-invasive 

commensal bacteria may occur (Maresca et al., 2008). Both in duodenum and jejunum a 

significant up-regulation of TLR4 was observed during our study, which suggests 

inflammation, more specific due to the presence of Gram-negative bacteria (Reynolds et al., 

2012). In contrast, no effects on TLR2 were observed. TLR2 is more affected by the presence 

of Gram-positive bacteria (Takeuchi et al., 1999).  

In the last part of the small intestine, the ileum, inflammation was caused by the presence of 

DON in combination with the adsorbing agent. In addition, in this group all the genes coding 

for the tight junction complex were also up-regulated and the same trend was observed for 

the gene XOR, coding for oxidative stress. Along the entire length of the small intestine 

administration of the adsorbing agent resulted in longer villi. From our qRT-PCR results, we 

can conclude that it is not the adsorbing agent that causes damage as no significant 

differences in gene expression were seen in the group receiving control feed in combination 

with the adsorbing agent. The adsorbing agent is a mineral clay and seems to protect DON 

from degradation by the gastric fluids and intestinal enzymes in the proximal part. This may 

result in a higher concentration of the mycotoxin in the distal part of the small intestine 

when an adsorbing agent is used. Thus the binding or interaction of DON with the adsorbing 

agent results in a longer exposure time of the intestine to DON. 
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From our in vivo study, we can conclude that DON acts in a very specific way on the 

intestinal barrier in broiler chickens. Increased intestinal barrier permeability after chronic 

exposure to DON may lead to intestinal inflammation. The mechanism of action of DON can 

be different depending on the investigated target organ. The investigated mycotoxin 

adsorbing agent does not cause direct damage or irritation. However, feeding this clay 

mineral in combination with DON may result in higher concentrations of the mycotoxin in 

more distal parts of the small intestine, resulting in damage of the intestinal barrier there.   
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CYP3A in the liver and the small intestine of healthy broiler chickens 
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Boussery, K., Croubels, S. (2013). Hepatic and intestinal CYP3A expression and activity in 
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ABSTRACT 

Cytochrome P450 is involved in drug metabolism. Subfamily CYP3A shows a degree of 

similarity across different animal species. However, little information is available about its 

expression and activity in broiler chickens. A RT-PCR method was developed for the 

quantification of CYP3A37 expression in the liver and small intestine of broilers. A higher 

expression in the jejunum was observed compared with that in the ileum. In the liver, a 

significantly lower expression compared witht that in the jejunum was noticed. Thus, the 

role of the small bowel in drug metabolism cannot be neglected in broilers. CYP3A activity 

was studied in vitro using midazolam as a substrate. Two protocols for the preparation of 

intestinal microsomes were compared. Mincing of the tissues before ultracentrifugation 

seemed to be more appropriate than a protocol based on ethylenediaminetetra-acetic acid 

separation. CYP3A activity revealed to be the highest in the duodenum with a decreasing 

trend towards the ileum. Activity in liver was comparable to duodenal activity.  
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INTRODUCTION 

Cytochrome P450 (CYP450) enzymes play a dominant role in the process of oxidative 

biotransformation (Hollenberg, 1992). These heam proteins are classified in different 

families, with CYP1 to CYP4 being the most important ones. Members of the CYP1, CYP2 and 

CYP3 group are responsible for phase I metabolism of xenobiotics. On the other hand, the 

CYP4 family is responsible for the catalytic functions in the metabolism of fatty acids and 

prostaglandins (Bains et al., 1985) and also for the oxidation of many drugs with an acidic 

function (Moody, 1992).  

The CYP enzymes have mainly been studied in humans and laboratory animals, but little is 

known about hepatic and especially intestinal CYP-enzymes in domestic animals (Antonovic 

& Martinez, 2011). To date, several subtypes of CYP enzymes have already been 

characterized and some have even been cloned in chicken. For the CYP1A subfamily, 

homology between mammalian CYP1A1 and CYP 1A2 and avian CYP1A4 and CYP 1A5, 

respectively, has been described (Kubota et al., 2006). Both CYP1A4 and CYP1A5 have also 

been cloned in chickens (Gilday et al., 1996). CYP1B is another member of the CYP1 family in 

chicken with a homology of 72% with the human CYP1B1 (Antonovic & Martinez, 2011). For 

the CYP2 family, many iso-enzymes have already been described in chickens. In chickens, 

CYP2G is a homologue of human CYP2G (Antonovic & Martinez, 2011). The chicken CYP2C45 

has a homology of 56% with human CYP2H1 (Baader et al., 2002). Similarity was proven 

between human CYP2C and chicken CYP2H1 and CYP2H2 and between human CYP2J2 and 

chicken CYP2J19 (Antonovic & Martinez, 2011). The CYP3A subfamily is the last family 

important for phase I metabolism. In humans, approximately 50% of the therapeutic drugs 

are metabolized by the CYP3A subfamily. CYP3A4 has even been proven to be the most 

dominant CYP3A isoenzyme in the human intestine (Koch et al., 2002). The presence of 

CYP3A has been confirmed in chickens as an isoform, designated as CYP3A37, which is 60% 

homologous to human CYP3A4 (Ourlin et al., 2000). On the other hand, the existence of 

other CYP3A isoforms cannot be excluded (Antonovic and Martinez, 2011; Cortright and 

Craigmill, 2006; Murcia et al., 2011; Ourlin et al., 2000). In the evolutionary history of CYP3A 

gene family, it is described that the CYP3A80-like genes were lost, except in reptiles and 

aves. In all Eutheria CYP3A genes are the descendants of the CYP3A37 gene (Qiu et al., 
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2008).  The presence of CYP3A80 has already been described in turkeys, but some authors 

suggest that it may be a pseudo-gene without activity. For example, for the metabolisation 

of aflatoxin B1 in turkeys, CYP3A37 was the only investigated CYP3A isoform (Rawal and 

Coulombe, 2011). 

Midazolam (MDZ) is known to be a marker substrate in humans and rats for CYP3A4 

(Kobayashi et al., 2002; Kronbach et al., 1989; Watkins, 1994). This drug belongs to the group 

of the benzodiazepines and is metabolized via CYP4503A members in the liver to 1-hydroxy, 

4-hydroxy or 1,4-dihydroxy metabolites. Chickens form 1-hydroxy (1-OH)-midazolam as the 

major metabolite, which is also reported for humans (Cortright and Craigmill, 2006).  

In our study, we investigated the hepatic and intestinal gene expression of CYP3A37 in 

broilers using RT-PCR. A comparative study was performed between two different 

microsomal preparation methods for chicken small intestines. In addition, we also evaluated 

the CYP3A activity using midazolam as a substrate.  

 

 

 

 

 

 

 

 

 

 



Experimental studies: Chapter 4 
 

  

139  

 

MATERIALS AND METHODS 

Chemicals 

Gibco® Dulbecco’s phosphate buffered saline (PBS) was obtained from Life Technologies 

(Ghent, Belgium). Potassium chloride, potassium dihydrogenphosphate, sodium chloride, 

disodium hydrogenphosphate, dipotassium hydrogenphosphate, glycerol and 

ethylenediaminetetra-acetic acid (EDTA) were purchased from VWR (Leuven, Belgium). 

Chlorpropamide, trisodium citrate dihydrate, dithiothreitol, histidine and sucrose were 

purchased from Sigma-Aldrich (St-Louis, MO, USA).   Nicotinamide adenine dinucleotide 

phosphate (NADPH) was obtained at Biopredic International (Rennes, France). Midazolam 

and 1-OH-midazolam were kindly donated by Roche (Basel, Switzerland). Protease Inhibitor 

Cocktail Tablets Complete Mini were obtained from Roche (Vilvoorde, Belgium). These 

Protease Inhibitor Cocktail Tablets consist of pancreatic extract (0.02 mg/ml), pronase (0.005 

mg/ml), thermolysin (0.0005 mg/ml), chymotrypsin (0.0015 mg/ml) and papain (0.33 

mg/ml

Animals and sample collection 

The experimental procedures conducted with the broiler chickens were in accordance with 

the European guidelines for the care and use of animals for research purposes. 

Sampling for intestinal microsome preparation. Healthy broiler Ross chicks (n=6, 3 ♀ and 3 

♂) aged 4 weeks used in this study were of a commercial strain. After cervical dislocation, 

various parts of 12 cm of the small intestines were collected. The different sampling sites 

along the digestive tract of the broilers were as follows: 2 cm posterior to the gizzard 

(intestine 1), immediately anterior to the Meckel’s diverticulum (intestine 2) and 2 cm 

anterior to the ileo-caecal transition (intestine 3). Parts were divided in three different parts 

of 4 cm each and were opened longitudinally with a pair of scissors. The tissues were rinsed 

with PBS to remove partially digested feed residues and put in separate vials. No scraping of 

the mucosa was performed. After snap-freezing, the tissues were kept at -80°C until analysis. 

To try to reduce variability, random combinations of samples were used to test the 

protocols. Samples were pooled as follows: 1 tissue set consisted of 3 pieces of 4 cm from 
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the same intestinal part but from three random chickens. Consequently, every intestinal 

tissue sample had a total length of 12 cm. Three tissue sets per region were tested for each 

protocol.  

 

Sampling for CYP3A37 gene expression. Fourteen broiler chickens (7 ♀ and 7 ♂) ages 4 

weeks were euthanized by cervical dislocation. Samples of the liver (100 mg) and various 

parts of 1 to 2 cm of the small intestines were collected. The sampling sites along the 

digestive tract were as described above. The samples were rinsed in PBS, immediately frozen 

in liquid nitrogen and kept at -80°C until analysis. 

 

Sampling for CYP3A activity measurements. The same number of animals as described for 

gene expression, were euthanized. A segment of 4 cm was taken from each intestinal part 

(intestine 1, 2 and 3 as described previously). The segments were opened and rinsed with 

PBS. Liver samples of 8 g were also washed carefully with PBS. All the samples were 

collected in separate cryovials, immediately frozen in liquid nitrogen and stored at -80°C 

until analysis. 

Microsomal preparation for CYP3A activity measurements 

Hepatic microsomes were prepared using a process of differential ultracentrifugation 

(Wilson et al., 2003). All processing of tissue was performed on a bed of ice. Liver tissue was 

minced and homogenized in 4 ml homogenization buffer (pH 7.25, 0.25 M phosphate buffer, 

1.15% KCl) per g tissue. After centrifugation at 10,000 x g (15 minutes, 4°C), the resulting 

supernatant was centrifuged at 100,000 x g for 75 minutes (4°C). In order to wash the 

formed microsomal pellet, it was resuspended in homogenization buffer (4 ml/g tissue) and 

centrifuged again following the last conditions. The final microsomal pellet was resuspended 

in 1 ml/g tissue of resuspension buffer (pH 7.25, 0.25 M phosphate buffer, 1.15% KCl, 30% 

glycerol). The resuspended microsomes were immediately frozen in liquid nitrogen and 

stored at  -80°C until activity measurements. 

Intestinal microsomes were prepared using two different methods, described by Mohri and 

Uesawa (2001) for rat small intestinal epithelial cells. The first method was based on mincing 
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in a Potter system, the other method also used the Potter system but was preceded by an 

EDTA-based separation of the enterocytes.  

To start both methods, samples were immersed in Solution A (pH 7.3, 1.5 mM KCl, 96 mM 

NaCl, 27 mM sodium citrate, 8 mM KH2PO4 and 1 tablet protease inhibitor cocktail/10 ml) 

while thawing for approximately 3 minutes at 41°C in an incubation oven, which corresponds 

with the avian body temperature. The thawed sample was blot dried and weighed. 

Mincing method. The thawed sample was minced with scissors and homogenized using an 

automated Potter-Elvehjem system (500 rpm, 7 up and down movements) in 4 ml 

homogenization buffer (pH 7.4, 50 mM KH2PO4, 50 mM K2HPO4, 1 mM EDTA and 1 tablet 

protease inhibitor cocktail/ 10 ml) per g sample. The homogenate was centrifuged at 

18,000xg for 15 minutes (4°C), and the resulting supernatant was centrifuged at 100,000 x g 

for 60 minutes (4°C). The resulting microsomal pellet was washed with resuspension buffer 

(pH 7.5, 125 mM KH2PO4, 125 mM K2HPO4, 1.25 mM EDTA, 20% glycerol and 1 tablet 

protease inhibitor cocktail/10 ml), centrifuged again at 100,000 x g for 60 minutes (4°C) and 

resuspended in 1 ml resuspension buffer per g tissue. 

 

EDTA-separation method. The thawed sample was immersed in 4 ml Solution B for 2 

minutes (pH 7.4, 2.7 mM KCl, 137 mM NaCl, 1.5 mM KH2PO4, 8 mM Na2HPO4, 1.5 mM EDTA, 

0.5 mM dithiothreitol and 1 tablet protease inhibitor cocktail/10 ml) while gently squeezing 

the tissue and swirling the dish. The separated enterocytes were collected, and the 

immersion in Solution B was repeated 3 times in total. The cells were rinsed with 12 ml 

Solution C (pH 7.0, 5 mM histidine, 0.25 mM sucrose, 0.5 mM EDTA and 1 tablet protease 

inhibitor cocktail/10 ml) and centrifuged at 800xg for 15 minutes (4°C). Subsequently, the 

cells were homogenized with Solution C (Potter-Elvehjem at 500 rpm) and centrifuged at 

15,000 x g for 15 minutes (4°C).  The supernatant was then centrifuged at 100,000 x g for 45 

minutes (4°C), and the microsomal pellet was resuspended as described above in the 

mincing method. 

The obtained microsomal suspensions, after applying one of the 2 above mentioned 

methods, were snap frozen in liquid nitrogen and stored at -80°C. Protein concentration of 

all microsomes was measured using the method described by Bradford (1976). 
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Sample processing 

CYP3A37 gene expression. According to the manufacturer’s instructions, total RNA was 

isolated from the liver and intestinal samples using RNAzol®RT (MRC Inc., Cincinnati, USA). 

An Experion RNA StdSens Analysis kit (Biorad Laboratories, Hercules, CA, USA) was used to 

check the purity of the RNA samples. RNA concentrations were measured using a Nanodrop 

spectrophotometer (Thermo Scientific, Wilmington, USA) at an absorbance of 260 nm. 

Reverse transcription was carried out in a 20 µl final volume that included 4 µl of 5 x iScript 

Reaction Mix, 1 µl of iScript Reverse Transcriptase, 1 µl of RNA template (1 µg) and nuclease-

free water to complete the final volume. Different components described above are part of 

the iScript cDNA Synthesis Kit (Biorad Laboratories). The mix was incubated at 25°C for 5 

min, heated to 42°C for 30 min and inactivated at 85°C for 5 min. The obtained cDNA was 

stored at -20°C until analysis. Absolute quantification was carried out using the Applied 

Biosystems 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). The 

primers used for CYP3A37 amplification were adopted from Zhang et al. and were as follows: 

CYP3A37 forward, 5’-CGAATCCCAGAAATCAGA–3’; CYP3A37 reverse, 5’-

AGCCAGGTAACCAAGTGT-3’ (GenBank ID: NM 001001751.1) (Zhang et al., 2010).  The 

annealing temperature was set at 60°C for the primers. The quantitative RT-PCR reaction 

was carried out in 96-well plates with 500nM of the forward and reverse primers, 5 µl iQTM 

SYBR®Green Supermix (Biorad) and 1 µl of the fivefold diluted cDNA template, in a total 

reaction volume of 10µl. The thermal cycler conditions were 15 min at 95°C, followed by 40 

cycles of 20s at 95°C, 30s at 60°C, 30s at 72°C. The melt curve analysis showed that the RT-

PCR generated PCR-products had identical melt-points for all tissues, indicating that the PCR-

products amplified are the same in the various tissues. For construction of the standard 

curve, a PCR product of 396 bp was generated using DNA from chicken liver and the 

following primers: forward, 5’-CCCCAGTGATGCTGTAGATT-3’; reverse, 5’-

TAGAGCCGGAGGGTTTCATT-3’. After purification with an Invitek kit (Germany) and 

measuring the DNA concentration with a Nanodrop ND 1000 spectrophotometer (NanoDrop 

Technologies), the volume of the linear dsDNA standard was adjusted to 1 x 108 copies/µl. 

This stock solution was serially diluted to obtain a standard series with each step differing by 

10-fold. The copy numbers of samples were determined by reading off the standard series 

with the Ct values of the samples. Three amplifications were performed for each CYP mRNA 
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and the standard curve was repeated on each plate in duplicate. For the validation of the 

qPCR assays following criteria were applied:  slope between -3.6 and -3.1, efficiency between 

90 and 110 %, R2 > 0.99. 

 

CYP3A activity measurements. Microsomal incubations were performed at 41°C in a shaking 

heat block. For each broiler and tissue two separate incubations were run in duplicate. 

Mixtures of 1.15% KCl, 0.05 M phosphate buffer (pH 7.4) and midazolam (final concentration 

of 25 µM according to the study of Cortright and Craigmill (2006) our chosen concentration 

corresponds with Vmax) were pre-heated. After addition of NADPH (final concentration in 

incubation medium of 1 mM), the mixture was pre-incubated for 3 minutes, after which the 

incubation reaction was initiated by the addition of the microsomal dilution. Incubations 

contained 0.275 mg protein/ml. After exactly 20 minutes, the enzymatic reactions were 

terminated through the addition of the stop reagent (water/acetonitrile/formic acid 

(42/55/3, (v/v/v)) containing the internal standard (IS) chlorpropamide (final concentration 

in terminated incubation mixture of 0.072 µM). The terminated samples were vortex mixed 

and cooled on ice, after which they were centrifuged at 20,000 x g for 10 minutes (4°C). The 

supernatants were collected and frozen at -20°C until analysis.  

The amounts of 1-OH-midazolam that were formed during the incubations were quantified 

using a validated UPLC-MS/MS method published elsewhere (De Bock et al., 2012).  In short, 

20 µl of the supernatant was injected onto a Waters Acquity UPLC BEH C18 column (50 mm x 

2.1mm, 1.7 µm particle size) with a VanGuard pre-column (5 mm x 2.1 mm, 1.7 µm particle 

size). 1-OH-MDZ eluted at 2.08 min, and the IS at 2.75 min, after gradient elution, using 

water with 0.1% formic acid and acetonitrile with 0.1% formic acid at a flow rate of 400 

µl/min. Detection was performed using a quadrupole mass spectrometer in the multiple 

reaction monitoring mode (m/z 1-OH-MDZ 342.04> 323.70, m/z IS 276.86> 174.69). A linear 

calibration curve with weighting factor 1/x2 was calculated within 4.29-1929.60 nM range. 

The method accuracy was 93.52 – 102.61%, and the between-day and within-day precision 

were <4.82% RSD and <4.61% RSD, respectively. Data were analysed with MassLynx software 

(v 4.1). 
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Data analysis 

Results from the expression and activity measurements were compared between the 

different sections by ANOVA after determination of normality and variance homogeneity. 

Multiple comparisons were performed using a LSD post-hoc test. Not normally distributed 

data were analyzed using the non-parametric Kruskal-Wallis analysis, followed by a Mann-

Whitney test using SPSS 19.0 Software (SPSS Inc., Chicago, IL, USA). A P-value of <0.05 was 

considered statistically significant.  
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RESULTS 

MINCING preparation method results in higher CYP3A activity per gram of intestinal tissue 

compared to the EDTA protocol 

Mean total protein content of the microsomes prepared using the mincing method was 

higher (mean= 7.063 mg/ml; SD= 1.61 mg/ml) than with the EDTA-separation method 

(mean= 2.196 mg/ml; SD= 0.56 mg/ml).  Normalization of the CYP3A activity to gram tissue 

confirmed that the mincing protocol had a higher yield than the EDTA-based method (data 

not shown).  The EDTA preparation resulted in a lower protein content, which makes it more 

difficult to evaluate the activity of CYP3A in the small intestines of broiler chickens. 

Therefore, the mincing protocol was applied to test intestinal CYP3A activity in the group 

with 14 animals (see results presented below). 

 

Quantification of CYP3A37 mRNA expression in liver and along the entire length of small 

intestines of broiler chickens 

Analysis of the data shown in Figure 1 indicates that the CYP3A37 gene expression in the 

intestines is substantially higher immediately anterior to the Meckel’s diverticulum (intestine 

2), even significantly higher than in the ileum (intestine 3) (P<0.05). The expression in the 

proximal part (intestine 1) is comparable to the most distal part of the small intestine 

(intestine 3). Remarkably, the expression level is the lowest in the liver of the broilers with a 

significant difference with intestine 2 (P<0.001). A similar trend was observed for both male 

and female animals. 
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Figure 1. Expression of CYP3A37 mRNA in the small intestines and liver of broilers (n= 14, 7 
♂ and 7 ♀). Each expression level represents the mean + standard deviation of the seven 
broilers based on three independent amplifications. (*: P<0.05; *** : P<0.001).  
 

CYP3A activity decreases from proximal to distal in the chicken small intestine 

Figure 2 shows the CYP3A activity after applying the mincing method for the preparation of 

intestinal microsomes. The highest metabolic activity was observed in the proximal part, 

with a clearly decreasing trend towards the distal part of the small intestines (P<0.001). The 

mean hepatic midazolam biotransformation activity is similar as the level observed in the 

proximal part of the small intestines. Again, a similar trend was observed for both male and 

female birds. 
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Figure 2. CYP3A subfamily activity in the small intestines and liver of broilers (n= 14, 7 ♂ 
and 7 ♀). For each broiler and tissue, two separate incubations were run in duplicate. Data 
are represented as mean activity + standard deviation. 
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DISCUSSION 

In this study, we analyzed the CYP3A expression and activity in liver and small intestines of 

broilers. Discordant regulation of these enzymes in liver and small intestine has been 

observed in man (Lown et al., 1994) and rats (Hakkak et al., 1993). 

A newly developed RT-PCR method showed that CYP3A37 mRNA in broilers is expressed in a 

much higher extent immediately anterior to Meckel’s diverticulum. From these results, it can 

be concluded that the CYP3A37 expression in the jejunum of broilers is substantially higher 

than in the duodenum or ileum of these animals. In cynomolgus monkeys, mRNA of CYP3A4 

was abundantly expressed in the distal part of the duodenum and the upper jejunum. Again 

a decreasing trend was observed towards the distal ileum (Nakanishi et al., 2010). A similar 

trend was also observed in rats (Mitschke et al., 2008).  However, our results are in contrast 

with the findings in horses, where the CYP3A4 expression was noticed to be the highest in 

the proximal intestine with a decreasing trend towards the distal parts (Tyden et al., 2004). 

Unfortunately, there is no further literature available to compare with, especially not for 

poultry species. Our study also showed that the expression of CYP3A37 mRNA in the livers of 

broilers is lower in comparison to the intestines of these animals. Previous studies in horses 

and humans also resulted in a higher CYP3A4 mRNA expression in the proximal intestine 

compared to the liver (Kolars et al., 1992; Tyden et al., 2004).  

In addition, the expression of CYP3A37 mRNA showed high inter-individual differences, in 

both liver and intestines. Interpatient CYP3A4 heterogeneity in humans was previously 

described by Lown et al. (1994). Moreover, existence of large inter-breed differences in 

CYP450 expression patterns has been reported by Fink-Gremmels (2008). Ozdemir et al. 

reported that at least 60% or more of the variability in CYP3A4 activity is under genetic 

control (Ozdemir et al., 2000). It is known that CYP450 isoforms are also influenced by many 

other factors including physiological and environmental ones (Watkins, 1994; Antonovic & 

Martinez, 2011). However, gender differences in CYP3A37 mRNA expression were not seen 

in our study, both sexes revealed similar variation in expression. CYP3A activity, on the other 

hand, was observed using midazolam as substrate. The protocols that were evaluated in this 

study to prepare intestinal microsomes, were based on the paper of Mohri and Uesawa 

(2001). These authors compared different preparation methods of rat intestine, based on 
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either scraping or EDTA-separation of the enterocytes, followed by Ca-aggregation or 

ultracentrifugation in order to obtain the microsomal fraction. Other useful information was 

obtained from the study by Tyden et al. (2004), which describes a procedure for the 

preparation of horse intestinal microsomes after scraping of the mucosal cells with a scalpel, 

as also done by Paine et al. (1997) for human intestinal microsomes. The subsequent 

procedure was similar to the ultracentrifugation procedure described by Mohri and Uesawa. 

Results of our study revealed that the protocol based on mincing of the tissues leads to a 

higher total protein content compared to the method with EDTA-separation. Different 

preparation procedures can indeed result in different enzymatic activities. Mohri and 

Uesawa (2001) concluded that the separation of enterocytes with EDTA-treatment is more 

appropriate than a method that involves scraping of the enterocytes with a microscope 

slide. In our study, the EDTA-separation seemed to be difficult to standardize with a lower 

reproducibility as consequence. This method also did not provide a guarantee about the 

quantity of enterocytes that is separated in the supernatant, which is further used for 

homogenization. In the mincing protocol, the whole tissue is homogenized after mincing. For 

the investigation of the in vitro biotransformation of drugs, high enzymatic activities are 

necessary to guarantee accurate and representative measurements, and therefore the 

mincing method is considered superior. Moreover, high protein levels are necessary for 

chickens, due to the low hepatic CYP content reported in these animals compared to other 

species, such as mice, rats, horse and ruminants (Khalil et al., 2001).  

Watkins (1994) described different substrates to test CYP3A enzymes such as erythromycin, 

midazolam, cortisol, nifedipine, dapsone and lignocaine. From all these substrates 

midazolam seemed to be the most appropriate as substrate for CYP3A (Watkins, 1994). In 

addition, MDZ has already been used in different avian species as a substrate for CYP3A 

(Cortright and Craigmill, 2006). In chicken the production of MDZ metabolites in liver 

microsomes demonstrated Michaelis-Menten kinetics with Km equal to 2.1±0.8 μM for 1-OH-

MDZ (Cortright and Craigmill, 2006). Therefore, MDZ was also used in our study to evaluate 

the CYP3A activity in liver and intestines of the broilers. Both liver and duodenum are 

involved in the first pass metabolism, which explains the high CYP3A activity in the 

duodenum and the liver.  
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The discordance between the CYP3A mRNA expression and the activity of these enzymes 

may suggest that transcriptional or posttranscriptional factors may be involved in the 

regulation of CYP3A in the small intestines of chickens. A poor correlation between CYP3A 

mRNA expression and protein activity has also been seen in humans. However, the protein 

concentration and activity were in accordance and thus, posttranscriptional regulation of 

CYP was supposed. (Lown et al., 1994). On the other hand, it can’t be excluded that the 

results for CYP3A activity may be influenced by the presence of other CYP3A isoforms for 

which midazolam can be a substrate in chickens (Murcia et al., 2011). 

From our findings, we can conclude that the cytochrome P450 enzymes in the mucosal villi 

of the small intestine in broilers can have an equal or even a higher importance for the first-

pass metabolism of some drugs and xenobiotics than the liver. The inter-species variations 

can lead to large differences in oral bioavailability of drugs which are subject to first-pass 

metabolism. A variable susceptibility to diseases and environmental factors of the animals 

can also be explained. From the differences between the various intestinal sections, we can 

conclude that the sample sites have to be carefully described and selected for the 

measurement of the CYP mRNA expression levels and activity.  
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Chapter 5. 

 

Effects of T-2 toxin on intestinal and hepatic biotransformation mechanisms 
and transporter systems 
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ABSTRACT 

The effects of the mycotoxin T-2 on hepatic and intestinal drug-metabolizing enzymes 

(cytochrome P450) and drug transporter systems (MDR1 and MRP2) in poultry were 

investigated during this study. Broiler chickens received either uncontaminated feed, feed 

contaminated with 68 µg/kg or 752 µg/kg T-2 toxin. After three weeks, the animals were 

euthanized and MDR1, MRP2, CYP1A4, CYP1A5 and CYP3A37 mRNA expression were 

analyzed using qRT-PCR. Along the entire length of the small intestine no significant 

differences were observed. In the liver, genes coding for CYP1A4, CYP1A5 and CYP3A37 were 

significantly down-regulated in the group exposed to 752 µg/kg T-2. For CYP1A4, even a 

contamination level of 68 µg/kg T-2 caused a significant decrease in mRNA expression. 

Expression of MDR1 was not significantly decreased in the liver. In contrast, hepatic MRP2 

expression was significantly down-regulated after exposure to 752 µg/kg T-2. Hepatic and 

intestinal microsomes were prepared to test the enzymatic activity of CYP3A. In the ileum 

and liver CYP3A activity was significantly increased in the group receiving 752 µg/kg T-2 

compared to the control group. The results of this study show that drug metabolizing 

enzymes and drug transporter mechanisms can be influenced due to prolonged exposure to 

relevant doses of T-2. 
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INTRODUCTION 

Mycotoxins are widely distributed contaminants of different crops intended for human and 

animal consumption (Fink-Gremmels, 1999; Placinta et al., 1999). T-2 toxin (T-2) is a 

trichothecene mycotoxin, produced by fungi belonging to the Fusarium species. Among the 

trichothecenes, T-2 is the most acutely toxic (Hussein and Brasel, 2001). In broiler chickens, 

T-2 causes reduced feed intake and body weight gain, but also severe oral lesions and 

immunological dysfunction (Devegowda and Murthy, 2005). Clinical signs depend on the 

exposure time and on the dose of the toxin. In addition, T-2 is a potent inhibitor of the 

protein synthesis and tissues with a high cell division rate, like the intestinal mucosa and the 

liver, are the most susceptible (Sokolovic et al., 2008). Moreover, this toxin causes oxidative 

stress that alters the cell cycle and induces apoptosis in vitro and in vivo (Chen et al., 2008; 

Islam et al., 1998). Although T-2 is known to cause important economic losses, no maximum 

guidance limits for T-2 in food and feedstuff have been pointed out by the European Union 

until now (Anonymous, 2011). However, T-2 can be considered as an emerging contaminant 

since concentrations up to 1810 µg T-2 toxin per kg wheat have been reported in Germany 

(Schollenberger et al., 2006). In poultry the generally accepted no observed adverse effect 

level (NOAEL) value is set at 0.5 mg T-2 /kg feed (Eriksen and Pettersson, 2004). 

Drugs and feed contaminants are both xenobiotics. Being considered foreign products, they 

are both eliminated from the animal body by comparable processes. Before their excretion 

in the urine or faeces, biotransformation of these compounds can take place. 

Biotransformation is also possible before absorption of the compound into the systemic 

circulation. Both liver and intestine are involved in this first pass metabolism of orally 

ingested xenobiotics. Cytochrome P450 (CYP450) enzymes play a dominant role in the 

process of oxidative biotransformation (Hollenberg, 1992). In humans, most drugs are 

metabolized by the CYP3A4 isoform (Hardman, 2001). Presence of CYP3A subfamily has been 

confirmed in chickens, as an isoform CYP3A37 has been found with a homology of 60% to 

human CYP3A4 (Ourlin et al., 2000).  

Beside the superfamily of cytochrome P450, active transport-systems also play a role in the 

protection against xenobiotics. These transporters are called adenosine-tri-phosphate (ATP)-

binding cassette (ABC) carrier proteins and are able to remove xenobiotics from cells using 
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ATP hydrolysis as energy source. Multiple drug resistance 1-gene (MDR1, which encodes P-

glycoprotein (P-gp)) and multidrug resistance-associated protein 2 (MRP2) gene are genes 

coding for membrane proteins belonging to the ABC superfamily (Cherrington et al., 2002; 

Tusnady et al., 1997).   

Drug-food interactions often occur through effects on gastro-intestinal motility or by drug 

binding. On the other hand, drug metabolism and drug transporter can also be influenced by 

food or feed and their contaminants. Grapefruit for example, is a very well-known inhibitor 

of CYP3A4 in humans and is responsible for increased drug levels (Ameer and Weintraub, 

1997). Grapefruit compounds such as flavonoids, furocoumarins and furanocoumarins have 

been identified as inhibitors of the intestinal CYP3A4 in different in vitro studies (Fukuda et 

al., 1997; Ho et al., 2001). These grapefruit compounds bind irreversibly to CYP3A4 and 

permanently inactivate the isoenzyme. The mode of action is called mechanism-based 

inhibition and the duration of this inhibition may be longer than competitive inhibition since 

new CYP3A4 isoenzymes must be synthesized for activity to be restored. Inhibition of 

intestinal CYP3A4 enzymes leads to an increased maximum plasma concentration and total 

amount of the drug (Bressler, 2006). Different studies already reported the negative 

influence of T-2 on the normal metabolism of xenobiotics in the liver (Kravchenko et al., 

1986; Suneja et al., 1989). Negative effects of short-term exposure to high doses of T-2 on 

CYP1A expression have been reported in rats and rabbits (Galtier et al., 1989; Guerre et al., 

2000). One study reports the impact of chronic exposure to T-2 on CYP1A protein expression 

in pigs (Meissonnier et al., 2008). Studies mentioned above mainly focused on the CYP1A 

subfamily expression and only in the liver. We focused on the effects of long-term exposure 

to T-2 on CYP1A4, CYP1A5 but also on CYP3A-expression in broilers. In addition, the 

influence of prolonged exposure to T-2 on the enzymatic activity of CYP3A was studied, using 

midazolam as substrate. Both liver and small intestines were included in our study, since 

both organs play a dominant role in the first pass effect. The last aim of our study was to 

investigate the possible impact of prolonged T-2 exposure on the mRNA expression of MDR1 

and MRP2 transporter-mechanisms in broilers.   
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MATERIALS AND METHODS 

Chemicals 

Dulbecco’s phosphate buffered saline (PBS) was obtained from Gibco® Life Technologies 

(Ghent, Belgium). Potassium chloride, potassium dihydrogenphosphate, sodium chloride, 

disodium hydrogenphosphate, dipotassium hydrogenphosphate, glycerol and 

ethylenediaminetetra-acetic acid (EDTA) were purchased from VWR (Leuven, Belgium). 

Chlorpropamide and trisodium citrate dihydrate were purchased from Sigma-Aldrich (St-

Louis, MO, USA).   Nicotinamide adenine dinucleotide phosphate (NADPH) was obtained at 

Biopredic International (Rennes, France). Midazolam and 1-OH-midazolam were kindly 

donated by Roche (Basel, Switzerland). Protease inhibitor Cocktail Tablets Complete Mini 

were obtained from Roche (Vilvoorde, Belgium

Animal experiments 

Animals and tissue sampling. Twenty-four one-day old broiler chickens (12 ♀ and 12 ♂) 

were obtained from a commercial strain (Belgabroed, Hoogstraten, Belgium) and housed 

together according to the requirements of the European Union (Anonymous, 2007). The 

experiments started after 10 days of acclimatization, allowing the animals to adapt to the 

environment. For the study, the animals were divided in three experimental groups, each 

consisting of 8 animals. Three different experimental diets were fed during three weeks: the 

first group received control feed, the second and third group received feed contaminated at 

68 and 752 µg/kg T-2, respectively. Feed and water were given ad libitum. The applied light 

cycle was the same as on the commercial farm (20 hours light/ 4 hours dark). Animals were 

weighed before feeding the different diets and at the end of the experiment, in order to 

calculate the body weight (BW) gain over the experimental period (BW d 33 – BW d 11). 

After three weeks of feeding, the animals were killed by cervical dislocation. Organs (liver, 

heart, kidneys, proventriculus and ventriculus) were weighed and the lengths of the 

duodenum, jejunum and ileum were measured. Afterwards, tissue samples were collected. 

Intestinal sections, 1 cm long, were collected for the mRNA expression measurements (qRT-

PCR analysis). The different sampling sites along the digestive tract of the broilers were as 

follows: 2 cm posterior to the gizzard (duodenum), immediately anterior to the Meckel’s 
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diverticulum (jejunum) and 2 cm anterior to the ileo-cecal transition (ileum). After rinsing in 

PBS and freezing in liquid nitrogen, the tissues were kept at -80°C until analysis. For the 

investigation of CYP activity the same sampling sites were applied, but parts of 2 cm were 

taken. From the liver, samples of approximately 1 cm3 (qRT-PCR analysis) and 2 cm3 (activity 

measurements) were taken and rinsed in PBS. The samples were immediately frozen in 

liquid nitrogen and kept at -80°C until analysis. All animal experiments were approved by the 

ethics committee of the Faculty of Veterinary Medicine, Ghent University (EC 2011/033). 

Feed preparation and experimental diets. Conventional broiler feed (Bromix Plus®) was 

purchased from Versele-Laga (Deinze, Belgium). It was considered as uncontaminated feed 

after analysis for the presence of mycotoxins by a validated multi-mycotoxin liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) method (Fytolab, Zwijnaarde, 

Belgium). This feed is further referred to as control feed and was used to feed the animals 

during the acclimatization period as well as to prepare the T-2 contaminated feeds needed 

for the experiment.  

To produce feed of a contamination level of approximately 100 µg T-2/kg feed, a stock 

solution of 0.55 mg/mL was prepared by dissolving 55 mg T-2 (Fermentek, Jerusalem, Israel) 

in 100 mL ethanol (Merck, Darmstadt, Germany). The contaminated feed was produced by 

adding 9.1 mL of the stock solution to 500 g of control feed. This premix was then mixed 

with 5 kg control feed to assure homogeneous distribution of the toxin. The premix was 

finally mixed for 15 min in the total amount of feed (50 kg) needed for the experiment. To 

test T-2 homogeneity in the feed, a sample was taken at three different locations in the 

batch and analysed with LC-MS/MS to determine the concentration of T-2. A mean 

concentration of 68 µg/kg feed was found in this T-2 contaminated feed. To produce feed 

with a contamination level of approximately 1000 µg T-2/kg feed, a similar procedure as 

described above was applied but 90.9 mL of the stock solution was used instead of 9.1 mL. 

After the production of the contaminated feed, again analysis of the presence of T-2 was 

investigated at three different sampling sites. The analysis resulted in a mean contamination 

level of 752 µg/kg feed.  
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Analysis of CYP1A4, CYP1A5, CYP3A37, MDR1 and MRP2 mRNA expression using qRT-PCR  

Samples of the liver and different intestinal segments were collected as described above. 

Total RNA from the tissue samples was isolated using RNAzol®RT (MRC Inc., Cincinnati, USA) 

according to the manufacturer’s instructions. The RNA concentration was measured by 

absorbance at 260 nm with a Nanodrop spectrophotometer (Thermo Scientific, Wilmington, 

USA). An Experion RNA StdSens Analysis kit (Biorad Laboratories, Hercules, CA, USA) was 

applied to test the purity of the RNA samples. Reverse transcription was carried out using 

the iScript cDNA Synthesis kit of Biorad Laboratories. This reaction was carried out in a 20 µL 

final volume that included 4 µL of 5x iScript Reaction Mix, 1 µL of iScript Reverse 

Transcriptase, 1 µL of RNA template (1 µg), and nuclease-free water to complete the final 

volume. The reverse transcription mix was incubated at 25°C for 5 min, heated to 42°C for 30 

min, and inactivated at 85°C for 5 min. The obtained cDNA was stored (-20°C) until further 

analysis. The primers for CYP1A4, CYP1A5 and CYP3A37 were adopted from Zhang et al. 

(Zhang et al., 2010) and for the transporter carriers MDR1 and MRP2 from Haritova et al. 

(Haritova et al., 2010). The specificity of the primers was tested by performing a BLAST 

search against the genomic NCBI database. A list of the genes and their sequences used for 

quantitative PCR analysis is given in Table 1. Housekeeping genes were tested for all the test 

conditions and all the samples after which most stable housekeeping genes for liver and 

intestinal samples were selected using the geNorm software (data not shown). The most 

stable housekeeping genes had a M-value between 0.2 and 0.5. To determine if the inclusion 

of an additional housekeeping gene was required, the cut-off value for variation was set at 

0.2. GAPDH and β-actin were used as housekeeping genes for the hepatic samples; HPRT and 

RPL7 were the most stable housekeeping genes for the intestine. The genes of interest 

(CYP1A4, CYP1A5, CYP3A37, MDR1 and MRP2) were quantified using real-time quantitative 

PCR. PCR reactions were carried out in 96-well plates with the appropriate forward and 

reverse primers (500 nM), 5 µL of iQTM SYBR®Green  Supermix (Biorad Laboratories) and 1 µL 

of the fivefold diluted cDNA template. Thermocycling parameters were used according to 

the manufacturer’s instructions and included 40 cycles of 20 s at 95°C, 30 s at 60°C, 30 s at 

72°C. For the validation of the qPCR assays following criteria were applied: slope between -

3.6 and -3.1, efficiency between 90 and 110 %, R2 > 0.99. The threshold cycle values (Ct) 

were first normalized to the geometric means of appropriate reference mRNAs and the 
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normalized mRNA levels were calculated according to 2-ΔΔCt method (Livak and Schmittgen, 

2001).   

Table 1. List of genes and sequences of the primers used for quantitative PCR analysis. 

 

                                                                                                                                                                                                                                                                                                                                                                                                    

Analysis of CYP3A activity 

 
For the preparation of hepatic microsomes, a process of differential ultracentrifugation was 

used (Wilson et al., 2003). Liver tissues were first minced and afterwards homogenized in 

homogenization buffer (4 mL/gram tissue: pH 7.25, 0.25 M phosphate buffer, 1.15% KCl). 

The supernatant recovered after an initial centrifugation step (10000 g, 15 minutes, 4°C), 

was subsequently centrifuged at 100000 g for 75 minutes (4°C). Between centrifugation 

steps, tissue was held on ice. The microsomal pellet was washed in homogenization buffer 

and again centrifuged following the last conditions. The final pellet was then resuspended in 

resuspension buffer (1 mL/gram tissue: pH 7.25, 0.25 M phosphate buffer, 1.15% KCl, 30% 

glycerol). Finally, the microsomes were quickly frozen in liquid nitrogen and stored at -80°C 

until further analysis. 

Gene name Forward primer (5’→3’) Reverse primer  (5’→3’) Accession number 

β-actin CACAGATCATGTTTGAGACCTT CATCACAATACCAGTGGTACG NM_205518 

GAPDH  GGCACGCCATCACTATC CCTGCATCTGCCCATTT NM_204305 

HPRT CCCAAACATTATGCAGACGA TGTCCTGTCCATGATGAGC NM_204848 

RPL7 ACATGTACAGACAGGAGATCCGCA AAGCTGTAACACCTTCCGGACCTT NM_001006345 

CYP1A4 AGGACGGAGGCTGACAAG CAGGATGGTGGTGAGGAAGA NW_003763853 

CYP1A5 TCACCATCCCGCACAGCA AAGTCATCACCTTCTCCGCATC NW_003763826 

CYP3A37 CGAATCCCAGAAATCAGA AGCCAGGTAACCAAGTGT NW_003763931 

MDR1 GCTGTTGTATTTCCTGCTATGG ACAAACAAGTGGGCTGCTG NM_204894 

MRP2 CTGCAGCAAAATGAGAGGACAATG CAGAAGCGCAGAGAAGAAGACCAC XM_421698 
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For the preparation of intestinal microsomes the mincing method was applied as published 

in a previous paper (Osselaere et al., 2012) In brief, the sample was minced with scissors and 

homogenized using an automated Potter-Elvehjem system (500 rpm, 7 up and down 

movements) in homogenization buffer (4 mL/gram tissue: pH 7.4, 50 mM KH2PO4, 50 mM 

K2HPO4, 1 mM EDTA and 1 tablet protease inhibitor cocktail /10 mL). The homogenate was 

centrifuged (18000 g, 15 minutes, 4°C) and the resulting supernatant was centrifuged 

(100000 g, 60 minutes, 4°C). Afterwards the microsomal pellet was washed with 

resuspension buffer (pH 7.5, 125 mM KH2PO4, 125 mM K2HPO4, 1.25 mM EDTA, 20% 

glycerol and 1 tablet protease inhibitor cocktail /10 mL) and centrifuged (100000 g, 60 

minutes, 4°C). Finally, the pellet was resuspended in 1 mL resuspension buffer per gram 

tissue. The microsomes were immediately frozen in liquid nitrogen and stored at -80°C until 

activity measurements.  

Protein concentration of all microsomes was measured using the method described by 

Bradford(Bradford, 1976). Microsomes were incubated in a heating block at 41°C, 

corresponding to the body temperature of poultry. A preheated mixture (41°C) with 1.15% 

KCl, 0.05 M phosphate buffer (pH 7.4) and midazolam (final concentration of 25 µM) and 

NADPH (1 mM) was pre-incubated for 3 minutes. The incubation reaction started after the 

addition of the microsomal dilution. The incubations were performed with 0.3 mg protein / 

mL. The enzymatic reactions were terminated after exactly 20 minutes by the addition of a 

stop reagent (water/acetonitrile/formic acid (42/55/3, (v/v/v)) containing the internal 

standard chlorpropamide (final concentration 0.072 µM). Afterwards, the samples were 

vortexed, cooled on ice and centrifuged at 20000 g for 10 minutes (4°C). Supernatants were 

stored at -20°C until analysis. 

Amounts of 1-OH midazolam formed during the incubations were quantified using a 

validated UPLC-MS/MS method (De Bock et al., 2012). Data were analyzed with MassLynx 

software (v4.1). 
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Data analysis 

The differences in mRNA expression and enzymatic activity among groups were assessed by 

performing ANOVA (SPSS® 19.0 software for Windows, IBM, USA) after determination of 

normality and variance homogeneity. Multiple comparisons were performed using LSD post-

hoc test. Significance level was set at 0.05.  
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RESULTS 

A reduced body weight gain in broilers was observed after 3 weeks feeding T-2 at 752 µg T-

2/kg feed 

During the whole experiment animals were observed for possible clinical signs. No 

symptoms of T-2 mycotoxicosis were observed. One animal died in the group with the 

highest concentration of T-2, already after 4h feeding. No lesions were observed during 

autopsy.  The group receiving 752 µg T-2/kg feed, showed a significantly decreased BW gain 

compared to the control group and the group receiving T-2 at a lower level (68 µg T-2/kg 

feed) (Table 2). No significant differences were observed in organ weights and length of the 

small intestine between the different dietary groups (data not shown).   

Table 2. Mean (± SD) body weight (BW) before and after prolonged exposure to T-2 and 
body weight gain. 
 
 control 68 µg T-2 /kg feed 752 µg T-2 /kg feed 

BW d 11 (g) 287 ± 64 307 ± 24 312 ± 31 

BW d 33 (g) 2037 ± 295 2088 ± 136 1774 ± 142* 

    

BW gain (g) 1750 ± 248 1780 ± 147 1464 ± 127* 

 
After an acclimatization period of ten days the animals were divided in three different groups each receiving 
different diets (control or T-2 contaminated feed). Broilers were exposed to T-2 at two different concentration 
level (68 µg/kg and 752 µg/kg). The animals were weighed at the end of the acclimatization period (d 11) and 
on the day of the euthanasia (d 33). BW gain was measured as the difference between BW day 33 and BW day 
11. * refers to a significantly lower BW or BW gain compared to the other dietary groups (p<0.05). 
 
 
T-2 down-regulates CYP3A37, CYP1A4, CYP1A5 and MRP2 mRNA expression in liver, but 

not in the small intestine of broilers 

 
In the intestine no significant differences between the dietary groups could be found 

regarding the expression of the different genes in the broilers (data not shown). However, in 

the liver the three CYP-genes were significantly down-regulated in the group exposed to 752 
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µg T-2/kg feed. For CYP1A4 also a down-regulation was observed in the animals receiving 

feed contaminated at 68 µg T-2/kg feed (Figure 1). In the liver also a significant down-

regulation in the mRNA expression of MRP2 was noticed as illustrated in Figure 1. On the 

other hand, for MDR1 mRNA expression level, only a decreasing trend could be observed in 

the liver. 

 

Figure 1. Fold change in CYP, MDR1 and MRP2-genes expression levels in broilers’ livers after 
dietary T-2 exposure relative to the control group. Broilers were exposed to T-2 at two 
different concentration levels (68 µg/kg and 752 µg/kg). After three weeks of feeding the 
experimental diets, mRNA expression levels in liver were examined. Data represent the 
normalized target gene amount relative to control which is considered 1. Data are presented 
as mean + standard deviation for a total of 8 animals per dietary group, except for the group 
receiving 752 µg T-2/kg feed (n=7). Bars marked with * indicate significantly different 
responses compared to the control group (p<0.05). 
 
 
 

CYP3A enzymatic activity is up-regulated in the liver and ileum of broilers after three 

weeks exposure to T-2 at 752 µg T-2/kg feed 

T-2 exposure during three weeks at a contamination level of 752 µg/kg feed resulted in a 

significant increased activity of CYP3A in the liver of broilers. Results are shown in Figure 2. 

Feed contaminated at a lower level of T-2 (68 µg/kg feed) didn’t cause significant up- or 
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down-regulation of CYP3A activity compared to the control group. T-2 influence on CYP3A 

activity was also investigated at three different sampling sites in the small intestines of the 

animals. CYP3A activity was measured in duodenum and jejunum, but no effects of T-2 

exposure were detected at these sites. However, in the ileum CYP3A activity was 

significantly increased, but again only in the group receiving 752 µg/kg feed compared to the 

group fed an uncontaminated diet. Results are shown in Figure 3. 

 

Figure 2. Effect of dietary exposure to T-2 on hepatic CYP3A activity in broilers. After three 
weeks of feeding the experimental diets, liver microsomes were prepared and incubated 
with midazolam to measure CYP3A activity. Results are presented as the mean + standard 
deviation of the hepatic activity for a total of 8 animals per dietary group, except for the 
group receiving 752 µg T-2/kg feed (n=7). Bars marked with different letters indicate 
significantly different activity (p< 0.05). 
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Figure 3. Effect of dietary exposure to T-2 toxin on CYP3A activity in the ileum of broilers. 
After three weeks of feeding the experimental diets, intestinal microsomes were prepared 
and incubated with midazolam to measure CYP3A activity. Results are presented as the 
mean + standard deviation of the intestinal activity for a total of 8 animals per dietary group, 
except for the group receiving 752 µg T-2/kg feed (n=7). Bars marked with different letters 
indicate significantly different activity (p< 0.05). 
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DISCUSSION    

The aim of this study was to characterize the effects of T-2 toxin on hepatic and intestinal 

drug metabolizing enzymes (CYP450) when fed during three weeks to broilers. In addition, 

the effects of T-2 on drug transporter systems (MDR1 and MRP2) were also studied in the 

same organs. The lower dose of T-2 contaminated feed (68 μg/kg feed) is situated between 

the minimum (10 μg/kg feed) and maximum (112 μg/kg feed) levels observed in the survey 

of Monbaliu et al. (2010). In this study 67 contaminated feed samples were analyzed with a 

multi-mycotoxin LC-MS/MS method (Monbaliu et al., 2010). The higher dose (752 µg/kg 

feed) can also be considered of practical relevance, as even higher levels have been reported 

in a study in Germany (Schollenberger et al., 2006). However, the generally accepted NOAEL 

value for T-2 in poultry is 0.5 mg/kg feed (Eriksen and Pettersson, 2004). 

At the higher contamination level (752 µg/kg feed) CYP1A4, CYP1A5 and CYP3A37 mRNA 

expression was significantly down-regulated in the liver. Hepatic CYP1A4 was even down-

regulated at a contamination of 68 µg T-2/kg feed. To our knowledge, no other studies were 

performed in poultry to investigate the effect of T-2 on CYP mRNA expression. Most studies 

investigated the effect of T-2 toxin in vitro in man or pigs (Verbrugghe et al., 2012). The 

results of these in vitro experiments are in contrast with our results. T-2 was noticed to be a 

CYP1A1 inducer in human intestinal epithelial cells from the colon after acute exposure to a 

dose of 0.03 µg/mL (Kruber et al., 2011). In pigs, hepatocyte CYP3A22 mRNA expression was 

induced 2.5-fold after 48h exposure to T-2 toxin at a concentration of 0.1 µg/mL (Ge et al., 

2010). In a recent study, mRNA levels of CYP1A were similar in the control group and T-2 

treatment groups in porcine primary hepatocytes, but porcine CYP3As were induced in the 

T-2 treatment groups. Also in the latter study, primary hepatocytes were exposed during 

only 48h at doses of 0.02, 0.05 and 0.1 µg/mL (Wang et al., 2011). The discrepancy between 

our study and the in vitro studies can be explained by variance among the different 

experimental models. In vitro cell response of a given trichothecene is not always an 

accurate predictor of toxicity in whole animals (Rocha et al., 2005). The toxicity of T-2 is 

known to be affected by factors such as administration route, time of exposure and dosage 

(Sokolovic et al., 2008). On the other hand, CYP3A is highly conserved in eutheria, but not in 

chickens and reptiles (Antonovic and Martinez, 2011; Qiu et al., 2008.  
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Effect of chronic in vivo exposure of T-2 on CYP enzymes was studied in the livers of rat, 

rabbits and pigs. Results of these studies are in accordance with our results. Guerre et al. 

reported a dose-dependent decrease of CYP1A1, CYP1A2, CYP2A1 and CYP2B4 protein 

expression in white rabbits after 5-days oral treatment with T-2 at doses of 0.5, 0.25 and 0.1 

mg T-2/kg feed (Guerre et al., 2000). A similar decreasing trend was observed in young rats 

after 1, 4 or 8 days exposure to 1.0 mg/kg body weight (Galtier et al., 1989). The longest 

exposure experiment was performed by Meissonnier et al. in pigs. After 28-days of feeding 

T-2 (2102 µg/kg feed), hepatic CYP1A showed a significantly lower expression compared to 

the control group. For CYP2B, CYP2C and CYP3A protein expression a decreasing trend was 

observed in the pigs, but no significant differences were noticed (Meissonnier et al., 2008). A 

possible explanation could be the sesquiterpenoid structure of the trichothecenes. Some 

sesquiterpenoid molecules are substrates of CYP450 sub-families and are responsible for the 

up- or down-regulation of the expression or biotransformation activities in both rodent and 

human models (Usia et al., 2004). In addition, T-2 is a lipophilic molecule, which can explain 

the sensitivity of CYP enzymes to T-2 toxicosis. CYP450 enzymes are embedded in the bilayer 

of the smooth endoplasmatic reticulum and are thus easily accessible for the toxin 

(Meissonnier et al., 2008). Moreover, T-2 is known to be a potent inhibitor of the RNA 

synthesis, which can explain the reduced mRNA expression (Rocha et al., 2005; Sokolovic et 

al., 2008).  

The effect of dietary exposure to T-2 on MDR1 and MRP2 genes was also analyzed during 

our study. MRP2 was reduced significantly but hepatic MDR1 not, maybe due to the fact that 

MRP2 is more present in the liver of healthy broilers compared to MDR1 (Haritova et al., 

2010). MRP2 has a protective role against accumulation of drugs and toxins (Elias and Mills, 

2007).   

Both CYP and drug transporter systems are regulated at the transcriptional level by nuclear 

receptors, such as the Pregnane X receptor (PXR), which is highly expressed in the liver 

(Beigneux et al., 2002; Honkakoski and Negishi, 2000). Expression of PXR can be influenced 

by different factors such as drugs and toxins, but also several diseases can have an influence. 

This can be a possible pathway to explain the reduction of both CYP and MRP2 expression 

after prolonged exposure to T-2.  
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In our study, the effect of T-2 on CYP, MDR1 and MRP2 expression in the small intestine was 

also investigated. However, no significant differences were observed along the different 

parts of the digestive tract. A possible explanation could be that the liver plays a major role 

in the metabolism of T-2 before biliary excretion in the intestine (Chi et al., 1978; Wu et al., 

2010).  

Besides mRNA expression, the CYP3A enzymatic activity was also studied using midazolam as 

a substrate. Midazolam has already been reported to be a good substrate for CYP3A in 

human (Watkins, 1994), but also in poultry (Cortright and Craigmill, 2006). Another 

important characteristic of midazolam is that it is not transported by P-gp and relatively few 

drugs have been reported in this regard (Schmiedlin-Ren et al., 1997). Remarkably, both liver 

and ileum showed a higher activity of CYP3A in the T-2 treatment group with the higher 

contamination level (752 µg/kg feed) compared to the control group. A possible explanation 

for the higher CYP3A activity can be the presence of compensation mechanisms for the 

reduced expression of CYP3A. Another possibility is post-transcriptional or even post-

translational regulation of CYP3A activity. It is essential to distinguish between mRNA and 

protein expression, and understand that mRNA expression does not necessarily correlate to 

activity. This has been observed after administration of ionophores in broilers (Zhang et al., 

2010). Another possible explanation for the discrepancy between the CYP3A37 mRNA 

expression and the CYP3A activity, is that the existence of the other CYP3A isoforms in 

chickens can’t be excluded for which midazolam can be a substrate (Ourlin et al., 2000). 

Lown et al. (1994) also observed a poor correlation between the intestinal CYP3A mRNA 

expression and activity in humans. However, a good correlation was obtained between the 

protein expression and the protein activity of CYP3A (Lown et al., 1994). In our study, the 

protein expression could not be studied. Immunoblot and ELISA analyses were performed 

with a polyclonal rabbit anti-human antibody, but no signal could be obtained despite 

several assays. A possibility for the lack of CYP3A detection is that the rabbit anti-human 

antibody does not cross-react with chicken proteins due to differences in the antigenic 

determinants of avian species.  

In conclusion, prolonged exposure to practically relevant doses of T-2 toxin could interfere 

with the normal CYP-mediated metabolism of endogenous or xenobiotic substances. In 



Experimental studies: Chapter 5 
 

  

172  

 

addition, drug transporter mechanisms, with substrates such as tetracyclines antibiotics 

(Mealey, 2004), could also be influenced by the presence of the mycotoxin T-2. This may be 

of importance for the animal, for the pharmacokinetics and efficacy of therapeutic drug 

substrates used, and consequently for the withdrawal time of these drugs. 
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The occurrence of mycotoxins is a worldwide problem which can affect both human and 

animal health. The main difficulty in assessing the risk of exposure is the multiplicity of 

factors affecting the production or presence of mycotoxins. Good agricultural practice is 

necessary to minimize crop contamination (Paterson and Lima, 2010). It is generally 

accepted that although actions are undertaken to reduce contamination, the presence of 

mycotoxins can not totally be excluded. In European moderate climate regions, three 

Fusarium mycotoxins are important, namely the trichothecenes deoxynivalenol (DON) and T-

2 toxin (T-2), and zearalenone (ZEN). Different studies already reported DON being the 

mycotoxin with the highest prevalence in European feed samples (Binder 2007; Monbaliu et 

al., 2010). T-2, on the other hand looks to be the most acute toxic mycotoxin (Edwards et al., 

2009). Zearalenone is known to have a particular affinity for the oestrogen receptor (Bennett 

and Klich, 2003) and therefore, it is generally accepted that ZEN mainly influences the 

fertility which is of greater importance for the broiler breeders industry or laying hens than 

for broiler chickens raised exclusively for the production of meat. 

Several studies reported the effects of chronic feeding of trichothecenes on technical 

parameters in farm animals, and poultry has been reported to be one of the most resistant 

species. On the other hand, it is not because clinical signs are rarely observed in broiler 

chickens that the mycotoxins do not act at the molecular level (Pestka, 2008). 

Trichothecenes are inhibitors of the RNA, DNA and protein synthesis. Cells with high 

proliferation rate and high turn-over are known to be the main targets of DON and T-2. Both 

liver and intestine have these characteristics and in addition, these organs are the first to be 

encountered after intake of contaminated feed. Therefore, the principal aim of this thesis 

was to investigate if DON and/or T-2 can cause detrimental effects on the intestinal barrier 

and liver function.  

In practice, mycotoxin detoxifiers are frequently used feed additives to reduce the risk of 

mycotoxicosis. Based on their mode of action, mycotoxin detoxifying agents can be divided 

in two different classes: adsorbing and biotransforming agents. However, there is a lack of 

knowledge concerning their efficacy and safety in vivo. Therefore, another goal of this thesis 

was to evaluate the efficacy of detoxifiers using the European Food Safety Authority (EFSA) 

guidelines and proposed end-points (Anonymous, 2009).  



General discussion 
 

  

182  

 

What are good biomarkers to evaluate the exposure to mycotoxins in broiler chickens? 

Literature reports different in vivo studies mentioning the effects of DON or T-2 on the feed 

intake and growth of broiler chickens. For DON the European Commission recommends 5 

mg/kg feed as a maximum level for complementary and complete feedstuffs such as poultry 

feed (Anonymous, 2006). In older studies mainly the effects of higher doses were 

investigated, while more recent experiments respect this guidance level (Awad et al., 2006b; 

Awad et al., 2011; Dänicke et al., 2007; Yunus et al., 2012b). However, some disagreement 

can be observed between the results of these different in vivo experiments and in addition, 

no clear dose-response relationship can be observed. In our study, no detrimental effects of 

DON on feed intake and body weight could be observed in broiler chickens exposed to 7.5 

mg DON/kg feed for three weeks. These results are in contrast with other studies, which 

demonstrated negative effects of DON on the animal body condition after exposure to lower 

concentrations of the toxin compared to our study (Dänicke et al., 2007; Yunus et al., 

2012b). Experimental studies to observe the effects of T-2 on the condition of the animals 

were also conducted in a wide concentration range, again without a clear dose-response 

relationship. During our study with 68 and 752 µg T-2/kg feed, no clinical symptoms of T-2 

mycotoxicosis such as oral lesions and feather alterations were observed. However, the 

broilers fed 752 µg T-2/kg feed showed a decreased weight gain compared to the control 

group. The group receiving a lower dose of 68 µg T-2/kg feed did not present significant 

differences concerning B.W. and feed intake with the control group. Our results are in 

discrepancy with the study of Sklan et al. (2001) who did not observe decreased body 

weights in broiler chickens after chronic feeding T-2 at a concentration of 1050 µg T-2/kg 

feed. Therefore, we suggest that performance parameters are not suitable to evaluate the 

negative effects of exposure to mycotoxins. Both feed intake and body weight gain are also 

always influenced by other factors such as environmental and genetic factors. Naturally 

contaminated feed generally causes more pronounced effects, mainly due to the presence 

of other mycotoxins (Rotter et al., 1996; Smith et al., 1997). In addition, the presence of 

masked mycotoxins can not be neglected. The effects of mycotoxins are also influenced by 

the exposure time and the age of the animals. All these influencing factors make it difficult 

to standardize studies and thus to compare different studies.  
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In this thesis we investigated if the plasma levels of DON and its metabolites can be used to 

determine the dietary exposure to DON. However, our results revealed that plasma levels 

above the limit of quantification of 1.25 ng/ml only could be observed when feeding DON at 

a concentration higher than the maximum recommended level of 5 mg/kg feed. The 

metabolite deepoxy-deoxynivalenol (DOM-1) was not detected in any of the samples, using 

also a limit of quantification of 1.25 ng/ml. During our toxicokinetic study of DON a low oral 

bioavailability of 19.3% was observed, which can explain the low plasma levels observed 

during our feeding trial. Also for T-2 and ZEN, toxicokinetic studies were conducted which 

reported even lower oral bioavailabilities for these toxins as no plasma levels of T-2 or ZEN 

could be observed after a single oral bolus. From these results, we can conclude that plasma 

levels of the tested toxins are not good biomarkers for poultry and thus they can also not be 

considered as suitable end-points to evaluate the efficacy of mycotoxin detoxifiers in vivo in 

broiler chickens. Nevertheless, EFSA recommends that plasma samples of DON or ZEN and 

their main metabolites have to be analyzed to determine the efficacy of detoxifiers 

(Anonymous, 2010). However, the EFSA recommendations may be suitable for other animal 

species, such as pigs. 

The question remains which other biomarkers can be used in practice to evaluate dietary 

exposure to trichothecenes? A possibility is the analysis of faeces or urine for the presence 

of the toxin and its metabolites. In humans, urine has already been reported to be a good 

biomarker for DON exposure (Turner et al., 2008). However, in chicken no difference can be 

made between urine and faeces since urine flows from the ureters into the coprodeum, 

rectum and ceca (Goldstein and Skadhauge, 2000). In addition, a recent study reported that 

only 6% of the ingested DON is recovered in the excreta of poultry (Awad et al., 2011). DON 

is namely converted to DOM-1 in the proximal part of the small intestines, mostly before 

absorption (Rotter et al., 1996; Swanson et al., 1988). In poultry, the intestinal flora is also 

able to convert DON to DOM-1 which makes it even more difficult to find DON in the excreta 

of chickens (He et al., 1992; Lun et al., 1988; Lun et al., 1986). Recovery of DOM-1 in the 

faeces was also reported to be poor (Awad et al., 2009), suggesting intestinal absorption 

and/or that DOM-1 may be further transformed to other compounds by the microbial flora 

of the gut. T-2 on the other hand is characterized by a very short half-life as reported in our 

toxicokinetic study. In addition, T-2 is rapidly metabolized to more polar metabolites, but 
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there are still derivates of T-2 which have not been identified and the toxicity of all these 

metabolites is still not well understood (Li et al., 2011). Also in humans, biomarkers for T-2 

are not well developed (Anonymous, 2011a). These facts confirm that it still remains difficult 

to diagnose DON or T-2 mycotoxicosis in poultry flocks in vivo.  

Diagnosis after necropsy is also an option. Beside macroscopic evaluation of possible lesions, 

histological examination of the intestines and the liver can be done. Evaluation of the length 

of intestinal villi and crypt after feeding DON was studied in this thesis and revealed that 

exposure to DON is characterized by shorter villi and reduced crypt depths. For the liver, 

both a macroscopic and microscopic evaluation can be performed in order to look for 

necrosis. However, caution is needed to be sure that the observed lesions are solely due to 

the exposure to mycotoxins. The analysis of the bile fluid as a possible diagnostic tool for 

DON has also been investigated in this thesis. Results revealed that levels of DON above the 

limit of quantification of 1.25 ng/ml could only be observed in the bile when feeding DON at 

concentrations higher than the maximum recommended level of 5 mg/kg. DOM-1, on the 

other hand, could be observed in all the groups receiving DON even at concentrations lower 

than 5 mg/kg feed suggesting DOM-1 in bile could be a valuable post-mortem biomarker in 

broilers. However, nor guidance levels for bile fluid nor ‘background’ contamination levels 

are available up till now. Analyses of residues in organs such as liver and kidneys were also 

performed in the same study, but no levels above the limit of quantification could be 

detected. Furthermore, it is also important to mention that all these analyses are expensive 

and that diagnosis is thereby mostly confirmed at a stage that the animals may already have 

suffered damage.  

Generally, it can be concluded that the diagnosis of mycotoxicosis is still based on suspicions 

or by exclusion of other pathologies. Therefore, the monitoring of feed before 

administration to the animals still remains a very important aspect of risk assessment in 

combination with Good Agricultural Practices.  
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Are broiler chickens really as resistant to mycotoxins as claimed? 

It is generally considered that chickens are one of the most resistant farm animal species to 

mycotoxins (Devegowda and Murthy, 2005). Symptoms mainly occur after exposure to much 

higher mycotoxin levels compared to other animals. Different hypotheses have already been 

reported in the literature concerning the resistance of poultry. The differential capacity 

among species to transform trichothecenes in the intestine is probably the factor of greatest 

importance concerning the detoxification of these mycotoxins in the different species. For 

example, poultry are known to transform DON to DOM-1 in the proximal part of the 

intestine, before absorption (Rotter et al., 1996; Swanson et al., 1988). This is confirmed in 

our study. We demonstrated that DON causes damage in the proximal parts of the small 

intestine, but not in the ileum. Hereby, poultry are more resistant to DON compared to pigs 

that transform DON to DOM-1 in the distal parts of the small intestine. In addition, we found 

in our toxicokinetic study an absolute oral bioavailability of 19.3% for DON in broiler 

chickens, while in pigs the oral bioavailability is around 80% (Prelusky et al., 1988).  

Besides, we observed during our studies a possible adaptation mechanism to the negative 

effects of DON in broiler chickens. After three weeks of feeding DON, no plasma levels could 

be observed above the limit of quantification in none of the experimental groups. These 

observations were confirmed by a recent study which describes that the plasma level of DON 

linearly decreased with the level of previous exposure (Yunus et al., 2012a). The main 

mechanism responsible for this kind of adaptation or tolerance still needs to be elucidated.  

The molecular mode of action of DON in broiler chickens has been investigated poorly until 

now. Probably due to the fact that chickens are considered to be relatively tolerant. 

However, during our studies we proved that DON is able to damage the intestinal barrier 

without clinical symptoms and without influence on the feed intake or body weight gain. T-2 

could also reduce the mRNA expression of CYP1A4 at a concentration that does not affect 

the feed intake or the body weight gain of the broiler chickens. These results underline that 

the action of trichothecenes at the molecular level is frequently underestimated as the 

effects on the hepatic and intestinal barrier are not always associated with clearly reduced 

performance.  
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What are the possible consequences of the effects of DON on the intestinal barrier 

function? 

The intestinal barrier is responsible for two major processes. The first one is the absorption 

of nutrients, xenobiotics and fluids. Second, the intestinal epithelial monolayer is responsible 

for the protection against harmful pathogens and xenobiotics (Oswald, 2006). The integrity 

of the intestinal epithelium is critical in maintaining a physical selective barrier between 

external and internal environments. 

Histological examination of the duodenal and jejunal segments revealed shortened villi and 

crypts in the broiler chickens exposed to 7.5 mg/kg DON. These results indicate that DON is 

able to reduce the absorption surface of the intestinal monolayer and thus may lead to a 

reduced absorption of nutrients. However, no effects on the body weight gain were 

observed during our investigations with DON. The reduced crypt depth can be indicative of a 

reduced regeneration of the barrier with possible negative effects on the barrier function. 

Tight junctions are the backbone of the paracellular barrier. Both chemical and physical 

factors can damage the structure and function of the tight junctions. We demonstrated the 

ability of DON to interact selectively with claudin 5, which may suggest a higher permeability 

of the intestinal barrier. Loss of the tight junctions integrity can lead to invasion of 

pathogens via the paracellular pathway. This was illustrated in our research by a higher 

mRNA expression of TLR4, which acts as a rapid pathogen sensor, in broiler chickens after 

three weeks of feeding DON.  Beside barrier disruption as an etiological factor, the ribotoxic 

stress-induced cellular response as was seen in our experiments after intake of DON 

contaminated feed can also be related to the induction of epithelial inflammation. This has 

previously also been reported in pigs (Vandenbroucke et al., 2011). In humans a correlation 

has already been pointed out between the presence of DON as a food contaminant and 

different chronic intestinal inflammatory diseases, such as coeliac and Crohn’s disease or 

ulcerative colitis (Maresca and Fantini, 2010).  

The regulation of the uptake of xenobiotics is also an important function. In pigs DON was 

able to increase the paracellular flux of the tracer [(3)H]-mannitol along with a reduced 

protein expression of claudin 4 (Van de Walle et al., 2010). Of particular interest is the effect 
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of the higher permeability of the gut wall on the absorption of frequently used drugs and 

coccidiostats in the poultry industry. In pigs, intestinal barrier disruption caused by DON and 

T-2 was shown to promote the transepithelial passage of antibiotics such as doxycycline and 

paromomycin (Goossens et al., 2012). Major concern is the question whether dose-

adaptation is necessary for these drugs? As a consequence of the higher permeability, a 

greater oral bioavailability of drugs may be observed with the possibility to reach higher 

levels, which could have consequences for the treated animal or even for the consumer of 

the edible tissues due to higher residues and prolonged withdrawal time. Special attention 

has to be paid to the coccidiostats belonging to the class of the ionophores. Toxic syndromes 

such as anorexia, diarrhea, ataxia, depression, recumbency and death have been reported 

due to the uptake of too high doses of monensin in poultry (Novilla, 1992). Beside a negative 

effect for the animal, human health could also be affected due to residues of the drugs in 

tissues and organs for human consumption. In order to fully understand these 

consequences, appropriate residue depletion studies should be conducted in the target 

animal species. 

 

What are the possible consequences of the effects of T-2 toxin on the liver and intestinal 

barrier function? 

Once xenobiotics are absorbed from the intestine after oral administration, metabolism of 

xenobiotics in various organs plays an important role in their disposition in the animal. The 

main organ for drug metabolism is generally considered to be the liver (Wang and Tompkins, 

2011). However, our study concerning the expression and activity of CYP3A proved that the 

role of the small intestine could be equally or even more important compared to the liver in 

broiler chickens.  

When xenobiotics reach the intestinal or liver cells, they are converted by various phase I 

and/or phase II enzymes to more hydrophilic metabolites, which can be excreted via kidney 

and other excretion routes. If a molecule is still taken up by the intestinal cells, transporter 

proteins can efflux it back to the intestinal lumen to increase the chances that the xenobiotic 

encounters one of the metabolizing enzymes. T-2 is able to alter the activities of several 
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hepatic enzymes such as glucuronyltransferase and glutathione S-transferase (Galtier et al., 

1989; Suneja et al., 1989). CYP450 enzymes play a dominant role in the biotransformation of 

xenobiotics. T-2 may also affect them. The effect of T-2 on hepatic CYP has already been 

described in rats, rabbits and pigs in vivo (Galtier et al., 1989; Guerre et al., 2000; 

Meissonnier et al., 2008; Goossens et al., 2013). However, extrapolation between species 

can not be made for CYP proteins (Nebbia et al., 2001). We demonstrated T-2 to be able to 

influence both the mRNA expression and activity of different hepatic CYP proteins and the 

activity of CYP proteins in the ileum. This fact underlines the role of the intestine in 

detoxification. In addition, we also investigated the impact of T-2 on two efflux transporters. 

However, a significant effect was only seen on hepatic MRP2 and not on P-gp which suggests 

that not all the transporter systems may be as sensitive to mycotoxins and that not all the 

efflux transporters react in the same way. This emphasizes that more research is needed 

concerning this issue. A reduced expression of efflux pumps is associated with higher levels 

of xenobiotics in the animal body, which can be a possible explanation for the reduced body 

weight gain observed in our study. 

At the mRNA level we demonstrated a down-regulation of CYP genes, but the activity of the 

enzymes was enhanced. We conclude that the effect of T-2 at the different levels, i.e. gene 

expression, protein expression and protein activity is not the same. Discrepancies between 

the results of different techniques might be explained by post-transcriptional or post-

translational regulation of CYP proteins and differences in sensitivity of the techniques. In 

addition, low correlations between mRNA expression, protein concentration and activity 

have been reported in different animal species. A possible explanation could be the 

substrate change or loss of selectivity toward the drug metabolizing enzymes. In animal 

species there is also a lack for suitable antibodies to perform immunoblotting or 

immunochemistry and only a few substrates have been investigated to establish their 

usefulness by the measurement of Km and Vmax. 
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Role of mycotoxin binders? 

The ubiquitous distribution of mycotoxins, together with their resistance to processing, 

enables toxins to persist in the human and animal food and feed supply. In practice the use 

of mycotoxin detoxifying agents has therefore become common. Two important factors have 

to be evaluated concerning these feed additives, namely their safety and their efficacy in 

vivo. 

In the literature different studies reported the beneficial effects of these detoxifiers on 

production parameters of broiler chickens (Awad et al., 2006a; Dänicke et al., 2003). 

However, according to EFSA the end-point to test their efficacy is to measure the plasma 

levels of DON and ZEN and their main metabolites (Anonymous, 2009). In this thesis, we 

demonstrated that blood is not a useful sample to test the efficacy of detoxifiers against 

DON in broilers when the maximum recommended levels are respected. This is in line with 

the low absolute oral bioavailability of DON observed during a toxicokinetic study. In 

addition, the observed tolerance or adaptation to DON may also reduce the plasma levels 

after prolonged exposure. As we reported even lower oral bioavailabilities for T-2 and ZEN in 

our toxicokinetic studies, we can question if plasma levels of these parent toxins are a 

suitable end-point for DON, T-2 or ZEN in poultry as stated by EFSA. However, after feeding 

three weeks DON at a concentration of 7.5 mg/kg feed, which is higher than the 

recommended level of 5 mg/kg feed, remarkably higher plasma concentrations of DON were 

observed in the groups receiving an adsorbing or a biotransforming agent. No positive 

effects were thus demonstrated concerning the detoxifiers on plasma levels, questioning 

their efficacy. Nevertheless, when looking at the molecular level a positive effect of the 

adsorbing agent could be observed in the jejunum. The observed up-regulation of claudin 5 

due to three weeks feeding DON-contaminated feed to broiler chickens was not so high in 

the group receiving an adsorbing agent in combination with DON. Although this is a 

significant positive effect of the adsorbing agent, the levels could not be reduced to the 

levels of the control group in the jejunum. Furthermore, we demonstrated that the 

adsorbing agents shifted the negative effects of DON to the more distal ileum.  

Regarding the possible interaction of mycotoxin detoxifiers with veterinary drugs, we 

demonstrated that the plasma concentration of amoxicillin and oxytetracycline can be 
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increased by the presence of detoxifiers. As a possible explanation, histological examination 

revealed that the use of an adsorbing agent leads to longer villi even in combination with 

DON. The biotransforming agent even resulted in significant higher residues of 

oxytetracycline in the kidneys compared to the control group. These observations underline 

the need for the evaluation of the safety of frequently used drugs in poultry in combination 

with mycotoxin detoxifiers. For bentonite the interactions with tylosin or with coccidiostats 

have already been reported (Anonymous, 1992; Anonymous, 2011b, Devreese et al., 2012). 

The investigated adsorbing agent in this thesis was composed of a smectite-type clay mineral 

(illite-ambrosite) and the biotransforming agent was a bentonite-montmorillonite upgraded 

with a yeast. We may thus conclude that bentonite can interact with more components than 

actually officially reported, and on the other hand other detoxifiers can apparently also 

influence the oral bioavailability of antibiotics. In this thesis we only focused on the effects 

of detoxifiers on orally administered drugs, but attention also has to be paid in the future to 

the interactions with nutrients, vitamins and other feed additives.  

 

 

Future research perspectives 

Evaluation of possible effect of trichothecenes on transporter proteins and 

biotransformation mechanisms at the protein level 

Our results indicate that chronic exposure to T-2 can reduce the mRNA expression of CYP 

genes in broiler chickens. On the other hand, we also reported that the activity of the 

enzyme CYP3A is enhanced in the same animals. We only observed the effects of T-2 at the 

mRNA level by qRT-PCR and at the functional level by ex vivo studies with the substrate drug 

midazolam. However, we were not able to evaluate the effects at the protein level as no 

suitable antibodies are available to perform western blot analyses or ELISA. Therefore, an 

immunohistochemistry method could be developed for the evaluation of CYP expression in 

broiler chickens. In this way, one could distinguish between post-transcriptional or post-

translational regulation of CYP proteins in broiler chickens. For the efflux pumps MDR1 and 

MRP2 on the other hand, the effects of T-2 were only evaluated at the mRNA level. In the 
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future, immunohistochemical demonstration of the effects of T-2 would be useful in 

combination with an in vivo study using a substrate to evaluate their protein expression and 

activity, respectively. Beside T-2, the effects of DON on transporter proteins and 

biotransformation enzymes should also be investigated in broiler chickens.  

 

Development of a rapid screening method for the detection of possible interactions 

between mycotoxin detoxifying agents and veterinary drugs or other feed additives 

The results of this thesis indicate that mycotoxin detoxifying agents can influence the 

pharmacokinetic profiles of oxytetracycline and amoxicillin in broiler chickens. We 

demonstrated that this interaction could lead to a higher oral bioavailability of these drugs, 

which indicates that dosage adaptation could be necessary when antibiotics and detoxifiers 

are administered simultaneously. However, in this thesis only two different detoxifiers were 

tested, while in practice several types of detoxifying agents are frequently used in the 

poultry industry (Anonymous, 2009). In addition, interactions with other antibiotics but also 

with other feed additives such as coccidiostats may be possible. In vivo testing of all the 

detoxifying agents in combination with different frequently applied drugs in poultry is 

impossible and not acceptable from an ethical point of view. Therefore, we suggest the need 

for the development of suitable in vitro methods for the rapid screening of possible 

interactions. These methods should not only be applicable for poultry, but also for other 

species as interspecies extrapolation is difficult. A method using Transwell® cell culture 

inserts in combination with species specific intestinal epithelial cell lines could be used to 

mimic the animal intestines. If from the results of the screening method possible 

interactions are suggested, in vivo studies can be done to confirm the findings, e.g. by 

studying the pharmacokinetic parameters of the compound in the particular species.  
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The production of mycotoxins by fungi may depend on a lot of factors and thus good 

management comprises all stages from ‘farm to fork’. Despite different prevention 

measures, animal nutritionists have to cope with a given level of contamination. In the 

European moderate climate regions Fusarium mycotoxins are the main contaminants. For 

deoxynivalenol (DON) the European Union recommends a concentration of 5 mg/kg feed as 

a maximum guidance value for poultry feed. For zearalenone (ZEN), maximum levels were 

set at 2 mg/kg feed for cereals and cereal products and at 3 mg/kg feed for maize by-

products. For T-2 toxin (T-2) in Belgium, the Federal Agency for the Safety of the Food Chain 

currently imposes a limit of 0.4 mg/kg feed for T-2 and HT-2 in poultry feed. Only very 

recently, the European Commission Recommendation of 27 March 2013 sets a level of 0.25 

mg/kg feed for the sum of T-2 and HT-2 in compound feed. 

Poultry is generally accepted to be one of the most resistant species to mycotoxicosis as 

symptoms mainly occur after exposure to very high mycotoxin concentrations. However, 

little data is available about the toxicokinetic profiles of Fusarium mycotoxins in poultry. The 

diagnosis of mycotoxicosis in the poultry industry is frequently based on suspicions or by 

exclusion of other pathologies, mainly due to a lack of suitable biomarkers. In practice, 

mycotoxin detoxifying agents are frequently used feed additives to reduce the risk of 

mycotoxicosis. Following their mode of action, detoxifiers can be divided in two groups, 

namely adsorbing and biotransforming agents. Adsorbing agents bind mycotoxins, while 

biotransforming agents are responsible for the degradation of mycotoxins into less or non-

toxic metabolites in the gastrointestinal tract of the animal. The European Food Safety 

Authority (EFSA) implements the investigation of the safety and efficacy of these detoxifiers. 

Therefore, in Chapter 1, toxicokinetic studies of DON, T-2 and ZEN were described in order 

to evaluate their absolute oral bioavailability and toxicokinetic parameters in broiler 

chickens. Toxins were administered intravenously and orally in a two-way cross-over design. 

For DON a bolus of 0.75 mg/kg body weight (BW) was administered, for T-2 0.02 mg/kg BW 

and for ZEN 0.3 mg/kg BW. The plasma levels of the toxins and their main metabolites were 

quantified using validated LC-MS/MS methods. An absolute oral bioavailability of 19.3% was 

observed for DON in broiler chickens, while for T-2 and ZEN even no plasma levels above the 

limit of quantification of 2.5 ng/ml and 1 ng/ml respectively, could be observed after a single 
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oral bolus. The shortest elimination half-life after intravenous administration was detected 

for T-2 (3.9 min), followed by DON (27.9 min) and ZEN (31.8 min).  

In Chapter 2, an animal trial was described in order to evaluate different parameters as 

suitable biomarkers to assess DON exposure. Broiler chickens were exposed to a 

concentration of DON below the guidance level of 5 mg/kg feed, namely 2.4 mg/kg feed, or 

to a higher concentration of 7.5 mg/kg feed for three weeks. In addition, adsorbing and 

biotransforming agents were evaluated concerning their efficacy. No detrimental effects of 

DON on the feed intake or the body weight gain of the animals were observed. Analyses of 

plasma levels of DON and its main metabolite deepoxy-deoxynivalenol (DOM-1) were 

performed with a validated LC-MS/MS method. DON could only be detected in the plasma of 

the animals receiving the highest DON concentration of 7.5 mg/kg feed. DOM-1 could not be 

detected in plasma of the animals. These results indicate that plasma concentrations of DON 

and DOM-1, as stated by the EFSA, are not reliable end-points to evaluate the efficacy of 

mycotoxin detoxifying agents against DON in broiler chickens. In an effort to look for 

possible other biomarkers, the concentrations of DON and DOM-1 were also determined in 

liver, kidneys and bile fluid. No residues of DON or DOM-1 could be detected in the organs 

above the limit of quantification of 1.2 ng/g. However, in the bile fluid DON and DOM-1 were 

detected in the animals receiving DON at a concentration of 7.5 mg/kg feed and DOM-1 was 

even detected in the animals fed DON at 2.4 mg/kg feed. From these findings, we can 

conclude that analysis of the bile fluid can be a suitable tool for post-mortem diagnosis in 

broiler chickens. However, no correlation with in feed concentrations could be recorded and 

nor guidance levels in bile nor ‘background’ contamination levels are available up till now. 

For the evaluation of possible interaction of the administered adsorbing and biotransforming 

agents with other components such as drugs, another in vivo trial was performed with 

broiler chickens. The animals received blank feed as such or blank feed supplemented with 

an adsorbing or a biotransforming agent. The adsorbing agent was a smectite-type clay 

mineral (illite-ambrosite) and the biotransforming agent was a bentonite-montmorillonite 

clay upgraded with a yeast. After three weeks of feeding the experimental diets, two 

different frequently used antibiotics in the poultry industry were administered to the 

animals. Both a pharmacokinetic study and a residue study were performed for 
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oxytetracycline and amoxicillin, separately. For amoxicillin, the plasma concentrations were 

significantly higher for broilers receiving an adsorbing agent in comparison to birds receiving 

the biotransformation agent, but both groups with detoxifiers were not significantly 

different to the control group. The residue levels of amoxicillin in the liver and the kidneys 

were lower than the limit of quantification of 12.5 ng/g in all the birds. The plasma and 

kidney tissue concentrations of oxytetracycline were significantly higher in broilers receiving 

a biotransforming agent in the feed compared with control birds and the birds receiving an 

adsorbing agent. We can conclude that detoxifiers can interact with the oral bioavailability 

of antibiotics depending on the type of detoxifier and antibiotics.  

Although poultry may be more resistant to mycotoxicosis, effects of trichothecenes such as 

DON and T-2 at the molecular level may not be underestimated. The inhibition of the RNA, 

DNA and protein synthesis and the activation of mitogen-activated protein kinases, are 

underlying mechanisms of their toxicity which can affect numerous organs and tissues. 

Especially the intestinal and hepatic cells are the first to be exposed to DON or T-2. 

Therefore, an important aim of this research was to evaluate if DON and T-2 damage the 

intestinal barrier and/or liver function in broiler chickens. 

The anatomy and histological structure of the digestive tract are constituted to guarantee its 

barrier function. The surface of the intestines is characterized by a large area for absorption 

of nutrients and xenobiotics. But, intestinal cells also create a barrier against invading 

pathogens and xenobiotics. These absorbing epithelial cells are strongly joined together by 

tight junctions. In pigs, DON was demonstrated to be able to interact with the gut wall 

morphology and to act selectively on components of these tight junctions. After intestinal 

absorption occurred, mycotoxins may reach the liver as the gate-way of the portal blood 

draining of the gastrointestinal tract and thus provoke hepatic lesions.  

In another study, described in Chapter 3, we thus investigated the possible effects of DON 

on the intestinal and hepatic barrier functions. Tissue samples of the animals of the study 

described in Chapter 2 were used, i.e. the group receiving blank feed, the group receiving 

DON contaminated feed at a level of 7.5 mg/kg feed, the group receiving DON contaminated 

feed in combination with an adsorbing agent and a fourth group receiving the control feed 
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supplemented with an adsorbing agent. Histological examination of the gut wall morphology 

in these different groups showed shorter villi and smaller crypts due to chronic DON 

exposure. These observations were reported both in the duodenum and jejunum. The use of 

an adsorbing agent resulted in longer villi over the entire length of the intestines even in 

combination with DON, which can be an explanation for the higher plasma concentrations of 

xenobiotics observed in Chapter 2. The crypt depth was partially restored when DON 

contaminated feed was fed in combination with an adsorbing agent. No effects of DON on 

the gut wall morphology were observed in the ileum. A qRT-PCR method was used to study 

the effects of DON on different tight junction components, more precisely on the mRNA 

expression of claudin 1, claudin 5, zona occludens 1 and zona occludens 2. Remarkably, DON 

caused a selective up-regulation of claudin 5 mRNA and this only at the level of the jejunum. 

When DON and an adsorbing agent were administered simultaneously, the effect of DON in 

the jejunum was less pronounced but mRNA expression of claudin 5 was still significantly up-

regulated compared to the control group. However, in the animals receiving DON in 

combination with an adsorbing agent, DON caused damage in the ileum and not specific on 

one gene, but the mRNA expression of all the investigated genes was up-regulated in this 

segment. We can therefore conclude that the adsorbing agent is able to shift the effects of 

DON to more distal parts of the small intestines. DON was also able to induce inflammatory 

reactions in both the duodenum and jejunum, but when DON was fed in combination with 

the adsorbing agent, up-regulation of pro-inflammatory Toll-like receptor 4 was only 

observed in the ileum. A shift towards distal parts could also be observed concerning the 

genes encoding for oxidative stress. This study also showed that not only DON but also the 

adsorbing agent alone were able to alter the mRNA expression of oxidative stress markers in 

hepatocytes of broiler chickens.  

Cytochrome P450 (CYP450) enzymes play a dominant role in the process of oxidative 

biotransformation of xenobiotics. Both the small intestines and the liver can be involved in 

these processes. CYP enzymes have mainly been studied in humans and laboratory animals. 

In humans, mainly CYP3A4 is responsible for drug metabolism. The presence of CYP3A4 has 

been confirmed in chickens since an isoform, CYP3A37, which is 60% homologous to human, 
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has been cloned. No information was available at the start of this PhD research concerning 

the gene expression of CYP3A37 and the activity of CYP3A enzymes in broilers. 

Consequently, in Chapter 4, hepatic and intestinal CYP3A expression and activity in healthy 

broiler chickens were investigated. A qRT-PCR method was developed for the absolute 

quantification of CYP3A37 at the mRNA level in broiler chickens. For this study, livers and 

small intestines of healthy chickens were collected. These chickens were fed with 

uncontaminated feed. A significant higher expression was observed in the jejunum 

compared to the ileum and the liver. Prior CYP3A activity measurements, a method for 

preparation of intestinal microsomes was developed. Activity of CYP3A was determined in 

hepatic and intestinal microsomes using midazolam as a substrate drug. The highest CYP3A 

activity was noticed in the proximal part of the small intestines with a decreasing trend 

towards distal. Duodenal and hepatic activities were comparable. We can conclude that the 

intestinal CYP3A proteins can have an equal or maybe even higher importance for the 

substrate drug metabolism than the hepatic ones.  

Beside the superfamily of CYP450, active efflux transporter systems also play a role in the 

protection against xenobiotics. Most of these drug transporters are members of the ABC 

family or the adenosine-tri-phosphate (ATP)-binding cassette protein family. Members of 

this family are present in both the liver and small intestines, where they are able to remove 

xenobiotics from intestinal and hepatic cells.  

Both drug metabolism and drug efflux transport can be influenced by feed, nutrients, drugs 

and contaminants. Therefore, in Chapter 5, an in vivo experiment was performed to evaluate 

the toxic effects of chronic dietary exposure to T-2 in broiler chickens. Beside the study of 

animal performance, principal aims were to investigate the effects of this toxin on intestinal 

and hepatic biotransformation enzymes (CYP450), but also on drug transporter systems such 

as P-glycoprotein or MDR1 and multidrug resistance-associated protein 2 (MRP2). One group 

of birds received uncontaminated feed while the other animals received two different 

concentrations of T-2, namely 68 μg T-2/kg feed and 752 μg T-2/kg feed. The animals 

receiving the highest concentration of T-2 had a lower body weight gain compared to the 

other groups after three weeks of feeding. A qRT-PCR method was developed to analyze 
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mRNA expression of CYP1A4, CYP1A5, CYP3A37, MDR1 and MRP2 genes. Results revealed 

that T-2 did not have a significant effect on the expression of the different genes in the small 

intestines. In the liver on the other hand, exposure to 752 μg T-2/kg feed led to down-

regulation of CYP1A4, CYP1A5 and CYP3A37. For CYP1A4 even a down-regulation could be 

observed in the animals receiving the lowest T-2 concentration of 68 μg T-2/kg feed. CYP3A 

enzymatic activity was up-regulated in the liver and ileum of broiler chickens after three 

weeks exposure to T-2 at a concentration of 752 μg T-2/kg feed compared to the control 

group and the animals receiving the lower T-2 dose. No effects of T-2 on CYP3A activity were 

observed in duodenum or jejunum. In conclusion, prolonged exposure to practical relevant 

doses of T-2 toxin could thus interfere with CYP-mediated metabolism of xenobiotics and 

with drug transporter systems which can have an impact on the pharmacokinetic 

parameters of substrate drugs.  

The general conclusion may be that the effects of trichothecenes in poultry may be 

underestimated, mainly due to the absence of clear visible clinical signs. Although, we 

demonstrated that DON and T-2 are characterized by low absolute oral bioavailabilities in 

broiler chickens, serious effects at the molecular level do occur. Both mycotoxins are indeed 

able to affect the intestinal and hepatic barrier function which can have consequences for 

the animal health. In addition, we also demonstrated that more research is needed 

concerning the efficacy and safety of mycotoxin detoxifying agents with respect to 

interactions with the oral absorption of veterinary drugs. 
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De productie van mycotoxines door schimmels wordt beïnvloed door diverse factoren. Goed 

management bij het principe van ‘riek tot vork’ is daarom onontbeerlijk. Ondanks allerlei 

voorzorgsmaatregelen moet men toch altijd rekening houden met een mogelijke 

contaminatiegraad. Gezien het gematigd klimaat in Europa, zijn voornamelijk Fusarium 

mycotoxines belangrijk. Zo voorziet de Europese Unie maximum toegelaten concentraties 

voor deoxynivalenol (DON) in kippenvoeder, namelijk 5 mg/kg voeder. Voor zearalenone 

(ZEN) is het maximum gehalte voor granen en graanproducten vastgelegd op 2 mg/kg 

voeder, terwijl in maïs gehaltes tot 3 mg/kg voeder toegelaten zijn. Voor het mycotoxine T-2 

adviseert het Belgisch Federaal Agentschap voor de veiligheid van de voedselketen (FAVV) 

een grenswaarde van 0.4 mg/kg voeder voor de som van T-2 en HT-2 in kippenvoeder te 

respecteren. Sinds 27 maart 2013 adviseert de Europese Commissie een indicatieve waarde 

voor de som van T-2 en HT-2 van 0.25 mg/kg voor mengvoeders. 

Kippen worden algemeen beschouwd als zijnde één van de meest resistente diersoorten 

aangezien ze slechts klinische symptomen vertonen na blootstelling aan zeer hoge 

mycotoxine concentraties. Er zijn echter weinig gegevens beschikbaar over de 

toxicokinetische eigenschappen van Fusarium mycotoxines in pluimvee. De diagnose van 

mycotoxicoses in de pluimveeindustrie is tot op heden voornamelijk gebaseerd op een 

vermoeden van intoxicatie ofwel door uitsluiting van andere pathologieën. Dit is het gevolg 

van een gebrek aan geschikte biomerkers voor het stellen van de diagnose. In de praktijk 

worden mycotoxine binders of modifiers frequent aangewend om het risico op 

mycotoxicoses te reduceren. Mycotoxine binders binden de mycotoxines in het 

spijsverteringsstelsel van het dier, terwijl modifiers de mycotoxines in het dier omzetten tot 

minder of niet-toxische metabolieten. De Europese Autoriteit voor Voedselveiligheid (EFSA) 

benadrukt dat de efficaciteit en veiligheid van deze voederadditieven moeten onderzocht 

worden. 

In Hoofdstuk 1 werden daarom toxicokinetische studies voor DON, T-2 en ZEN beschreven 

met als doel de absolute orale biologische beschikbaarheid en de toxicokinetische 

parameters voor deze mycotoxines te bepalen in vleeskippen. De mycotoxines werden oraal 

en intraveneus toegediend in een two-way cross-over design. Voor DON werd een bolus van 

0.75 mg/kg lichaamsgewicht (LG) toegediend, voor T-2 0.02 mg/kg LG en voor ZEN 0.3 mg/kg 
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LG. Vervolgens werden de plasmaconcentraties van de mycotoxines en hun belangrijkste 

metabolieten bepaald aan de hand van gevalideerde LC-MS/MS methodes. Er werd een 

absolute orale biologische beschikbaarheid van 19.3% vastgesteld voor DON, terwijl voor T-2 

en ZEN zelfs geen plasmaconcentraties boven de kwantificatielimiet van respectievelijk 2.5 

ng/ml en 2 ng/ml, konden worden teruggevonden na toediening van een éénmalige orale 

bolus. De kortste eliminatie halfwaardetijd na intraveneuze toediening werd berekend voor 

T-2 (3.9 min), gevolgd door DON (27.9 min) en ZEN (31.8 min).  

In Hoofdstuk 2 werd een dierproef beschreven met als doel verschillende biomerkers te 

evalueren om DON blootstelling te diagnosticeren. Hiervoor werden vleeskippen gedurende 

drie weken gevoederd met enerzijds 2.4 mg DON/kg voeder, wat lager is dan het maximum 

toegelaten gehalte (5 mg/kg voeder), en anderzijds met een hogere concentratie van 7.5 mg 

DON/kg voeder. Daarnaast werden ook een mycotoxine binder en een modifier ingemengd 

in het voeder om hun efficaciteit te beoordelen. DON had geen invloed op de groei of de 

voederopname van de dieren. De plasmaconcentraties van DON en zijn voornaamste 

metaboliet deepoxy-deoxynivalenol (DOM-1) werden gekwantificeerd met behulp van een 

gevalideerde LC-MS/MS methode. Er werd enkel DON teruggevonden in het plasma van de 

dieren die DON kregen aan een concentratie van 7.5 mg/kg voeder. DOM-1 kon niet worden 

gedetecteerd in het plasma van de kippen. Hieruit kunnen we besluiten dat de bepalingen 

van DON en DOM-1 in plasma van vleeskippen, zoals opgelegd door EFSA, geen goede 

merkers zijn om de efficaciteit van mycotoxine detoxifiers na te gaan. DON en DOM-1 

werden ook gekwantificeerd in de lever, de nieren en de gal van de dieren. In de organen 

werd noch DON noch DOM-1 gedetecteerd boven de kwantificatielimiet van 1.2 ng/g. Zowel 

DON als DOM-1 werden echter wel teruggevonden in de gal van de dieren die DON verstrekt 

kregen aan een concentratie van 7.5 mg/kg voeder. DOM-1 werd zelfs teruggevonden in de 

gal van de kippen die 2.4 mg DON/kg voeder kregen. Uit deze resultaten kunnen we 

besluiten dat analyse van DON en DOM-1 kan gebruikt worden voor post-mortem diagnose 

in vleeskippen. Een correlatie met de gehaltes in het voeder kan evenwel niet worden 

vastgelegd. Bovendien zijn er geen richtwaarden voor gehaltes in gal, noch voor 

‘achtergrond’contaminatie gehaltes beschikbaar. 
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Er werd een andere dierproef met vleeskippen uitgevoerd teneinde na te gaan of de 

toegediende mycotoxine binder en modifier mogelijks interageren met andere 

componenten zoals bijvoorbeeld geneesmiddelen. De dieren kregen ofwel niet 

gecontamineerd voeder ofwel niet gecontamineerd voeder gesupplementeerd met de 

binder of modifier. De mycotoxine binder die gebruikt werd was een klei mineraal, meer 

bepaald een smectiet (illiet-ambrosiet). De modifier was een bentoniet-montmorilloniet 

kleimineraal in combinatie met een gist. De verschillende voeders werden gedurende drie 

weken aan de kippen toegediend. Daarna werden twee frequent aangewende antibiotica in 

de pluimveesector verstrekt aan de kippen. Voor zowel amoxicilline als oxytetracycline 

werden twee onafhankelijke farmacokinetiek en residustudies uitgevoerd. De 

plasmaconcentraties van amoxicilline waren significant hoger in de dieren die de binder 

toegediend kregen in vergelijking met de modifier, maar beide niet significant verschillend 

ten opzichte van de controlegroep. De residuen van amoxicillin in de lever en de nieren 

waren voor alle kippen lager dan de kwantificatielimiet van 12.5 ng/g weefsel. Voor 

oxytetracycline waren zowel de plasmaconcentraties als de gehaltes in de nieren significant 

hoger in de kippen die de modifier kregen in vergelijking met de controledieren en de dieren 

die de binder gevoederd kregen. Hieruit kunnen we dus besluiten dat er interactie mogelijk 

is tussen antibiotica en mycotoxine detoxifiers, maar dat de effecten verschillend zijn 

afhankelijk van het type antibioticum en de detoxifier. 

Ondanks het feit dat pluimvee als relatief resistent beschouwd wordt, mogen de effecten 

van DON en T-2 op moleculair niveau toch niet onderschat worden. Zowel DON als T-2 zijn 

potente inhibitoren van de RNA, DNA en eiwitsynthese. Daarnaast kunnen ze mitogeen-

geactiveerde proteine kinasen activeren. Het is dus duidelijk dat verschillende organen hun 

doelwit kunnen zijn, maar het zijn vooral de dunne darm en de lever die het eerst in contact 

komen met mycotoxines. Daarom was een ander belangrijk doel van dit onderzoek om na te 

gaan of DON of T-2 mogelijk schade kunnen toebrengen aan de darmbarrière en/of de 

leverfunctie van vleeskippen. 

De anatomie en de histologische structuur van het spijsverteringsstelsel is dusdanig dat ook 

een belangrijke barrièrefunctie van de darm kan gegarandeerd worden. Het darmoppervlak 

is gekenmerkt door een groot contactoppervlak voor de absorptie van nutrienten en 
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xenobiotica, maar tegelijkertijd moet de invasie van mogelijke darmpathogenen en 

schadelijke componenten worden tegengegaan. Darmcellen zijn met elkaar verbonden door 

tight junctions. Onderzoek in varkens toonde eerder aan dat DON in staat is om selectief in 

te werken op de verschillende bouwstenen van deze tight junctions. Nadat intestinale 

absorptie zich heeft voorgedaan, bereiken mycotoxines de lever via de portale vene en 

kunnen mycotoxines mogelijks ook hepatische beschadiging uitlokken. 

In Hoofdstuk 3, werden daarom mogelijke effecten van DON op de darm- en leverbarrière 

onderzocht. Hiervoor werden stalen gebruikt van dieren uit de studie beschreven in 

Hoofdstuk 2, met name de blanco groep, de groep met DON gecontamineerd voeder aan 

een concentratie van 7.5 mg DON/kg voeder, hetzelfde DON gecontamineerd voeder 

gesupplementeerd met een mycotoxine binder en blanco voeder gesupplementeerd met de 

mycotoxine binder. Histologisch onderzoek van de darmpreparaten van deze verschillende 

diergroepen toonde duidelijk aan dat chronische DON blootstelling leidt tot kortere villi en 

kleinere cryptes. Deze bevindingen werden zowel voor het duodenum als het jejunum 

opgemerkt. Het gebruik van een mycotoxine binder leidde daarentegen tot langere villi over 

de hele darmlengte, zelfs in combinatie met DON, welke mogelijks een verklaring kan zijn 

voor de hogere plasmaconcentraties van xenobiotica beschreven in Hoofdstuk 2. De schade 

toegebracht door DON aan de crypten werd gedeeltelijk beperkt door de mycotoxine binder. 

Er werd histologisch geen schade door DON vastgesteld in het ileum.  Aan de hand van een 

qRT-PCR methode werd het effect van DON gemeten op verschillende tight junction 

bouwstenen, meer bepaald de mRNA expressie van claudine 1, claudine 5, zona occludens 1 

en zona occludens 2 werden gemeten. Opmerkelijk was de significante up-regulatie van 

claudine 5 mRNA na DON blootstelling en dit enkel ter hoogte van het jejunum. Dit werd 

uitsluitend voor dit eiwit geregistreerd. Na het voederen van DON in combinatie met de 

mycotoxine binder, werd er ook een significante up-regulatie van claudine 5 opgemerkt in 

het jejunum, maar echter niet zo uitgesproken als in de dieren die enkel DON kregen. 

Daarentegen gaf DON in combinatie met de binder wel aanleiding tot schade in het ileum, 

gekenmerkt door niet alleen een up-regulatie van claudine 5 maar ook van alle andere 

bestudeerde genen, met name claudine 1 en zona occludens 1 en 2. Dit in tegenstelling tot 

DON alleen. De resultaten wijzen erop dat de binder het effect van DON naar meer distaal 



Samenvatting 
 

  

211  

 

gelegen darmgedeeltes kan verschuiven. Daarnaast kan ook opgemerkt worden dat DON 

een inflammatoire respons veroorzaakte in zowel het duodenum als het jejunum, aangezien 

DON een up-regulatie van de pro-inflammatoire Toll-like receptor 4 veroorzaakte. Ook hier 

leidde de combinatie DON en mycotoxine binder eerder tot schade in het ileum, wat ook 

aantoont dat het effect van DON opgeschoven wordt naar meer distaal door de 

aanwezigheid van de mycotoxine binder. Dezelfde trend werd ook gezien voor de genen die 

coderen voor oxidatieve stress. In dezelfde studie werd ook aangetoond dat niet alleen DON, 

maar ook de binder in staat is om de mRNA expressie van merkers voor oxidatieve stress te 

beïnvloeden in de lever van kippen. 

Cytochroom P450 (CYP450) enzymes zijn belangrijk voor de oxidatieve biotransformatie van 

xenobiotica. Zowel de darm als de lever spelen hierin een rol. CYP eiwitten werden 

hoofdzakelijk bestudeerd bij de mens en in laboratoriumdieren. De humane CYP3A4 is het 

belangrijkste eiwit voor geneesmiddel metabolisatie. In kippen werd CYP3A37, zijnde een 

60% homoloog van het humane CYP3A4, gekloond. Bij de start van dit doctoraatsonderzoek 

was er echter geen informatie voorhanden betreffende de expressie van CYP3A37 en de 

activiteit van CYP3A enzymes in vleeskippen. 

Er werd bijgevolg, zoals beschreven in Hoofdstuk 4, een studie uitgevoerd om de expressie 

en de activiteit van CYP3A na te gaan in vleeskippen. Een qRT-PCR methode werd ontwikkeld 

voor de absolute kwantificatie van CYP3A37 op mRNA niveau in vleeskippen. Levers en 

darmen van gezonde en met een niet-gecontamineerd dieet gevoederde vleeskippen 

werden hiervoor verzameld. Uit de resultaten van deze studie bleek dat de CYP3A37 mRNA 

expressie significant hoger is in het jejunum in vergelijking met het ileum en de lever. 

Teneinde de CYP3A activiteit na te gaan in de verschillende darmsegmenten, werd er eerst 

een methode op punt gesteld om darmmicrosomen aan te maken. Zowel de hepatische als 

de intestinale CYP3A activiteit werden vervolgens gemeten met behulp van midazolam als 

substraat. De hoogste CYP3A activiteit werd teruggevonden in de proximale delen van de 

dunne darm met een dalende trend naar de distale gedeeltes. De hepatische activiteit van 

CYP3A was vergelijkbaar met de activiteit in het duodenum. Het is dus duidelijk dat 

intestinale CYP3A eiwitten minstens even of misschien zelfs belangrijker kunnen zijn dan 

hepatische voor de metabolisatie van substraten van CYP3A. 
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Naast CYP450 eiwitten, bieden ook efflux transporter systemen een bescherming tegen 

opname van xenobiotica. De meeste van deze efflux transporters zijn lid van de ABC familie 

of adenosine-trifosfaat (ATP)-binding cassette eiwitfamilie. Leden van deze familie zijn zowel 

in de lever als darm aanwezig, waar zij verantwoordelijk zijn voor het terugpompen van 

xenobiotica uit de intestinale en hepatische cellen.  

Zowel metabolisatie als efflux transport van farmaca kan beïnvloed worden door  voeder, 

nutriënten, geneesmiddelen en contaminanten. Daarom werd een in vivo proef uitgevoerd 

om de toxische effecten van chronisch voederen van T-2 te evalueren in vleeskippen, welke 

wordt beschreven in Hoofdstuk 5. Naast de studie van de productieparameters, was het 

hoofddoel van de studie om de effecten van het T-2 toxine op intestinale en hepatische 

biotransformatie enzymes (CYP450) na te gaan, alsook op transporter eiwitten zoals P-

glycoproteine of MDR1 en multidrug resistance-associated protein 2 (MRP2). De dieren 

werden onderverdeeld in verschillende groepen volgens het type experimenteel voeder, 

namelijk niet gecontamineerd voeder, gecontamineerd voeder met 68 μg T-2/kg voeder of 

752 μg T-2/kg voeder. De dieren die gevoederd werden met de hoogste T-2 concentratie 

hadden een significant lagere gewichtstoename in vergelijking met de andere twee groepen 

na drie weken voederen. Een qRT-PCR methode werd ontwikkeld om de mRNA expressie na 

te gaan van de volgende genen: CYP1A4, CYP1A5, CYP3A37, MDR1 en MRP2. Uit de 

resultaten bleek dat T-2 geen significant effect had op de expressie van deze verschillende 

genen in de dunne darm. In de lever daarentegen, gaf het voederen van 752 μg T-2/kg 

voeder aanleiding tot een significante down-regulatie van CYP1A4, CYP1A5 en CYP3A37 

mRNA. Een significante down-regulatie van CYP1A4 mRNA werd zelfs vastgesteld in de 

dieren die de laagste T-2 concentratie (68 μg T-2/kg voeder) toegediend kregen. De 

enzymatische activiteit van CYP3A was significant up-gereguleerd in het ileum en de lever 

van de vleeskippen die drie weken gecontamineerd voeder kregen aan een concentratie van 

752 μg T-2/kg voeder, en dit in vergelijking met de dieren die de lagere T-2 dosis of niet 

gecontamineerd voeder kregen. Er konden geen effecten van T-2 op de CYP3A activiteit 

worden opgemerkt in het duodenum of het jejunum. Als besluit kunnen we stellen dat 

langdurige blootstelling aan relevante dosissen van T-2 een invloed kan hebben op de CYP-

gemedieerde metabolisatie van xenobiotica en op de werking van efflux eiwitten. Dit kan 
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mogelijks een invloed hebben op de farmacokinetische parameters van 

substraatgeneesmiddelen. 

Het algemeen besluit zou kunnen zijn dat het negatief effect van trichothecenen in 

vleeskippen onderschat wordt, ten gevolge van de afwezigheid van een duidelijk 

ziektebeeld. Ondanks het feit dat zowel DON en T-2 gekenmerkt zijn door een lage absolute 

orale biologische beschikbaarheid, konden we aantonen dat deze mycotoxinen in staat zijn 

om ernstige schade te veroorzaken op moleculair niveau. Beide mycotoxines zijn in staat om 

de darm- en leverbarrière te beschadigen met negatieve gevolgen voor de gezondheid van 

het dier. Daarnaast kunnen we uit de resultaten van deze thesis ook concluderen dat meer 

onderzoek nodig is om de efficaciteit en veiligheid van mycotoxine detoxifiers na te gaan. 

Ook hun interactie met de absorptie van oraal toegediende farmaca dient te worden 

bestudeerd. 



 

214  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

215  

 

 

 

 

 

 

 

 

 

 

 

 

CURRICULUM VITAE 

 

 

 

 

 

 

 

 

 

 

 



 

216  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Curriculum vitae 
 

  

217  

 

Ann Osselaere werd geboren op 9 januari 1985 te Schaarbeek. 

Na het behalen van het diploma hoger secundair onderwijs aan het Maria Assumptalyceum 

te Laken (Wetenschappen-Wiskunde), begon zij in 2003 de studie Diergeneeskunde aan de 

Universiteit Gent en behaalde het diploma van Dierenarts in 2009. 

In september 2009 trad zij in dienst als doctoraatsstudente bij de vakgroep Farmacologie, 

Toxicologie en Biochemie van de faculteit Diergeneeskunde. Zij verrichtte er onderzoek naar 

de invloed van de mycotoxines deoxynivalenol en T-2 toxine op de darmbarrière en de 

leverfunctie van vleeskippen. Verder begeleidde zij als promotor verschillende studenten in 

het behalen van hun masterproef en volgde zij verschillende cursussen van de doctoral 

schools. 

In het kader van haar onderzoek is ze auteur en co-auteur van meerdere wetenschappelijke 

publicaties in internationale tijdschriften. Tevens nam zij ook deel aan meerdere nationale 

en internationale congressen. 

 

 

 

 

 

 

 

 

 

 

 



 

218  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

219  

 

 

 

 

 

 

 

 

 

 

 

 

BIBLIOGRAPHY 

 

 

 

 

 

 

 

 

 

 

 



 

220  

 

 

 

 

 

 

 

 

 

 

 

 

 



Bibliography 
 

  

221  

 

Scientific papers 

De Baere, S., Goossens, J., Osselaere, A., Devreese, M., Vandenbroucke, V., De Backer, P., 

Croubels, S. (2011). Quantitative determination of T-2 toxin, HT-2 toxin, deoxynivalenol and 

deepoxy-deoxynivalenol in animal body fluids using LC-MS/MS detection. Journal of 

Chromatography B 24, 2403-2415. 

Osselaere, A., Devreese, M., Watteyn, A., Vandenbroucke, V., Goossens, J., Hautekiet, V., 

Eeckhout, M., De Saeger, S., De Baere, S., De Backer, P., Croubels, S. (2012). Efficacy and 

safety testing of mycotoxin-detoxifying agents in broilers following the European Food 

Safety Authority guidelines. Poultry Science 91, 2046-2054. 

Devreese, M., Osselaere, A., Goossens, J., Vandenbroucke, V., De Baere, S., De Backer, P., 

Croubels, S. (2012). Interaction between tylosin and bentonite clay from a pharmacokinetic 

perspective. Veterinary Journal 194(3), 437-439. 

Goossens, J., Vandenbroucke, V., Pasmans, F., De Baere, S., Devreese, M., Osselaere, A., 

Verbrugghe, E., Haesebrouck, F., De Saeger, S., Eeckhout, M., Audenaert, K., Haesaert, G., De 

Backer, P., Croubels, S. (2012). Influence of mycotoxins and a mycotoxin adsorbing agent on 

the oral bioavailability of commonly used antibiotics in pigs. Toxins 4(4), 281-295.  

Devreese, M., Osselaere, A., Goossens, J., Vandenbroucke, V., De Baere, S., Eeckhout, M., De 

Backer, P., Croubels, S. (2012). New bolus models for in vivo efficacy testing of mycotoxin 

detoxifying agents in relation to EFSA guidelines, assessed using deoxynivalenol in broiler 

chickens. Food Additives and Contaminants Part A 29(7), 1101-1107. 

De Baere, S., Osselaere, A., Devreese, M., Vanhaecke, L., De Backer, P., Croubels, S. (2012). 

Development of a liquid-chromatography tandem mass spectrometry and ultra-high-

performance liquid chromatography high-resolution mass spectrometry method for the 

quantitative determination of zearalenone and its major metabolites in chicken and pig 

plasma. Analytica Chimica Acta 756, 37-48. 

Osselaere, A., Devreese, M., Goossens, J., Vandenbroucke, V., De Baere, S., De Backer, P., 

Croubels, S. (2013). Toxicokinetic study and absolute oral bioavailability of deoxynivalenol, T-

2 toxin and zearalenone in broiler chickens. Food and Chemical Toxicology 51, 350-355. 



Bibliography 
 

  

222  

 

Osselaere, A., De Bock, L., Eeckhaut, V., De Backer, P., Van Bocxlaer, J., Boussery, K., 

Croubels, S. (2013). Hepatic and intestinal CYP3A expression and activity in broilers. Journal 

of Veterinary Pharmacology and Therapeutics, doi:10.1111/jvp.12034.  

Osselaere, A., Li, S.J., De Bock, L., Devreese, M., Goossens, J., Vandenbroucke, V., Van 

Bocxlaer, J., Boussery, K., Pasmans, F., Martel, A., De Backer, P., Croubels, S. (2013). Toxic 

effects of dietary exposure to T-2 toxin on intestinal and hepatic biotransformation enzymes 

and drug transporter systems in broiler chickens. Food and Chemical Toxicology, 55, 150-

155. 

Osselaere, A., Santos, R., Hautekiet, V., De Backer, P., Chiers, K., Ducatelle, R., Croubels, S. 

(2013). Deoxynivalenol impairs liver function and proximal intestinal barrier in broiler 

chickens, but addition of a mycotoxin adsorbing agent shifts the effects to more distal. 

Submitted to PLOS One. 

Goossens, J., Devreese, M., Pasmans, F., Osselaere, A., De Baere, S., Verbrugghe, E., 

Haesebrouck, F., De Backer, P., Croubels, S. (2013). Chronic exposure to the mycotoxin T-2 

promotes oral absorption of chlortetracycline in pigs, Conditionally accepted in Journal of 

Veterinary Pharmacology and Therapeutics. 

Goossens, J., De Bock, L., Osselaere, A., Verbrugghe, E., Devreese, M., Boussery, K., Van 

Bocxlaer, J., De Backer, P., Croubels, S. (2013). The mycotoxin T-2 inhibits hepatic 

cytochrome P4503A activity in pigs. Food and Chemical Toxicology, in press. 

 

 

 

 

 

 



Bibliography 
 

  

223  

 

Scientific abstracts of oral presentations on national and international 

congresses  

Osselaere, A., Goossens, J., De Baere, S., De Saeger, S., Eeckhout, M., De Backer, P., 

Croubels, S. (2011). Influence of mycotoxin detoxifying agents on the plasma 

pharmacokinetics and tissue residues of amoxicillin and oxytetracycline in poultry. 33rd 

Mycotoxin Workshop, Freising, Germany. 

Osselaere, A., Watteyn, A., Devreese, M., Vandenbroucke, V., Goossens, J., Eeckhout, M., De 

Saeger, S., De Baere, S., De Backer, P., Croubels, S. (2011). Efficacy and safety testing of 

mycotoxin-detoxifying agents in broilers following EFSA guidelines. 4th International 

Symposium on “Mycotoxins: Challenges and Perspectives”, Ghent, Belgium. 

Devreese, M., Osselaere, A., De Baere, S., De Backer, P., Croubels, S. (2011). In vivo efficacy 

testing of mycotoxin binders in poultry by means of a toxicokinetic study according to EFSA 

guidelines. 33rd Mycotoxin Workshop, Freising, Germany. 

Devreese, M., Osselaere, A., Goossens, J., De Baere, S., De Backer, P., Croubels, S. (2011). 

Nieuwe Europese (EFSA) richtlijnen om de efficaciteit van mycotoxine binders en modifiers 

aan te tonen. 2nd GeFeTec studienamiddag, Ghent, Belgium. 

Osselaere, A., Li, S.J., De Bock, L., Devreese, M., Goossens, J., Vandenbroucke, V., Pasmans, 

F., Martel, A., De Backer, P., Croubels, S. (2012). Toxic effects of dietary exposure to T-2 toxin 

on intestinal and hepatic CYP450 in broilers. 12th International Congress of the European 

Association for Veterinary Pharmacology and Toxicology (EAVPT), Noordwijkerhout, the 

Netherlands. 

Goossens, J., Pasmans, F., Vandenbroucke, V., Verbrugghe, E., Devreese, M., Osselaere, A., 

De Baere, S., Haesebrouck, F., De Backer, P., Croubels, S. (2012). Effect of T-2 toxin and a 

yeast-extract feed additive on the oral bioavailability of chlortetracycline in pigs. 34th 

Mycotoxin Workshop, Braunschweig, Germany. 



Bibliography 
 

  

224  

 

Devreese, M., Goossens, J., Osselaere, A., Vandenbroucke, V., De Baere, S., De Backer, P., 

Croubels, S. (2012). In vitro and in vivo safety testing of mycotoxin detoxifying agents. 34th 

Mycotoxin Workshop, Braunschweig, Germany.  

Osselaere, A. (2013). Invloed van mycotoxines op de darmbarrière en 

biotransformatiemechanismen van broilers. World Veterinary Poultry Association (WVPA) 

Belgian Branch studienamiddag, Ghent, Belgium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Bibliography 
 

  

225  

 

Scientific abstracts of poster presentations on national and international 

congresses 

De Baere, S., Osselaere, A., Devreese, M., Goossens, J., Vandenbroucke, V., De Backer, P., 

Croubels, S. (2010). Quantitative determination of deoxynivalenol and related compounds in 

animal plasma using LC-MS/MS as part of a toxicokinetic study. World Mycotoxin Forum, 6th 

conference, Noordwijkerhout, The Netherlands. 

De Baere, S., Goossens, J., Vandenbroucke, V., Osselaere, A., Pasmans, F., De Backer, P., 

Croubels, S. (2010). Development of a quantitative method for the determination of 

Fusarium mycotoxins in pig plasma using liquid chromatography tandem mass spectrometry. 

Annual Meeting of the Belgian Society for Mass Spectrometry, Brussels, Belgium. 

Goossens, J., Pasmans, F., Vandenbroucke, V., Devreese, M., Osselaere, A., Verbrugghe, E., 

Ducatelle, R., De Backer, P., Croubels, S. (2011). Influence of the mycotoxin T-2 on growth 

performance and intestinal health of the pig. International Pig Veterinary Society (IPVS) 

Belgian Branch studienamiddag, Merelbeke, Belgium. 

De Baere, S., Osselaere, A., Devreese, M., Goossens, J., Vandenbroucke, V., De Backer, P., 

Croubels, S. (2011). Quantitative determination of Fusarium mycotoxins in animal tissues 

using liquid chromatography tandem mass spectrometry. 4th International Symposium on 

“Mycotoxins: Challenges and Perspectives”, Ghent, Belgium. 

De Baere, S., Goossens, J., Osselaere, A., Devreese, M., Vandenbroucke, V., De Backer, P., 

Croubels, S. (2011). Quantitative determination of type-A and –B trichothecenes and 

deepoxy-deoxynivalenol in animal bile using LC-MS/MS detection. 4th International 

Symposium on “Mycotoxins: Challenges and Perspectives”, Ghent, Belgium. 

Osselaere, A., Devreese, M., Goossens, J., Vandenbroucke, V., De Baere, S., De Backer, P., 

Croubels, S. (2012). Toxicokinetic study of deoxynivalenol, T-2 toxin and zearalenone in 

broiler chickens. 12th International Congress of the European Association for Veterinary 

Pharmacology and Toxicology (EAVPT ), Noordwijkerhout, the Netherlands. 



Bibliography 
 

  

226  

 

De Baere, S., Osselaere, A., Devreese, M., De Backer, P., Croubels, S. (2012). Quantitative 

determination of zearalenone and its major metabolites in animal plasma using LC-MS/MS 

and (U)HPLC-HR-MS detection. 34th Mycotoxin Workshop, Braunschweig, Germany. 

Devreese, M., Goossens, J., Osselaere, A., De Baere, S., De Backer, P., Croubels, S. (2012). In 

vitro and in vivo efficacy testing of mycotoxin detoxifying agents using intestinal epithelial 

cells and toxicokinetic parameters. MycoRed, Ottawa, Canada. 

Devreese, M., Osselaere, A., Goossens, J., De Baere, S., De Backer, P., Croubels, S. (2012). 

Interaction between tylosine and bentonite clay from a pharmacokinetic perspective. 6th 

Conference on Antimicrobial Agents in Veterinary Medicine (AAVM), Washington DC, USA. 

Osselaere, A., Santos, R., Hautekiet, V., De Backer, P., Chiers, K., Ducatelle, R., Croubels, S. 

(2013) Deoxynivalenol impairs proximal intestinal barrier in broiler chickens, but addition of 

an adsorbing agent shifts the effects to more distal. 35th Mycotoxin Workshop, Ghent, 

Belgium. 

De Mil, T., Devreese, M., Osselaere, A., Verbrugghe, E., Goossens, J., Pasmans, F., De Backer, 

P., Croubels, S. (2013). Characterization of in vitro intestinal absorption of veterinary drugs 

and coccidiostats in the presence of mycotoxin detoxifiers using a porcine intestinal 

epithelial cell line. 35th Mycotoxin Workshop, Ghent, Belgium. 

Devreese, M., De Baere, S., Osselaere, A., De Mil, T., Broekaert, N., De Backer, P., Croubels, 

S. (2013). Quantitative determination of the Fusarium mycotoxins beauvericin, enniatin A, 

A1, B and B1 in pig plasma using high performance liquid chromatography-tandem mass 

spectrometry. 35th Mycotoxin Workshop, Ghent, Belgium. 

Broekaert, N., Devreese, M., De Mil, T., Osselaere, A., Fraeyman, S., De Saeger, S., Croubels, 

S. (2013). Determination of masked mycotoxin derivates and metabolites of deoxynivalenol 

in plasma and cell culture media using LC-MS/MS. 35th Mycotoxin Workshop, Ghent, 

Belgium.



 

227  

 

 

 

 

 

 

 

 

 

 

 

 

DANKWOORD



Dankwoord 
 

  

228  

 

Het laatste hoofdstuk, het dankwoord, is zeker niet minder belangrijk dan alle voorafgaande 
hoofdstukken. Een doctoraatsthesis verwezenlijk je immers niet alleen en daarom had ik 
graag iedereen die ertoe bijgedragen heeft op gepaste wijze bedankt. 

Vooreerst zou ik mijn beide promotoren Prof. S. Croubels en Prof. P. De Backer willen 
bedanken. Siska, hartelijk dank dat ik deel uit mocht maken van uw mycotoxine-team.  
Professor De Backer zou ik willen bedanken voor zijn hulp in de niet altijd even gemakkelijke 
interpretatie van mijn resultaten. Deze doctoraatsjaren hebben mij veel wetenschappelijke 
kennis bijgebracht alsook enkele belangrijke levenslessen. 

De leden van de begeleidings- en examencommissie, Prof. dr. Gasthuys, Prof. dr. Dacasto, dr. 
Vancraeynest, Prof. dr. Boussery, Prof. dr. Ducatelle en Prof. dr. Martel wil ik graag 
bedanken voor hun zeer nuttige opmerkingen en suggesties. Prof. dr. Dacasto thank you for 
making time to come over from Italy to attend my PhD defense.    

Het uitvoeren van dierproeven is een meervoudig stappenplan dat haast onmogelijk zou zijn 
zonder de nauwe samenwerking met de MYTOX Associatieonderzoeksgroep. De 
personeelsleden van het labo van Prof. Eeckhout evenals Prof. Eeckhout zelf zou ik willen 
bedanken voor hun altijd enthousiaste hulp bij het aanmaken en inmengen van het voeder. 
Professor De Saeger en Christ’l hartelijk dank voor de analyse van het kippenvoeder! Dr. ir. 
Kris Audenaert en zijn team bezorgde ons de DON voor onze eerste voederproef, bedankt 
hiervoor! Op de mycotoxine congressen leerde ik heel wat fijne doctoraatstudenten kennen 
van de MYTOX groep, ik wens iedereen van de MYTOX Associatieonderzoeksgroep dan ook 
heel veel succes met hun verder onderzoek! 

Professor J. Van Bocxlaer en Prof. K. Boussery ben ik heel erg dankbaar dat ik welkom was in 
hun labo om mijn stalen te analyseren. Vooral Lies zou ik in de bloemetjes willen zetten! 
Ongelooflijk hoe jij mij geholpen hebt en vooral bijgestaan hebt om stalen te blijven 
homogeniseren ondanks mijn zwangerschapskwaaltjes ! Ik wens je heel veel succes met 
het afronden van je doctoraat en natuurlijk heel veel geluk met je gezinnetje! Huybrecht, 
Pieter, Julie en Sofie dikke merci voor de fijne momenten samen!  

De collega’s van de vakgroep Pathologie, Bacteriologie en Pluimveeziekten stonden altijd 
klaar om te helpen, om histologie stalen te verwerken, PCR problemen te verhelpen, … 
iedereen hartelijk dank hiervoor! 

En dan op naar de eigen ‘mycotoxine-buro’... Virginie, de senior, ook al mag ik je zo niet 
noemen :-)! Ik weet nog dat je net uit zwangerschapsverlof kwam als ik begon aan mijn 
doctoraat... fiere mama van Andreas en toch zo gefocust op je werk! Ik stond altijd 
verwonderd hoe je dat allemaal geregeld kreeg en kijk vorig jaar was de cirkel rond, jij legde 
je doctoraat af enkele dagen nadat ik bevallen was! Ik wens je nog heel veel geluk met je 
twee stoere mannen en in je verdere carrière! Joline, wij hebben veel leed en vreugde 



Dankwoord 
 

  

229  

 

gedeeld de afgelopen jaren, maar vandaag kunnen we eindelijk alletwee zeggen dat het ons 
gelukt is! De aanhouder wint, en dat heb jij meer dan eens bewezen in de afgelopen jaren! 
Heel veel succes in je verdere onderzoek en in jullie nieuwe woonst natuurlijk! Een andere 
ancien, Anja! Bedankt voor jouw enorme bijdrage aan mijn dierproeven, op eender welk 
moment van de dag was je altijd bereid om te helpen! Elin, jouw gedrevenheid en passie 
voor de wetenschap zijn bewonderenswaardig, veel succes nog met je post-doc! In de loop 
der jaren veranderde het mycotoxine-team van vrouwen- naar een mannen-team. Gunther, 
Mathias, Nathan en Thomas nog heel veel succes met jullie onderzoek! Sophie, jij kwam er 
als laatste bij, maar ik ben er zeker van dat je je mannetje wel zal kunnen staan! 

Op naar het LPS-team! Elke, Anneleen en Heidi, bij jullie kon ik altijd terecht voor een fijne 
babbel! Elke, ik zal onze uitstapjes met de vrachtwagen missen! Anneleen, bedankt voor de 
fijne kippen-momenten! Heidi blijf je varkentjes verwennen met appeltjes . Bedankt voor 
de hele fijne samenwerking en nog heel veel succes met jullie onderzoek!   

Siegrid bedankt voor de ontwikkeling van talrijke analysemethodes en ook voor je hulp en 
raad! Kris B., jouw wijze woorden brachten altijd raad! Ann S. dankzij jou weet ik hoe 
belangrijk GLP is! An M. dankzij jouw ligt alles altijd op zijn plaats in het labo ook al moest je 
hier regelmatig eens voor aan onze oren trekken! Marc, ik zal jouw fluit-deuntjes missen! 
Jelle, geef me een seintje als je op jumping Mechelen of Wieze bent dan kunnen we nog wat 
bijpraten! Nathalie, bedankt voor al die administratie die je voor me deed! 

De collega’s van de biochemie. Donna bedankt voor alle fijne babbels en heel veel succes 
met de laatste rechte lijn! Kristel bedankt voor de lessen ‘western blotting’! Jorien je mag 
altijd je recept voor chocoladecake doorsturen! Koen, de muizenkweker , succes met je 
experimenten in de toekomst! Jella, onze liefde voor paarden deed een ware vriendschap 
ontstaan. Ondertussen hebben we met onze (b)engeltjes nog veel meer gemeen! Op naar 
ons volgend uitstapje ! Professor Meyer bedankt voor uw interesse in mijn onderzoek. 
Dieter en Bert bedankt voor de fijne samenwerking! 

Mijn oude medestudenten: Inge, Inne, Sophie, Soetkin, Charlotte en Eline, wat een 
ongelooflijk fijne jaren in Gent samen! Ik wens jullie veel succes met al jullie 
toekomstplannen! 

Nathalie en Liesbeth, de tanti’s van Camille, al jaar en dag kan ik op jullie rekenen, echt super 
dikke merci hiervoor! Nu dit allemaal achter de rug is, is het hoogtijd voor een uitstapje 
samen! 

De allerlaatste zinnen gaan uit naar mijn familie. Peter, Meter en Tonton (alias Halve Meter), 
1 telefoontje volstaat en jullie staan klaar voor mij! Bedankt voor jullie steun en Tonton 
dikke merci om je zondagochtend op te offeren om kippen te komen wegen ! Mijn 



Dankwoord 
 

  

230  

 

schoonouders, Luc en Linda, zou ik ook in de bloemetjes willen zetten. Bedankt dat jullie 
altijd klaarstaan om voor Camille te zorgen alsook voor de goede zorgen voor mijn paarden!  

Mama, ik weet hoe hard je naar deze dag hebt uitgekeken... Bedankt om mij de kans te 
geven deze studies te doen alsook om altijd in mij te blijven geloven! Nu dit achter de rug is, 
kan je je volledig in de rol van Mamy meter storten!  

De laatste zinnen zijn voorbehouden voor mijn lieve echtgenoot, Thomas. Bedankt voor je 
onvoorwaardelijke steun, je geduld en liefde. Ik kijk ernaar uit om samen met ons dochtertje 
Camille in ons nieuw huis te gaan wonen en samen verder aan de toekomst te bouwen… 

 

 

 

 


	ABBREVIATION KEY
	GENERAL INTRODUCTION
	1. The poultry industry with emphasis on broiler chickens
	2. Mycotoxins as contaminants of animal feed
	2.1  Classification and occurrence of mycotoxins
	2.2  Toxicity and metabolism of Fusarium mycotoxins
	2.3  Implication for the health of broilers
	2.3.1 DON mycotoxicosis
	2.3.2 T-2 mycotoxicosis
	2.4  Implications for men’s health
	2.5  Principles of mycotoxin management

	3 The gastro-intestinal tract and the liver as a target for trichothecene mycotoxins
	3.1  Effects at the gastro-intestinal level
	3.1.1 Gut wall morphology
	3.1.2 The intestinal functional barrier
	3.1.2.1 Trichothecenes interact with the paracellular pathway
	3.1.2.2. Trichothecenes interact with efflux transporters involved in the transcellular pathway
	3.1.2.3 Trichothecenes interact with drug metabolism in the GI tract

	3.2  Effects at the hepatic level

	SCIENTIFIC AIMS
	EXPERIMENTAL STUDIES
	Chapter 1.
	Toxicokinetic studies of three important Fusarium mycotoxins: deoxynivalenol, T-2 toxin and zearalenone
	Chapter 2.
	Evaluation of different biomarkers to assess deoxynivalenol exposure and efficacy and safety testing of mycotoxin detoxifiers
	Chapter 3.
	The effects of deoxynivalenol and an adsorbing agent on the intestinal barrier and liver function
	Chapter 4.
	CYP3A in the liver and the small intestine of healthy broiler chickens
	Chapter 5.
	Effects of T-2 toxin on intestinal and hepatic biotransformation mechanisms and transporter systems

	GENERAL DISCUSSION
	SUMMARY
	SAMENVATTING
	CURRICULUM VITAE
	BIBLIOGRAPHY
	DANKWOORD

