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Samenvatting

Wanneer men in de praktijk werkt met spatiale informatie, blijkt een groot deel
van deze informatie onderhevig aan onzekerheid (als er twijfel bestaat over de
gemodelleerde gegevens, bijvoorbeeld in het geval van voorspellingen) of aan
onnauwkeurigheid (als de gemodelleerde gegevens slechts bij benadering gek-
end zijn). Deze onzekerheid of onnauwkeurigheid kan ofwel inherent zijn aan
de reële situatie (bijvoorbeeld bij bodemsamenstelling) of kan te wijten zijn
aan het feit dat metingen te complex of te duur zijn (bijvoorbeeld bij het regi-
streren van neerslag). Bijgevolg kan het interessant zijn om deze onzekerheid
of onnauwkeurigheid op te nemen in de gebruikte gegevensmodellen. Het doel
van dit werk is spatiale modellen te ontwikkelen, waarmee onnauwkeurigheid
of onzekerheid in rekening kunnen gebracht worden.

In het eerste hoofdstuk worden de concepten die verder in het werk aange-
wend zullen worden, gëıntroduceerd. Allereerst betreft dit geografische infor-
matiesystemen, in het bijzonder de representatiemodellen en bijhorende opera-
ties. Er zijn twee grote categoriën van modellen: entiteitgebaseerde en veldge-
baseerde modellen. In de entiteitgebaseerde modellen worden elementaire geo-
metrische structuren (punten, lijnen en veelhoeken) gebruikt om geografische
concepten voor te stellen; zo kunnen bijvoorbeeld punten dienen om locaties,
lijnen om wegen of rivieren, en veelhoeken om percelen grond of gebieden (vb.
begrensd door demografische informatie) voor te stellen. Een aantal operaties
op entiteiten zijn bijvoorbeeld: bepalen van de kleinste omhullende rechthoek,
bepalen van de convex omhullende, berekenen van de oppervlakte en berekenen
van de afstand tussen entiteiten. Topologische relaties (welke, gebruik makend
van de concepten binnengebied, grens en buitengebied, de relatieve ligging van
gebieden uitdrukken) komen ook aan bod. Bij de veldgebaseerde modellen wor-
den (gemeten) gegevens over een gebied gemodelleerd (bijvoorbeeld hoogtes).
Hiervoor worden zowel bitmaps (waarbij het gebied wordt gepartitioneerd in
een eindig aantal deelverzamelingen) als driehoeksnetwerken (waarbij data van
een beperkt aantal punten wordt gëınterpoleerd) gebruikt. Bij veldgebaseerde
modellen werken operatoren over het algemeen in op geassocieerde gegevens.
Vermits in dit werk gebruik gemaakt wordt de theorie van de vaagverzame-
lingenleer (fuzzy set theory), bevat het eerste hoofdstuk ook een introductie
tot zowel het concept van vaagverzamelingen als tot een aantal operaties. Het
hoofdstuk wordt afgesloten met een overzicht van verwant onderzoek.
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In hoofdstuk twee wordt de eerste originele bijdrage van ons werk voorge-
steld: een conceptueel model voor vage gebieden. Dit model wijkt af van het
traditionele model voor een gebied, waarbij een gebied gedefinieerd wordt aan
de hand van zijn omtrek (voorgesteld door een veelhoek) en waarbij alle pun-
ten (locaties) binnen deze omtrek tot het gebied behoren. Het is ook mogelijk
om een gebied als een verzameling van punten te beschouwen; deze visie wordt
gehanteerd in ons werk en wordt uitgebreid tot een vaagverzameling (fuzzy set).
Dit betekent dat met elk punt een een lidmaatschapsgraad uit het interval [0, 1]
wordt geassocieerd; de waarde 0 betekent dat het punt niet tot het gebied be-
hoort, en hoe hoger de lidmaatschapsgraad hoe meer het punt tot het gebied
behoort (de waarde 1 betekent bijgevolg dat het punt volledig tot het gebied
behoort). Om een vaag gebied bruikbaar te maken, is het nodig om de geogra-
fische operatoren uit te breiden naar dit model. Dit impliceert aangepaste
definities voor, onder andere, de kleinste omhullende rechthoek, de convex
omhullende (beide zullen nu aanleiding geven tot een vaag gebied) en voor de
berekening van de oppervlakte (twee interpretaties worden in acht genomen: de
eerste resulteert in een vaaggetal dat de oppervlakte voorstelt, de tweede levert
een scherp getal en is eigenlijk een uitbreiding van vage cardinaliteit) en van de
oppervlakte. De topologie tussen vage gebieden wordt beschouwd gebruik mak-
end van uitgebreide definities voor binnengebied, grens en buitengebied en een
aanpassing van het traditionele 9-intersectie model (Egenhofer, [26]). Een aan-
tal bijkomende uitbreidingen komen ook aan bod: vage locaties (vage punten),
die van vage gebieden verschillen in interpretatie en in een aantal operatoren
(vb. afstand), en een model om te werken met vage geassocieerde data (waarop
type-2 vaagverzamelingen gebaseerd kunnen worden). Mogelijke toekomstige
uitbreidingen die een bijkomend niveau van onzekerheid of onnauwkeurigheid
toelaten met betrekking op de positie van de vage gebieden wordt ook aange-
haald. Als laatste worden een aantal voorstellingswijzen voor vage gebieden
vermeld.

Hoofdstuk drie handelt over de haalbaarheid van vage gebieden met be-
trekking tot hun gebruik in de praktijk: het concept van vage gebieden is een
theoretisch concept, maar het is niet evident om dit in de praktijk toe te passen.
De oorzaak hiervan ligt in het feit dat een conceptueel vaag gebied gebruikt
maakt van een oneindig domein (een begrensde deelverzameling van de twee
dimensionale ruimte) in combinatie met het extensie principe (een methode
om operatoren uit te breiden naar vaagverzamelingen), wat wel een theore-
tische definitie oplevert, maar geen algoritme om het resultaat te berekenen.
De tweede originele bijdrage van ons werk heeft als doel vage gebieden haal-
baar te maken in de praktijk. Hiertoe werden drie modellen ontwikkeld, elk
met hun eigen voor- en nadelen. Het eerste model maakt gebruik van contour-
lijnen: lijnen van gelijke lidmaatschapsgraad (vergelijkbaar met hoe isobaren
op weerkaarten lijnen van gelijke druk voorstellen). Van deze methode wor-
den een aantal varianten voorgesteld; de eerste variant maakt gebruik van één
grens (waarbinnen alle punten de lidmaatschapsgraad 1 krijgen) en van een
vormfunctie (shape-function); de vormfunctie wordt gebruik om het verloop
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van de lidmaatschapsgraad van deze ene grens naar buiten toe te modelleren in
functie van de afstand tot deze grens. Bijgevolg zullen punten met eenzelfde lid-
maatschapsgraad op eenzelfde afstand van de gegeven grens liggen. De tweede
variant biedt meer vrijheid door gebruik te maken van twee grenzen; binnen de
binnenste grens krijgen punten de lidmaatschapsgraad 1, buiten de buitenste
grens de lidmaatschapsgraad 0, en tussen beide grenzen krijgen de punten een
lidmaatschapsgraad bepaald door hun relatieve positie ten opzichte van beide
grenzen, gebruik makend van de vormfunctie. Dit model wordt nog verder ver-
fijnd door bijkomende tussenliggende grenzen toe te laten. Het model leent zich
zeer goed tot een uitbreiding van het traditionele concept van buffergebieden
(om zo tot vage buffergebieden te komen), maar is niet zo geschikt als model
voor algemene vage gebieden: veel operaties zijn niet gesloten, wat betekent
dat het type van resultaat van een operatie (vb. unie, intersectie) niet noodza-
kelijk hetzelfde is als dat van de operandi, waardoor de bruikbaarheid toch wel
beperkt wordt.

In hoofdstuk vier komt een tweede model aan bod; dit is ons eerste model
waarbij de operatoren gesloten zijn. Het werken met vage gebieden wordt
praktisch haalbaar gemaakt door de twee dimensionale ruimte te benaderen
door een discrete ruimte. Hiertoe wordt een gebied gepartitioneerd in een
eindig aantal cellen, waarbij een cel beschouwd wordt als de kleinste eenheid
in het model. Een lidmaatschapsgraad wordt dan geassocieerd met een cel,
en representatief geacht als lidmaatschapsgraad voor alle punten binnen deze
cel. Het gebruik van een discreet domein laat toe - in tegenstelling tot het
gebruik van een continu domein - om het extensieprincipe rechtstreeks toe te
passen om tot een berekenbaar resultaat te komen. De operatoren die in het
conceptuele model aan bod kwamen, worden aangepast voor het bitmapmodel;
ze worden niet alleen gedefinieerd in theoretische vorm en geverifieerd met
de operatoren van het conceptuele model, maar ook gegeven in pseudo code,
om de haalbaarheid van een implementatie aan te tonen. De verschillende
uitbreidingen (zoals o.a. vage punten en vage geassocieerde waarden) worden
ook aangehaald.

Hoofdstuk vijf handelt over een derde model dat ontwikkeld werd om de
beperkingen van het contourlijnmodel tegen te gaan; dit is ons tweede model
waarbij de operatoren gesloten zijn. In dit model worden lidmaatschapsgraden
met een beperkt aantal punten (genoemd datapunten) geassocieerd. Uitgaande
van deze punten wordt dan een driehoeksnetwerk, of TIN, opgebouwd met be-
hulp van een Delaunay triangularisatie (de datapunten zijn de hoekpunten van
het netwerk). Aan de hand van dit driehoeksnetwerk wordt de lidmaatschaps-
graad van de overige punten bekomen door lineaire interpolatie op de lid-
maatschapsgraden van de hoekpunten van de driehoek waarin een dergelijk
punt ligt. Voor de operatoren is het mogelijk om het extensieprincipe toe te
passen op de datapunten, maar er moet nagegaan worden of de interpolatie
nog steeds het gewenste resultaat geeft; het kan nodig zijn om bijkomende
datapunten toe te voegen aan het netwerk (bijvoorbeeld in het geval van de
doorsnede). De definities voor de operatoren uit het conceptuele model worden
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aangepast om deze TIN structuur in rekening te brengen, en worden geverifieerd
ten opzicht van het conceptuele model; net zoals bij het bitmap model worden
de operatoren ook in pseudo code gegeven. Tot slot komen de bijkomende
uitbreidingen uit de vorige hoofdstukken ook hier aan bod.

Het laatste hoofdstuk, hoofdstuk zes, begint met een overzicht van een
aantal toepassingsgebieden, ook buiten het gebied van de spatiale databanken
waarvoor de modellen initieel ontwikkeld werden. Vervolgens worden een aantal
eigenschappen nuttig voor spatiale data structuren uit de literatuur geciteerd.
Deze eigenschappen hebben niet alleen betrekking op de definities van objecten
en operatoren, maar ook op de invloed van beperkingen door computerrepre-
sentaties op het model (vb. de voorstelling van reële getallen in een computer).
Deze eigenschappen vormen een geschikt referentiekader om conclusies betref-
fende de verschillende modellen te maken.



Summary

When working with spatial information, many information is prone to uncer-
tainty (where the data to be modelled are not certain, as is the case for instance
in predictions) or imprecision (where the data to be modelled are not accurate).
This is either inherent to the real situation (e.g. soil composition) or is due to
the fact that measurements are too complex or expensive (e.g. rainfall). For
spatial information, it is therefore beneficial to allow for this uncertainty or
imprecision to be incorporated in the models. The objective of this work is to
develop models for spatial information in which uncertainty or imprecision is
taken into account.

In the first chapter, concepts that will be used throughout the work are
introduced. Attention goes to the geographic information systems and the rep-
resentation models and related operations used. There basically are two types
of models: entity-based models and field-based models. In entity based models,
elementary geometric structures (point, lines and polygons) are used to repre-
sent geographic features, for instance points can represent locations, lines can
represent roads or rivers and polygons can represent patches of land or regions
(e.g. when representing demographic information). Some operations on entities
are: minimum bounding rectangle, convex hull, calculation of the surface area
and distance between entities. Topological relations for regions (which express
the relative position, using the concepts interior, boundary and exterior) are
also considered. In field based models, (measured) data are modelled over an
entire region of interest (for instance altitudes). For this purpose, both bitmap
models (in which the region is partitioned in a finite number of subsets) and
triangular network models (in which data from a limited number of points - or
vertices - are interpolated for other points) are used. Traditionally, the opera-
tions on field-based structures concern associated data. As fuzzy set theory will
be used in this work, the first chapter also contains a section which introduces
some preliminaries regarding fuzzy set theory; both the concept as well as some
operations are considered. The chapter concludes with an overview of related
work.

In chapter two, the first original contribution of this work is presented: a
conceptual model for fuzzy regions. The concept of this model differs from the
traditional model for regions, where a region is defined by means of its outline
(which is specified by a polygon) meaning that all points (locations) inside this
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outline belong to the region. It therefore is also possible to consider a region
as a set of points; in this work, this point of view is adopted and the set is
extended to a fuzzy set: every point is associated a membership grade in the
range [0, 1]; a value 0 indicates that the point does not belong to the region and
the higher the membership grade the more the point belongs to the region (a
value 1 consequently indicates that the point fully belongs to the region). For a
fuzzy region, the operations stemming from the geographic realm are extended
to match this model. This implies appropriate definitions for the minimum
bounding rectangle and convex hull (which both will now yield a fuzzy region)
and for the computation of the surface area (two interpretations are considered:
one yielding a fuzzy number to represent the surface area, and the other one
yielding a crisp number, basically an extension of fuzzy cardinality) and the dis-
tance between fuzzy regions. The topology of fuzzy regions is considered using
extended definitions for interior, boundary and exterior and an extension of the
traditional 9-intersection model (Egenhofer, [26]). Some additional extended
concepts are also put forward: fuzzy locations (fuzzy points), which differ from
regions in both interpretation and some operations (e.g. distance); a model for
working with fuzzy associated data (based on which for instance type-2 fuzzy
regions can be defined). Also a possible future extension which allows for an
additional level of fuzziness regarding the position of fuzzy regions is proposed.
Finally, some representation methods for fuzzy regions are mentioned.

Chapter three concerns the manageability of fuzzy regions for practical uses.
While the concept of fuzzy regions is a well defined concept, there are some
issues when trying to use it in practice. These issues stem from the fact that
the conceptual fuzzy region uses infinite domains (a limited subset of the two
dimensional space) in combination with the extension principle (a technique to
extend operations to work on fuzzy sets), which, while providing a theoretically
sound definition does not provide for an algorithm to compute the result. The
second original contribution of this work is intended to overcome these issues;
for this purpose three models have been developed, each with its own benefits
and drawbacks. The first model makes use of the concept of contourlines, which
basically are lines of equal membership (similar to how for instance isobars on
weather charts are lines of equal barometric pressure). In the chapter, differ-
ent variants of the contourline approach are considered. The first one makes
use of one boundary (inside which all points are given membership grade 1)
and of a shape function; the shape-function is used to model the decrease in
membership grade from this one boundary outward, depending on the distance
to this boundary. Consequently, points with the same membership grade are
all positioned at equal distance from the given boundary. The second vari-
ant provides for more degrees of freedom by allowing both an inner and an
outer boundary to be specified; inside the inner boundary points are assigned
membership grade 1, outside the outer boundary 0 and in between inner and
outer boundary the membership grade for a point is determined based on its
relative position to both boundaries and the shape-function. The model is ex-
tended further by also allowing intermediate boundaries to be specified. While
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the model lends itself quite well as an extension of the traditional concept for
buffer regions (to yield fuzzy buffers), it is not very well suited as a model for
fuzzy regions: many operations are not closed (meaning that the result of the
operations (e.g. union, intersection) is not guaranteed to yield a result of the
same type as the operands), which limits the usability.

In chapter four, a second model is presented; this is the first of our models
in which the operations are closed. Fuzzy regions are made manageable in
this concept by approximating the considered two dimensional space with a
discrete space. For this purpose, a region is partitioned into a finite number of
cells, which are considered to be the smallest unit in the model. A membership
grade is then associated with a cell and is considered to be representative for
the membership grades of all the points within this cell. The use of a discrete
domain contrary to the use of a continuous domain (in the concept), allows
for the extension principle to be applied directly, yielding a computational
method. The definitions for the various operations from the conceptual model
are considered again for the bitmap model; not only are they defined in a
theoretical form and verified against the conceptual model but also provided
in pseudo code, which illustrates the feasibility of an implementation. The
different extensions (e.g. fuzzy points, fuzzy associated values, etc.) are also
considered.

Next, in chapter five, a third model that was developed to overcome the
limitations of the contourline model is presented; this is the second of our
models in which the operations are closed. In this model, a limited number of
points (called datapoints) are assigned a membership grade. Based on these
points, a triangular irregular network (TIN for short) is constructed by means
of a Delaunay triangulation (the datapoints will be the vertices of the network).
Using this network, the membership grade for a point other than a datapoint is
obtained through linear interpolation on the associated values of the datapoints
of the triangle in which it is located. To extend the operations, it is possible
to apply the extension principle to the datapoints. However, it is necessary
that the interpolation still provides the correct result, which may require the
addition of new datapoints to the TIN (for instance for the intersection, as
explained in the chapter). Consequently, the definitions for the operations
on fuzzy regions are adapted for fuzzy TINs, verified against the conceptual
definitions, and provided in pseudo code. Again, the additional extensions are
also considered for this model.

The concluding chapter, chapter six, starts with an overview of possible
applications fields for the developed methods. While the models were devel-
oped with spatial information in mind, there are applications in other fields
(e.g. image processing). Next, a number properties that are desired for spatial
data structures, as found in literature, is provided. These properties not only
concern the way objects and operations are defined, but also the way limited
representations in computer systems (e.g. the computer representations of real
numbers) have an impact on the model. These properties are ideally suited as a
frame of reference to comment on the different models that we have developed.
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also shown): (a) represented using grey scales, (b) represented
using some contour lines, (c) an example of the membership
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Preface

Introduction

Recently, there has been a growing interest in spatial information. While profes-
sional geographic information systems have been around for quite some time,
some examples are GRASS, ArcGIS, Indrisi, AutoDesk Geospatial, MapInfo
and InterGraph GeoMedia Suite; spatial information has gotten more wide-
spread attention in the last decade. This interest occurs at the side of the end
users, of companies that wish to use geographically related information to offer
additional services, and of research facilities.

In the case of the end users, the growing interest has been triggered by the
technological advancements which made GPS and navigation devices cheap
and userfriendly, and by the internet, where broadband access made satellite
imagery (e.g. Google Earth, Microsoft Visual Earth), routing applications
(e.g. Map24, MapQuest) and even demographic information (e.g. “Giswest
Vlaanderen” 1) widely available. For most end users, navigation and nice
images are all they really use.

For companies, a distinction is made between companies for which spatial
information is part of their core business, and companies that intend to use
spatial information to improve their core business. The former obviously have
to combine a vast amount of data, gathered from measurements in the field,
extracted from satellite and aerial photographs and provided by the authorities,
to keep the information incorporated in their products up to date. The latter
are companies that wish to adopt the geographically related information to
improve their services, which mostly will concern applications of location based
services, a system in which a user is targeted depending on his/her location.
Currently, most people carry a mobile phone, and today’s mobile phones have
become quite advanced; it is also possible to determine the position of the users
based on the GSM cell (the region covered by a GSM antenna) his/her phone
is connected to. This opens the door to some basic positioning information,
which is already used today in some places. In Kiev for instance, some GSM
operators associate the name of a metro station with the GSM cell present
at that station: this allows the user to see the name of the current station
and (when riding the metro) the name of the upcoming station. A similar

1http://www.giswest.be
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example can be found in Prague, where the name of the quarter is associated
with the GSM cell, allowing the user to have some positional information. An
application is also being developed by TomTom Navigation, where the intention
is to use information from the location of various mobile phones to detect
traffic jams. It is obvious that companies are seeing a possibility of sending
promotions or advertisements to users in their vicinity. Given the fact that GPS
receivers are becoming smaller (to the point where they are already starting to
be integrated in mobile phones), the companies are anxiously looking forward
to the new possibilities this development will offer. Not all applications concern
advertisements and promotions: location based services can also help a user to
find shops, restaurants or even doctors nearby.

In research, geographic information systems are used for much more than
merely routing, positioning and navigation. Geographic information systems
are used for land use analysis, geological information, climate studies, tracking
hurricanes, modelling the spread of vegetation and wildlife, charting pollution
sources and predicting how certain pollution spreads, traffic flow and numerous
other applications. Furthermore, the systems are not only used to model the
present information, but are also used to model changes in the data over time
and even to predict trends and evolutions. As data are gathered from a multi-
tude of sources (measurements in the field, information derived from satellite
or aerial photographs, etc.), the systems have to deal with large amounts of
data.

At the heart of any geographic information system (or GIS for short) is a
database. To deal with the increased interest in spatial information, database
vendors such as Oracle and IBM have introduced extensions to allow for the
modelling of spatial data in such a way as to allow the system to query details
about this spatial data: a spatial object is not treated as a BLOB2, an object
of which the contents are not interpreted by the database, but as a genuine
object with which the database engine can interact. In all cases however, data
are modelled as being crisp and well known, even though this is not always the
case in reality. In reality, a lot of data are prone to imprecision or uncertainty,
where imprecision refers to the fact that the data cannot be accurately defined
and uncertainty refers to the fact that there is doubt (for instance in the case
of predictions) concerning the data. This can either be inherent to the data
themselves (meaning that the real life situation is not accurately defined) or
due to limitations in obtaining the data (meaning that the real life situation
is accurately defined, but this accurate definition cannot be determined, thus
introducing the imprecision or uncertainty in the model). Inherent imprecision
or uncertainty occurs for instance when considering the soil composition: the
transition from one type of soil to another (e.g. from a sandy soil to a clay
soil) will more likely be some gradual transition rather than a crisp one. Im-
precision or uncertainty is introduced in the model when for instance rainfall
is modelled: only the rainfall at a limited number of locations is considered,
which is then extrapolated as the measured rainfall for a region (measuring at

2Binary Large OBject
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every location is impossible). This is but one example; similar problems occur
for many measurements that are carried out in the field (determining the layers
of rock in the underground, counting of the number of species of an animal in
a region), and this is moreso the case when considering predictions. At present
the geographically related data are represented as crisp values (the users often
know it is an approximation, but this approximation is not dealt with in the
model) and regions are often considered larger than strictly necessary.

The purpose of this work is to develop techniques to include the uncertainty
or imprecision of the data into the spatial models, as to allow a spatial infor-
mation system to take the present uncertainty and imprecision into account in
the representation, the computations and the analyses.

Objectives

Extending the current spatial databases to deal with imprecise and uncertain
information, calls for research and changes in a number of fields. Databases
have a three level structure consisting of an internal, a conceptual and an
external layer [14]. The internal level is closest to the hardware and is concerned
with how data are physically stored, the external level is closest to the users and
is concerned with the way the data are viewed by the users; the conceptual level
provides for a level of indirection between the two. Geographic systems can be
viewed similarly: at the lowest level, it allows for basic geometric structures
to be modelled; whereas at the conceptual level additional data are associated
with these structures. These associated data then provides for a geographic
interpretation: a line can represent a road, but also a river; a polygon can
represent a physical patch of land, but also an artificial region (for instance
defined by demographic information). The external layer then presents the
information to the user.

Work has been done in the field of reasoning with regions that have undeter-
mined boundaries; but this work can be considered to be at the external layer
of the geographic information system (the assumption is made that a system
has the ability to work with such uncertain and imprecise information). The
research performed in our work is situated at the internal level: models for
the representation of imprecise/uncertain regions are presented, regardless of
what the region represents or where the uncertainty or imprecision stems from.
These spatial structures should have a sound theoretical basis, but should also
be suitable for implementation. The presented work is two-fold: first, a the-
oretical concept is developed, which, apart from defining the structures, also
implies extending operators traditionally used on crisp regions and locations
in GIS so that they are suited to deal with uncertain or imprecise regions
and locations. Secondly, different implementable models are developed. This
is necessary as the theoretical concept itself is not very well suited for direct
implementation.
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Structure

In chapter one, a short introduction to both spatial information and to fuzzy
set theory is made, and the necessary concepts are introduced. The theoretical
concept of fuzzy regions is defined and elaborated in chapter two. Tradition-
ally, regions in spatial databases are defined by means of a polygon. However,
a region can also be seen as a set of points (locations), more specifically the
points that belong to the polygon used to represent the region. From this point
of view, it is possible to adopt fuzzy set theory to consider a fuzzy set of points
(locations); which basically means that with every point (location), a mem-
bership grade in the range [0, 1] is associated. For each point, its membership
grade represents the extent to which it belongs to the region (0 means that the
point does not belong to the region; the higher the membership grade the more
the point belongs to the region; hence 1 indicates that the point fully belongs
to the region). Within this concept of fuzzy regions, operations stemming from
the fuzzy realm (intersection, union, complement, α-cut), operations from the
geographical realm (bounding rectangle, convex hull, surface area, distance),
as well as topological relations (which require extensions of the concepts inte-
rior, boundary and exterior) are considered. This model is purely intended as
a theoretical background, and is not suited for any direct implementation due
to the use of an infinite domain in combination with the extension principle.
Consequently, from this conceptual model, a number of models suitable for
implementation have been derived. These implementation models are inspired
on existing spatial structures.

The first implementable model is presented in chapter three. This model
makes use of contourlines to outline an imprecisely defined or uncertain region.
It is based on the concept of regions with broad boundaries, where an inner
boundary and an outer boundary are used to define an undetermined boundary
(inside the inner boundary, all the points belong to the region, outside the
outer boundary points do not belong to the region). The contourline model
as presented extends on this by allowing membership grades to be assigned to
points inside this broad boundary, allowing this broad boundary to be specified
in a more detailed way.

In chapter four, a totally different concept, which makes use of bitmap
structures to represent imprecisely defined or uncertain regions, is presented.
The bitmap structure simplifies the concept of fuzzy regions by grouping points
together into cells. Each cell is assigned a membership grade which is considered
to be the value of all points belonging to the cell. As there are only a limited
number of cells, a manageable model for fuzzy regions is obtained. Apart
from the representation of the regions, the various operations that have been
defined in the conceptual model are adapted to suit this bitmap-based model.
Each operator is defined theoretically and provided in pseudo code, and its
functionality is verified against the conceptual model.

Next, in chapter five another different concept, making use of triangular
networks for the representation of the fuzzy regions, is put forward. This model
becomes manageable as only a limited number of points (called datapoints)
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are assigned a membership grade. Based on this limited number of points, a
triangular network is constructed, such that the datapoints become the vertices
of the network. This triangular network then allows for membership grades to
be assigned to all points (not only datapoints) by applying linear interpolation
to the membership grades of the datapoints. As is the case for the bitmap-
model, the various operations from the theoretical concept are also considered
for this triangular network model (both theoretically and in pseudo code) and
verified against the conceptual model.

Finally, in chapter six, an overview of possible applications fields (both in
the field of geographic information science as well as in other fields) is provided.
A commonly used list of interesting properties for spatial datatypes is taken
from literature; the presented models are then commented on, referring to these
properties.
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Chapter 1

Preliminaries

1.1 Geographic Information Systems

1.1.1 Introduction

Systems dealing with spatial information are complex pieces of software, usu-
ally consisting of an advanced graphical user interface to allow maps to be
drawn and information to be plotted; a database holding all the geographic
information, both positional information (coordinates of a location) and asso-
ciated data (features at a location), and a complex query engine that allows
for both textual and graphical queries (allowing the user to select features on
a map, or limit the features shown using constraints). The GIS must be aware
of different coordinate systems used in the world, in order to cope with data
coming from different sources, and allow for data from various sources to be
combined and integrated.

To manage the huge amounts of data implied by spatial information, the
data is represented in layers ([39], [41]), as illustrated on fig. 1.1. A layer is
considered to group similar data together (e.g. a layer with road information, a
layer with land usage, a layer with textual information, and so on). Layers can
also be used to group data that are related. The user can choose to only view
the layers he/she is interested in, this is both for usability reasons (displaying
all data at once would become far too complex and is never really needed) and
performance reasons (only the data in the selected layers need to be processed).

As spatial information systems deal with non-geographical and geographical
data for different uses (and from different sources), in general they support two
quite different data models: the entity-based model and the field-based model
([39], [41]); which are explained in the next sections.

1.1.2 Entity-based models

In the entity based model, real life objects (such as buildings, roads) are rep-
resented as objects in the GIS system ([39]). To achieve this, basic geometry
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Figure 1.1: Illustration of layers in a GIS, from top to bottom: street names, bus
routes and bus stops, indication of one way streets, colour coded map of different
features (buildings, roads, water).

structures are used. These basic objects are usually a point (to represent a lo-
cation), a line (straight line segment), and a circle. From these, more complex
structures can be derived: a polyline (set of connected lines), a closed polyline
(or a polygon), rectangle, arc and so on. Any number of these objects can in
turn be used and combined to form an entity, a database object that represents
a real world object (fig. 1.2a). It is possible for an entity to consist of several
disconnected pieces.

Real life objects such as roads can then be represented using polylines (de-
pending on the scale one is working at, both sides of the road may need to
be modelled); regions (for instance patches of land) can be represented using
closed polylines (the outline then represents the boundary of the region).

For an entity-based model, the underlying database not only needs to hold
all the required coordinate information for an entity, but also information as-
sociated with this entity: the name and/or number of a road, the owner of the
patch of land to name but a few (fig. 1.2b). The information associated with
entities can differ depending on the entity: for a patch of land for instance
(object A in fig. 1.2b), the land classification and address can be included;
for a river (object B in fig. 1.2b), there can be a field indicating the type of
object: river, canal, or even road (as all of these can be represented by means
of a polyline).

The spatial information system has a number of specific operations to cre-
ate, delete, modify, query and compare entities; both regarding topology (re-
lations like belonging to, touch or overlaps), relative position (e.g. an entity
is located north of another entity), and regarding geometric properties (e.g.
surface calculation, distances, etc.). If the entity is stored in a database as
a BLOB1, the underlying database system cannot increase the performance

1Binary Large OBject, a term for an object of which the deeper structure is not known to
- in this case - the database in which it is stored. As a result, the database cannot perform
operations on this object, other than storing it and returning it.
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A

B

object A

name ...
classification “recreational area”
geometry [p1(x1, y1), p2(x2, y2),

p3(x3, y3), p4(x4, y4),
p5(x5, y5), p6(x6, y6)]

address ...
city ...
vegetation ...
population ...

object B

name Leie
type “river”
geometry [...]

(a) (b)

Figure 1.2: Illustration of entities in a GIS: (a) polylines are used for roads, rivers,
canals, etc.; closed polylines for regions, patches of water or land, etc. (b) additional
data for an entity.

of the operations. To improve on this, various traditional database vendors
(Oracle, IBM, etc.) have released spatial extensions: these allow for spatial
objects to be stored in a database not as BLOBs but as structured objects,
thus allowing the database query engine to interact with them.

1.1.3 Field-based models

Field-based models are the second type of models that are supported by spa-
tial information systems ([41]). Contrary to entity-based models, field-based
models are not used to represent real world objects, but to represent data that
are associated with given locations. For many applications, it is necessary to
model data spread over an entire region; this can concern physical properties
of the locations (altitude, temperature, etc.), but also additional information
(population density, land value, noise pollution, etc.).

The requirements for this type of data are quite different from the require-
ments in the entity-based model. In field-based models, a large amount of
(associated) data needs to be stored. The different data could be represented
by entities, but this would become far too complex (lots of entities) and require
too much storage (e.g. coordinates for the different entities). To make data
spread over vast regions manageable, two models are commonly used to repre-
sent this type of information: the bitmap model and the triangulated irregular
network (TIN) model.
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Bitmap model

The first model to be considered is the bitmap model. One of the major prob-
lems for field based methods is that the (theoretical) two dimensional space,
denoted U , is infinite 2. In the bitmap model, this space is partitioned in a fi-
nite number of subsets. With each of the resulting subsets, data are associated.
The value associated with a subset is considered to be the associated value for
every location of this subset. As the partitioning is in finite subsets, the system
now has to deal with a finite and usually limited number of associated values,
which becomes manageable.

Traditionally in GIS, an distinction is made between bitmaps and choroplets.
A bitmap is usually defined by means of a regular distribution of regularly
spaced sample points; and a choropleth is defined as a partitioning of the region
of interest in a finite number of polygons. Resulting from these definitions, a
bitmap consists of a finite number of resulting in cells of equal size and shape;
whereas a choropleth map is comprised of a finite number of polygons possibly
sharing common lines. Given their different nature, the implementation of both
structures is quite different, both in representation (coordinates in a grid vs.
individual polygons), storage and indexing. In this work, a bitmap is defined
in a broader sense than the traditional bitmap, by allowing for irregular grids
to be used. This in turn brings our definition closer to that of a choropleth
map, but with additional limitations imposed on the occurring polygons: only
rectangles which are distributed in an irregular grid are allowed. Depending on
the implementation one pursues, it is still possible to choose either a traditional
bitmap approach (by limiting to only use regular grids) or an approach closer
to the choropleth.

To define a bitmap, first the a number of concepts need to be introduced.

Definition 1 (convex set)
A non-empty subset A of Rn, such that for any elements x, y ∈ A and for any
number c such that 0 ≤ c ≤ 1 the element cx + (1 − c)y of Rn belongs to A, is
called a convex set.

Definition 2 (cell)
A cell is the smallest unit considered in the bitmap; it is a bounded, convex
(see 1) subset of the universe U .

Definition 3 (grid)
A grid — in GIS — is a finite collection G ⊆ ℘(U) such that

(i) (∀c, c′ ∈ G)(c ∩ c′ = ∅)
(ii)

⋃

c∈G

c = U

2In practice, the two dimensional space will be limited both by a lower and and upper
boundary as well as in resolution.
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Consequently, G is a partition of the universe U . Although not required by the
above definition, the cells of a bitmap commonly have the same shape and size.
Rectangular cells are most used, but bitmaps are not limited to this; sometimes
even hexagonal cells are more appropriate. For the bitmap model, the universe
U is a two-dimensional space with perpendicular reference axes: the horizontal
X-axis and the vertical Y -axis.

The resolution of a bitmap is considered to be the number of cells of the
bitmap and is usually specified in a horizontal resolution (the number of cells
along to the horizontal axis) and a vertical resolution (the number of cells along
the vertical axis)3. The resolution of the bitmap will determine the amount of
data required: a high resolution will provide for a more accurate approximation,
at the cost of increased amount of data; a low resolution will yield a lower cost,
but will not provide as good an approximation.

Definition 4 (bitmap)
A bitmap associates data (from a domain D) with each cell of a grid G:

B = (G, fG) (1.1)

using the mapping function fG for this grid:

fG : G → D (1.2)

c 7→ fG(c) (1.3)

The domain D is dependent on the features being modelled; mostly it is a nu-
merical domain (to have the bitmap represent temperatures or other measured
values).

As G is a partition of U , ∀p ∈ U∃!c ∈ G : p ∈ c. Consequently, the
associated value for a point p (representing a location) can be obtained by

f : U → D

p 7→ fG(c), p ∈ c

Triangulated Irregular Network model

Unlike the bitmap model, which tries to simplify the field based information by
considering a finite number of cells, the Triangulated Irregular Network models
continue to work with an infinite number of locations. However, data in all
the locations is no longer independent of one another: only a limited number
of measured (and thus stored) data is considered, while the rest is obtained
through an interpolation process.

A Triangulated Irregular Network (TIN) is based on a partition of the two-
dimensional space in non-overlapping triangles. This structure is often used

3This definition matches the definition of the size of an image in imaging processing; its
resolution is expressed in pixels per inch. In a GIS, every bitmap is considered to cover the
entire map; so in a way all bitmaps have the same physical dimension: resolution is directly
linked with size.
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in digital elevation models (DEMs). TINs use a vector-mode approach [39],
more specifically their basic structures are points, edges and triangles. No as-
sumption is made about the distribution and location of the vertices of the
triangles [39]. It is defined by a non-empty finite set of points (called data-
points), connected by non-intersecting straight line segments thereby covering
the plane completely with non-overlapping triangles. This can be denoted by
means of a triplet containing three finite sets: a set P of points (the vertices of
the triangles), a set E of edges (the straight line segments that are the sides of
the triangles) and a set T of non-overlapping triangles including their interior
(called the tiles of the TIN)4.

Definition 5 (TIN)
A TIN is defined as a triplet consisting of a set P of points, a set E of edges,
and a set T of triangles

Tin = (P,E, T ) (1.4)

For a given set of points, a number of triangulations are possible; the Delaunay
triangulation [42],[43] is commonly used. Given a set of points P , its Delaunay
triangulation will be a network (a set of edges (E) which in this case will
form a number of triangles, contained in T ) such that for every triangle in the
network, its circumscribing circle does not contain additional points of the set
P . Apart from a few trivial cases (e.g. four points, each located on the corners
of a square), the resulting TIN network is completely and uniquely defined on a
given set of points; appropriate definitions also eliminate the trivial cases. Due
to this definition, the triangles in the TIN will resemble the equilateral triangle
(having all sides equal) as closely as possible [43]. This property will have a
beneficial effect on the interpolation, as degenerate cases caused by narrow,
sharp triangles will be avoided.

Various algorithms exist to create a Delaunay triangulation, some algo-
rithms work on the entire set P , others work by adding points one by one. For
a more detailed explanation on the algorithms, we refer to [42],[43], [39]. For
illustration purposes, one algorithm is added in Appendix A.1.

An interesting extension of the TIN is obtained through the constrained
Delaunay triangulation [42]. Instead of defining a network on merely a set P
of points, this method offers the possibility to specify a set E′ ⊆ E of edges to
be part of the final triangulation. The resulting triangulated irregular network
does not necessarily satisfy the definition of a regular Delaunay triangulation:
now the circumscribing circle of a triangle in T might contain additional points
of P .

Modification of a TIN network is also possible: algorithms exist to add
points to or remove points from the point-set P ; the changes required to E and
T in order to maintain a Delaunay or constrained Delaunay network are local-
ized around the added or removed points, and can be made quite performantly.
The algorithms to perform the addition or the removal of points extend beyond

4Only one part of the triplet is required to uniquely define the TIN, but both for referencing
to edges and triangles as well as for future extensions, it is convenient to consider this triplet.
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the scope of this work; an example is given in Appendix A.1. For more details
we refer to [39].

Definition 6 (datapoints, mapping function)
The defining points of the TIN are called the datapoints. Numerical data are
associated with each of these points, using a mapping function f1:

f1 : P → [0, 1]

p(x, y) 7→ f1(p(x, y))

These points are contained in the set P .

A triangulation is performed in two dimensions, the notation p(x, y) refers
to points considered in the two dimensional space. For some operations and
calculations, it is interesting to consider the value associated with each of the
points as a third dimension, for which the notation p(x, y, z) will be used, which
is a shorthand for p(x, y, f1(p(x, y))).

The mapping function f1 provides for associated values for the datapoints
only. The associated values for other points are obtained using the linear
interpolation (as is applied on a TIN) and the mapping function f1. From
these, a function f2 is derived, by means of which the interpolated values can
be obtained.

f2 : U → [0, 1]

p(x, y) 7→
{

f1(p(x, y)) if p(x, y) ∈ P
−A

C x − B
C y − D

C if p(x, y) /∈ P

Where A, B, C and D are the parameters of the equation Ax + By + Cz +
D = 0 of the plane containing the three points p1(x1, y1, z1), p2(x2, y2, z2) and
p3(x3, y3, z3) (with the understanding that zj = f(xj , yj), j = 1, 2, 3). The
triangle formed by p1(x1, y1, 0), p2(x2, y2, 0) and p3(x3, y3, 0) is a triangle of
the TIN and p(x, y, 0) is inside or on an edge of this triangle.

A = y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2)

B = z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2)

C = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

D = −Ax1 − By1 − Cz1

The points p1(x1, y1), p2(x2, y2) and p3(x3, y3) in the XY -plane should not be
co-linear, which is guaranteed by the fact that no Delaunay triangulation (or
even in a constrained Delaunay triangulation) would result in a triangulation
containing such a degenerate case.

Similarly as before, it is possible to consider the associated data with each
of the points as a third dimension. In this case, the notation p(x, y, z) will
be used as a shorthand notation for p(x, y, f2(x, y)). The notation does not
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allow a distinction between datapoints and non-datapoints, but this poses no
problem.

For the remainder of this work, only networks obtained through a Delaunay
triangulation as well as through a constrained Delaunay triangulation will both
be referred to as TINs.

1.1.4 Operations in GIS

Minimum bounding rectangle

An important operation in geographic systems is the minimum bounding rec-
tangle, or MBR for short.

Definition 7 (minimum bounding rectangle)
Given an entity, the operator returns the smallest rectangle (with sides equidis-
tant to the reference axes) circumscribing the entity.

This is illustrated on fig. 1.3. The operation is useful for indexing the entities
(classifying the location of rectangles is easier than classifying varying shapes),
but also can be used to speed up certain tests: e.g. if the MBRs of two
regions don’t intersect, the regions themselves cannot intersect. Determining
if two rectangles, which are equidistant to the reference axes, intersect is not
computationally intensive. An intersection between the MBR only implies that
further testing is required. As such, MBRs are also used to optimize spatial
query implementations ([39]): in the first step (the filter phase), the objects
whose MBRs satisfy the spatial predicate are selected. In this step, spatial
tests are performed on rectangles, which is not computationally intensive but
still allows for the elimination of inappropriate objects: if an MBR does not
satisfy the predicate, neither will the object. However, this is not true the other
way around: if an MBR does satisfy a spatial predicate, additional tests are
needed to verify that the object itself satisfies the predicate. These additional
tests are performed in the next step; the refinement step.

The minimum bounding rectangle of a region A will be denoted MBR(A).

Convex hull

To introduce the concept of the convex hull, first the notion convex needs to
be defined.

Definition 8 (convex polygon)
A polygon A is called convex if for any two points (p1, p2) chosen inside the
polygon, the straight line segment connecting them is also contained inside the
polygon.

∀p1, p2 ∈ A :
−→p1 + −→p2

2
∈ A (1.5)

This definition treats the points pi as vectors −→pi , which is illustrated on fig.
1.4.
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A A

MBR(A)

(a) (b)

Figure 1.3: Illustration of the crisp MBR: (a) sample polygon, (b) the MBR of the
polygon in (a).
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Figure 1.4: Illustration of the convex polygons: (a) vectorcalculus, (b) a convex
polygon, (c) a non-convex polygon.
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A

A

C
A

(a) (b)

Figure 1.5: Illustration of the convex hull: (a) sample polygon, (b) the convex hull
of the polygon in (a).

Definition 9 (convex hull)
The convex hull of a given set A is the smallest convex set in which the original
set is contained. The notion smallest refers to the fact that no proper subset
of the convex hull is convex and contains the original set at the same.

In two dimensions, the convex hull of n points can be computed in O(n ln n).
Naturally, the convex hull of a convex polygon is the polygon itself. Some
examples can be seen on fig. 1.5. Similarly to the minimum bounding rectangle,
the convex hull can be used to optimize other operations.

Surface area

The surface area of a region is very straightforward: a region is delimited by
a polygon, the surface of the region is the surface of the polygon. Not can
the surface area be used as a property of a region, but the operation is also
a basic operation which can help determine if three points are co-linear or if
two segments intersect. This area can be calculated by first triangulating the
polygon (not to be confused with Delaunay triangulation), and then adding up
the surface areas of all the triangles.

Polygon triangulation is the division of a plane polygon into a set of trian-
gles, usually with the restriction that each triangle side (apart from sides that
coincide with a side of the polygon) is entirely shared by two adjacent trian-
gles. For simple polygons, this always requires a finite number of triangles, and
can theoretically be done in O(n) [8], where n is the number of vertices of the
polygon5. An illustration of polygon triangulation can be seen on fig. 1.6.

5In [44] it was shown that the O(n) algorithm is quite hopeless to implement; the algorithm
commonly used is O(ln ln n) [46]
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(a) (b)

Figure 1.6: Illustration of the triangulation of a polygon: (a) sample polygon, (b)
the triangulation (a).

R1 R2

d(R ,R )1 2

Figure 1.7: Illustration of the distance between two regions R1 and R2.

Distance calculation

Before introducing the distance between two regions, first the distance between
two points is considered. As a distance measure, the Euclidean distance is
mostly used.

Definition 10 (Euclidean distance between points)
Consider two points p1(x1, y1) and p2(x2, y2). The Euclidean distance is defined
as:

d(p1, p2) =
√

(x2 − x1)2 + (y2 − y1)2 (1.6)

Definition 11 (Euclidean distance between regions)
The Euclidean distance between two regions R1 and R2 is defined as the short-
est (Euclidean) distance between any two points of both regions.

d(R1, R2) = min(d(p1, p2),∀p1 ∈ R1 ∧ ∀p2 ∈ R2) (1.7)

This is illustrated on fig. 1.7.

Topology

Topological relations — simply put — refer to the relative positions of regions.
The definitions of the various topology cases for two regions are based on the
concepts of interior, exterior and boundary; for which first some additional
definitions are required.
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Definition 12 (open set)
A set A ⊂ R2 is open if any point x ∈ A is contained in A together with an
open n-ball centered at x of radius r, i.e. Br

x = {y ∈ R2 : |y − x| < r}.

A is open if ∀x ∈ A,∃r : Br
x = {y ∈ R

2 : |y − x| < r} ⊂ A (1.8)

Definition 13 (complement of a set)
If A is a set contained in a universe U , the complement of A, denoted co(A) is
the set of all elements in U that do not belong to A.

co(A) = x ∈ U : x /∈ A (1.9)

Definition 14 (closed set)
The complement of an open set, is a closed set:

A is closed if co(A) is open (1.10)

or

A is closed if
∀x ∈ co(A),∃B ⊆ co(A) : Br

x = {y ∈ R2 : |y − x| < r} ⊂ B
(1.11)

Definition 15 (neighbourhood of a point)
The neighbourhood of a point p is a set containing an open set that contains
p:

A is a neighbourhood for p
if

p ∈ A ∧ ∃B ⊆ A : Br
x = {y ∈ R2 : |y − x| < r} ⊂ B

(1.12)

Definition 16 (closure of a set)
The closure A of a set A is the smallest closed set containing A.

Using the above concepts, the interior, exterior and boundary of regions
can be defined.

Definition 17 (interior A◦ of a region A)
The interior A◦ of a region A is defined as the set of points p ∈ A such that A
contains a neighbourhood of p.

A◦ = {p ∈ A | ∃B ⊂ A,B is a neighbourhood for p} (1.13)

In practice, the interior of a region holds all the points that are inside the
region.

Definition 18 (boundary ∂A of a region A)
The boundary ∂A of a region A ⊂ U is

∂A = A − A◦ (1.14)
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where A is the closure, and A◦ is the interior of A in U . For fuzzy regions, the
notation ∆A will be used to indicate the boundary of a fuzzy region. This no-
tation was introduced by Clementini (for regions with broad boundaries, 1.3.2)
to indicate that the boundary encompasses more than a single line; appropriate
definitions for ∆A are in the related sections.

Definition 19 (exterior A− of a region A)
The exterior A− of a region A is defined as the complement of ∂A:

A− = R
2 − ∂A (1.15)

where − is the notation for set-minus.

In practice, the exterior of a region encompasses all the points that are not
part of the region.

To determine the topological relations between two regions, the intersections
between the interior, boundary and exterior of both regions are considered: the
intersection between the interiors of both A and B, the intersection between the
interior of region A and the boundary of region B, and so on. In total, there are
nine possible combinations; which are grouped in the nine-intersection matrix
([25], [26]): 


A◦ ∩ B◦ A◦ ∩ ∂B A◦ ∩ B−

∂A ∩ B◦ ∂A ∩ ∂B ∂A ∩ B−

A− ∩ B◦ A− ∩ ∂B A− ∩ B−


 (1.16)

By assigning each matrix element 0 if the intersection is empty, and 1 if the
intersection is not empty, 29 = 512 relations can be deduced. For crisp regions
in a two-dimensional space R2, only eight such intersection matrices are mean-
ingful. These yield the eight possible relations [25]: disjoint, contains, inside,
equal, meet, covers, coveredBy and overlap; which are illustrated on fig. 1.8.

The nine-intersection model can not only be used for regions, but also for
regions with holes ([39]) and for objects with a lower co-dimension6 [39]. For
objects with co-dimension 0, the nine-intersection model yields the same re-
sult as the four-intersection model (which only uses the concepts interior and
boundary); for objects of co-dimension 1 the nine-intersection model provides
more detail than the four-intersection model.

The topological relations can be grouped in a conceptual neighbourhood
graph: it has a node for each of the 8 relations, and an arc between every
2 relations that make up a gradual transition, [25]. A “gradual transition”
implies a minimal number of changes in the matrix elements from one relation
to another relation. The topological neighbourhood graph is shown on fig. 1.9.

6The co-dimension represents the difference between the dimension of the space and the
dimension of the object; a line for instance has co-dimension 1, whereas a point for instance
has co-dimension 0
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Figure 1.8: Topological relations for crisp regions: disjoint (a), contains (b), in-
side (c), equal (d), meet (e), covers (f), coveredBy (g) and overlap (h), with their
intersection matrices.

disjoint

meet

overlap

insidecontains equal

coveredBycovers

Figure 1.9: Conceptual neighbourhood graph for crisp topology relations.

Buffer

Most GIS support the buffer operation for entities. Given an entity and a
(Euclidean) distance, the buffer is a new entity that surrounds the original
entity at the given distance. Because of this definition, the corners of the
buffer region have a rounded appearance (as illustrated on fig. 1.10).

However, as not all commercial GIS are equally capable of working with
arcs, the buffer region is sometimes simplified by defining the buffer region as a
region made up of straight line segments parallel to the line segments defining
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(a) (b) (c)

Figure 1.10: Buffers with a rounded appearance: (a) around a polyline, (b) around
a closed polyline, (c) around a polygon.

(a) (b) (c)

Figure 1.11: Buffers with a square appearance: (a) around a polyline, (b) around
a closed polyline, (c) around a polygon.

the original region, as illustrated on fig. 1.11. The advantage of defining the
buffer like this is that it also is a polygon, which for some GIS is an easier
structure to work with and makes the buffer operation a closed operation in
those systems (guaranteeing that the result can be used as an argument for
another operation).

This function can be used to define a buffer zone (or safety-zone) around
a region, the behaviour in the corner points is sometimes considered to be
less important: the buffer without sharp corners overestimates the buffer with
rounded corners (which is adequate for safety zones).

1.1.5 Limitations

While the above models (entity based and field based) are commonly used,
and are adequate for many applications, they do have some negative aspects.
One of them is that all information modelled is crisp and perfect. While this
is sufficient for many applications, quite often the source data are prone to
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uncertainty or imprecision, either inherently (in the case of soil composition
for instance) or due to limitations in observations (measurements can only
be performed at some locations, not at every possible location). Furthermore,
gathered information can be missing for some locations, or it can be inconsistent
with other knowledge ([36]).

These imperfections can occur either in the coordinate information (most
likely regarding the position or the outline of an entity in an entity based
model), but the associated data can also be uncertain or imprecise. The next
section will elaborate on the sources of this imprecision and uncertainty, and
on related work to include it in the models.

1.2 Fuzzy Set Theory

1.2.1 Concept

Fuzzy set theory has been presented by Zadeh in ([52]). Contrary to traditional
set theory, fuzzy set theory allows for non crisp relations: an element can belong
to a set to a given extent, or it can belong to a set with a certain possibility.
This is accomplished by associating a membership grade to each element. This
membership grade is a number in the range [0, 1]; it can have a number of
interpretations ([22]), as explained in 1.2.2.

Definition 20 (fuzzy set)
Consider the universe U . The fuzzy set Ã has a membership function µÃ,
defined by

µÃ : U → ]0, 1]

x 7→ µÃ(x)

The membership function associates a membership grade with each element.
Elements that are not part of the set are considered to have a membership
grade 0. A set Ã with a finite number of elements x, y and z, can be denoted
as Ã = {(x, µÃ(x)), (y, µÃ(y)), (z, µÃ(z))}.

Definition 21 (normed fuzzy set)
A fuzzy set Ã is called normed if there as at least one element with membership
grade 1, i.e.

∃x ∈ U : µÃ(x) = 1 (1.17)

1.2.2 Interpretation of fuzzy sets

Membership grades can have a number of interpretations ([22]). They can have
a veristic interpretation, a possibilistic interpretation, or an interpretation as
degrees of truth. Other interpretations for membership grades are possible, but
it was shown in [22] that these are equivalent with one of the above interpre-
tations.
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Figure 1.12: Examples of fuzzy sets: (a) fuzzy set over a discrete domain, (b) fuzzy
set over a continuous domain.

In a veristic interpretation, the membership grade indicates a degree of
belonging to the set. In other words: all elements with a membership grade
greater than 0 belong to the set, but some more than others; elements with
membership grade 1 are said to fully belong to the set. The higher the mem-
bership grade, the more the element belongs to the set. Such an interpretation
is also called conjunctive, and is often illustrated with the example of “the
languages a person speaks”; a GIS example can concern the vegetation in a
given region: there can be different types of vegetation, but some types more
prominently present than others. The set {(grass, 1), (bushes, 0.8), (trees, 0.2)}
indicates that there is a lot of grass, less bushes, and only few trees. This set
is illustrated in fig. 1.12a. Another example is for instance the set of ”young
landscapes”, as illustrated in fig. 1.12b. An age of 200 is considered to be
completely young, but an age of 500 is only considered young to an extent of
0.5. This means that a landscape that is 500 years old, will only partly be
considered to be young.

In a possibilistic interpretation, there is uncertainty about which elements
belong to the fuzzy set. The membership grade indicates this possibility: a
value 0 indicates that the element does not belong to the set, a value 1 indicates
the element certainly belongs to the set. The higher the membership grade,
to higher the possibility the element belongs to it; all elements with a value
greater than 0 belong to the set. This is also called disjunctive. An example is
when the age of a landscape is unknown, but it is known it is young. Using the
same membership function as in fig. 1.12b, it can be concluded that an age up
to 200 years is completely possible, but an older ages is less likely (as indicated
by the membership grade). The main difference with the veristic interpretation
is that the landscape only has one age: only one age is valid, it is just unknown
which is the correct age.
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1.2.3 Operations

Zadeh’s extension principle

The extension principle is fundamental in fuzzy set theory. It provides a mech-
anism to define operations that work on fuzzy sets based on the operations on
crisp sets. A crisp relation

R : U1 × ... × Un → Y (1.18)

is fuzzified if it interacts with fuzzy sets defined over the sets U1, ..., Un and Y
and is of the form

R̃ : ℘̃(U1) × ... × ℘̃(Un) → ℘̃(Y ) (1.19)

Where ℘̃(U) is the notation for the fuzzy powerset of U , the set of all fuzzy
sets defined over the domain U .

Definition 22 (fuzzy powerset ℘̃(U))
The set of all fuzzy sets defined over a domain U is denoted as ℘̃(U). Consider

a fuzzy set Ã:
Ã = {(x, µÃ) | x ∈ U ∧ µÃ(x) > 0} (1.20)

The fuzzy powerset of U then is

℘̃(U) = {Ã | Ã is defined as in (1.20)} (1.21)

Definition 23 (Zadeh extension principle)
To define the Zadeh extension principle, consider the sets U1, ..., Un and Y and
a crisp relation R

R : U1 × ... × Un → Y (1.22)

then the fuzzified relation R̃ of R is defined as

R̃ : ℘̃(U1) × ... × ℘̃(Un) → ℘̃(Y )

Ṽ1, ..., Ṽn 7→ R̃(Ṽ1, ...Ṽn)

where R̃(Ṽ1, ...Ṽn) is the fuzzy set in Ỹ defined by

R̃(Ṽ1, ...Ṽn) :

Y → [0, 1]

y 7→
{

sup
(x1,...,xn)∈V(R,y)

min(µṼ1
(x1), ...µṼ1

(xn)) ∀y ∈ wd(R)

0 ∀y /∈ wd(R)

where wd(R) is the notation for the co-domain of crisp the relation R:

wd(R) = {y | y ∈ Y ∩ ∃(x1, ..., xn) ∈ U1 × ... × Un : (x1, ..., xn)Ry} (1.23)

and V(R,y) is the set of n-tuples that are mapped by the crisp relation R to the
value y:

V(R,y) = {(x1, ..., xn) | (x1, ..., xn) ∈ U1 × ... × Un ∧ (x1, ...xn)Ry} (1.24)
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Set operations

In fuzzy set theory, set operations are defined using t-norms and t-conorms.
A t-norm is a function with two arguments (denoted T(x,y)) that satisfies the
following properties:

T (x, y) = T (y, x) (commutativity)
T (a, b) ≤ T (c, d) if a ≤ c and b ≤ d (monotonicity)
T (a, T (b, c)) = T (T (a, b), c) (associativity)
T (a, 1) = a (identity element)

(1.25)

T-conorms are in a sense dual to t-norms; for any t-norm, its complementary
conorm is defined by S(a, b) = 1 − T (1 − a, 1 − b). A t-conorm is defined by
the following properties:

S(x, y) = S(y, x) (commutativity)
S(a, b) ≤ S(c, d) if a ≤ c and b ≤ d (monotonicity)
S(a, S(b, c)) = S(S(a, b), c) (associativity)
S(a, 0) = a (identity element)

(1.26)

For both t-norms and t-conorms, an infinite number of functions satisfy
the properties. Commonly some specific functions are used for t-norms and
t-conorms: Zadeh introduced the minimum as the t-norm (min(a, b)) and the
maximum as t-conorm (max(a, b)), Lukasiewicz introduced max(a + b − 1, 0)
as T-norm and min(a+b, 1) as S-norm. Others are product (a×b) and limited
sum (a + b− a× b) as t-norm and t-conorm respectively, and lastly the drastic
t-norm (yields a if b = 1, b if a = 1 and 0 otherwise) and drastic t-conorm
(yields a if b = 0, b if a = 0 and 1 otherwise). The algebras obtained by
considering certain t-norms and t-conorms share properties, but also differ in
other properties. As this is outside of the scope of this work, we refer to [23],
[32].

Definition 24 (intersection of fuzzy sets)
The intersection of two fuzzy sets Ã and B̃ is defined using a t-norm.

Ã∩̃B̃ = {(x, µÃ∩̃B̃(x)) | µÃ∩̃B̃(x) = T ((µÃ(x), µB̃(x)))} (1.27)

Definition 25 (union of fuzzy sets)
The union of two fuzzy sets Ã and B̃ is defined similarly to the intersection,
but now a t-conorm is used.

Ã∪̃B̃ = {(x, µÃ∪̃B̃(x)) | µÃ∪̃B̃(x) = S((µÃ(x), µB̃(x)))} (1.28)

To indicate that the operation works on fuzzy sets, the operations are denoted
as ∩̃ and ∪̃ instead of ∩ and ∪.

Definition 26 (complement of a fuzzy set)
The complement of a fuzzy set Ã is defined as

co(Ã) = {(x, 1 − µÃ(x))} (1.29)
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Figure 1.13: Examples of the minimum and maximum as set operations on two
fuzzy sets Ã and B̃.

As illustrated on fig. 1.13, the intersection contains the elements that occur
to some degree in each of the fuzzy sets. For each element x, the membership
grade µÃ∩̃B̃(x) is calculated by means of the t-norm: if the minimum is used
as the t-norm, the associated value for x becomes the smallest of the respective
values µÃ(x) and µÃ(x). Similarly, the union holds all the intersection elements

from Ã and B̃. The associated value is calculated using an t-conorm: if the
maximum is used, the associated value for a location x in the union is the
maximum of the values µÃ(x) and µÃ(x).

α-cut

Determination of the α-cut of a fuzzy set is an operation commonly used for
defuzzification: it removes all aspects of fuzziness and reverts its (fuzzy) argu-
ment to a crisp set. The α-cut of a fuzzy set is a crisp set that contains all
the elements of the fuzzy set for which a constraint it satisfied: a strong α-cut
contains the elements with membership grades strictly greater than a given α;
a weak α-cut contains the elements with membership grades greater than or
equal to a given α. This is illustrated on fig. 1.14

Strong α-cut The strong α-cut is defined as:

Ãα = {x | µÃ(x) > α} (1.30)

Support A special case of a strong α-cut is the support ; this is the strong
alpha-cut with threshold 0. This is an important α-cut, as it results all the
elements that belong to some extent to the fuzzy set.

Ã0 = {x | µÃ(x) > 0} (1.31)
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Figure 1.14: Example of the α-cut of a fuzzy region Ã .

Weak α-cut The weak α-cut is defined as:

Ãα = {(x, 1) | µÃ(x) ≥ α} (1.32)

Core Similarly to the strong α-cut, the weak α-cut has a special case, now
for a threshold 1. This α-cut is called the core, and returns all the elements
that fully belong (membership grade 1) to the given fuzzy set.

Ã1 = {x | µÃ(x) = 1} (1.33)

height

The height of a fuzzy set returns the highest membership grade that occurs in
a fuzzy set. For normed fuzzy sets, this will always equal 1(by definition), but
for non-normed sets this can take any value in the range [0, 1]. Formally, the
height of a fuzzy set Ã is defined ([23]) as:

height(Ã) = sup
x

(µÃ(x)) (1.34)

1.2.4 Possibilistic Truth Values

As mentioned in (1.2.2), membership grades of fuzzy sets can be interpreted
as degrees of truth. However, to represent (fuzzy) truth values, the concept
of possibilistic truth values poses an alternative theory ([38], [16], [17]), and
this will be adopted further on. A possibilistic truth value is a possibility
distribution over the boolean range I = {True, False} (sometimes denoted
{T, F}). Consequently, a single possibilistic truth value for a proposition p
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holds both a degree µTrue(p), which represents the possiblity of p being true
and a degree µFalse(p), which represents the possibility of p being false.

For this generalization, consider P the representation of the universe of all
propositions and ℘̃(I) the set of all the fuzzy sets, which can be defined over
the universe I = {True, False}.

Definition 27 (possibilistic truth value)
The possibilistic truth value t̃(p) of a proposition p ∈ P is formally defined by

means of the mapping function t̃:

t̃ : P → ℘̃(I) : p 7→ t̃(p) (1.35)

which associates with each p ∈ P a fuzzy set t̃(p). The semantics of the
associated fuzzy set t̃(p) is defined in terms of a possibility distribution:

∀ x ∈ I : Πt(p)(x) = µt̃(p)(x) (1.36)

i.e.
∀ p ∈ P : Πt(p) = t̃(p) (1.37)

To illustrate this, the possibilistic truth value t̃(“the land value is low”) =
{(True, 1.0), (False, 0.7)} of the proposition “the land value is low” is inter-
preted as

Π
t(“the land value is low”)

= {(True, 1.0), (False, 0.7)}

i.e.

Pos(t(“the land value is low”) = True) = 1.0

Pos(t(“the land value is low”) = False) = 0.7

To cope with propositions for which a truth value is undefined, the concept
of extended possibilistic truth values is introduced ([19]). For this generaliza-
tion, the set ℘̃(I∗) of all the fuzzy sets, which can be defined over the universe
I∗ = {True, False,⊥Boolean} is considered. The newly added t∗(p) equals to
⊥Boolean, if (some of) the elements of the proposition p are not applicable, un-
defined, nonexistent or not supplied (in this case it is not meaningful to decide
whether p corresponds to the reality or not, i.e. p is neither true nor false, but
undefined).

Definition 28 (extended possibilistic truth value)
The extended possibilistic truth value t̃∗(p) of a proposition p ∈ P is formally

defined by means of the mapping function t̃∗:

t̃∗ : P → ℘̃(I∗) : p 7→ t̃∗(p) (1.38)
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which associates with each p ∈ P a fuzzy set t̃∗(p). The semantics of the
associated fuzzy set t̃(p) is defined in terms of a possibility distribution:

∀ x ∈ I∗ : Πt∗(p)(x) = µt̃∗(p)(x) (1.39)

i.e.
∀ p ∈ P : Πt∗(p) = t̃∗(p) (1.40)

With this previous definition, the extended possibilistic truth value t̃∗(p) of a
proposition p ∈ P has to be interpreted as follows:

Pos(t∗(p) = True) = µt̃∗(p)(True)

Pos(t∗(p) = False) = µt̃∗(p)(False)

Pos(t∗(p) = ⊥Boolean) = µt̃∗(p)(⊥Boolean)

where Pos denotes a possibility measure. For more details on possibilistic truth
values and extended possibilistic truth values, we refer to [19].

1.3 Uncertainty and Imprecision in GIS

1.3.1 Why uncertainty and imprecision in GIS?

Many data to be modelled in GIS systems are prone to uncertainty or im-
precision. This can either be attributed to limitations in the data sources, or
it can be due to inherent uncertainty/imprecision in the real world situation.
Imprecision refers to the fact that the data cannot be accurately defined (e.g.
when measurements cannot be accurately made, for instance because it is too
complex or too expensive), whereas uncertainty refers to the fact that there is
doubt (e.g. in the case of predictions) concerning the data. Some authors [40]
refer to the former as fuzziness. The different interpretations yield no differ-
ence in the representation of the regions affected by fuzziness, but does yield a
difference in operations. Adopting the terminology from [54], in this book the
word fuzzy is used to indicate the presence of either uncertainty or imprecision.

In an entity-based approach, both the position of objects and the outline
of regions can be uncertain or imprecise. For a position, the cause can either
be the position is not accurately known (for instance in predicting the location
of a person, given some past location; when modelling wildlife; or when using
limited gps systems), or when the position can only be determined from other
features (i.e. finding a person when knowing he/she is close to a river, a
water tower and a highway). For a region, it can occur either because the
real boundary is imprecise (i.e. soil composition: the transition from one type
of soil to another will hardly ever be a crisp boundary), because the actual
boundary - though crisp - cannot be determined accurately (i.e. underground
rocks or caves), or because the outline is an estimate (i.e. the spread of wildlife).

In a field-based approach, uncertainty and imprecision can occur at the
level of the associated data. The causes here can be inaccurate measurements
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(i.e. population densities, average rainfall for an area), estimated information,
predictions (i.e. about future situations) and extrapolations (i.e. to consider
historic information).

While a GIS that supports the notions of imprecision and uncertainty in its
data structures would allow for richer modelling, just supporting imprecision
and uncertainty in the query engine (even though the database itself only holds
crisp information) would allow for a better querying and might make the system
more user friendly. By providing such a richer query system, the user would
be able to ask the system for locations close to another location, or at walking
distance; or for interesting patches of land (where interesting can be determined
from land usage, pollution, vicinity of specific roads, etc.).

Currently, GIS do not provide adequate support to include uncertainty or
imprecision in the representations. On many occasions, buffers are used to
overestimate the actual boundary, making sure it is present in the model. Of
course as using this techniques adds more points around the boundary (without
indication of what most likely is the boundary), analyses following it are skewed.
By performing the same analyses with different sized buffers, some alternate
solutions can be obtained, but it is a cumbersome process. By allowing a
GIS to work with uncertain or imprecise information a more accurate model
of reality can be obtained ([6], [15], [37]). When using it for analyses and
decision making, it stands to reason that this will improve the results returned,
either by providing more solutions or by documenting the returned solutions
with indications on what criteria they are better and on what criteria they are
worse than others.

1.3.2 Related work

In literature, there has been some work in the field of incorporating fuzziness in
geographic systems. Most of the developed fuzzy methods find their application
in classification (mainly for land use analysis). In the next subsections, related
research by different authors is briefly explained, but with an emphasis on the
use of fuzzy set theory. The different subsections each only hold the basics of
the approaches, but enough to grasp the concepts and to illustrate how their
approaches related to the presented approach in this work. The referenced
articles provide for an excellent starting point for more details on the different
approaches.

Broad boundaries

The broad boundary model was presented by E. Clementini in [10]; it extends
the model for regions (in an entity based model). The concept extended the
boundary of a region: instead of a single polyline representing the boundary,
two lines were used. This yielded what he called an inner and an outer bound-
ary. Inside the inner boundary are all the points that certainly belong to the
region (or the points that completely belong to the region - the broad boundary
model makes no distinction between imprecision and uncertainty); outside the
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outer boundary are the points that do not belong to the region. In between
remains the broad boundary, containing points that may or may not belong to
the region (or that only belong partly to the region). No other information
concerning points in the broad boundary is provided.

Definition 29 (simple region)
A simple region is defined as a closed, homogeneously two-dimensional simply
connected subset of R2.

Definition 30 (region with a broad boundary)
A region A with a broad boundary is made up of two simple regions A1 and
A2, with A1 ⊆ A2, where ∂A1 is the inner boundary and ∂A2 is the outer
boundary of A.

The regions A1 and A2 are simple regions; for crisp regions, the notions interior
(denoted A◦

1 and A◦
2), boundary (∂A1 and ∂A2), exterior (A−

1 and A−
2 ) and

closure (A1 and A2) have been defined in 1.1.4.

Definition 31 (boundary ∆A of a region A with broad boundary)
The broad boundary ∆A of a region A with broad boundary is a closed con-
nected subset of R2 with a hole. ∆A is comprised between the inner boundary
A1 and the outer boundary A2 of A, such that ∆A = A2 − A1 or equivalently
∆A = A2 − A◦

1. If A1 ⊂ A2, then ∆A is two-dimensional; in the limit case
A1 = A2, ∆A is a closed line. If ∂A1∩∂A2 6= ∅, then ∆A is not homogeneously
two-dimensional and may present one-dimensional parts and separations in its
interior.

Definition 32 (interior A◦ of a region A with broad boundary)
The interior A◦ of a region A with broad boundary is defined as:

A◦ = A2 − ∆A = A◦
1 (1.41)

Definition 33 (exterior A− of a region A with broad boundary)
The exterior A− of a region A with broad boundary is defined as:

A− = R
2 − A2 (1.42)

Definition 34 (closure A of a region with broad boundary)
The closure A of a region A with broad boundary is defined as:

A = A◦ ∪ ∆A = A2 (1.43)

On fig. 1.15, an example of a region with a broad boundary is shown. The inner
boundary A1 and outer boundary A2 are illustrated, as well as the interior A◦,
boundary ∆A and exterior A−. The two arrows indicate one-dimensional parts
of the broad boundary.

Consequently, the interior and exterior of a region with broad boundary are
open sets, whereas the boundary is a closed set. Simple regions are a special
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Figure 1.15: A region A with a broad boundary. The arrows indicate portions of
the boundary that are one-dimensional parts.
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Figure 1.16: Illustration of two different cases for meet in broad boundary topology.

case, where inner and outer boundary coincide, thus ∆A = ∂A. Furthermore,
Clementini assumes that the extension of the boundary is smaller than its
interior: ∆A << A◦ (the small boundaries assumption). This assumption will
imply minor differences with the egg-yolk model 1.3.2. It is possible for the
boundary to have 1-dimensional parts, to model entities that fit this behaviour
(as indicated by the arrows on fig. 1.15).

To define the topology model for regions with broad boundaries, a nine-
intersection matrix similar to the crisp intersection matrix shown in 1.16 is
used. 


A◦ ∩ B◦ A◦ ∩ ∆B A◦ ∩ B−

∆A ∩ B◦ ∆A ∩ ∆B ∆A ∩ B−

A− ∩ B◦ A− ∩ ∆B A− ∩ B−


 (1.44)

In [10], Clementini shows that of the 29 possible matrices in the intersection
model, 44 cases are now valid (compare this to the eight valid cases in the
crisp topology, 1.1.4). The small boundaries assumption eliminates 4 of these
cases. The 44 cases are illustrated on fig. 1.17, both the intersection matrices
and a graphical representation is shown. The 4 cases eliminated by the small
boundaries assumption are cases 14-17. Similarly as for the crisp topology, the
conceptual neighbourhood graph can be constructed for the broad boundary
topology.

In the broad boundary approach however, the model for the region provides
for a broader boundary but not for additional information regarding points in
this broad boundary: points are still either inside the region, outside the region,
or on the boundary. As a result, no distinction is made for the regions in figure
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case 1 case 2

case 3 case 4 case 5

case 6 case 7 case 8

case 9 case 10 case 11 case 12 case 13

case 14 case 15 case 16 case 17

case 18 case 19 case 20 case 21 case 22

case 23 case 24 case 25 case 26

case 27 case 28 case 29

case 30 case 31 case 32

case 33 case 34 case 35

case 36 case 37 case 38

case 39 case 40

case 41 case 42 case 43 case 44

Figure 1.17: Topology cases in the broad boundary model (redrafted after [10])).
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1.16a and 1.16b. Intuitively, one might consider a point closer to the inner
boundary to belong more to the region, in which case 1.16b is more overlap
and less meet than 1.16a.

Egg-Yolk

The egg-yolk approach is presented by Cohn and Gotts ([13], [28]), and is
similar to the broad boundary model mentioned before. The model also makes
use of two crisp boundaries: an inner boundary (called the yolk) inside which
points belong to the region and an outer boundary (called the egg) outside
which points do not belong to the region. The main difference is that the
authors took a logical approach to define the topology; whereas Clementini
(1.3.2) took a geometrical approach. This causes them to define a boundary as
an open set, which allows them to make a distinction between cases that would
fall in the same category in the broad boundary model. Because of this, their
intersection model has 46 possible cases. Furthermore, they don’t adopt the
small boundaries assumption, causing this model to have 4 more intersection
cases than the broad boundary model.

Technically, these differences are minor, the interesting aspect is that both
the geometrical and the logical approach lead to similar conclusions: topology
model for the egg-yolk model is quite similar to the broad boundary model; it
has the same remarks with regard to this work.

Fuzzy minimum bounding rectangles (FMBR)

In [45], the authors present an approach to derive fuzzy regions from a crisp re-
gion. The approach makes use of bounding rectangles: the minimum bounding
rectangle serves as the outer boundary (outside of which points do not belong
to the fuzzy region, and have membership grade 0), whereas the maximum
bounded rectangle servers as the inner boundary (in which points completely
belong to the region and have membership grade 1). In between both the inner
and outer rectangle, a freely chosen number of rectangles can be considered.
These rectangles are then assigned membership grades decreasing from the
inside out. This is illustrated on fig. 1.18.

For the definition of a fuzzy set, we refer to 20.

Definition 35 (map space S)
A map space S is a bounded subset of R2

An FMBR is a fuzzy region, and can be represented as a fuzzy set delimited by
an MBR (with edges parallel to the reference axes X and Y ) in the universe
(or map space).

Definition 36 (FMBR(Ã))
Let Ã ∈ F (U) be a fuzzy region and FMBR(Ã) its approximation, then

FMBR(Ã) ⊂ U , where.
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Core

Exterior Ã−

IR(FMBR(Ã))

Boundary ∆ÃFMBR(Ã)

Vague 
  Region (Ã)

αMBR

Figure 1.18: Fuzzy regions as MBRs (redrafted after [45]).

• FMBR(Ã) = {u ∈ U | 0 < µFMBR(u)}

• core(FMBR(Ã)) = IR(FMBR(Ã)) = {u ∈ U | µFMBR(Ã)(u) = 1}

• ∆Ã = {u ∈ U | 0 < fFMBR(Ã)(u) < sup
w∈U

µFMBR(Ã)(w)

The αMBR are generated from the FMBR, using the diagonal of the
FMBR (FMBRdiagonal)and the ratio of generation of the α-cuts (rα):

FMBRdiagonal =
√

(x2 − x1)2 + (y2 − y1)2 (1.45)

where (x1, y1) and (x2, y2) are coordinates for respectively the bottom left and
the top right corner of the FMBR.

rα =
FMBRdiagonal

k
(1.46)

where k is a constant which determines the separation between the α-cuts: the
greater k, the greater the number of αMBR and the better the approximation.

The formula to define the αMBR, depends on the morphology of the
FMBR ([45]), for illustration purposes only the case where the core is cen-
tral (not touching the FMBR is shown).

FMBRαi
= (X2αi

= X2αi−1
− rα, Y2αi

= Y2αi−1
− rα),

(X1αi
= X1αi−1

+ rα, Y1αi
= Y1αi−1

+ rα)

Definition 37 (membership function for an FMBR)
The membership function for the FMBR is defined as

µFMBR(Ã)(x, y) =





1 if (x, y) ∈ IR(FMBR(Ã))
λ−d((α,MBR),edgeIR(FMBR(Ã)))

β if (x, y) ∈ ∆Ã

0 if (x, y) ∈ Ã−

(1.47)
where
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BA

C

Figure 1.19: Illustration of a possible ambiguity for the maximum bounded rectan-
gle. Rectangles A and B are both candidates for the maximum bounded rectangle;
rectangle C is the minimum bounding rectangle.

• λ is the maximum distance between an edge of FMBR(Ã) and the edge
of IR(FMBR(Ã))

• d((α,MBR), edgeIR(FMBR(Ã))) is the maximum distance between an
edge of the αMBR and the edge of IR(FMBR(Ã))

• β is the maximum distance between the centroid of IR(FMBR(Ã))
(this is the center of the rectangle representing the core) and an edge
of IR(FMBR(Ã))

The original main purpose for using fuzzy bounding rectangles, is to ap-
proximate fuzzy regions automatically and performantly. While this is an in-
teresting train of thought, there also are a number of downsides to working with
rectangles: the approach only allows for limited approximations (by definition,
only rectangular ones), regardless of the original shape of the object, and there
can be ambiguities as illustrated on fig. 1.19. The maximum inscribed rec-
tangle is not always uniquely defined, or can be open to interpretation (in fig.
1.19, both rectangle A and rectangle B are possible candidates for the maxi-
mum inscribed rectangle). While both these issues can be overcome by having
an expert intervene, his/her intervention negates the possibility of performing
it automatically.

Realm/ROSE extension

In [40], Markus Schneider extended the Realm/ROSE approach to model fuzzy
and uncertain regions. The idea is to consider determined zones surrounding
the undetermined borders of the objects,and expressing its minimal and max-
imal extensions. Before introducing the Realm/ROSE extension, first a short
introduction to the Realm/ROSE model will be made.

Definition 38 (realm)
A realm used as a basis for spatial data types is a finite set of points and non-
intersecting line segments over a discrete domain, which can be viewed (from a
graph-theoretical point of view) as a planar graph over a finite resolution grid.
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Figure 1.20: A number of objects defined using a realm (redrafted after [40]).

All spatial objects (points, lines, regions) can be defined in terms of points and
line segments in the realm. In such spatial databases, no objects are defined
directly, but are always defined as suitably selecting some realm elements. All
spatial objects are thus realm-based, this is illustrated on fig. 1.20. The under-
lying grid arises from the fact that numbers always have a finite representation
in computer memory: the representations will be of fixed length and correspond
to integer or real data types.

The realm concept serves a number of purposes: it guarantees closure prop-
erties (all operations are closed), it shields geometric computations from nu-
meric correctness and robustness problems (no new points are ever needed, all
numeric problems are dealt with below and within the realm), it provides for
a precise specification (lends itself to a correct implementation) and it enforces
geometric consistency (common parts of different realm objects are exactly the
same).

Definition 39 (R-cycle, R-face, R-unit in a realm)
Consider a realm as a planar graph. An R-cycle is a cycle of this graph. An R-
face is an R-cycle possibly enclosing some other disjoint R-cycles corresponding
to regions with holes. An R-unit is a minimal R-face: any R-face within the
R-unit is equal to the R-unit.

These notions support the definition of regions with holes.

Definition 40
An R-block is a maximal connected component of a realm graph (it supports
the definition of the lines data type).

The ROSE algebra — where ROSE stands for RObust Spatial Extension
— contains very general data types (points, lines and regions).
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Definition 41 (points, lines, regions in a realm)
Let R be a realm.
A points object is a set of R-points.
A lines object is a set of disjoint R-blocks.
A regions object is a set of (edge-) disjoint R-faces.

To extend the Realm/ROSE approach, Schneider introduces the concepts
vpoint, vline and vregion (v stands for “vague”). These vague objects are
defined using sharp (or crisp) means. The central idea is to approximate each
of the undetermined boundaries of a region object: its outer boundary line,
and the boundary lines of its possibly existing holes; zones will be modelling
a kind of “irregular spatial intervals”, called a border zone and a hole zone.
A border zone is modelled by two or more simple cycles, one representing its
outer border and one or more representing its inner border(s). A hole zone
is modelled by two simple cycles, one representing its inner border and one
representing its outer border. Matching inner and outer borders Cin and cout

define the undetermined border, so that for a vague region they express the
vagueness of the real, undetermined boundary lines which lay somewhere in
between.

Definition 42 (vague region in a realm)
Let C = (cout, Cin) denote a pair of a single R-cycle cout and a non-emtpy set of
R-cycles Cin = (cin

1 , ..., cin
n ) and let H = (Hout,Hin) denote a pair of (possibly

emtpy) sets of R-cycles hout = (hout
1 , ..., hout

n ) and Hin = (hin
1 , ..., hin

n ). Then a
vague region vr is a pair (C,H) so that the following conditions are satisfied:

i) ∀i ∈ {1, ...n} : cin
i area-inside cout

ii) ∀k, l ∈ {1, ...n}, k 6= l : cin
k edge-disjoint cin

l

iii) ∀k ∈ {1, ...m}∃l ∈ {1, ..., n} : hout
k edge-inside cin

l

iv) ∀k, l ∈ {1, ...m}, k 6= l : hout
k edge-disjoint hout

l

v) there exist two bijective functions f : {1, ...,m} → Hout and
g : {1, ...,m} → Hin such that ∀i ∈ {1, ...,m} : g(i) area − inside f(i)

(1.48)

The concepts area-inside, edge-disjoint and edge-inside express the relations
between Realm/ROSE objects: area-inside means that one area is entirely
comprised inside the other (edges can be shared), edge-disjoint means that no
edges are shared and edge-inside means that one edge is completely inside the
area (it may not overlap with the border of the area); for the formal definitions
we refer to [40].

As a result of this definition, the vague region inherits the properties of
normal regions in a realm [40], with regards to algebraic laws (commutativity,
associativity, ...).

While this model is richer than the broad boundary model, in that it allows
for multiple disconnected interiors and holes, the same remark as for broad
boundary regions still holds: the model does not provide for additional infor-
mation about the borders. The use of a realm does however prevent issues due
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to rounding errors from occurring and improves on perfomance, which could
make the realm approach complementary to the TIN based approach 5.

Fuzzy object-based data model for imperfect spatial information

In [4], Bordogna and Chiesa propose a representation of imperfect spatial infor-
mation using fuzzy set theory (see 1.2), and suggest an approach to represent
and manage such information in a fuzzy object-based data model.

Definition 43 (fuzzy spatial object A)
A fuzzy spatial object A is modelled by a fuzzy set on a universe that is a
spatial domain X (which is a bounded subset of R2); for the definition of a
fuzzy set, we refer to 20.

For two fuzzy objects A and B, topological relations are also considered.
For symmetrical topology relations (disjoint, overlap), a similarity is defined.
This similarity uses the basic set [0, 1] as the domain for the similarity measure
between fuzzy sets.

Definition 44 (similarity between two regions)
The similarity between two regions is defined by

S(A(x), B(x)) =
|A ∩ B|
|A ∪ B| (1.49)

where |A| denotes the cardinality of the fuzzy set A.

The value of S increases in [0,1] as the two fuzzy objects more and more overlap.
The linguistic value overlapped and its compound values (e.g. almost over-

lapped) are defined as non-decreasing function on the domain S; while the
linguistic value disjoint and its compound values (e.g. almost disjoint) are
defined as non-increasing functions.

For asymmetric topological relations (outside, inside), a fuzzy inclusion
measure is defined. This inclusion measure also uses the basic set [0, 1] as the
domain of fuzzy inclusion.

Definition 45 (inclusion of region A(x) in B(x))
The inclusion of region A(x) in B(x) is defined by

I(A,B) =
|A ∩ B|
|A| (1.50)

where |A| denotes the cardinality of the fuzzy set A.

The value of I increases as more portions of A are included in B. Similarly
to above, the linguistic value inside and its compound values are defined as
non-decreasing functions over the domain of I(A,B); while outside and its
compound values are defined as non-increasing functions. The relationship
contains is defined by the equivalence: “A contains B” ≡ “B inside A”.
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To represent imperfect spatial information, a Fuzzy Object-Based Data-
model, which is based on the Fuzzy Object Oriented Database approach, is
used. The authors distinguish between field-based (where data is considered to
be global and to vary continuously and smoothly over the domain) and exact
object-based (where entities are modelled) models. In this model, the following
spatial data types are defined:

• the Fuzzy Object Class (FOC) whose instances are fuzzy objects repre-
senting spatial entities characterized by fuzziness,

• the Indeterminate Object Class (IOC) whose instances are indeterminate
objects representing crisp spatial entities whose position is partially or
vaguely known,

• the Fuzzy and Indeterminate Object Class (FIOC) whose instances are
fuzzy and indeterminate objects representing vague spatial entities whose
position is partially known,

• the Indeterminate Spatial Relationship Class (ISRC) whose instances are
indeterminate topological, directional and distance relationships between
pairs of objects.

The approach is complementary to what is presented in this work, in that
it provides a framework in which the presented results can be applied. The
presented practical approaches (4, 5) can be used to define objects that could
be instances of the Fuzzy Object Class, or they can be used to represent the
partial or vague knowledge regarding instances of the Indeterminate Object
Class. Furthermore, the extension proposed in 2.5.2 can be used to represent
instances of the Fuzzy and Indeterminate Object Class.

General constraints in spatio-temporal database modelling and que-
rying

Traditionally in GIS, objects themselves are defined directly (by means of some
defining points and lines). It is however also possible to define a constraint
(which can be seen as a relation that has to be satisfied) on geographic data,
and define the object as “consisting of the points that satisfy the constraint”.
This can even be done in a fuzzy framework, as presented in [21]. The authors
present a fuzzy constraint based approach, which is both suitable for data
modelling and querying fuzzy spatial and temporal information.

A simple example of the use of constraints to model crisp objects, is given
on fig 1.21. This example makes use of traditional, crisp constraints (equality,
less than, greater than, etc.).

Definition 46 (unconditional generalized constraint on a variable X)
An unconditional generalized constraint on a variable X is defined by

XisrR (1.51)



1.3 Uncertainty and Imprecision in GIS 35

Ghent:
(x ≥ 5.5) ∧ (x ≤ 5.9) ∧ (y ≥ 8.8)∧

(y ≤ 9.2)

E-40 highway (in Belgium):
((y ≥ 9.1) ∧ (1.8y − x = 14.8) ∧ (y ≤ 10))
∨ ((y ≤ 10) ∧ (x + 2y = 23) ∧ (y ≥ 8.2))
∨ ((y ≤ 8.2) ∧ (x + 4.9y = 48.2) ∧ (y ≥ 7))

River Meuse (in Belgium):
((y ≥ 4.4) ∧ (x + 0.2y = 10.2) ∧ (y ≤ 6))
∨ ((y ≥ 6) ∧ (2.9y − x = 8.4) ∧ (y ≤ 6.9))
∨ ((y ≥ 6.9) ∧ (x − 0.4y = 8.8) ∧ (y ≤ 8))

(a) (b)

Figure 1.21: Illustration of the use of constraints to represent crisp objects: (a)
illustration on a map, (b) list of the constraints used (redrafted after [21]).

where R is the constraining relation and isr is a variable copupla in which the
discrete-valued variable r defines the way in which R constrains X.

To model truth values that represent the degrees of truth for objects satisfying
constraints, extended possibilistic truth values (defined in 1.2.4) are used. The
authors then construct a type system, in which an object is characterized by
a number of properties to describe its structure and explicitly defined opera-
tors that define its behaviour. A property is either an attribute or a binary
relationship.

Within the type system, not only the type specification is expressed by
means of a generalized constraint (denoted isr), but also the domain value is
expressed using a generalized constraint (denoted isr′).

In order to describe the fuzzy sets of ℘̃({(x)|x ∈ R} ∪ {⊥Time}) and of
℘̃({(x1, x2, . . . , xn)|x1, x2, . . . , xn ∈ domSpaceDim}∪{⊥Space})) the concept lin-
ear arithmetic constraint has been generalized.

In order to come to the definition of a generalized linear arithmetic con-
straint, the definitions for the comparison operators =, ≤ and ≥ are general-
ized. Traditionally, these comparison operators allow to describe crisp subsets
of an n-dimensional space. For the generalization, a normalized fuzzy set Ṽ has
been associated with each operator. This fuzzy set is defined over the universe
of valid distances, i.e., the set R∗ of positive real numbers, and the boundary
condition µṼ (0) = 1 must hold for it.

Definition 47 (generalized comparison operators)
If

d((x1, x2, . . . , xn), (x′
1, x

′
2, . . . , x

′
n))

denotes the Euclidean distance between the regular elements (x1, x2, . . . , xn)
and (x′

1, x
′
2, . . . , x

′
n) of the considered space, i.e.

d((x1, x2, . . . , xn), (x′
1, x

′
2, . . . , x

′
n)) =
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√
(x1 − x′

1)
2 + (x2 − x′

2)
2 + . . . + (xn − x′

n)2

then the membership functions of the fuzzy sets described by the generalized
operators =Ṽ , ≤Ṽ and ≥Ṽ are defined as follows:

• Temporal type Time. ∀ (x) ∈ domTime \ {⊥Time},∀ t ∈ R :

– µx=Ṽ t((x)) = µṼ (d′), where

d′ = min{d((x), (x′))|(x′) ∈ domTime ∧ x′ = t}

– µx≤Ṽ t((x)) = µṼ (d′), where

d′ = min{d((x), (x′))|(x′) ∈ domTime ∧ x′ ≤ t}

– µx≥Ṽ t((x)) = µṼ (d′), where

d′ = min{d((x), (x′))|(x′) ∈ domTime ∧ x′ ≥ t}

• Spatial type

Space id(id1 : SpaceDim; id2 : SpaceDim; . . . ; idn : SpaceDim)

∀ (x1, x2, . . . , xn) ∈ domid \ {⊥id},∀ (a1, a2, . . . , an, b) ∈ Rn+1 :

– µa1x1+a2x2+...+anxn=Ṽ b((x1, x2, . . . , xn)) = µṼ (d′), where

d′ = min{d((x1, x2, . . . , xn), (x′
1, x

′
2, . . . , x

′
n)) |

(x′
1, x

′
2, . . . , x

′
n) ∈ domid ∧ a1x

′
1 + a2x

′
2 + . . . + anx′

n = b}

– µa1x1+a2x2+...+anxn≤Ṽ b((x1, x2, . . . , xn)) = µṼ (d′), where

d′ = min{d((x1, x2, . . . , xn), (x′
1, x

′
2, . . . , x

′
n)) |

(x′
1, x

′
2, . . . , x

′
n) ∈ domid ∧ a1x

′
1 + a2x

′
2 + . . . + anx′

n ≤ b}

– µa1x1+a2x2+...+anxn≥Ṽ b((x1, x2, . . . , xn)) = µṼ (d′), where

d′ = min{d((x1, x2, . . . , xn), (x′
1, x

′
2, . . . , x

′
n)) |

(x′
1, x

′
2, . . . , x

′
n) ∈ domid ∧ a1x

′
1 + a2x

′
2 + . . . + anx′

n ≥ b}

The entire model allows for representation of geographic objects which are
uncertain or imprecise. Consider the following example: in the two-dimensional
space

Space id(x : SpaceDim; y : SpaceDim)

of the map of Ghent in Figure 1.22, the fuzzy set of points representing ‘In
Ghent, in the environment of a winding of the river Leie’ can be described by
the generalized linear constraint

(c̃1 ∧̃ c̃2 ∧̃ c̃3 ∧̃ c̃4 ∧̃ c̃5 ∧̃ c̃6 ∧̃ c̃7 ∧̃ c̃8 ∧̃ c̃9) ∧̃ (c̃′1 ∨̃ c̃′2 ∨̃ . . . ∨̃ c̃′n)

where the constraints
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Figure 1.22: Illustration of the use of generalized constraints to model imperfect
two-dimensional data.

• c̃1 = (y ≥Ũ 1),

• c̃2 = (y + 1.24x ≥Ũ 10.68),

• c̃3 = (y − 0.21x ≤Ũ 7.78),

• c̃4 = (y − 3.25x ≥Ũ −8.65),

• c̃5 = (y − 0.63x ≤Ũ 6.57),

• c̃6 = (y − 0.17x ≤Ũ 10.67),

• c̃7 = (y + 21.67x ≤Ũ 272.7),

• c̃8 = (y + 1.15x ≤Ũ 20.39) and

• c̃9 = (y − 1.42x ≥Ũ −14.65)

with appropriate fuzzy set Ũ are used to model Ghent and the constraints
c′i, i = 1, 2, . . . , n are used to model the environments of the windings of the
river Leie. For example, with an appropriate fuzzy set Ṽ , the three windings
depicted in the figure can be described by the generalized linear constraints

• c̃′k = (x =Ṽ 7.2 ∧̃ y =Ṽ 7.8),

• c̃′l = (x =Ṽ 9.8 ∧̃ y =Ṽ 9) and

• c̃′m = (x =Ṽ 11 ∧̃ y =Ṽ 7.8)
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The model is quite extensive and supports both temporal and spatial in-
formation using a strong theoretical basis. The use of constraints to represent
objects is interesting, but might require a lot storage and/or computations
when analysis are performed, especially for complex objects (a lot of different
constraints may be needed to define the object). As it was built from a query-
engine point of view, many traditional geographic operations have not yet been
considered. However, as CAD systems make use of a constraint spatial data
models (the shapes are simpler than in GIS), this approach could be used to
extend those systems. The query-engine side of the approach is however quite
complementary to our proposed models.

Natural objects with indeterminate boundaries

An overview of possible issues with data, followed by a way of applying fuzzy
sets to represent fuzzy regions a GIS is presented in ([7]). In the introduction,
the authors mention that their can be issues regarding the data acquisition of
data that is assumed to be perfect for complex objects, boundaries, attribute
values, topology and continuous field information; and briefly illustrates how to
minimize the issues while still maintaining a crisp model. For inexact objects,
the need for inexact data models is illustrated, and a model using fuzzy set
theory to represent inexact objects (focussing on regions with indeterminate
boundaries) is presented. A fuzzy object is defined by means of a crisp object
of which the boundary is fuzzified. The authors put forward a general expression
for a membership functions to achieve this fuzzification.

µÃ(z) =





1

1+
�

z−b1−d1
d1

�2 if z < b1 + d1

1 if b1 + d1 ≤ z ≤ b2 − d2
1

1+
�

z−b2+d1
d2

�2 if z > b2 + d2

(1.52)

where b1 and b2 define the exact boundaries of the object A and d1 and d2 are
parameters to shape the function.

The fuzzy objects are then used in classification techniques, in which the
operations and and or are performed using the fuzzy equivalents min and max.
No other operations or uses are considered for the model, nor how such regions
can be represent in practical implementations.

Conceptual framework and fuzzy set implementation for geographic
features

In [47], the authors present a framework for fuzziness in a feature-based ge-
ographic information system. Features are defined as fuzzy sets in the two
dimensional space.

Definition 48 (map space V )
A map space V is a bounded subset of R2.
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Definition 49 (fuzzy feature)
A fuzzy feature is a fuzzy set whose universe is a map space.

In the examples, a fuzzy feature is defined by means of its core (where the
membership grade equals 1) and a linear, decreasing function of the distance
to the core to define the membership grades less than 1.

The only considered operations are core and boundary:

Definition 50 (core)

core(Ã) = {v ∈ V : µÃ(v) = sup
ω∈V

{µÃ(ω)}} (1.53)

Definition 51 (boundary)

boundary(Ã) = {v ∈ V : 0 < µÃ(v) < sup
ω∈V

{µÃ(ω)}} (1.54)

In general, supω∈V {µÃ(ω)} = 1.
The authors however do not provide other operations for this model. A

major downside to the supplied boundary definition is the fact that it yields a
crisp result. For example, if the supω∈V {µÃ(ω)} = 1, the boundary can contain
both points with a membership grade 0.1 and points with a membership grade
0.9, but in the boundary both these points are treated the same.

Analytic Hierarchy Process

In [2], the author explains Saaty’s Analytic Hierarchy Process, a method that
combines concepts from fuzzy set theory with multi-criteria methodology. In
classic decision making, land classification is performed using boolean logic;
defying this often leads to problems regarding loss of information or error prop-
agation. Furthermore, there can be situations in which there exists uncertainty
regarding the classification. The developed techniques mainly serve a purpose
in land classification, for use in multi criteria decision making. The Analytic
Hierarchy Process is just one technique to derive membership grades in a ge-
ographic context, other techniques also exist. The uncertainty modelled is
uncertainty in the attribute data, not in the spatial data itself.

The basis of the Analytic Hierarchy Process (or AHP for short) is fuzzy set
theory; an introduction to this can be found in 1.2.

The authors use the notation X = {x} to denote a finite set of n points
(object/elements/properties), for example:

soil drainage property X ≡ {x1, x2, x3}

respectively

“low”, “moderate” and “extreme”
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impermeability. The fuzzy set S in X associates each xi with a membership
grade µS(xi), representing the extent to which xi belongs to S. For three
elements, this yields

S ≡ {(x1, µS(x1)), (x2, µS(x2)), (x3, µS(x3))} (1.55)

To assign membership grades in the context of soil suitability analysis, Bur-
rough adopted a membership function of the form:

µA(x) =
1

1 + a(x − c)2
(1.56)

Here, a is used to determine the spread and c is used to determine the centre
of the distribution of the soil property. As this membership function might
not always be suitable for different applications, the AHP provides a way of
deriving the membership grades using pairwise comparison of n elements. For
this, the matrix A is defined:

A =




w1/w1 w1/w2 . . . w1/wn

w2/w1 w2/w2 . . . w2/wn

...
...

. . .
...

wn/w1 wn/w2 . . . wn/wn


 (1.57)

The coefficients wi represent an estimate for the magnitude of the elements xi

with respect to a given property P . The coefficients wi can be calculated by
solving the characteristic value problem

A · w = n · w (1.58)

where w = [w1, w2, ..., wn]. There is only one independent row in A; all rows
of A differ by a constant multiple from the first row, so all the characteristic
values λi (i = 1, . . . , n) are zero except one, denoted λmax. The system can be
restated as

A · w = λmax · w (1.59)

The characteristic vector solution w is recovered from any column of A; by
normalizing a unique solution is found.

The AHP method provides for assigning membership grades that can be
used in classification or satisfaction of properties. These membership grades can
then be applied in multi criteria decision making, to overcome the shortcomings
imposed by the binary logic.

This approach is different from our goal, which is to model spatial uncer-
tainty or imprecision. Extensions later on (in 2.5.3) will allow for the modelling
of fuzzy associated data. Finding appropriate membership grades for this could
be done using the described AHP method; our intention is to provide a model
to represent and work with this kind of information, regardless of the source of
the vagueness.
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Intelligent expert system shell for knowledge-based GIS

In [33], an expert system to develop knowledge based GIS systems is presented.
The system is called FLESS, which stands for Fuzzy Logic Expert System Shell.

We’ll provide a short introduction to this system. The system creates, mod-
ifies or deletes objects; an object is a basic entity, for instance “temperature”,
“slope” and “population density”. An object can be binary (boolean), e.g.
polygon X has no vegetation or it can be fuzzy, e.g. polygon X has high tem-
perature. Along with each object, a number of properties are stored; the most
important are a list of rules (see below) whose antecedent parts contain the
object and a list of rules whose consequent parts contain the object.

If an object is fuzzy, its associated values are represented by fuzzy subsets.
These are usually stored as finite dimensional vectors with default values, for
instance ”hot” can be stored as

(0 0.125 0.250 0.375 0.547 0.675 0.828 0.875 1 1) (1.60)

whose values are determined with respect to points, such as 24, 25, 26, 27, 28,
29, 30, 31, 32, 33 (C). In a more common notation, this means:

{(24, 0), (25, 0.125), (26, 0.250), (27, 0.375), (28, 0.547),
(29, 0.675), (30, 0.828), (31, 0.875), (32, 1), (33, 1)} (1.61)

This determination stems from a subjective feeling or an objective function.
A fact is a data proposition of the form

<OBJECT> is <VALUE> (fuzzy/non-fuzzy certainty factor)

The value can either be a linguistic expression (hot) or a numeric value. The
system is capable of converting a number into a linguistic expression.

A rule is an implication statement expressing the relationship between an-
tecedent and consequent propositions. Attached to each rule is a fuzzy/non-
fuzzy uncertainty factor, indicating the confidence in this rule. The general
structure of a rule is

(rule <rule-name>

if <object 1> <operator 1> <value 1> and/or

<object 2> <operator 2> <value 2> and/or

...

then <object n> is <value n>

) certainty is <certainty factor>

The operators can be ordinary inequalities or fuzzy inequalities; the certainty
factor can be a precise value in [−1,+1], a fuzzy number or a linguistic proba-
bility.

An example of a rule in GIS is

IF the slope is more or less gentle

AND (the precipitation is moderate OR
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the underground water table is sufficiently high)

AND the temperature is warm

THEN the piece of land is suitable for cultivating crop X

with certainty 0.9

The FLESS system provides for a system to reason with fuzzy attribute
data. The goal of this study is to develop models to represent fuzzy spatial
information and (to a lesser extent) fuzzy attribute data. The FLESS system
is complementary to the techniques described in 2.5.3.

Error propagation in cartographic modelling using boolean logic and
continuous classification

In [31], Heuvelink and Burrough study the error propagation when a fuzzy
(continuous) classification is used. The authors use the membership function
MFC

MFC(z) = 1

1+
�

z−b1−d1
d1

�2 if z < b1 + d1

MFC(z) = 1 if b1 + d1 ≤ z ≤ b2 − d2

MFC(z) = 1

1+
�

z−b2+d2
d2

�2 if z > b2 − d2

(1.62)

Where, the parameters di determine the width of the transition zone. The
transition zones are such that the continuous membership function equals 0.5
at bi. If d1 = 0 and d2 = 0, the membership function yields the boolean
function.

The error propagation is illustrated by the authors on a land classification
example. This example shows that the fuzzy classification is less influenced
by errors in the input than the traditional classification is (the results are
illustrated using a bitmap representation in which the land classification is
coloured).

Just like the previous methods, this paper presents interesting work con-
cerning working with fuzzy attribute data (esp. in the land classification), but
has little to do with fuzzy locational information. The results from [] are in-
teresting when considering to use our fuzzy region model for fuzzy associated
data, as presented in 2.5.3.



Chapter 2

Fuzzy regions

2.1 Concept of fuzzy regions

In this chapter, the concept of fuzzy regions will be introduced. Subsequent
chapters will introduce models that are based on this concept, but that are more
adequate for implementation. Fuzzy regions are a concept related to an entity
based approach (1.1.2). Traditionally regions are defined by specifying their
outline, and implicitly all locations (points) inside the outline are considered
to be part of the region ([41]). But one can turn this around: a set of locations
can be said to make up a region. This is the first step in defining fuzzy regions,
from there on it is a small step to extend a region to a fuzzy region: a fuzzy set
of locations (where each location is represented by a point and each location
has a membership grade associated). The membership grades for regions are
interpreted in a veristic way: all locations belong to the region, but some more
than others (1.2.2).

This concept differs from the earlier approaches (see 1.3.2) for a number
of reasons: firstly, the region is not defined by its outline, but by means of its
elements, i.e. the locations that belong to this region. Secondly, it provides
for an infinite number of membership grades to indicate the extent to which
each of the locations belong to the region. This is illustrated on fig. 2.1: both
the broad boundary model, as the egg-yolk model would treat the points p1

and p2 alike. However, p1 is much closer to the interior than p2 is; for some
applications it should be possible to make a distinction between them.

Finally, in the concept, no assumption is made on the distribution of the
points: the Fuzzy Minimum Bounding Rectangles (FMBR) and similar models
assume some simple layout of boundaries (the rectangle become smaller with
increasing membership grades). While this can still be accomplished with fuzzy
regions, the concept is not limited to this.
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Figure 2.1: Broad boundary and egg-yolk regions consider p1 and p2 the same: both
belong to the boundary.

2.2 Definition of a fuzzy region

Consider A ⊆ U the set of all the points that belong to the region (this is
a crisp set). The crisp set A is then generalized to a fuzzy set Ã, defined as
follows.

Definition 52 (fuzzy region Ã)
A fuzzy region Ã is defined as:

Ã = {(p, µÃ(p)) | p ∈ U, µÃ(p) > 0} (2.1)

where

µÃ : U → ]0, 1]

p 7→ µÃ(p)

Here, U is the universe of all locations p; the membership grade µÃ(p) expresses
the extent to which p belongs to the fuzzy region.

On fig. 2.2, an example of a fuzzy region is shown.

The main difference between fuzzy regions and more common fuzzy sets, is
that the domain of the fuzzy region U is in itself a two dimensional domain
(theoretically R2, but normally limited depending on the representation method
of the coordinates). For clarity, the notation Ã will be used for fuzzy regions
(and fuzzy sets in general), whereas A will be used for crisp regions (and crisp
sets).

The notion of a simple fuzzy region is sometimes used. By a simple fuzzy
region a fuzzy region of which the membership grades decrease from the inside
towards outside; in other words: every α-level is simple region. This definition
makes use of the α-level, as defined for fuzzy sets in 1.2.3 and adopted for fuzzy
regions in 2.4.1.
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...

Figure 2.2: A fuzzy region, for illustration purposes the fuzzy region is delimitted
by a light grey line. The membership grades for points belonging to the region are
shaded, ranging from black (membership grade 1) to white (membership grade 0). A
cross section shows an how the membership grades along the drawn line evolve. On
the right are possible membership grades for the points illustrated.

Definition 53 (simple fuzzy region / complex fuzzy region)
A fuzzy region Ã is called simple when

∀α ∈]0, 1] : Ãα is a simple region without holes (2.2)

where Ãα is the weak α-cut of Ã at level α (2.4.1), which yields a crisp region
. A complex fuzzy region is a fuzzy region that is not simple, meaning that
there can be α-levels that contain holes, or α-levels that are made up from
disconnected regions.

An illustration of simple and complex fuzzy regions can be seen on fig. 2.3. The
region in fig. 2.3a is complex, as the core is disconnected. While the region in
fig. 2.3b appears simple, it is not due to the fact that the membership grades
do not decrease from the inside outward (there are α-levels that yield regions
with a hole). The region in fig. 2.3c is a simple fuzzy region (note that the
region does not have to be convex).

Fuzzy regions that are simple are a more intuitive concept to work with; a
lot of situations will yield fuzzy regions where membership grades will increase
toward the core.

2.3 Interpretation and examples

As mentioned before, membership grades in fuzzy regions are considered to
have a veristic interpretation, meaning that all points belong to the set to some
extent. Various practical applications would benefit from allowing a partial-
belonging-to relation. Consider for example the soil composition, more specif-
ically the boundary between for instance a sandy soil and a clay soil. This
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Figure 2.3: Illustration of the notion simple: (a) and (b) are examples of complex
fuzzy regions, (c) is an example of a simple fuzzy region.

boundary is currently derived from a number of measurements and represented
by a crisp line. However, in reality, this is more of a “zone”, gradually changing
from all sand and no clay, to slightly more clay, to an equal distribution, to
more clay than sand and finally all clay and no sand.

Slightly similar is the area affected by a natural disaster (earthquake, hur-
ricane, etc.). There will be a region that is worst affected, but moving away
from this core there will still be damages, though not as bad as in the core
region.

In the above cases, the imprecision occurs in reality, and would occur even if
perfect measurements are possible. Somewhat different it the case where a lim-
itation imposed on measurements can require an approximation for the bound-
ary. An example of this is the hunting territory of animals, or even boundary
of a lake: as an entity in which all levels are represented, one can consider the
lake to include the locations that are flooded in the event of high water levels
(in which case those locations are assigned lower membership grades with a
veristic interpretation). However if one considers the actual boundary the lake
ought to be represented as a region delimited with a possibilistic line. This later
interpretation is not yet possible with the presented model, but is also under
investigation. In general, these situations occur when the boundaries in reality
are crisp, but when it is too difficult (e.g. too expensive, too labour-intensive,
too technically challenging) to measure these crisp boundaries. The real crisp
boundary can then be approximated by a fuzzy boundary.

2.4 Operations on fuzzy regions

There are quite a number of interesting operations possible on fuzzy regions:
some operations stem from the fuzzy realm, others have a geographic origin.
In the following subsection, an overview of the considered operations as well as
their definitions are provided.

2.4.1 Operations from the fuzzy realm

The fuzzy regions are defined as fuzzy sets over a two dimensional domain.
Consequently, the operations from the fuzzy realm are the same as their coun-
terparts for regular fuzzy sets. For completeness, the definitions are repeated
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below, but with the notations adapted for fuzzy regions.

Set-operations

Consider two fuzzy regions Ã and B̃. The set operations (intersection, union)
on both fuzzy regions is the same as the definition for fuzzy sets, using t-norms
(1.25) and t-conorms (1.26).

Definition 54 (intersection of two fuzzy regions Ã and B̃)

Ã∩̃B̃ = {(x, µÃ∩̃B̃(x)) | µÃ∩̃B̃(x) = T ((µÃ(x), µB̃(x)))} (2.3)

Definition 55 (union of two fuzzy regions Ã and B̃)

Ã∪̃B̃ = {(x, µÃ∪̃B̃(x)) | µÃ∪̃B̃(x) = s((µÃ(x), µB̃(x)))} (2.4)

Definition 56 (complement of a fuzzy region Ã)

coÃ = {(x, µcoÃ(x)) | µcoÃ(x) = 1 − µÃ(x)} (2.5)

The intersection holds those locations that are present in both regions.
The associated membership grade for the locations is calculated by means of
the t-norm; if the minimum is used as the T-norm, the associated value for
a locations x becomes the smallest of the respective values µÃ(x) and µB̃(x).
Similarly, the union holds all the locations that exist in both regions; now the
associated value is calculated using an S-norm. If the maximum is used, the
associated value for a location x in the union is the maximum of the values
µÃ(x) and µB̃(x). The complement holds all those points that were not present
in the original region; the occurring membership grades are computed using the
definition of the complement of a fuzzy set.

α-cut

When working with fuzzy sets, it can be necessary to extract crisp sets from
the fuzzy information, which can for instance be needed to process the data
using non-fuzzy techniques. This is often called “defuzzifying” a fuzzy set, for
which the α-cut operation is commonly used. The α-cut holds the elements for
which the membership grades are greater than a given value α (the α-level).
As a fuzzy region is fundamentally a fuzzy set, the α-cut is easily defined, along
with its special cases. These definitions are very straight forward, and are only
repeated here for completeness.

Weak α-cut The weak α-cut is defined as:

Ãα = {x | µÃ(x) ≥ α} (2.6)
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Figure 2.4: An example for the α-cut of Ã is illustrated by the black outline. α-cuts
using lower α values will yield a larger region (up to the support); α-cuts using higher
α values will yield a smaller region (down to the core).

Core A special case of a weak α-cut is the core; this is the weak α-cut with
threshold 1. This is an important α-cut, as it results all the elements that
belong completely to the fuzzy set.

Ã1 = {x | µÃ(x) ≥ 1} (2.7)

Strong α-cut The strong α-cut is defined as:

Ãα = {x | µÃ(x) > α} (2.8)

Support Similarly to the weak α-cut, the strong α-cut has a special case,
now for a threshold 0. This α-cut is called the support, and returns all the
elements that belong to some extent to the given fuzzy set.

Ã0 = {x | µÃ(x) > 0} (2.9)

It is important to note that while the α-cut of a fuzzy region results in
a crisp set of locations, an additional step still needs to be performed before
this crisp set of locations can be represented as a traditional, crisp region; as
illustrated on fig. 2.4. This is due to the fact that traditionally, a region is
defined by its outline. Consequently, when the crisp set of locations has been
found, the outline of all these locations needs to be determined.
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2.4.2 Operations from the geo-spatial realm

Minimum bounding rectangle

The minimum bounding rectangle for crisp regions has been explained in 7.
Traditionally, MBRs are used for both indexing as for optimizing query evalu-
ation. Both uses are still appropriate for fuzzy regions: in an index, the MBR
at different α-levels can be taken into account. Furthermore, just as MBRs are
used to optimize query evaluations, similar evaluations can be made for fuzzy
regions; two fuzzy regions will not intersect to a degree greater than e.g. 0.8 if
the MBRs at that α-level don’t intersect.

Before defining the fuzzy minimum bounding rectangle 1, consider the de-
sired properties of this operator. For a crisp region, one can state it simplifies
the outline to a rectangle. For a fuzzy region, it would be interesting if the
simplified outline would still incorporate some of the fuzziness of the original
region (which implies that the bounding rectangle will also be a fuzzy region).
Using the α-cuts (2.4.1), it is possible to defuzzify a fuzzy region. It would
be interesting if the fuzzy bounding rectangle were compatible with defuzzified
regions. Combining these desired properties has led to the definition of the
fuzzy minimum bounding rectangle of a fuzzy region Ã (denoted m̃br(Ã)) as a
new fuzzy region for which every weak α-cut is the crisp minimum bounding
rectangle of the same weak α-cut of the original fuzzy region.

Definition 57 (minimum bounding rectangle of a fuzzy region Ã)

m̃br(Ã) = {(p, µm̃br(Ã)(p))} (2.10)

where

µm̃br(Ã) : U → ]0, 1]

p 7→ sup{αi | αi ∈]0, 1] ∧ p ∈ mbr(Ãαi
)}

Following the definition, fuzzy bounding rectangle is simple (53) and rec-
tangular; as is clearly illustrated on fig. 2.5.

Convex hull

The convex hull of a crisp region 1.1.4 returns the smallest convex polygon
that holds a given polygon. The concept of a fuzzy convex polygon should
resemble this for crisp regions (which are in essence a special case of fuzzy
regions). Consequently, the fuzzy convex hull has similar properties to a fuzzy
minimum bounding rectangle: it should take into account the fuzziness of the
region, while at the same time also be compatible with the crisp convex hull of
a defuzzified fuzzy region. As a result, a fuzzy convex hull is defined as being
a fuzzy region, of which every α-cut is the crisp convex hull for the matching
α-cut of the original fuzzy region. This leads to the definition:

1Not to be confused with the Fuzzy MBR approach as presented by Somodevilla and
Petry in [45], see 1.3.2.
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Figure 2.5: Illustration of a the fuzzy MBR of a fuzzy region: the MBR is a rec-
tangular region, that at each α-level holds the MBR corresponding with the polygon
obtained by considering the same α-level in the original fuzzy region.

Ã ch(Ã)

(a) (b)

Figure 2.6: Illustration of the fuzzy convex hull of a fuzzy region: (a) fuzzy region
Ã, (b) the fuzzy convex hull of Ã.

Definition 58 (convex hull (ch) of a fuzzy region Ã)

c̃h(Ã) = {(p, µc̃h(Ã)(p))} (2.11)

where

µc̃hÃ : U → ]0, 1]

p 7→ sup{αi | αi ∈]0, 1] ∧ p ∈ ch(Ãαi
)}

Similar to the fuzzy minimum bounding rectangle, the convex hull is a simple
fuzzy region (53), illustrated on fig. 2.6.

Surface area

The surface area of a fuzzy region lends itself to two interpretations, depending
on the interpretation of the fuzzy region. The first interpretation is best illus-
trated with the aforementioned example of the boundary of a lake (where there
is a veristic interpretation), the surface area of the lake as an entity depends
on the size of the lake, which in turn is modelled with different membership
grades: locations with a membership grade less than 1 contribute to the sur-
face area only if the lake has the size that matches with this membership grade.
Consequently, the surface area will represent this as a fuzzy number, where the
possibility distribution is dependent of the locations in the fuzzy region. On
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the other hand, if the fuzziness is used to represent intrinsic fuzziness, there
usually will be no regarding the surface area, hence it will yield a crisp number.
This crisp number is an extension of the concept of fuzzy cardinality.

Interpretation 1: fuzzy number The fuzzy surface area S̃ in the first
interpretation will result in a fuzzy number that represents the possible surface
areas. By definition ([32]), a fuzzy number B̃ is defined as a fuzzy set over R

that satisfies the properties:

• B̃ is normed, i.e. there is at least one element x for which µB̃(x) = 1

• ∀α ∈]0, 1] : B̃α is a closed interval

• the support B̃0 of B̃ must be bounded

For future computations, it is useful to have a fuzzy number as the result of a
fuzzy surface area: calculations with different surface areas can be performed
using fuzzy arithmetic ([32]).

Both the weak and the strong α-cut of a fuzzy region (2.4.1) Ã yield a
crisp region, denoted Ãα respectively Ãα. For these crisp regions and for every
α ∈]0, 1], the following property holds:

S(Ãα) ≤ S(Ãα) (2.12)

where S is the notation for the calculation of the surface area of a crisp region.
The equality only occurs if S(Ãα − Ãα) = 0; this happens if the points p for
which µÃ(p) = α form a one dimensional object (i.e. a line). This allows us to
define the surface area as:

Definition 59 (fuzzy surface area S̃f)

S̃f (Ã) = {(x, µS̃f (Ã)(x)), x ∈ U} (2.13)

where U is the considered universe and

µS̃f (Ã)(x) : R → [0, 1]

x 7→





1 if x = S(Ã1)
sup{α |

S(Ãα) ≤ x ≤ S(Ãα)} if S(Ãα) ≤ x ≤ S(Ãα)

0 elsewhere

This is illustrated on fig. 2.7.
This result is normed if the arguments are normed. Furthermore, every

α-cut for α ∈]0, 1] yields a closed interval. This is even the case if the mem-
bership function of a fuzzy region contains discontinuities (as illustrated on fig.
2.8a). The membership function for a fuzzy region that has a discontinuous
membership function is illustrated in fig. 2.8b. The result will be a decreas-
ing membership function, which is piecewise if a finite number of α-cuts is
considered.
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Figure 2.7: Illustration of the fuzzy surface area yielding a fuzzy number: (a) fuzzy
region Ã (illustrated using grey scales, and using some contourlines), (b) the fuzzy
surface area of Ã.
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Figure 2.8: Illustration of the fuzzy surface area of a region with a discontinuous
membership function: (a) fuzzy region Ã, (b) the fuzzy surface area of Ã.
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Interpretation 2: crisp number In the second interpretation, the fuzziness
is used to indicate the intrinsic vagueness of a region. The surface area therefore
becomes a crisp number. This number takes all points into consideration, where
the membership grade for each point determines how much is will contribute: a
point with a membership grade 0.5 will only contribute half of what a point with
membership grade 1 will contribute. In a discrete set, this number resembles
the fuzzy cardinality, but for infinite sets this needs to be extended.

Definition 60 (fuzzy surface area S̃c)

S̃c(Ã) =

∫

(x,y)∈U

µÃ(p(x, y)))d(x, y) (2.14)

This interpretation can be used when the results need to be processed by a
non-fuzzy system.

Distance calculation

The distance to a fuzzy region is a complicated concept. Consider for instance
the distance form Spain to the United Kingdom. Gibraltar is part of the United
Kingdom, but this distance might not always be desired: for a criminal evading
the Spanish police, Gibraltar might be the easiest way out, but most people
will mean the main island of the UK. The distance for complex fuzzy regions
(53) might yield weird results; we propose two possible distance measurements
that are related to the crisp concept of the shortest distance between regions.
Without having further information on how the membership grades of the
fuzzy region are interpreted, it is virtually impossible to pinpoint the most
appropriate definition.

α-level approach The first definition is based on α-levels. With this defi-
nition, the distance to a fuzzy region will be represented by a fuzzy number,
which models all the possible distances between the corresponding α-levels. To
define the distance calculation, consider two fuzzy regions Ã and B̃. The dis-
tance between crisp regions is defined as the shortest distance between them
(1.1.4). The fuzzy distance d̃(Ã, B̃) is a fuzzy number representing the possible
distances between the α-cuts of A and B.

Definition 61 (distance between fuzzy regions)
(in an α-level approach)

d̃(Ã, B̃) = {(x, µd̃(Ã,B̃)(x)) | x ∈ R} (2.15)

where

µd̃(Ã,B̃) : R → [0, 1]

x 7→ sup{α | d(Ãα, B̃α) ≤ x ≤ d(Ãα, B̃α)}
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Figure 2.9: Illustration of the fuzzy distance yielding a fuzzy number: (a) fuzzy
regions Ã and B̃ (illustrated using grey scales, and using some contourlines), (b) the
fuzzy distance between Ã and B̃.

In the case of fuzzy regions with discontinuous membership functions, the
definitions provides for a result similar to the result obtained by the definition
of the fuzzy surface (2.4.2). The definition is illustrated on fig. 2.9.

In this definition, the distance to points with a membership grade 1 is the
only distance which in turn receives membership grade 1. Intuitively, one might
wonder about this: points with a membership grade greater than 0.5 already
are considered to belong more to the region than to be outside of it.

Topological approach The second interpretation makes use of the defini-
tions for interior, exterior and boundary of a region; the distance between two
fuzzy regions Ã and B̃ in this interpretation will be denoted d̃∆(Ã, B̃). The
topology concepts will first be explained, after which the topological approach
for distances is considered (66).

2.4.3 Topology

Traditionally, topology between regions is defined using the boundary, interior
and exterior of the regions involved. For fuzzy regions, which are not defined
by means of their boundary, these concepts need to be defined. Furthermore,
the elements of the intersection matrices and the interpretation of the matri-
ces themselves differs from the traditional approach. To illustrate the fuzzy
topology concepts, a region Ã as shown in figure 2.10 is used.

Defining the extended concepts

Boundary The boundary-concept in the fuzzy region model is not part of
the definition of a region; the boundary has to be extracted from the definition
of the region. For regions with broad boundaries, and in the egg-yolk model
(1.3.2), the boundary was a new region, more specifically the region between
both the inner and outer boundaries. For fuzzy regions, the analogy makes
sense: the boundary will be a new fuzzy region, where points will be assigned
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A
~ A0.5

~

A0
~

A0.5 A0A1A
~ ~ ~ ~

(a) (b)

Figure 2.10: Sample region to illustrate the fuzzy topology concepts: (a) represented
using grey scales (b) represented with a number of contour lines.

membership grades to indicate to what extent they belong to this boundary, as
shown on fig. 2.11a and fig. 2.11b. Points p with membership grade µÃ(p) = 0
or µÃ(p) = 1 in the original region do not belong to the boundary, as they
are completely outside, respectively completely inside the region. Points with
a membership grade less than 0.5 belong less to the region than points with a
membership grade greater than 0.5; consequently, 0.5 will play a crucial part.
Points p with membership grade µÃ(p) = 0.5 will be considered to completely
belong to the boundary (and will be assigned membership grade µ∆Ã(p) = 1
in the boundary). The more the original membership grade differs from 0.5,
the lower the membership grade it will be assigned in the boundary. This is
accomplished with the function

2(0.5 − |0.5 − x|),∀x ∈ [0, 1] (2.16)

This is illustrated on fig. 2.11c.

As crisp regions (and broad boundary regions) can be considered to be
special cases of fuzzy regions, the definition must be such that it reverts back to
the boundary definitions for those situations (this is also required if for instance
a region’s boundary is crisp at some part). This is achieved by considering the
boundaries ∂Ãα at every α-level α. The boundary of a fuzzy region Ã will be
defined as:

Definition 62 (boundary ∆Ã of a fuzzy region Ã)

∆Ã =
⋃

α∈]0,1]

{(p, 2(0.5 − |0.5 − α|)) | p ∈ ∂Ãα} (2.17)

This basically means that the fuzzy boundary ∆Ã (the same notation ∆ as
in [10] is used) holds all the points that are not in completely in the interior,
nor completely in the exterior. The membership grades are associated in a
way that points for which µÃ(p) = 0.5 are assigned the membership grade
µ∆Ã(p) = 1.
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∆A
~µ µ

(c)

Figure 2.11: Illustration of the fuzzy boundary: (a) represented using grey scales,
(b) represented using some contour lines, (c) an example of the membership functions
for both Ã and ∆Ã.

Interior The concept of the interior is similar to the concept of the boundary
and it also is a fuzzy region. The membership grades of a fuzzy region are in
the range [0, 1]; 1 indicates the points that are completely part of the region;
this will also be the core of the interior. Points p just outside this core, but
still belonging to a substantial extent to the region (i.e. µÃ(p) > 0.5 are
also considered to be part of the interior to a lesser extent. Points p with a
membership grade µÃ(p) ≤ 0.5, are considered not to belong to the interior.

Definition 63 (interior Ã◦ of a fuzzy region Ã)

Ã◦ = {(p, µÃ◦(p)} (2.18)

Where

µÃ◦ : U → [0, 1]

p 7→
{

0 µÃ(p) ≤ 0.5
1 − µ∆Ã(p) elsewhere

The interior is defined using the membership grades of the points. The interior
Ã◦ is a fuzzy region, containing only those points that have a membership
grade strictly greater than 0.5 in the original region Ã. The membership grades
µÃ(p) are all in the range ]0.5, 1], these are rescaled so that the interior has
membership grades in the range [0, 1], see figure 2.12.

Note that some relations that are valid in the crisp case, are no longer valid:
traditionally, Ã◦ = Ã\∂Ã, but Ã◦ 6= Ã\∆Ã.
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A°
~ A°0

~
A°1
~

A°
~

A°0
~

A°1
~

(a) (b)

1

0.5

A
~µ

A°
~µ

(c)

Figure 2.12: Illustration of the fuzzy interior (the outline of Ã is shown): (a)
represented using grey scales, (b) represented using some contour lines, (c) an example
of the membership functions for both Ã and Ã◦.

Exterior The exterior is defined similarly to the interior; only points p for
which µÃ(p) < 0.5 are now considered.

Definition 64 (exterior Ã− of a fuzzy region Ã)

Ã− = {(p, µÃ−(p)} (2.19)

Where

µÃ− : U → [0, 1]

p 7→
{

0 µÃ(p) ≥ 0.5
1 − µ∆Ã(p) elsewehere

Similarly to the interior, the exterior is defined using the membership grades
of the points. The exterior Ã− also is a fuzzy region, containing only those
points that have a membership grade smaller than 0.5 in the original region Ã.
The original membership grades µÃ(p) for these points are in the range [0, 0.5],
the membership grades µÃ−(p) are in the range [0, 1], as can bee seen in figure
2.13. Points outside the outline are also assigned a membership grade 1.

Due to this definition, some relationships with regards to the boundary are
lost, similarly to the interior.

Matrix elements In the crisp nine-intersection model, the matrix elements
are considered to be 0 if the intersection is empty, and 1 if it is not. In our
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Figure 2.13: Illustration of the fuzzy exterior (the outline of the core of Ã is also
shown): (a) represented using grey scales, (b) represented using some contour lines,
(c) an example of the membership functions for both Ã and Ã◦.

approach, the matrix elements are deduced from each intersection: each ma-
trix element is the value of the highest membership grade occurring in the
intersection. An example of such a matrix element is:

height(µÃ◦∩̃B̃◦) (2.20)

Where height of a fuzzy set X is defined [23] as in (1.2.3) before:

Definition 65 (height)

height(X) = sup
p

(µX(p)) (2.21)

Note that matrix elements are no longer limited to {0, 1}, but can have any
value in the range [0, 1]. This in turn will impact how the intersection matrices
ought to be interpreted.

Interpreting the nine-intersection model for fuzzy regions

Using the above definitions of a fuzzy region (consider regions Ã and B̃, the
appropriate definitions for interior Ã◦, exterior Ã− and boundary ∆Ã and the
intersection of fuzzy regions ∩̃, the nine-intersection matrix becomes:




h(Ã◦∩̃B̃◦) h(Ã◦∩̃∆B̃) h(Ã◦∩̃B̃−)

h(∆Ã∩̃B̃◦) h(∆Ã∩̃∆B̃) h(∆Ã∩̃B̃−)

h(Ã−∩̃B̃◦) h(Ã−∩̃∆B̃) h(Ã−∩̃B̃−)


 (2.22)
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Where h(X) is a shorthand notation for the height(X) of a fuzzy set X.
A major difference between this intersection matrix, and the aforementioned

intersection matrices (for crisp regions, 1.16; for regions with undetermined
boundaries,1.44) is that in the above matrix, the elements are no longer limited
to {0, 1}, but are in the range [0, 1].

While at first this might seem to yield an infinite number of cases, it is
possible to categorize them based on their values. When a matrix element is 0,
it means there is no intersection whatsoever. For elements in the range ]0, 1[,
this means there is some intersection, but not between the cores of the regions.
Finally, when the matrix element is 1, it means that there is an intersection
with the core of one of the regions. Basically, the fuzzy region consists of three
subregions: the interior, the exterior and the boundary; just like the broad
boundary model (1.3.2). Consequently, the 44 cases of the broad boundary
model (1.3.2) and of the egg-yolk model (1.3.2) will serve as a starting point
for the case study of the fuzzy region topology.

Topological approach for distance calculation

The distance of a point to a fuzzy region (or by extension, between two fuzzy
regions) is a difficult concept. One might consider that points with a degree
greater than 0.5 already belong more to the region than points with less than
0.5. This would imply that these points contribute less of the distance of
the region; this can be accomplished by defining the distance using, both the
distance to its (fuzzy) boundary and the distance to its (fuzzy) interior. 2

Definition 66 (distance between fuzzy regions)
(in a topological approach)

d̃∆(Ã, B̃) = {(x, µd̃∆(Ã,B̃)(x))} (2.23)

µd̃∆(Ã,B̃) : R → [0, 1]

x 7→
{

µd̃(∆Ã,∆B̃)(x) if x < d(∆Ã0.5,∆B̃0.5)

1 − µd̃(Ã◦,B̃◦)(x) if x ≥ d(∆Ã0.5,∆B̃0.5)

Note that the membership grade for the distance decreases as the member-
ship for the region increases from 0.5 to 1. This reflects the fact from the crisp
case where the distance between a point that belongs to a region is 0; points
with a membership grade greater than 0.5 are considered to be more inside the
region than outside the region. The distance between for such points is there-
fore assigned lower membership grade. The choice for 0.5 is in a sense arbitrary,

2This definition of distance should not be confused with the topological distance as de-
fined by Egenhofer, which expresses the distance between two different topology cases in a
conceptual neighbourhood graph.
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Figure 2.14: Illustration of the fuzzy distance yielding a fuzzy number: (a) fuzzy
regions Ã and B̃ (illustrated using grey scales, and using some contourlines), (b) the
fuzzy distance between Ã and B̃.

but it stands to reason to consider the halfway-point of the membership grades.
This is illustrated on fig. 2.14.

This definition yields a nice intuitive result for regions that are represented
by normalized fuzzy sets (21) and that are simple fuzzy regions (53), but also
for regions that are a union of normalized, simple fuzzy regions.

Case study of fuzzy region topology

For the case study, the different matrix elements will be used to identify differ-
ent topological relations. For each case, a matrix element will match a specific
value or be inside a specific interval. To illustrate which values or intervals are
possible for the matrix elements, consider the fuzzy regions Ã and B̃. Given
the definition of the boundary ∆Ã, intersections between this boundary and
the interior B̃◦ will only yield 1 if there is a point p in the intersection for
which µ∆Ã(p) = 1 and µB̃◦(p) = 1; in other words for which µÃ(p) = 0.5 and
µB̃(p) = 1. As no assumption is made regarding the membership grades of
both regions, there is no guarantee that there are points for which µÃ(p) = 0.5.

The same reasoning can be made for ∆B̃. Consequently, as the presence of
an element with membership grade 0.5 in a fuzzy region cannot be guaranteed
(which yields a membership grade 1 in the boundary of that fuzzy region),
the intersection with this boundary might never equal 1. Thus for the matrix
elements that make use of a boundary element, i.e. h(Ã◦∩̃∆B̃), h(∆Ã∩̃B̃◦),
h(∆Ã∩̃∆B̃), h(∆Ã∩̃B̃−) and h(Ã−∩̃∆B̃), a distinction will only be made be-
tween the value 0 (no intersection) and the intervals ]0, 1[ (intersection but not
full) and ]0, 1] (possibly a full intersection).

The interior and exterior of Ã yield membership grades 1 for points where
µÃ(p) = 1 and µÃ(p) = 0 respectively. Following the definition of a region, an
intersection between any combination of interior and exterior of 2 regions can
therefore yield any value in the range [0, 1], however, this time the distinction
will be made between three cases: the matrix element equals 0 (no intersection),
the element is in the range ]0, 1[ (intersection, but not full intersection), or the
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element equals 1 (full intersection). Cases can of course be combined (e.g. ]0, 1]
to indicate an intersection which can be a full intersection).

Consider two fuzzy regions Ã and B̃.

Case 1 The first considered case in the case study is when both regions Ã
and B̃ are completely disjoint, which yields the following.

Ã disjoint B̃




0 0 1
0 0 a1

1 a2 1




A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1]

This matrix is completely similar to the nine-intersection matrix of disjoint
crisp regions, and to the nine-intersection matrix of disjoint regions with broad
boundaries.
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Case 2 If the regions meet slightly, this means that there is an overlap be-
tween the two boundaries. Consequently, h(∆Ã∩̃∆B̃) > 0 (otherwise both
regions would not have overlapping boundaries, and it would yield the above
case). It is also possible for the boundary ∆Ã to intersect partially with the
interior B̃◦. There is a symmetrical case, when the boundary ∆B̃ intersects
the interior Ã◦; both cases can occur at the same time. As a result, this case
yields 4 subcases.

Ã◦∩̃∆B̃ = ∅
∆Ã∩̃B̃◦ = ∅




0 0 1
0 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], a1 ∈]0, 1], a2 ∈]0, 1]

Ã◦∩̃∆B̃ = ∅
∆Ã∩̃B̃◦ 6= ∅




0 c1 1
0 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

Ã◦∩̃∆B̃ 6= ∅
∆Ã∩̃B̃◦ = ∅




0 0 1
c2 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c2 ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

Ã◦∩̃∆B̃ 6= ∅
∆Ã∩̃B̃◦ 6= ∅




0 c1 1
c2 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1, c2 ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

The above cases can be summarized in one matrix:



0 c1 1
c2 b a1

1 a2 1


 (2.24)

where b ∈]0, 1], c1, c2 ∈ [0, 1[, a1 ∈]0, 1], a2 ∈]0, 1].
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Case 3 & case 6 Case 3 occurs when the broad boundary ∆Ã intersects
with the broad boundary ∆B̃ and when the interior Ã◦ also intersects with
the boundary ∆B̃ (or vice versa: the symmetrical case 6). First, an intersec-
tion between the boundaries implies that h(∆Ã∩̃∆B̃) > 0. It is possible for
this matrix element to equal 1, to indicate that the boundaries fully intersect
(meaning that there are points for which µÃ(p) = µB̃(p) = 0.5.

Second, it is possible for ∆Ã to intersect with B̃◦. Even further, if the
interior of Ã intersects with the boundary of B̃, this means that h(Ã◦∩̃∆B̃) > 0.
It is possible for this matrix element to equal 1, if there are points p such that
µÃ(p) = 1 ∧ µB̃(p) = 0.5; it is not possible of this element to equal 0 (as this
would yield the previous case).

∆Ã∩̃B̃◦ = ∅
Ã◦∩̃B̃◦ = ∅




0 c1 1
0 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], a1 ∈]0, 1], a2 ∈]0, 1]

∆Ã∩̃B̃◦ 6= ∅
Ã◦∩̃B̃◦ = ∅




0 c1 1
c2 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

∆Ã∩̃B̃◦ 6= ∅
Ã◦∩̃B̃◦ 6= ∅




d c1 1
c2 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1[, d ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

The above matrices can be summarized in one single matrix:




d c1 1
c2 b a1

1 a2 1


 (2.25)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈ [0, 1[, d ∈ [0, 1[.
This matrix includes additional cases that are obtained with complex fuzzy

regions (Definition 53), which makes it possible for Ã◦ to intersect with B̃◦, even
when ∆Ã does not intersect with B̃◦. This particular situation is elaborated
on in further detail, to illustrate what kind of additional cases are included.
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This situation would yield the following intersection matrix:

Ã◦ ∩ B̃◦ 6= ∅
∆Ã ∩ B̃◦ = ∅




d c1 1
0 b a1

1 a2 1




A
~

B
~B

~µ  (x)=0.8

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], d ∈ [0, 1[

In this example, as illustrated on the figure, the fuzzy region B̃ is a complex
region: all the points inside the portion indicated by the arrow have member-
ship grade 0.8 in the region B̃; causing it to have α-cuts for which the result
consists of several disconnected crisp regions (in this example, all the α-cuts
yield a result that consists of two disconnected regions). These points belong
both to the interior B̃◦, but also to the boundary ∆B̃. As the membership
grade is less than 1, the intersection with the interior Ã◦ will never equal 1.
As there are no points for which both the membership grade in B̃ is greater
than 0.5 and for which the membership grade in Ã is in ]0, 1[, the intersection
between the boundary ∆Ã and the interior B̃◦ is empty.

This particular case is not comprised in any of the above three cases, but
is an additional case that complies with the summarizing matrix. Due to the
fact that these fuzzy regions are not simple fuzzy regions, reasoning with them
is often counter-intuitive. The combination of the different cases for simple
fuzzy regions in a summarizing matrix however, yields a summarizing matrix
in which the additional cases for complex fuzzy regions are included.

The symmetrical case (case 6) has the following summarized intersection
matrix: 


d c1 1
c2 b a1

1 a2 1


 (2.26)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], d ∈ [0, 1[.
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Case 4 & case 7 In case 4, the boundary ∆Ã intersects with the boundary
∆B̃ and the interior Ã◦ is entirely located inside the broad boundary ∆B̃ (case
7 is the symmetrical case). First, an intersection between the boundaries has
the same implications as before: h(∆Ã∩̃∆B̃) > 0, the element can equal 1,
and the boundary ∆Ã can or cannot with the interior B̃◦ (to a degree strictly
less than 1).

Second, if the interior Ã◦ is inside the boundary ∆B̃, it can intersect (to a
degree strictly less than 1) with the interior B̃◦, with the exterior B̃−, or with
both.

Ã◦∩̃B̃◦ = ∅
∆Ã∩̃B̃◦ = ∅
Ã◦∩̃B̃− = ∅




0 c1 0
0 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], a1 ∈]0, 1], a2 ∈]0, 1]

Ã◦∩̃B̃◦ = ∅
∆Ã∩̃B̃◦ = ∅
Ã◦∩̃B̃− 6= ∅




0 c1 e1

0 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], e1 ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

Ã◦∩̃B̃◦ = ∅
∆Ã∩̃B̃◦ 6= ∅
Ã◦∩̃B̃− 6= ∅




0 c1 e1

c2 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1[, e1 ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

Ã◦∩̃B̃◦ 6= ∅
∆Ã∩̃B̃◦ 6= ∅
Ã◦∩̃B̃− 6= ∅




d c1 e1

c2 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1[, d ∈]0, 1[, e1 ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

Ã◦∩̃B̃◦ 6= ∅
∆Ã∩̃B̃◦ 6= ∅
Ã◦∩̃B̃− = ∅




d c1 0
c2 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1[, d ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

The above cases can be summarized in one single matrix:




d c1 e1

c2 b a1

1 a2 1


 (2.27)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈ [0, 1[, d ∈ [0, 1[, e1 ∈ [0, 1[.
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As before, this matrix also includes the additional cases for complex fuzzy
regions.

The symmetrical case is case 7, which is characterized by the following
matrix:




d c1 1
c2 b a1

e2 a2 1


 (2.28)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], d ∈ [0, 1[, e2 ∈ [0, 1[.

Case 5 & case 8 In case 5, the boundary ∆Ã and a fortiori the interior Ã◦

are completely inside the boundary ∆B̃ (case 8 is the symmetrical case).

The boundary ∆Ã can intersect (to a degree strictly less than 1) the interior
B̃◦, the exterior Ã−, or neither, or both. Same holds for the interior Ã◦.

∆Ã∩̃B̃◦ = ∅
Ã◦∩̃B̃◦ = ∅
∆Ã∩̃B̃− 6= ∅
Ã◦∩̃B̃− 6= ∅




0 c1 e1

0 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], e1 ∈]0, 1[, a1 ∈]0, 1[, a2 ∈]0, 1]

∆Ã∩̃B̃◦ 6= ∅
Ã◦∩̃B̃◦ = ∅
∆Ã∩̃B̃− 6= ∅
Ã◦∩̃B̃− 6= ∅




0 c1 e1

c2 a a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1[, e1 ∈]0, 1[, a1 ∈]0, 1[, a2 ∈]0, 1]

∆Ã∩̃B̃◦ 6= ∅
Ã◦∩̃B̃◦ 6= ∅
∆Ã∩̃B̃− 6= ∅
Ã◦∩̃B̃− 6= ∅




d c1 e1

c2 b a1

1 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1[, d ∈]0, 1[, e1 ∈]0, 1[, a1 ∈]0, 1[, a2 ∈]0, 1]
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∆Ã∩̃B̃◦ 6= ∅
Ã◦∩̃B̃◦ 6= ∅
∆Ã∩̃B̃− 6= ∅
Ã◦∩̃B̃− = ∅




d c1 0
c2 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1[, d ∈]0, 1[, a1 ∈]0, 1[, a2 ∈]0, 1]

∆Ã∩̃B̃◦ 6= ∅
Ã◦∩̃B̃◦ 6= ∅
∆Ã∩̃B̃− = ∅
Ã◦∩̃B̃− = ∅




d c1 0
c2 b 0
1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1[, d ∈]0, 1[, a2 ∈]0, 1]

Additionally, when the fuzzy regions are complex, it is possible for Ã◦∩̃B̃◦ 6=
∅ even if ∆Ã∩̃B̃◦ = ∅. Similarly, it is possible for Ã◦∩̃B̃− 6= ∅ if ∆Ã∩̃B̃− = ∅.

Apart from complex regions, a new special case can occur: the boundary
∆B̃ can have a large area where the membership grade equals 0.5. If the region
Ã happens to be entirely located in this area, the following conditions are true
at the same time: ∆Ã∩̃B̃◦ = ∅, Ã◦∩̃B̃◦ = ∅, ∆Ã∩̃B̃− = ∅ and Ã◦∩̃B̃− = ∅.

These additional cases are automatically included in the summarizing ma-
trix: 


d c1 e1

c2 b a1

1 a2 1


 (2.29)

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈ [0, 1[, d ∈ [0, 1[, e1 ∈ [0, 1[.
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Case 9 In case 9, the boundary ∆Ã intersects with the interior B̃◦ and vice
versa.

It is possible for Ã◦ to intersect (to a degree strictly less than 1) with B̃◦.

Ã◦∩̃B̃◦ = ∅




0 c1 1
c2 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], a1 ∈]0, 1], a2 ∈]0, 1]

Ã◦∩̃B̃◦ 6= ∅




d c1 1
c2 b a1

1 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

The summarizing matrix for case 9 is




d c1 1
c2 b a1

1 a2 1


 (2.30)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈ [0, 1[.
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Case 10 & case 12 In case 10, the boundary ∆Ã intersects with the interior
B̃◦, the boundary ∆B̃ and the exterior B̃−. The interior Ã◦ can intersect with
either ∆B̃ (to a degree of up to 1) and with B̃◦, B̃− (to a degree strictly less
than 1).

Ã◦∩̃B̃◦ = ∅
Ã◦∩̃∆B̃ 6= ∅
Ã◦∩̃B̃− 6= ∅




0 c1 e1

c2 b a1

1 a2 1




A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

Ã◦∩̃B̃◦ = ∅
Ã◦∩̃∆B̃ 6= ∅
Ã◦∩̃B̃− = ∅




0 c1 0
c2 b a1

1 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], a1 ∈]0, 1], a2 ∈]0, 1]

Ã◦∩̃B̃◦ 6= ∅
Ã◦∩̃∆B̃ 6= ∅
Ã◦∩̃B̃− = ∅




d c1 0
c2 b a1

1 a2 1




A
~

B
~

A
~

B
~

where b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈]0, 1[, a1 ∈]0, 1], a2 ∈]0, 1]

The summarizing matrix for case 10 is



d c1 e1

c2 b a1

1 a2 1


 (2.31)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈ [0, 1[, e1 ∈ [0, 1[.
The symmetrical case 12 yields the following summarizing matrix




d c1 1
c2 b a1

e2 a2 1


 (2.32)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈ [0, 1[, e2 ∈ [0, 1[.
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Case 11 & case 13 In case 11, the boundary ∆Ã intersects with the interior
B̃◦ and the boundary ∆B̃. An intersection with the exterior B̃− is possible,
but only to a degree strictly less than 1. The interior Ã◦ can intersect with
either B̃◦, ∆B̃ and B̃−.
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Ã◦∩̃B̃◦ = ∅
Ã◦∩̃B̃− 6= ∅
∆Ã∩̃B̃− 6= ∅




0 c1 e1

c2 b a1

1 a2 1




A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈]0, 1[

Ã◦∩̃B̃◦ 6= ∅
Ã◦∩̃B̃− 6= ∅
∆Ã∩̃B̃− 6= ∅




d c1 e1

c2 b a1

1 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈]0, 1], e1 ∈]0, 1[

Ã◦∩̃B̃◦ 6= ∅
Ã◦∩̃B̃− = ∅
∆Ã∩̃B̃− 6= ∅




d c1 0
c2 b 0
1 a2 1




A
~

B
~

A
~

B
~

where a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈]0, 1]
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Ã◦∩̃B̃◦ 6= ∅
Ã◦∩̃B̃− = ∅
∆Ã∩̃B̃− = ∅




d c1 0
c2 b a1

1 a2 1




A
~

B
~

A
~

B
~

where , a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈]0, 1]

Theoretically, it is also possible for the B̃ to have a large region where it
has membership grade 0.5. Consequently, it is possible for the boundary ∆Ã
not to intersect with the exterior B̃−, for the interior Ã◦ not to intersect with
the exterior B̃−, or for both at the same time. This yields three additional
cases.

Ã◦∩̃B̃◦ = ∅
Ã◦∩̃B̃− 6= ∅
∆Ã∩̃B̃− = ∅




0 c1 e1

c2 b 0
1 a2 1




where a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈]0, 1[

Ã◦∩̃B̃◦ = ∅
Ã◦∩̃B̃− = ∅
∆Ã∩̃B̃− = ∅




0 c1 0
c2 b a1

1 a2 1




where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1]

Ã◦∩̃B̃◦ = ∅
Ã◦∩̃B̃− = ∅
∆Ã∩̃B̃− 6= ∅




0 c1 0
c2 b 0
1 a2 1




where a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1]

All of the above cases can be summarized in one matrix, which additionally
takes into account the cases for complex fuzzy regions:




d c1 1
c2 b a1

e2 a2 1


 (2.33)

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈ [0, 1[, e1 ∈ [0, 1[,
e2 ∈ [0, 1[

The symmetrical case 13 is summarized by the matrix



d c1 1
c2 b a1

e2 a2 1


 (2.34)

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈ [0, 1[, e1 ∈ [0, 1[,
e2 ∈ [0, 1[
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Case 14 In case 14, the boundary ∆Ã intersects with the boundary ∆B̃;
both interiors are inside this intersection.

It is possible for Ã◦ to intersect (to a degree strictly less than 1) with the
interior B̃◦ or the exterior B̃-, or with both at the same time. Similarly, this
is also possible for B̃◦.

Ã◦∩̃B̃◦ = ∅




0 c1 e1

c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1],
e1 ∈]0, 1[, e2 ∈]0, 1[

If there is an intersection (to a degree strictly less than 1) possible between
Ã◦ and B̃◦, the number of subcases increases dramatically, even for simple
fuzzy regions. To illustrate, consider the intersections between the α-levels 0.5
and 1 for both Ã and B̃:

Figure 2.15: Possible topology cases for the α-levels 0.5 and 1 if no full intersection
is possible.

Each of above 11 cases should be combined similarly to the 4 mentioned
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before, with the limitation that both crisp regions Ã1 and B̃1 should be inside
the intersection of Ã0 and B̃0. For complex regions, there even are additional
cases. All of these cases can be summarized in one matrix, which additionally
takes into account the cases for complex fuzzy regions:




d c1 1
c2 b a1

e2 a2 1


 (2.35)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈ [0, 1[, e1 ∈ [0, 1[,
e2 ∈ [0, 1[.
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Case 15 & case 16 In case 15, the boundary ∆B̃ is completely inside the
boundary ∆Ã (no full intersection with the exterior Ã− is possible). The case
is more or less similar to case 14.

Ã◦∩̃B̃◦ = ∅
Ã◦∩̃B̃− 6= ∅




0 c1 e1

c2 b a1

0 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1],
c2 ∈]0, 1], e1 ∈]0, 1[

Ã◦∩̃B̃◦ 6= ∅
Ã◦∩̃B̃− 6= ∅




d c1 e1

c2 b a1

0 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1],
c2 ∈]0, 1], d ∈]0, 1[, e1 ∈]0, 1[
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Ã◦∩̃B̃◦ 6= ∅
Ã◦∩̃B̃− = ∅




d c1 0
c2 b a1

0 a2 1


 A

~
B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈]0, 1[

All the above cases, as well as the additional cases for complex fuzzy regions
are summarized as 


d c1 e1

c2 b a1

0 a2 1


 (2.36)

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈ [0, 1[, e1 ∈ [0, 1[.
Case 16 is the symmetrical case, which has the summarizing matrix




d c1 0
c2 b a1

e2 a2 1


 (2.37)

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈ [0, 1[, e2 ∈ [0, 1[.
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Case 17 In case 17, the outer boundaries match. Depending of definitions of
the regions, Ã−∩̃∆B̃ can be empty or can intersect to a degree strictly smaller
than 1 (and vice versa).

The interior Ã◦ can intersect with B̃◦ (only to a degree strictly less than
1). The interior Ã◦ can intersect the exterior Ã− (only to a degree strictly less
than 1) and vice versa. As not to overload the number of cases, their matrix
elements will be considered in the range [0, 1[.

Ã◦∩̃B̃◦ = ∅




0 c1 e1

c2 b a1

e2 a2 1




A
~

B
~

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1[, c2 ∈]0, 1[,
e1 ∈]0, 1[, e2 ∈]0, 1[

Ã◦∩̃B̃◦ 6= ∅
Ã◦∩̃B̃− = ∅




d c1 e1

c2 b a1

0 a2 1




A
~

B
~

A
~

B
~

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1[, c1 ∈]0, 1[, c2 ∈]0, 1[,
d ∈]0, 1[, e1 ∈]0, 1[

Ã◦∩̃B̃◦ 6= ∅
Ã−∩̃B̃◦ = ∅




d c1 e1

c2 b a1

0 a2 1




A
~

B
~

A
~

B
~

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1[, c1 ∈]0, 1[, c2 ∈]0, 1[,
d ∈]0, 1[, e1 ∈]0, 1[
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Ã◦∩̃B̃◦ 6= ∅
Ã−∩̃B̃◦ 6= ∅
Ã◦∩̃B̃− 6= ∅




d c1 e1

c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1],
d ∈]0, 1[, e1 ∈ [0, 1[, e2 ∈ [0, 1[

All of the above cases can be summarized in one intersection matrix, which
also includes the additional cases for non-topological reasons




d c1 e1

c2 b a1

e2 a2 1


 (2.38)

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], d ∈ [0, 1[, e1 ∈ [0, 1[,
e2 ∈ [0, 1[
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Case 18 In case 18, the interior Ã◦ intersects to a degree 1 with both the
interior B̃◦ and the exterior B̃−, and vice versa. The interior Ã◦ intersects
also with the boundary ∆B̃ and vice versa. For simple fuzzy regions, this only
yields one case.




1 c1 1
c2 b a1

1 a2 1




A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1]

The summarizing matrix is exactly the same as the above matrix.

Case 19 & 21 Case 19 is similar to case 18, apart from the fact that no
intersection to a degree 1 is possible between the interior Ã◦ and the exterior
B̃−. This yields two subcases: either there is a partial intersection between Ã◦

and B̃−, or there is no intersection possible.

Ã◦∩̃B̃− 6= ∅




1 c1 e1

c2 b a1

1 a2 1




A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈]0, 1[

Ã◦∩̃B̃− = ∅




1 c1 0
c2 b a1

1 a2 1




A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1]

The summarizing matrix is




1 c1 e1

c2 b a1

1 a2 1


 (2.39)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈ [0, 1[.

Case 21 is the symmetrical case, with summarizing matrix




1 c1 1
c2 b a1

e2 a2 1


 (2.40)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e2 ∈ [0, 1[.
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Case 20 & 22 Case 20 is similar to case 19, but now no intersection to a
degree 1 is possible between the boundary ∆Ã and the exterior B̃−.

Ã◦∩̃B̃− 6= ∅




1 c1 e1

c2 b a1

1 a2 1




A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈]0, 1[

Ã◦∩̃B̃− = ∅
∆Ã∩̃B̃− 6= ∅




1 c1 0
c2 b a1

1 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1]

Ã◦∩̃B̃− = ∅
∆Ã∩̃B̃− = ∅




1 c1 0
c2 b 0
1 a2 1




A
~

B
~

where a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1]

The summarizing matrix is




1 c1 e1

c2 b a1

1 a2 1


 (2.41)

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈ [0, 1[.
Case 22 is the symmetrical case, which has summarizing matrix




1 c1 1
c2 b a1

e2 a2 1


 (2.42)

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e2 ∈ [0, 1[.
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Case 23 In case 23, the interior Ã◦ intersects to a degree 1 the interior B̃◦;
it also intersects with the exterior B̃−, but only to a degree strictly less than
1. The interior Ã◦ also intersects with the boundary ∆B̃. Similar conditions
hold for B̃◦.

Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ = ∅




1 c1 e1

c2 b a1

0 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈]0, 1[

Ã◦∩̃B̃− = ∅
Ã−∩̃B̃◦ 6= ∅




1 c1 0
c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e2 ∈]0, 1[

The cases where both Ã◦∩̃B̃− 6= ∅ and Ã−∩̃B̃◦ 6= ∅, yield a large num-
ber of alternatives. To illustrate, consider the remaining possible intersections
between the α-levels 0.5 and 1 of both Ã and B̃.

Figure 2.16: Possible topology cases for the α-levels 0.5 and 1 if a full intersection
is required, and neither level at 0.5 is completely contained in the other.

The possible variants for case 23 all have in common that there is no full in-
tersection possible between the interior Ã◦ and the exterior B̃− (or vice versa).
For each of the 4 above cases, the boundary of one region may or may not have
a full intersection with the exterior of the other region. In total, this yields 16
additional cases, all represented by the intersection matrix
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Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ 6= ∅




1 c1 e1

c2 b a1

e2 a2 1




where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1],
e1 ∈]0, 1[, e2 ∈]0, 1[

The summarizing matrix combines the above cases, as well as additional
special cases: 


1 c1 e1

c2 b a1

e2 a2 1


 (2.43)

where where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈ [0, 1[,
e2 ∈ [0, 1[.
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Case 24 & 25 In case 24, the boundary ∆Ã is completely inside ∆B̃: the
intersection between ∆Ã and B̃− is strictly less than 1. There is a full inter-
section between the interiors Ã◦ and B̃◦.

Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ 6= ∅




1 c1 e1

c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1],
e1 ∈ [0, 1[, e2 ∈ [0, 1[
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Ã◦∩̃B̃− = ∅




1 c1 e1

c2 b a1

0 a2 1




A
~

B
~

A
~

B
~

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈ [0, 1[

Ã−∩̃B̃◦ = ∅




1 c1 0
c2 b a1

e2 a2 1




A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e2 ∈ [0, 1[

The matrix combining all the above cases is:




1 c1 e1

c2 b a1

e2 a2 1


 (2.44)

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈ [0, 1[, e2 ∈ [0, 1[
Case 25 is the symmetrical case, which is summarized by:




1 c1 e1

c2 b a1

e2 a2 1


 (2.45)

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈ [0, 1[, e2 ∈ [0, 1[
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Case 26 Case 26 is similar to case 17; but now there is an intersection to a
degree 1 between the interiors Ã◦ and B̃◦. The interior Ã◦ can intersect the
exterior Ã− (only to a degree strictly less than 1) and vice versa. As not to
overload the number of cases, their matrix elements will be considered in the
range [0, 1[.

Ã◦∩̃B̃− = ∅




1 c1 0
c2 b a1

e2 a2 1




A
~

B
~

where a2 ∈]0, 1[, b ∈]0, 1], c1 ∈]0, 1[, c2 ∈]0, 1], e2 ∈ [0, 1[

Ã−∩̃B̃◦ = ∅




1 c1 e1

c2 b a1

0 a2 1




A
~

B
~

where a1 ∈]0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1[, e1 ∈ [0, 1[

Ã◦∩̃B̃− = ∅
Ã−∩̃B̃◦ = ∅




1 c1 e1

c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1],
e1 ∈ [0, 1[, e2 ∈ [0, 1[

The summarizing matrix for all of the above cases is:




1 c1 e1

c2 b a1

e2 a2 1


 (2.46)

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1], e1 ∈ [0, 1[, e2 ∈ [0, 1[
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Case 27 & 33 Case 27 is similar to case 20, but now the interior Ã◦ is
completely inside the interior B̃◦.

Ã◦∩̃B̃− 6= ∅
Ã−∩̃∆B̃ 6= ∅




1 c1 0
c2 b a1

1 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1[, c2 ∈]0, 1]

Ã◦∩̃B̃− = ∅
Ã◦∩̃∆B̃ 6= ∅
∆Ã∩̃B̃− 6= ∅




1 c1 0
c2 b a1

1 a2 1




A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1[, c2 ∈]0, 1]

Ã◦∩̃B̃− = ∅
Ã◦∩̃∆B̃ = ∅
∆Ã∩̃B̃− 6= ∅




1 0 0
c2 b a1

1 a2 1




A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c2 ∈ [0, 1[

Ã◦∩̃B̃− = ∅
Ã◦∩̃∆B̃ = ∅
∆Ã∩̃B̃− = ∅




1 0 0
c2 b 0
1 a2 1




A
~

B
~

where a2 ∈]0, 1], b ∈]0, 1], c2 ∈ [0, 1[

Ã◦∩̃B̃− = ∅
Ã◦∩̃∆B̃ 6= ∅
∆Ã∩̃B̃− = ∅




1 c1 0
c2 b 0
1 a2 1




A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1[, c2 ∈ [0, 1[
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The above matrices (including the special cases) can be summarized as




1 c1 0
c2 b a1

1 a2 1


 (2.47)

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1].
Case 33 is the symmetrical case, with summary




1 c1 0
c2 b a1

1 a2 1


 (2.48)

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈]0, 1].



88 Fuzzy regions

Case 28 & 34 Case 28 is similar to case 27, apart from the fact that the
boundary ∆Ã intersects differently with the exterior B̃−.

Ã◦∩̃B̃− 6= ∅
Ã◦∩̃∆B̃ 6= ∅




1 c1 e1

c2 b a1

1 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1[, c2 ∈]0, 1], e1 ∈]0, 1[

Ã◦∩̃B̃− = ∅
Ã◦∩̃∆B̃ 6= ∅




1 c1 0
c2 b a1

1 a2 1




A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1[, c2 ∈]0, 1]

Ã◦∩̃B̃− = ∅
Ã◦∩̃∆B̃ = ∅




1 0 0
c2 b a1

1 a2 1




A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c2 ∈]0, 1]

The summarizing matrix (which also includes special cases) for the above
cases is 


1 c1 e1

c2 b a1

1 a2 1


 (2.49)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], e1 ∈ [0, 1[
Case 34 is the symmetrical case, which is summarized by




1 c1 1
c2 b a1

e2 a2 1


 (2.50)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈ [0, 1[, e2 ∈ [0, 1[
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Case 29 & 35 Case 29 is similar to case 28, but the interior B̃◦ is completely
inside the boundary ∆Ã.

Ã◦∩̃B̃− = ∅
Ã−∩̃B̃◦ 6= ∅




1 c1 0
c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, , c2 ∈]0, 1], e2 ∈]0, 1[

Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ = ∅




1 c1 e1

c2 b a1

0 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], e1 ∈]0, 1[
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Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ 6= ∅




1 c1 e1

c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1],
e1 ∈]0, 1[, e2 ∈]0, 1[

The matrix summarizing the above cases, and adding the cases for complex
fuzzy regions and special cases is




1 c1 e1

c2 b a1

e2 a2 1


 (2.51)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], e1 ∈ [0, 1[, e2 ∈ [0, 1[.
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Case 35 is the symmetrical case, summarized by




1 c1 e1

c2 b a1

e2 a2 1


 (2.52)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈ [0, 1[, e1 ∈ [0, 1[, e2 ∈ [0, 1[.

Case 30 & 36 In case 30, the interior Ã◦ is inside the interior B̃◦, and the
boundary ∆Ã is inside the boundary ∆B̃.

Ã◦∩̃B̃− = ∅




1 c1 0
c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], e2 ∈ [0, 1[

Ã◦∩̃B̃− 6= ∅




1 c1 e1

c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1],
e1 ∈]0, 1[, e2 ∈ [0, 1[

The above cases, including additional special cases, are summarized in




1 c1 e1

c2 b a1

e2 a2 1


 (2.53)

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], e1 ∈ [0, 1[, e2 ∈ [0, 1[.
Case 36 is the symmetrical case, summarized by




1 c1 e1

c2 b a1

e2 a2 1


 (2.54)

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈ [0, 1[, e1 ∈ [0, 1[, e2 ∈ [0, 1[.
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Case 31 & 37 In case 31, the interior Ã◦ is inside the interior B̃◦, and the
boundary ∆B̃ is inside the boundary ∆Ã.

Ã◦∩̃B̃− = ∅




1 c1 0
c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], e2 ∈ [0, 1[

Ã◦∩̃B̃− 6= ∅




1 c1 e1

c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1],
e1 ∈]0, 1[, e2 ∈ [0, 1[

The above cases, including additional special cases, are summarized in




1 c1 e1

c2 b a1

e2 a2 1


 (2.55)

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], e1 ∈ [0, 1[, e2 ∈ [0, 1[.
Case 37 is the symmetrical case, summarized by




1 c1 e1

c2 b a1

e2 a2 1


 (2.56)

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈]0, 1], c2 ∈ [0, 1[, e1 ∈ [0, 1[, e2 ∈ [0, 1[.
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Case 32 & 38 In case 32, the interior Ã◦ is inside the interior B̃◦, and the
boundaries ∆Ã and ∆B̃ overlap.

Ã◦∩̃B̃− = ∅




1 c1 0
c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], e2 ∈ [0, 1[

Ã◦∩̃B̃− 6= ∅




1 c1 e1

c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1],
e1 ∈]0, 1[, e2 ∈ [0, 1[

The above cases, including additional special cases, are summarized in




1 c1 e1

c2 b a1

e2 a2 1


 (2.57)

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈]0, 1], e1 ∈ [0, 1[, e2 ∈
[0, 1[.

Case 38 is the symmetrical case, summarized by




1 c1 e1

c2 b a1

e2 a2 1


 (2.58)

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈]0, 1], c2 ∈ [0, 1[, e1 ∈ [0, 1[, e2 ∈
[0, 1[.
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Case 39 & 40 In case 39, both the interior Ã◦ and the boundary ∆Ã are
inside B̃◦.




1 0 0
c2 b a1

1 a2 1




A
~

B
~

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈ [0, 1[, c2 ∈]0, 1]

Case 40 is the symmetrical case, which has the intersection matrix



1 c1 1
0 b a1

0 a2 1


 (2.59)

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈ [0, 1[, c1 ∈]0, 1]

Case 41 In case 41, the interiors Ã◦ and B̃◦ match; as do the boundaries
∆Ã and ∆Ã

Ã◦∩̃B̃− = ∅
Ã−∩̃B̃◦ 6= ∅




1 0 e1

0 b a1

e2 a2 1




A
~

B
~

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], e1 ∈ [0, 1[, e2 ∈]0, 1[

Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ = ∅




1 0 e1

0 b a1

e2 a2 1




A
~

B
~

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], e1 ∈]0, 1[, e2 ∈ [0, 1[

Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ 6= ∅




1 0 e1

0 b a1

e2 a2 1




A
~

B
~

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], e1 ∈]0, 1[, e2 ∈]0, 1[

The above cases are summarized in one matrix:



1 0 e1

0 b a1

e2 a2 1


 (2.60)

where a1 ∈ [0, 1[, a2 ∈ [0, 1[, b ∈]0, 1], e1 ∈ [0, 1[, e2 ∈ [0, 1[
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Case 42 & case 43 In case 42, the interiors Ã◦ and B̃◦ match and the
boundary ∆Ã is completely inside the boundary ∆B̃

Ã◦∩̃B̃− = ∅
Ã−∩̃B̃◦ 6= ∅
∆Ã∩̃B̃− = ∅




1 0 0
c2 b 0
e2 a2 1




A
~

B
~

where a2 ∈]0, 1], b ∈]0, 1[, c2 ∈ [0, 1[, e2 ∈]0, 1[

Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ = ∅
∆Ã∩̃B̃− 6= ∅




1 c1 e1

c2 b a1

0 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈ [0, 1[, e1 ∈]0, 1[

Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ 6= ∅
∆Ã∩̃B̃− 6= ∅




1 c1 e1

c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈ [0, 1[,
e1 ∈]0, 1[, e2 ∈]0, 1[

Ã◦∩̃B̃− = ∅
Ã−∩̃B̃◦ 6= ∅
∆Ã∩̃B̃− 6= ∅




1 0 0
c2 b a1

e2 a2 1




A
~

B
~

where a1 ∈]0, 1[, a2 ∈]0, 1], b ∈]0, 1], c2 ∈]0, 1[ e2 ∈]0, 1[

The summarizing matrix holding all the above cases and additional special
cases is: 


1 c1 e1

c2 b a1

e2 a2 1


 (2.61)

where a1 ∈ [0, 1[, a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈ [0, 1[, e1 ∈ [0, 1[, e2 ∈ [0, 1[
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The symmetrical case is case 43, with matrix:




1 c1 e1

c2 b a1

e2 a2 1


 (2.62)

where a1 ∈]0, 1], a2 ∈ [0, 1[, b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈ [0, 1[, e1 ∈ [0, 1[, e2 ∈ [0, 1[
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Case 44 In case 44, the interiors Ã◦ and B̃◦ match; the boundaries intersect.

Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ = ∅




1 c1 e1

c2 b a1

0 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈ [0, 1[, e1 ∈]0, 1[

Ã◦∩̃B̃− = ∅
Ã−∩̃B̃◦ 6= ∅




1 c1 0
c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈ [0, 1[, e2 ∈]0, 1[

Ã◦∩̃B̃− 6= ∅
Ã−∩̃B̃◦ 6= ∅




1 c1 e1

c2 b a1

e2 a2 1




A
~

B
~

A
~

B
~

A
~

B
~

A
~

B
~

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈ [0, 1[,
e1 ∈]0, 1[, e2 ∈]0, 1[
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The above cases can be summarized as



1 c1 e1

c2 b a1

e2 a2 1


 (2.63)

where a1 ∈]0, 1], a2 ∈]0, 1], b ∈]0, 1], c1 ∈ [0, 1[, c2 ∈ [0, 1[, e1 ∈ [0, 1[, e2 ∈ [0, 1[

Remark

Cases caused by complex fuzzy regions In each of the above case of the
case study, the summarizing matrix actually allows for more cases than the
ones drawn. One reason for this is that the drawings are made for simple fuzzy
regions (for ease of understanding), while complex regions can have additional
relative positions: it is for instance possible for the interiors of two regions to
intersect, without having the interior of one region intersect with the boundary
of a second region. This is illustrated in case 3.

Cases caused by particular distributions of membership grades A
second reason why there can be more cases than those drawn in the above
case study, is when a fuzzy region has a particular distribution of membership
grades. In the considered examples, the membership grades was strictly de-
creasing for the interior outward. However, even in this situation there can be
additional cases: assume for instance two fuzzy regions with membership grades
only in {0.5, 1}. In this situation, it is possible for instance for the boundary
of one region to fully intersect with the interior of the other region, while there
is no intersection between the interior of the former with the boundary of the
latter.

Note that this particular distribution of membership grades is very interest-
ing: the interior, exterior and boundary are in fact crisp regions. Furthermore,
when the regions are simple, the topology completely matches the topology
model as presented by Clementini ([10]) as well as the model presented by
Cohn and Gotts ([13], [28]). Consequently, the broad boundary model and the
egg-yolk model can be considered to be a special case of the fuzzy region model.

Similarities with the broad boundary model and the crisp model
When the only occurring membership grades are in {0, 1}, the definitions for
interior, exterior and boundary revert back to the definition of crisp regions.
Just like broad boundary regions are a special case, crisp regions are also a
special case of fuzzy regions (as they already are a special case of the broad
boundary model).

Notice how the intersection matrix for meet of fuzzy regions tells us quite a
lot about the relative position of two fuzzy regions. In both traditional topology
and the Clementini terminology, meet is symmetrical. Using fuzzy regions, it
is possible to distinguish between A meets B (if b1 > b2) and B meets A (if
b2 > b1). However, due to the large number of cases, becomes quite difficult to
name them.
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Figure 2.17: Conceptual neighbourhood graph for crisp regions.

Conceptual neighbourhood graph for fuzzy topology

Commonly, topological relations are grouped using a conceptual neighbourhood
graph. Each topology case is a node of the graph; different nodes are connected
provided their topology matrices differ in only one element. The conceptual
neighbourhood graph (using the traditional terminology) for crisp regions is
given in fig. 2.17. Clementini provided the conceptual neighbourhood graph
for broad boundary regions.

The conceptual neighbourhood graph for fuzzy regions can also be con-
structed, but the concept needs to be tweaked somewhat. Two nodes are con-
sidered to be connected, when a natural transition from one case to another
case exists: when moving the two regions relatively from each other, at some
point a new case will be obtained. Such a transition is said to be natural. These
natural transitions are the ones that occur with a minimal change (a change
from 0 to [0, 1[, [0, 1[ to ]0, 1], ]0.1] to 1; or vice versa) to a minimal number of
matrix elements. In the broad boundary model, this was defined by considering
a single value change; this could not be maintained due to the fact we have
limited the number of cases by grouping similar cases. If each individual case
was considered, the original premise could have been maintained, but it would
have vastly increased the number of cases. Clementini grouped different cases
in his conceptual neighbourhood graph based on a subjective interpretation,
and provided a name for each group. For fuzzy regions, it is possible to group
several cases based on the value range of each of the 9 matrix elements; for any
value this results in up to 5 groups: 0, [0, 1[, ]0, 1[, ]0, 1], 1.

The conceptual neighbourhood graph for fuzzy regions is illustrated on fig.
2.18. As illustrated in the overview of the topology cases, most cases consist
of a number of sub-cases, which in turn can also be grouped in a conceptual
neighbourhood graph.

For each of the values a, b1, b2, c, d, e1, e2, the cases are grouped on different
figures; for a, fig. 2.19, for b1 and b2 fig. 2.20, for c, fig. 2.21, for d, fig. 2.22
and for e1 and e2 fig. 2.23.
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Figure 2.18: Conceptual neighbourhood graph for fuzzy regions.
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Figure 2.19: Groups associated with value a.
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Figure 2.20: Groups associated with value b.
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Figure 2.21: Groups associated with values c1 and c2.
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Interpreting the matrices

Contrary to the traditional intersection matrices, both for crisp regions as for
broad boundaries, the interpretation of the fuzzy intersection matrices differ.
A consequence of the fact that the regions are truly fuzzy, is that the different
cases are no longer mutually exclusive. This is best illustrated by means of an
example; two given regions could for instance yield the following intersection
matrix: 


d c1 e1

c2 b a1

e2 a2 1


 =




0.6 0.7 0.4
0.4 0.6 0.3
1 0.6 1


 (2.64)

Now, the case at hand will be determined using the graphs in which the
different cases are grouped.

• a1 and a2

Using the graph on fig. 2.19, there are two groups for the value a1:
a group where 0 < a1 ≤ 1 and a group where 0 ≤ a1 < 1. For the
value a1, both groups are possible. Using the same graph leads us to
the same conclusion for a2. The possible cases with these values are:
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44}

• b
For the value of b, the graph on fig. 2.20, shows that there are three
groups: b = 0, 0 ≤ b ≤ 1 and 0 < b ≤ 1. Obviously, the value for b is not
0, so case 1 is no match (not even partial) for this example. This leaves the
following cases: {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44}

• c1 and c2

For the value of c1, the possible groups are defined by the values c1 = 0,
0 ≤ c1 < 1, 0 < c1 ≤ 1, and are shown on fig. 2.21 Only the groups where
c1 = 0 are impossible, which leave out the cases 1 and 39. For c2 the
groups and the conclusion is similar, and the cases 1 and 40 are omitted.
This leaves: {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44}

• d
For the value d, there are three groups: d = 0, 0 ≤ d < 1, d = 1 as illus-
trated on fig. 2.22. In the example, d = 0.6; only the group for which this
is possible is retained, which leaves the cases: {2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 17}

• e1 and e2

For e1, the groups are shown in fig. 2.23. The groups are defined by: e1 =
1, 0 ≤ e1 < 1, e1 = 0. For the value of e1 = 0.4, only the second group is
applicable; this leaves the cases: {4, 5, 10, 11, 14, 17, 19, 20, 23, 24, 25, 26,



2.4 Operations on fuzzy regions 107

29, 30, 32, 35, 36, 38, 41, 42, 43, 44}.
The conclusion for e2 = 1 is similar, but now the group for which e2 = 1
is required. This retains the cases: {1, 2, 3, 4, 5, 6, 9, 10, 11, 18, 19, 20, 27,
28, 39}

The intersection of all of the above cases that are retained for each of the
values leaves the cases which are more or less appropriate for the example. This
intersection is:

{4, 5, 10, 11} (2.65)

Consequently, this example matches with 4 cases. The grouping as explained
before makes it easy to pinpoint the cases at hand; the conceptual neighbour-
hood graph links the cases that are related (notice how the 4 cases are closely
linked in fig. 2.18).

It is possible to further distinguish between the cases that occur, using the
values that occur in the intersection matrix. The rule we use is that values
smaller than 0.5 belong more to ranges of the form [0, 1[ than to the range
]0, 1]; whereas values greater than 0.5 have the opposite property (this is an
intuitive rule). To work with this, match values are assigned for every matrix
element x that distinguishes two groups and for every case i that is in either
of the two groups.

Definition 67 (Match value mi
x for a case i and a matrix element x)

mi
x =





x if x < 0.5 and range of case i = ]0, 1]
1 − x if x < 0.5 and range of case i = [0, 1[

x if x ≥ 0.5 and range of case i = ]0, 1]
1 − x if x ≥ 0.5 and range of case i = [0, 1[

(2.66)

Consider the example, the differences between the cases 4, 5, 10 and 11 is
in the values of a1 = 0.3, c1 = 0.7 and c2 = 0.4. The match values for the value
a1 are:

a1 = 0.3 cases 4,10: 0 < a1 ≤ 1 ⇒ m4
a1

= m10
a1

= 0.3
cases 5,11: 0 ≤ a1 < 1 ⇒ m5

a1
= m11

a1
= 0.7

(2.67)

This indicates that cases 5 and 11 are a better match for the example than
cases 4 and 10. For the values c1 and c2, match values are calculated similarly:

c1 = 0.7 case 5: 0 ≤ c1 < 1 ⇒ m5
c1

= 0.3
cases 4,10,11: 0 < c1 ≤ 1 ⇒ m4

c1
= m10

c1
= m11

c1
= 0.7

c2 = 0.4 cases 4,5: 0 ≤ c2 < 1 ⇒ m4
c2

= m5
c2

= 0.6
cases 10,11 0 < c2 ≤ 1 ⇒ m10

c2
= m11

c2
= 0.4

(2.68)

According to the match values for c1, cases 4,10,11 are a better match than
case 5; whereas the match values for c2 leads us to conclude that cases 4 and
5 are a better match than cases 10 and 11. As all the match values are in the
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range [0, 1], a t-norm can be used to aggregate them. The use of the minimum
yields:

case 4 : min{m4
a1

,m4
c1

,m4
c2
} = min{0.3, 0.7, 0.6} = 0.3

case 5 : min{m5
a1

,m5
c1

,m5
c2
} = min{0.7, 0.3, 0.6} = 0.3

case 10 : min{m10
a1

,m10
c1

,m10
c2
} = min{0.3, 0.7, 0.4} = 0.3

case 11 : min{m11
a1

,m11
c1

,m11
c2
} = min{0.7, 0.7, 0.4} = 0.4

As the aggregated match value is the highest for case 11, the topology for
the example is closer to this case, than to any of the other three cases. However,
the differences between the different averages are very small, so the regions in
the example still resemble the other three cases quite closely.

2.5 Extensions to fuzzy regions

2.5.1 Fuzzy Locations

Concept of fuzzy locations

Fuzzy regions so far have been interpreted in a veristic way: the set represents
a region, and every point belongs to some extent (indicated by the member-
ship grade) to this region. However, fuzzy sets can also be interpreted in a
possibilistic way: only one element is representative, but it is not known which
element; the membership grade associated with an element indicates the possi-
bility of this element. Using this interpretation, a fuzzy region becomes a set of
possible locations for a point; each of the possible locations has a membership
grade associated to indicate just how possible it is. The fuzzy region in this
interpretation can be said to represent a fuzzy point, which in turn can be used
to represent a fuzzy location.

The possibilistic interpretation matches the interpretation of fuzzy sets for
fuzzy numbers: modelling approximately 5 means that a single number is mod-
elled, the value of which is close to 5, but it is not exactly known what the
number is. Fuzzy points are similar: an approximate location is modelled, it is
somewhere in the provided (fuzzy) region, but the exact location is not known.

Definition of fuzzy points

Consider the set A ⊆ U the set of all the points that are possible points for the
uncertainly or imprecisely known location. The crisp set A is then extended to
a fuzzy set p̃A with a possibilistic interpretation, defined completely similar to
the way a fuzzy region and a fuzzy set are defined.

Definition 68 (fuzzy point p̃A)
A fuzzy point p̃A is defined as:

p̃A = {(p, µp̃A(p)} (2.69)
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Where

µp̃A : U → ]0, 1]

p 7→ µp̃A(p)

Here, U is the universe of all locations p; the membership grade µp̃A(p) ex-
presses the possibility that p is the inaccurately or imprecisely known location
p̃A.

Operations on fuzzy points

Along with the change in interpretation, some operations also will change.
While the concepts union and intersection have no meaning for points, they
can still be used on fuzzy regions representing possible locations for a point.
Similar remarks are valid for the bounding rectangle, convex hull and surface
area. The distance will yield a different result though.

Set-operations The set operations are meaningful, they can be used to com-
bine information from different sources regarding the modelled location. For
example, suppose it is known that the point is close to a given river and close
to a given city. The intersection between the fuzzy region that represent the
points that are close to the river and the fuzzy region that represents the points
that are close to a given city will provide the fuzzy region for points that satisfy
both criteria.

α-cut operation Determining the α-cut is also still meaningful, and can be
used to determine the crisp region in which the locations have at least a given
membership grade.

Minimum bounding rectangle and convex hull Both the operations
yielding the minimum bounding rectangle and the convex hull can be used to
approximate the outline of the region of possible locations.

Surface area calculation By definition, the surface area of a single point is
0. The definition of the surface area for fuzzy regions can still be used to serve
as an indication over which area the imprecisely known or inaccurately known
point is located. It does not indicate the surface area of the point.

Distance calculation The distance between two fuzzy points differs from
the definition of the distance between fuzzy regions. The reason for this is
that for fuzzy regions the distance could not exceed the distance between both
cores (the definition for the distance between regions is the minimum distance
between them). The imprecisely or uncertainly known point can however be
positioned at any point of the region. This will also be reflected in the definition
of the distance between two fuzzy points. Basically, for every possible distance,
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Figure 2.24: Illustration of the fuzzy distance between fuzzy points: (a) fuzzy points
p̃A and p̃B (illustrated using grey scales, and using some contourlines), (b) the fuzzy
distance between p̃A and p̃B .

the largest α value for which this distance is still possible between the α-cuts
of both regions is assigned, as illustrated on fig. 2.24.

Definition 69 (distance d̃(p̃A, p̃B) between two fuzzy points p̃A and p̃B)

d̃(p̃A, p̃B) = {(x, µd̃(p̃A,p̃B)(x))} (2.70)

where

µd̃(p̃A,p̃B) : R → [0, 1]

x 7→ sup
α∈]0,1]

{α | p1 ∈ p̃A
α , p2 ∈ p̃B

α ∧ d(p1, p2) = x}

Note that there is only one possible interpretation for the distance, unlike
in the case of the distance between fuzzy regions: the definition of distance that
makes use of topological concepts no meaning for fuzzy points, as the topolog-
ical concepts themselves have no meaning. The above definition is therefore
closest to the α-level definition of distances between fuzzy regions.

This definition does not yield a fuzzy number for fuzzy points represented
by complex fuzzy regions (53). However, as the result is to be interpreted in a
possibilistic way, the result makes sense, as illustrated on fig. 2.25.

Topology The topology of the fuzzy points can be used similar to the set
operations. The operations don’t work on the points as such, but on the region
delimiting the point.
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Figure 2.25: Illustration of the fuzzy distance between points: (a) fuzzy points p̃A

and p̃B (illustrated using grey scales, (b) the fuzzy distance between p̃A and p̃B .

2.5.2 Regions at fuzzy positions

In the current approach for fuzzy regions, fuzzy regions are considered to be at
crisp positions: the membership grade indicates to which each point belongs to
the region. It can however be interesting to represent a region (either crisp or
fuzzy) for which its position is unknown or uncertain: a region at a fuzzy po-
sition. This could for instance be used to model possible locations for building
a new airport, where the uncertainty of the postion stems from environmental
limitations (noise pollution, wildlife areas, safety zones, ...).

To model this, the concepts of fuzzy points and fuzzy regions can be com-
bined. The position of a region is then determined by an anchor-point : every
point of the region is specified relatively to this anchor-point. The anchor-
point is a fixed point of the region, traditionally, the center of gravity is used.
However, as a region can be fuzzy, its center of gravity should also be a fuzzy
point; this would no longer allow for it to be used as a point of reference for
the region. Consequently, another point is used. The concept is illustrated on
fig. 2.26a, where a fuzzy point Ã holds all the possible positions for region R
(two of the infinite number of possible positions are illustrated).

There is however no reason to keep this limited to crisp regions. A fuzzy
region can therefore also be located at a fuzzy position, which is illustrated
on fig. 2.26. Incorporating this adds an additional level of uncertainty or

fuzziness, requiring the use of level-2 fuzzy sets: a level-2 fuzzy set ˜̃V defined
over a universal set U is a fuzzy set which elements are ordinary fuzzy sets, all
being defined over the same universal set U . The membership function of a
level-2 fuzzy set has the form

µ ˜̃V
: ℘̃(U) → [0, 1] (2.71)

where ℘̃(U) denotes the fuzzy power set of the universal set U . Originally, level-
2 fuzzy sets were presented by Zadeh [53] and were more elaborately studied
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Figure 2.26: Examples of the use of an anchor-point: (a) the fuzzy point Ã deter-
mines the position of region R, the fuzzy point Ã determines the position of the fuzzy
region R̃.

by Gottwald [29]. A formal definition of the concept “level-2 fuzzy set” is given
as:

Definition 70 (level-2 fuzzy set)
A level-2 fuzzy set ˜̃V defined over a universal set U is defined by:

˜̃V = {(Ṽ , µ ˜̃V
(Ṽ )) | ∀ Ṽ ∈ ℘̃(U) : µ ˜̃V

(Ṽ ) > 0} (2.72)

where each ordinary fuzzy set Ṽ is defined by:

Ṽ = {(x, µṼ (x)) | ∀ x ∈ U : µṼ (x) > 0} . (2.73)

For further information on the use of level-2 fuzzy sets in databases, we
refer to [20]. The concept of level-2 fuzzy sets should not be confused with the
concept of type-2 fuzzy sets, as explained in 2.5.3.

2.5.3 Fuzzy associated data

Fuzzy regions as explained before can be used to model uncertainty or impre-
cision regarding locations. It is however also possible for associated data to
be prone to uncertainty or imprecision, consider the example of the weather
(uncertain temperature predictions, imprecise temperature readings).

Considering regions with fuzzy associated data is quite different from the
concept of fuzzy regions. In the concept of fuzzy regions, the entire region was
considered as a two dimensional fuzzy set; each point has a membership grade
associated. When the associated data is considered to be fuzzy, this means
that every point of a crisp region now has a fuzzy set associated, but the region
itself is not a fuzzy set; it is merely a set of points with fuzzy associated data.

This associated fuzzy data is defined over the domain of the associated
data (which mostly will be a numerical domain). It is however not limited
to fuzzy numeric data; classification (for instance land classification: forest,
water, sand), can be modelled using fuzzy sets as well; as illustrated in 1.3.2
([31]). As an example, fuzzy numbers are associated with points of the region.
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Definition 71 (extended region for fuzzy real numbers)
An extended region associating fuzzy real numbers AR̃ is defined as:

AR̃ = {(p, f(p)} (2.74)

where

f : U → ℘̃(R)

p 7→ f(p)

Here, U is the universe of all locations p and ℘̃(R) is the set of all fuzzy sets
defined over R. The fuzzy real number associated with each point is obtained
through measurements in the field, estimations, approximation or which ever
data acquisition technique.

A region in which all points have a fuzzy set associated, will be called an
extended region. The concept of extended regions allows for special cases of
fuzzy regions to be defined.

Calculations on the associated data are the field of fuzzy arithmetic, and
extend beyond the scope of this work.

Type-2 Fuzzy Regions

A type-2 fuzzy set is a fuzzy set in which the membership grades themselves are
fuzzy sets over the domain [0, 1]. The philosophy behind type-2 fuzzy sets [34]
is: “If information is uncertain or imprecise, it is not possible to assign a crisp
membership grade”. Consequently, it helps to refute the common criticism that
membership grades are chosen arbitrary.

Consider a fuzzy region Ã. The region itself is interpreted as a fuzzy set, and
values associated with each of the points are membership grades in the range
]0, 1]. By defining the membership grades as fuzzy sets over this range, one

obtains an extended fuzzy region, which can be denoted Ã
˜[0,1] or ˜̃A for short.

It supports the same operations as a fuzzy regions, but with the necessary
modifications to deal with type-2 fuzzy sets.

Definition 72 (type-2 fuzzy region ˜̃A)

˜̃A = {(p, µ ˜̃A
(p))} (2.75)

where

µ ˜̃A
: U → ℘̃(]0, 1])

p 7→ µ ˜̃A
(p)

Here, U is the universe of all locations p and ℘̃(]0, 1]) is the set of all fuzzy sets
over the domain ]0, 1]. The membership grade µ ˜̃A

(p) expresses the extent to
which p belongs to the fuzzy region using a fuzzy membership grade.
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Similarly, type-2 fuzzy points can be defined. For the remainder of this
work, this concept will not be considered further, but extending the results
from this work to deal with type-2 fuzzy sets is part of the future work.

Possibilistic truth value regions

In 1.2.4, possibilistic truth values (PTV for short) were introduced. Represent-
ing truth values over a region is interesting for query purposes. A GIS capable
of using such possibilistic truth value regions (or PTV regions), could answer a
query by returning a PTV region: a region in which every location has a truth
value, indicating how well each location matches with the given query. The
possibilistic truth values use possibility distributions over {True, False}, but
the same model as for fuzzy sets can be used; a possibilistic truth value can be
considered as a new type of associated data.

The model therefore allows also for the modelling of a fuzzy region, where
the associated values are possibility distributions over the boolean domain
{True, False}. This model is quite analogous to the model where fuzzy num-
bers are associated with the locations; only the domain of the fuzzy set differs.

Definition 73 (PTV fuzzy region A{̃T,F})

A{̃T,F} = {(p, µ
A{̃T,F}

(p))} (2.76)

Where

µ ˜̃A
: U → ℘̃({True, False})

p 7→ µ
A{̃T,F}

(p)

Here, U is the universe of all locations p and ℘(]0, 1]) is the set of all fuzzy sets
over the domain ]0, 1]. The membership grade µ ˜̃A

(p) expresses the extent to
which p belongs to the fuzzy region using a fuzzy membership grade.

Similarly, regions with extended possiblistic truth values, these are truth
values defined over associated {True, False,⊥}, can be modelled as well.

2.6 Graphical representation

An important aspect of a GIS is the graphical representation of the data. In
an entity based approach, the information is two dimensional, which makes it
easy to represent on a graphical display. By moving to fuzzy regions, points
in the two dimensional space have a membership grade associated with them.
Consequently, there is more data to be shown than just the region itself. To
display this additional data, a number of techniques are possible.
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Ã

Figure 2.27: Examples of a fuzzy region represented using grey scales to indicate
membership grades.
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Ã

Figure 2.28: Examples of the a fuzzy region represented by means of contourlines
to indicate membership grades.

2.6.1 Colours and grey scales

The first technique to draw fuzzy regions is to use colour to indicate the mem-
bership grades. Intuitively, one can consider a color gradient, where darker
shades match higher membership grades; as illustrated on fig. 2.27. While this
works for simple situations, it becomes a problem when different data needs
to be displayed at the same location: making the colouring semi-transparent
makes the membership grades (esp. the lower ones) harder to see and can
become confusing.

2.6.2 Contour lines

Another technique to draw a fuzzy region is by making use of contour lines.
This concept is similar to the altitude lines on topographical charts, or the
representation of isobars on weather charts. While it has the advantage of
less clutter in the drawing, care has to be taken to assure that the chosen iso-
lines are representative for the gradual changes of the membership grades. An
example of the representation with iso-lines can be seen on fig. 2.28.

The contour lines are used for example for altitude or air pressure, as only
one type of data is considered at a time. When representing two regions or
more using contour lines, the large amount of lines might become confusing.
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Figure 2.29: Examples of the a fuzzy region represented as a three dimensional
structure, where the third dimensions is used to indicate membership grades.

2.6.3 Three dimensions

Finally, it is possible to consider the membership grade as a third dimen-
sion, and represent it as such. However, most GIS systems are not sufficiently
equipped to represent three dimensional objects (some support 2.5D, mean-
ing that they allow the notion of altitude to be modelled; full 3D systems are
emerging); it would require many changes to the system and only serve limited
applications. Furthermore, when having to draw a multitude of information, it
can become difficult to discriminate the various objects. An example of a part
of a fuzzy region represented in three dimensions is shown on fig. 2.29.

In this work, the different representation methods are used, depending on
which one is more appropriate to illustrate the situation.



Chapter 3

Manageable fuzzy regions

3.1 Issues with the theoretical concept

The concept of fuzzy regions as developed and presented in chapter 2 is intended
as a theoretical foundation to define and reason with fuzzy regions. As such,
it is developed without taking into account limitations that may prevent a
practical application of the concept. This results in two major issues, which
make the conceptual model unsuited for direct implementation.

First, there is the fact that with each point of the two dimensional space,
a membership grade is associated. However, as the membership grades of
points are not required to share any mathematical relation between among
them (one point can have a membership grade 1, another membership grade
0.35, etc.); which in practice would require an infinite amount of storage (the
two dimensional space, even when limited to a region of interest, still contains
an infinite number of points).

Secondly, there is the problem that most operations are defined by means of
the extension principle. This principle provides for a definition of the member-
ship grade for each element in the result of an extended operation, but does not
provide for a means of computing the result (for example: in fuzzy arithmetic,
the sum of two fuzzy real numbers yields a new fuzzy number; the extension
principle will provide a way to compute the membership grade for each element
of R with regard to the fuzzy sum, but does not provide for a way to compute
which real numbers will contribute to the fuzzy sum). Consequently, while
the extension principle can be used to uniquely and unambiguously define an
operation mathematically, it cannot be used to compute the result in case the
result has an infinite domain.

3.2 Practical approaches to fuzzy regions

To overcome these issues, traditional fuzzy models make use of limitations im-
posed on the models to allow results to be computed algorithmically. In the
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case of fuzzy arithmetic for instance, limiting the membership function of fuzzy
numbers to piecewise linear functions in combination with the use of the Zadeh
T-norm and T-conorm allows for the computation of sum and difference using
interval calculus [32]. To make fuzzy regions manageable, limitations will be
imposed on the distribution of membership grades over the fuzzy regions; these
limitations will be chosen such that the computations can be performed algo-
rithmically, while still yielding a result that is compliant with the conceptual
model.

3.3 Fuzzy regions using a Contour-line model

3.3.1 Concept

The first technique uses multiple crisp boundaries (for which a representation
method exists in current spatial databases) to group points that have the same
membership grade. The membership grades for points that are not specified on
a boundary are computed by means of a shape-function and the relative posi-
tion of the points with regard to the boundaries. This causes the membership
grades to be in relation with one another. The approach reverts to the use of
contourlines as a building block, even though contourlines are normally used
as a representation method for e.g. barometric pressure or altitudes. Different
variants of this concept are presented: the first uses one crisp inner boundary,
around which a second crisp outer boundary at a fixed distance is positioned
(both this outer boundary and the membership grades for points inbetween
the given inner and computed outer boundaries are defined using a shapefunc-
tion) The second variant allows for both the inner and outer boundaries to be
specified (no longer requiring them to be equidistant).

The concept combines the broad boundary model (where two boundaries
are used, 1.3.2), with the contourline representation (2.6.2) of a fuzzy region:
instead of just using two boundaries (an inner and an outer boundary), inter-
mediate lines can be included to assign membership grades. Inside the inner
boundary all the points have membership grade 1 and outside the outer bound-
ary the membership grades are 0. The difference between the aforementioned
methods, is that membership grades are assigned to all locations. Points in
between both boundaries will be assigned membership grades based on their
distance from the boundaries: this resembles the use of an infinite number of
boundaries within the broad boundary.

To assign membership grades for points between the inner and outer bound-
ary, different approaches can be considered. The two presented methods both
make use of a continuous, monotonic decreasing function, with both domain
and range [0, 1], which is called the shape-function Sf to define the gradual
transition.
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1

1

Figure 3.1: Example of a shape function.

Definition 74 (shape-function Sf)

Sf : [0, 1] → [0, 1]

x 7→ Sf (x)

This function must satisfy the following properties.

Sf (0) = 1
Sf (1) = 0
∀x ∈ [0, 1] : Sf (x) ∈ [0, 1]
∀(x, y) ∈ [0, 1]2 : x ≤ y ⇒ Sf (x) ≥ Sf (y)

(3.1)

The fourth property, claiming that Sf (x) is a decreasing function, is not strictly
necessary. This assumption is made to eliminate degenerate cases: we are
modelling the property belongs to of the surrounding points with respect to a
given crisp region, and therefore it is quite natural to assume that the degree of
belonging to decreases with growing distances. It is possible to have a situation
in which one would like to assign the center-point(s) the lowest membership-
degree, while all the points outside of the maximum extent should get a value
1. In this case, a function with opposite properties should be used. An example
of a shape function can be seen on fig. 3.1.

3.3.2 Definitions

Equidistant boundaries

The first technique is based on equidistant crisp boundaries. Because the two
crisp boundaries are not independent of one another, it is sufficient to know
only one boundary (we will consider the inner one). The inner boundary is
noted B1, the outer B0. Each boundary outlines a crisp region, this region is
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denoted RB1
for the boundary B1 and RB0

for B0. The notation p ∈ RB1
is

used to indicate that p is located inside the boundary B1 or on the boundary
B1. The outer boundary B0 can be defined as consisting of all the points at
a given distance d0 from B1. Points located at a distance greater than d0 will
be considered to be outside the outer boundary. For vertices where there is an
angle of less then π rad) B0 will appearing round, whereas for the vertices with
an angle greater than π rad, there is no change. It should be noted that - had
we chosen the outer boundary as a reference - the resulting fuzzy area would
have the exact opposite property (angles at vertices of B1 would be round).

To determine the membership degree of a point p, its location relative to
the two boundaries is determined. If p ∈ RB1

, its membership degree will
be 1. On the other hand, if p /∈ RB0

, its membership degree will be 0. For
points in between both crisp boundaries (p ∈ RB0

∧ p /∈ RB1
), the distance

dp = d(p,B1) between the point and the chosen crisp boundary (in this example
B1) is calculated. This distance dp is scaled to the interval [0, 1] (based on the
maximum distance d0) and passed on as an argument to the shape function,
which returns the membership degree for this point.

Definition 75 (membership function µÃ)
(for a fuzzy region Ã defined using equidistant boundaries)

µÃ : R
2 → [0, 1]

p 7→





1 if p ∈ RB1

0 if p /∈ RB1
∧ d(p,B1) > d0

Sf (
dp

d0
) if p /∈ RB1

∧ d(p,B1) ≤ d0

Here, d0 is the distance between the outer boundary B0 and the inner boundary
B1.

This way, all points at the same distance from the crisp boundaries will be
assigned the same membership degree. Because of the use of the shape-function,
we can model any shape of transition, or add additional properties (i.e. it is
possible to assign the points halfway in between both boundaries a membership
degree anywhere in ]0, 1[). The calculations needed are quite straightforward
: the algorithms to determine whether or not a point is inside a polygon are
known ([39]) and available in GIS-systems, so if the shape-function is not too
complex, the required calculations can be executed very efficiently. A region
with equidistant boundaries is shown on fig. 3.2.

Independent crisp boundaries

The second technique uses two independent (hence not necessarily equidistant)
boundaries and a shape-function as defined above. Based on these two crisp
boundaries, an infinite set of contours between both boundaries can be defined,
each corresponding to a membership degree. All contours in the set are disjoint,
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B0

B1

Figure 3.2: Example of two equidistant boundaries B0 and B1.

i.e. each point lies on exactly one contour corresponding with its membership
degree. The effect of this technique can be visualized as a gradual deforma-
tion of the inner boundary towards the outer boundary. This is achieved by
an appropriate scaling of the shape-function, taking into account the relative
position of the point inside the broad boundary with respect to the two crisp
boundaries. We will denote the inner boundary - within which the property
is true - B1, the outer one will be characterized B0. The only requirement
for both boundaries, is that RB1

⊂ RB0
. Consider a point p: if p ∈ RB1

, it
is assigned a membership degree 1; if p /∈ RB0

, its membership grade will be
0. For the remaining option (between B0 and B1), the distances between the
point p and the boundaries are calculated :

d0 = d(p,B0)

d1 = d(p,B1)

The idea is to use these distances to provide information about the location
of p. We will therefore scale the distance to a value in the range [0, 1]. The
reference-distance to perform this scaling, can no longer be a constant value :
the distance between both boundaries can vary. The total distance used as a
reference for this point is denoted dt and defined as

dt = d0 + d1 (3.2)

To determine the membership-grade for a given point p, we first need to check
whether the point is inside B1 or outside B0. In the former case (p ∈ B1), its
membership-degree will be 1; in the latter (p /∈ B0) it will be 0. For points in
between both boundaries, the shape-function is used.

Definition 76 (membership function µÃ)
(for a fuzzy region Ã defined using independent two crisp boundaries)

µÃ : R
2 → [0, 1]
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Figure 3.3: Example of a shape function.

p 7→





1 if p ∈ RB1

0 if p /∈ RB0

Sf ( d1

d0+d1
) if p ∈ RB0

\RB1

We have chosen to use d1 as the numerator, though similar results can be
acquired using d0. Contrary to the previous technique, both choices will now
lead to the same result. A region defined by two independent boundaries is
illustrated on fig. 3.3

As an extension, it is possible for B1 to be a disconnected region; the
distance d1 should then be interpreted as the shortest distance to any of the
B1. Even B0 can be disconnected, provided that inside each separate part is
a B1 region. The distances d0 and d1 should be considered for the part of B0

where p is located, and for the B1 that is inside this B0.

Multiple independent crisp boundaries

The above approach can be improved, by considering a number of crisp bound-
aries: apart from B0 and B1, a finite number of boundaries Bij

, (ij ∈]0, 1[), ij is
the membership grade for points on this boundary) can be considered (fig. 3.4).
The interpolation between two successive boundaries is performed as described
above. This allows for much more freedom in defining fuzzy regions. To define
the gradual transition between the membership grades, using n boundaries,
n − 1 shape functions are needed. Each shape function has slightly different
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Figure 3.4: Example of the use of multiple independent crisp boundaries.

conditions than before though:

S
ij

f (0) = ij+1

S
ij

f (1) = ij

∀x ∈ [0, 1] : S
ij

f (x) ∈ [ij , ij+1]

∀(x, y) ∈ [0, 1]2 : x ≤ y ⇒ S
ij

f (x) ≥ S
ij

f (y)

(3.3)

Consider the boundaries Bi1 , Bi2 , . . . , Bin
, where Bi1 = B0 and Bin

=
B1, the shape functions Si1

f , Si2
f , . . . , Sin−1

f and a point p(x, y). The notation
dij

is used to represent the shortest distance between p(x, y) and Bij
. The

membership grade for any point p is obtained from the membership function.

Definition 77 (membership function µÃ)
(for a fuzzy region Ã defined using multiple independent boundaries)

µÃ : R
2 → [0, 1]

p 7→





1 if p ∈ B1

0 if p /∈ B0

S
ij

f (
dij+1

dij
+dij+1

) if p ∈ RBij
\RBij+1

The membership function is a piecewise function, consisting of the n − 1
shape functions S

ij

F , scaled appropriately.

3.3.3 Operations

Set operations

An obvious requirement to a model is that it is closed. For set operations, this
means that the result of the operation should be of the same kind of object
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A0 B0

B1A1

µ

Figure 3.5: Example of the problems that occur for the union operator.

as both arguments. This allows for similar operations to be applied on the
result. Consider two disjoint fuzzy regions Ã and B̃. Both are defined using a
number of contour lines and a number of shape functions. The model allows
for disconnected regions, so it ought to be possible to consider the union as a
new region C̃. While it is possible to define the union or the intersection, it is
obvious that if both regions use different contour lines and/or different shape
functions, this union can no longer be represented as a single region. This
occurs both in the model with equidistant boundaries as well as in the model
with independent boundaries.

The model could perhaps still be useful if all shape functions are required
to be the same. Consider two fuzzy regions Ã and B̃, both defined using the
same shape functions (and consequently the same contour lines), as shown of
fig. 3.5. As the cross section illustrates, the new region would require a contour
line to deal with with overlap. This contour line was not present initially, so
again the closure property fails. In the above example, even the contour lines
considered where the same, so even in such a limited model the property fails.

α-cut

Given the difficulties with the set operations, there is little point in developing
the concept further. However, some lessons could be learned by seeing what
difficulties arise in the calculation of the α-cut.

The definitions make it quite efficient to calculate the membership grade of
any point of the region, however returning all the points with a given member-
ship grade is much more difficult. When equidistant boundaries are used, the
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result is just a buffer line (1.1.4) for the original region, finding one point with
the correct membership grade provides the distance d1 from which this buffer
needs to be defined.

In the case of independent boundaries, the shape of the contour line is
quite difficult to compute, as both distances d0 and d1 need to be considered.
In a system where the two-dimensional space is approximated using a finite
number of elements (i.e. a realm, 1.3.2), one might consider to test each element
between Bij

and Bij+1
(which will be computationally intensive). The obtained

set of points must then be simplified to a polygon-like structure, to minimize the
points required for storage. This approach basically is a brute force algorithm,
with little room for optimization.

Finally, if the boundaries are required to be equidistant, determining any
α-cut is easily possible: for the straight line segments the lines of the α-cut are
parallel (at the distance determined by the α-level), whereas in the corners the
lines of the α-cut are represented by an arc (with a radius determined by the
α-level. This kind of contour-line fuzzy region is however quite limited in the
shape of regions it can represent.

3.3.4 Summary

This first concept obviously has too many drawbacks to be useful for use in
implementations or even in theoretical considerations. It has however thought
a number of lessons:

• The closure property should be satisfied for any model to be useful in
real life.

• Limiting data structures with mathematical constraints may facilitate the
calculation of membership grades, but makes the closure property harder
to enforce. Consequently, care should be taken when imposing limitations
on membership grades.

• It should be possible to (quickly) calculate the membership grade of any
point.

• It should be possible to (quickly) return all the points that have a given
membership grade.

The lessons learned in this first approach were taken into consideration,
and led to both the bitmap-model (3.4) and the triangulated irregular network
model (3.5).

Despite these shortcomings, the model is still quite appropriate as an exten-
sion of the traditional buffer concept. Conceptually, buffers can be considered
to require membership grades that decrease from the core outward. The con-
tourline model can also easily be queried when locations are given (queries of
the from “how well is location x inside the fuzzy buffer” are easily answered),
and requires only a little amount of data (more specifically: the object around
which it is defined and the shape function).
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3.4 Fuzzy regions using bitmaps

The second technique adopts the concept known in geographic systems as
bitmaps. Bitmaps are a grid based structure, where the smallest considered
element no longer is a point, but a cell (a set of points), and where only is a
finite number of cells are required. The value associated with a cell is represen-
tative for all points within this cell, and will for fuzzy regions be a membership
grade. By using this bitmap concept for fuzzy regions, the issues that occurred
due to the fact that a fuzzy region contains an infinite number of points are
resolved. In chapter 4, this approach is considered in further detail.

3.5 Fuzzy regions using TINs

The third technique uses the established spatial concept of a triangular network.
In a triangular network, only a finite number of points (datapoints) are given an
associated value. Using these datapoints, a triangular network is constructed,
by means of this network the associated values for other points can be computed
using linear interpolation on the associated values of the datapoints. When used
for fuzzy regions, the associated values will concern membership grades. The
operations on fuzzy regions are performed on the finite set of datapoints, after
which appropriate modifications to the interpolation are required to obtain the
desired result. This approach is dealt with in chapter 5.



Chapter 4

Fuzzy regions using bitmaps

4.1 Concept

In the bitmap approach, the infinite number of points that occur in the concep-
tual model (chapter 2), are grouped into a finite number of sets (which will be
called cells). Membership grades are then assigned to these sets, and all points
are considered to have the same membership grade as the set they belong to.

A bitmap is a known concept in GIS systems, as mentioned in 1.1.3. Tradi-
tionally, it is used to represent features that are present throughout the map,
like population densities. A bitmap usually is an approximation of the real
situation; where continuous values ought to exist but are either impossible or
too difficult to obtain.

4.2 Definition

A fuzzy bitmap is in essence an extension of a regular, crisp bitmap. Unlike a
regular bitmap in GIS, a fuzzy bitmap is considered to be limited to a certain,
crisp region (the region of interest). In order to formally define a fuzzy bitmap,
first the concepts of cell and grid will be defined. These definitions are similar
to those in (1.1.3), with the difference that the universe is limited to a region
of interest R, which is a bounded subset of the two dimensional space U = R2.

With the understanding that U ⊆ R2 is the universe of all the locations
(points) considered in the GIS, a bounded subset c ⊆ U is called a cell if it is
convex, i.e.:

Definition 78 (cell)

∀p1, p2 ∈ c, ∃p3 ∈ c :
−→p1 + −→p2

2
= −→p3 (4.1)
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Definition 79 (grid)
A grid — in GIS — is a finite collection G ⊆ ℘(R), where R ⊂ U is the region
of interest, such that

(i) (∀c, c′ ∈ G)(c ∩ c′ = ∅)
(ii)

⋃

c∈G

c = R

In [50], the bitmap was considered a global structure; in subsequent publi-
cations it was altered by limiting it to a region of interest. This difference is
resembled in this altered definition of a grid. In general, all cells have similar
shapes and sizes, although the fuzzy bitmaps are not limited to this: in the
examples here cells will be rectangular, but the length and width proportions
of cells can differ. Each grid has a fixed number of (horizontal and vertical)
cells. Other shapes of cells, i.e. hexagonal, are possible but not considered
here. Similarly to traditional bitmaps, a value will be associated with every
cell of the bitmap. In a fuzzy bitmap, these values are limited to the range
[0, 1] as they will represent membership grades. 1 The membership function
associates every cell of a grid G with its membership grade for a given bitmap
B̃:

Definition 80 (membership function µB̃ of a fuzzy bitmap B̃)

µB̃ : G → [0, 1]

c 7→ µB̃(c)

Definition 81 (fuzzy bitmap B̃)
(using grid G and membership function µB̃)

B̃ = {(cj , µB̃(cj)) | cj ∈ G} (4.2)

This definition differs from the original definition in [50] (later publications
already use the above definition) in that the cells are no longer numbered us-
ing two indices (coordinates), but only using one index. The reason for this
is twofold: first to accommodate the definition for both regular and irregu-
lar grids; second, this numbering also matches the numbering of cells in Esri
MapObjects, which was used for a prototype implementation. The downside
to this numbering is that given a cell, its relative position to other cells of the
same bitmap is not immediately known.

1The membership grade 0 is included in a bitmap as this facilitates the implementation
by allowing all bitmaps to bounded by a rectangular region of interest (the added cells then
are associated membership grade 0). For any operation, they can simply be ignored; the
definition includes 0 to allow for fuzzy regions with holes to be defined.
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(a) (b) (c)

Figure 4.1: Use of a bitmap to approximate a crisp region: (a) crisp region, (b)
approximation of the region in (a) using a coarse grid, (c) approximation of the
region in (a) using a fine grid.

4.3 Using fuzzy bitmaps as regions

4.3.1 Representing crisp regions with fuzzy bitmaps

A bitmap can however be used to represent a crisp region, as is illustrated on
fig. 4.1. Fig. 4.1a shows a crisp region, fig. 4.1b and 4.1c show this region
in a bitmap representation. The accuracy of a bitmap is determined by its
resolution2, the larger this resolution, the more accurate the approximation is.
In the example, 4.1c has a higher resolution than 4.1b. To obtain a bitmap
from a vector shape, one of many rasterization techniques ([27]) can be used;
these are common in the realm of computer graphics: normal computer displays
can be considered to be bitmaps (they have a resolution), whereas computer
graphics are vectorial in nature.

4.3.2 Representing fuzzy regions with Fuzzy bitmaps

To represent fuzzy regions, the cells - which contain an infinite number of points
- are considered to be the smallest unit in the bitmap. Membership grades are
associated with the cells, which basically means that all points in the cell have
the same membership grade.

In figure 4.2a, a simple fuzzy region is shown. For representation purposes,
greyscales are used: black equals membership grade 1, the lower the member-
ship grade of a point (or in the case of the bitmap: a cell) is, the lighter its
shade of grey will be. Figure 4.2a and figure 4.2b show a representation of
this fuzzy region in the bitmap approach. The grid used in figure 4.2c is more
refined than the grid used in figure 4.2b, which - as already was shown in the
crisp case - yields a more accurate model.

Several bitmaps can be defined using the same grid. This means that they
cover the same region of interest and that their cells are exactly the same size;
the associated values of the cells can differ though.

2Strictly speaking, the resolution is expressed in dpi, while the size of a bitmap is expressed
in a number of pixels (or cells). However, as bitmaps representing a same object (e.g. in fig.
4.1b and fig. 4.1c) cover roughly the same area, dpi and size expressed in pixels are linked:
the more pixels, the higher the dpi.
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(a) (b) (c)

Figure 4.2: Use of a bitmap to approximate a fuzzy region: (a) fuzzy region, (b)
approximation of the region in (a) using a coarse grid, (c) approximation of the region
in (a) using a fine grid.

4.4 Operations

4.4.1 Set-operations

The set operations make use of two fuzzy bitmaps. As no limitation is imposed
on the grids, it can occur that the union or intersection of two fuzzy bitmaps
with different grids is required. To accomplish this, the bitmaps will be re-
defined, so that they both use the same grid. A bitmap can be redefined, as
long as every point maintains the same membership grade 3. As matching the
grids can be required for the set operations, this grid-problem will be considered
first.

Matching the grid

The technique presented is one way of matching the grids of two unrelated
bitmaps in order to combine them to a new bitmap. It creates a new grid,
which can be seen as the combination of both grids, thus allowing the associated
data of both bitmaps to be represented accurately in this common grid. This
technique was chosen because it yields a mathematically accurate result. In
true implementations, this approach can cause a fuzzy bitmap region to become
too complex. Alternative methods can keep the complexity down, for instance
by making use of the fact that the bitmaps are already representing imperfect
information, and by exploiting this to match the grid of one bitmap to the
grid of the other one by resampling the values to provide for new values for
this new grid. This approach would keep the complexity down, but my require
making changes to the original data. Other techniques in matching the grids,
or additional limitations imposed on the allowed grids in the model might be
more appropriate in some situations.

3This might be contradictory to the traditional use of bitmaps, as a finer grid is sometimes
considered to imply more accurate information. Later on in this chapter, we will return to
this issue.
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Region of interest Consider two grids as shown on fig 4.3a. The first step
in defining the grid is determining the new region of interest. The region of
interest can be enlarged; as long as any points added will have a membership
grade 0 associated.

The new region of interest is basically the union of the regions as consid-
ered by the bitmap arguments. However, as a bitmap is considered to have a
rectangular outline, the region is extended in such a way that its outline is a
rectangle, see fig 4.4b. This temporary structure is not yet a bitmap, the grid
still needs to be adapted.

(a) (b)

Figure 4.3: Defining the region of interest.

Grid lines In a second step, the region of interest is partitioned using the
grid of the first bitmap. The original gridlines are maintained, but lengthened
beyond its original region of interest to reach the outline of the newly defined
region of interest. This action possibly divides cells of the other grid (for
illustration purposes, the lengthened gridlines are drawn using dashed lines on
fig 4.4a).

The third step is symmetrical to the second step: the grid lines of the second
bitmap are lengthened to reach the outline of the new region of interest, thus
possibly partitioning cells of the other bitmap further (4.4b).

Associated values The above construction has provided a new grid for both
bitmaps. For both bitmaps, their original grid can still be found in this new
grid, the main difference is that the individual cells are possibly partitioned
further. Each new cell is now assigned the membership grade of the original cell
it is a part of. As the original cells are still present, but partitioned further, this
operation yields no ambiguous assignments. With new cells that fall outside
the original region of interest, the membership grade 0 is associated.

The result of this construction is that every cell that was present in one
of the arguments is present in the new region of interest, either as a whole,
or partitioned in a number of smaller cells. Now, the original grids are dis-
carded, and every bitmap that is an argument is now using these grids for its
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(a) (b)

Figure 4.4: Defining the gridlines.

(a) (b)

Figure 4.5: Mapping the bitmap from its original grid to the newly constructed
grid.

cell definitions (cell coordinates used below are relative to this new grid), as
illustrated on fig 4.5. While this action potentially changes the resolution of a
bitmap (more cells defining the information, which might give the impression
there is more accuracy), its overall appearance isn’t altered by this: cells ei-
ther inherit their membership grade from the original bitmap (so the points in
the cell maintain the same value), or are assigned 0 if they cover regions not
covered by the original bitmap.

Intersection

One way of combining data of multiple bitmaps is by considering their inter-
section. If the fuzzy bitmaps Ã and B̃ model features 1 and 2 respectively, the
intersection of both bitmaps will model the regions where both features 1 and
2 are present. The first step is to match the grids, so that both Ã and B̃ make
use of the same grid G. This will also be the grid used by the result.

In the theoretical approach, definition 54 states that each point p in the
intersection is assigned a new membership grade: µÃ∩̃B̃(p) = T (µÃ(p), µB̃(p)).
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The intersection on fuzzy bitmaps should yield this result. As before, the
intersection is performed by a T-norm operator (e.g. the minimum). The
intersection on bitmaps is defined on a per cell basis.

Definition 82 (intersection of two fuzzy bitmaps)

Ã∩̃B̃ = {(c, µÃ∩̃B̃(c)) | c ∈ G} (4.3)

where

µÃ∩̃B̃ → G → [0, 1]

c 7→ T (µÃ(c), µB̃(c))

Verification Consider a point p, by definition ∃c ∈ G : p ∈ c. By definition,
the membership grade µÃ(p) = µÃ(c) and µB̃(p) = µB̃(c).

µÃ∩̃B̃(p) = T (µÃ(p), µB̃(p))

= T (µÃ(c), µB̃(c))

= µÃ∩̃B̃(c)

Implementation For the pseudo code, some assumptions are made. First,
it is assumed there is a structure Fuzzy_Bitmap, which has an attribute grid.
It also has a method mu which takes one argument, a cell, and returns the
value associated with this cell. The function MatchGrids takes two grids as
argument, and returns the single grid that is obtained by combining the grids, as
described in the previous section. The function ChangeGrid takes a bitmap and
a grid as argument, and returns a bitmap that is defined on the given grid; but
technically holds all the same membership grades. The limitation is that the
given grid must be a partition of the original grid. The pseudo code in this work
is also not optimal. The reason for this is that any implementation will most
likely be made inside a database or GIS, in which many data structures and
algorithms will be present and can be reused. Optimizations will be dependent
on the framework in which the implementation is made.

The implementation in pseudo code is given below.

Fuzzy_Bitmap Intersection (Fuzzy_Bitmap A, Fuzzy_Bitmap B)

result, A1, B1: Fuzzy_Bitmap

BEGIN

result.grid = MatchGrids(A.grid, B.grid)

A1 = ChangeGrid(A, result.grid)

B1 = ChangeGrid(B, result.grid)

for each cell c in result.grid
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result.mu(c) = T(A1.mu(c),B1.mu(c))

end for

return result

END

Union

The union of two bitmaps can be used to yield the regions where one of two
features (each modelled by its own bitmap) occurs.

This operator is performed by a T-conorm (e.g. maximum), but again, as
the operator is applied on a per cell basis, any T-conorm can be used.

Definition 83 (union of two fuzzy bitmaps)

Ã∪̃B̃ = {(c, µÃ∪̃B̃(c)) | c ∈ G} (4.4)

where

µÃ∪̃B̃ : G → [0, 1]

c = S(µÃ(c), µB̃(c))

Verification This definition yields the desired behaviour, as presented in 55.
Consider a point p, by definition ∃c ∈ G | p ∈ c. By definition, the membership
grade µÃ(p) = µÃ(c) and µB̃(p) = µB̃(c).

µÃ∪̃B̃(p) = S(µÃ(p), µB̃(p))

= S(µÃ(c), µB̃(c))

= µÃ∪̃B̃(c)

Implementation The pseudo code is very similar to the implementation of
the intersection.

Fuzzy_Bitmap Union(Fuzzy_Bitmap A, Fuzzy_Bitmap B)

result, A1, B1: Fuzzy_Bitmap

BEGIN

result.grid = MatchGrids(A.grid, B.grid)

A1 = ChangeGrid(A, result.grid)

B1 = ChangeGrid(B, result.grid)

for each cell c in result.grid

result.mu(c) = S(A1.mu(c),B1.mu(c))

end for
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return result

END

Complement

The complement of a fuzzy region Ã yields a new fuzzy region, representing
the complement of the original region. If Ã is limited to a region of interest R,
the complementary region will cover the considered universe U to which the
GIS was limited (4.2). A new grid G′ needs to be defined, so that

•
⋃

c′∈G′

c′ = U

• ∀c ∈ G,∃c′ ∈ G′ : c = c′

Definition 84 (complement of a fuzzy bitmap)

coÃ = {(c′, µcoÃ) | c′ ∈ G′} (4.5)

where

µÃ∪̃B̃ : G′ → [0, 1]

c′ 7→
{

1 − µÃ(c) if ∃c ∈ G | c = c′

1 if 6 ∃c ∈ G | c = c′

Verification This definition yields the desired behaviour, as presented in 56.
Consider a point p, by definition ∃c ∈ G | p ∈ c. By definition, the membership
grade µÃ(p) = µÃ(c).

• For cells c′ ∈ G′ for which ∃c ∈ G : c = c′

µcoÃ(p) = µcoÃ(c)

= 1 − µÃ(c)

= 1 − µÃ(p)

• For cells c′ ∈ G′ for which 6 ∃c ∈ G : c = c′ Points not in the region of
interest are considered to have a membership grade 0. By definition, the
membership grade in the complement should be 1, which - by definition
of the complement of a fuzzy bitmap - is the case.
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Figure 4.6: Alphacuts for bitmaps.

Implementation The pseudo code is very similar to the implementation of
the intersection and union. The new grid can easily be found by considering
the universe as a bitmap consisting of one big cell (its membership grade is of
no importance).

Fuzzy_Bitmap Complement(Fuzzy_Bitmap A)

result, A1: Fuzzy_Bitmap

BEGIN

result.grid = MatchGrids(A.grid, U)

A1 = ChangeGrid(A, result.grid)

for each cell c in result.grid

result.mu(c) = 1-A1.mu(c)

end for

return result

END

4.4.2 Fuzzy operations

α-cut

When working with fuzzy structures, at some point there will be the need to
defuzzify information, which implies there must be means to revert to crisp
data. This can be needed for instance to display the results, but also to make
it possible for a fuzzy model to be exported to a system that has no support
for fuzzy models. As many extensions of geographic operators presented here
make use of α-cuts, they are considered first.

Traditionally in fuzzy set theory, the α-cut is used for defuzzification: the
α-cut of a fuzzy set is a regular set containing all the elements which have a
membership grade greater than a given threshold. Elements whose membership
grade is not greater than this threshold are not in the result set. On figure 4.6a
is an illustration of this.
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In the bitmap model, the first step of α-cut takes a fuzzy bitmap as argu-
ment (figure 4.6b) and results in a new fuzzy bitmap which only has associated
values 0 or 1. This is illustrated on figure 4.6c. The resulting bitmap will share
the same grid as the bitmap used as argument:

G̃result = Gorig (4.6)

In fuzzy set theory, a difference is made between a strong α-cut and weak
α-cut ; this difference is also reflected in our model.

Weak α-cut The weak α-cut of a fuzzy set returns the elements with a
membership grade greater than or equal to a given threshold.

B̃α = {(cj , 1) | µBorig
(cj) ≥ α ∧ cj ∈ G} (4.7)

core A special case of a weak α-cut is the core; this is the weak α-cut with
threshold 1. This is an important alpha cut, as it results all the elements that
fully belong to the fuzzy set.

B̃1 = {(cj , 1) | µBorig
(cj) ≥ 1 ∧ cj ∈ G} (4.8)

Strong α-cut The strong α-cut of a fuzzy set returns the elements with a
membership grade strictly greater than a given threshold:

B̃α = {(cj , 1) | µBorig
(cj) > α ∧ cj ∈ G} (4.9)

Support Similarly to the weak α-cut, the strong α-cut has a special case,
now for a threshold equalling 0. This α-cut is called the support, and returns
all the elements that belong to some extent to the given fuzzy set.

B̃0 = {(cj , 1) | µBorig
(cj) > 0 ∧ cj ∈ G} (4.10)

Verification To reflect the α-cut as defined in 2.4.1, the above definitions
should have the same result on all points. The verification will be performed
on the strong α-cut, the weak α-cut can be verified similarly. For fuzzy bitmaps,
a cell c is in the α-cut if and only if its associated membership grade is greater
than a given α; similarly, for fuzzy regions, p is in the α-cut if and only if its
associated membership grade is greater than a given α. All points p in a cell c
are considered to have the same membership grade.

c ∈ Ãα ⇔ µÃ(c) > α

⇔ ∀p ∈ c : µÃ(p) > α

⇔ ∀p ∈ c : p ∈ Ãα
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Implementation The practical computation for the α-level of a fuzzy region
is very straightforward.

Fuzzy_Bitmap BMP_weak_alpha (Fuzzy_Bitmap A, real Alpha)

result: Fuzzy_Bitmap;

result.grid = A.grid; // same grid => same number of cells

for each cell c in fuzzy bitmap A

if A.mu(c)c >= alpha

result.mu(c) = 1

else

result.mu(c) = 0

end for

return result

END

For a strong α cut, it suffices to change the ≥ to > in the if-test. For the
kernel and the support, it suffices to replace alpha by respectively 1 or 0 in the
respective algorithm for the weak or strong α-cut.

Finding the outline Traditionally, crisp regions are not represented using
bitmaps, but using lines, polygons, etc. (1.1.2). While the result obtained
above only holds crisp information, it is still not represented as a traditional
crisp region. To achieve this, the α-level should be represented by polygons
(with holes if necessary). This representation can be obtained by considering
the outline of each cell of the bitmap representing the α level, that has an
associated value 1. Each outline is a polygon (by definition, most likely a rec-
tangle); the union of these polygons will yield a more traditional representation
for the α-level.

Verification This definition yields the desired behaviour, as presented in
(2.4.1). Consider a point p, by definition ∃c ∈ G | p ∈ c. By definition, the
membership grade µÃ(p) = µÃ(c).

4.4.3 Geo-spatial

Minimum bounding rectangle

In traditional GIS, a minimum bounding rectangle of a polygon is the smallest
rectangle that can contain the polygon, and of which the sides are parallel to the
axes used ([39]). This concept can be used for a number of purposes, ranging
from determining the relative position of two features to optimizing operators
(i.e. if the MBRs of two regions don’t overlap, the regions don’t overlap). For
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(a) (b)

Figure 4.7: The fuzzy MBR of a bitmap.

a fuzzy region, two variants of the concept of an MBR are considered. The
first is a fuzzy minimum bounding rectangle, which results in a fuzzy defined
rectangle (i.e. another bitmap structure); the second requires an alpha level,
and results in a crisp rectangle bounding this alpha level.

The concept of the fuzzy minimum bounding rectangle as introduced here
should not be confused with the fuzzy minimum bounding rectangle defined
in [45], where the authors define both a minimum bounding rectangle and the
inscribed rectangle of a fuzzy region, along with a number of intermediate
rectangles, in order to approximate this region.

Fuzzy minimum bounding rectangle A fuzzy MBR will yield a fuzzy
bitmap with the same grid as the original fuzzy bitmap. The fuzzy MBR will
be a new fuzzy bitmap where every α-cut is rectangular; it is defined such that
these rectangular α-cuts are MBRs for the same α-cuts of the original fuzzy
bitmap. This is illustrated on figure 4.7: figure 4.7a shows the original fuzzy
bitmap, figure 4.7b shows its fuzzy MBR.

Definition 85 (fuzzy minimum bounding rectangle m̃br(Ã))
(of a fuzzy bitmap region Ã)

m̃br(Ã) = {(c, µm̃br(Ã))} (4.11)

where

µm̃br(Ã) : U → ]0, 1]

c 7→ sup
αi∈]0,1]

{αi | c ∈ mbr(Ãαi
)}
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Here, the mbr(Ãαi
) represents the minimum bounding rectangle - made up

from cells - that bounds all the cells with membership grade 1 (the α level of
a region only has cells with values in {0, 1}.

Verification To verify that this definition matches the definition for fuzzy
regions 2.4.2, it suffices to verify that all points using the above definition have
the same membership grades as when using the theoretical definition.

µm̃br(Ã)(c) = x ⇔ sup
αi∈]0,1]

{αi | c ∈ mbr(Ãαi
)} = x

⇔ ∀p ∈ c : sup
αi∈]0,1]

{αi | p ∈ mbr(Ãαi
)} = x

⇔ ∀p ∈ c : µm̃br(Ã)(p) = x

Implementation As a bitmap holds a finite number of cells, it also holds a
finite number of membership grades. Consequently, only the grades present in
the bitmap need to be considered when determining α-cuts to define the fuzzy
MBR: other values will not add any more information.

Consider all these α-cuts. For each α-cut, a bitmap-MBR can be defined:
a rectangle represented by a bitmap made of cells such that all cells belonging
to this α-cut are inside the rectangle and no smaller rectangle can be defined.
Such a rectangle can be considered for each α-level, and each rectangle can
be considered as a bitmap. The union of all these (overlapping) bitmaps -
as explained in section 4.4.1 - yields a new bitmap. The construction of this
bitmap-MBR is explained below in pseudo-code.

Fuzzy_Bitmap Fuzzy_MBR (Fuzzy_Bitmap A)

result, A_alpha: fuzzy_bitmaps, same grid as A, all grades=0

BEGIN

determine available alpha levels in A

for each alpha level alpha in A

determine A_alpha

find the cells with grade = 1 in A_alpha that are closest to

the left/right/top/bottom side of the grid

use these cells to define a rectangle of cells in A_alpha:

leftmost cell determines lefthand side of the rectangle

rightmost cell determines righthand side of the rectangle

topmost cell determines tophand side of the rectangle

bottommost cell determines bottom side of the rectangle

for all cells c in A_alpha

if c in rectangle
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(a) (b)

Figure 4.8: The fuzzy MBR and the polygons derived from it: (a) fuzzy MBR
bitmap, (b) polygons derived from the fuzzy MBR bitmap.

A_alpha.mu(c) = 1

else

A_alpha.mu(c) = 0

end if

for each cell c with A_alpha.mu(c) = 1

if result.mu(c) < alpha

result.mu(c) = alpha

end if

end for

end for

return result

END

This new bitmap has the property that its α-cuts are MBRs for the same α
levels in the original bitmap, this new bitmap is considered as the fuzzy MBR.
Note that membership grades in the fuzzy MBR will always be simple (53):
higher grades towards the middle, lower grades towards the edge of the fuzzy
bitmap.

Fuzzy minimum bounding rectangle as polygons The fuzzy MBR has
the disadvantage that it still is a bitmap-structure; making it impossible for
existing systems to use this information without modifications. To overcome
this, the crisp MBRs for the different α levels can be deduced from the fuzzy
MBR. In addition to a bitmap, the calculation of such a crisp MBR also requires
an α level: this level determines the cells of the bitmap around which the MBR
is considered.
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The crisp MBR is easily calculated from the fuzzy MBR. First, the fuzzy
MBR is determined. Next, the α-cut at the given level is considered. This will
yield a bitmap with cells having an associated membership grade 1 and cells
with an associated grade 0. The outline of the cells with an associated grade 1
can now be represented as a polygon (by construction it will be a rectangle),
resulting in a traditional MBR. On fig. 4.8, both the fuzzy MBR bitmap and
all the derived polygons are shown (the shade of the polygons is used to give
an indication of the α-cut from which the polygons are derived). The pseudo
code is provided below.

Polygon Fuzzy_MBR_polygon (Fuzzy_Bitmap A, real Alpha)

A_MBR: fuzzy_bitmap, same grid as A, all grades=0

result: Polygon, initially emtpy

BEGIN

A_MBR = Fuzzy_MBR(A)

A_alpha = BMP_weak_alpha(A_MBR, Alpha)

For each cell c of A_alpha

if A_alpha.mu(c) = 1 then

result = result union outline(c)

end for

return result

END

Convex hull

The convex hull of a polygon ([39]) is an interesting operator in traditional
GIS systems. It is commonly used to optimize other operators and tests, i.e. if
the convex hulls of two polygons don’t intersect, the polygons themselves don’t
intersect. It can also be used for indexing, similar to bounding rectangles. Even
in this usage, defuzzification makes sense: the same fuzzy region can have index
entries for different α-levels.

Traditionally, the convex hull of a polygon results in a new polygon; for
fuzzy regions, the convex hull of a fuzzy region will result in a new fuzzy
region. The approach is quite similar to the calculation of the fuzzy MBR: for
every α-cut, the convex hull is considered. By recombining these results using
the union operator, a new bitmap containing the fuzzy convex hull is obtained.
On figure 4.9 is a simplified example (the cells aren’t considered) to illustrate
the concept: figure 4.9a shows a fuzzy region, its fuzzy convex hull is shown on
figure 4.9b.

In order to determine the convex hull, the bitmap has to be interpreted as
an approximation of a polygon. In order to find this polygon, each cell will
need to be represented by a single point (such that the bitmap is the raster-
representation of this polygon). This point is called the centerpoint of a cell in
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Figure 4.9: Simplified illustration of the concept of the fuzzy convex hull.

the algorithm; the most obvious choice for a centerpoint of a cell is the center
of gravity.

Definition 86 (convex hull c̃h(Ã) of a fuzzy bitmap region Ã)

c̃h(Ã) = {(c, µc̃h(Ã))} (4.12)

where

µc̃hÃ : U → ]0, 1]

c 7→ sup
αi∈]0,1]

{αi | c ∈ ch(Ãαi
)}

Here, ch(Ãαi
) represents the convex hull - made up from cells - that bounds

all the cells with membership grade 1 (the α level of a region only has cells
with values in {0, 1}).

Verification The proof that the above definition matches the theoretical
definition 2.4.2 is analogous to the proof for the minimum bounding rectangle.

µc̃h(Ã)(c) = x ⇔ sup
αi∈]0,1]

{αi | c ∈ ch(Ãαi
)} = x

⇔ ∀p ∈ c : sup
αi∈]0,1]

{αi | p ∈ ch(Ãαi
)} = x

⇔ ∀p ∈ c : µc̃h(Ã)(p) = x
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(a) (b)

Figure 4.10: Example of a fuzzy convex hull of an fuzzy bitmap.

Implementation Similar to the calculation of the fuzzy MBR, only the α-
levels at membership grades that occur in B̃ need to be considered.

Fuzzy_Bitmap Fuzzy_Convex_Hull (Fuzzy_Bitmap A)

result, temp: fuzzy_bitmaps, same grid as A, all grades=0

BEGIN

determine available alpha levels in A

for each alpha level x

determine A_x

consider the centerpoints of cells with grade=1 in A_x that

neighbour cells with grade=0 or

neighbour the edge of the bitmap

generate convex hull of polygon defined by these centerpoints

rasterize the polygon (using the current grid as raster)

if a cell c belongs to the edge or the inside of the polygon

mu_temp(c) = 1

for each cell c with temp.mu(c) = 1

if the result.mu(c) < x

result.mu(c) = x

end for

end for

return result

END
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In the algorithm, the center points of cells are needed. The center point of
a cell is a point that is representative for the entire cell; the center of gravity
makes for a nice representative point (due to the fact that the cell is defined as
a convex subset, the center of gravity will always belong to the cell).

Also in the algorithm, a rasterization-method is required. These methods
are common in the realm of computer graphics, for a description of different
rasterization-techniques we refer to [27],[1]. As this extends beyond the scope
of this work, it will not be considered in further detail.

On figure 4.10a fuzzy bitmap is considered (it is the rasterized example of
figure 4.9). The fuzzy bitmap is shown on figure 4.10b. This result might not
appear to be convex, but a bitmap representation is limited in that it can only
consider cells as its smallest unit. The bitmap usually is an approximation of
a polygon, the convex hull of a bitmap will also be an approximated polygon.
The fuzzy bitmap as constructed above has the property that at every α-level
it holds the convex hull for the original bitmap (at that same α-level).

Surface area

As mentioned before, for the calculation of the surface area of a fuzzy region,
there are two possible interpretations. The first is when the surface area yields a
fuzzy number. The second interpretation is when the surface area is considered
to be an extension of fuzzy cardinality [32]; in this case the surface area of a
fuzzy region will be a crisp number. Both interpretations are considered below.

Interpretation 1: fuzzy result The calculation of the fuzzy surface area S̃f

of a fuzzy bitmap Ã makes use of the previously defined α-cut. Conceptually,
the surface area of each weak α-cut will be used to determine the fuzzy number
that represents the surface area. Similar to the calculation of the distance, first
the available α-cuts are considered. In practice, only the α-cuts at membership
grades present in Ã will need to be considered:

0 < α0 < α1 < ... < αn ≤ 1 (4.13)

Each α-cut of the fuzzy region yields a crisp region; consequently, the surface
area can be calculated easily.

Definition 87 (surface area S̃f (Ã) of a fuzzy bitmap region Ã)
(yielding a fuzzy result)

S̃f (Ã) = {(x, µS̃f (Ã)(x))} (4.14)

where

µS̃f (Ã)(x) : R → [0, 1]

x 7→





αi if S(Ãαi+1) < x ≤ S(Ãαi
),∀i = 0..n − 1

αn if S(Ãαn
) = x

0 elsewhere

where S represents the surface area of a crisp region.
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Verification To prove that this definition has the same meaning as the defi-
nition 2.13, consider a fuzzy bitmap region Ã where the occurring membership
grades are 0 < α0 < α1 < ... < αn ≤ 1 (by definition, the number of mem-
bership grades in a fuzzy bitmap are finite). A value s is assigned membership
grade µS̃f (Ã)(s) = αi if s is the surface area of s = Ãµ

S̃f (Ã)
(s) = Ãα and

αi+1 < α ≤ αi.
As there are a finite number of membership grades occurring in the fuzzy

bitmap, and no grades occur between αi and αi+1 it stands that S(Aαi
) =

S(Ax), αi < x ≤ αi+1.

Implementation By definition there are only a finite number of cells in a
bitmap, so the above definitions are suited for implementation. The implemen-
tation of the fuzzy surface area assumes there is a mechanism to work with
fuzzy numbers, using a data structure called fuzzy_real. It also makes use of
the surface area of a cell, which is computed as the crisp surface area of the
polygon (usually rectangle) limiting the cell. The algorithm in pseudo code is
given below.

real S(Fuzzy_Bitmap A)

result: real

BEGIN

for each cell c in A

result = result + S(c)

end for

return result

END

fuzzy_real Fuzzy_surface(Fuzzy_Bitmap A)

A_x: Fuzzy_Bitmap, same grid, initially all cells 0

result: fuzzy_real

BEGIN

find all alpha levels x_0, x_i, ... x_n in A

x_0 = lowest alphalevel in A

A_x_0 = BMP_strong_alpha(A, x_0)

add (S(B_x_0), x_0) to result

for each alpha level x_i>x_0

B_x_i = BMP_strong_alpha(A, x_i)

B_x_(i-1) = BMP_strong_alpha(A, x_(i-1))

add y=x_i for x in]S(B_x_i), S(B_x_(i-1))] to result

end for

return result

END
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Interpretation 2: crisp result As mentioned before, the fuzziness of a
region can also be considered to be the result of intrinsic fuzziness. In this con-
cept, the surface area of each cell is considered and its associated membership
grade will be used to determine to which extent this area contributes to the
total area.

Definition 88 (surface area S̃c(Ã) of a fuzzy bitmap region Ã)
(yielding a crisp result)

S̃c(Ã) =
∑

c∈G

(S(c)µÃ(c)) (4.15)

where G is the grid used to define Ã.

Verification For a fuzzy bitmap, this definition matches the theoretical de-
finition given in 2.4.2.

S̃c(Ã) =
∑

c∈Ã

(S(c) µÃ(c))

=
∑

c∈Ã

(∫

c

d(x, y) µÃ(c)

)

=
∑

c∈Ã

(∫

c

µÃ(c) d(x, y)

)

=
∑

c∈Ã

(∫

c

µÃ(p) d(x, y)

)

=

∫
⋃

i

ci

µÃ(p) d(x, y)

=

∫

U

µÃ(p) d(x, y)

This is due to the fact that the cells ci form partition of Ã, meaning that:
⋃

i

ci = Ã

⋂

i

ci = ∅

and due to the fact that the contribution is 0 for points p ∈ U\
⋃

i

ci.

Note that a cell c is defined as a convex, bounded subset of R2 (Definition
78); its surface area S(c) is therefore a finite number which can be denoted as∫

c
d(x, y).
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Figure 4.11: Concept of the distance between fuzzy regions.

Implementation The computation matching the above definition is given
below in pseudo code.

real Fuzzy_surface_card(Fuzzy_Bitmap A)

result: real

BEGIN

for each cell c in A

result = result + S(c)*mu_A(c)

end for

return result

END

As above, the surface area of a cell is computed as the area of the polygon
defining it.

Distance calculation

As in the conceptual model (2.4.2), the distance can be interpreted differently,
the two interpretations considered before, are both considered here.

α-level approach In the α-level approach, the distance between two regions
is obtained by considering the possible distances between the cells of the α-cuts
for both regions, and this for all α. This is illustrated on fig 4.11.

In order to extend the distance operator, first all the membership grades
occurring in both arguments must be considered:

0 < α0 < α1 < ... < αn ≤ 1 (4.16)

where ∀α ∈ {α0, α1, ...αn}∃c ∈ Ã ∪ B̃ : µÃ(c) = α ∨ µB̃(c) = α. Along with
each of these α-values, lα can be defined; lα is the shortest distance between
the α-levels of the bitmaps:

lα = min
(
d(p1, p2),∀p1 ∈ Ãα ∧ p2 ∈ B̃α

)
(4.17)

The distance is considered between all cells that belong to this α-level in each
of the bitmaps; lα is defined for all α ∈ {α0, α1, ...αn} . The distance lα0

is the
shortest distance that occurs; the distance lαn

is the longest.
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The definition for the distance between two fuzzy regions is then defined
using the lα values as:

Definition 89 (distance d̃(Ã, B̃) between two fuzzy bitmaps)
(in an α-level approach)

d̃(Ã, B̃) = {(x, µd̃(Ã,B̃)(x))} (4.18)

where

µd̃(Ã,B̃) : R → [0, 1]

x 7→





αi if lαi
≤ x < lαi+1

,∀i = 0, 1, ..., n − 1
αn if x = lαn

0 elsewhere

To calculate the distance to a crisp object (a point, line or polygon), it
suffices to consider only the closest point from the fuzzy bitmap to this object.
The crisp object can be treated as a fuzzy object; as all points are then assigned
membership grade 1, it suffices to only consider the different α levels that occur
in the fuzzy bitmap.

Verification To verify that the above definition matches the definition given
in 2.4.2, consider two fuzzy regions Ã and B̃, and the distance represented by
the fuzzy real number d. It is now necessary to prove that ∀x ∈ R : µd̃(x) =

sup{α : d(Ãα, B̃α) = x}.
In the conceptual definition (definition 61), x is assigned the largest α for

which there are two points p1 ∈ Ãα, p2 ∈ B̃α that have a distance d(p1, p2) = x.
As in the bitmap only α-levels αi, i = 0, 1, ..., n occur, only these levels need
to be considered; suppose this largest α is αi. Consequently, p1 ∈ Ãαi

, but
p1 /∈ Ãαi+1

; similarly p2 ∈ B̃αi
, but p2 /∈ B̃αi+1

.

• is d(p1, p2) ≥ lαi
?

lαi
is defined as the minimal distance between any two points in Ãαi

and
B̃αi

, this implies that d(p1, p2) ≥ lαi
.

• is d(p1, p2) < lαi+1
?

Suppose d(p1, p2) ≥ lαi+1
. By definition of lα, this would imply p1 ∈

Ãαi+1
and p2 ∈ B̃αi+1

. This is false.

Consequently, lαi
≤ d(p1, p2) < lαi+1

and µd̃(d(p1, p2)) = αi.

Implementation The pseudo code to implement the above definition is given
below
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fuzzy real Fuzzy_Distance (fuzzy_bitmap A, fuzzy_bitmap B)

fuzzy real result

begin

determine all available alpha levels in A and B

n = number of alpha levels

for each available alpha alpha_i

l_alpha_i = crisp d(A_alpha_i, B_alpha_i)

end for

for all i = 0 to n-1

add y = alpha_i for x in [l_alpha_i, l_alpha_(i+1)[ to result

end for

add y = alpha_n for x = l_alpha_n in result

return result

end

Topological approach The topological approach, as described as a concept
in 2.4.2, makes use of the notion of the fuzzy boundary (for bitmaps, see 4.4.4).
The distance to a fuzzy region is considered to be the distance (in the α-level
approach) to its fuzzy boundary.

Definition 90 (distance d̃∆(Ã, B̃) between two fuzzy bitmaps)
(in a topological approach)

d̃∆(Ã, B̃) = {(x, µd̃∆(Ã,B̃)(x))} (4.19)

where

µd̃∆(Ã,B̃) : R → [0, 1] (4.20)

x 7→ µd̃(∆Ã,∆B̃)(x) (4.21)

where ∆(Ã) is the notation for the boundary of Ã, as defined conceptually in
2.4.3 and specifically for bitmaps in 4.4.4:

∆Ã =
⋃

α∈]0,1]

{(c, 2(0.5 − |0.5 − α|))|c ∈ ∂Aα}

For some applications, the topology approach feels more natural: for points
that have membership grade greater than 0.5, the distance starts decreasing.
This makes sense, as these points actually belong more to the region than not.

4.4.4 Topology

The topology concepts of a fuzzy bitmap are defined analogous to the theo-
retical definition 62. Each of the concepts boundary, interior and exterior of
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a fuzzy bitmap yields a new fuzzy bitmap which uses the same grid as the
original bitmap.

Boundary

Definition 91 (boundary ∆Ã of a fuzzy region Ã)

∆Ã =
⋃

α∈]0,1]

{(c, 2(0.5 − |0.5 − α|))|c ∈ ∂Aα} (4.22)

implementation

fuzzy_bitmap Fuzzy_Boundary(fuzzy_bitmap A)

result: fuzzy_bitmap, same grid as A, all grades=0

BEGIN

for each cell c in A

add c to result

result.mu(c) = 2*(0.5-abs(0.5-A.mu(c)))

end for

return result

END

Interior

Definition 92 (interior Ã◦ of a fuzzy region Ã)

Ã◦ = {(c, µÃ◦(c))} (4.23)

where

µÃ◦ : G → [0, 1]

c 7→
{

0 µÃ(c) ≤ 0.5
1 − µ∆Ã(c) elsewhere

implementation

fuzzy_bitmap Fuzzy_Interior(fuzzy_bitmap A)

result: fuzzy_bitmap, same grid as A, all grades=0

BEGIN

for each cell c in A

add c to result

if A.mu(c) <= 0.5

result.mu(c) = 0

else

result.mu(c) = 1-2*(0.5-abs(0.5-A.mu(c)))

end if
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end for

return result

END

Exterior

The exterior can be defined similarly to the interior. Remark that if Ã is limited
to a region of interest R, the exterior will cover the universe U as considered
by the GIS 4.2 (this is similar to the remark for the complement in 4.4.1). A
new grid G′ needs to be defined, so that

•
⋃

c′∈G′

c′ = U

• ∀c ∈ G,∃c′ ∈ G′ : c = c′

The exterior of fuzzy bitmap Ã can now be considered on this new grid:

Definition 93 (exterior Ã− of a fuzzy region Ã)

Ã− = {(c′, µÃ−(c′))} (4.24)

where

µÃ− : G′ → [0, 1]

c′ 7→





0 if ∃c ∈ G : c = c′ ∧ µÃ(c) ≥ 0.5
1 − µ∆Ã(c) if ∃c ∈ G : c = c′ ∧ µÃ(c) < 0.5
1 ∀c ∈ G : c 6= c′

implementation

fuzzy_bitmap Fuzzy_Exterior(fuzzy_bitmap A)

result: fuzzy_bitmap, same grid as A, all grades=0

BEGIN

result.grid=MatchGrids(Fuzzy_Bitmap A, U)

result.grid = A.grid

for each cell c in result

if A.mu(c) >= 0.5

result.mu(c) = 0

else

result.mu(c) = 1-2*(0.5-abs(0.5-A.mu(c)))

end if

end for

return result

END
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Using the above concepts, the topology can be determined completely anal-
ogous to the methodology described in 2.4.3: for any two regions, an intersec-
tion matrix can be constructed. The interpretation of the different intersection
matrices, has been dealt with in 2.4.3.

4.5 Extensions

As the bitmap model serves as an implementation-model for fuzzy regions, the
extensions considered in 2.5 also need to be considered here.

4.5.1 Fuzzy locations

As mentioned in 2.5.1, fuzzy locations can be represented by fuzzy points,
which in turn are fuzzy regions with a possibilistic interpretation instead of the
veristic interpretation. The two dimensional fuzzy set is then interpreted as a
set of “possible locations for the imprecise or uncertain point”. The definition
is completely similar to the one before.

Definition 94 (fuzzy point p̃ using bitmap B and grid G )

p̃B = {(cj , µp̃B (cj))} (4.25)

where

µp̃B : G → [0, 1]

c 7→ µp̃B (c)

Operations

The overview of operations on fuzzy regions that remain meaningful on fuzzy
points was provided in the conceptual model. For completeness, this overview
is also repeated here.

Set-operations The set operations can be used to combine information from
different sources regarding the modelled location, for instance one bitmap could
model a source indicating that the location is close to a city; another bitmap
could model a different source indicating that the location is close to a given
road. The intersection of both will yield the possible locations that satisfy both
criteria.

α-cut operation Determination of the α-cut is also still meaningful, and can
be used to determine the crisp region in which the locations have at least a
given membership grade.
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Minimum bounding rectangle and convex hull Both the minimum
bounding rectangle and the convex hull can be used to approximate the outline
of the region of possible locations.

Surface area calculation By definition, the surface area of a single point is
0. The definition of the surface area for fuzzy regions can still be used to serve
as an indication over which area the imprecisely known or inaccurately known
point is located. It does not indicate the surface area of the point.

Distance calculation The definition of the distance between fuzzy points
differs from the definition of the distance between fuzzy regions. The reason for
this is that for fuzzy regions the distance could not exceed the distance between
both cores (the definition between regions is the minimum definition between
them). The imprecisely known or inaccurately known point can however be
positioned in any point of the region. This will also be reflected in the definition
of the distance between two fuzzy points. The distance is considered to be a
possibility distribution, where for each possible distance between points of both
regions, a possibility is assigned. This possibility is the largest α-value such
that the distance is still present it the α-levels of both bitmaps.

Consider cells cA used in point p̃A, and cB used in point p̃B . For every
combination of cells cA and cB , the following values can be defined:

dmin(cA, cB) = inf{d(p1, p2) : p1 ∈ cA, p2 ∈ cB} (4.26)

dmax(cA, cB) = sup{d(p1, p2) : p1 ∈ cA, p2 ∈ cB} (4.27)

The distance between two fuzzy points is then defined as:

Definition 95 (distance d̃(Ã, B̃) between two fuzzy bitmaps)
(for fuzzy bitmaps that represent fuzzy points)

d̃(p̃A, p̃B) = {(x, µd̃(p̃A,p̃B)(x))} (4.28)

where

µd̃(p̃A,p̃B) : R → [0, 1]

x 7→ sup
∀cA,cB

{α | α = min(µp̃A(cA), µp̃B (cB)) :
dmin((cA, cB)) ≤ x ≤ dmax((cA, cB))}

where cA and cB represent cells in respectively p̃A and p̃B , and where the
notation µp̃X (cX) is used to represent the membership grade associated with
cell cX in bitmap X.

The above definition is illustrated on fig. 4.12. For fuzzy points represented
by complex fuzzy bitmaps, the remark is similar as for the conceptual fuzzy
points (2.5.1).

A downside to representing fuzzy points by using fuzzy bitmaps, is that it
is not possible to pinpoint a single location or even a one-dimensional structure
(e.g. along a line): the smallest unit known to the bitmap is a cell. Within a
cell, no further details can be modelled regarding the fuzzy point.
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Figure 4.12: Illustration of the fuzzy distance between fuzzy points: (a) fuzzy points
p̃A and p̃B (illustrated using grey scales, (b) the fuzzy distance between p̃A and p̃B .

Topology The topology relations for fuzzy points can be used similarly to
the topology relations for fuzzy regions. The result should not be interpreted
as a topologyical relation on the points as such, but on the regions delimiting
the points.

4.5.2 Regions at fuzzy positions

In the current approach for fuzzy regions, fuzzy regions are considered to be at
crisp positions: the membership grade indicates to which each point belongs to
the region. It can however be interesting to represent a region (either crisp or
fuzzy) for which its position is unknown or uncertain: a region at a fuzzy po-
sition. This could for instance be used to model possible locations for building
a new airport, where the uncertainty of the position stems from environmental
limitations (noise pollution, wildlife areas, safety zones, ...).

The concept of modelling this, using a first fuzzy region to model the posi-
tion of an anchor point, and a second fuzzy region to model the region itself,
has been mentioned in 2.5.2. The concept is similar here, but with the above
remark for fuzzy points using a fuzzy bitmap (4.5.1) that it is impossible to
limit anchor point represented by a fuzzy bitmap to either a single location or
even to a one-dimensional line.

As mentioned in 2.5.2, the combination of both the uncertainty concerning
the location, and the imprecision concerning the region will yield level-2 fuzzy
sets.

4.5.3 Fuzzy associated data

Similar to the conceptual fuzzy regions, fuzzy regions represented by bitmaps
can be used also for fuzzy associated data. In this case, the region is no longer
considered to be fuzzy, but the data associated with each cell is comprised of
a fuzzy set. Bitmaps that are adopted for this use, are referred to a extended
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bitmaps. The associated data can be a fuzzy set over a number of domains (e.g.
soil types, rock composition, vegetation, real numbers, etc.). The example for
real numbers is given below.

Definition 96 (extended bitmap with fuzzy real numbers BR̃)
(using grid G)

BR̃ = {(cj , f(cj))} (4.29)

where

f : G → ℘̃(R)

c 7→ f(c)

Here, G is the grid containing the cells c and ℘̃(R) the set of all fuzzy sets over
the domain R.

With each cell, the associated fuzzy set is obtained through measurements,
estimations or approximations. Traditionally, bitmaps are an approximation;
the data associated with each cell is usually computed from a number of sample
points in this cell. When using extended bitmaps, and thus allowing for fuzzy
sets to be modelled, the associated data for each cell becomes a fuzzy set. This
fuzzy set can be used to take into account the fact that the data stems from
an approximation.

Type-2 fuzzy bitmaps

The above extension can be modified to accommodate type-2 fuzzy sets, as
mentioned in the conceptual model.

Definition 97 (type-2 fuzzy bitmap region region ˜̃B)
(using grid G)

˜̃B = {(c, µ ˜̃B
(c))} (4.30)

where

µ ˜̃B
: G → ℘̃([0, 1])

c 7→ µ ˜̃B
(p)

Here, G is the grid containing the cells c and ℘̃([0, 1]) the set of all fuzzy sets
over the domain [0, 1]. The membership grade µ ˜̃B

(c) expresses the extent to
which p belongs to the fuzzy region using a fuzzy membership grade.

Similarly, type-2 fuzzy points can be defined.
Membership grades are assigned with cells based on sample values, estima-

tions, etc. By means of type-2 fuzzy sets, the fact that the single associated
value for the cell (a fuzzy set in this case) usually stems from multiple differ-
ent fuzzy sets for various sample points inside the cell, can be modelled more
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accurately: fuzzy aggregation on the membership grades of the sample points
can yield a more representative fuzzy set for the value associated with the
considered cell.

Possibilistic truth value regions

The bitmap model for a region representing possiblisitic truth values, is defined
similarly to the type-2 fuzzy bitmaps.

Definition 98 (PTV extended bitmap B{̃T,F})
(using grid G)

B{̃T,F} = {(cj , f(cj))} (4.31)

where

f : G → ℘̃({True, False})
c 7→ f(c)

Here, G is the grid containing the cells c and ℘̃({True, False}) the set of all
fuzzy sets over the domain {True, False}.
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Chapter 5

Fuzzy regions using

Triangulated Irregular

Networks

5.1 Concept

A fuzzy region is defined as a fuzzy set over the two dimensional domain. To
make this concept workable, the model needs to be simplified. In fuzzy bitmaps
(chapter 4), this simplification is done by limiting the domain to a finite set. In
this chapter, a simplification using triangulated irregular networks is presented.
Unlike the bitmaps, this approach - like the conceptual model in chapter 2- still
uses an infinite two dimensional domain. The triangulated irregular network
(or TIN for short) method simplifies on the conceptual model by changing the
way information is defined: only a limited number of points (the vertices) are
defined; information for other points is calculated from this limited number of
points.

As mentioned in 1.1.3, triangulated irregular networks are a known struc-
ture in GIS. With a number of locations (no limitation is imposed on either
the number of the locations or on the actual position of each location), data is
associated. Using this set of locations (referred to as data points), a triangular
network is constructed (this usually is a Delaunay triangulation, see 1.1.3). For
fuzzy regions, the associated data with the triangular network are membership
grades, with a veristic interpretation (all points belong to the set, but some to
a greater degree than others).

5.2 Definition

Given a set of data points, a triangular network can be constructed. This
implies that both the edges and triangles need to be determined. A commonly
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used triangulation method is the Delaunay triangulation [43] which yields a
uniquely defined network 1. A Delaunay triangulation has the property that for
all triangles, the circumscribing circle of a triangle does not contain data points
of the TIN other than the corner points of this triangle. This property avoids
long, narrow triangles in the TIN. Several algorithms exist that implement the
Delaunay triangulation, as mentioned in [42] and illustrated in A.1. Further
properties of triangular networks extends beyond the research of this work.

As will become clear later on, some operations will yield a result in which
the presence of some edges must be enforced. This can be done by means of a
constrained Delaunay triangulation: the triangulation is not performed merely
on a set of data points, but allows for specific edges that must be part of the TIN
network to be specified. Consequently a constrained Delaunay triangulation is
no longer a Delaunay triangulation (the definition of a Delaunay triangulation is
no longer satisfied: there can be data points other than the corner points inside
the circumscribing circle of a triangle). For many operations, the edges and
triangles themselves are referred to, hence they are included in characterizing
a TIN:

Definition 99 (fuzzy TIN region)

fuzzy TIN = [(P,E, T ), f ] (5.1)

where P is a set of data points on which the TIN is constructed, E is a set
of edges (including both the edges obtained through a Delaunay triangulation,
and the edges required to be in the result in the case of a constrained Delaunay
triangulation, see 1.1.3), and T is a set of triangles that make up the TIN. The
function f is a mapping function defined as:

f : P → [0, 1]

p(x, y) 7→ f(p(x, y))

This function associates each data point with a value; which will be the mem-
bership grade for this data point.

A triangular network is considered in two dimensions, the notation p(x, y)
refers to points used in the triangulation process. For some operations and
calculations, it is interesting to consider the associated value with each of the
point as a third dimension, for which the notation p(x, y, z) will be used, which
is a shorthand for p(x, y, f(p(x, y))).

In addition to a traditional TIN, TINs used for the representation of fuzzy
regions are limited to a region of interest. The region of interest is similar in
interpretation to the outline of a crisp region (the polygon) and is immediately
deduced from the TIN as the (crisp) convex hull of a number of points in a
two dimensional space (the triangulation will automatically yield this outline
for any given set of points and edges).

1As mentioned in 1.1.3, there are trivial cases where there would be multiple solutions,
but these can be circumvented by adding specific, global rules.
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Based on the linear interpolation as is applied on a TIN and the mapping
function f , the membership function for a fuzzy region Ã can be defined as

Definition 100 (membership function µÃ of a fuzzy TIN Ã)

µÃ : U → [0, 1]

p(x, y) 7→





f(p(x, y)) if p(x, y) ∈ P
−A

C x − B
C y − D

C if p(x, y) ∈ R\P
0 if p(x, y) /∈ R

where R represents the region of interest of the TIN and A, B, C and
D are the parameters of the equation Ax + By + Cz + D = 0 of the plane
containing the three points p1(x1, y1, z1), p2(x2, y2, z2) and p3(x3, y3, z3) (with
the understanding that zj = f(xj , yj), j = 1, 2, 3), such that the triangle
p1(x1, y1, 0), p2(x2, y2, 0) and p3(x3, y3, 0) is a triangle of the TIN and p(x, y, 0)
is inside or on an edge of this triangle.

A = y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2) (5.2)

B = z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2) (5.3)

C = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2) (5.4)

D = −Ax1 − By1 − Cz1 (5.5)

The points p1(x1, y1, 0), p2(x2, y2, 0) and p3(x3, y3, 0) in the XY-plane should
not be co-linear, which is guaranteed by the fact that no Delaunay triangulation
(or even a constrained Delaunay triangulation) would result in a triangulation
containing such a degenerate case. For the remainder of the work, TIN will
be used to refer to both a TIN obtained through a Delaunay or through a
constrained Delaunay triangulation.

In its current form, the TIN does not support discontinuities, apart from
possible discontinuities at its outline (between points inside the region of in-
terest R and points not in the region of interest). Normally, points outside the
region of interest do not belong to the region (and are assigned membership
grade 0). Some applications may require regions that encompass the consid-
ered universe (which, is a genuine subset of R2) and may require a membership
grade other than 0 for points outside the region of interest (examples are the
complement and the exterior). Therefore, the membership function can be
generalized as:

µÃ : U → [0, 1]

p(x, y) 7→





f(p(x, y)) if p(x, y) ∈ P
−A

C x − B
C y − D

C if p(x, y) ∈ R\P
a if p(x, y) /∈ R

where a is any value in the range [0, 1].
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Figure 5.1: Representing crisp objects with TINs.

Figure 5.2: Representing fuzzy objects using the TIN model.

It is important to note that essentially, a (fuzzy) TIN structure is a two
dimensional model: the data points exist in two dimensions, the triangulation
is performed in two dimensions. However, for the interpolation, and also for
some operators it is useful to consider the TIN in three dimensions, with third
dimension representing the associated values. To explain how fuzzy objects are
modelled using fuzzy TINs, it will first be illustrated how a crisp object might
be represented by a fuzzy TIN.

5.3 Using fuzzy TINs as regions

5.3.1 Representing crisp regions with fuzzy TINs

A fuzzy TIN for a crisp region can be defined by considering the points of the
polygons as datapoints associating a membership grade 1 with each of them. A
Delaunay triangulation using these points will yield a TIN for which all points
inside the polygon have a membership grade 1. This is essentially what a crisp
region is; it is therefore perfectly possible to model this crisp region using a
TIN with a limited region of interest, as shown in fig. 5.1. This approach of
course yields little added value over the polygon, but it facilitates the concept
that will be used further on in this work.
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5.3.2 Representing fuzzy regions with fuzzy TINs

The concept of adapting TINs - a field based model - to model features, or
in this section, regions, is quite analogous to the way the field based bitmap
model was adapted to model fuzzy regions in the fuzzy bitmap model. The
data associated with the TIN are membership grades: for each point this grade
represents the extent to which this point is part of the region.

Unlike the commonly used field based models that extend over the entire
map (or over the entire region of interest), this extended TIN model has an
outline. This outline is a closed polyline and basically divides the space in
two2 distinct sets: the outside of the polyline consists of all the points that
do not belong to the fuzzy region, whereas the inside holds all the points that
belong to the region to some degree which differs from 0. It is important to
note that all the points that have a degree strictly greater than 0 belong to the
region, but some more than others. In fig.5.2 a fuzzy TIN region is representing,
here points closer to the center are assigned higher membership grades (darker
colour) than points closer to the outside (lighter colour). There is however no
reason to limit the fuzzy TIN to convex regions, nor is there a reason to have
the membership grades decrease from the inside (where they are 1) towards
the outside.

Inside this outline, each of the points is assigned a membership grade in the
range [0, 1]. For this purpose, a TIN structure is used to model the membership
grades for each of the points; the data points will have a known grade associated
(coming from observations, calculations, estimates or even personal opinions);
the other points will have a grade calculated through linear interpolation in
each of the triangles as explained above.

5.3.3 Remark

It is important to note that it should be possible for points and edges to be
specified in the TIN, but having membership grade 0. While these elements do
not belong to the fuzzy region, they can be required to define the region.

As shall become clear in some operations (more specifically the strong α-
cut and the related support), it can be interesting to tag points and edges to
indicate that they are not part of the fuzzy set.

2It is possible for the fuzzy region to consist of multiple disjunct closed polylines. For
clarity reasons, this is not considered in the explanation, but the concept is completely
analogous: the fuzzy region then consists of multiple polylines.
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5.4 Operations

5.4.1 Set-operations

Intersection

As fuzzy TIN is an extension of a TIN, no assumption on the location of
its data-points is made, nor do two (or more) TINs that are intended to be
combined need to have the same number of data points or have their points at
the same locations.

Consider two fuzzy regions Ã and B̃, by definition their intersection is given
using a t-norm:

Ã∩̃B̃ = {(x, µÃ∩̃B̃(x)) | x ∈ U ∧ µÃ∩̃B̃(x) = T ((µÃ(x), µB̃(x)))} (5.6)

When Ã and B̃ are represented as fuzzy TINs, they are characterized by
respectively [(PÃ, EÃ, TÃ), fÃ] and [(PB̃ , EB̃ , TB̃), fB̃ ]. The intersection of both

fuzzy regions will be a new fuzzy region Ã∩̃B̃, which will be characterized by
[(PÃ∩̃B̃ , EÃ∩̃B̃ , TÃ∩̃B̃), fÃ∩̃B̃], such that

∀p ∈ U : µÃ∩̃B̃(p) = T (µÃ(p), µB̃(p)) (5.7)

The intersection of fuzzy sets is performed using a t-norm; commonly used
is the minimum. It will also be used here. The reason to choose a particular
t-norm, is that an algorithm to compute it efficiently will be constructed. The
minimum is interesting, as it maintains linearity, a property which will allow for
the resulting TIN to be mathematically correct rather than an approximation.
Informally, when considering the fuzzy TINs as three dimensional structures,
the desired result of the minimum-operation would be that all the ”lowest”
points of the two fuzzy TINs are retained. These include the data-points, but
also the points on edges and inside triangles.

It is not sufficient to only consider the minimum of the data points, as is
illustrated by a simple example. Suppose that we have two fuzzy TIN structures

T̃ in1 and T̃ in2, defined as shown in resp. Fig. 5.3 and Fig. 5.4. The data points

of T̃ ini will be denoted as

pji
(xji

, yji
, fi(xji

, yji
)), i = 1, 2; j = 1, 2, ...ni (5.8)

where ni stands for the number of elements in Pi (cardinality). An edge eki

connecting the points pli and pmi
is denoted as eki

(pli , pmi
). As a shorthand

notation, the indices i will be omitted if no confusion is possible. Although a
Delaunay triangulation algorithm would — in this simple case — have yielded
the same networks for these same sets of four points, this artificial example best
illustrates the problem that can occur in more elaborate (genuine) Delaunay
triangulations as well.

Obviously, all the data points overlap (which facilitates the operations). For
all data points

µ
T̃ in1∩̃T̃ in2

(pi) = min(µ
T̃ in1

(pi), µT̃ in2
(pi)) (5.9)
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P1 E1

p1(0, 0, 0) e1(p1, p3)
p2(0, 100, 1) e2(p3, p2)
p3(100, 100, 0) e3(p1, p2)
p4(100, 0, 1) e4(p3, p4)

e5(p1, p4)

Figure 5.3: T̃ in1

P2 E2

p1(0, 0, 1) e1(p2, p1)
p2(0, 100, 0) e2(p1, p4)
p3(100, 100, 1) e3(p4, p2)
p4(100, 0, 0) e4(p4, p3)

e5(p3, p2)

Figure 5.4: T̃ in2

This yields a membership grade 0 for all data points , and consequently the
interpolation will yield 0 for all points. However, the point p(50, 0) has mem-
bership grade µ

T̃ in1
(p) = µ

T̃ in2
(p) = 0.5, the minimum of these two values

should be 0.5. This also illustrates why in equation 5.7, the function f would
have been insufficient, and µ needs to be used.

The intersection of the fuzzy regions defined by the TINs

T̃ in1 = [(P1, E1, T1), f1]

T̃ in2 = [(P2, E2, T2), f2]

with derived membership functions respectively

µ
T̃ in1

µ
T̃ in2

is by definition obtained by considering the

min(µ
T̃ in1

(p(x, y)), µ
T̃ in2

(p(x, y)))

of the membership grades associated with each point p(x, y) in the considered

region of interest. A computable definition of the minimum denoted T̃ in3 of
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two TINs T̃ in1 and T̃ in2 can be derived by using the actual definitions of both
these arguments. To ”build” the resultant network, first, the set P3 containing

the points that will define T̃ in3 has to be determined. Calculating the points
of P3 is an incremental process, starting from an empty set.

1. First, the points of P1 that are located ”below” ˜Tin2 are added to P3.
These are points p ∈ P1 for which µ

T̃ in1
(p) = µ ˜Tin2

(p). As p ∈ P1,

µ
T̃ in1

(p) = f1(p). There is no requirement regarding the relative locations
of the data points of both networks; it is possible that values associated
with points p ∈ P1 will be compared either with values associated with
points p ∈ P2 or with values computed for points p /∈ P2. In either case,
if f1(p) ≤ µ

T̃ in2
(p), the point p is contained in P3, with associated value

f1(p).

pt1 = {p | p ∈ P1 ∧ f1(p) ≤ µ
T̃ in2

(p)} (5.10)

2. Completely analogue, the points of P2 that are ”below” T̃ in1 are added
to P3: for points p ∈ P2, if f2(p) ≤ µ

T̃ in1
(p), the point p is contained in

P3, with associated value f2(p).

pt2 = {p | p ∈ P2 ∧ f2(p) ≤ µ
T̃ in1

(p)} (5.11)

3. Finally, Pt3 is defined as the set of points that result from the intersection

of the triangles in T̃ in1 and the edges in T̃ in2 (and vice versa); these
points were not necessarily present in any of the original TINs. The
points in this new set Pt3 are also added to P3.

Pt3 = {p | p /∈ (P1 ∪ P2) ∧ ∃e ∈ E1,∃t ∈ T2 :
p ∈ e ∧ p ∈ t ∧ µ

T̃ in1
(p) = µ

T̃ in2
(p)}

∪
{p | p /∈ (P1 ∪ P2) ∧ ∃e ∈ E2,∃t ∈ T1 :

p ∈ e ∧ p ∈ t ∧ µ
T̃ in1

(p) = µ
T̃ in2

(p)}

(5.12)

These points are needed as they determine where an edge of one network
”stops” being located ”below” the other network. As they are intersec-
tion points between edges of one TIN and triangles of the other TIN,
each point has the same membership grade in both TINs. This value is
associated with this point in the resulting network.

The minimum will then be a new TIN T̃ in3 = [(P3, E3, T3), f3], defined by
the points as explained above:

P3 = Pt1 ∪ Pt2 ∪ Pt3 (5.13)

Using the set P3 and considering the points in the XY-plane, as the input
for a Delaunay triangulation will yield a unique triangulated irregular network.
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The TIN that is obtained by applying a Delaunay triangulation algorithm
on the set P3 is shown in Fig. 5.5a. It can easily be verified that the result
is incorrect, considering the expected geometrical minimum in Fig. 5.5b. Con-

sider for instance the edges e2(p2, p3) and e12(p5, p4) of T̃ in3 (Fig. 5.5a) that
are generated by the triangulation algorithm. The point p(25, 25), which is a
point with an interpolated associated value in each of the three networks ( ˜Tin1,

T̃ in2 and T̃ in3) is located on e2(p2, p3). As can be clearly seen in Fig. 5.5a, this
point has a associated, calculated membership grade µ ˜Tin3

(p(25, 25)) = 0.5 in

˜Tin3′ . However, membership grades for this point in both T̃ in1 and T̃ in2 are
µ

T̃ in1
(p(25, 25)) = µ

T̃ in2
(p(25, 25)) = 0; the minimum value should therefore

also equal to 0. This difference is due to the fact that the Delaunay trian-
gulation generates new edges, which are not part of any of the original TINs,
and do not satisfy the minimum criterion. Especially when higher accuracy
is desired, this result is most likely to be insufficient, which calls for a more
accurate approach.
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P3 E3

p1(50, 50, 0) e1(p6, p2)
p2(50, 0, 0.5) e2(p2, p3)
p3(0, 50, 0.5) e3(p3, p6)
p4(100, 50, 0.5) e4(p1, p8)
p5(50, 100, 0.5) e5(p8, p3)
p6(0, 0, 0) e6(p3, p1)
p7(100, 100, 0) e7(p2, p1)
p8(0, 100, 0) e8(p1, p9)
p9(100, 0, 0) e9(p9, p4)

e10(p4, p1)
e11(p2, p9)
e12(p5, p4)
e13(p4, p7)
e14(p7, p5)
e15(p5, p1)
e16(p5, p8)

P3 E3

p1(50, 50, 0) e1(p2, p1)
p2(50, 0, 0.5) e2(p1, p6)
p3(0, 50, 0.5) e3(p6, p2)
p4(100, 50, 0.5) e4(p1, p8)
p5(50, 100, 0.5) e5(p8, p3)
p6(0, 0, 0) e6(p3, p1)
p7(100, 100, 0) e7(p3, p6)
p8(0, 100, 0) e8(p1, p9)
p9(100, 0, 0) e9(p9, p4)

e10(p4, p1)
e11(p2, p9)
e12(p1, p7)
e13(p7, p5)
e14(p5, p1)
e15(p4, p7)
e16(p5, p8)

(a) (b)

Figure 5.5: Graphical representation of the minimum: (a) incorrect result obtained
by only considering the minimum of the datapoints and performing a Delaunay tri-
angulation, (b) correct result by taking into account the intersections of edges and
performing a constrained Delaunay triangulation.

In order to overcome this problem, a set of predefined edges E3 will be
included. These edges will be used to force the triangulation algorithm to
maintain edges that are needed in the resulting TIN; the constrained Delaunay
triangulation can then be used to calculate the correct minimum.
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Z

X

Y

e'
p

l'

p
m'

Figure 5.6: Illustration of Et1

Defining E3 is also an incremental process.

1. In the first step, line segments that are part of an existing edge in either

T̃ in1 or T̃ in2, and that connect two newly added points (obtained through

the intersection of the triangles of both TINs T̃ in1 and T̃ in2) are added.
This is illustrated in figure 5.6. The set of these edges is:

Et1 = {e′(pa′ , pb′) | pa′ ∈ Pt3 ∧ pb′ ∈ Pt3 ∧ ∃e ∈ E1 ∪ E2 : e′ ⊂ e}

2. Next, the intersection of a triangle in ˜Tin1 and a triangle in ˜Tin2 can
yield an edge that did not belong to either TIN. The endpoints pa′ and
pb′ of such edges are contained in Pt. These new edges also need to be
added to E3, but they must form a closed segment in which no other
points of Pt are contained; as illustrated in figure 5.7. This is expressed
by

Et2 = {e′(pa′ , pb′) | pa′ ∈ Pt3 ∧ pb′ ∈ Pt3 ∧
∀p ∈ e′ : p /∈ Pt3 ∧ µ

T̃ in3
(p) = min(µ

T̃ in1
(p), µ

T̃ in2
(p))}

3. As a next step, all the segments e′(pa′ , pb′) of existing edges e(pa, pb) in
E1 or E2 that connect a point pa′ ∈ Pt (i.e. a point obtained through the
intersection of a triangle and the edge e of which e′ is a segment) with a
point pb′ ∈ P3 \ Pt (i.e. a point that is definitely part of the minimum)
are added. This is illustrated on figure 5.8. These segments are in

Et3 = {e′(pa′ , pb′) | pa′ ∈ Pt3 ∧ pb′ ∈ P3 \ Pt3 ∧
(∃ e(pa, pb) ∈ E1 ∪ E2 : e′(pa′ , pb′) ⊆ e(pa, pb))}
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Z

X

Y

e'
p
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Figure 5.7: Illustration of Et2

Z

X

Y

e'
p

l'

p
m'

Figure 5.8: Illustration of Et3
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Z

X

Y

e'

p
l'

p
m'

Figure 5.9: Illustration of Et4

4. Finally, the edges that interconnect two points; which are definitely part
of the minimum but are not intersection points (i.e. pa′ ∈ P3 \ Pt and
pb′ ∈ P3 \Pt3), and that form an existing edge in either TIN (e(pa′ , pb′) ∈
E1 ∪ E2) are also added to E3. This is illustrated in figure 5.9. These
edges are contained in

Et4 = {e′(pa′ , pb′) | pa′ ∈ P3 \ Pt3 ∧ pb′ ∈ P3 \ Pt3 ∧
(∃ e(pa, pb) ∈ E1 ∪ E2 ∧ ∀p ∈ e′ :

p /∈ Pt3 ∧ µ
T̃ in3

(p) = min(µ
T̃ in1

(p), µ
T̃ in2

(p)))}
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Combining these sets results in E3 being defined as

E3 = Et1 ∪ Et2 ∪ Et3 ∪ Et4

= {e′(pa′ , pb′) | pa′ ∈ Pt3 , pb′ ∈ Pt3 ∧ ∃e ∈ E1 ∪ E2 : e′ ⊂ e}
∪{e′(pa′ , pb′) | pa′ ∈ Pt3 ∧ pb′ ∈ Pt3 ∧
∀p ∈ e′ : p /∈ Pt3 ∧ µ

T̃ in3
(p) = min(µ

T̃ in1
(p), µ

T̃ in2
(p))}

∪{e′(pa′ , pb′) | pa′ ∈ Pt3 ∧ pb′ ∈ P3 \ Pt3 ∧
(∃ e(pa, pb) ∈ E1 ∪ E2 : e′(pa′ , pb′) ⊆ e(pa, pb))}

∪{e′(pa′ , pb′) | pa′ ∈ P3 \ Pt3 ∧ pb′ ∈ P3 \ Pt3 ∧
∃ e(pa, pb) ∈ E1 ∪ E2 ∧ ∀p ∈ e′ :

p /∈ Pt3 ∧ µ
T̃ in3

(p) = min(µ
T̃ in1

(p), µ
T̃ in2

(p))}

In the simplified example (Fig. 5.3 and Fig. 5.4), the set E3 will contain all
the edges defining the triangulated irregular network. With more complex net-
works, edges in E3 yield a set of non-overlapping planar polygons. In general,
when a Delaunay (or constrained Delaunay) triangulation is applied to a planar
polygon 3, it results in a planar triangulation ([42]). In this case triangulating
the planar polygons (which is in fact a constrained Delaunay triangulation with
the edges of the polygons specified to be part of the result), results in a tri-
angulation that does not exhibit the problems caused by the regular Delaunay
triangulation on the non-planar set of points P3. As can be seen in Fig. 5.5b,
this definition of the minimum is exactly the same as the minimum that should
be obtained.

Even for simple examples, it is necessary to perform the triangulation algo-
rithm: while all the edges may be found, the triangles have not been determined
yet. For characterizing a TIN, all three sets P , E and T are needed; the con-
trained Delaunay triangulation will create the appropriate set of triangles T3

from the sets P3 and E3.

Verification To verify that the above construction is conform with the the-
oretical definition given in 2.4.1, consider two fuzzy regions Ã and B̃ in a fuzzy
TIN representation: Ã = [(PÃ, EÃ, TÃ), fÃ] and B̃ = [(PB̃ , EB̃ , TB̃), fB̃ ]. For
every point p of the universe, its membership grade µÃ∩B̃(p) should be equal
to min(µÃ(p), µB̃(p)).

For datapoints p ∈ PÃ∩B̃ , there are three possible reasons as to why they
are in PÃ∩B̃ : they were in Pt1 , Pt2 or Pt3 . In other words:

p ∈ PÃ∩B̃ ⇔ p ∈ PÃ ∧ fÃ(p) < µB̃(p) (p ∈ Pt1 , see 5.10)
∨p ∈ PB̃ ∧ fB̃(p) < µÃ(p) (p ∈ Pt2 , see 5.11)
∨µÃ(p) = µB̃(p) (p ∈ Pt3 , see 5.12)

(5.14)

In each of these three cases, µÃ∩B̃ = min(µÃ(p), µB̃(p)).

3A planar polygon is a polygon in a three dimensional space, but whose vertices are all
located in the same plane.



5.4 Operations 173

For points p /∈ PÃ∩B̃

µÃ∩B̃(p(x, y)) = −A

C
x − B

C
y − D

C
(see definition 100)

Here, A, B, C and D are computed from the three vertices of the triangle in
which p is located (see 100). It now suffices to show that this plane −A

C x −
B
C y− D

C is part of a triangle in either TA or TB , and that this triangle is located
below the other TIN.

The corner points p1, p2, p3 of this triangle are in PÃ∩B̃ , and these all have
the an associated value fÃ∩B̃(pi) = min(µÃ(pi), µB̃(pi)) (by construction).
The three points are definitely the lowest of both TINs.

It now suffices to show that the triangle formed by these three points is a
triangle (or part of a triangle) in one of the two original TINs. The triangle
consists of the edges e(p1, p2), e(p2, p3) and e(p1, p3). As the intersection of
two triangles (of a TIN) is either a single point or an edge, at most two of these
points are intersection points. This yields the following cases

• Suppose that there is one intersection point p1; this implies that p2 and
p3 are points that belong to the lowest TIN. By construction, the edges
e(p1, p2) and e(p1, p3) were added to Et3 ; the edge e(p2, p3) was added to
Et2 ; they are consequently in EÃ∩B̃. These three edges form a triangle,
constraining a Delaunay with these three edges, will cause this triangle
to be in the result.

• Suppose that there are two intersection points p1 and p2. By construction,
the edges e(p1, p3) and e(p2, p3) will have been added to Et3 . The edge
e(p1, p2) will be added to Et1 (if e(p1, p2) was part of an edge in EÃ or
EB̃), or to Et2 (if e(p1, p2) was not part of an edge in EÃ or EB̃). In
either case, the triangle t(p1, p2, p3) is a portion of a triangle in either TÃ

or TB̃ .

• Suppose that there are no intersection points. All three edges e(p1, p2),
e(p2, p3), e(p1, p3) will have been added to Et4 .

In each of the above cases, the three points are in PÃ∩B̃ , and the three matching
edges are in EÃ∩B̃ . The constrained Delaunay triangulation is only performed
to define the set TÃ∩B̃ , but already all edges are known. By construction,
the triangles in the result are either triangles or triangular parts of triangles
for which all the cornerpoints p satisfy µÃ∩B̃(p) = min(µÃ(p), µB̃(p)). As the
three points defining the triangle (and thus also the plane), the equations will
match, and the property will be fulfilled for all points inside the triangles.

Implementation

fuzzy_tin Intersect_min(fuzzy_tin A, fuzzy_tin B)

pointset Pt,P , edgeset E

BEGIN
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for all p in P_A

if mu_A(p) <= mu_B(p)

add p to P

f(p) = mu_A(p)

end for

for all p in P_B

if mu_A(p) >= mu_B(p)

add p to P

f(p) = mu_B(p)

end for

for all t in T_A

for all e in E_B

if e is not in the plane of t

and intersection(t,e) is not empty

add point = intersection(t,e) to Pt

f(p) = mu_A(p)

end if

end for

end for

for all t in T_B

for all e in E_A

if e is not in the plane of t

and intersection(t,e) is not empty

add point = intersection(t,e) to Pt

f(p) = mu_B(p)

end if

end for

end for

for all p1,p2 in Pt

if there is an edge e in E_A or E_B for which

e(p1,p2) is subset of e

add e(p1,p2) to E

end if

if e(p1,p2) has no other points from Pt

add e(p1,p2) to E

end if

end for

for all p1 in Pt and all p2 in P

if there is an edge e in E_A or E_B for which

e(p1,p2) is subset of e
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add e(p1,p2) to E

end if

end for

for all p1,p2 in P

if there is an edge e in E_A or E_B for which

e(p1,p2) is subset of e

add e(p1,p2) to E

end if

end for

return Constrained_Delaunay(union(P,Pt),E)

END

Union

The definition for the union (using the maximum) is obtained in a completely
analogue way. The resulting TIN ˜Tin3 = [(P3, E3, T3), f3], determined by
performing a constained Delaunay triangulation using the sets P3 and E3. De-
termining the set P3 is also done in three steps:

1. The condition ≤ is now replaced by ≥, in order to find the points ”above”
the ˜Tin2.

pt1 = {p | p ∈ P1 ∧ f1(p) ≥ µ ˜Tin2
(p)} (5.15)

2. Similarly, the points ”above” ˜Tin1 need to be found.

pt2 = {p | p ∈ P2 ∧ f2(p) ≥ µ ˜Tin1
(p)} (5.16)

3. The points obtained through an intersection are the same, so Pt3 is exactly
the same as for the intersection.

Pt3 = {p | p /∈ (P1 ∪ P2) ∧ ∃e ∈ E1,∃t ∈ T2 :
p ∈ e ∧ p ∈ t ∧ µ ˜Tin1

(p) = µ ˜Tin2
(p)}

∪
{p | p /∈ (P1 ∪ P2) ∧ ∃e ∈ E2,∃t ∈ T1 :

p ∈ e ∧ p ∈ t ∧ µ ˜Tin1
(p) = µ ˜Tin2

(p)}

(5.17)

This results in the set P3 defined as:

P3 = Pt1 ∪ Pt2 ∪ Pt3 (5.18)

The set of edges E3 is constructed in four steps:

1. First, the line segments that are part of an existing edge, and that connect
two newly added points are considered. This is the same as for the
intersection.

Et1 = {e′(pa′ , pb′) | pa′ ∈ Pt3 ∧ pb′ ∈ Pt3 ∧ ∃e ∈ E1 ∪ E2 : e′ ⊂ e}
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2. Next, the line segments that are the result of an intersection between two
triangles are added. This is analogues as before, but now using the max
instead of the min.

Et2 = {e′(pa′ , pb′) | pa′ ∈ Pt3 ∧ pb′ ∈ Pt3 ∧
∀p ∈ e′ : p /∈ Pt3 ∧ µ ˜Tin3

(p) = max(µ ˜Tin1
(p), µ ˜Tin2

(p))}

3. As a third step, segments of existing edges that connect a newly added
point with a point that definitely belongs to the union is added. This
definition is the same as for the intersection.

Et3 = {e′(pa′ , pb′) | pa′ ∈ Pt3 ∧ pb′ ∈ P3 \ Pt3 ∧
(∃ e(pa, pb) ∈ E1 ∪ E2 : e′(pa′ , pb′) ⊆ e(pa, pb))}

4. Finally, points that match existing edges which should be present are
added, this is similar to the last step in the intersection, but again the
min is replaced with max.

Et4 = {e′(pa′ , pb′) | pa′ ∈ P3 \ Pt3 ∧ pb′ ∈ P3 \ Pt3 ∧
(∃ e(pa, pb) ∈ E1 ∪ E2 ∧

∀p ∈ e′ : p /∈ Pt3 ∧ µ ˜Tin3
(p) = max(µ ˜Tin1

(p), µ ˜Tin2
(p)))}

The set E3 is the union of the above sets:

E3 = Et1 ∪ Et2 ∪ Et3 ∪ Et4 (5.19)

The TIN that represents the union of both sets is obtained by considering
a constrained Delaunay triangulation, using the sets P3 and E3.

The verification and implementation are analogous to the verification and
implementation of the intersection.

Complement

The complement of a fuzzy region Ã = [(PÃ, EÃ, TÃ), fÃ] yields a new fuzzy

region coÃ = [(PcoÃ, EcoÃ, TcoÃ), fcoÃ], representing the complement of the

original region. If Ã is limited to a region of interest R, the complementary
region will cover the entire universe U .

To define the complement, the characterizing sets and the mapping func-
tion f need to be constructed. These three sets are all the same as the sets
(PÃ, EÃ, TÃ) as in the original region Ã. The only difference is in the mapping
function and the resulting membership function:

f : P → [0, 1]

p 7→ 1 − µÃ(p)
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The membership function differs slightly from the theoretical definition;
points not in the region of interest now need to be assigned a membership
grade 1.

µcoÃ : U → [0, 1]

p(x, y) 7→





f(p(x, y)) if p(x, y) ∈ P
−A

C x − B
C y − D

C if p(x, y) ∈ R\P
1 if p(x, y) /∈ R

where A,B,C and D are defined respectively as in 5.2, 5.3, 5.4 and 5.5.

Verification To verify that this definition matches the theoretical definition,
it suffice to show that for all points µcoÃ(p) = 1 − µÃ(p). Consider a fuzzy tin

Ã = [(PÃ, EÃ, TÃ), fÃ] and its complement coÃ = [(PcoÃ, EcoÃ, TcoÃ), fcoÃ]

1. p ∈ PcoÃ For points in PcoÃ, this requirement is immediately fulfilled, due
to the definition of both PcoÃ and the definition of the mapping function
fcoÃ.

2. For p /∈ PcoÃ, it is necessary to prove that µcoÃ = 1−µÃ(p). A triangle in
TcoÃ is a triangle of TÃ (remember that the triangulation process happens
in two dimensions): only the associated values differ. The coefficients of
the equation of a plane in the original TIN are denoted A, B, C and D;
those of a plane in the complement are denoted A′, B′, C ′ and D′; the
associated membership grade for a point pi is µcoÃ(pi) = z′i.

Consider the coefficient A′:

A′ = y1(z
′
2 − z′3) + y2(z

′
3 − z′1) + y3(z

′
1 − z′2)

= y1(1 − z2 − 1 − z3) + y2(1 − z3 − 1 − z1) + y3(1 − z1 − 1 − z2)

= −y1(z2 − z3) − y2(z3 − z1) − y3(z1 − z2)

= −A

Consider B′:

B′ = z′1(x2 − x3) + z′2(x3 − x1) + z′3(x1 − x2)

= (1 − z1)(x2 − x3) + (1 − z2)(x3 − x1) + (1 − z3)(x1 − x2)

= (x2 − x3) − z1(x2 − x3) + (x3 − x1) − z2(x3 − x1)

+ (x1 − x2) − z3(x1 − x2)

= (x2 − x3) + (x3 − x1) + (x1 − x2) − z1(x2 − x3)

− z2(x3 − x1) − z3(x1 − x2)

= −(z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2))

= −B
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ba µ=0.5

(a) (b)

Figure 5.10: Meaning of the α-cut of fuzzy sets (a) and fuzzy TINs (b).

Consider C ′:

C ′ = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

= C

Consider D′:

D′ = −A′x1 − B′y1 − C ′z′1

= Ax1 + By1 − C(1 − z1)

= −(−Ax1 − By1 + C(1 − z1))

= −(−Ax1 − By1 − Cz1 + C)

= −(−Ax1 − By1 − Cz1) − C

= −D − C

This yields

µcoÃ(p(x, y)) = −A′

C ′
x − B′

C ′
y − D′

C ′

= −A′

C
x − B′

C
y − D′

C

= −−A

C
x − −B

C
y − −D − C

C

= −(−A

C
x − B

C
y − D

C
) +

C

C

= 1 − (−A

C
x − B

C
y − D

C
)

= 1 − µÃ(p)

5.4.2 Fuzzy operations

α-cut

An important concept is the α-cut, which stems from the fuzzy realm. Com-
monly, the α-cut of a fuzzy set is used to defuzzify the fuzzy set: it results
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µ=0

µ=1

α=0.5

µ=0.6

Figure 5.11: Illustration of the calculation of the α-cut of fuzzy TINs.

a crisp set containing all elements with a membership grade greater than (or
equal to, if a weak α-cut is considered) a given value α. An illustration of this
is shown in fig.5.10a. While working with fuzzy information provides a richer
model, at some point the information will have to be defuzzified; most likely
to exchange data with a non-fuzzy system, but also to just present the data.
The α-cut of a fuzzy TIN is a new fuzzy TIN in which all membership grades
equal 1, as shown in fig.5.10b; this can easily be converted to a more traditional
model for a crisp region, by considering its outline.

Weak α-cut Determination of the weak α-cut of a fuzzy region represented
by a fuzzy TIN [(PÃ, EÃ, TÃ), fÃ] is performed by considering the TIN in three
dimensions and a plane parallel to the XY plane, with z = α. These three
dimensional structures will intersect (the TIN has z coordinates in the range
[0, 1], and α ∈]0, 1]). The result of this intersection will now be considered for
each triangle, as illustrated on fig. 5.12. The intersection between a triangle
in three dimensional space, and a (horizontal) plane will always be either a
straight line segment, a point, or will be empty. If the triangle is horizontal,
and located in the α plane, the intersection will yield the entire triangle; in this
case only its points and edges need considered.

To define the α-level, the sets P and E of the result will be determined.

1. The first step is to retain all the datapoints that are ”above” or on the
given α-level.

Pt1 = {p | p ∈ PÃ ∧ µÃ(p) ≥ α} (5.20)

2. Next, all the points that define the intersection between an edge and the
α-plane are considered. If there is an intersection, it consists of either one
point (which was added before) or of an edge, defined by two points that
are located on the edges of the triangle where it intersects the horizontal
plane.
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Figure 5.12: Illustration of the intersection between triangles and a horizontal plane.

Pt2 = {p | ∃e(p1, p2) ∈ EÃ : p ∈ e ∧ µÃ(p1) > µÃ(p) (5.21)

µÃ(p) = α∧ > αµÃ(p2)} (5.22)

Determining the set E is also done in a number of steps.

1. First, the edges that completely belong to the α-level are determined.

Et1 = {et1(p1, p2) | pi ∈ PÃ ∧ µÃ(pi) ≥ α,∀i} (5.23)

Note that for horizontal triangles located in the α-plane, this definition
adds the three edges defining this triangle.

2. Next, the intersections between the triangles and the α-plane are con-
sidered. Basically, there are four possibilities: the triangle is completely
above or inside the α-plane (dealt with above), the triangle is completely
below the α-plane (needs not to be included), the triangle has two points
above the α-plane (and one below) and the triangle has one point above
the α-plane (and two below). In either of the last two cases, two edges
need to be added:

Et2 = {et2(p1, p2) | p1 ∈ Pt1 ∧ p2 ∈ Pt2 ∧ ∃e ∈ EÃ : et2 ⊂ e}(5.24)

3. Finally, edges that are the result of the intersection of a triangle and the
horizontal α plane need to be considered.

Et3 = {et3(p1, p2)} | p1 ∈ Pt2 ∧ p2 ∈ Pt2 ∧ (5.25)

∃t ∈ TÃ : ∀p ∈ et3 , p ∈ t} (5.26)

where p ∈ t means that the point is inside or on the circumference of the
triangle.
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The sets P and E by means of which the α-cut can be calculated are now
obtained by

P = Pt1 ∪ Pt2

E = Et1 ∪ Et2 ∪ Et3

The function f , that associates membership grades to each of the datapoints
is defined as

f : P → [0, 1]

p(x, y) 7→ 1

At this point, it is possible to either perform a constrained Delaunay trian-
gulation on P and E (taking into account the fact that there may be holes),
which yields a triangular network as result. However, as the α-cut will be a
crisp region, it makes sense to represent it as a crisp region, i.e. a polygon. For
this it is only required to determine the outline (including outlines of existing
holes, if any), and consider this polygon as the α-cut.

Verification To verify the definition for fuzzy TINs, it is necessary to show
that the points p for which µÃ(p) ≥ α are contained in the result, and that there
are no points for which µÃ(p) < α in the result. For any triangle, there are 4
possibilities: no datapoint p has µÃ(p) ≥ α, one datapoint p has µÃ(p) ≥ α,
two datapoints p have µÃ(p) ≥ α or all datapoints p have µÃ(p) ≥ α.

• Suppose all three datapoints p have µÃ(p) ≥ α. All three datapoints
are added (see 5.20), with membership grade 1 (see 5.27). By definition
of the membership function, all points inside this triangle will also have
membership grade 1.

• Suppose two datapoints have µÃ(p) ≥ α, consider them p1 and p2. Both
points p1 and p2 have been added to the P (5.20); the edge e(p1, p2) has
been added to E (5.23). For the third point p3, µÃ(p) < α. Considering
the triangle in three dimensions, there will be an intersection with the
plane z = α. This plane holds all the points with the lowest values
that should still be in the result. The intersection will be a straight
line, delimited by the points p′1 ∈ e(p1, p3) ∧ µtildeA(p′1) = α and p′2 ∈
e(p2, p3)∧µtildeA(p′2) = α. Both points are added to the result (5.22), as
are the edges e(p′1, p1) and e(p′2, p2) (5.24). The polygon (p1, p2, p

′
1, p

′
2) is

planar (by construction it is part of a triangle in the original TIN) and
all points are either above or in the plane z = α.

• Suppose only one datapoint p has µÃ(p) ≥ α; consider this to be p3.
This is case is similar to the above case: p3 is added to the set P (5.20),
the intersection between the triangle (p1, p2, p3) is an edge e(p′1, p

′
2) and

the points p′1 and p′2 are added to P (5.22). Also, the edges e(p1, p
′
1)

and e(p2, p
′
2) are added to E (5.24), and the edge e(p′1, p

′
2) is added to E

(5.26).
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• Suppose no datapoint p has µÃ(p) ≥ α. In this case, no point has been
added to P ; consequently, no point inside this triangle will be added.

In each of the above cases, only datapoints p for which µÃ(p) ≥ α were
added. Also, edges were added such that planar polygons that were part of the
original TIN were formed. Consequently, only those points that should be part
of the α level, are contained.

Core The core is determined in exactly the same way as the weak α-cut, for
the value α = 1.

Strong α-cut The strong α-cut is similar, but now the points and edges that
have membership-grade α should not be part of the α-level. As the TINs are
considered over a two dimensional real domain, it is not possible to simply
consider the next available α-level. Consequently, if this result is represented
as a TIN, we need to tag the edges and points as they are not part of the
α-cut. This is not an issue when representing the α-level as a polygon: the
strong α-level is represented by the interior of polygon obtained from the weak
α-cut.

Support The support is determined in exactly the same way as the strong
α-cut, for the value α = 0.

Algorithm for Fuzzy TINs For illustration purposes, the algorithm to cal-
culate the weak α-cut is explained, the strong α-cut and both derived core and
support, are similar. In order to calculate the α-cut, the fuzzy TIN is consid-
ered in three dimensions; together with a plane at the required α-level (z = α).
The points that are above this plane and the intersection points between edges
of triangles and this plane are considered (fig.5.11). The intersection points
are used to define additional edges: the line segments that are the result of
an intersection of a triangle and the horizontal plane, as well as the remainder
of the edges that intersected with the plane are retained. To get the resulting
TIN, a constrained Delaunay triangulation is applied on the created sets of
points and edges. The algorithm is shown below in pseudo code.

polygon WeakAlpha(Fuzzy_TIN A, alpha)

VAR pointset,edgeset

BEGIN

For all datapoints p in A

if mu_A(p) >= alpha add p in ResultP

endfor

For all edges e(p1,p2) in A

if mu_A(p1)>=alpha and mu_A(p2)>=alpha

add e in edgeset
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endfor

For all triangles t

if mu_A(two points of t) > alpha then

name these two points p1, p2

ip1 = intersection point between edge e(p1,p3) and alphaplane

ip2 = intersection point between edge e(p2,p3) and alphaplane

add ip1, ip2 to pointset

add edge e(p1,p2) to edgeset

add edge e(p1,ip1) to edgeset

add edge e(p2,ip2) to edgeset

add edge e(ip1,ip2) to edgeset

endif

else

if mu_A(one point of t) > alpha then

name this point p1

ip2 = intersection point between e(p1,p2) and alphaplane

ip3 = intersection point between e(p1,p3) and alphaplane

add ip2, ip3 to pointset

add edge e(p1,ip2) to edgeset

add edge e(p1,ip3) to edgeset

add edge e(ip2,ip3) to edgeset

endif

endfor

For all points p in pointset

mu_WeakAlpha(p) = 1

alpha_tin = Constrained_Delaunay(pointset,edgeset)

return Outline(alpha_tin)

END

In the above code, the crisp result is represented as a polygon. Should the
end result be represented as a fuzzy TIN (in which all membership grades are
1), it suffices in the last steps to return alpha_tin instead of the outline.

The algorithm for strong α-cuts is similar, apart from the fact that instead
of returning the outline, it is necessary to return the interior of the α-cut:
return Interior(Outline(alpha_tin)). Should the result be desired in a
fuzzy TIN representation of a crisp region (a TIN in which all membership
grades equal to 1), then points for which µÃ(p) = α and edges e(p1, p2) for
which µÃ(p1) = µÃ(p2) = α should be tagged not to belong to the fuzzy
region; prior to return(alpha_tin).
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(a) (b)

Figure 5.13: Minimum bounding rectangle of a crisp region (a) and a fuzzy TIN-
region (b).

5.4.3 Geo-spatial

Minimum bounding rectangle

A minimum bounding rectangle has a number of uses, mostly in indexing. The
fuzzy minimum bounding rectangle for a fuzzy TIN, is similar in concept to the
fuzzy minimim bounding rectangle for fuzzy bitmaps 4.7: the fuzzy minimum
bounding rectangle is a structure of which each α-cut is a minimum bounding
rectangle for the same α-cut of the original fuzzy region. Consequently, the
fuzzy MBR of a fuzzy TIN will be a new fuzzy region, also represented by a
TIN. This operator returns the fuzzy MBR of a fuzzy TIN and has no relation
with the Fuzzy MBR model used to approximate regions as presented in [45].
In fig.5.13a, the minimum bounding rectangle of a crisp region is shown (this
yields a rectangle oriented parallel to the reference axes); fig. 5.13b shows a
fuzzy MBR for a fuzzy region (also rectangular and oriented parallel to the
reference axes).

Consider a fuzzy TIN Ã = [(PÃ, EÃ, TÃ), fÃ]. The set PÃ contains a finite
number of datapoints, consequently, the image fÃ(PÃ) also contains a finite
number of elements. These elements will be considered as different α-levels αi

by means of which the fuzzy minimum bounding rectangle is determined. For
each αi ∈ fÃ(PÃ) a bounding rectangle can be found, but some of the points
and edges might overlap. Points in which this happens need to be assigned the
highest α value for which they still are a corner point.

The set P of points is defined as

P = {p | ∃αi ∈ fÃ(PÃ) : p is corner of MBR(Ãαi
)} (5.27)

This set contains points that may or may not belong to PÃ, as illustrated in
fig. 5.14.

The mapping function of the fuzzy MBR is then defined as:

f : P → [0, 1]

p 7→ sup{αi | p is corner of MBR(Ãαi
)} (5.28)
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Ã
(p1) = 0

µ
Ã
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Figure 5.14: Illustration of the algorithm for determining the fuzzy minimum bound-
ing rectangle: (a) fuzzy TIN Ã, (b) MBR of Ã prior to triangulation, (c) membership
grades of the datapoints of Ã.

The set E which will constrain the triangulation of the MBR is defined in
two steps, and makes use of the above mapping function.

1. First, all the sides that connect matching corners of subsequent α-levels
(e.g. the top left corner of an α-level with the top left corner of the next
α-level) are added.

Et1 = {e(p1, p2) | ∃αi, αj ∈ f(P ) : f(p1) = αi ∧ f(p2) = αj∧
6 ∃α ∈ f(P ) : αi > α > αj ∧ p1 is like p2}

(5.29)
Where is like means that both points are top left corners, both points are
top right corners, both points are bottom left corners or both points are
bottom right corners and where f(P ) represents the image of P under f .

2. Next, all the sides of the MBRs at different α-levels are added to E,
provided no segment of such a side has been added above.

Et2 = {e(p1, p2) | ∃αi ∈ f(P ) : e(p1, p2) is a side of MBR(Ãαi
)∧

6 ∃e1 ∈ Et1 : e1 ⊆ e(p1, p2)}
(5.30)

Note that the sides of the MBR are parallel in space (and both parallel
to the X-axis or both parallel to the Y-axis); the sides of the MBR of two
subsequent α-levels consequently define a plane.

The sets P holds a number of datapoints, the set E now holds a number of
edges, which all form planar polygons with four corners. The fuzzy MBR for
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Ã is now obtained by performing a constrained Delaunay triangulation using
the set P as pointset and the set E as edgeset.

Verification To verify the above definition of the MBR for fuzzy regions in
a TIN representation, consider a fuzzy TIN Ã and its fuzzy MBR m̃br(Ã):

Ã = [(PÃ, EÃ, TÃ), fÃ]

m̃br(Ã) = [(Pm̃br(Ã), Em̃br(Ã), Tm̃br(Ã)), fm̃br(Ã)]

By definition (57), conceptually, µm̃br(Ã)(p) = sup{αi : p ∈ MBR(Ãαi
),∀αi ∈

]0, 1]}. It will now be verified for both datapoints and non-datapoints (inside
the region of interest) that this also is the case for the fuzzy TIN model.

1. p ∈ PÃ

µm̃br(Ã)(p) = fm̃br(Ã)(p)

= sup{αi : p is corner of MBR(Ãαi
)}

= sup{αi : p ∈ MBR(Ãαi
)}

2. p /∈ PÃ

µm̃br(Ã)(p) = −A

C
x − B

C
y − D

C
with A,B,C,D defined as in 5.2, 5.3, 5.4, 5.5

Each of the above triangles is part of a polygon in three dimensional space.
These polygons are planar, as illustrated in 5.30 and satisfy (by construction)
the MBR requirement. Consequently, the property will be satisfied for each
point inside the triangle.

Implementation The construction of the fuzzy MBR starts with considering
all the α-levels occurring in each of the data points. For the α-cut on each of
these α-levels a crisp MBR is considered. Assigning each point of each MBR the
maximum of the α-levels that were considered and applying linear interpolation
between the different α-levels yields the fuzzy MBR. The algorithm is supplied
in pseudo code.

Fuzzy_TIN FuzzyMBR(Fuzzy_TIN A)

VAR alphaset,pointset,edgeset

BEGIN

For all datapoints p in A

add mu_A(p) to alphaset

endfor

For all alpha in alphaset, in increasing order
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polygon B = WeakAlpha(A,alpha)

consider MBR(B), this yields 4 points and 4 edges

For each of the 4 points of MBR(B)

if point p already in pointset

mu_FuzzyMBR(p) = alpha

else

add point p to pointset

mu_FuzzyMBR(p) = alpha

endif

if alpha <> lowest alpha-value in alphaset

find cornerpoints of previous mbr-alpha-level

if current top left <> previous top left

add edge(current top left, previous level top left)

to edgeset

if current top right <> previous top right

add edge(current top right, previous level top rigt)

to edgeset

if current bottom left <> previous bottom left

add edge(current bottom left, previous level bottom left)

to edgeset

if current top right <> previous top right

add edge(current bottom left, previous level bottom left)

to edgeset

endif

endfor

For each of the 4 new edges e of MBR(B)

if edge e(p1,p2) is part of

an existing edge e2(p1,p3) in edgeset

remove e2(p1,p3) from edgeset

add edge e(p2,p3) to edgeset

add edge e(p1,p2) to edgeset

else

add edge e(p1,p2) to edgeset

endif

endfor

return Constrained_Delaunay(pointset,edgeset)

END

Note that the fuzzy MBR will always be simple (53): the center will hold the
highest membership grades, the outline will have the lowest membership grades
and membership grades will decrease from the centre outwards. In general, the
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fuzzy MBR yields an infinite number of crisp MBRs for a given fuzzy region.
Consequently, the fuzzy MBR as such might not be as applicable for indexing
as a crisp MBR would in a traditional geographic database. However, one can
consider only using a limited number of α-cuts of MBRs (i.e. α-cuts at the
membership grades of points in P ).

Convex hull

The concept of the fuzzy convex hull of a fuzzy TIN Ã = [(PÃ, EÃ, TÃ), fÃ] is

that it yields a new fuzzy TIN which holds the convex hull of the fuzzy TIN Ã
at each α-level. To define this, the convex hull at each α-level for which there is
a data point is considered; the convex hull at each α-level will have a (convex)
polygon as its outline.

The first step in finding the fuzzy TIN that represents the convex hull of a
given fuzzy TIN, is similar to finding the fuzzy MBR: determining the set P ,
the set E and the mapping function. This is done by considering a horizontal
plane at each α-level for which there is a datapoint with µA(p) = fA(p) = α.
Considering the TIN in three dimensions, each of these α-planes will intersect
the fuzzy TIN at the datapoint p (most likely other points will be in the plane
also), but also at a number of line segments; thus forming a polygon in the
horizontal plane. In each plane; the convex hull of this polygon is constructed.

1. As a first step, only the datapoints that will be part of the convex hull
of some α-level are added to P

Pt1 = {p | p ∈ PÃ ∧
p is corner of the convex hull in the plane z = fÃ(p)}

2. Next, all the points that are an intersection point between an edge of the
TIN and the horizontal plane, and that are corner points of the polygon
in the horizontal plane are added to P .

Pt2 = {p | p /∈ PÃ,∃e(p1, p2) : p ∈ e,∃p3 ∈ PÃ :

p corner of the convex hull in the plane z = f(p3)}

The set P is the union of Pt1 and Pt2 : P = Pt1 ∪Pt2 . The mapping function
f is defined as:

f : P → [0, 1]

p(x, y) 7→ µÃ(p(x, y))

The set E is also defined in two steps.

1. First, all the edges of the (convex) polygons in the different α-planes are
considered.

Et1 = {e(p1, p2) | p1, p2 ∈ P, f(p1) = f(p2) ∧
e(p1, p2) is a side of the convex polygon

in the plane z = f(p1)}
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Figure 5.15: The case yielding a hyperbolic paraboloid.

2. Next, edges between the polygons at different α-levels need to be defined.

Et2 = {e(p1, p2) | p1, p2 ∈ P, f(p1) 6= f(p2) ∧
∃eÃ ∈ EÃ : e(p1, p2) ⊆ eÃ}

The set E is the union of Et1 and Et2 : E = Et1 ∪ Et2 . The sets P and
E, and the mapping function f are now used as arguments for a constrained
Delaunay triangulation, which will yield the fuzzy convex hull of the given fuzzy
TIN Ã.

Non planar results The above construction yields polygons consisting of
four vertices. However, unlike in the case of the fuzzy minimum bounding
rectangle, the situation here can yield non-planar sections. This occurs when
no plane can be found in which all four vertices are situated. The result in such
situations is a curved plane, called a hyperbolic paraboloid and is illustrated
on fig. 5.15. This curved plane basically can be defined as a ruled surface, by
moving one line along two other non equidistant lines (that are not situated in
the same plane) in a three dimensional space. While it is possible to define such
a plane mathematically, incorporating this in the model would make the TIN
model no longer closed for convex hull. To overcome this, the convex hull will be
approximated. The accuracy of the approximation depends on the requirements
of the user and should be chosen accordingly. The above definitions provide for
the most coarse approximation (the hyperbolic paraboloid will be approximated
by two triangles), but by adding points (and edges), the approximation can be
refined.

As it makes sense for the convex hull to be exact for all the α-levels that
occur in the datapoints of the original TIN, this case is added as an illustration.
To achieve this, points which on the edges connecting the polygons at different
levels (edges in Et2) are added.

Pt3 = {p | ∃p′ ∈ PÃ,∃α ∈ fÃ(p′) : p ∈ Hα ∧
∃e(p1, p2), e(p3, p4), e(p1, p3), e(p2, p4) ∈ E : p ∈ e(p1, p2) ∧
p1, p2, p3, p4 are not planar }
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Where Hα is the notation for the horizontal plane z = α.
Originally, The set P held all the points that are corner-points of a convex

hull at each considered α-level. The set Pt3 results in more α-levels being
considered, yielding α an level for every associated value of the datapoints.

This is just one illustration, one is free to add more points (any intersection
with a horizontal plane yields a convex polygon at this level), should a more
accurate approximation be required.

The set P now is the union of Pt1 , Pt2 and Pt3 : P = Pt1 ∪ Pt2 ∪ Pt2 . The
mapping function f is defined using the newly obtained set P as domain:

f : P → [0, 1]

p(x, y) 7→ µÃ(p(x, y))

Using the new set P , set set of edges is defined similarly as before:

1. First, all the edges of the (convex) polygons in the different α-planes are
considered.

Et1 = {e(p1, p2) | p1, p2 ∈ P, f(p1) = f(p2) ∧
e(p1, p2) is a side of the convex polygon

in the plane z = f(p1)}

2. Next, edges between the polygons at different α-levels need to be defined.

Et2 = {e(p1, p2) | p1, p2 ∈ P, f(p1) 6= f(p2) ∧
∃eÃ ∈ EÃ : e(p1, p2) ⊆ eÃ}

Similar as before, the set Et1 contains the edges of the convex polygons at every
level, whereas the set Et2 contains the edges that connect polygons at subse-
quent levels. Again, the triangular network representing the approximated
convex hull is obtained by performing a constraint Delaunay triangulation on
the newly obtained sets P and E.

Implementation The construction of the fuzzy convex hull starts with con-
sidering all the α-levels occurring in each of the data points. For the α-cut
on each of these α-levels a crisp MBR is considered. Assigning each point of
each MBR the maximum of the α-levels that were considered and applying
linear interpolation between the different α-levels yields the fuzzy MBR. The
algorithm for the refined definition is supplied in pseudo code.

Fuzzy_TIN FuzzyConvexHull(Fuzzy_TIN A)

VAR alphaset,pointset,edgeset,pointtemp

BEGIN

For all datapoints p in P_A

add mu_A(p) to alphaset

end for
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For alpha in alphaset, in increasing order

For all points p in P_A

if alpha = mu_A(p) add p to pointtemp

end for

For all edges e in E_A

if e intersects z=mu_A(p)

find intersection point p with z=alpha

add intersection point p to pointtemp

end if

end for

find the convex hull of the points in pointtemp

For all points p in pointtemp

if p is a corner of the convex hull add p to pointset

if (p,p1) is an edge of the convex hull add e(p,p1) to edgeset

end for

clear pointtemp

end for

For all points p1 in pointset

mu_FuzzyConvexHull(p1) = mu_A(p1)

if e(p1,p2) part of an edge in E_A and there is

no point p3 on e

add e(p1,p2) to edgeset

end if

end for

return Constrained_Delaunay(pointset,edgeset)

END

To add additional points for refinement, it suffices to add the α levels at which
the convex hull should be accurate to alphaset.

Surface area

As in the theoretical model, the surface area has two possible interpretations:
as a fuzzy number, or as a reflection of fuzzy cardinality.

Similar to the theoretical model (2.4.2) and the bitmap model (4.4.3), two
interpretations for the calculation of the surface area are considered. In the first
interpretation, the surface is interpreted as a measurement for the surface area;
for a fuzzy region, this will yield a fuzzy number. In the second interpretation,
the surface area is considered as an extension of fuzzy cardinality; the surface
area of a fuzzy region related to the cardinality of a fuzzy set and will yield a
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Figure 5.16: Transforming a triangle to calculate its fuzzy surface.
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crisp number [32].

Fuzzy result The fuzzy surface area of a fuzzy region Ã represented by a
TIN, will be a fuzzy number. This number is a summation for all the fuzzy
surfaces of each triangle; the calculation will be given for a single triangle.
Using fuzzy arithmetic [32], the different surface areas can be added up.

To explain the calculation of the fuzzy area in the first interpretation, the
algorithm is first performed on a triangle, as illustrated in fig. 5.16a. For
every triangle of the TIN, there are two possibilities: the triangle (considered
in three dimensional space with the associated membership grades along the
Z-axis) is parallel to the XY-plane, or the triangle is not parallel to the XY
plane. For the sake of argumentation, consider a triangle defined by three
corner points p1(x1, y1), p2(x2, y2) and p3(x3, y3), with associated membership
grades respectively µ1 = fÃ(p1), µ2 = fÃ(p2) and µ3 = fÃ(p3). The first step
in calculating the area is to determine the smallest membership grade that
occurs in the triangle; this level is found by considering the minimum of the
membership grades of the three corner points.

αmin = min(µ1, µ2, µ3) (5.31)
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Next, the greatest membership grade that occurs in the triangle must be cal-
culated; this level is found by considering the maximum of all the α levels at
the three corner points.

αmax = max(µ1, µ2, µ3) (5.32)

If αmin = αmax, then the triangle is parallel to the XY-plane. The fuzzy
surface area of this triangle is then the crisp surface area, but with membership
grade equal to αmin.

If αmin 6= αmax, then suppose that µ1 = αmin and µ3 = αmax. For µ2

there are three possibilities: µ2 = µ1, µ2 = µ3 and µ1 < µ2 < µ3. Only the
first case will be explained in further detail, but the other cases are analogous.

If µ2 = µ1, this means that the triangle has the edge e(p1,p2) parallel to
the XY plane, and points on this edge have the lowest membership grades
(equalling αmin) that occur in this triangle. This knowledge yields us some
indication of the fuzzy surface area: at membership grade αmin, the surface
equals the surface area of the triangle in the XY plane. At membership grade
αmax, there is only the point p3; the area at this α-level equals 0.

To calculate the surface, consider the triangle formed by the datapoints
p1(x1, y1), p2(x2, y2), p3(x3, y3) in the XY plane. For ease of calculation, a
coordinate transformation - as shown in fig. 5.16b - will be applied: the X- and
Y-axes are chosen such that edge e(p′1, p

′
2) is on the Y-axis (x′

1 = x′
2 = 0) and

the X-axis is perpendicular to it and passes through min(y′
1, y

′
2, y

′
3) = 0. The

transformation implies a rotation with an angle δ

δ =

{
0 x1 = x2

−π
2 − y2−y1

x2−x1
x1 6= x2

(5.33)

This rotation is followed by a translation along X-axis over −x1 such that
x′

1 = x′
2 = 0 and a translation along the Y-axis over min(y1, y2, y3), such that

min(y′
1, y

′
2, y

′
3) = 0 (in this case y′

1 = 0). The transformed points of the triangle
are:

p′1(0, x1 cos δ − y1 sin δ − min(y1, y2, y3)) (5.34)

p′2(0, x2 cos δ − y2 sin δ − min(y1, y2, y3)) (5.35)

p′3(x3 cos δ − y3 sin δ − x1, x3 cos δ − y3 sin δ − min(y1, y2, y3)) (5.36)

Next, the equations for the remaining edges e(p′2, p
′
3) and e(p′1, p

′
3)of the

triangle are constructed in this new coordinate system, fig. 5.16c :

f(x) :=
y′
3 − y′

2

x′
3 − x′

2

(x − x′
2) + y′

2

=
y′
3 − y′

2

x′
3

x + y′
2 (as x′

2 = 0)

g(x) :=
y′
3 − y′

1

x′
3 − x′

1

(x − x′
1) + y′

1
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=
y′
3

x′
3

x (as x′
2 = 0, y′

1 = 0)

As p′1, p
′
2 and p′3 form a triangle, and both p′1 and p′2 are on the Y-axis,

neither p′2, p
′
3 nor p′1, p

′
3 can be parallel to the Y-axis. The next step to calculate

the surface area of the triangle of interest, is determining the surface area below
f and g.

x′
3∫

x

f(x)dx =

x′
3∫

x

y′
3 − y′

2

x′
3

x + y′
2

=
(y′

3 − y′
2)(x

′2
3 − x2)

2x′
3

+ y′
2(x

′
3 − x)

x′
3∫

x

g(x)dx =

x′
3∫

x

y′
3

x′
3

xdx

=
y′
3(x

′2
3 − x2)

2x′
3

The above functions represent the surface area below them as a function
of the distance to the edge e(p1, p2). Subtracting both functions will yield the
surface in between, which is plotted in fig.5.17a.

x′
3∫

x

f(x)dx −
x′
3∫

x

g(x)dx = S(x) =
x′

3y
′
2

2
+

y′
2x

2

2x′
3

− y′
2x (5.37)

As a next step, this function - which basically represents the surface infor-
mation along the Y-axis - needs to be inverted: the fuzzy number representing
the surface should have surface information along the X-axis (and membership
information on the Y-axis). To accomplish this, the quadratic equation needs
to be solved. It yields two solutions:

S1(x) =
x′

3y
′
2 +

√
2y′

2x
′
3x

y′
2

(5.38)

S2(x) =
x′

3y
′
2 −

√
2y′

2x
′
3x

y′
2

(5.39)

Only one of the solutions is valid for our purpose, more specifically the one for
which Si(Scrisp) = 0: the largest surface area occurs when the triangle in fig.
5.16c is considered entirely: from x′ = 0. For this particular case, it is S2(x).
Currently, it represents the x-values that match changing surface areas. But it
is also known how the membership values in the triangle evolve with changing
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x-values (as it is a linear interpolation), this is modeled by this equation (for
this triangle):

membership(x) :=
αmax − αmin

x′
3

x + αmin (5.40)

So applying this on top of the original equation, gives us the membership for
each matching surface area: the fuzzy surface area of this triangle. The fuzzy
surface for this triangle therefore is:

S̃ = membership(S2(x)) (5.41)

=
αmax − αmin

x′
3

S2(x) + αmin (5.42)

=
αmax − αmin

x′
3

x′
3y

′
2 −

√
2y′

2x
′
3x

y′
2

+ αmin (5.43)

The fuzzy number is shown in fig. 5.17b.
As mentioned before, there are other possibilities for the value of µ2. If

µ2 = µ3 than the triangle has the edge p2-p3 parallel to the XY plane, and
points on this edge have the highest membership grades (equalling αmax) that
occur in this triangle. The calculation is completely analogous to the one made
above.

If µ1 < µ2 < µ3, the triangle p1, p2, p3 can be divided on the α-level µ2: the
edge p1 − p3 must contain a point with level µ2, consider this point p4. The
calculation of the surface is now done for both triangles p1, p2, p4 and p2, p3, p4

using the above algorithms and the results are combined (either as a piecewise
function or by treating them as two separate triangles).

Obviously, the calculation of the surface is a very computationally intensive
operation. The above formula only yields the fuzzy surface area for a single
triangle. In practice, if this calculation is often required, the calculation can
be optimized by for instance storing the fuzzy surface of each TIN - or even of
each triangle - in the database.

Implementation

fuzzy real Triangle_surface1(p_1, p_2, p_3)

BEGIN

transformation of p_1, p_2, p_3 as in 5.11, 5.12 and 5.13

determination of the correct equation (5.18 or 5.19)

calculate as in 5.20

END

fuzzy real Triangle_surface2(p_1, p_2, p_3)

BEGIN

transformation of p_1, p_2, p_3 as in 5.11, 5.12 and 5.13

determination of the correct equation similar to 5.18 or 5.19

calculate similarly to the formula in 5.20
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END

fuzzy real Fuzzy_surface(fuzzy_tin A)

fuzzy real S_triangle, S_total

BEGIN

for each triangle t(p_1(x_1,y_1),p_2(x_2,y_2),p_3(x_3,y_3))

of A

if mu_A(p_1) = mu_A(p_2) = mu_A(p_3)

S_triangle = { (crisp_surface(p_1,p_2,p_3), grade) }

end if

p’_1 = point with lowest membership grade

mu_A(p’_1) = min(mu_A(p_1),mu_A(p_2),mu_A(p_3))

p’_3 = point with highest membership grade

mu_A(p’_3) = max(mu_A(p_1),mu_A(p_2),mu_A(p_3))

p’_2 = point with mu_A(p’_1) < mu_A(p’_2) < mu_A(p’_3)

if mu_A(p’_1) = mu_A(p’_2) and mu_A(p’_3) > mu_A(p’_1)

triangle_surface1(p’_1,p’_2,p’_3)

end if

if mu_A(p’_1) = mu_A(p’_2) and mu_A(p’_3) < mu_A(p’_1)

triangle_surface2(p’_1,p’_2,p’_3)

end if

if mu_A(p’_1)<>mu_A(p’_2) and mu_A(p’_1)<>mu_A(p’_3) and

mu_A(p’_2)<>mu_A(p’_3)

find p_4 on e(p’_1,p’_3) such that mu_A(p_4)=mu_A(p’_2)

S_triangle = triangle_surface1(p’_1,p’_2,p’_4)

+ triangle_surface2(p’_3,p’_2,p’4)

end if

S_total = S_total + S_triangle

end for

return S_total

END

Crisp result As mentioned before, the surface area of a region can also be
considered to be an extension of cardinality (in a sense, one can consider this
operation to count the number of points in the region). For a fuzzy region,
the surface area for each membership grade is considered, and this area counts
for a given portion (indicated by the membership grade). This interpretation
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for the surface calculation is related to the notion of fuzzy cardinality [32],
which yields a crisp number as result. In this interpretation, one can say that
each point contributes to some extent to the total surface area; its membership
grade determines the extent to which a point contributes.

This interpretation is easily illustrated when considering triangles whose
corner points have the same membership grade. If they all are equal to 1, the
entire surface area of the triangle counts. If they all are equal to 0.5, only
half of the surface area of the triangle counts (the points only belong to the
extent 0.5 to the triangle). In general, this single surface value is obtained
by considering the total area below the fuzzy number representing the surface
area in the previous interpretation; this can be calculated by integrating the
membership function which represents the fuzzy number as obtained in the
previous interpretation between the values 0 and the total surface area of the
triangle.

∫ Smax

0

−b +
√

b2 − 4ac

2a
dS (5.44)

where

a = − (y2 − y1)

2x3

b = y2 − y1

c =
αmin(−2x3 + αmin)(y2 − y1)

2x3
− S

Smax =
y′
2x

′
3

2

(Smax is the crisp surface area of the triangle p1, p2, p3)

Implementation In the above equation, all variables are numeric values
(apart from S). It suffices to perform the integration, after which S can be
computed easily. The surface for the different triangles are then added up, an
operation for which we refer to fuzzy arithmetic.

Distance calculation

As mentioned in the theoretical concepts (see 2.4.2), the distance between fuzzy
regions can be interpreted in different ways.

α-level approach The distance between fuzzy regions will be represented by
a fuzzy number. This number will be constructed from the distances between
the different α-levels.

Consider two fuzzy TINs

Ã = [(PÃ, EÃ, TÃ), fÃ]

B̃ = [(PB̃ , EB̃ , TB̃), fB̃ ]
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Next, consider all the α-levels for which there are datapoints in either TIN:

L = {fÃ(p) | ∃p ∈ PÃ} ∪ {fB̃(p) | ∃p ∈ PB̃} (5.45)

Name them α0, αi, αi+1, ... αn, such that ∀i : αi < αi+1.
For every α-level αi ∈ L, determine di = d(Ãαi

, B̃αi
) and di = d(Ãαi

, B̃αi
);

as the α-cut of a fuzzy region is crisp region, the calculation of this distance is
known. The di is required to provide a correct result should one of the TINs
contain a triangle for which all three datapoints have the same membership
grade.

The distance is now represented by:

Definition 101 (distance between two fuzzy TINs in the α-level approach)

d̃(Ã, B̃) = {(x, µd̃(Ã,B̃)(x))} (5.46)

where

µd̃(Ã,B̃) : R → [0, 1]

x 7→





αi if di ≤ x ≤ di
αi+1−αi

di+1−di
(x − di) + αi if di < x < di+1,∀i = 0..n − 1

0 elsewhere

The distance is an approximation for α-levels that do not occur as the
associated membership grade for a datapoint in any of the two arguments. The
approximation can be made accurate for any desired α-level, by considering it
in the set L prior to determining the distances.

Verification It can easily be seen that the above definition matches the theo-
retical definition for distances that are the shortest distance between datapoints
of one region and datapoints of the other region.

Implementation

fuzzy real Distance(fuzzy_tin A, fuzzy_tin B)

VAR alphaset

fuzzy real: result

BEGIN

For all datapoints p in P_A

add mu_A(p) to alphaset

end for

For all datapoints p in P_B

add mu_B(p) to alphaset

end for
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For alpha in alphaset, in increasing order

add (d(weakalpha(A,alpha), weakalpha(B,alpha)),alpha) to result

determine sd_i(strongalpha(A,alpha), strongalpha(B,alpha))

end for

For successive d_i,d_j in result

for x in [sd_i,d_j[

add (y=(result(d_j) - result(sd_i))/(d_j-sd_i) (x-sd_{i})

+result(sd_i)) to result

end for

end for

return result;

END

Topological approach

Definition 102 (distance between two fuzzy TINs)
(in the topological approach)

d̃∆(Ã, B̃) = {(x, µd̃∆(Ã,B̃)(x))} (5.47)

where

µd̃∆(Ã,B̃) : R → [0, 1] (5.48)

x 7→ µd̃(Ã◦,B̃◦)(x) (5.49)

5.4.4 Topology

To determine the topology for fuzzy regions, first the concepts interior, exterior
and boundary of a fuzzy TIN regions need to be defined. To illustrate, consider
the fuzzy region Ã as shown in fig. 5.18

Boundary Determining the fuzzy boundary ∆Ã of a fuzzy region Ã, repre-
sented by a TIN [(PÃ, EÃ, TÃ), fÃ] is similar to finding the fuzzy MBR: first
the set of datapoints P of the result is determined, then the set of edges E,
after which a constrained Delaunay triangulation is applied.

1. First, the datapoints points p ∈ PÃ are considered.

Pt1 = {p | p ∈ PÃ}
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Figure 5.18: A fuzzy TIN (a) and a list of the datapoints (b).
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Figure 5.19: The fuzzy boundary of the fuzzy TIN in 5.18.

2. The α-level for α = 0.5 is crucial: points with membership grades less
than 0.5 are treated differently from points with membership grades
greater than 0.5. For this, outline (defined by both datapoints and in-
tersection points) of all the points with membership grade 0.5 need to
be determined, so the intersection points between edges of the TIN and
a horizontal plane at level z = 0.5 are added (these are indicated in fig.
5.18 by ∗). The datapoints for edges that are completely located in the
plane z = 0.5, have been considered in the previous step.

Pt2 = {p | ∃e(p1, p2) ∈ EÃ : p ∈ e(p1, p2) ∧ µÃ(p) = 0.5}

The set of datapoints P∆Ã for the fuzzy boundary of Ã is the union of the
above sets:

P∆Ã = Pt1 ∪ Pt2 (5.50)

The mapping function f∆Ã should map the membership grades in accordance
with the definition of the fuzzy boundary (2.4.3) and is therefore defined as

f∆Ã : P∆Ã → [0, 1]

p 7→ 2(0.5 − |0.5 − µÃ(p)|)

Next, the set of edges E must be determined.
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1. First, all the edges that existed in the original network, for which no
newly added point is on the edge are added. Bear in mind that the
TIN is defined in two dimensions; the altered associated value for the
datapoints does not play a part here.

Et1 = {e(p1, p2)|p1, p2 ∈ P ∧ e(p1, p2) ∈ EÃ ∧ ∀p ∈ P :

p 6= p1 ∧ p 6= p2 ∧ p /∈ e(p1, p2)}

2. Next, all the edges that are part of an existing edge (in EA) and that
connect an intersection point (in Pt2) with a datapoint from PÃ = Pt1

are added.

Et2 = {e(p1, p2)|p1 ∈ Pt1 , p2inPt2 ∧ ∃e ∈ EÃ : e(p1, p2) ⊆ e}

The set of edges E that will be used to constrain the triangulation is E∆Ã =
Et1 ∪ Et2 .

Verification To verify that the above definitions yield the fuzzy boundary
of a fuzzy TIN, while matching the theoretical definition, consider a fuzzy
TIN Ã = [(PÃ, EÃ, TÃ), fÃ]. It is now necessary to prove that µ∆Ã(p) =
2(0.5 − |0.5 − µÃ(p)|), for all points in the TIN.

1. For p ∈ P∆Ã, this requirement is immediately fulfilled, due to the defini-
tion of both P∆Ã and the definition of the mapping function f∆Ã.

2. For p /∈ P∆Ã, it is necessary to prove that µ∆Ã = 2(0.5 − |0.5 − µÃ(p)|).
A triangle in ∆Ã is part of a triangle of Ã (bear in mind that the trian-
gulation process happens in two dimensions): only the associated values
differ. The coefficients of the equation of a plane in the boundary are
denoted A∆, B∆, C∆ and D∆ (100); the associated membership grade
for a datapoint pi is f∆Ã(pi) = µ∆Ã(pi) = z∆

i .

• Suppose µÃ(p) ≥ 0.5, then 0.5 − µÃ(p) ≤ 0 and 2(0.5 − |0.5 −
µÃ(p)|) = 2(0.5 + (0.5 − µÃ(p))) = 2 − 2µÃ(p)

Consider the coefficient A∆:

A∆ = y1(z
∆
2 − z∆

3 ) + y2(z
∆
3 − z∆

1 ) + y3(z
∆
1 − z∆

2 )

= y1(2 − 2z2 − (2 − 2z3)) + y2(2 − 2z3 − (2 − 2z1))

+ y3(2 − 2z1 − (2 − 2z2))

= y1(2 − 2z2 − 2 + 2z3) + y2(2 − 2z3 − 2 + 2z1)

+ y3(2 − 2z1 − 2 + 2z2)

= y1(−2z2 + 2z3) + y2(−2z3 + 2z1) + y3(−2z1 + 2z2)

= −2(y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2))

= −2A
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Consider B∆:

B∆ = z∆
1 (x2 − x3) + z∆

2 (x3 − x1) + z∆
3 (x1 − x2)

= (2 − 2z1)(x2 − x3) + (2 − 2z2)(x3 − x1)

+ (2 − 2z3)(x1 − x2)

= 2((1 − z1)(x2 − x3) + (1 − z2)(x3 − x1)

+ (1 − z3)(x1 − x2))

= 2((x2 − x3) − z1(x2 − x3) + (x3 − x1) − z2(x3 − x1)

+ (x1 − x2) − z3(x1 − x2))

= 2((x2 − x3) + (x3 − x1) + (x1 − x2) − z1(x2 − x3)

− z2(x3 − x1) − z3(x1 − x2))

= −2(z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2))

= −2B

Consider C∆.

C∆ = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

= C

Consider D∆:

D∆ = −A∆x1 − B∆y1 − C∆z∆
1

= 2Ax1 + 2By1 − C(2 − 2z1)

= −2(−Ax1 − By1 + C(1 − z1))

= −2(−Ax1 − By1 − Cz1 + C)

= −2(−Ax1 − By1 − Cz1) − 2C

= −2D − 2C

µ∆Ã(p(x, y)) = −A∆

C∆
x − B∆

C∆
y − D∆

C∆

= −A∆

C
x − B∆

C
y − D∆

C

= −−2A

C
x − −2B

C
y − −2D − 2C

C

= −2(−A

C
x − B

C
y − D

C
) +

2C

C

= 2 − 2(−A

C
x − B

C
y − D

C
)

= 2 − 2µÃ(p)
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• Suppose µÃ(p) < 0.5, then 0.5 − µÃ(p) > 0 and 2(0.5 − |0.5 −
µÃ(p)|) = 2(0.5 − (0.5 − µÃ(p))) = 2µÃ(p)

Consider A∆:

A∆ = y1(z
∆
2 − z∆

3 ) + y2(z
∆
3 − z∆

1 ) + y3(z
∆
1 − z∆

2 )

= y1(2z2 − 2z3) + y2(2z3 − 2z1) + y3(2z1 − 2z2)

= 2(y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2))

= 2A

Consider B∆:

B∆ = z∆
1 (x2 − x3) + z∆

2 (x3 − x1) + z∆
3 (x1 − x2)

= 2z1(x2 − x3) + 2z2(x3 − x1) + 2z3(x1 − x2)

= 2(z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2))

= 2B

Consider C∆:

C∆ = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

= C

Consider D∆:

D∆ = −A∆x1 − B∆y1 − C∆z∆
1

= −2Ax1 − 2By1 − C(2z1)

= 2(−Ax1 − By1 − Cz1)

= −2D

µ∆Ã(p(x, y)) = −A∆

C∆
x − B∆

C∆
y − D∆

C∆

= −A∆

C
x − B∆

C
y − D∆

C

= −2A

C
x − 2B

C
y − 2D

C

= 2(−A

C
x − B

C
y − D

C
)

= 2µÃ(p)

This implies that for all points, their membership grade in the bound-
ary matches the membership grade as defined in the conceptual model
(Chapter 2).
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Implementation The fuzzy region (in TIN representation) of the boundary
of Ã, is obtained by performing a constrained Delaunay triangulation on P
and E. The pseudo code to find the fuzzy boundary of a fuzzy region is given
below.

Fuzzy_TIN FuzzyBoundary(Fuzzy_TIN A)

VAR pointset,edgeset

BEGIN

For all datapoints p in P_A

add p to pointset

mu_DA(p)=2(0.5-abs(0.5-mu_A(p)))

end for

For all edges e(p_1,p_2) in E_A

if (mu_A(p_1) < 0.5 AND mu_A(p_2) > 0.5) OR

(mu_A(p_1) > 0.5 AND mu_A(p_2) < 0.5)

find point p on e with mu_A(p) = 0.5

add p to pointset

mu_DA(p) = 1

add e(p_1,p) to edgeset

add e(p_2,p) to edgeset

else

add e(p_1,p_2) to edgeset

endif

end for

return constraint_Delaunay(pointset,edgeset)

END

Interior The interior of a fuzzy region Ã is a new fuzzy region. It is deter-
mined similarly as the boundary: by first finding all the datapoints, all the
edges, and defining the mapping function. The interior is illustrated on fig.
5.20.

1. First, the datapoints points p for which fÃ(p) ≥ 0.5 are considered.

Pt1 = {p | p ∈ PÃ ∧ fÃ(p) ≥ 0.5}

2. Next, the intersection points between edges of the TIN and a horizontal
plane at level z = 0.5 are added. The datapoints for edges that are
completely located in the plane z = 0.5, have been considered in the
previous step.

Pt2 = {p | ∃e(p1, p2) ∈ EÃ : p1, p2 /∈ Pt1 ∧
p ∈ e(p1, p2) ∧ µÃ(p) = 0.5}
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Figure 5.20: The fuzzy interior of the fuzzy TIN in 5.18; for illustration purposes
all the datapoints of the original TIN are shown.

The union of these two sets yields the set of datapoints for the interior:

PÃ◦ = Pt1 ∪ Pt2 (5.51)

Next, the set of edges E must be determined.

1. First, all the edges that existed in the original network, and whose points
are in P , are considered. Bear in mind that the TIN is defined in two
dimensions; the altered associated value for the datapoints does not play
a part here.

Et1 = {e(p1, p2) | p1, p2 ∈ P ∧ e(p1, p2) ∈ EÃ}

2. Next, all the edges that are part of an existing edge (in EÃ) and that con-
nect an intersection point (in Pt2) with a datapoint from Pt1 are added.

Et2 = {e(p1, p2) | p1 ∈ Pt1 , p2 ∈ Pt2 ∧ ∃e ∈ EÃ : e(p1, p2) ⊆ e}

The union of Et1 and Et2 yields the set EÃ◦ which will constrain the Delaunay
triangulation.

The mapping function is defined to match the theoretical definition (2.4.3):

fÃ◦ : PÃ◦ → [0, 1]

p 7→ 1 − µ∆Ã(p) = 1 − 2(0.5 − |0.5 − µÃ(p)|)

As the set of points and edges for the interior is a subset of the set of points
and edges for the boundary, it is possible to deduce the sets P and E from the
TIN that represents the boundary:

PÃ◦ = {p|p ∈ P∆Ã ∧ µÃ(p) ≥ 0.5} (5.52)

EÃ◦ = {e(p1, p2)|e(p1, p2) ∈ E∆Ã ∧ p1, p2 ∈ P} (5.53)
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Verification The verification of the interior is completely similar to the
verification of the boundary, as discussed above; consider a fuzzy TIN Ã =
[(PÃ, EÃ, TÃ), fÃ]. It is now necessary to prove that µÃ◦(p) = 1−2(0.5−|0.5−
µÃ(p)|), for all points in the TIN.

1. p ∈ PÃ◦ For points in PÃ◦ , this requirement is immediately fulfilled, due
to the definition of both PÃ◦ and the definition of the mapping function
fÃ◦ .

2. p /∈ PÃ◦ , but still inside the outline of the interior (i.e. µ∆Ã(p) ≥ 0.5), it
is necessary to prove that µÃ◦(p) = 1− 2(0.5− |0.5−µÃ◦(p)|); for points
p /∈ PÃ◦ but outside the interior (i.e. µ∆Ã(p) < 0.5), µÃ◦(p) = 0.

A triangle in Ã◦ is part of a triangle of Ã (bear in mind that the trian-
gulation process happens in two dimensions): only the associated values
differ. The coefficients of the equation of a plane in the boundary are
denoted A◦, B◦, C◦ and D◦ (100); the associated membership grade for
a point pi is µÃ◦(pi) = z∆

i .

• Suppose µÃ(p) ≥ 0.5, then 0.5 − µÃ(p) < 0 and 1 − 2(0.5 − |0.5 −
µÃ(p)|) = 1−2(0.5+(0.5−µÃ(p))) = 1−2−2µÃ(p) = −1−2µÃ(p)

Consider the coefficient A◦:

A◦ = y1(z
◦
2 − z◦3) + y2(z

◦
3 − z◦1) + y3(z

◦
1 − z◦2)

= y1(−1 − 2z2 − (−1 − 2z3)) + y2(−1 − 2z3 − (−1 − 2z1))

+ y3(−1 − 2z1 − (−1 − 2z2))

= y1(−1 − 2z2 + 1 + 2z3) + y2(−1 − 2z3 + 1 + 2z1)

+ y3(−1 − 2z1 + 1 + 2z2)

= y1(−2z2 + 2z3) + y2(−2z3 + 2z1) + y3(−2z1 + 2z2)

= −2(y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2))

= −2A

Consider B◦:

B◦ = z◦1(x2 − x3) + z◦2(x3 − x1) + z◦3(x1 − x2)

= (−1 − 2z1)(x2 − x3) + (−1 − 2z2)(x3 − x1)

+ (−1 − 2z3)(x1 − x2)

= −(x2 − x3) − 2z1(x2 − x3) − (x3 − x1) − 2z2(x3 − x1)

− (x1 − x2) − 2z3(x1 − x2)

= −x2 + x3 − x3 + x1 − x1 + x2 − 2(z1(x2 − x3)

+ z2(x3 − x1) + z3(x1 − x2))

= −2B
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Consider C◦.

C◦ = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

= C

Consider D◦:

D◦ = −A◦x1 − B◦y1 − C◦z◦1

= 2Ax1 + 2By1 − C(−1 − 2z1)

= 2Ax1 + 2By1 + 2Cz1 + C

= −2(−Ax1 − By1 − Cz1) + C

= −2D + C

The equation then yields:

µÃ◦(p(x, y)) = −A◦

C◦
x − B◦

C◦
y − D◦

C◦

= −A◦

C
x − B◦

C
y − D◦

C

= −−2A

C
x − −2B

C
y − −2D + C

C

= −2(−A

C
x − B

C
y − D

C
) − C

C

= −1 − 2(−A

C
x − B

C
y − D

C
)

= −1 − 2µÃ(p)

• Suppose µÃ(p) < 0.5; by definition of the membership function (de-
rived from the mapping function fÃ◦), the associated membership
grade for the interior will be 0.

This implies that for all points, their membership grade in the interior
matches the membership grade as defined in the conceptual model (Chap-
ter 2).

Implementation This similarity can also be found in the pseudo code for
the construction of the fuzzy interior.

Fuzzy_TIN FuzzyInterior(Fuzzy_TIN A)

VAR pointset,edgeset

BEGIN

For all datapoints p in P_A

if mu_A(p) >= 0.5

add p to pointset

mu_A(p)=1-2(0.5-abs(0.5-mu_A(p)))

end if
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Figure 5.21: The fuzzy interior of the fuzzy TIN in 5.18. All points outside the
polygon (p1, p2, p8, p9) are assigned a membership grade 1, all points inside the poly-
gon defined by the 3 points indicated with ∗ and the points p2, p3, p7 are assigned
membership grade 0.

end for

For all edges e(p_1,p_2) in E_A

if (mu_A(p_1) > 0.5 AND mu_A(p_2) > 0.5)

add e(p_1,p_2) to edgeset

end if

if (mu_A(p_1) > 0.5 AND mu_A(p_2) < 0.5)

find point p on e with mu_A(p) = 0.5

add p to pointset

mu_A(p) = 0

add e(p_1,p) to edgeset

end if

if (mu_A(p_2) > 0.5 AND mu_A(p_1) < 0.5)

find point p on e with mu_A(p) = 0.5

add p to pointset

mu_A(p) = 0

add e(p_2,p) to edgeset

end if

end for

return constraint_Delaunay(pointset,edgeset)

END

Exterior The exterior of a fuzzy region Ã also is a new fuzzy region. It is
similar in definition to the interior. The exterior is illustrated on fig. 5.21; for
illustration purposes all the datapoints of the original TIN are shown.

1. First, the datapoints points p for which fÃ(p) ≤ 0.5 are considered.

Pt1 = {p | p ∈ PÃ ∧ fÃ(p) ≤ 0.5}
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2. Next, the intersection points between edges of the TIN and a horizontal
plane at level z = 0.5 are added. The datapoints for edges that are
completely located in the plane z = 0.5, have been considered in the
previous step.

Pt2 = {p | ∃e(p1, p2) ∈ EÃ : p1, p2 /∈ Pt1 ∧
p ∈ e(p1, p2) ∧ µÃ(p) = 0.5}

Here, U represents the universe. The union of these two sets yields the set of
datapoints for the interior: P = Pt1 ∪ Pt2 . Next, the set of edges E must be
determined.

1. First, all the edges that existed in the original network, and whose points
are in P , are considered. Bear in mind that the TIN is defined in two
dimensions; the altered associated value for the datapoints does not play
a part here.

Et1 = {e(p1, p2) | p1, p2 ∈ P ∧ e(p1, p2) ∈ EÃ}

2. Next, all the edges that are part of an existing edge (in EA) and that
connect an intersection point (in Pt2) with a datapoint from PÃ = Pt1

are added.

Et2 = {e(p1, p2) | p1 ∈ Pt1 , p2 ∈ Pt2 ∧ ∃e ∈ EÃ : e(p1, p2) ⊆ e}

The union of Et1 and Et2 yields us the set E which will constrain the
Delaunay triangulation.

The mapping function is defined to match the theoretical definition (2.4.3):

f : P → [0, 1]

p 7→ 1 − µ∆Ã(p) = 1 − 2(0.5 − |0.5 − µÃ(p)|)

The membership function associates 1 with points outside the region of
interest, which yields:

µÃ : U → [0, 1]

p(x, y) 7→





f(p(x, y)) if p(x, y) ∈ P
−A

C x − B
C y − D

C if p(x, y) ∈ R\P
1 if p(x, y) /∈ R

where A,B,C and D are defined respectively as in 5.2, 5.3, 5.4 and 5.5.
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Verification The verification that the constructed TIN matches the theo-
retical definition of the exterior, is completely similar to the verification of the
fuzzy interior; consider a fuzzy TIN Ã = [(PÃ, EÃ, TÃ), fÃ]. It is now necessary
to prove that µÃ−(p) = 1 − 2(0.5 − |0.5 − µÃ(p)|), for all points in the TIN.

1. p ∈ PÃ− For points in PÃ− , this requirement is immediately fulfilled, due
to the definition of both PÃ− and the definition of the mapping function
fÃ− .

2. p /∈ PÃ− , but still inside the outline of the interior (i.e. mu∆Ã(p) ≥ 0.5),
it is necessary to prove that µÃ−(p) = 1−2(0.5−|0.5−µÃ−(p)|); for points
p /∈ PÃ− but outside the interior (i.e. mu∆Ã(p) < 0.5), muÃ−(p) = 0.

A triangle in Ã− is part of a triangle of Ã (bear in mind that the trian-
gulation process happens in two dimensions): only the associated values
differ. The coefficients of the equation of a plane in the boundary are
denoted A−, B−, C− and D− (100); the associated membership grade
for a point pi is µÃ−(pi) = z∆

i .

• Suppose µÃ(p) ≤ 0.5, then 0.5 − µÃ(p) > 0 and 1 − 2(0.5 − |0.5 −
µÃ(p)|) = 1−2(0.5+(0.5−µÃ(p))) = 1−2−2µÃ(p) = −1−2µÃ(p)

Consider the coefficient A−:

A− = y1(z
−
2 − z−3 ) + y2(z

−
3 − z−1 )

+ y3(z
−
1 − z−2 )

= y1(−1 − 2z2 − (−1 − 2z3)) + y2(−1 − 2z3 − (−1 − 2z1))

+ y3(−1 − 2z1 − (−1 − 2z2))

= y1(−1 − 2z2 + 1 + 2z3) + y2(−1 − 2z3 + 1 + 2z1)

+ y3(−1 − 2z1 + 1 + 2z2)

= y1(−2z2 + 2z3) + y2(−2z3 + 2z1) + y3(−2z1 + 2z2)

= −2(y1(z2 − z3) + y2(z3 − z1) + y3(z1 − z2))

= −2A

Consider B−:

B− = z−1 (x2 − x3) + z−2 (x3 − x1) + z−3 (x1 − x2)

= (−1 − 2z1)(x2 − x3) + (−1 − 2z2)(x3 − x1)

+ (−1 − 2z3)(x1 − x2)

= −(x2 − x3) − 2z1(x2 − x3) − (x3 − x1) − 2z2(x3 − x1)

− (x1 − x2) − 2z3(x1 − x2)

= −x2 + x3 − x3 + x1 − x1 + x2 − 2(z1(x2 − x3)

+ z2(x3 − x1) + z3(x1 − x2))

= −2(z1(x2 − x3) + z2(x3 − x1) + z3(x1 − x2))

= −2B
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Consider C−.

C− = x1(y2 − y3) + x2(y3 − y1) + x3(y1 − y2)

= C

Consider D−:

D− = −A−x1 − B−y1 − C−z−1
= 2Ax1 + 2By1 − C(−1 − 2z1)

= 2Ax1 + 2By1 + 2Cz1 + C

= −2(−Ax1 − By1 − Cz1) + C

= −2D + C

The equation then yields:

µÃ−(p(x, y)) = −A−

C−
x − B−

C−
y − D−

C−

= −A−

C
x − B−

C
y − D−

C

= −−2A

C
x − −2B

C
y − −2D + C

C

= −2(−A

C
x − B

C
y − D

C
) − C

C

= −1 − 2(−A

C
x − B

C
y − D

C
)

= −1 − 2µÃ(p)

• Suppose µÃ(p) ≥ 0.5; by definition of the membership function (de-
rived from the mapping function fÃ−), the associated membership
grade for the interior will be 0.

This implies that for all points, their membership grade in the exterior
matches the membership grade as defined in the conceptual model (Chap-
ter 2).

Implementation In pseudo-code, this yields:

Fuzzy_TIN FuzzyExterior(Fuzzy_TIN A)

VAR pointset,edgeset

BEGIN

For all datapoints p in P_A

if mu_A(p) <= 0.5

add p to pointset

mu_A-(p)=1-2(0.5-abs(0.5-mu_A(p)))

end if
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end for

For all edges e(p_1,p_2) in E_A

if (mu_A(p_1) < 0.5 AND mu_A(p_2) < 0.5)

add e(p_1,p_2) to edgeset

end if

if (mu_A(p_1) < 0.5 AND mu_A(p_2) > 0.5)

find point p on e with mu_A(p) = 0.5

add p to pointset

mu_A-(p) = 0

add e(p_1,p) to edgeset

end if

if (mu_A(p_2) < 0.5 AND mu_A(p_1) > 0.5)

find point p on e with mu_A(p) = 0.5

add p to pointset

mu_A(p) = 0

add e(p_2,p) to edgeset

end if

end for

return constraint_Delaunay(pointset,edgeset)

END

The concepts boundary, interior and exterior are closely linked; construct-
ing them together in a single operation would no doubt be more efficient than
considering them all three separately. Furthermore, as an additional optimiza-
tion, it can be beneficial to store the boundary, interior and exterior for each
fuzzy TIN known to the system.

Using the above concepts, it becomes possible to generate intersection ma-
trices for fuzzy regions in a TIN representation. These intersection matrices
can then be interpreted similarly to those in the theoretical model 2.4.3.

5.5 Extensions

5.5.1 Fuzzy locations

The first extension to be considered, is the extension in which fuzzy regions are
used to represent fuzzy points. The definitions for a fuzzy TIN representing a
fuzzy point are the same as those for a fuzzy TIN region. The difference is in
the interpretation of the membership grades: for fuzzy regions, the membership
grade was interpreted in a veristic way (indicating the extent to which a point
belongs to the region), whereas for fuzzy points it is interpreted in a possibilistic
way (indicating the extent to which a point is a possible location).
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Definition 103 (fuzzy TIN point)

fuzzy TIN = [(P,E, T ), f ] (5.54)

where P is a set of data points, E a set of edges (both the edges obtained
through a Delaunay triangulation, and the edges required to be in the result
in the case of a constrained Delaunay triangulation, see 1.1.3), and T set of
triangles that make up the TIN. The function f is a mapping function defined
as:

f : P → [0, 1]

p(x, y) 7→ f(p(x, y))

This function associates each data point with a value; which will be the mem-
bership grade for this data point.

Based on the linear interpolation as applied on a TIN and the mapping
function f , the membership function for a fuzzy region Ã is then defined as

Definition 104 (membership function µÃ of a fuzzy point pÃ)
(represented by a fuzzy TIN Ã)

µÃ : U → [0, 1]

p(x, y) 7→





f(p(x, y)) if p(x, y) ∈ P
−A

C x − B
C y − D

C if p(x, y) ∈ R\P
0 if p(x, y) /∈ R

where R represents the region of interest of the TIN and A, B, C and
D are the parameters of the equation Ax + By + Cz + D = 0 of the plane
containing the three points p1(x1, y1, z1), p2(x2, y2, z2) and p3(x3, y3, z3) (with
the understanding that zj = f(xj , yj), j = 1, 2, 3), such that the triangle
p1(x1, y1, 0), p2(x2, y2, 0) and p3(x3, y3, 0) is a triangle of the TIN and p(x, y, 0)
is inside or on an edge of this triangle. For the calculation of these values, we
refer to 5.2, 5.3, 5.4 and 5.5.

Operations

The overview of operations on fuzzy regions that remain meaningful on fuzzy
points was provided in the conceptual model. For completeness, similarly as in
the bitmap model, this overview is also repeated here.

Set-operations As before, information regarding a fuzzy location can orig-
inate from different constraints. Applying set operations on the fuzzy regions
that hold the possible locations for the fuzzy locations, allows for combining
the information from different sources, for instance a single fuzzy point can on
one hand be said to be close to a river and on the other hand near a water
tower. The union of both fuzzy regions will provide the possible locations for
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the fuzzy point for which one of the criteria needs to be fulfilled, the intersec-
tion will provide the possible locations for the fuzzy point if both criteria need
to be fulfilled, and the complement provides the negation of a criterion.

α-cut operation The determination of the α-cut of a fuzzy point and can be
used to determine a crisp region (for a given α) in which the locations have at
least a given membership grade. This can be useful when needing to represent
a region where the fuzzy point is located in a system that has no support for
fuzzy geographic structures.

Minimum bounding rectangle and convex hull Both the minimum
bounding rectangle and the convex hull can be used to approximate the outline
of the fuzzy region of possible locations.

Surface area calculation By definition, the surface area of a single point is
0. The definition of the surface area for fuzzy regions can still be used to serve
as an indication over which area the imprecisely known or inaccurately known
point is located. It does not indicate the surface area of the point.

Distance calculation Calculating the distance between two fuzzy locations
(or fuzzy points) in a TIN representation differs, just like it did in the bitmap
model (chapter 4) and in the conceptual model (chapter 2), from calculating
the distance between fuzzy regions. The reason again is that for fuzzy points,
every possible distance needs to be taken into account, not only the possible
distances between the regions.

To define the distance for fuzzy points, consider two fuzzy points that are

defined using a single triangle; fuzzy point pÃ is represented by the triangle

pÃ
1 , pÃ

2 , pÃ
3 ; fuzzy point pB̃ by the triangle pB̃

1 , pB̃
2 , pB̃

3 . The fuzzy points are
characterized by respectively [(PÃ, EÃ, TÃ), fÃ] and [(PB̃ , EB̃ , TB̃), fB̃ ].

The shortest distance that can occur dmin for the distance between any

point in pÃ and any point in pB̃ is equal to the minimal distance between
between the edges of both triangles.

dmin = min
i=1,2,3;j=1,2,3

{d(epÃ

i , epB̃

j )} (5.55)

where epX̃

i is the notation for an edge of the triangle representing pX̃ . The
distance between two edges e1(p1, p2) and e2(p3, p4) is defined as the minimum
distance between any endpoint of one edge and a point p on the other edge
(which can be an endpoint):

d(e1(p1, p2), e2(p3, p4)) = min{inf{d(pi, p) | i ∈ {1, 2}, p ∈ e2},
inf{d(p, pi) | i ∈ {3, 4}, p ∈ e1}}
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The membership grade that will be associated with the smallest possible
distance between both triangles is

αdmin
= µd(pÃ,pB̃)(dmin)

= sup{min(µpÃ(p), µpB̃ (p′)) :

∃e ∈ EÃ, p ∈ e ∧ ∃e′ ∈ EB̃ , p′ ∈ e′ ∧ d(p, p′) = dmin}

Similarly, the maximum distance dmax that can occur between points of
both triangles is

dmax = max
i=1,2,3;j=1,2,3

{d(epÃ

i , epB̃

j )} (5.56)

The membership grade that will be associated with this longest possible dis-
tance between both triangles is:

αdmax
= µd(pÃ,pB̃)(dmax)

= sup{min(µpÃ(p), µpB̃ (p′)) :

∃e ∈ EÃ, p ∈ e ∧ ∃e′ ∈ EB̃ , p′ ∈ e′ ∧ d(p, p′) = dmax}

Finally, also the distances that will be assigned the highest membership
grade dµmax

will be determined. This highest membership grade is given by:

αmax = min{max{fpÃ(pÃ
1 ), fpÃ(pÃ

2 ), fpÃ(pÃ
3 )},

max{fpB̃ (pB̃
1 ), fpB̃ (pB̃

2 ), fpB̃ (pB̃
3 )}}

There can however be several distances that will match this membership grade
(if one of the triangles has two or more points which share the highest mem-
bership grade in this triangle). Only the shortest and longest distances with
this membership grade are needed.

dαmax

min = min
i=1,2,3;j=1,2,3

{d(pÃ
i , pB̃

j ) : min(fpÃ(pÃ
i ), fpB̃ (pB̃

j )) = αmax} (5.57)

dαmax
max = max

i=1,2,3;j=1,2,3
{d(pÃ

i , pB̃
j ) : min(fpÃ(pÃ

i ), fpB̃ (pB̃
j )) = αmax} (5.58)

This provides us with two more distances (and their membership grades),
that definitely belong to the representation of the distance between both fuzzy
points. As the triangles are convex structures, all distances in between these
four distances are also valid.

The remaining question now is: how do the membership grades change
for these distances? It can easily be shown that these changes are not linear.
Consider the parametric equations of the straight lines in which the segments
ab and de are contained. As ab is chosen to match the X-axis, the parametric
equation for the straight line is:

{
x = λxb

y = 0
(5.59)
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Figure 5.22: Illustration of the distance between two fuzzy regions represented by
triangles: (a) sample triangles Ã and B̃, (b) membership grades of the datapoints in
Ã and B̃, (c) the distance between the points represented by Ã and B̃

For the straight line in which de is contained, the parametric equation is:
{

x = xd + λ(xe − xd)
y = yd + λ(ye − yd)

(5.60)

where a, b, c, d, e, f are defined by the coordinates (xa, ya), (xb, yb), (xc, yc),
(xd, yd), (xe, ye) and (xf , yf ) respectively and λ ∈ [0, 1] (which limits the equa-
tions to the required line segments). The line segments ab and de could rep-
resent two sides of a triangle between which the evolution for the distance for
different λ values (which could represent membership grades) needs to be deter-
mined. This is for instance the case on fig. 5.23, for finding distances between
dmin and dαmax

max . These distances are given by:

dλ(ab, de) =
√

(yd + λ(ye − yd))2 + (xd + λ(xe − xd) − λxb)2

Obviously, the distance for each λ-value does not vary in a linear way with
the changing λ values (it can happen in particular cases, but not in general).
Consequently, the distance between the points will merely be approximated
by treating these changes as linear. To calculate the distance between two
fuzzy points in a TIN representation, first the distance between two triangles
is needed.

Definition 105 (distance between two fuzzy points)
(each represented by a single triangle)

d̃(pÃ, pB̃) = {(x, µd̃(pÃ,pB̃)(x))} (5.61)

where

µd̃(pÃ,pB̃) : R → [0, 1]
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Figure 5.23: Example to calculate the changes to the distance depending on the
changing λ-value.

x 7→





αdmin
if x = dmin

αmax−αdmin

dαmax
min −dmin

(x − dmin) + αdmin
if dmin < x < dαmax

min

αmax if dαmax
min

≤ x ≤ dαmax
max

αdmax−αmax

dmax−dαmax
max

(x − dmax) + αdmax
if dαmax

max < x < dmax

αdmax
if x = dmax

with the values dmin, dαmax

min , dαmax
max , dmax, αdmin

, αmax and αdmax
defined as

above.

For two triangular networks, all the possible triangle-combinations need to
be taken into account (as in the above definition), after which the union (using
the maximum T-conorm, 1.2.3) of all obtained fuzzy sets will yield the distance
between both fuzzy points in TIN representation.

Regions at fuzzy positions

So far, membership grades in fuzzy regions are interpreted as degrees of be-
longing to the region. As mentioned in earlier chapters, it can be interesting
to consider a region located at a fuzzy position. As mentioned before, this can
be accomplished by defining a region’s position by means of an anchor point.

The TIN-structure is very well suited to be used for representing the anchor
point: not only does it allow for a model in which a single point has membership
grade 1, but it is also possible to model a single line where the membership
grade will be 1. Furthermore, due to its arbitrary distribution of datapoints,
it can be tailored to suit various constraints (e.g. a fuzzy point can consist of
possible locations in streets, but not in houses along this street).

The region attached to the anchor point can be either a crisp region, a fuzzy
region represented by a bitmap, or a fuzzy region represented by a TIN. In the
latter two cases, the region can be considered to be represented by a level-2
fuzzy set.
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5.5.2 Fuzzy associated data

In the above model and extensions, the uncertainty and/or imprecision con-
cerned the region itself, not the associated data. It can however also be inter-
esting to consider the associated data to be fuzzy. A region which is in itself
crisp, but with which fuzzy data is associated is referred to as an extended
region. The associated data can be numeric, but it can also concern other data
(categories of land, types of land use, soil composotion, etc). In the example
below, an extended region used to model fuzzy real numbers is given.

Definition 106 (extended TIN region)

extended TIN = [(P,E, T ), f ] (5.62)

where P is a set of data points on which the TIN is constructed, E is a set
of edges (including both the edges obtained through a Delaunay triangulation,
and the edges required to be in the result in the case of a constrained Delaunay
triangulation, see 1.1.3), and T is a set of triangles that make up the TIN. The
function f is a mapping function defined as:

f : P → ℘(R)

p(x, y) 7→ f(p(x, y))

This function associates each data point with a value; which will be the mem-
bership grade for this data point.

Based on the linear interpolation as is applied on a TIN and the mapping
function f , the full mapping function g (which also provides the information
for interpolated points) for an extended region can be defined as

Definition 107 (full mapping function g of a fuzzy TIN Ã)

g : U → ℘(R)

p(x, y) 7→





f(p(x, y)) if p(x, y) ∈ P
−A

C x − B
C y − D

C if p(x, y) ∈ R\P
0 if p(x, y) /∈ R

where R represents the region of interest of the TIN and A, B, C and
D are the parameters of the equation Ax + By + Cz + D = 0 of the plane
containing the three points p1(x1, y1, z1), p2(x2, y2, z2) and p3(x3, y3, z3) (with
the understanding that zj = f(xj , yj), j = 1, 2, 3), such that the triangle
p1(x1, y1, 0), p2(x2, y2, 0) and p3(x3, y3, 0) is a triangle of the TIN and p(x, y, 0)
is inside or on an edge of this triangle.

Notice that for associated fuzzy real number, this requires fuzzy arithmetic.
For discrete data (for instance land classification, where there are only a finite
number of classes), the extended TIN will appear to consist of multiple crisp
TINs: each class will yield one TIN which models the membership grade for
every location with regard to this class.
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Type-2 fuzzy sets

The above extension can be combined with the model for fuzzy regions, to yield
a representation for type-2 fuzzy regions.

Definition 108 (type-2 fuzzy TIN region)

type-2 fuzzy TIN = [(P,E, T ), f ] (5.63)

where P is a set of data points on which the TIN is constructed, E is a set
of edges (including both the edges obtained through a Delaunay triangulation,
and the edges required to be in the result in the case of a constrained Delaunay
triangulation, see 1.1.3), and T is a set of triangles that make up the TIN. The
function f is a mapping function defined as:

f : P → ℘([0, 1])

p(x, y) 7→ f(p(x, y))

This function associates each data point with a value; which will be the mem-
bership grade for this data point.

Based on the linear interpolation as is applied on a TIN and the mapping
function f , the full mapping function g (which also provides the information
for interpolated points) for an extended region can be defined as

Definition 109 (type-2 membership function µ ˜̃A
)

(of a type-2 fuzzy TIN ˜̃A)

µ ˜̃A
: U → ℘([0, 1])

p(x, y) 7→





f(p(x, y)) if p(x, y) ∈ P
−A

C x − B
C y − D

C if p(x, y) ∈ R\P
0 if p(x, y) /∈ R

where R represents the region of interest of the TIN and A, B, C and
D are the parameters of the equation Ax + By + Cz + D = 0 of the plane
containing the three points p1(x1, y1, z1), p2(x2, y2, z2) and p3(x3, y3, z3) (with
the understanding that zj = f(xj , yj), j = 1, 2, 3), such that the triangle
p1(x1, y1, 0), p2(x2, y2, 0) and p3(x3, y3, 0) is a triangle of the TIN and p(x, y, 0)
is inside or on an edge of this triangle.

Just like in the case of type-2 fuzzy bitmaps (4.5.3), the type-2 fuzzy region
can be used to overcome criticism on crisp membership grades, but also to take
into account the fact that the TIN representation is an approximation of reality.
Where in the type-2 fuzzy bitmap, the uncertain membership grade could be
obtained from several sample points, it is possible in a fuzzy region to consider
an alternate interpolation method. This alternate interpolation method could
yield fuzzy membership grades that are more imprecise for locations further
away from the datapoints.
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PTV-regions

It is possible to work with fuzzy associated data regardless of the domain.
Consequently, this domain can also be {True, False}; fuzzy sets over this do-
main are possibilistic truth values, as mentioned in 1.2.4. The definition for
such regions is similar as for regions with other fuzzy associated data, but this
time with ℘({True, False}) as the co-domain. If desired, extended possibilis-
tic truthvalues (fuzzy sets over ℘({True, False,⊥}, [19]) can also be defined
similarly.

PTV regions can be useful for representing results from queries on fuzzy
information, or queries that use fuzzy predicates (even if the information in
the database itself is crisp).



Chapter 6

Conclusion

6.1 Application fields

6.1.1 Spatial databases

The first application field is of course in field from which the research origi-
nated: spatial databases (and consequently geographic information systems).
In spatial databases, there can be applications for either the fuzzy regions,
fuzzy points, or any of the other extensions considered in this work. For every
concept, applications will be considered in further detail.

Fuzzy regions

The concept of fuzzy regions allows for the modelling of regions which have an
indetermined boundary. The cause for this indetermination can either be un-
certainty (there is no certain knowledge regarding the boundary), but can also
be imprecision (the boundary is imprecise). The uncertainty or imprecision can
be inherent to the region, but it can also have been introduced by limitations
imposed when determining the region (it can be physically impossible or too
expensive to determine the actual crisp boundary). Below is a list of some
examples of such occurrences.

• Soil composition
The first example considered is soil composition. Depending on the soil
considered, the fuzziness is either inherent (where does a section of sandy
soil ends, and a section of clay soil begins?) or virtually impossible to de-
termine accurately (e.g. underground caverns). Traditionally, geologists
place a fixed, crisp boundary at a position they deem representative for
the boundary between the regions that have a different type of soil. While
this is sufficient for many uses, inclusion of the fuzziness of the boundary
can have advantages in more advanced analysis: it becomes possible to
take into account a “partial belonging to”-relation whic in turn prevents
a system of having to discriminate on a pure binary (yes/no) basis.
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• Vegetation and wildlife
Modelling which plants are located in which regions tends to be a fuzzy
process. The presence of a single plant is expressed as a crisp number: for
grasses or similar plants, this number is a percentage: 70% of a region is
covered in grass, for large plants it is expressed as a an average number of
plants per square metre; which in both cases is likely to be an estimate.
Similar to the vegetation in a region, is the distribution of wildlife. Most
animals have a certain territory, which, while often quite crisp for the
animal, is difficult to find for researchers. Counting the number of animals
in a given region is also prone to inherent uncertainty, as the animals
tend to move around. Currently, observations are extrapolated on the
entire region, which of course introduces uncertainty. As the territory
of one species is often influenced by either the presence (or absence) of
another species, or by the presence or absence of plants, modelling the
regions as fuzzy regions would allow to take into account the changes to
territories under the influence of vegetation changes or under the influence
of migration of other species.

• Weather
Any climate related information, from measurements (temperature, hu-
midity, wind direction and wind velocity, and even rainfall) is inherently
imprecise: the measurements are always performed on a fixed number
of locations, and extrapolated to other locations. Forecasts regarding
the weather are inherently uncertain. Also information that is related to
weather, like areas affected by hurricanes are also imprecise or uncertain.
The path of hurricanes themselves is also fuzzy, but can also considered
as an application of a fuzzy point.

Fuzzy points

Fuzzy locations (and fuzzy points) can be used to model a person’s whereabouts
or an object’s position, given a number of criteria. This can be a last known
position, combined with terrain information and further combined with other
(possibly non geographic) data. Quite often, there will be a spatio-temporal
aspect to fuzzy points.

• Prediction of possible future locations
An application for this could be in tracking persons and predicting pos-
sible locations where they are now: there often is a last known position
is (e.g. the scene of a crime, witness report). Given the terrain informa-
tion (roads, buildings, stretches of water, etc.) and information that the
person is for instance moving by car, the system could calculate different
possible locations for this person. Any added information (e.g. if the
car was seen somewhere), can be taken into account as well, and provide
additional restrictions on the possible locations. These principle could
also be applied for location based services, where persons are given infor-
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mation based on their location. Modelling the path of migrating animals
or weather phenomena such as hurricanes is similar.

• Past location tracing
Similar to the above application, the techniques can be used to determine
where a person has been in the past. This can be useful in tracing steps
from criminals, but also to obtain clues regarding found persons. The sys-
tem could combine distance information with samples of soil, eyewitness
reports, and other information.

• Identifying locations
The fuzzy regions concept can also be used to identify locations given a
number of properties: the properties “by a river, near a bridge, close to a
water tower” can be combined and a list of all locations that satisfy these
properties can be returned. This could be used for emergency services, to
pinpoint the location where they have to go to if no accurate information
(e.g. the name of the street) is provided.

• Modelling spread of pollutants / Tracing possible sources of pollutants
In Belgium for instance, the air force is using unmanned aircraft to patrol
the coast for illegal oil pollution caused by ships. However, when the
pollution is not found within a short timeframe, it becomes much more
difficult to find the source. By combining the information of the present
location of the oil (which is quite crisp) with the information of ocean
currents (prone to imprecision) and traffic information about the ships
(prone to uncertainty), a fuzzy approach could be used to allow for a
bigger timeframe in which the guilty party can still be traced. The reverse
problem is that when a pollution happens (a leak in a tank, a truck
accident, etc.), it is important to quickly assess what area is likely to be
affected by it.

• Object matching
The last geographical example is a field our department research is also
investigating. The goal is to provide an automated system to match satel-
lite images and aerial photographs with given cartographic data to detect
changes to the road network. Ideally, the system should discover where
there have been changes (as can be seen on the images) to the current
representation of the road network (as stored in the geographic database).
Detecting which roads and intersections match is prone to uncertainty or
imprecision, due to perspective errors in the images; clouds, vehicles and
bridges obscuring the road network or genuine changes to the network.

6.1.2 Image processing

Even though the presented techniques have been developed with geographic sys-
tems in mind, there are applications in other fields, mainly in image processing
(as partly illustrated by the object matching example).
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• Image segmentation
Image segmentation is the process where an image is divided into different
subsections, based on the content of the image. As the content of the
image not always leads to a crisp boundary (e.g. detecting the outline of
a tree on a picture), it stands to reason that allowing for fuzzy segments
can have its advantages. A fuzzy segment on an image is conceptually
the same as a fuzzy region; given the fact that images are bitmaps, the
presented bitmap-based model becomes extremely well suited for this
purpose.

• Object recognition
Recognizing objects is one step further than image segmentation: it in-
volves tagging the segments, e.g. stating that an object on the image
is a tree (after the outline of the tree has been found and marked as a
segment). Depending on the circumstances, an object can differ from the
object one is trying to identify on the image, even if it concerns the same
objects. Examples are a tree in summer and that same tree in winter,
a person viewed from the front or in profile, etc. Given this wide vari-
ety, using a fuzzy matching technique to compare segments on the image
with a set of predefined objects could yield better results (this application
partly overlaps with the object matching mentioned previously).

6.2 Conclusion

6.2.1 General spatial datatype criteria

In [40], the author lists a number of properties, which are interesting for spatial
data types at the implementation level. These properties are used to test the
presented models. First, an overview of the properties is given.

• Generality
It should be possible to model spatial objects as general as possible, a
line object for example should be able to model the Nile delta, whereas a
region object should be able to cope with holes and disconnected regions.

• Closure properties The domains of spatial datatypes should be closed with
respect to union, intersection and difference. This property means that
the result of an operation should be of the same type as the arguments
of the operation, which allows for the result to be used as an argument
in a subsequent operation.

• Rigorous definition
The semantics should be defined in a clear and unique way as to avoid
ambiguities for both user and implementor.

• Finite resolution, numerical robustness, topological correctness
Formal definition should take into account the finite representation as
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is available in computers. This is particularly the case with geometrical
calculations (for example determining the exact location of intersection
points, etc.), as errors can be propagated. Subsequent operations can
cause an escalation of these errors, causing the end result to deviate
quite a lot from the desired result. When left to the programmer, such
calculation errors tend to lead to both numerical and topological prob-
lems.

• Geometric consistency
Distinct spatial types may be related through geometric consistency con-
straints (e.g. adjacent regions have a common boundary). For fuzzy
regions, this concept can become difficult, as boundaries are allowed to
be uncertain or imprecise. Nevertheless, it is still possible to enforce
different regions to use the same locations/points.

• Extensibility
There may always be applications that require operations (and perhaps
types) not considered in the original spatial data types. A type system
should be extendible for new datatypes.

• Data model independence
Spatial datatypes need to be integrated in a DBMS data model and in
the query language that handles them. However, the spatial datatype
itself should be independent of any particular DBMS.

The presented models will now be verified against the above properties.

Conceptual model

The conceptual model has been presented in chapter 2. This model is not
intended to represent a spatial data type, but more as a theoretical basis on
which spatial data types can be based.

• Generality: No assumption whatsoever is made regarding the distribu-
tion of locations (or points), making this model extremely general: re-
gions made up of several disconnected regions, regions with holes and any
combination of these two are possible.

• Closure: The model is closed with respect to the required operations
(union, intersection and complement). Furthermore, the model is closed
for the minimum bounding rectangle, convex hull and even α-cuts (while
the α-cut of a region is a crisp region, it can still be represented as a
fuzzy region with membership grades in {0, 1}). Any operation on two
or more regions which yields a (finite) region can be represented in this
conceptual model.

• Rigorous definition: The definitions are unambiguous, but due to the
nature of the concept not suited for implementation (which is not the
point of this model).
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• Extensibility: The definitions of the regions are an application of fuzzy
set theory. An extension principle can be used to extend operations
that work on crisp regions, to operators that work on fuzzy regions as
represented in the conceptual model.

Due to the fact that this model is not intended for direct implementation,
but more as a theoretical foundation for other models, the properties that
deal with practical implementation aspects (resolution/robustness, geometric
consistency, data model independence) are of no real importance for this model.

Contourline model

The contourline model has been dealt with in 3.3. The model is a straight
forward extension of the models that use an inner and an outer boundary to
define a broad boundary.

• Generality: The model itself allows for regions that consist of several
disconnected regions, and even for regions with holes. However, all the
boundaries that occur in a single region (the boundaries for the different
disjoint regions, as well as the boundaries that delimit holes) need to be
defined in the same way (using the same shape function).

• Closure: The contourline model is generally not closed with respect to
union and intersection. This is easily seen when considering the union
or intersection of two regions that use a different shape function, but it
is also the case for regions that use the same shape function (i.e. in the
case they intersect only with their boundaries).

• Rigorous definition: The definitions are formally specified and unambigu-
ous.

• Resolution/robustness: The contourline model is based on the two di-
mensional space. Within the model, the limitations imposed by finite
number representation (in computers) are not taken into account, making
the model not very robust. However, it is possible to alter the definitions
to make use of a realm 1.3.2, thus making the model more robust.

• Geometric consistency: In the contourline model, some geometric consis-
tency constraints may be quite difficult to enforce, for instance specifying
that two adjacent regions share the same boundary for instance is not
straight forward, as boundaries are defined for each region individually.

• Extensibility: While it is possible to add operations to the model, they
are hard if not impossible to define if the closure property is required, as
is illustrated in 3.3.

• Data model independence: The model was built from the theoretical
concept, and is not related to any DBMS data model.
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Despite the fact that the contourline model fails at a number of properties,
the concept is still useful as an extension of the traditional buffer concept.
The contourline model allows for a buffer to be defined in a fuzzy way, while
providing a simple model (both conceptually as from an implementation point
of view) with little data requirements and easy querying to provide information
for given locations.

Fuzzy bitmap model

• Generality: The model makes the conceptual model manageable by lim-
iting the domain to a finite space, but maintains the generality: regions
made up of disconnected regions, regions with holes, etc. are all possible.

• Closure: The model is closed with respect to union, intersection and
complement. Additionally, it is even closed with respect to minimum
bounding rectangle, convex hull, and α-cuts (α-cuts are crisp regions, but
the initial result of the α-cut is a crisp region in a bitmap representation,
with membership grades in {0, 1}).

• Rigorous definition: The definitions of both the model and the various
operations are unambiguously specified.

• Resolution/robustness: The model makes the conceptual model manage-
able by considering a finite space (where a grid is used to define the
elements) instead of the two dimensional space. By using a finite number
of elements as the basic structures, the numerical robustness for geometric
properties can be guaranteed.

• Geometric consistency: The bitmap model makes it easy to enforce geo-
metric consistency constraints (even though the concept for fuzzy regions
is dubious). For a shared boundary between fuzzy regions for instances,
it suffices to consider the same cells in each region as the cells that make
up the overlapping boundary.

• Extensibility: A number of operations have been defined, but many others
can be added by applying an extension principle. Due to the fact that the
fuzzy regions are defined over a discrete domain, the extension principle
can be applied in practice (although it won’t yield an optimized algorithm
for the required operation).

• Data model independence: The model was built upon the conceptual
model, and is independent from any DBMS data type. Due to the fact
however that the bitmap structure is a known structure to most geo-
graphic database systems, the fuzzy bitmap model should be relatively
straightforward to add to such a database system.
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Fuzzy TIN model

• Generality: The model simplifies on the conceptual model by limiting
the number of points that define the region, but not at the expense of
generality: regions made up of disconnected regions, regions with holes,
etc. can all be modelled.

• Closure: The model is closed with respect to union, intersection and
complement. Furthermore, it is also closed for minimum bounding rec-
tangle, convex hull (which is an approximation, but accurate for every
chosen α-cut) and α-cut (the initial result of the α-cut is a crisp region
in TIN-region representation, with membership grades in {0, 1}).

• Rigorous definition: Both the structure and the operations are unam-
biguously defined.

• Resolution/robustness: Even though only a limited number of points are
used to define a fuzzy TIN, the model may be prone to propagation of
errors (stemming from the limited representation in computers) in some
of the calculations. This is for example the case in any operation that
requires the geometric intersection between lines and/or planes. However,
it is also possible to define a fuzzy TIN by means of a realm (1.3.2), in
which case the numerical robustness can be guaranteed. It may have an
impact on the interpolation method though, depending on how the realm
elements are defined and treated.

• Geometric consistency: While the concept of geometric consistency is
unclear, regions can share common points and even triangles.

• Extensibility: In the fuzzy TIN model, a number of operations have been
considered. Defining additional datatypes and operations is possible, but
the linear interpolation requirement may cause some operations to be
more difficult to define (e.g. the product norm for union).

• Data model independence: The fuzzy TIN model was based on the con-
ceptual model. As such, it is independent from any DBMS data type.
It makes use of triangular networks and Delaunay triangulation, both of
which are concept already known to most geographic database systems.

6.2.2 Summary

The above results are summarized in the following table.
The conceptual model provides for a solid theoretical foundation on which

different implementation models can be based. The contourline model is not
really suited to provide a rich model for fuzzy regions, but still has its merits
in providing for a better model for the representation of buffer regions, as it
allows for fuzzy buffers. Both the fuzzy bitmap and fuzzy TIN models are
well suited to represent fuzzy regions and while both are suitable for fuzzy
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Concept Contour- Fuzzy Fuzzy
Property line Bitmap TIN

Generality + 0 + +
Closure + - + +

Rigorous + + + +
Resolution robustness / 0 + 0
Geometric consistency / - + +

Extensibility + 0 + +
Data model independence + + + +

Figure 6.1: Overview spatial datatype properties for the presented models; legend:
+=satisfied, 0=neutral, -=not satisfied, /=not applicable

points, the fuzzy TIN model has the advantage to allow fuzzy regions with a
1-dimensional core to be represented.

6.3 Future work

The models presented in this work are to be considered a first step towards
a geographic information system in which fuzziness is supported at various
levels. Using the representations and operations presented, fuzziness at both
the boundary of the regions as well as at the position of points can be achieved.
For this purpose, a number of basic operations have been considered, defined
and presented, but there still is a lot of future work, both research in the
theoretical field, but research toward a practical system.

While a number of operations have been defined, there are additional oper-
ations that are also interesting and often required on fuzzy regions and points.
Not only operations that work on single regions (e.g. center of gravity), but
also more interaction between different objects (e.g. better support for geo-
metric consistency constraints) need to be developed further. Particularly in
the fuzzy TIN model, work is in progress on supporting discontinuities within
a TIN network (currently, discontinuities are only possible at the edges of the
region of interest). This will be achieved by allowing different associated values
for datapoints, and then considering the appropriate value depending on the
triangle at hand. Future research is also aimed at combining the concepts of
regions and points: working with regions at fuzzy positions, and defining oper-
ations that provide adequate support for this. The other mentioned extensions
(fuzzy associated values, type-2 fuzzy sets, etc.) also have many uses (e.g. to
model fuzzy measurements) and need to be researched and developed further.

Apart from further theoretical work, a important next step is the devel-
opment of a (prototype) implementation which supports the different models
and operations. During the research, some small scale test implementations
were made; either to verify the feasibility of the operations, or to clearly ver-
ify the impact in some degenerate cases. A full implementation would allow
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for a proper comparison against existing techniques, not only to compare the
results of different analyses or query performed on data, but also to test for
performance and possible limitations imposed by a computer system (speed,
accuracy, etc.). It would also allow for an easier illustration on how models
and queries could benefit from incorporating the fuzziness that occurs.
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Appendix

A.1 Delaunay Triangulation

The concept of Delaunay triangulation is often referred to in this work (partic-
ularly in chapter 5); as mentioned, various algorithms to perform this triangu-
lation exist. For the purpose of illustration, one algorithm will be considered
in further detail. As indicated, a Delaunay triangulation is a triangulation in
which for each triangle, no vertex points other than its own three vertex points
are contained inside the circumscribing circle.

An incremental algorithm [5] is the most straightforward way of computing
a triangulation: vertices are added one point at a time, and the parts of the
triangulation affected by adding this vertex are corrected. This is illustrated
on fig. A.1.

(a) (b) (c)

Figure A.1: Incremental algorithm to find the Delaunay triangulation: (a) existing
network with newly added point, (b) circumcircles for the relevant triangles, (c)
triangular network with the newly added point.

Whenever a vertex is added (fig. A.1a), the circumcircles of all triangles, in
which this vertex is located are computed (fig. A.1b); those triangles are re-
moved and this part of the graph is retriangulated (fig. A.1c). Without any
optimization, this takes O(n2). By ordering the vertices on e.g. their first
coordinate, and adding them in this order, the algorithm is more efficient with
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an average complexity of O(n3/2). With other optimizations, the average com-
plexity can be brought down to O(n log(n)). Commonly, as a starting point,
a triangle is constructed (called the supertriangle), in which all the points are
contained. This supertriangle makes no use of the vertex points and is to be
removed at the end of the algorithm. Notice how this algorithm immediately
allows for the addition of points, and how the removal of vertex points is basi-
cally analogous.

The divide and conquer algorithm [9] starts with a set of vertices. This
set is split in two sets, which are then merged after having computed the
Delaunay triangulation of both sets (which is done recursively). The process
of splitting takes O(log n), whereas the merging operation can be performed in
O(n); yielding a total complexity of O(n log n).

The sweepline algorithm scans the vertex points, adding multiple points
and egdes at the same time. While this algorithm is more advanced, it still has
an O(n log n) complexity.

The incremental algorithm [5] is given below in pseudocode:

subroutine triangulate

input : vertex list

output : triangle list

initialize the triangle list

determine the supertriangle

add supertriangle vertices to the end of the vertex list

add the supertriangle to the triangle list

for each sample point in the vertex list

initialize the edge buffer

for each triangle currently in the triangle list

calculate the triangle circumcircle center and radius

if the point lies in the triangle circumcircle then

add the three triangle edges to the edge buffer

remove the triangle from the triangle list

endif

endfor

delete all doubly specified edges from the edge buffer

this leaves the edges of the enclosing polygon only

add to the triangle list all triangles formed between

the point and the edges of the enclosing polygon

endfor

remove any triangles from the triangle list that use the

supertriangle vertices

remove the supertriangle vertices from the vertex list

end
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A.2 List of symbols

R set of real numbers
∀ for all
∃ exists
6 ∃ not exists
∃! exists only one

℘(A) powerset of the set A: the set that contains all subsets of A
U notation for the universe considered, in this work this is always

a genuine, limited subset of R2

f(A) where A is a set, is the notation for the set containing all the
elements obtained by applying f to each element of A
i.e. {y | y = f(x) ∧ x ∈ A}

A\B notation for set difference: A minus B
[a, b] notation for the closed interval: {x ∈ R | a ≤ x ∧ x ≤ b}
]a, b] notation for the halfopen interval: {x ∈ R | a < x ∧ x ≤ b}
[a, b[ notation for the halfopen interval: {x ∈ R | a ≤ x ∧ x < b}
]a, b[ notation for the open interval: {x ∈ R | a ≤ x ∧ x ≤ b}

p(x, y) point with coordinates (x, y)
p(x, y, z) point with coordinates (x, y, z), commonly the z-coordinate is

a shorthand notation for the membership grade associated
with p(x, y)

µA(x) membership grade of x in the fuzzy set A

Ãα notation for the weak α-cut of A

Ãα notation for the strong α-cut of A
∆A boundary of the crisp region A
A◦ interior of the crisp region A
A− exterior of the crisp region A

∆Ã boundary of the fuzzy region Ã

Ã◦ interior of the fuzzy region Ã

Ã− exterior of the fuzzy region Ã
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[20] De Tré G., De Caluwe R.; 2003; Level-2 fuzzy sets and their usefulness in
object-oriented database modelling; Fuzzy Sets and Systems, Vol. 140, No.
1, pages 29–49.
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α-cut
strong

of a fuzzy bitmap, 137
of a fuzzy region, 48
of a fuzzy set, 20
of a fuzzy TIN, 182

weak
of a fuzzy bitmap, 137
of a fuzzy region, 47
of a fuzzy set, 21
of a fuzzy TIN, 179

bitmap, 5
boundary

of a crisp region (∂·), 12
of a fuzzy bitmap (∆·), 151
of a fuzzy region (∆·), 55
of a fuzzy TIN (∆·), 199

cell, 4, 127
closed set, 12
closure of a set, 12
complement

of a fuzzy bitmap, 135
of a fuzzy region, 47
of a fuzzy set, 19
of a fuzzy TIN, 176
of a set, 12

convex hull
of a crisp region, 10
of a fuzzy bitmap, 142
of a fuzzy region, 50
of a fuzzy TIN, 188

convex polygon, 8
convex set, 4
core

of a fuzzy bitmap, 137

of a fuzzy region, 48
of a fuzzy set, 21
of a fuzzy TIN, 182

datapoints, 7
distance

between fuzzy bitmaps
α-level approach, 149
topological approach, 150

between fuzzy points
bitmap representation, 154
concept, 110
TIN representation, 216

between fuzzy regions
α-level approach, 53
topological approach, 59

between fuzzy TINs
α-level approach, 198
topological approach, 199

between points, 11
between regions, 11

EPTV, see extended possibilistic
truth value

extended bitmap
with PTV, 157
with real numbers, 156

extended possibilistic truth value, 22
extended region

with PTV, 114
with real numbers, 113

extended TIN
with PTV, 220
with real numbers, 218

exterior
of a crisp region (·−), 13
of a fuzzy bitmap (·−), 152
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of a fuzzy region (·−), 57

fuzzy bitmap, 128
type-2, 156

fuzzy point
bitmap representation, 153
concept, 108
TIN representation, 212

fuzzy powerset ℘̃, 18
fuzzy region

complex, 44
concept, 44
level-2, 112
simple, 44
type-2, 113

fuzzy set, 16
fuzzy TIN, 160

type-2, 219

grid, 4, 127

height of a fuzzy set, 58

interior
of a crisp region (·◦), 12
of a fuzzy bitmap (·◦), 151
of a fuzzy region (·◦), 56

intersection
of fuzzy bitmaps, 133
of fuzzy regions, 47
of fuzzy sets, 19
of fuzzy TINs, 164

level-2 fuzzy region
seefuzzy region

level-2, 112

mapping function, 7
match value, 107
MBR, see minimum bounding rectan-

gle
membership function

bitmap model, 128
contourline model

equidistant boundaries, 120
multiple independent

boundaries, 123

two independent
boundaries, 121

fuzzy TIN, 161
minimum bounding rectangle

of a crisp region, 8
of a fuzzy bitmap, 139, 184
of a fuzzy region, 49

neighbourhood (of a point), 12
normed fuzzy set, 16

open set, 12

possibilistic truth value, 22
PTV, see possibilistic truth value

shape function Sf , 118
support

of a fuzzy bitmap, 137
of a fuzzy region, 48
of a fuzzy set, 20
of a fuzzy TIN, 182

surface area
concept

fuzzy number result, 51
of a fuzzy bitmap

crisp number result, 147
fuzzy number result, 145

of a fuzzy region
crisp number result, 53

of a fuzzy TIN
crisp number result, 196
fuzzy number result, 192

TIN, see triangular irregular network
triangular irregular network, 6

union
of fuzzy bitmaps, 134
of fuzzy regions, 47
of fuzzy sets, 19
of fuzzy TINs, 175

Zadeh extension principle, 18


