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OUTLINE AND AIMS OF THIS 

THESIS  

Vaccination, which is based on the principle of eliciting an immune response and immunological 

memory, is one of the major breakthroughs in medicine. Notwithstanding numerous infectious 

diseases can be prevented, there are still many diseases like HIV, malaria and tuberculosis where no 

effective vaccine is available at the moment. The reason for this failure is that current vaccination 

strategies against intracellular pathogens are not capable of inducing strong cellular immune 

responses. The crucial cells in initiating T cell responses are dendritic cells (DCs), which are 

specialized in internalizing antigen, processing them into peptide fragments and presenting these by 

respectively MHCII to CD4 T cells and MHCI to CD8 T cells. The way in which antigen is internalized by 

a DC, strongly affects how the antigen is processed and presented by a DC, and consequently the 

type and strength of immune response induced. Soluble antigens formulated with current approved 

adjuvants, such as aluminum hydroxide salts and MF59, induce predominantly antigen presentation 

to CD4 T cells and therefore fail to induce potent cellular immune responses. By contrast, particulate 

antigens are not only far more efficiently taken up by DCs, but are also presented by MHCI to CD8 T 

cells, thus enabling the induction of CTL responses. 

 

In recent years, new particulate strategies like liposomes and PLGA microspheres to enhance antigen 

immunogenicity have been developed. They suffer from several drawbacks such as low antigen 

encapsulation efficiency, use of chemical solvents, physical stress that negatively affects their antigen 

stability and complex and multistep assembly procedures. In this thesis we aimed to develop a 

generic microparticulate antigen formulation technology that is straightforward and scalable. 

 

CHAPTER 1 provides a general introduction to the immune system describing the different cells 

involved, the crucial role of cross-presentation by the dendritic cells and the shortcomings of current 

vaccination strategies. In CHAPTER 2 the potential of polymeric multilayer capsules (PMLC) for vaccine 

delivery are reviewed. These PMLC are fabricated by layer-by-layer coating of interacting species 

onto a sacrificial  template followed by the decomposition of this template, yielding hollow capsules. 

However, the multistep assembly procedure is time consuming and thus a major setback toward 

industrial applications. These limitations have prompted us at developing novel strategies to 

formulate vaccine antigens in polymeric particles. To provide an introduction to the scalable methods 
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to produce microparticles, CHAPTER 3 describes automatization and simplification strategies and, 

more specifically, spray-based approaches.  

 

In CHAPTER 4 we aimed at developing a method to produce porous antigen loaded degradable 

polyelectrolyte microspheres by atomization into a hot air stream of a diluted aqueous mixture of 

oppositely charged polyelectrolytes, and calcium carbonate nanoparticles as a pore-forming 

component. Upon evaporation of the water phase, solid microparticles are obtained that do not 

aggregate or disassemble when redispersed in water. Subsequent extraction of the calcium 

carbonate yielded highly porous microparticles. This high porosity is expected to enhance 

intracellular processing of encapsulated antigen upon uptake by antigen presenting cells. We then 

further evaluated the physicochemical properties of these particles and their in vitro interaction with 

dendritic cells. CHAPTER 5 elaborates further on the design of porous polyelectrolyte microparticles 

and presents a single-step method to encapsulate proteins into microspheres. Herein, mannitol was 

used as a sacrificial component instead of calcium carbonate nanoparticles. Mannitol has the 

advantage that it is a fully biocompatible water soluble sacrificial component, while in case of the 

calcium carbonate nanoparticles an additional step is needed to remove the core template. 

Furthermore, we demonstrated that the biological activity of encapsulated proteins is preserved, and 

investigated the intracellular behavior of the microparticles after uptake by dendritic cells and 

assessed the ability to promote cross-presentation.  

 

In CHAPTER 6 we aimed to investigate the in vivo behavior in mice of the porous microparticles 

produced in CHAPTER 5. Tissue response and the induction of cellular and humoral immune responses 

was investigated. 

 

As an alternative to electrostatic interaction, also hydrogen bonding can act as a driving force to form 

stable complexes. In CHAPTER 7 the aim was to explore hydrogen bonding between tannic acid as 

hydrogen donor and neutral charged polymers as hydrogen bond acceptors to assemble multilayer 

films. The obtained know how was then used in CHAPTER 8 to design porous microparticles based on 

hydrogen bonding. In vitro studies were performed to assess their interaction with dendritic cells  in 

terms of cytotoxicity, particle uptake and their potential to promote antigen cross-presentation. 

 

In addition we also compared head-to-head the polyelectrolyte-based and hydrogen bonding based 

systems and attempted to relate the differences in immuno-biological behavior to their 

physicochemical properties. 
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CHAPTER 1  

THE IMMUNE SYSTEM 

1. HISTORIC BACKGROUND 

The term vaccination is derived from the Latin word for cow (vacca). Edward Jenner discovered at the 

end of the 18th century that the fatal disease smallpox could be prevented by inoculation with the 

cowpox virus. These basics were later on expanded by Koch, Lister and Louis Pasteur. The latter 

discovered the possibility to modify the virulence of an infectious agent and to induce protection 

with it.1, 2 Since then, our knowledge about vaccinology and more in general, the immune system has 

been vastly extended.  

 

2. INNATE AND ADAPTIVE IMMUNE SYSTEM 

Our immune system can be divided into innate and adaptive immune responses. Innate immunity 

represents the first line defense against pathogens that have invaded the host. It’s characterized by a 

rapid recruitment of phagocytic cells to the site of infection, antigen non-specific and a lack of 

memory. However, recently the term “trained immunity” has been proposed to describe enhanced 

and sustained innate immune responses against infections after previous exposure to certain 

infectious agents.3 Cells of the innate immune system rely on a limited number of receptors (PRRs: 

Pattern Recognition Receptors)  that recognize conserved molecular structures (PAMPs: Pathogen 

Associated Molecular Patterns) expressed by  a wide variety of infectious agents. 4 

 

The adaptive immune system can be further divided into humoral (B lymphocytes) and cellular 

immune (T lymphocytes) responses. When naive B lymphocytes or B cells recognize antigen (in 

presence of adequate auxiliary cells and signals) bound onto their  B cell receptor (BCR), they become 

activated and differentiate into antibody-secreting plasma cells and memory B cells (Figure 1).5-7  
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Figure 1. Schematic overview of the immune system. 
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Two main classes of naive T cells can be distinguished by the cell-surface protein CD4 or CD8 

respectively, on their surface. Upon activation, naive CD4 or CD8 T cells differentiate into different 

effector T cells, each specialized in a specific function. CD8 T cells differentiate into cytotoxic T cells 

(CTLs) and can kill infected or malignant cells.8 Different subsets of CD4 T cells help other cells in their 

function and, hence, are called helper T cells. They regulate the activity of other immune cells 

through the secretion of cytokines. Th1 cells secrete mainly IFN-γ and activate macrophages to 

destruct intracellular pathogens and aid B cells in producing opsonizing antibodies. Cytokines 

produced by Th2 cells, IL-4, IL-5 and IL-13, activate eosinophils, mast cells, to control parasite 

infections and induce the IgE isotype switching by B cells.8, 9 A third subset are the follicular helper T 

cells (TFH). They stimulate the antibody production by B cells and can produce cytokines characteristic 

for either Th1 or Th2 cells.10  The last identified subset of CD4 T cells, Th17 cells are characterized by 

secreting the cytokines IL-17 and IL-22, that stimulate the neutrophil response and help to protect 

against extracellular bacteria and fungi (Figure 1).11, 12 Besides these T helper cells, also regulatory T 

(Treg) exist that are able to suppress an immune response, by secreting the cytokines TGFß and IL-10. 

13 

 

In contrast to B lymphocytes, T lymphocytes cannot recognize antigens by  their T cell receptor (TCR), 

instead a naive T cell reacts to a specific antigen when it is presented as a peptide-MHC complex.14  

Two classes of MHC or major histocompatibility complex, MHCI and MHCII, can be distinguished and 

the function of these specialized glycoproteins is to deliver pathogen-derived peptides to the cell 

surface. They differ in structure, in the way of obtaining peptides, and cellular localization. Cytosolic 

proteins are processed and transported in the endoplasmatic reticulum (ER), where they are placed 

onto MHCI molecules. These class I molecules are expressed by virtually all nucleated cells and bind 

to CD8 T cells. Extracellular proteins taken up and processed into intracellular vesicles are bound to 

MHCII molecules, are only expressed by antigen presenting cells of the immune system 

(macrophages, B cells, dendritic cell and thymic epithelial cells) and bind to CD4 T cells.15 Since 

dendritic cells are the most efficient in presenting antigens, they are discussed into more detail 

below. 

 

3. DENDRITIC CELLS 

3.1. From antigen uptake to antigen presenting 

Dendritic cells were first described by Steinman in 197216 and since then it has become clear that DCs 

play a key role in the immune system. Different subsets, each with their localization and function 

have been described.17-19 One division can be made between plasmacytoid DCs (pDC) and 
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conventional  DCs (cDC). The latter can be further divided into migratory DCs and lymphoid-tissue 

resident DCs. Migratory DCs sample antigens in the peripheral tissues and migrate through the 

lymphatics to the lymph nodes, while lymphoid-tissue resident DCs collect antigens in the lymphoid 

organ. Both can be further divided into specialized subsets.20, 21  

 

To sample antigens, DCs have to be in an immature state. They are efficient in taking up antigens, but 

not in stimulating T cells. Mechanisms of how DC take up particles include phagocytosis, 

macropinocytosis and can proceed through various receptors such as C-type lectin receptors as well 

Fcγ and Fcε receptors.22, 23 Once DCs have captured antigen, they undergo a maturation process, 

where peptide fragments of the antigen are loaded onto MHC molecules and transported to the cell 

surface while in the meantime DCs migrate to the lymphoid tissues. These mature DCs are capable of 

activating T cells which requires 3 signals: as mentioned before the antigen needs to be presented as 

a peptide-MHC complex (signal 1), a costimulatory signal from the DC (signal 2) and cytokines that 

direct T cell differentiation into the different subsets of effector T cells (signal 3).24-26 Thus, the 

activation of naive T cells by dendritic cells occurs in three steps, 1) antigen uptake and processing, 2) 

maturation of DC and migration to the lymph nodes and 3) activation of naive T cells.8 

 

3.2. Maturation of DCs 

Maturation defined as the differentiation of DCs triggered by environmental stimuli plays a pivotal 

role in immunogenicity.27, 28 These signals include microbial products, proinflammatory cytokines, 

lymphocytes, immune complexes and endogenous ligands.29 Microbial products such as LPS, CpG 

DNA, dsRNA act via Toll-like receptors (TLRs) that are part of the pattern recognition receptors 

(previously described in the paragraph on the innate immune system). The involvement of PRRs such 

as TLRs in maturation features DCs as a link between innate and adaptive immunity.30 After the 

receipt of the maturation signal, functional changes occur such as translocation of peptide-MHC 

complexes from lysosomes inside the cell to the cell surface, activation of the processing machinery 

in the late endosomes or lysosomes, remodelling the surface with loss of endocytic/phagocytic 

receptors and upregulation of costimulatory molecules. The maturation pathway then helps to 

address which lymphocyte functions will be induced. 18, 27, 29, 30  

 

A difference has to be made between phenotypically matured dendritic cells and functionally 

matured or immunogenic DCs. Sometimes dendritic cells may express maturation/activation markers 

but are unable to prime T cell responses and even instead induce tolerance.24, 31-33 The understanding 

of functional maturation on the molecular level is still incomplete.32, 33  
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As described before, cytosolic proteins are degraded and their peptides are presented to CD8 T cells 

in complex with MHCI molecules and extracellular proteins are presented on MHCII molecules to CD4 

T cells. However extracellular proteins can also be presented on MHCI molecules, a process called 

cross-presentation, which is explained into detail in the next paragraph. 

 

3.3. Cross-presentation 

The classical MHCI pathway ubiquitinates proteins in the cytoplasm (i.e. proteins are conjugated with 

ubiquitin molecules, which marks them for fast degradation) and are further degraded by the 

proteasome into peptides. The majority of these peptides are further hydrolyzed, but a fraction of 

them are transported into the lumen of the endoplasmatic reticulum (ER) by a transporter associated 

with antigen processing (TAP). In the ER, the peptides are further cleaved, loaded onto MHCI 

molecules and transported through the Golgi cisternae to the cell surface. Thus, it is obvious that 

external proteins, which are not produced by the cell, cannot be presented on MHCI molecules since 

they cannot pass the plasma membrane to enter the cytosol. 15, 34 But how do DCs present exogenous 

proteins onto MHCI molecules? 

 

The phenomenon of cross-presentation was discovered by Bevan in 1976.35 It wasn’t until 1990s that 

antigen presenting cells (APCs) such as dendritic cells and macrophages were identified as the cross-

presenting cells.36 Subsequently, it became clear that  cross-presentation was most efficiently carried 

out by dendritic cells, and more specifically by certain DC subsets (CD8+DC lineage).37, 38 Particulate 

proteins, taken up by phagocytosis, are more effective in cross-presentation than soluble proteins. 

Dendritic cells cross-present the internalized antigens by at least two pathways (Figure 2), the 

cytosolic or the vacuolar pathway.34, 39, 40  

 

In the cytosolic pathway (Figure 2) the proteasome and TAP are required for cross-presentation.41 

Since proteasomes are only present in the cytosol and not in endocytic compartments, this means 

that the internalized antigens needs to be transferred from the phagosome (i.e. the organelle where 

the internalized antigens end up after uptake by the DC) into the cytosol, where they are degraded 

by the proteasome and the obtained peptides can then be transported into the ER by TAP and loaded 

on MHCI molecules.34, 39, 40 

 

The mechanism of antigen export from phagosome to cytosol is not yet completely understood, but 

phagosomes contain also proteins that are normally present in the ER. More in particular these 

proteins are the components involved in the MHCI pathway, thus concluding that phagosomes and 

ER fuses together and exchange molecules for cross-presentation.42-45 Moreover, instead of peptides 
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transported into the ER, they can be taken up again by phagosomes and loaded onto MHCI 

molecules.34, 39, 40  

The vacuolar pathway (Figure 2) on the other hand, does not require the proteasome and TAP, but 

instead the antigen processing and loading onto MHCI molecules takes place in the vacuole, where 

cathepsin S, a lysosomal protease is important in producing the peptides.46  

 

 The peptide-MHCI complex on the DC, together with the co-stimulatory molecules and cytokines, is 

able to prime naive CD8 T cells into cytoxic T cells. 

 

 

Figure 2. Intracellular pathway for cross-presentation in dendritic cells. (adapted from
39

) 

 

4. DCS AS A TARGET FOR THE DEVELOPMENT OF NEW VACCINES 

Since DCs play a central role in immunity, they are logically a target for the development of new 

vaccines. Vaccination is based on the principle of eliciting an immune response and immunological 

memory.47, 48 It plays an essential role in controlling infectious diseases, by saving yearly 2 to 3 million 

lives worldwide.49 In Belgium, children receive vaccinations against bacterial (Diphteria, Tetanus, 

Pertussis, Haemophilus influenza B, Streptococcus pneumonia and Meningococcus group C) and viral 
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(Poliomyelitis, Hepatitis B, Rotavirus, Measles, Mumps and Rubella) diseases before the age of two. 

Although only the vaccine against polio is obliged, the others are also strongly recommended.50 

 

Despite of the success, there are still diseases like HIV, malaria and tuberculosis that cannot yet be 

prevented by vaccination. Conventional vaccines are based on live attenuated pathogens which 

prevent infections by antibodies.51 They are often associated with safety concerns such as reversion 

to virulence or insufficient attenuation and severe adverse effects due to the use of complete 

pathogens.52, 53 As a consequence of these safety issues, killed/inactivated and subunit vaccines 

composed of purified parts of the pathogen such as toxins, proteins and polysaccharides have been 

investigated. The most recently licensed vaccines are developed through genetic engineering 

creating recombinant subunit products.54, 55 These vaccines are safer compared to live pathogens but 

are as well unable to evoke strong cellular immune responses.51 Therefore, adjuvants need to be 

added to increase the immunogenicity and to become effective vaccines.56 Very few adjuvants have 

been approved for human use. Alum (aluminium salts) and AS04 (combination of aluminium 

hydroxide and monophosphoryl lipid A (MPL)) are the only adjuvants approved in the United States. 

In Europe, also oil in water emulsions (MF59, AS03) and virosomes are licensed for influenza 

vaccines.57 Adjuvants can be divided into two categories, immunopotentiators and delivery systems, 

according to their working mechanisms. Although this might be too simplistic since delivery systems 

can also act as immunopotentiators.58, 59 In recent years, adjuvants systems that can induce CD8 T 

cell responses have been developed.40, 60 An overview of different adjuvant systems is given in Table 

1. Among them, polymer-based particulate antigen delivery systems are a promising approach.61-63 

Their interaction with immune cells is discussed into detail in the following CHAPTER 2. 
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Table 1. An overview of adjuvant systems 

Class Example Advantages Disadvantages 

Mineral salts Alum
57, 64-66

 -Licensed 
-Increased stability and 
immunogenicity of antigens 
-Used extensively 
-Low cost 

-Mode of action not completely 
understood 
-Little effect on Th1 immune 
response 

O/W 
emulsion 

MF59
40, 57

 -Licensed (EU) 
-Immunostimulating activity 
-Enhance antigen uptake by DCs 

-Do not induce CD8 T cell responses 

W/O 
emulsion 

CFA
40

, IFA
40

 -/ -Restricted to animals (toxicity) 

 Montanide
40

 -Induce cytotoxic T cell 
responses 

-Restricted to severe conditions 
(toxicity) 
-Severe adverse events 
-Terminated studies 

Lipid vesicles Liposomes
40, 64, 65, 

67
 

-Versatile delivery systems 
-Natural constituent of lipid 
bilayer membranes 
-Entrap a wide range of 
components 
-Tailoring possible 
-Basis for virosomes/VLP 

-Not active per se 
-Stability issues 
-Chemical degradation 
(unsaturated lipids) 

 Virosomes
40, 64

 -Licensed (EU): f.e. Epaxal® 
-Functional viral envelope 
glycoproteins aid in cell uptake 
and membrane fusion to deliver 
the antigen to the target cell 

-Not always an improved 
immunogenicity profile (compared 
to unadjuvanted seasonal influenza 
vaccines) 
-Unknown mode of action, acts 
more as a delivery system 

 VLP
40, 68

 -Licensed: f.e. Gardasil® 
-Function as PAMPs 
-Strong B and T cell responses 

-Practical utility 
-Only small sized vaccine antigens 

Saponin QS21
64, 65, 67

 -Derived from plant Quillaja 
saponaria 
-Purified fraction of QuilA 
-Enhancing antigen 
presentation to APCs 
-Inducing CTL responses 

-First studies in human showed 
some residual lytic activity at the 
injection site 
-Toxic in a variety of experimental 
animals => modify structure at 
molecular level 

Polymeric 
particles 
 

PLGA
40, 60, 61

 -Tailoring possible 
-Offering maturation stimuli 
that act directly on APCs 

-Not approved for human use 

Toll-like 
receptor 
agonist 

PolyI:C (TLR3)
69

 -Facilitates antigen cross-
presentation 

-Degradation by serum nucleases 
(in primates) 
-High doses cause severe safety 
problems => derivatives 

 MPL (TLR4)
64, 69

 -Chemically detoxified form of 
LPS 
-Acts on the innate immune 
cells 
-Stimulate expression of co-
stimulatory molecules and 
cytokine release 

-More mild-moderate adverse 
events compared to Alum 
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 Flagellin (TLR5)
69

 -Fused with a recombinant 
vaccine antigen 
-Induces DC maturation 
-No injection site inflammation 
or severe adverse effects 
detected in mice/non-human 
primates 

-No information on 
immunogenicity/ safety in humans 

 

 Imidazoquinolines 
(TLR7, TLR8)

64, 69
 

- Augment T cell responses 
against viral infections 
-Inducer of pro-inflammatory 
cytokines 
-Licensed for topical use 
(Imiquimod) 

-Only preclinical studies in mice 
-Ability of mice to respond to TLR8 
ligand being questioned 
-Severe adverse effects after 
oral/systemic use in humans 

 ISS of microbial 
DNA (Cpg, TLR9)

64
 

-Ability to induce Th1 immunity 
and cytotoxic T cells 
-Strong anti-viral activity 
-Accelerate, increase magnitude 
and prolong the duration of 
vaccine specific antibody 
responses 

-Currently only used in cancer 
therapy 

Combination 

adjuvants 

Class   

ISCOMs
40, 64, 65

 Saponins 
Cholesterol 
Phopholipids 

-Protein antigen entrapped by 
hydrophobic interactions 
-Taken up by APC by 
endocytosis 
-Promote a broad immune 
response 

-Failed to induce T cell responses in 
cancer patients with advance 
tumors 
-High and multidose 
administrations required 
-Antigen must be amphiphilic 

AS01
70

 MPL 
Liposomes 
QS21 

-Improve cell-mediated 
immunity 

-Only preclinical studies 
-Reactogenicity profile unknown 

AS02
64

 MPL 
O/W emulsion 
QS21 

-Stronger humoral response 
compared to AS01 

-Need to combine with right 
antigen in order to elicit the proper 
immune response 

AS03
65, 69

 O/W emulsion 
α-tocopherol 
(vitamin) 

-Licensed (EU) 
-Enhances antigen load in 
macrophages and granulocyte 
recruitment in lymph nodes 

-Higher incidence of local and 
systemic reactions compared to 
nonadjuvant vaccine 
-occurrence of narcolepsy? 

AS04
57, 64

 Alum 
MPL 

-Licensed (EU) f.e. Cervarix® 
-Local activation of NF-KB 
activity and cytokine production 

-Predominantly Th1 based immune 
responses 
-Spatial and temporal 
colocalisation of AS04 and the 
required antigen 

IFA: incomplete freund adjuvant, CFA: complete freund adjuvant, VLP: virus like particle, ISCOM: immune 

stimulating complexes, MPL: monophosphoryl lipid A, AS: adjuvant systems. 
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CHAPTER 2  

INTERACTION BETWEEN 

POLYMERIC MULTILAYER 

CAPSULES AND IMMUNE CELLS 

1. INTRODUCTION 

Polymeric multilayer capsules (PMLC) have been introduced in the late nineties by the group of 

Helmuth Möhwald and are based on sequential adsorption (i.e. layer-by-layer or LbL assembly)1 of 

interacting species onto a sacrificial template followed by the decomposition of this template.2, 3 

Typical interactions allowing the assembly of PMLC are electrostatics, H-bonding and covalent 

chemistry. Figure 1 schematically represents the process of capsule assembly. Based on the 

pioneering work of Gero Decher in the early nineties, this approach witnessed increased popularity 

due to its conceptual simplicity. Indeed, the LbL technique allows the relatively easy assembly of 

ultrathin layered capsules using commercially available polymers and common lab equipment while 

avoiding toxic solvents. In addition, due to its high versatility, the capsules’ properties can be tailored 

onto the nanoscale, e.g. by varying the number of layers deposited, polymer composition and 

physicochemical properties, or even by endowing the capsules’ surface with additional components 

such as nanoparticles,4 lipids,5 viruses6 etc.  

 

 

Figure 1. Schematic representation of LbL coating of a sacrificial microtemplate followed by the decomposition 

of this template, yielding hollow polymeric multilayer capsules. 

 

Drawn by these appealing properties, material scientists have started designing and evaluating new 

drug delivery systems based on LbL assembly.7-11 Taking into consideration the long (i.e. more than 

30 years) time it took before liposomal drug formulations reached the market,12 it is evident that 
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PMLC are still in an early stage of development. Nevertheless, several groups have been evaluating 

PMLC intensively as carriers for drug molecules both in vitro and in vivo.13-17 Currently, one of the 

best-studied fields of application is the delivery of vaccine antigens to immune cells. Thereby, we 

focus in this chapter on the recent progress that has been made in designing PMLC intended for 

microparticulate vaccine delivery. This field is only in an early stage and PMLC are currently merely 

used to encapsulate vaccine antigens or peptides in their hollow void or within the capsule wall. 

However, the concept of LbL assembly holds the potential to fabricate well defined vaccines carriers 

with specific immune-stimulatory and or targeting ligands, by incorporating these during capsule 

fabrication. Such an approach would pave the road toward a rational and modular design of 

antigen/adjuvant systems.  

 

 

Figure 2. Schematic representation of antigen presentation by dendritic cells (DCs) to T cells. Soluble antigen is 

predominantly presented to CD4 T cells. Particulate antigen is presented to both CD4 and CD8 T cells (i.e. cross-

presentation) and depending on the cytokine environment, CD8 T cells can differentiate to cytotoxic T cells 

(CTLs) that can recognize and eliminate infected or malignant cells. 

 

Microparticulate antigen delivery – i.e. encapsulation of vaccine antigens in polymeric nano- and 

microparticles – has emerged to promote adaptive immune response to recombinant antigens by 

enhancing antigen presentation by dendritic cells (DCs).18-21 Dendritic cells (DCs) continuously sample 

antigens in peripheral tissues, process them and transport them to the draining lymph nodes for 

presentation to T cells. While soluble antigens are mainly presented via MHCII to CD4 T cells, 

particulate antigens are also presented via MHCI to CD8 T cells (Figure 2). This is of paramount 

importance, as CD8 T cells can differentiate into cytotoxic T cells capable of killing not only pathogen 
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infected cells but also malignant cells. As a consequence, formulating antigens in polymeric particles 

is considered to be highly promising for the development of effective vaccines against insidious 

pathogens including HIV, tuberculosis, and malaria. In addition, particulate antigen carriers might 

also become valuable tools to develop therapeutic cancer vaccines. 

 

2. CELLULAR INTERACTION WITH POLYMERIC MULTILAYER CAPSULES 

Recently, a series of publications have emerged, addressing the potential of polyelectrolyte 

multilayer capsules for vaccine delivery.7, 9, 22 In our opinion, an ideal microparticulate antigen 

delivery vehicle should at least two requirements. First, antigen should be encapsulated highly 

efficiently, preferably under non-denaturing conditions, in order to avoid extensive loss of expensive 

recombinant antigens. Second, while the antigen should remain stably entrapped in the capsules 

before uptake by professional APCs, once internalized, the antigen should become readily available 

for enzymatic processing and loading onto MHC molecules. 

 

To tackle the first challenge, the use of inorganic particles as templates for the LbL assembly has 

turned out to be extremely well suited. Due to their porous structure, calcium carbonate and 

mesoporous silica particles exhibit an extremely large surface to volume ratio, allowing proteins to 

adsorb and to become efficiently encapsulated following deposition of the LbL layers.23, 24 

Subsequently, these inorganic templates can be readily dissolved under aqueous conditions yielding 

hollow capsules entrapping the antigen. Dissolution of mesoporous silica is typically achieved using 

diluted HF buffers, while calcium carbonate particles can be dissolved either at acidic pH or by adding 

EDTA to complex the Ca2+ ions.  

 

Designing capsules that selectively release their payload upon cellular internalization represents a 

major challenge. A profound knowledge is required on the characteristics of the intracellular 

compartments where the capsules end up following internalization by APCs. Such insights should 

allow a more rational choice of the capsules’ building blocks enabling the generation of capsules 

capable of responding to specific physicochemical stimuli present in these organelles. The issue of 

capsule internalization and fate and its repercussions on capsule design have been addressed by 

various groups. A first question concerns the route of internalization of PMLC. Confocal and 

transmission electron microscopy was used to investigate DCs that were incubated with PMLC. DCs 

formed large, actin-rich, cytoplasmic protrusions that engulfed the capsules, leading to cellular 

uptake. Using inhibitors of different cellular uptake pathways (Figure 3A), it was demonstrated that 

by blocking actin polymerization or macropinocytosis, capsule uptake was completely abolished.  In 
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addition, a role for lipid raft formation in capsule uptake was suggested as blocking of caveolae 

mediated endocytosis  prevented capsule uptake, which was not observed when blocking clathrin 

mediated uptake.25 

 

A simple but informative way to investigate the intracellular fate of the capsules is to incubate cells 

with PMLC followed by co-staining of either the cytosol or the intracellular acidic vesicles 

(endosomes, lysosome, phagosomes). As shown in Figure 3B, by confocal microscopy images 

recorded from DCs that were incubated overnight with PMLC, capsules clearly co-localize with acidic 

vesicles, while no co-localization with the cytosolic stain CellTracker was observed. To further assess 

whether these organelles are able to acidify the whole capsule volume – which is considerable larger 

that the volume of empty (endo/lyso/phago)somes – the pH-sensitive dye SNARF-dextran was 

encapsulated. SNARF-dextran changes its excitation and emission spectrum as function of the pH of 

the medium. At alkaline pH, SNARF emits red fluorescence whereas at acidic pH, green fluorescence 

is emitted. Figure 3C shows a confocal microscopy image of MDA-MB435S breast cancer cells that 

were incubated with SNARF-dextran loaded capsules.26 The pH of the medium was slightly increased 

to enhance the contrast between free capsules and internalized capsules. From the strong increase in 

green fluorescence intensity, it was confirmed that PMLC indeed end up in acidic compartments 

upon cellular internalization.  

 

Taken together, these initial studies have shown that PMLC experience a shift to a more acidic pH 

following cellular uptake, a feature that might be exploited to trigger capsule disassembly. Indeed, 

pH decrease is commonly used in the field of intracellular drug delivery,  e.g. gene or cancer therapy, 

to trigger the release of drug molecules in the endosomes or in acidified tumour tissue.27 Moreover, 

several polyelectrolytes as well as lipids have been reported to release drugs in the cytosol by 

destabilizing endosomal membranes.  

 



CHAPTER 2: INTERACTION BETWEEN POLYMERIC MULTILAYER CAPSULES AND IMMUNE CELLS 

 

31 
 

 

Figure 3. (A) Confocal images of the effects of cytochalasin D (A1) and rottlerin (A2), on microcapsule uptake by 

DCs. PMLC based on (dextran sulfate/poly-L-arginine) were labeled fluorescent red in their shell using 

rhodamine-conjugated poly-L-arginine. The cell membrane was stained fluorescent green using Alexa Fluor 488 

conjugated cholera toxin subunit B. Cell nuclei were stained fluorescent blue with DAPI. (B) Confocal 

microscopy images of DCs incubated with (dextran sulfate/poly-L-arginine) capsules (fluorescent red). In panel 

B1, DCs were stained with CellTrackerGreen to visualize the cytoplasm and in panel B2 with LysotrackerGreen 

to visualize acidic cellular compartments. (C) Confocal microscopy image of SNARF-loaded capsules that change 

from fluorescent red to green upon internalization by MDA-MB435S breast cancer cells. (D) Fluorescence 

microscopy images of LIM cancer cells that expressed the huA33 antigen (blue cells) and control LIM cancer 

cells that did not expressed the huA33 antigen (green cells), incubated with capsules (fluorescent red) 

functionalized with (D1) the huA33 monoclonal antibody and (D2) IgG as control.
25,26,40

  

 

Also in the field of PMLC, the effect of pH on capsule behaviour and drug release has been studied 

extensively.28 Polyelectrolytes containing primary amine or carboxylic acid groups exhibit a strong pH 

dependent swelling and shrinking. Unfortunately, compared to drug delivery systems based on single 

polymers, the pH regions in which drug release is triggered from polyelectrolyte based PMLC are 

extremely basic or acidic. This is due to the fact that upon complexation, the apparent pKa of the 

inter-polyelectrolyte complexes shifts, rendering the complexes stable in pH regions where based on 

the pKa of the single polyelectrolytes, the complexes are expected to disassemble.29 As a 
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consequence, a wide variety of polymers available from the field of non-viral gene delivery have 

failed to construct PMLC that disassemble upon uptake in intracellular acidic vesicles. Thanks to the 

advent of single-component capsules, obtained by removal of one of the interacting polymer layers 

or by covalent LbL assembly, this failure might be resolved soon.  

 

In this context, PMLC composed of poly(2-(diisopropylamino)ethyl methacrylate), a polymer which 

exhibits a strong shift from hydrophobic to hydrophilic behaviour around pH 6.5, making this 

polymer responsive to an intracellular pH switch, were assembled.30 By assembling alternating layers 

of azide-, respectively alkyne-modified poly(2-(diisopropylamino)ethyl methacrylate) via CuI 

catalysed cycloaddition – i.e. ‘click’ chemistry – single component capsules responsive in the 

expected pH region were obtained. Drug delivery applications of this system have not been shown so 

far but are highly anticipated. As an interesting alternative to exploit the pH dependent ionization of 

polyelectrolytes, Hammond and co-workers took advantage of the pH dependent recognition 

between iminobiotin and neutravidin. These molecules form a stable affinity bond at neutral to 

alkaline pH, but disassemble as soon as the pH becomes slightly acidic. Ultra small capsules 

assembled on quantum dots were shown to disassemble in acidic hypoxic regions of solid tumours in 

mice models.15 

 

Intracellular organelles such as endosomes, lysosomes and phagosomes contain high concentrations 

of proteases. Thereby, a convenient way to engineer multilayer capsules to release their payload 

upon cellular uptake involves the use of polypeptides prone to enzymatic degradation as building 

blocks (Figure 4A).  

 

In this context capsules composed of dextran sulfate (DS) and poly-L-arginine (PLARG) were 

assembled.31 Figure 4B shows a series of confocal microscopy images of these capsules incubated in 

an aqueous pronase solution. Pronase is a mixture of non-specific proteases that are capable of 

cleaving virtually any peptide bond. As evidenced by these images, the (DS/PLARG) capsules gradually 

degrade as a function of time and dissolve into the surrounding medium. When incubated in vitro 

with phagocyting cancer cells, these capsules became internalized and gradually lost their integrity 

until only debris of broken capsules was visible within the cells. By contrast, control capsules 

composed of non-degradable polyelectrolytes such as poly(styrene sulfonate) (PSS) and 

poly(allylamine hydrochloride) (PAH) retained their structural integrity even several days after 

cellular uptake. 
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An in depth investigation of the in vitro interaction between enzyme-degradable DS/PLARG capsules 

and dendritic cells was performed using transmission electron microscopy (Figure 4C).25 Upon 

cellular uptake these capsules initially retained their spherical shape and became surrounded by a 

lipid bilayer membrane, supporting the earlier observation that these capsules are located in 

macropinosomal or phagosomal vesicles. Over a 24 h time period, the capsules’ shell however 

severely deformed and finally ruptured, followed by invagination of cytoplasmic content into the 

capsules’ hollow void, which remained however separated from the cytoplasm by a lipid bilayer 

membrane.  

 

Besides a drop in pH and a proteolytic environment, also a shift from an oxidative to a reductive 

environment is sensed when crossing the cellular membrane. This reductive environment is 

predominantly present in the cellular cytosol but not in the acidic phagolysosomal vesicles where 

PMLC are typically located upon cellular entry. Nevertheless in the last few years, the use of disulfide 

linkages, that render polymeric constructs reduction-sensitive, has received considerable attention 

by the drug delivery community.27 Reduction-sensitive PMLC have been explored by a number of 

groups, either using ferrocenes32 or disulfides.33, 34  

 

Haynie and co-workers designed polypeptides, containing cysteine residues, with an overall anionic, 

respectively cationic charge that could be assembled through electrostatic interaction.33 By 

crosslinking of these cysteine residues via oxidative disulphide formation, these capsules where 

rendered stable over a wide pH range while non-crosslinked capsules were unstable at physiological 

pH. 

 

The Caruso group reported in an extensive series of papers on single-component PMLC that are 

stabilized through reduction-sensitive disulfide linkages.34, 35 These capsules were assembled either 

through H-bonding or covalent assembly of sequential layers. Both these approaches avoided the use 

of polycations, which are often associated with cytotoxicity, although this remains a controversial 

issue as will be discussed further in this chapter.  
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Figure 4. (A) Schematic representation of enzyme-responsive multilayer capsules. (B) Confocal microscopy 

images of (DS/PLARG) capsules (fluorescent red) incubated in aqueous pronase solution. (C) Transmission 

electron microscopy images at different time intervals of dendritic cells that have internalized (dextran 

sulfate/poly-L-arginine) capsules. (D) Schematic representation of disulphide cross-linked single-component 

capsules and their reduction triggered disassembly. (E) Transmission electron microscopy images of LIM1899 

cells that have internalized PMA
SH

 capsules. The arrows in panel (E1) show cellular protrusions involved in 

capsules uptake, the arrows in panel (E2) indicate internalized and deformed capsules.
25,31,41
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H-bonded capsules are typically assembled using poly(methacrylic acid) (PMA) as hydrogen bond 

donor and poly(N-vinylpyrrolidone) (PVP) as hydrogen bond acceptor. At acidic pH, below the pKa of 

PMA at which the carboxylic acid groups are protonated and the polymer is non-charged, PMA 

readily allows multilayer film assembly by consecutive coating steps with PVP. When transferred to 

physiological pH, the PMAs’ carboxylic acid groups become deprotonated and electrostatic repulsion 

between successive PMA layers leads to capsule deconstruction. To stabilize these capsules at 

physiological pH, PMA was substituted with thiol moieties (i.e. PMASH), allowing cross-linking of the 

capsules via disulfide bridge formation prior to core dissolution. After core-dissolution and adjusting 

the medium to the physiological pH of 7.4, the PVP is leached out as protonation of the PMASHs’ 

carboxylic acid groups no longer favors H-bonding with the PVP. In this way, single component 

capsules are obtained. Incubation in reductive medium, containing glutathione, leads to capsule 

disassembly due to cleavage of the disulfide bonds as schematically shown in Figure 4D. 

 

Alternative to crosslinking PMA layers in H-bonded capsules, click chemistry (i.e. CuI catalyzed 

cycloaddition of azides to alkynes, forming a triazole linkage) was explored to stabilize PMLC capsules 

through reduction-sensitive linkers.36-38 For this purpose, capsules were assembled from alternating 

layers of PMA and PVPalkyne, i.e. a copolymer of vinylpyrrolidone and an alkyne functionalized 

monomer. After assembly, the multilayers are infiltrated with a bisazide crosslinker bearing a 

disulfide bond. Using standard conditions for aqueous click chemistry (i.e copper sulfate and ascorbic 

acid to reduce the cupper to its CuI state) the PVP layers are covalently bound through reduction-

sensitive disulfide bridges. The use of this type of click chemistry suffers from the significant 

drawback of requiring cupper, which is potentially toxic. However, recent progress (ref) in organic 

and polymer chemistry is paving the way for cupper-free click chemistry that circumvents the above-

mentioned issue. Moreover, the increasing popularity of the click chemistry approach for bio-

conjugation is owed to its orthogonality, meaning that this reaction commonly does not interfere 

with other function groups such as primary amines, thiols and carboxylic acids abundantly present in 

biological systems.39 This feature enables to construct and post-functionalize PMLC with antibodies 

that allowed receptor mediated capsule association with extremely high (i.e. +99%) specificity (Figure 

3D).40 

 

The intracellular fate of H-bonded PMASH capsules was assessed by Caruso and co-workers in several 

papers. PMASH capsules were found to strongly deform upon internalization by cells (Figure 4E) and 

were located in intracellular acidic vesicles.41 These vesicles were identified by immunohistochemical 

staining as being predominantly late endosomes and lysosomes. This is in analogy with the findings 

reported by other groups on polypeptide and polysaccharide based capsules that degrade through 
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enzymatic action. Interestingly, when these capsules carried a lipophilic payload, this payload was 

released after cellular uptake and distributed throughout the cellular cytoplasm. In contrast, high 

molecular weight hydrophilic compounds remained within acidic vesicles. A recent study focused on 

the influence on drug released exerted disulfide reduction within the capsule wall during cellular 

uptake.42 Test-tube results involving addition of reductive species such as DTT and glutathione clearly 

demonstrated that PMASH capsules could disassemble and release their payload upon reduction of 

the disulfide crosslinks.  

 

However, as mentioned earlier in this chapter, reduction is performed in the cytosol rather than in 

endosomal compartments. Nevertheless, it was demonstrated that capsules with non-degradable 

cross-links where unable to release their drug payload, while capsules bearing disulfide crosslinks 

readily enabled intracellular drug release (Figure 5A-B).42 To clarify this contradictory situation, the 

role of thiols associated with cell surface proteins was investigated. These so-called exofacial thiols 

were found to catalyze redox-activated release from the capsules. Blocking of these thiol groups did 

not affect capsule internalization, but completely abolished intracellular release.  

 

Finally, even more important to the fate of the capsules themselves is the intracellular localization of 

the encapsulated drug molecules. As mentioned above, hydrophobic low molecular weights species 

could be released from reduction-sensitive capsules upon cellular uptake.42 The intracellular fate of 

hydrophilic high molecular weights species, such as proteins, has been investigated.43 For this 

purpose, dequenching-ovalbumin (DQ-OVA) was encapsulated in degradable (DS/PLARG) and non-

degradable (PSS/PAH) capsules and incubated in vitro with a 3T3 fibroblast cell line or with DCs 

derived from murine bone marrow (Figure 5 C-D).43  

 

DQ-OVA is a fluorogenic substrate for proteases, comprised of OVA that is excessively substituted 

with BODIPY dyes.  In its native state, DQ-OVA is subjected to strong fluorescence quenching due to 

its excessive labeling. However, upon enzymatic degradation of DQ-OVA into single dye-labeled 

peptides, quenching is alleviated and bright green fluorescence emerges. Whereas in the 

extracellular medium, DQ-OVA loaded degradable capsules did not emit significant fluorescence, 

upon cellular internalization by either 3T3 fibroblasts (Figure 5C) or DCs, green fluorescence emerged 

within 22 h for 3T3 fibroblasts and as soon as 2 h for DCs. These observations indicate a significant 

effect of cell type on capsules uptake and processing.  
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Figure 5. (A-B) Confocal microscopy images of HeLa cells incubated with (A) reduction-sensitive PMA
SH(disulfide) 

and (B) reduction-insensitive PMA
SH(thioether) 

capsules. Both types of capsules were loaded with the hydrophobic 

dye DiI. (C-D) Confocal microscopy images of 3T3 fibroblasts incubated with respectively (C) degradable 

(DS/PLARG) capsules and (D) non-degredable (PSS/PAH) capsules. Both types of capsule were loaded with the 

fluorogenic DQ-OVA. This probes emits red fluorescence due to excimer formation and starts to emit green 

fluorescence upon proteolytic cleavage of the OVA. Images were recorded (C1-D1) immediately after addition 

of the capsule to the cells, (C2-D2) after 30 h of incubation and (C3-D3) after 60 h of incubation. (E) Confocal 

microscopy images of cross-linked HA/PAH after 2 h co-incubation with RAW mouse macrophages. Capsules 

are stained green fluorescent using HA
FITC

, while the cellular lysosomes are stained using LysoTracker Red. Co-

localization between the green and red channel is observed as a yellow/orange color. 
42,43,46
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Similarly, major differences between cell lines regarding the uptake of PMASH capsules were 

observed.41 Importantly, when encapsulating DQ-OVA in non-degradable capsules (Figure 5D), 

intracellular processing was not detected at all, thereby highlighting the importance of capsule 

design on the ability of PMLC to allow intracellular drug release. Additionally, when comparing data 

obtained from transmission electron microscopy and confocal microscopy, it is worthwhile to note 

that although visual rupturing of the shell of (DS/PLARG) capsules took over 12 h to occur inside DCs, 

processing of encapsulated DQ-OVA by the same DCs took off as soon as after 2h of co-incubation.25 

Therefore, it can be assumed that intracellular proteases can readily traverse the (DS/PLARG) capsule 

wall, whereas this seems not to be the case for (PSS/PAH) capsules. The underlying reason for this is 

likely an interplay between different factors including higher permeability of the (DS/PLARG) 

membrane and the appearance of nanopores by enzymatic processing and mechanical stress exerted 

inside cells.  

 

The effect of mechanical stress on capsules’ morphology has been addressed by demonstrating that 

non-degradable capsules are less prone to intracellular deformation when these are reinforced with 

metal nanoparticles.44 From the pioneering work of the Kotov group on planar multilayer films, it is 

known that organic/inorganic hybrid films exhibit a dramatic increase in mechanical strength 

compared to solely organic multlilayers.45 The effect of mechanical strength on intracellular capsule 

deformation was further highlighted using capsules containing hyaluronic acid (HA) as polyanion, 

which is known from the literature on planar multilayers to yield very soft structures. Indeed, as 

shown in Figure 5E, these capsules deformed immediately after uptake by RAW macrophages.46 

 

3. IN VITRO AND IN VIVO INTERACTION WITH IMMUNE CELLS 

A first important issue when evaluating biomedical materials in vivo is how these materials interact 

with complex living tissues. In view of using PMLC as carrier for mucosal drug delivery, De Cock et al. 

investigated the interactions between mucosal tissue and polyanions, polycations and their 

respective inter-polyelectrolyte complexes and multilayered capsules.47 

  

To circumvent ethical issues regarding the use of higher mammalian species such as rabbits – which 

are currently used to evaluate mucosal irritation of e.g. cosmetic products – Arion lustanicus (a type 

of slugs) was used as test species.48 The surface of these species consists of an outer single 

epithelium layer as well as mucus, overlying connective tissue. In steady-state conditions, these slugs 

produce a limited amount of mucus. However, when exposed to an irritating component, mucus 

secretion is induced as a protective mechanism. As shown in Figure 6A, both polyanions and 
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polycations, irrespective of their degradability, induced mucus secretion which was more 

pronounced for cationic than for anionic species. However, upon complexation, either as  by simply 

mixing oppositely charged polyelectrolytes in water or by assembling the polyelectrolytes in a 

multilayered fashion onto sacrificial CaCO3 templates, no mucosal irritation could be detected at all.47 

These observations suggest a dramatic lowering in toxicity of complexed polyelectrolytes relative to 

their soluble counterparts. Most likely, this effect is due to the solid and charge-screened state of 

complexed polyelectrolytes. 

 

The mucosal immune response in vivo in murine models upon pulmonary delivery of (DS/PLARG) 

capsules was further assessed by instillation of capsules.14 This resulted in a mild and transient 

inflammatory response involving the recruitment of monocytes and granulocytes. Capsule uptake 

and transportation to the draining lymph nodes occurred by both macrophages and dendritic cells. 

Encapsulating FITC-dextran allowed monitoring the in vivo fate of the capsules over time. Two days 

after administration in the lungs, intact capsules could still be observed by confocal microscopy on 

cytospins taken from lungs fluid (Figure 6B) as well as on tissue sections (Figure 6C) taken from the 

lungs. However, one week after administration barely any intact capsules were still visible whereas 

after 2 weeks only debris of broken capsules that released their fluorescent payload was observed.  

 

  

Figure 6. (A) Mucosal irritation induced by soluble polyelectrolytes, polyelectrolyte multilayer capsules and the 

corresponding complex coacervates. (B-C) Confocal microscopy images recorded at different time points of (B) 

alveolar macrophages and DCs collected from the bronchi and (C) lung tissue sections of mice that received 

degradable (DS/PLARG) capsules via pulmonary administration. (D) Confocal microscopy images of skin tissue 

sections of mice that received capsules via subcutaneous injection.
13,14,47
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The in vivo fate of DS/PLARG capsules after subcutaneous injection was also addressed. This route of 

administration resulted in the formation of a porous structure consisting of jammed capsules at the 

injection spot. Granulocytes and monocytes readily infiltrated the injected capsule mass starting 

from the periphery and gradually proceeding towards the centre. Over time, capsules became 

internalized by infiltrating macrophages and lost their integrity. Preceding cellular internalization, 

capsules retained their structural integrity, as shown on the confocal image taken 1 day post 

injection.  Sixteen days post injection, the majority of the capsules were internalized by macrophages 

and had undergone substantial deformation (Figure 6D). One month after injection, capsules had 

further been degraded and solely capsules debris inside cells was still noticeable. Importantly,  in vivo 

capsule deformation was found to be strongly dependent on the shell thickness with capsules 

consisting of 4 polyelectrolytes bilayers exhibiting slower deformation kinetics when compared to 

capsules composed of 2 bilayers. Capsules with only one bilayer appeared to be very thin, resulting in 

their swift deformation upon in vivo administration. 13 

 

The most crucial cells in the initiation of adaptive immune responses are the DCs, which process 

internalized antigens and transport them to the lymph nodes for presentation to T cells. Thereby, the 

capacity of respectively PMASH and (DS/PLARG) capsules to promote presentation of encapsulated 

antigens by DCs to T cells both in vitro and in vivo was evaluated. KP9, the CD8 epitope of a model 

HIV antigen, was covalently attached to PMASH capsules assembled through hydrogen bonding.49 

Subsequently, these peptide vaccine capsules were incubated with blood of HIV-infected macaques, 

containing antigen presenting cells as well as KP9 specific CD8 T cells. Relative to bare control 

capsules, KP9-conjugated capsules induced the secretion of the inflammatory cytokines TNF-α and 

IFN-γ, indicating that covalent linkage of peptide vaccines to PMLC still allows processing and 

presentation of the peptide to T cells.49 

 

Using ovalbumin (OVA; chicken egg albumin) as a model antigen offers a more quantitative read-out 

of antigen presentation by measuring the proliferation of OT-I and OT-II transgenic T cells. OT-I cells 

are transgenic CD8 T cells with a T cell receptor that specifically recognizes the OVA-CD8 epitope 

presented via MHCI, whereas OT-II cells are transgenic CD4 T cells that specifically recognize the 

OVA-CD4 epitope presented via MHC-II. Encapsulation of OVA in PMASH capsules still allowed OVA to 

be presented to CD4 and CD8 T cells but not with a greater potency than soluble OVA. In contrast, 

antigen presentation was strongly increased when applying the capsules in vivo.17 This effect was 

most pronounced on the level of CD4 T cells, which witnessed a 100 fold increase in proliferation 

while proliferation of CD8 T cells merely increased 4 fold (Figure 7A). The discrepancy between in 
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vitro and in vivo effects is intriguing and might be due to increased targeting of antigen presenting 

cells in vivo or to yet unknown immune activating properties of this type of capsules.17 

 

  

Figure 7. (A) Comparison of CD8 (OT-I; A1) and CD4 (OT-II; A2) T cell proliferation in vivo after vaccinating with 

OVA-loaded PMA
SH

 capsules or soluble OVA. CFSE labeled OT-I CD8 and OT-II CD4 T cells were adoptively 

transferred into mice 24 h prior to intravenous vaccination. (B) Antigen presentation by DCs after uptake of 

soluble and (DS/PLARG) encapsulated OVA. Proliferation of OT-I cells was used as a measure for MHC-I-

mediated cross-presentation of OVA (B1), proliferation of OT-II cells as a measure for MHC-II mediated 

presentation (B2). (C1) Expression of cytokine profiles expressed by pulmonary CD4 T cells in response to 

vaccination with either soluble or (DS/PLARG) encapsulated OVA. (C2) Serum OVA-specific antibody titers 

elicited following vaccination with either soluble or (DS/PLARG) encapsulated OVA.
14,17,25

  

 

Electrostatically assembled (DS/PLARG) capsules were found to increase in vitro and in vivo 

presentation to both CD4 and CD8 T cells (Figure 7B).25, 50 This effect was more dramatic for CD8 

presentation and moderate for CD4 presentation. The immune response of mice immunized 
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pulmonary with either (DS/PLARG) encapsulated OVA or soluble OVA was also investigated. By 

analyzing the T cell cytokine secretion profile, it was observed that this type of capsules induced a 

Th17 skewed immune response after pulmonary administration (Figure 7C1).14 This type of immune 

response is considered to compose a crucial part of the mucosal immune defence against fungi and 

extracellular bacteria. Importantly, when compared to a mixture of soluble antigen and empty 

capsules, antigen encapsulation inside the PMLC strongly augmented the strength of this local 

mucosal immune response, clearly demonstrating the necessity of antigen encapsulation for optimal 

induction of immunity by PMLC. On the level of the humoral immune response, capsule mediated 

vaccination (Figure 7C2) evoked strongly elevated antibody titers and isotype switching to opsonizing 

IgG2c antibodies, further establishing  the potential of these capsules as vaccine carriers. 

 

4.  CONCLUSIONS 

In this chapter, we have reviewed the recent advances in the field of polymeric multilayer capsules in 

view of potential applications as vaccine carrier. In vitro results have highlighted the potential of 

these carrier systems as they are efficiently internalized by antigen presenting cells and allow fast 

processing of encapsulated antigen. This might offer an advantage over other, more established, 

matrix particles that gradually release their payload via diffusion or by erosion controlled 

degradation mechanisms over time periods of days or even weeks. In vivo studies on multilayer 

capsules have pointed out that these capsules are relatively well tolerated by mucosal tissue as well 

as upon subcutaneous injection. Immunization via these routes of administration has shown to 

induce potent cellular immune responses, opening perspectives for the delivery of clinically relevant 

antigens. However, a major concern remains the elaborate and cost-inefficient assembly procedure, 

inherent to a multilayer approach.  

 

Without doubt, the different approaches reviewed in this chapter show potential as vaccine carriers. 

However, major efforts are still required to elucidate in detail the in vivo interaction between these 

materials and immune cells as well as their long-term effects. In addition, as the major advantage of 

the LbL assembly lays in its high versatility, this tremendous benefit should be further exploited. 

Furthermore, these carrier systems will have to compete with engineered liposomal21 and matrix 

particles20, 51 to truly realize their potential as vaccine carrier. 
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CHAPTER 3  

JUST SPRAY IT – LBL ASSEMBLY 

ENTERS A NEW AGE 

1. DRAWBACKS OF LBL ASSEMBLY  

As described in the previous chapter, PMLC have first been introduced in the late nineties by the 

pioneering work of Gero Decher and Rubner.1, 2 Taking into account the exponential profile of the 

citation curve of this review in 1997 in Science3, it is evident that during the past two decades this 

technique has gathered major attention by scientists in the academic field. Inherent to its conceptual 

simplicity, the LbL approach offers the possibility to construct ultrathin films by simple immersion 

into an aqueous solution.  

 

Whereas in the first decade of LbL research work was mostly focused on planar substrates and 

electrostatic interaction as the driving force for multilayer build-up, in the late nineties, non planar 

substrates were introduced to produce hollow capsules after LbL coating and subsequent dissolution 

of spherical microparticles.4 All these developments have found applications in diverse fields such as 

anti-fog and anti-reflection coatings, drug delivery, tissue engineering scaffolds etc.5-9  

 

However, most of these applications remained within an academic environment and were not 

embraced by industry. This can be attributed to 2 reasons: (1) the limited stability of these films and 

(2) the multistep assembly procedure. Especially this multistep procedure is a serious constraint 

toward industrial applications as it is time consuming, i.e. deposition of a film consisting of dozens of 

bilayers takes more than 10 h using a robotic dipping-apparatus (Figure 1A). Moreover, dipping and 

rinsing of the substrates from one recipient to another involves the risk of cross-contamination of the 

polyelectrolytes. Furthermore, dipping can only be carried out on substrates with limited dimensions 

and cannot be integrated in a continuous manufacturing line to coat large surfaces. 

 

2. AUTOMATIZATION AND SIMPLIFICATION OF LBL ASSEMBLY 

To cope with these issues, a lot of effort has been put into simplifying the assembly procedure while 

attempting to retain the conceptual versatility of the LbL approach as far as possible. Automatization 
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strategies using filtration based set-ups or microfluidic chips have been proposed to speed-up LbL 

assembly and to limit human intervention during each deposition step.10, 11 

 

Schlenoff and co-workers were the first to report on spraying (Figure 1B) instead of dipping as an 

attractive alternative to construct multilayer films.12 Over the last decade this approach has 

witnessed a strong growth and can be considered as an important step towards a broad applicability 

of LbL coating technology.13 

 

 

Figure 1. Schematic representation of ‘dipping’ and ‘spraying’ procedures applied for deposition of multilayer 

films. For simplicity we did not depict the rinsing steps. Panel (A) represent alternate dipping of a substrate into 

solutions of interacting species. Panel (B) and (C) represents alternate (B), respectively simultaneous (C) 

spraying of a substrate with solutions of interacting species.
12

 

 

Five years later, in 2005, the groups of Decher, Voegel and Schaaf (further referred to as the 

‘Strasbourg groups’) confirmed the observations by Schlenoff and went deeper into this topic and 

elucidated some fundamental differences between dipping and spraying using PSS and PAH as 

polyelectrolytes.14 Film deposition by spraying appeared to be regular even in the absence of rinsing 

steps, although films constructed with rinsing after each layer deposition are thicker. This was 

suggested to be due to film rearrangement (and not merely removal of unadsorbed or weakly bound 

polyelectrolyte) taking place during rinsing that allows a better anchoring of the subsequent layer. 

Furthermore, although film deposition by spraying does not allow the newly adsorbed layer to reach 

equilibrium, the quality of the films, as measured by  atomic force microscopy (AFM), was found to 

be excellent. Importantly, this is not the case when films are produced by dipping using short (in the 

order of seconds) dipping times. This was attributed to the fast and thorough mixing of the newly 

incoming polyelectrolyte solution with the underlying film by spraying while this process is much 

slower when dipping. As a consequence, film build-up by spraying does not reach saturation 

coverage rendering film thickness dependent on polyelectrolyte concentration and spraying time.   
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In a subsequent study the same group investigated the possibility to produce films by continuous and 

simultaneous spraying (Figure 1C) of polyelectrolytes of opposite charges (i.e. PAH and poly(glutamic 

acid)).15 The authors found that spraying of polyelectrolytes at a 1:1 ratio of the spraying rate allowed 

to produce films with a film thickness that grows linearly over time as measured by ellipsometry. 

AFM showed that a sufficient spraying time (±50 s) was required to obtain smooth and uniform films. 

In a series of follow-up papers by the same group of authors the scope of the approach was further 

broadened by demonstrating the ability to incorporate intact liposomes16 within the films as well as 

by constructing films solely based on inorganic species.17, 18  

 

 

Figure 2. (A) Correlation of total film thickness with layer pair number for the (SPS/PDAC)n system both by 

spray deposition and dipping. Thickness was evaluated using ellipsometry and checked using profilometry. 

Reported values are averages taken from several data points on a silicon wafer and vary by less than ±2 nm. 

Both dipped and sprayed films exhibit linear growth rates above 5 layer pairs, but the sprayed films have no 

initial nonlinear growth regime. (B) AFM height images of a sprayed (SPS/PDAC)n (i) 0.5 layer pair, PDAC 

surface and (ii) 1.0 layer pair, SPS surface. Coverage is thin but uniform. (C) AFM height images of a dipped 

(SPS/PDAC)n (i) 0.5 layer pair and (ii) 1.0 layer pair. Initially, ‘islands’ form on the silicon substrate. (Reproduced 

from reference
19

) 

 

The Hammond group further elaborated on automatization of the spraying LbL approach by 

developing a computer controlled spraying apparatus with 3 s polyelectrolyte spraying times 

followed by dripping and rinsing steps.19 This set-up allowed to elucidate why LbL build-up of strong 

polyelectrolytes by spraying follows a linear growth regime whereas dipped multilayers exhibit an 

initial exponential growth at low bilayers numbers followed by a linear growth (Figure 2A). As shown 

in the AFM images in Figures 2B and C, dipping leads, due to diffusion of the chains and 
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complexation, to regions of higher charge density. ‘Globular islands’ are formed on the substrate 

surface which gradually fill the surface. Once a smooth film is obtained the total film thickness grows 

linearly upon deposition of additional polyelectrolyte bilayers. In contrast, spraying creates an 

ultrafine mist of droplets which cover the entire surface homogeneously and simultaneously. 

Furthermore, the liquid is quickly removed by dripping which kinetically traps the polyelectrolyte 

chains in their confirmation when they reached the surface, immediately leading to a uniform growth 

regime.  

 

The same authors also broadened the applicability of the spray LbL approach to the use of inorganic 

nanoparticles and weakly bound polyelectrolyte pairs such as poly(acrylic acid) and PAMAM 

dendrimers.20-22 Such films could find applications for surface mediated release of one or multiple 

drug molecules in a controlled fashion. Titanium dioxide nanoparticle containing films proved to be 

capable of photocatalytic processing of toxic volatile organic components upon UV-irradiation. 

Besides planar substrates, the spraying approach also proved viable to coat 3D substrates such as 

electrospun scaffolds, which allows introduction of anisotropy into the films, a feature unmet by the 

traditional dipping-based assembly approach.23 Additionally, also films based on hydrogen bonding as 

driving force could be assembled by sequential spraying.20 

 

3. SPRAY DRYING                                         

The above described approach of LbL spraying is performed by spraying an excess of polymer 

solution which is removed via dripping. Due to this constraint, applying spray drying could be used as 

a technique to produce spherical particles thereby mimicking the hollow LbL capsules. The following 

paragraph will elucidate further the general principles of spray drying.  

 

3.1. The spray drying process 

Spray drying is defined as the conversion of a liquid feed formulation (solution, suspension, 

emulsion) into a dry powder in a single step process. Four different stages can be distinguished as 

depicted in Figure 3. In a first step, the feed is atomized into a spray of droplets. Next the droplets 

come in contact with the heated drying medium (usually air or nitrogen), resulting in evaporation of 

the solvent and the formation of particles. Finally, the dried product is separated from the drying 

medium (Figure 3). These stages, together with the physical and chemical properties of the feed 

influence the powder characteristics such as particle size, morphology, fine or coarse particle 

powders and moisture content.24  
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Figure 3. A schematic overview of a spray dryer. 

 

The formation of the spray or atomization is the key parameter since this must create conditions for 

optimum evaporation when in contact with drying medium. This in turn leads to a dry wall operation, 

and discharging a dried product of required properties from the drying chamber and associated dry 

particulate collectors. The different atomizers can be classified according to the source of energy 

used in the droplet formation: centrifugal energy in rotary atomizers, pressure energy in pressure 

nozzles, kinetic energy in pneumatic nozzles and acoustic/pulsation energy in sonic nozzles. The 

selection on the atomizer type depends mainly on the desired droplet size (Table 1). 

 

Table 1: Mean droplet size of different atomizer devices. 

Type of atomizer Mean droplet size (µm) 

Rotary atomizer 20-200 

Pressure nozzle 50-400 

Pneumatic nozzle 5-75 

Sonic nozzle 10-50 

 

A second stage is the spray-air contact, mixing and droplet/particle flow. The spray-air contact is 

determined by the position of the atomizer in relation to the drying medium inlet. In a co-current 

flow mode (Figure 4A), the atomized product and heated drying medium pass through the drying 

chamber in the same direction. This is preferable for heat-sensitive materials since spray evaporation 

is rapid, the drying medium cools accordingly and the dried product comes then in contact with 

much cooler drying medium. Alternatively, a counter-current flow mode (Figure 4B) means that the 

sprayed product and the heated drying medium enters at opposite ends of the drying chamber. This 

formation offers dryer performance with excellent heat utilization for non-heat sensitive products. 

Spray dryer designs that combine both co-current and counter-current flow are classified as mixed-
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flow spray dryers (Figure 4C). In this fountain-type system partially dried particles enter the hottest 

regions in the drying chamber (near the entrance of the drying medium) and thus the powder is 

subjected to higher particle temperatures.  

 

 

Figure 4. Schematic overview of the different spray-air contact flow modes: (A) co-current, (B) counter-current 
and (C) mixed flow. (adapted from

25
) 

 

The next stage combines drying and particle formation. The moisture migrates from within the 

droplet to the droplet/air surface by diffusional or capillary mechanisms and evaporates as long as 

saturated surface conditions are maintained. When the critical point is reached – saturated surface 

conditions can no longer be maintained because of the fact that the moisture content is too low- a 

dry layer starts to form at the droplet surface, hence developing the particle.  

 

Finally, separation between the particles and the drying medium and dried product discharge takes 

place in the base of the drying chamber and in the particulate collection system. Dry collection 

equipment consists of cyclone, scrubbers, bag filters or electrostatic precipitators.  

 

The previous described flow modes of the drying chambers (co-current, counter-current and mixed-

flow) can be implemented into different spray drying systems: open cycle, closed cycle and semi-

closed cycle systems. The open cycle layouts are applied to aqueous feeds and the most widely used 

in the industry. Hereby is the drying gas, air, being drawn from the atmosphere and the emitted air is 

first cleaned by a combination of cyclones, scrubbers, bag filters and electrostatic precipitators and 

then discharged into the atmosphere. Closed cycle systems are based on recycling and reusing the 

drying medium, which usually is an inert gas, such as nitrogen. This system enables the spray drying 

of organic/flammable solvents, oxygen sensitive products and toxic products and completely 

recovers the evaporated solvent. Semi-closed cycle systems are, as the name indicates, a 

combination of the open and closed cycle system. From a pharmaceutical point of view it’s 

interesting to point out that aseptic systems are available to produce sterile powders.24 
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3.2. Applications in pharmaceutical industry 

Spray drying has been widely used in pharmaceutical industry. It has been applied to improve the 

compression properties from excipients such as lactose or drugs like acetozalamide.26, 27 Also it has 

been used for encapsulation in order to obtain controlled drug release formulations (i.e. risedronate, 

corticosteroids, buspirone, pain killers28-33) or taste masking (i.e. acetaminophen, sumatriptan, 

antibiotics34-36). Spray drying is furthermore a method to enhance the solubility and dissolution rate 

of poorly soluble drugs (i.e. spironolactone37, fenofibrate38). Additionally, dry powders for inhalation 

in the treatment of lung diseases (i.e. theophylline, antibiotics, NSAIDs or corticosteroids 39-41) as well 

as dry powder vaccines42-44 can also be produced by spray drying.  

 

Nonetheless, spray drying heat sensitive biopharmaceutics such as vaccine antigens is, as mentioned 

before, preferable carried out in a co-current flow modes and requires the addition of stabilizing 

excipients to preserve their integrity during the process and storage afterwards. These stabilizing 

components can be sugar compounds like trehalose, sucrose or mannitol. Furthermore 

biodegradable polymers or proteins can also be used.45, 46  
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CHAPTER 4 

FACILE TWO STEP SYNTHESIS 

OF POROUS ANTIGEN LOADED 

DEGRADABLE 

POLYELECTROLYTE 

MICROSPHERES 

 

1. INTRODUCTION 

Without doubt, the development of vaccines constitutes one of the major breakthroughs of human 

medicine, allowing us to prevent numerous infectious diseases.1 Nevertheless, for major killers such 

as HIV, malaria and tuberculosis no effective vaccines are available today. The failure of current 

vaccination strategies to elicit cellular immune responses, especially CD8 cytotoxic T cells (CTLs) that 

can recognize and eliminate infected cells, is considered to be one of the major reasons for this 

failure.2-4 Consequently, there is an urgent need to develop new vaccine formulations that can induce 

such CTL responses. One of the most promising approaches to achieve this goal is encapsulation of 

antigens in particulate carriers with dimensions between 0.1-10 µm.5  

 

A plethora of studies has now demonstrated that such carriers can strongly enhance antigen 

presentation by dendritic cells (DCs), the most potent antigen presenting cells capable of priming 

effector T cell responses, not only quantitatively but also qualitatively. Antigen being presented by a 

DC as a MHC/peptide complex to the T cell receptor indeed constitutes the first step in the initiation 

of T cell responses. Two different pathways occur for antigen presentation by MHCI and MHCII to 

CD8 and CD4 T cells, respectively. MHCI presentation is responsible for the processing and 

presentation of cytosolic proteins, which are cleaved by the proteasome, transported to the 

endoplasmatic reticulum, and subsequently loaded onto MHCI molecules. By contrast, MHCII 

presentation occurs for endocytosed proteins, which are degraded in endolysosomal compartments, 
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loaded onto MHCII molecules and subsequently presented at the cell surface. The way in which 

antigen is internalized by a DC however strongly affects how the antigen is processed and presented 

by a DC, and consequently also the type and strength of immune response induced. Although soluble 

antigens are almost exclusively presented by MHCII to CD4 T cells, particulate antigens not only are 

far more efficiently taken up by DCs, but are also presented by MHCI to CD8 T cells,6 thus enabling 

the induction of CTL responses. Although particulate carriers have the capacity to evoke potent 

cellular immunity, their clinical application has been impeded largely by practical problems involving 

their generation including a low antigen encapsulation efficiency, the use of chemical solvents and 

physical stresses that negatively affect antigen stability and the  involvement of complex and labor-

intensive multistep processes to generate them.  

 

Polymeric multilayer capsules7-13 have emerged as promising microscopic carriers for the delivery of 

antigens to DCs, overcoming some of the problems described above.14-17  These capsules are based 

on alternate deposition of polymers (so-called layer-by-layer technology),18, 19 either through 

electrostatic interaction20-22 or hydrogen bonding,23 onto a sacrificial template followed by the 

decomposition of the template resulting in hollow capsules and allowing efficient antigen 

encapsulation under non-denaturing conditions. Several papers have now demonstrated the 

potential of these capsules to target antigens to APCs both in vitro and in vivo, resulting in strongly 

enhanced antigen presentation to CD4 and CD8 T cells and the induction of broad and strong 

immune responses.14-17, 24-26 The major advantage for their success is presumably threefold: 1) They 

protect the antigen from degradation before reaching DCs; 2) Because of their size (1-10 µm) they 

are preferably targeted to DCs; and 3) Because of their soft thin shell, which is prone to the reductive 

conditions or endosomal proteases depending on the nature of the capsule shell, they allow the 

antigen to be readily processed upon internalization by DCs.14, 27 Moreover, these capsules have been 

shown to be biocompatible and degradable, both in vitro and in vivo.  

 

Notwithstanding their excellent performance, polymeric multilayer capsules are fabricated in a 

multiple steps, which is a rather cost-inefficient fashion involving the use of a large excess of polymer 

and several centrifugation steps during deposition of each single layer. Therefore, a simple and 

versatile strategy involving a minimum of process steps that mimics polymeric multilayer capsules 

would be of uttermost importance to allow this type of antigen carriers to reach the clinical stage. 
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Figure 1. Schematic illustration of the encapsulation of antigen (green triangles) into porous polyelectrolyte 

(red and blue curves) microspheres by spray drying a mixture of antigen, polyelectrolytes and calcium 

carbonate nanoparticles (CaCO3
NP

; gray disc) followed by extraction of the CaCO3
NP

 by treatment with EDTA.  

 

2. MATERIALS AND METHODS 

2.1. Materials 

Calcium carbonate nanoparticles (CaCO3
NP) were obtained from Plasmachem. Dextran sulfate (DS; 10  

kDa), poly-L-arginine(PLARG, 100 kDa), ovalbumin (OVA; grade VII) and Hoechst 33258 were obtained 

from Sigma-Aldrich. OVA-Alexa Fluor488, Cy5 conjugated cholera toxin B, LysoTracker Red and 

CellTracker Red were obtained from Invitrogen. All water used in the experiments was of Milli-Q 

grade. 

 

2.2. Synthesis of (porous) microspheres  

CaCO3
NP, DS, OVA and PLARG were mixed in water in a 40/4/1/5 ratio at a total solid concentration of 

1 %. In detail, 200 mg CaCO3
NP, 20 mg DS and 5 mg OVA were dissolved in 20 ml water. Subsequently, 

25mg PLARG was dissolved in 5 ml water and added dropwise to the stirring CaCO3
NP/DS/OVA 

dispersion. Spray drying of this mixture was performed in a lab-scale Büchi B290 spray dryer. The 

mixture was fed to a two-fluid nozzle (diameter 0.7 mm) at the top of the spray dryer. In addition, 

the spray dryer operated in co-current air flow at 35 m³/h with an inlet drying air temperature of 130 

°C and an outlet drying air temperature of 65°C. Owing to evaporation of the liquid, the temperature 

in the droplet itself is significantly lower than that in the air stream.28 

 

2.3. Particle characterization  

Laser diffraction was performed on a Malvern Mastersizer equipped with an RF300 objective. ζ-

potential measurements were performed on a Malvern Nanosize ZS. Confocal microscopy images 

were recorded on a Leica SP5 AOBS confocal microscope. Scanning electron microscopy images and 

EDX-spectra were recorded on a quanta FEG FEI 200 apparatus. Samples were dried on a silicon 
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wafer and sputtered with an ultrathin layer of palladium/gold. Transmission electron microscopy 

images of ultrathin microtomed sections were recorded on a JEOL 1010 electron microscope. 

 

2.4. DC uptake assessment.  

Female C57BL/6 mice were purchased from Janvier and housed in a specified pathogen-free facility 

in micro-isolator units. Dendritic cells were generated using a modified Inaba protocol. Two to six 

months C57BL/6 mice were sacrificed and bone marrow was flushed from their femurs and tibias. 

After lysis of red blood cells with ACK lysis buffer (BioWhittaker), granulocytes and B cells were 

depleted using Gr-1 (Pharmingen) and B220 (Pharmingen) antibodies respectively, and low-toxicity 

rabbit complement (Cedarlane Laboratories Ltd.). Cells were seeded at a density of 2 x 105 cells/ml in 

175 cm2 Falcon tubes (Becton Dickinson) in DC medium (RPMI 1640 medium containing 5% LPS-free 

FCS, 1% penicillin/streptomycin, 1% L-glutamine and 50 µM β-mercaptoethanol) containing 10 ng/ml 

IL-4 and 10 ng/ml GM-CSF (both from Peprotech). After two days and again after four days of culture, 

the nonadherent cells were centrifuged, resuspended in fresh medium and replated to the same 

falcons. On the sixth day, nonadherent cells were removed and fresh medium containing 10 ng/ml 

GM-CSF and 5 ng/ml IL-4 was added. On day 8 of culture, nonadherent cells were harvested and 

seeded in Lab-Tek (Nunc, Thermo Scientific) eight-chambered cover glasses. The porous 

microspheres were suspended in PBS at a concentration corresponding to 0.5 mg/ml OVA, and 10 µl 

of this suspension was added to the DCs. After 2 h incubation, the cells were fixed in an aqueous 4% 

formaldehyde solution overnight. Subsequently, the cells were washed three times with PBS and 

stained with Cy5-conjugated cholera toxin subunit B (5µg/mL) and Hoechst 33258 (2µg/mL). For the 

assessment of the intracellular localization of the porous microspheres, cells were not fixed with 

formaldehyde, and the cellular cytoplasm and acidic vesicles were stained by CellTracker Red 

(1µg/mL) and LysoTracker Red (1µg/mL), respectively, and visualized directly by confocal microscopy.   

 

3. RESULTS AND DISCUSSION 

Herein we report on the synthesis of porous antigen loaded degradable polyelectrolyte microspheres 

using spray drying as simple, yet efficient and scalable production technique. Figure 1 shows a 

schematic illustration of the formation of these porous microspheres. Key in our present work is the 

use as a sacrificial component of calcium carbonate nanoparticles, which are directly spray dried in 

combination with antigen and oppositely charged polyelectrolytes to form a polyelectrolyte 

framework that entraps the antigen and the calcium carbonate nanoparticles. Extraction of the 

calcium carbonate subsequently leads to porous microspheres. We reasoned that a porous system 

exhibits a much higher surface to volume ratio, which, upon internalization by DCs, will enhance the 
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access of proteases to the encapsulated antigen followed by antigen processing and initiation of the 

immune response.   

 

Calcium carbonate nanoparticles (CaCO3
NP) with an average diameter of 90 nm and a ζ-potential of 

6.8 ± 0.4mV were mixed with dextran sulfate (DS) and ovalbumin (OVA; used as model antigen in this 

work) under stirring. The slightly cationic surface charge of CaCO3
NP means that anionic DS and OVA 

will at least partly associate with the CaCO3
NP through electrostatic interaction and presumably also 

by physical adsorption. Subsequently poly-L-arginine (PLARG) was added dropwise to allow further 

electrostatic complexation between PLARG and DS or OVA. Hollow polyelectrolyte multilayer 

capsules based on CaCO3 microparticle templates coated with DS and PLARG have been shown by our 

group to be non-toxic and degradable upon cellular uptake, both in vitro and in vivo.29, 30 In this work, 

the ratio of CaCO3 to OVA, DS and PLARG was 40/1/4/5, respectively, which tends to mimic the 

conditions used for the encapsulation of OVA into hollow DS/PLARG multilayer capsules templated on 

OVA co-precipitated CaCO3 microparticles, reported in our previous work14, 15 and by others.31  

Subsequently, the mixture was spray dried using a Büchi B290 bench top spray drier and collected as 

a dry powder compromising 80% CaCO3. These particles are referred to as solid microspheres further 

in this chapter. Porous microspheres were obtained by resuspending the dry powder in an aqueous 

0.2 M solution of ethylene diamine tetra acetic acid (EDTA), which is a potent complexing agent for 

calcium ions32, 33 and serves to extract the CaCO3
NP from the solid microspheres.31 The characteristics 

of these spray dried microspheres before (solid) and after (porous) CaCO3 dissolution are 

summarized in  Table 1.  

Table 1: Overview of the microsphere characteristics (n=3) 

 ζ-potential Size OVA encapsulation 

Solid microspheres -6.8 ± 0.4 mV 6.0 ± 0.4 µm 94 ± 1 % 

Porous microspheres -18 ± 0.7 mV 5.8 ± 0.1 µm 86  ± 1% 

 

The morphologies of the CaCO3
 nanoparticles, the solid microspheres and the porous microspheres 

were visualized by scanning electron microscopy (SEM; Figure 2A). CaCO3
NP exhibited a primary 

particle size of roughly 90 nm (Figure 2A1) and upon spray drying  are grouped into spherical clusters 

(Figure 2A2) with an average size of 6 µm (Figure 2B; note that some polydispersity is inherent to 

spray drying28) and a ζ-potential of -6.8 mV, as determined by laser diffraction (Figure 2B) and 

dynamic light scattering respectively, upon resuspension in aqueous medium. Most importantly, as is 

addressed below in more detail by confocal microscopy, the spray dried microspheres remain stable 

upon resuspension in aqueous medium and do not disassemble into the initial starting components. 



CHAPTER 4: FACILE TWO STEP SYNTHESIS OF POROUS ANTIGEN LOADED DEGRADABLE POLYELECTROLYTE 

MICROSPHERES 

 

68 
 

As a control we also spray dried a mixture of CaCO3
NP and OVA and no cluster formation could be 

observed (data not shown), indicating the requirement of the DS/PLARG polyelectrolyte complex 

framework to obtain stable microspheres. Extraction of the CaCO3
NP by an aqueous EDTA solution 

leads to the formation of porous microspheres (Figure 2A3,4), which have a ζ-potential of -18 mV 

and are most likely stabilized through a combination of electrostatic and hydrophobic interactions 

together with physical entanglements of the polymer and protein chains. Short-range hydrophobic 

forces play a major role in the formation of polyelectrolyte complexes. These originate from contact 

between hydrophobic parts of the polyelectrolyte chains, excluding hydration molecules.34 The highly 

porous state of the microspheres is highlighted in the transmission electron microscopy of Figure 

2A4 and complete removal of the CaCO3
NP by treatment with EDTA was confirmed by energy 

dispersive X-ray (EDX) analysis. The EDX spectrum shown in Figure 2C of the solid (C1) microspheres 

clearly exhibits two calcium peaks which are lacking in the EDX spectrum of the  porous (C2) 

microspheres. Figure 2C2 exhibits a predominant silicon peak. This silicon peak is most likely due to 

the porous structure of the microspheres, which allows the electron beam to reach the underlying 

silicon wafer on which the microspheres were deposited upon sample preparation. Laser diffraction 

(Figure 2B) did not show any significant change in mean diameter of the porous microspheres 

compared to the solid ones, indicating that upon CaCO3
NP removal not substantial shrinkage or 

swelling of the polyelectrolyte framework occurs.  

 

   

Figure 2. (A) Scanning electron microscopy images of (A1) CaCO3
NP

 (note that the aggregation is due to drying 

of the sample prior to SEM imaging), (A2) spray dried CaCO3
NP

 /DS/OVA/PLARG microspheres, and (A3) porous 

DS/OVA/PLARG microspheres after treatment with EDTA. (A4) Transmission electron microscopy image of 

porous DS/OVA/PLARG microspheres after treatment with EDTA. (B) Size distribution of solid spray dried 

CaCO3
NP

/DS/OVA/PLARG microspheres (●) and porous DS/OVA/PLARG microspheres obtained after EDTA 

treatment (o). (C) Energy-dispersive X-ray (EDX) spectra of (C1) solid spray dried CaCO3
NP

/DS/OVA/PLARG 

microspheres and (C2) porous DS/OVA/PLARG microspheres obtained after EDTA treatment.  
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Confocal microscopy was used to visualize the microspheres in a hydrated state. For visualization 

purpose, green fluorescent OVA-Alexa Fluor488 was mixed with native OVA in a 1:50 ratio. The 

confocal micrographs in Figure 3A confirm that the microspheres remain stable in aqueous medium. 

When the microspheres are resuspended in a 0.2 M EDTA solution, the dark shine in the transmission 

channel (Figure 3A2) vanished and transparent (Figure 3B2) ‘sponge-like’ porous microspheres were 

obtained (Figure 3B). Importantly, the green fluorescent OVA-Alexa Fluor488 was retained within the 

polyelectrolyte framework of the porous microspheres rather than being spontaneous released into 

the surrounding aqueous medium.  

 

  

Figure 3. Confocal microscopy images of (A) spray dried solid CaCO3
NP

 /DS/OVA/PLARG microspheres and (B) 

porous DS/OVA/PLARG microspheres obtained after treatment with EDTA. The green fluorescence is due to 

OVA-Alexa Fluor488. 

 

Quantification of the encapsulation efficiency was determined by resuspending dry solid 

microspheres in phosphate buffered saline (PBS; pH 7.4) and in an aqueous 0.2 M EDTA solution. 

Subsequently, the microspheres were centrifuged and the OVA concentration in the supernatant was 

determined. An encapsulation efficiency (defined as the amount of protein that is retained within the 

microspheres upon resuspension relative to the amount of protein in the dry microspheres) of 94 ± 1 

% upon resuspension in PBS and 85 ± 1 % upon resuspension in an aqueous 0.2 M EDTA solution was 

observed. These results show that upon resuspension in PBS only 6 ± 1 %  of the OVA is released 

from the solid microspheres whereas 15 ± 1 % of the OVA is released upon extraction of the CaCO3
NP 

from the microspheres. The higher amount of released OVA from the porous microspheres relative 

to that from the solid microspheres is attributed to the higher surface area of the porous ones, 

allowing OVA that is weakly bound to the surface to be released. However, an encapsulation 
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efficiency of 85 % into the porous polyelectrolyte spheres is considerable higher than the 

approximately 50 % that was reported earlier for encapsulation of OVA into hollow polyelectrolyte 

multilayer capsules. In that case, OVA was co-precipitated into calcium carbonate microparticles by 

mixing it with calcium chloride and sodium carbonate. After alternate coating of these microparticles 

with DS and PLARG and subsequent dissolution of the CaCO3
 microparticles approximately 50 % of 

the OVA was lost due to diffusion through the polyelectrolyte membrane.  

 

As it is our aim to use the porous polyelectrolyte microspheres as antigen carriers for vaccination 

purpose, it is important to assess whether these porous microspheres are able to deliver their 

payload to DCs. Murine DCs were differentiated from bone marrow and incubated with OVA-Alexa 

Fluor488 loaded porous microspheres followed by confocal microscopy imaging. To discriminate 

whether the microspheres were internalized by DCs, we counterstained the cell nuclei blue 

fluorescent with Hoechst and the cell membrane red fluorescent with Cy5 conjugated cholera toxin B 

(Figures 4A,B). As the green fluorescent microspheres, cell nuclei and cell membrane were visible in 

the same confocal plane and the microspheres were clearly situated within the boundaries of the cell 

membrane we could unambiguously conclude that the microspheres were effectively internalized by 

the DCs.  In a subsequent series of experiments to assess the intracellular localization of the porous 

microspheres we counterstained with red fluorescence the cellular cytoplasm (CellTracker Red; 

Figure 4C) and the intracellular acidic vesicles, such as endosomes and lysosomes (LysoTracker Red; 

Figure 4D). Colocalization between green and red fluorescence, yielding a yellow/orange signal 

indicated by orange arrows in Figure 4D1, shows the presence of the porous microspheres in that 

specific compartment. Porous microspheres that do not colocalize with the endosomes only yield a 

green signal and were indicated in Figure 4D1 with a green arrow. When comparing the images in 

Figure 4C and 4D, one can unambiguously conclude that the porous microspheres are located in 

intracellular acidic vesicles. This result is in agreement with literature data on microparticles with 

similar sizes and composition.29, 35, 36 
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Figure 4. Confocal microscopy images of bone marrow dendritic cells incubated with green fluorescent OVA-

Alexa Fluor488 loaded porous microspheres. The cell nuclei in all panels were stained blue fluorescent with 

Hoechst. Panels (A) and (B), taken at different zoom levels, show images were Cy5-conjugated cholera toxin B 

was used to stain the cell membrane. Panels (C) show images in which CellTracker Red (red fluorescence) was 

used to stain the cellular cytoplasm and the panels (D) show images in which LysoTracker Red (red 

fluorescence) was used to stain intracellular acid vesicles. In panel (D1), colocalization between red and green 

fluorescence (a yellow/orange signal indicates cellular uptake of the porous microspheres) is annotated with an 

orange arrow. Porous microspheres that are not yet taken up only exhibit a green signal and are annotated in 

panel (D1) with a green arrow. Panels (1) show the overlay of blue, green and red fluorescence channels, 

panels (2) show the differential interference contrast (DIC) channel, and panels (3) show the overlay of blue, 

green, red and DIC channels. 
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4. CONCLUSION 

In conclusion, we have demonstrated a facile method to encapsulate antigen into porous degradable 

polyelectrolyte microspheres. The major advantage of this approach is the possibility to produce 

these microspheres on a large scale involving a minimum of process steps combined with a high 

encapsulation efficiency that minimizes the waste of expensive antigen and polyelectrolytes. The 

conceptual simplicity of the porous microspheres makes it possible to further tailor the microsphere 

surface with specific ligands with immune-potentiating properties such as oligonucleotides 

containing unmethylated CpG motifs.6 Furthermore, we have demonstrated that the porous 

microspheres are efficiently taken up by DCs, which are the most potent antigen presenting cells. 

These types of microspheres could be promising vaccine delivery systems and the presented 

approach for polyelectrolyte microsphere formation is not only restricted to antigen encapsulation/ 

delivery, but could find the same broad applications as multilayer capsules such as enzymatic 

microreactors,37, 38 gene delivery39, 40 and low molecular weight drug delivery.41 
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CHAPTER 5  

SINGLE-STEP FORMATION OF 

DEGRADABLE INTRACELLULAR 

BIOMOLECULE 

MICROREACTORS 

1. INTRODUCTION 

Microparticulate encapsulation strategies have gained increased interest for the encapsulation of 

biomolecules for drug delivery or to serve as a microreactor. We hypothesize that fully hydrated 

microparticles should exhibit superior properties for applications such as intracellular protein 

delivery and as an enzyme microreactor where one desires to separate the enzyme physically from 

the surrounding medium. Our hypothesis is supported by the fact that fully hydrated microparticles 

allow in- and outwards diffusion of water as well as reactants and reaction products. Moreover, 

microparticles with additionally a porous interconnected structure should allow an even faster and 

more efficient intraparticle processing as the presence of pores along with a higher surface to 

volume ratio which allows efficient access, especially of macromolecular reactants such as proteins 

which would encounter serious diffusion limitation to enter densely structured microparticles.1 

 

A wide spectrum of synthetic methods to produce porous microparticles has been described in 

literature and was recently reviewed.2 Generally, the synthesis involves the use of organic solvents as 

well as reactive chemistries such as radical polymerization or condensation reactions. In our research 

group we are developing polyelectrolyte-based microparticles using merely water-based solutions of 

oppositely charged polyelectrolytes that self-assemble through electrostatic interaction. An 

intriguing class of polyelectrolyte-based microparticles are polyelectrolyte multi-layered3 

microcapsules.4, 5 These microparticles are made by sequential deposition of oppositely charged 

species onto a charged template followed by the decomposition of this template. By depositing 

typically 2 – 5 polyelectrolyte bilayers onto microparticles with sizes typically between 500 nm and 

10 µm, hollow capsules can be designed. A striking feature of these microparticles is that they are 
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perm-selective, meaning that low molecular weight species such as solvents, ions and metabolites 

can freely diffuse in- and outwards.6 However, high molecular weight species such as proteins remain 

entrapped within the capsules.  

 

In our group we are particularly interested in developing microparticulate vaccines that specifically 

target their payload to antigen presenting cells, such as dendritic cells7-12 the working horses of our 

immune system. Both our group8, 10 and the Caruso group13, 14 reported that such multilayered 

capsules, based on degradable polymers, were efficiently taken up by dendritic cells both in vitro and 

in vivo and are excellent inducers of T-cell responses. Several other groups have described the use of 

such capsules as enzyme microreactor comprising enzymes that are stably encapsulated either inside 

the hollow void of the capsules or into the shell.15-18 

 

Despite numerous advantages, the major drawback of LbL capsules is their multi-step fabrication 

involving several centrifugation-redispersion steps per deposited polyelectrolyte layer. Moreover, in 

a typical LbL procedure, polyelectrolytes are deposited from solutions containing approximately a 

100-fold excess of polyelectrolyte while the non-adsorbed polyelectrolytes are usually wasted. 

Therefore, we envisioned to develop simplified procedures to produce polyelectrolyte microparticles 

while maintaining as much as possible their versatile properties. In the previous chapter we reported 

on the use of spray drying to produce porous polyelectrolyte microparticles by co-spray drying 

oppositely charged polyelectrolytes with calcium carbonate nanoparticles as sacrificial component 

followed by extraction of the calcium carbonate nanoparticles with an EDTA solution.19 This two-step 

procedure allowed the efficient incorporation of ovalbumin as a model antigen into porous 

microparticles that were efficiently taken up by dendritic cells, envisioning application in 

microparticulate vaccine delivery.  

 

In this chapter we demonstrate that by co-spray drying polyelectrolytes with mannitol – a water 

soluble well-established pharmaceutical excipient – nanoporous polyelectrolyte microparticles can 

be produced that allow protein encapsulation with nearly 100 %  efficiency with excellent 

preservation of biological activity. Moreover, a dry powder formulation is obtained which offers 

additional benefits for long time storage (essential for vaccine applications), only requiring 

reconstitution in aqueous medium at the time of use. Spray drying is widely used in the 

pharmaceutical industry and is commonly used to convert water soluble species into a water soluble  

dry powder. By contrast, the novelty of our method involves a nanodispersion of polyelectrolyte 

complexes with proteins that are subsequently formulated through spray drying into spherical 

microparticles that remain stable upon rehydration in aqueous medium. Key in this work is the use of 
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a fully biocompatible (i.e. mannitol) water soluble sacrificial component that readily dissolves upon 

redispersion of the spray dried microparticles in water. In this way additional steps to remove and 

purification steps to dissolve organic (e.g. polystyrene or melamine formaldehyde latexes) or 

inorganic (e.g. calcium carbonate or silica particles) core templates are avoided.  

 

Using horseradish peroxidase (HRP) as the model enzyme, we demonstrate that enzymatic activity is 

retained within the microparticles, indicating the potential of the system as enzymatic microreactor. 

Furthermore, in an in vitro model for vaccine delivery using ovalbumin (OVA) as the model antigen 

we demonstrated that encapsulated OVA is readily processed by intracellular lysosomal proteases of 

dendritic cells, and subsequently, the CD8 epitope of OVA is presented on the cell surface as an MHCI 

complex. This process is termed cross-presentation, meaning that extracellular antigen becomes 

internalized and presented to CD8 T cells which is crucial to induce cellular immune responses to 

combat intracellular viral pathogens as well as cancer. In this sense, the microparticles act as 

intracellular protein microreactors.    

 

2. MATERIALS AND METHODS 

2.1. Materials 

Mannitol was obtained from Cargill. Dextran sulfate (DS; Mw ∼ 9-20 kDa),  poly-L-arginine (PLARG; 

Mw > 70 kDa), poly(DL-lactide-co-glycolide) PLGA (50:50, Mw ∼ 40-75 kDa), poly(vinyl alcohol) (PVA; 

80% hydrolyzed, Mw ∼  9-10 kDa), ovalbumin (OVA), horseradish peroxidase (HRP), 2,2’-Azinobis(3-

ethylbenzothiazoline-6-Sulfonic Acid)diammonium salt (ABTS) and Ampliflu red (Amplex Red) were 

obtained from Sigma-Aldrich. Phosphate buffered saline (PBS), OVA-Alexa Fluor488, CellTracker red 

and LysoTracker Red were obtained from Invitrogen. H2O2 was obtained from Fagron. All water used 

in the experiments was of Milli Q-grade.  

 

2.2. Synthesis of (porous) microspheres  

Mannitol, DS, OVA and PLARG were mixed in water in a 40/4/1/5 ratio at a total solid concentration 

of 1%. In detail, 200 mg mannitol, 20 mg DS, and 5 mg OVA were dissolved in 20 mL water. 

Subsequently 25 mg PLARG was dissolved in 5 mL of water and added dropwise to the stirring 

mannitol/DS/OVA dispersion. This was carried out analogously for the HRP microspheres. Spray 

drying of these mixtures was performed in a lab-scale Büchi B290 spray dryer. The mixture was fed to 

a two-fluid nozzle (diameter 0.7 mm) at the top of the spray dryer. In addition, the spray dryer 

operated in co-current air flow at drying air temperature of 130 °C. Fluorescent microparticles were 

prepared using a mixture of OVA with green fluorescent OVA-Alexa Fluor488 in a 50:1 ratio.  
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2.3. Synthesis of PLGA microspheres.  

OVA was encapsulated in PLGA microspheres according to a general procedure reported by Lynn and 

Langer.20 An aqueous OVA solution (200 µl; 10 mg/ml) was emulsified by 10 s sonication in 4 ml of 

dichloromethane containing 200 mg PLGA. This primary emulsion was then emulsified in 50 ml of an 

aqueous 1 % PVA solution using a Silverson high shear homogenizer for 30 s at maximum power. 

Subsequently, the obtained secondary emulsion was diluted with 100 ml of an aqueous 0.5 % PVA 

solution and stirred for 3h under ambient conditions to allow evaporation of dichloromethane. 

Finally the hardened PLGA microspheres were collected by centrifugation (10 min at 4000 g) and 

washed three times with deionized water. The encapsulation efficiency of OVA was determined by 

encapsulating Alexa Fluor 488-conjugated OVA instead of blank OVA and subsequently measuring 

the OVA-Alexa Fluor488 concentration in the supernatant using a Perkin-Elmer Envision multilabel 

plate reader. 

 

2.4. Particle characterization.  

Confocal microscopy images were recorded on a Leica SP5 AOBS  confocal microscope. Scanning 

electron microscopy images were recorded on a quanta FEG FEI 200 apparatus. Samples were dried 

on a silicon wafer and sputtered with an thin layer of palladium/gold. Transmission electron 

microscopy images of ultrathin microtomed sections were recorded on a JEOL 1010 electron 

microscope. Laser diffraction was performed on a Malvern Mastersizer equipped with an 300 RF 

objective. The ζ-potential measurements were performed on a Malvern Nanosizer ZS. X-ray powder 

diffractograms were performed on a PANalytical X’Pert PRO X-ray diffractometer (Siemens).  XRPD 

patterns were obtained with Cu Kα radiation (45kV x 40 mA; λ = 1.5406A) at a scanning speed of 25° 

(2 θ)/ min and step size of 0.03° (2θ). Measurements were done in the reflection mode in the 2θ 

range of 5-40°. Analysis of the diffractograms was done by visual inspection. The encapsulation 

efficiency was determined by resuspending a known amount of OVA-Alexa Fluor488-loaded 

microparticles (thus containing a known amount of protein (protein concdry microparticles) in phosphate 

buffered saline followed by centrifugation and measuring the OVA-Alexa Fluor488 concentration 

(protein concsupernatant) in the supernatant using a Perkin-Elmer Envision multilabel plate reader. The 

encapsulation efficiency is then calculated as follows: 
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2.5. Determination of enzymatic activity.  

Enzymatic activity of encapsulated HRP was monitored by measuring the absorbance at 405 nm with 

a Perkin-Elmer Envision multilabel plate reader. In detail, 0.1 ml of an ABTS solution (0.01 mg/ml) and 

0.1 ml of a HRP solution (0.00025 mg/ml) or 0.1 ml resuspended spray dried microparticles (0.0125 

mg/ml in 0.1M phosphate buffer) or a aqueous dispersion of mannitol, DS, PLARG and HRP (0.0125 

mg/ml in 0.1M phosphate buffer) was mixed in the wells of a 96 well plate. Then 0.1 ml of a H2O2 

solution (0.03%) was added. The absorbance was measured every 20 seconds at 405 nm, and the 

reaction was allowed to proceed for 5 min. Each reaction was carried out in six-fold. Visualization by 

confocal microscopy was performed using Amplex Red as a fluorogenic substrate. A 50 µl drop of 

microparticle suspension (5 mg/ml) was put on a microscopy coverslip followed by the addition of  2 

µl of 0.05 mg/ml Amplex Red and 3 µl H2O2 (20 mM). Confocal images were recorded using a Leica 

SP5 AOBS  confocal microscope by excitation with the 561 nm laser line and detection at 580 nm.  

 

2.6. DC uptake assessment 

Female C57BL/6 mice were purchased from Janvier and housed in a specified pathogen-free facility 

in micro-isolator units. Dendritic cells were generated using a modified Inaba protocol. Two to six 

months C57BL/6 mice were sacrificed and bone marrow was flushed from their femurs and tibias. 

After lysis of red blood cells with ACK lysis buffer (BioWhittaker), granulocytes and B cells were 

depleted using Gr-1 (Pharmingen) and B220 (Pharmingen) antibodies respectively, and low-toxicity 

rabbit complement (Cedarlane Laboratories Ltd.). Cells were seeded at a density of 2 x 105 cells/ml in 

175 cm2 Falcon tubes (Becton Dickinson) in DC medium (RPMI 1640 medium containing 5% LPS-free 

FCS, 1% penicillin/streptomycin, 1% L-glutamine and 50 µM β-mercaptoethanol) containing 10 ng/ml 

IL-4 and 10 ng/ml GM-CSF (both from Peprotech). After two days and again after four days of culture, 

the non-adherent cells were centrifuged, resuspended in fresh medium and replated to the same 

falcons. On the sixth day, non-adherent cells were removed and fresh medium containing 10 ng/ml 

GM-CSF and 5 ng/ml IL-4 was added. On day 8 of culture, non-adherent cells were harvested and 

seeded at a density of 50 x 103 in Lab-Tek (Nunc, Thermo Scientific) 8-chambered cover glasses. The 

spray dried microparticles were resuspended in PBS at a concentration corresponding to 0.5 mg/ml 

OVA,  and 10 µl of this suspension was added to the DCs. After 2h incubation the cells were fixed in 

an aqueous 4 % formaldehyde solution overnight. Subsequently the cells were washed three times 

with PBS and stained with Hoechst 33258 (2 µg/ml). For the assessment of the intracellular 

localization of the porous microspheres, cells were not fixed with formaldehyde, and the cellular 

cytoplasm and acidic vesicles, were stained by CellTracker Red (1 µg/ml) and LysoTracker Red (1 

µg/ml), respectively, and directly visualized by confocal microscopy.   
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2.7. Determination of MHCI presentation 

To assess the capacity of spray dried particles to enhance antigen presentation of encapsulated 

antigen, bone marrow derived dendritic cells were isolated as described above and incubated with a 

dilution series of either soluble ovalbumin or the equivalent amount of ovalbumin encapsulated in 

spray dried particles. Forty-eight hours later, cells were stained with anti-CD11c-APC (BD biosciences) 

and 25D1.16-PE (ebioscience), which specifically recognizes the ovalbumin derived peptide SIINFEKL 

presented by MHCI at the cell surface. Cells were stained with aqua Live/Dead® stain (Molecular 

probes) to exclude dead cells from the analysis. Samples were analyzed by flow cytometry (Becton 

Dickinson, LSRII) with a minimum event account of 50.000 in the live CD11c+ gate. Specificity of the 

antibody staining was verified by pulsing DC with PBS, which showed a negligible SIINFEKL detection 

of 0.23%, while DC directly pulsed with SIINFEKL showed a detection of 91%. Statistical analysis was 

performed using an one-way ANOVA with Bonferroni post-hoc test (p < 0.05 = significant). 

 

3. RESULTS AND DISCUSSION 

An aqueous dispersion (1% w/w) was prepared by mixing mannitol, dextran sulfate (DS) and 

ovalbumin (OVA) under stirring followed by dropwise addition of poly-L-arginine (PLARG) to allow 

electrostatic complexation between DS, OVA and PLARG. The ratio (w/w) of mannitol to OVA, DS and 

PLARG was chosen to be 40/1/4/5, respectively, which is based on our previous experience with 

hollow LbL capsules and porous polyelectrolyte microspheres based on calcium carbonate as the 

sacrificial template. Subsequently, the mixture was spray dried using a lab-scale Büchi B290 spray 

drier and collected as a dry powder (Figure 1A1, A2). Upon addition of water, the mannitol readily 

dissolves and stable microparticles consisting of a polyelectrolyte framework encapsulating the co-

spray dried protein remains (Figures 1B1, B2). Laser diffraction (Figure 1D) measurements on these 

particles show a mean diameter of 7µm.  
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Figure 1. Physicochemical characterization of spray dried polyelectrolyte microspheres. (A,B) Scanning electron 

microscopy images of spray dried polyelectrolyte microspheres (A) before and (B) after removal of mannitol. 

(C) Confocal microscopy images of the spray dried polyelectrolyte microspheres dispersed in water. Alexa 

Fluor488 (green fluorescence)-conjugated ovalbumin was encapsulated as model antigen. (D) Size distribution 

of the spray dried polyelectrolyte microspheres obtained by laser diffraction. (E) Confocal microscopy images of 

double-labeled microspheres containing Alexa Fluor488-conjugated ovalbumin (E1), rhodamine isothiocyanate-

conjugated  poly-L-arginine (E2). (E3) Overlay of the green and red fluorescence channel. (F) X-ray powder 

diffractograms of pure mannitol, a mannitol/polyelectrolyte physical mixture and spray dried polyelectrolyte 

microspheres. 

 

To allow visualization by fluorescence microscopy, green fluorescent OVA-Alexa Fluor488 was used 

and the confocal images in Figures 1C1-1C3 confirm that the green fluorescent OVA-Alexa Fluor488 is 

retained within the porous microspheres rather than being released into the surrounding aqueous 

medium. To assess the spatial distribution of polyelectrolytes and mannitol, a batch of microspheres 

was produced with both the OVA (Alexa Fluor488) and the PLARG fluorescently labeled. Confocal 

microscopy images of the microspheres upon rehydration (Figure 1E) demonstrate that the OVA is 

homogeneously distributed throughout the whole microsphere volume while the PLARG shows a 

slightly higher concentration near the microsphere surface. Quantification of the encapsulation 

efficiency was done by resuspending the particles in phosphate buffered saline (PBS; pH= 7.4 and 150 

mM NaCl). Subsequently, the microspheres were centrifuged and the amount of OVA in the 
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supernatant was measured. The encapsulation efficiency is defined as the amount of protein that is 

retained within the microparticles after resuspending relative to the amount of protein in the dry 

microparticles. After resuspension in PBS, an encapsulation efficiency of 99 ± 1% was calculated. This 

encapsulation efficiency is remarkably higher than previously reported, not only for OVA 

encapsulation within hollow LbL capsules (50% encapsulation efficiency for calcium carbonate 

templates capsules which offer the highest encapsulation efficiency of all types of LbL capsules)8, 10 

but also within porous antigen-loaded degradable polyelectrolyte microspheres with calcium 

carbonate as the sacrificial template (85% encapsulation efficiency).19 In order to compare our spray 

dried microspheres with a ‘golden standard’ in drug delivery, we encapsulated OVA in poly(DL-

lactide-co-glycolide (PLGA) microspheres using a general procedure reported by Lynn and Langer.20  

 

Figure 2 shows microscopy images and size distribution of these microspheres that have a mean 

diameter of 0.5 µm as measured by laser diffraction. The encapsulation efficiency was determined by 

measuring the concentration of fluorescently labeled OVA-Alexa Fluor488 in the supernatant after 

centrifugation of the particles and found to be 63 ± 15%, which is again substantially lower than in 

case of the spray dried polyelectrolyte microspheres. Moreover, the OVA:polymer ratio is 1:100 in 

case of PLGA while it is 1:10 in case of the spray dried polyelectrolyte microspheres, indicating that 

much fewer polymers are required to keep the OVA stably encapsulated. Moreover, the synthesis of 

PLGA microspheres requires the use of organic solvents which involves safety as well as 

environmental risks. 

 

 

Figure 2. Optical microscopy images (A) and size distribution (B) of PLGA microspheres. 

 

Further physicochemical characterization of the microspheres was done by X-ray powder diffraction 

(XRPD; Figure 1F). The crystallographic state of mannitol after spray drying is important because 

amorphous mannitol could provide enhanced protection of encapsulated proteins against 

denaturation. Several papers have indeed reported on the role of proteins in retaining mannitol in 

amorphous form after spray drying. The mannitol:protein ratio has been shown to influence the 

stabilization. A high protein concentration is required to obtain amorphous mannitol. However,in 
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that case, the amount of mannitol present in the formulation is no longer sufficient to stabilize the 

protein.21, 22 Figure 1F shows the XRPD diffractograms of crude mannitol, physically dry mixed 

mannitol, DS, PLARG and OVA, and finally the spray dried microparticles. Crude mannitol is crystalline 

with characteristic peaks at 10.6 and 14.7°, and the XRPD spectrum of the physically dry mixture of 

mannitol, DS, PLARG and OVA showed crystallinity similar to that of pure mannitol, indicating that 

merely mixing of the substances did not lead to any change in their crystallographic state. By 

contrast, the diffractograms of the spray dried particles exhibit a dramatic reduction of crystallinity, 

indicating the formation of amorphous mannitol. Note that OVA spray dried with mannitol without 

polyelectrolytes yielded crystalline mannitol and that spray dried mannitol with polyelectrolytes also 

yielded amorphous mannitol in absence of OVA (data not shown). 

 

For applications in drug delivery as well as to serve as microreactor for enzymatic processing, the 

preservation of the biological activity of the encapsulated protein within the polyelectrolyte 

framework is of paramount importance. Therefore we encapsulated an enzyme, horseradish 

peroxidase (HRP), instead of OVA and compared the enzymatic catalytic activity (i.e. rate of substrate 

conversion) by the free HRP enzyme in solution to the rates of conversion yielded by the aqueous 

mannitol/DS/HRP/PLARG dispersion and by the HRP-loaded spray dried microparticles. This was 

performed by following the increase in UV-VIS absorbance at 403 nm due to the conversion of the 

substrate ABTS (2,2’- azinobis(3-ethylbenzothiazoline-6-Sulfonic acid) diammonium salt) by HRP: 

 

              
 
   
→                                

 

From the slope of the obtained kinetic curves, the enzymatic catalytic activity (Figure 3A) was 

derived. When the rate of conversion of ABTS by free HRP solution is equal to 100%, an activity of 87 

± 3% for the physical mixture and 84 ± 5% for the spray dried microparticles is calculated. This shows 

that upon mixing, a 13 ± 3% drop in enzymatic activity occurs which is likely due to electrostatic 

interaction with the DS/PLARG polyelectrolyte complexes.15 As HRP has an isoelectric point of ∼8.8, it 

is positively charged at neutral pH and is likely to undergo complexation with DS. Most strikingly, the 

spray drying process itself only induces a further activity decrease of merely 3 %.  
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Figure 3. (A) Quantification of the relative enzymatic activity by conversion of 2,2’-azinobis(3-

ethylbenzothiazoline-6-Sulfonic acid) diammonium salt (ABTS) by free horseradish peroxidase (HRP) in solution, 

an aqueous dispersion of mannitol, polyelectrolyte and HRP and spray dried microparticles after resuspension 

in phosphate buffered saline (PBS) (n=6, technical replicates). (B) Confocal microscopy image showing the 

conversion of Amplex Red to resorufin (red fluorescence) within the spray dried microspheres after addition of 

H2O2. 

 

As a control, we also measured the enzymatic activity of HRP spray dried with DS/PLARG but without 

mannitol and the enzymatic activity of HRP spray dried with mannitol but without the 

polyelectrolytes DS/PLARG. Without mannitol, bumped dense microparticles were obtained (Figure 

4A for SEM images), which could only be recovered at very low yields, most likely due to electrostatic 

interaction with the glass wall of the spray drying cylinder. The enzymatic activity of the 

encapsulated HRP was measured to be 50 ± 8 % which is significantly lower than in case of 

mannitol/DS/HRP/PLARG microparticles.  

 

 

Figure 4. Scanning electron microscopy images of spray dried microparticles consisting of (A) HRP/DS/PLARG, 

thus without mannitol and (B) HRP/mannitol, this without the polyelectrolytes DS/PLARG. 
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Figure 5. X-ray powder diffractograms of HRP co-spray dried with mannitol. Without polyelectrolytes 

DS/PLARG, the mannitol clearly remains crystalline.  

 

Microparticles consisting solely of HRP and mannitol, thus without polyelectrolytes were also 

obtained as a perfectly spherically shaped powder (Figure 4B). They dissolve readily upon addition of 

water, yielding a solution rather than a microparticle suspension obtained in the case of spray dried 

mannitol/DS/HRP/PLARG microparticles. Moreover, the enzymatic activity of the encapsulated HRP 

was measured to be 61 ± 12 % which is again significantly lower than in the case of 

mannitol/DS/HRP/PLARG microparticles. Taking into account that XRPD measurements on the 

mannitol/HRP microparticles (without polyelectrolytes) show the mannitol to be in a crystalline state 

(Figure 5) while the presence of polyelectrolytes yields amorphous mannitol, we hypothesize that 

the presence of amorphous mannitol strongly augments the preservation of the enzymatic activity of 

encapsulated HRP.  

 

Thus the encapsulation approach demonstrated in this work allows a much higher preservation (i.e. 

84 ± 5%) of HRP activity compared to LbL polyelectrolyte capsules (Dextran sulfate/protamine) or 

amphiphilic vesicles (PS-PIAT (polystyrene40–b–poly(L isocyanoalanine (2-thiphen-3-yl-ethyl) 

amide)50)) where typically a reduction of 50 - 85% of enzymatic activity upon encapsulation is 

observed.15, 18, 23 Moreover, these other encapsulation strategies suffer from far lower encapsulation 

efficiencies compared to our spray drying approach. To demonstrate that enzymatic reaction occurs 

inside the spray dried microparticles, we used Amplex Red as fluorogenic substrate instead of ABTS. 

In the presence of H2O2, Amplex Red is converted by HRP to resorufin which is strongly fluorescent. 

Figure 3B shows a confocal microscopy image after addition of Amplex Red and H2O2 to a 
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mannitol/DS/HRP/PLARG microparticle suspension. The fluorescent microspheres indicate that 

reaction takes place inside the microspheres24 followed by diffusion of the dye, coloring the medium.   

 

In a next series of experiments, we investigated the interaction of the polyelectrolyte microspheres 

with dendritic cells (DCs), which are the primary target cell population for vaccine delivery. In this 

work, we used DCs derived from bone marrow of mice. Figure 6A,B shows confocal microscopy 

images of DCs incubated with spray dried microparticles loaded with OVA-Alexa Fluor488 (green 

fluorescence). In Figure 6A, the cellular cytoplasm was stained red fluorescent with CellTracker Red 

and in Figure 6B, the intracellular acidic vesicles (phagosomes, endosomes, lysosomes) were stained 

red fluorescent with LysoTracker Red. From the overlay between the fluorescence image and the DIC 

(differential interference contrast) channel in Figure 6A2, it is evident that the polyelectrolyte 

microparticles became internalized. In Figure 6B1, co-localization – expressed as a yellow/orange 

signal – between the green fluorescence of the polyelectrolyte microparticles and the red 

fluorescence of the intracellular vesicles is observed. For clarity of presentation, we have marked in 

Figure 6B1 an internalized polyelectrolyte microparticle with an orange arrow and marked a non-

internalized polyelectrolyte microparticle with a green arrow. These data indicate that upon 

internalization the polyelectrolyte microparticles end up in intracellular acidic vesicles, which is 

common for most types of microparticles so far reported in literature.8, 25 More detail on the 

intracellular behavior of the internalized microparticles was obtained by imaging ultrathin sections of 

epoxy-embedded DCs by transmission electron microscopy (TEM). Figure 6C shows TEM images of 

DCs incubated for 4 h (Figures 6C1, C2) and  24h (Figures 6C3, C4). Following uptake, the particles 

were surrounded by a membrane (red arrow, Figure 6C2), which indicates that the particles end up 

in phagolysosomal compartments following uptake, as was also previously described for hollow LbL 

capsules. These data are also in accordance with the observed co-localization with Lysotracker Red, 

as shown in Figure 6B1. The TEM images in Figures 6C3,C4 clearly demonstrate that after 1 day 

incubation the polyelectrolyte microparticles become deformed, and the zoomed image in Figure 

6C4 shows the recruitment of different intracellular organelles such as ER (blue arrow), mitochondria 

(green arrow) and lysosomes (yellow arrow) towards the deformed polyelectrolyte microparticle. 

These TEM data indicate an active intracellular processing of the internalized polyelectrolyte 

microparticles and puts them en route towards potential application in vaccine delivery.  
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Figure 6. Assessment of cellular uptake of the spray dried polyelectrolyte microspheres by dendritic cells. (A,B) 

Confocal microscopy images of dendritic cells incubated with spray dried polyelectrolyte microspheres loaded 

with Alexa Fluor488-conjugated ovalbumin (green fluorescence). In row A the cellular cytoplasm was stained 

with CellTracker red (red fluorescence). In row B, the intracellular acidic vesicles (phagosomes, endosomes, 

lysosomes) were stained with LysoTracker Red (red fluorescene). In both cases the cell nuclei were stained with 

Hoechst (blue fluorescence). Column 1 shows the overlay between the blue, green and red channels, column 2 

shows the overlay between the blue, green, red and DIC (differential interference contrast) channels, and 

column 3 shows the DIC channel. (C) Transmission electron microscopy images of spray dried polyelectrolyte 

microspheres internalized by dendritic cells after (C1,C2) 4 h and (C3,C4) 24 h of incubation. 



CHAPTER 5: SINGLE-STEP FORMATION OF DEGRADABLE INTRACELLULAR BIOMOLECULE MICROREACTORS 

 

92 
 

Finally, we aimed to assess whether the encapsulated OVA is still available for processing upon 

internalization by DCs and, if so, whether the peptide fragments become cross-presented via a 

peptide-MHC class I complex. Following endocytosis, soluble exogenous antigens are generally 

cleaved by lysosomal proteases and  presented via a peptide-MHC class II complex to CD4 T-cells. DCs 

also harbor the capacity to present exogenous antigens via MHCI, a feature called cross-presentation 

that is necessary to prime CD8 cytotoxic T cells capable of killing virally infected cells. However, cross-

presentation of soluble antigens occurs extremely inefficiently but is dramatically augmented when 

the antigen is in a particulate form, as was found for several types of microparticulate antigen 

carriers.8, 26, 27 To address whether this important feature also holds true for the spray dried 

polyelectrolyte microspheres, we incubated DCs with equivalent amounts of soluble OVA and OVA 

encapsulated in either hollow LbL capsules, PLGA microspheres or spray dried polyelectrolyte 

microspheres. After a 48 h incubation period, DCs were stained with the 25-D1.16 mAb which 

specifically recognizes the SIINFEKL OVA CD8 epitope complexed to MHC class I H-2Kb molecules.28   

 

As shown in Figure 7, a dose-dependent increase in cross-presentation of encapsulated OVA was 

observed when compared to the soluble antigen. Spray dried particles were significantly more potent 

than PLGA and hollow capsules LbL in stimulating antigen cross-presentation. This is most likely due 

to the fact that the spray dried polyelectrolyte microspheres carry more antigen per particle compare 

to hollow LbL capsules and PLGA microspheres, thus delivering more antigen when a DC internalizes 

a particle. Moreover, the spray dried polyelectrolyte microspheres allow readily processing of the 

encapsulated antigen due to their fully hydrated structure, which is not the case for PLGA 

microspheres which gradually release their payload through surface-erosion-based degradation and 

therefore are incapable of inducing antigen cross-presentation within the experimental time frame of 

48 h. 
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Figure 7. Cross-presentation of the SIINFEKL OVA CD8 peptide measured by FACS analysis on 25-D1.16 mAb 

stained DCs that were incubated with soluble OVA, OVA encapsulated in PLGA microspheres, OVA 

encapsulated in hollow LbL capsules and OVA encapsulated in spray dried polyelectrolyte microspheres. 

Experiments were run in triplicate (technical replicates). The polymers used for fabricating the LbL capsules 

were the same as those used for the spray-dried polyelectrolyte microspheres (i.e. DS/PLARG). An asterix “*” 

indicates the statistically significant groups.  

 

4. CONCLUSION 

In conclusion, we have demonstrated in this paper a one-step all-aqueous approach to encapsulate 

proteins into polyelectrolyte microspheres. The role of the polyelectrolytes is two-fold. The first is to 

form stable microspheres upon redispersion of the spray dried powder in water. Second, the 

polyelectrolyte framework suppresses the mannitol crystallization – used as additional excipient for 

spray drying – which is shown to be beneficial for both the bioactivity of encapsulated proteins as 

well as for the process yield. Furthermore, these data indicate that the spray drying process does not 

dramatically hamper intracellular proteases to enter the polyelectrolyte matrix and to subsequently 

process the antigen into peptide fragments allowing their presentation onto the DC surface. The 

observed cross-presentation paves the road to further develop this technology as vaccine delivery 

platform for insidious viral pathogens as well as cancer. 
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CHAPTER 6 

NANOPOROUS 

POLYELECTROLYTE VACCINE 

MICROCARRIERS – IN VITRO 

AND IN VIVO EVALUATION 

1.  INTRODUCTION 

Formulating vaccine antigens into microcarriers has emerged as an attractive strategy to boost 

antigen-specific immune responses, in particular the cellular arm of the immune response.1-3  

Whereas soluble antigen is predominantly presented by dendritic cells (DCs; the most potent class of 

antigen presenting cells of our immune system) to CD4 T cells, antigen in the form of nano- and 

microparticles becomes presented to both CD4 and CD8 T cells, a process termed cross-presentation 

of exogenous antigen.4  The reason for this is that particulate antigen is better recognized by DCs as 

being foreign, thereby altering the route of internalization and presentation of the antigen. The 

functional relevance of these processes lays in the fact that in presence of the correct cytokine 

stimuli, CD8 T cells can differentiate into cytotoxic T cells (CTLs) that can recognize and eliminate 

infected or malignant cells. The latter is of great importance for the development of vaccines against 

intracellular pathogens such as HIV, tuberculosis, malaria, … and for therapeutic anti-cancer vaccines. 

5 

 

Many nano- and microparticulate vaccine formulation strategies have been reported in literature.1-3 

However, there remains a clear need for simple and scalable formulation strategies involving a 

minimal of batch operation and avoiding organic solvents and reactive chemistries. Additionally, 

when envisioning vaccines for the developing world and for pandemic vaccines, there is a particular 

interest for formulation that avoid the cold chain and do not require refrigerated conditions for 

transportation and long term storage.6 In this regard, a dry powder formulation that can be 

reconstituted in aqueous medium only prior to administration would be highly beneficial.  
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Figure 1. Schematic representation of the encapsulation of protein antigen in porous polyelectrolyte 

microparticles. As pore-former mannitol is used which instantaneously dissolves upon redisperion in aqueous 

medium, thereby creating a highly porous matrix. 

 
Recently we have reported on a novel type of vaccine microcarriers based on oppositely charged 

polyelectrolytes that form stable microparticles via electrostatic interaction as schematically shown 

in Figure 1.7-9  These microparticles were assembled by atomizing a diluted aqueous solution of the 

polyelectrolytes into a hot air stream. This spray drying process evaporates the water to yield solid 

microparticles. By adding protein antigen to the polyelectrolyte mixture prior to spray drying the 

antigen becomes encapsulated within the polyelectrolyte matrix and, interestingly, remains stably 

encapsulated upon redispersion of the microparticles in aqueous medium. Using dextran sulfate (DS) 

and poly-L-arginine (PLARG) as degradable polyanion/polycation we found it key to introduce a pore-

former in our formulation. This is also illustrated in Figure 1. Mannitol is a hydrophilic component 

which is added in excess to the polyelectrolyte/protein mixture and becomes incorporated as well 

into the microparticles. Upon redispersion in aqueous medium the mannitol dissolved and leaches 

out, thereby creating a highly porous internal structure within the microparticles. For both the 

encapsulation of vaccine antigens and enzymes, the use of mannitol appeared crucial to preserve the 

bioactivity of these proteins in vitro. Indeed, mannitol is a known stabilizer in spray drying 

applications and the porous structure within the microparticles allows enzyme substrates or 

intracellular proteases to access encapsulated proteins much more efficiently. 
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In this chapter we aimed to explore the potential of the nanoporous polyelectrolyte microcarriers for 

vaccine delivery in vitro and in vivo. First we optimized the fabrication procedure by changing the 

spray dry parameters of gas flow and feed flow to obtain microspheres that are non-aggregated, with 

high particle recovery yield and size distribution below 10 µm to enhance cellular uptake while still 

assuring optimum encapsulation efficiency. Secondly we evaluated the potential of the 

microparticles to enhance antigen cross-presentation to CD8 T cells in vitro. Thirdly, we evaluated the 

microcarriers in vivo with respect to their tissue response and antigen specific immune response in 

mouse models. 

 

2. MATERIALS AND METHODS 

2.1. Materials 

Mannitol was obtained from Cargill. Dextran sulfate (DS; MW: 9-20kDa), poly-L-arginine (PLARG; MW 

>70kDa), ovalbumin (OVA) were obtained from Sigma Aldrich. OVA-Alexa Fluor488 and phosphate 

buffered saline (PBS) were obtained from Invitrogen. All water used in the experiments was of Milli-Q 

grade.  

 

2.2. Formulation optimization 

The influence of spray drying parameters on the yield and shape of the particles was investigated by 

varying different process parameters. Spray drying was performed with a lab-scale Büchi B290 spray 

dryer equipped with a two-fluid nozzle (0.7 mm diameter). The setting of the inlet temperature was 

120°C and gas flow varies between 0.23-0.75 bar. The mixtures were fed via a peristaltic feed pump 

at a feed flow of 1 ml/min to 10 ml/min. Dry powder was collected.  

 

2.3. Preparation of the microparticles via spray drying 

Mannitol, DS, OVA and PLARG were mixed in water in a 40/4/1/5 ratio at a total solid concentration 

of 1%. Two different adding sequences were compared. In the first case, 200 mg of mannitol, 20 mg 

of DS and 5 mg of OVA were dissolved in 20 ml water. Subsequently 25 mg of PLARG was dissolved in 

5 ml water and was added in drops to the stirring mannitol/DS/OVA solution. Secondly, 200 mg 

mannitol and 20 mg DS was dissolved in 19 ml water, further PLARG was added analogously and 

finally 5 mg OVA was dissolved in 1ml water and added in drops. Fluorescent particles were prepared 

using a mixture of OVA with Alexa Fluor488 conjugated ovalbumin in a 50:1 ratio. Spray drying  was 

performed with a lab-scale Büchi B290 spray dryer equipped with a two-fluid nozzle (0.7 mm 

diameter). The setting of the inlet temperature was 120°C and gas flow 0.75 bar. The mixtures were 

fed via a peristaltic feed pump at a feed flow of 1 ml/min. Dry powder was collected.  
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2.4. Particle characterization 

Laser diffraction was performed on a Malvern Mastersizer equipped with an 300RF objective. 

Scanning Electron Microscopy (SEM) was conducted on a Quanta 200 FEG FEI scanning electron 

microscope. Samples were sputtered with a palladium-gold layer prior to imaging. Transmission 

electron microscopy was performed on a JEOL 1010 instrument. Confocal microscopy was conducted 

on a Leica SP5 microscope equipped with a 63X oil immersion objective.  

 

2.5. In vitro and in vivo experiments 

2.5.1. Cell lines and animals 

C57BL/6 mice were obtained from Janvier. OT-I transgenic mice (C57BL/6) were purchased from 

Harlan. Mice were housed under specific-pathogen-free conditions. All animal experiments were 

approved by the Local Ethical Committee of Ghent University. The immortalized mouse dendritic cell 

line DC2.4 was a kind gift from Prof. Dr. Ken Rock (Dana-Farber Cancer Institute, Boston, MA, USA). 

Bone-marrow-derived DCs were generated by flushing tibia and femurs of 2–4 months old C57BL/6 

mice. After red blood cell lysis, cells were cultured in complete RPMI (Roswell Park Memorial 

Institute) medium containing 20 ng/mL GM-CSF (granulocyte macrophage colony-stimulating factor) 

for 6–8 days.  

 

2.5.2. Cell toxicity assay 

The cytotoxicity of the spray dried particles was assessed according to De Koker et al.10 DC2.4 cells 

were grown and seeded in a 96 well plate at a density of 5 x 10³ cells/well and incubated with 

different concentrations of the respective samples for 24 hours. Afterwards, the medium was 

refreshed and cells were cultured for another 48 hours. Medium was removed and MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was added. MTT is reduced by mitochondrial 

dehydrogenases of living cells into an insoluble purple formazan dye. After 4 hours of incubation at 

37°C, cells are solubilized by dimethylsulfoxide (DMSO) and the released, solubilized formazan is 

measured spectrophotometrically at 590 nm. The absorbance is a measure of the viability of the 

cells.  

 

2.5.3. In vitro microparticle uptake 

For confocal microscopy experiments, DC2.4 were seeded in 8 well microscopy chambers (Nunc) at a 

density of 50 x 103 cells per well and allowed to adhere overnight. Subsequently, OVA-Alexa Fluor488 

loaded- microparticles were added and the cells were further cultured for 24 h. Finally, the cells were 
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washed with PBS and fixated with 4% paraformaldehyde. Prior to imaging the cells were stained with 

Hoechst and Alexa Fluor 647-conjugated cholera toxin subunit B.  

 

For flow cytometry, DC2.4 cells were seeded in 24 well plates at a density of 105 cells per well and 

allowed to adhere overnight. Subsequently, OVA-Alexa Fluor488 loaded microparticles (10 µL of a 10 

mg/ml suspension) were added and the wells were cultured for another 24 h. Finally, the cells were 

washed, detached from the wells and stained with Live/Dead® fixable red dead cell stain kit (Life 

technologies) for 30 min on ice to exclude dead cells from the analysis. Cells were acquired on a BD 

Accuri C6 flow cytometer and analyzed with FlowJo. As a negative control unpulsed DC2.4 cells were 

used. Doublets were discriminated by forward/side scatter gating.  

 

2.5.4. In vitro antigen-presentation assay 

Cell suspensions of OVA-specific CD8 T cells were prepared from spleen and lymph nodes from OT-I 

mice. Single cell suspensions were prepared, and CD8 T cells were isolated from the suspensions 

using Dynal mouse CD8 negative isolation kit (Invitrogen) according to the manufacturers’ 

instructions and subsequently labeled with CFSE (carboxyfluorescein diacetate succinimidyl ester). 

DCs obtained from bone marrow of C57BL/6 mice were pulsed with serial dilutions of the respective 

samples (corresponding to 0.2, 2 and 5µg/ml OVA) for 24 h, washed, counted and subsequently co-

cultured with OT-I T cells at different DC:T cell ratios (1:5; 1:10; 1:20 and 1:100) for 48 h in round 

bottomed well plates. After 48 h, the division of the OT-I T cells was measured by flow cytometry 

using a BD LSR II. 

 

2.5.5. Readout of in vivo antibody response (ELISA) 

Mice were subcutaneously vaccinated twice with a 3 week interval with 100 μL containing 20 μg of 

either soluble or encapsulated OVA. For the detection of anti-OVA antibodies, blood samples were 

collected from the ventral tail vein. Maxisorp (Nunc) plates were precoated with OVA (10 mg/ml) 

overnight. Wells were blocked with 200 µL PBS 1% (w/v) bovine serum albumin (BSA) (Sigma Aldrich) 

for 2 hours at room temperature. Serial dilutions of serum in PBS 1% BSA were added and incubated 

for 2 hours at room temperature. Subsequently goat anti-mouse IgG1-HRP (Southern Biotech; HRP= 

horseradish peroxidase) diluted in PBS (1/5000) was added for 1 hour at room temperature. Plates 

were washed 3 times between each step with PBS 0.1% Tween20 (Sigma Aldrich). Peroxidase activity 

was measured using 50 µL/well TMB substrate (BD OpteiaTM, BD biosciences) and optical densities 

were read at 450 nm after stopping the reaction by adding 25 µL/well 1M H2SO4. Data show antibody 

titers of individual mice. 
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2.5.6. Readout of in vivo cellular immune response (ELISA) 

The amount of IFN-γ in the supernatant of splenocytes incubated with the MHCI or MHCII epitope of 

OVA was determined using the mouse IFN-γ Ready-Set-Go!® ELISA kit (eBioscience) according to the 

manufacturer's instructions. In detail, Maxisorp (Nunc) plates were precoated with capture antibody 

in coating buffer overnight at 4°C. Wells were blocked with 200 µL/well of 1x Assay diluent for 1 hour 

at room temperature. Serial dilutions of standard concentrations and samples (supernatants of 

splenocytes) were added and incubated at 4°C overnight. Then, biotin-conjugated detection antibody 

diluted in 1x Assay diluent was added and subsequently 100 µL/well of avidin-HRP diluted in 1x assay 

diluent was added and incubated for 30 minutes at room temperature. Plates were washed 3 times 

between each step with PBS 0.05% Tween20 (Sigma Aldrich). Peroxidase activity was measured using 

100 µL/well TMB substrate (Substrate solution) and optical densities were read at 450 nm after 

stopping the reaction by adding 50 µL/well 2M H2SO4.  

 

2.5.7. Readout of in vivo cellular response (ELISPOT) 

Splenocytes were harvested three weeks after the booster immunization. Suspensions of 2 x 105 

splenocytes were cultured onto IFN-γ ELISPOT plates (Diaclone) in triplicate and restimulated with 5 

mg/mL of either the OVA MHCI epitope peptide SIINFEKL or the OVA MHCII epitope peptide 

ISQAVHAAHAEINEAGR (both Anaspec) and incubated for 24 hours at 37°C in a CO2 incubator.  

Medium alone (100µL) or concanavolin A (100 µL, 2 µg/ml) were used as negative or positive 

controls, respectively. Then, biotinylated detection antibody was added  and incubated at room 

temperature for 1 h 30 min and subsequently 100 µL/well of streptavidin-AP(Alkaline phosphatase) 

conjugate was added and incubated for 1 hour at room temperature.  Plates were washed 3 times 

between each step with PBS 0.05% Tween20 (Sigma Aldrich). Alkaline phosphatase activity was 

determined using 100 µL/well BCIP/NBT (5-bromo-4-chloro-3-indolyl-phosphate/nitro blue 

tetrazolium)  substrate and spots were developed after a 5-10 minutes incubation period. The 

frequency of the resulting coloured spots were counted using an Immunospot ELISPOT reader (AID).  

 

2.5.8 In vivo tissue response 

OVA-Alexa Fluor488 loaded microparticles were injected subcutaneously in the flanks of mice. At 

different time intervals mice were sacrificed and the injection site was dissected. Tissue samples 

were fixed in 4% paraformaldehyde in PBS, dehydrated in ethanol, embedded in paraffin and 5 µm 

sections were cut with a microtome. After deparaffinisation, sections were either mounted with 

DAPI-containing Vectashield mounting medium (VectorLabs) or stained with haematoxylin and eosin 

and then mounted with Vectashield.  
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3. RESULTS AND DISCUSSION 

3.1. Formulation and process optimization  

In a first series of experiments we aimed at exploring the effect of formulation and process 

conditions on the microparticulate vaccine formulations. As depicted in Figure 1, dextran sulfate (DS) 

was used as negatively charged polyelectrolyte (i.e. polyanion) and poly-L-arginine (PLARG) was used 

as positively charged polyelectrolyte (i.e. polycation). Ovalbumin (OVA) was used as model vaccine 

antigen, it has a Mw ∼ 43 kDa and an isoelectric point of 4.5 meaning that at neutral pH it will bear 

an overall negative charge. The three major parameters that reflect the quality of the 

microparticulate formulations are:  

- Particle recovery: The amount of dry microparticles that is collected in the recipient after the 

cyclone in the spray drier. 

- Particle integrity: The ability of the obtained dry power to be reconstituted in aqueous 

medium into a monomodal suspension of individual non-aggregating and non-disintegrating 

microparticles.  

- Encapsulation efficiency: The fraction of protein antigen that is, upon redispersion in 

aqueous medium, retained within the microparticles and is not released into the outer 

medium. 

 

First, we varied the relative amount of mannitol that was added to the solution prior to spray drying. 

Table 1 summarizes the ratios that were used and the outcome of the spray drying experiments. The 

lower mannitol to antigen ratios, or absence of mannitol lead to poor recovery due to sticking of the 

powder to the wall of the spray drying equipment. This is in analogy with the common use of 

mannitol in pharmaceutical technology to enhance the yield of spray drying,11 owing to its excellent 

flowing capability. However, too high mannitol to antigen ratios yielded particles that did not retain 

their spherical morphology upon redispersion in water and disassembled into smaller polyelectrolyte 

coacervates and released a significant amount of antigen into the external medium. These findings 

prompted us at using a mannitol/DS/PLARG/OVA ratio of 200/20/25/5 for further experiments. 

Interestingly, this approximate ratio of the respective compounds is similar to our previous work on 

hollow Layer-by-Layer capsules where porous calcium carbonate microparticles were loaded with 

OVA and subsequently coated with alternating layers of DS and PLARG followed by dissolution of the 

calcium carbonate core templates.10, 12-16  Evidently, in the present work the single calcium carbonate 

pore former (which creates capsules with a hollow void) is replaced by mannitol that creates a 

nanoporous internal structure as described earlier in CHAPTER 5. 
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Table 1. Influence of the mannitol to antigen ratio
1
 on the quality of the spray dried microparticulate 

formulations. 

Mannitol:Antigen 

ratio 

Particle 

Recovery 

Particle  

integrity 

Encapsulation  

efficiency 

0:5 - ++ ++ 

50:5 + ++ ++ 

200:5 ++ ++ ++ 

500:5 ++ - - 

1
Formulations were spray dried on a 25 mL scale composed of respectively 20/25/5 mg of DS/PLARG/OVA. The 

ratio is expressed as wt %. 

 

Secondly, we aimed at investigating the effect of processing conditions on particle recovery. Using 

the above-mentioned composition of the formulation, spray drying was performed a different values 

of the flow rate (i.e. the flow at which the liquid is fed to the nozzle) and pressure of the atomizing air 

stream. The graph in Figure 2A depicts particle recovery as function of the different processing 

parameters. Increasing the flow rate leads to a decrease in particle recovery. This can be explained 

by the higher the feed pump rate, as for a higher throughput, more energy is needed to evaporate 

the water to form solid particles. When the pump rate is too high, wet and sticky particles are 

obtained that adhere to the glass wall of the spray drier, thereby decreasing the yield. When the feed 

flow was kept constant (1ml/min), a higher yield was obtained with a higher gas flow. Based on these 

findings, experiments were continued using a flow rate of 1 mL/min and an air pressure of 0.75 bar. 

To verify that these formulation and processing conditions afforded the proper production of 

microparticles scanning electron microscopy (SEM) was used to characterize the microparticles after 

spray drying. As shown in Figure 2B, perfectly spherical shaped microparticles are obtained with a 

size below 10 µm. After redispersion in water, the size distribution (Figure 2C), as determined by 

laserdiffraction remained below 10 µm and transmission electron microscopy (TEM; Figure 2D), 

recorded from epoxy-embedded and ultramicrotomed microparticles, revealed a highly porous 

internal structure of the particles that is created upon dissolution of the mannitol into aqueous 

medium. 
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Figure 2. (A) Microparticle recovery expressed as the weight percentage of the microparticles collected in the 

recipient after the cyclone to the original dry weight of the formulation prior to spray drying. (B) Scanning 

electron microscopy image of the spray dried microparticles before resuspension in aqueous medium. (C) Size 

distribution measured by laser diffraction of the microparticles redispersed in water. (B) and (C) were recorded 

from microparticles produced at optimal formulation and processing conditions. (D) Transmission electron 

microscopy images of epoxy-embedded and ultramicrotomed porous microparticles obtained after 

resuspension in aqueous medium. 

 

3.2.Exploring the influence of the sequence of addition 

Here we aimed to investigate whether the sequence of addition of the respective components prior 

to spray during can affect the overall charge, encapsulation efficiency, spatial ordering of the antigen 

and further, on in this work, immuno-biological properties. To do so, we prepared microparticles as 

listed in Table 2. Besides OVA loaded microparticles we also prepared empty microparticles where 

we used different dextran sulfate to poly-L-arginine ratios, to test whether the surface charge of the 

microparticles can be modulated. We observed that changing the ratio of dextran sulfate to poly-L-

arginine allowed to shift the zeta-potential from positive to negative depending on whether the 

polyanion (i.e. dextran sulfate) or the polycation (i.e. poly-L-arginine) is in excess. These latter two 

microparticles without OVA will be used further on in this work in control experiments where soluble 

OVA is added to these empty particles.  
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Table 2. Influence of the sequence of addition on the formulation properties
(1)

 

Formulation Sequence ratio (wt.%) ζ-potential Encapsulation 
efficiency 

1 mannitol/DS/OVA/PLARG 200/20/5/25 42 ± 3 mV 110 ± 11 % 

2 mannitol/DS/PLARG/OVA 200/20/25/5 -30 ± 4 mV 110 ± 10 % 

3 mannitol/DS/PLARG(2) 200/20/25 40 ± 1 mV(3) 

26 ± 1 mV(4) 

99 ± 0.1 % 

4 mannitol/DS/PLARG(2) 200/25/20 -43 ± 1 mV(3) 

-43 ± 1 mV(4) 

100 ± 0.2 % 

(1) 
Formulations were spray dried on a 25 mL scale. (n=3) 

 (2) 
Soluble OVA was added after spray drying. 

(3)
ζ-potential measured before soluble OVA was added.  

(4)
 ζ-potential measured after soluble OVA was added.  

 

The ζ-potential of the OVA-loaded microparticles also strongly depended on the sequence in which 

the respective components are added prior to spray drying. Indeed, when OVA is added last, a 

negative ζ-potential value of -30 mV was measured whereas an outspoken positive value of 42 mV 

was measured when PLARG was added last. These findings suggest that the component that was 

added last would be distributed more at the surface of the particles. To confirm this hypothesis, 

microparticles were spray dried using green fluorescent (i.e. Alexa Fluor488) labelled OVA, and 

subsequently imaged by fluorescence microscopy. These images, shown in Figure 3, confirm that 

when OVA is added before PLARG (i.e. DS/OVA/PLARG(+)), microparticles are obtained with OVA 

homogenously distributed within the volume of the microparticles. This is in agreement with our 

previous findings in chapter 5. However, when OVA is added after PLARG (i.e. DS/PLARG/OVA(-)), it is 

preferentially located at the periphery of the particles. Additionally, the OVA distribution does not 

appear to be homogenous and bright spots of complexed OVA appear on the surface of the particles. 

 

As empty particles will be used further on in this work for control experiments, we also wanted to 

investigate the interaction between these empty microparticles and soluble OVA. Therefore, we 

incubated both the positively and the negatively charged microparticles with soluble Alexa Fluor488 

–conjugated OVA (i.e. sOVA-AF). Subsequently, the microparticles were imaged by fluorescence 

microscopy and the amount of unbound OVA was measured in the supernatant after centrifugation 

of the microparticles. In addition, also the ζ-potential after incubation with OVA was measured. As 

listed in Table 2 and confirmed in Figure 3, both negatively and positively charged microparticles are 

capable of binding soluble OVA. However, in both cases aggregation was observed. This was most 

severe in case of positively charged microparticles that were likely subjected to bridging flocculation 
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upon addition of negatively charged OVA. Additionally, in both cases OVA was predominantly located 

at the periphery of the microparticles. 

 

 
Figure 3. Fluorescence microscopy images of the different spray dried microparticle formulation either 

encapsulating OVA-Alexa Fluor488 or with OVA-Alexa Fluor488 added in solube form (i.e. sOVA-AF) to empty 

microparticles.  

 

3.3. In vitro interaction with dendritic cells 

In a first series of in vitro cell culture experiments we assessed whether the ζ-potential of the 

particles influences uptake by dendritic cells and possible cytotoxic effects. For these experiments we 

have chosen to use the immortalized mouse dendritic cell line DC2.4 as this is an excellent model to 

study cell uptake and have a prolonged lifetime than the primary DCs that will be used later on this 

work for investigating immuno-biological aspects. Cells were incubated overnight with 

microparticles, stained with a live/dead reagent and cells were analyzed by flow cytometry. Doublets 

and multiplets (i.e. clusters of multiple cells/particles instead of single cells) were discriminated by 

forward/side scatter gating and the live/dead reagent was used to select the living cells. The final 
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step in the gating strategy is plotting the fluorescence channel used for the detection of the 

microparticles (labelled fluorescent with OVA-Alexa Fluor488). Unpulsed DC2.4 cells were used as a 

negative control.  As shown in Figure 4B, both positively and negatively charged microparticles were 

associated with DCs without any significant differences depending on the surface charge of the 

microparticles. Confocal microscopy (Figure 4A) was used to confirm that indeed the microparticles 

were taken up by the cells and not just adhered to the cell surface.  

 

 

Figure 4. (A) Confocal microscopy images of DC2.4 cells incubated with OVA-Alexa Fluor488 loaded 

microparticles. (A1): DS/OVA/PLARG and (A2): DS/PLARG/OVA. The cell membrane was stained with Alexa 

Fluor647-conjugated cholera toxin subunit B and cell nuclei were stained with Hoechst. The images show an 

overlay with the DIC channel. (B) Quantification of in vitro uptake of microparticles by DC2.4 cells, measured by 

flow cytometry. (C) Cell toxicity, measured by MTT assay, of the microparticles and their respective 

components. (n=6, *: p<0.05).  
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Subsequently, MTT assay was used to investigate in vitro cytotoxic effects of the microparticles and 

their components on DCs. As shown in Figure 4C, DS, mannitol and ovalbumin are non-toxic. 

Contrary, PLARG significantly reduces cell viability over a broad concentration range. However, the 

electrostatic complexed microparticles only induce cell toxicity at elevated (i.e. 1mg/mL) 

concentrations. This is in accordance to recent observations by our research group on the effect of 

complexation on the in vivo mucosal irritation potential of polyelectrolytes. Indeed, whereas soluble 

polyelectrolytes, both polyanions and even more severely polycations, do induce mucosal irritation, 

this was fully suppressed in case of polyelectrolyte complexes. 17 

 

3.4. In vitro T cell presentation and T cell expansion 

To assess the potential of the microparticles to enhance cross-presentation of antigen we performed 

an in vitro CD8 T cell presentation assay. For these experiments we used primary mouse DCs derived 

from bone marrow. As model antigen ovalbumin (OVA) was used. DCs were pulsed with either 

soluble OVA or encapsulated OVA. Both positively and negatively charged particles were evaluated. 

Subsequently, the DCs were co-cultured with OT-I cells, which are CD8 T cells that express the 

transgenic T cell receptor for MHCI complexed to the OVA CD8 peptide SIINFEKL. Prior to co-culturing 

the OT-I cells were stained with CFSE to allow for assessing subsequent cell division by flow 

cytometry.  

 

A dose-response experiment was performed by pulsing DCs with different concentrations of soluble 

and encapsulated OVA. Also multiple DC to T cell ratios were evaluated. The gating strategy for flow 

cytometry analysis of the CD8 T cell proliferation is shown in Figure 5A. As shown by the flow 

cytometry histograms in Figure 5B, soluble OVA only marginally induces T cell proliferation. Contrary, 

encapsulated OVA strongly promotes antigen cross-presentation. For OVA concentrations of 2 and 5 

µg/mL, DS/OVA/PLARG and DS/PLARG/OVA microparticles are equally potent in inducing T cell 

division. However, at a low OVA dose of 0.2 µg/mL only DS/PLARG/OVA microparticles are able to 

promote T cell proliferation (Figure 5B and C). In addition to measuring T cell expansion also cytokine 

(i.e. IFNγ, IL2, IL13, IL17) secretion in the supernatant of the DC – T cell co-cultures was measured. As 

shown in Figure 5D, the microparticles elicit the secretion of the cytokines IFNγ, IL-13 and IL-17, 

cytokines produced by Th1, Th2 and Th17 cells respectively. In the induction of an adaptive immune 

response IL-2 is produced by activated CD4 and CD8 T cells and is responsible for their proliferation.18 

The measured cytokines are indicative for a broad immune response. These findings firmly underline 

the ability of microparticulate formulation of antigen to dramatically enhance antigen presentation. 

The observation that microparticles with OVA situated at their periphery performed slightly better 
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than microparticles with OVA more embedded in their interior might be due to a higher availability of 

the OVA for processing upon cellular uptake within the timeframe of our experimental in vitro set-up.  
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Figure 5. (A) Flow cytometry gating strategy to assess OT-I cell proliferation. (B) Flow cytometry histograms of 

OT-I proliferation in response to co-culturing with DCs pulsed with soluble OVA or encapsulated OVA at 

different OVA concentration. The OT-I cell to DC ratio was 1:20. In (C) Quantitative representation of OT-I cells 

division as shown in the gating strategy in panel (A). (D) Cytokine secretion measured by ELISA in the 

supernatant of the DC – T cell co-cultures. 

 

3.5. In vivo evaluation – tissue response 

In a first series of in vivo experiments we screened the tissue response upon subcutaneous injection 

of the microparticles. Mice were subcutaneously injected with DS/OVA/PLARG microparticles and at 

different time intervals animals were sacrificed and the injection spot was dissected and analysed by 

haematoxylin and eosin (H&E) staining and confocal fluorescence microscopy. For the latter 

microparticles loaded with (green fluorescent) OVA-Alexa Fluor488 were used. Figure 6 shows the 

corresponding micrographs. All series of images show a gradual cellular influx into the injected 

volume of microspheres. Importantly, no pronounced inflammation is observed and 

neovascularization and tissue necrosis remained absent. This suggest that injection of these 

microspheres does not induce a strong inflammatory response and are fairly well tolerated in vivo. 

Importantly, as indicated by the dashed contours in the panel corresponding to the 14 day time 

point, microparticles  also become internalized by cells in vivo. 
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Figure 6. H&E staining (left panels) and confocal fluorescence (right panels) microscopy images recorded from 

tissue sections collected from the injection spot. Confocal images were stained with Hoechst to visualize the 

cell nuclei in blue. Green fluorescence originates from OVA-Alexa Fluor488 that was encapsulated within the 

microparticles. The confocal images also include the overlay with the DIC channel. The dashed contours in the 

day 14 pannel indicate cells that have internalized microparticles.  
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3.6. In vivo evaluation – antigen specific immune response 

The previous paragraph confirmed that antigen encapsulated in porous polyelectrolyte 

microparticles is highly efficiently cross-presented by DCs to CD8 T cells in vitro. Additionally, in vivo 

low inflammatory responses were observed upon injection of the microparticles. These encouraging 

findings prompted us at further investigating the potential of the porous polyelectrolyte 

microparticles at enhancing antigen-specific immune responses in vivo.  

 

Mice (in cohort of 5) were immunised with either soluble OVA or encapsulated OVA following a 

prime-boost scheme with a 3 week interval. The microparticle formulations used for these 

experiments were those listed in Table 2, i.e.  

1) (+) DS/OVA/PLARG: positively charged microparticles OVA-encapsulating microparticles 

having the OVA embedded within the microparticles. 

2) (-) DS/PLARG/OVA: negatively charged microparticles OVA-encapsulating microparticles 

having the OVA situated at the periphery of the microparticles. 

3) (+) DS/PLARG + sOVA: empty positively charged microparticles to which soluble OVA was 

added 

4) (-) DS/PLARG + sOVA: empty negatively charged microparticles to which soluble OVA was 

added 

Additionally soluble OVA and OVA formulated with alum were used as control.  

 

Figure 7 summarizes the immunological readout of the experiments. Three weeks after the booster 

immunization, the cellular immune response was quantified by measuring IFN-γ cytokine secretion 

by splenic CD4 and CD8 T cells (measured by ELISA) and the number of these T cells (measured by 

ELISPOT). The ELISA assay gives information about the ability of the cells to secrete cytokine when 

exposed to an antigen stimulus, and detects the total amount released from all cells. The ELISPOT 

assay measures release of cytokines from single cells. Both are carried out to discriminate between 

the number of secreting cells and the amount of cytokine secreted.19 The discrepancy between the 

high IFN-γ production and low amount of IFN-γ producing T cells in the case of the (+)DS/PLARG + 

sOVA particles can be explained in view of antigen to DC ratio. When the antigen to DC ratio is low 

(i.e. small amount of antigen relative to a large number of DCs), a large number of secreting T cells 

are stimulated, however they secrete low levels of the cytokine. The opposite is true as well: when 

the antigen to DC ratio is high (i.e. large amount of antigen relative to a small number of DCs), a 

relative low number of T cells secrete high levels of cytokine. From these data it is clear that relative 

to soluble OVA encapsulated OVA dramatically enhances cellular immunity. Also a strong 

enhancement relative to soluble OVA formulated with alum is observed. The humoral immune 
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response was quantified by measuring anti-OVA IgG1 titers in serum via ELISA. Also here 

encapsulated antigen outperforms soluble antigen and performs equally well (or in case of (+) 

DS/OVA/PLARG microparticles slightly better) than soluble antigen formulated with alum.  

 

Between the different microparticles formulations the differences are less outspoken. Positively 

charged empty microparticles with OVA added afterwards in soluble form appears to be less potent 

while positively charged OVA-loaded microparticles with OVA embedded, appear to be the most 

potent throughout the assays. At this point it is rather speculative to explain these observations. 

However, a major difference between the best performing formulation (i.e DS/OVA/PLARG) and the 

others is that the OVA is embedded within the interior of the microparticles while in case of the 

other formulations, the OVA is more situated at the periphery of the microparticles. The latter might 

be beneficial to enhance in vitro antigen presentation, as in this case the antigen is readily available 

upon phagocytosis of the microparticles. However, it might be less beneficial in vivo as antigen 

situated at the periphery of the microparticles might be more prone to leaching out before cellular 

uptake. Such phenomenon can especially be expected to take place in a complex physiological 

environment such as the extracellular medium. Furthermore, as depicted in Figure 3, empty particles 

mixed with soluble OVA are also prone to aggregation, which might reduce their uptake by antigen 

presenting cells in vivo and thereby decrease the amplitude of the evoked antigen-specific immune-

response. 
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Figure 7. (A) IFN-γ secreting CD8 and CD4 T cells in the spleen. (B) IFN-γ cytokine secretions by splenic CD4 and 

CD8 T cells. (C) IgG1 titers after prime (C1) and boost (C2) injection. (n=5, *: p<0.05) 
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4. CONCLUSIONS 

Summarizing, we have demonstrated in this work that porous polyelectrolyte microparticles are 

efficient in delivering antigen to dendritic cells and thereby promoting antigen cross presentation to 

CD8 T cells in vitro. In vivo in mice we have demonstrated that upon subcutaneous injection a mild 

tissue response is observed. Finally, we analyzed the antigen specific cellular and humoral immune 

response against a model vaccine antigen. These experiments demonstrated that encapsulating 

antigen into microporous microparticles strongly enhanced serum antibody titers and splenic T cell 

responses. Taken together our findings have demonstrated the potential of this formulation 

technology for vaccine delivery. This technology is a simple one-step method that yields a dry 

powder that could be attractive for application where long-term storage under non-refrigerated 

conditions is important, e.g. for pandemic vaccines and vaccines intended for the developing world. 
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CHAPTER 7  

HYDROGEN BONDED 

POLYMERIC MULTILAYER FILMS 

ASSEMBLED BELOW AND 

ABOVE THE CLOUD POINT 

TEMPERATURE 

1. INTRODUCTION 

Polymeric multilayer thin films, assembled via layer-by-layer (LbL) deposition of interacting species, 

have since their advent in the early nineties attracted major attention by scientist active in different 

fields of research.1 Whereas initially LbL assembly involved the use of oppositely charged 

polyelectrolytes there is a steady increase of reports focusing on interactions other than 

electrostatics.2 Amongst these, hydrogen bonding has become very popular.3 Hydrogen bonded 

multilayer thin films rely on complex formation between electron-donor and electron-acceptor 

molecules and have been widely studied for drug delivery applications.4-6 Often, hydrogen bonded 

multilayers are composed of a weak polyacid (such as poly((meth)acrylic acid)) and a neutral polymer 

bearing ether, ester or amide bonds. In protonated form the carboxylic acids form hydrogen bonds 

with the ether, ester or amide moieties of the other polymer, thereby serving as driving force for 

multilayer assembly. Due to the use of the weak polyacid, such multilayers are highly susceptible to 

pH and require cross-linking to be stable at physiological pH where the carboxylic acids are 

deprotonated and do not longer complex through hydrogen bonding. This ability has been explored 

by a number of groups to design intelligent materials via the use of environmentally sensitive 

crosslinks.7, 8 Contrary to the use of weak polyacids, hydrogen bonded multilayer films based on 

tannic acid (TA), a naturally occurring polyphenol, are stable over a wide pH range (i.e. pH 2-11), 

while the multitude of phenolic groups on the TA form strong complexes with neutral polymers 

bearing ether, ester or amide bonds.9-12 The ability to form stable assemblies under physiologically 
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relevant conditions, without the need for chemical crosslinking, is a major advantage of TA and has 

been explored by several groups for coating applications in the biomedical field. 13-15 

 

Poly(2-alkyl-2-oxazolines) are an attractive class of neutral hydrophilic polymers that are highly 

biocompatible and that can be engineered with tailored temperature-responsive properties by 

varying the nature of the alkyl side chains.16, 17 Indeed, whereas poly(2-methyl-2-oxazoline) (PMeOx) 

does not exhibit lower critical solution (LCST) behavior, poly(2-ethyl-2-oxazoline) (PEtOx) has an 

cloud point temperature (TCP) of 65 °C and poly(2-(n-propyl)-2-oxazoline) (PnPropOx) has a TCP of 25 

°C which is very appealing in view of biomedical applications.  

 

 

Figure 1. Molecular structure of poly(2-n-propyl-2-oxazoline) (PnPropOx). 

 

In this chapter we report on multilayer thin film formation based on hydrogen bonding between TA 

and PnPropOx (Figure 1). In particular we demonstrate that both below the TCP, with the polymer 

chains being in extended state, and above the TCP, with the polymer chains being in collapsed 

aggregated state, multilayer formation with TA is possible. To the best of our knowledge, multilayer 

formation of the same polymer in such different states has not yet been reported for LbL deposition 

based on hydrogen bonding. However, we believe that such multilayers could find interesting 

applications for the design of functional coatings containing hydrophilic and hydrophobic payloads. 

 

To allow for proper evaluation of the effect of the physicochemical state of the polymers on their 

self-assembly behavior with TA, we used in this study well defined PnPropOx with a DP of 100 (DP; 

degree of polymerization), produced via living cationic ring-opening polymerization of the respective 

2-(n-propyl)-2-oxazoline.18 Turbidity measurements confirmed the TCP of the PnPropOx to be 25 °C. 

The amide group of the PnPropOx is capable of forming hydrogen bonds with tannic acid, as recently 

demonstrated by Demirel et al.19 
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2. MATERIALS AND METHODS 

2.1. Materials 

Mercaptosuccinic acid, branched PEI (25 kDa) and tannic acid (TA) were purchased from Sigma-

Aldrich. Poly (2-(n-propyl)-2-oxazoline) with a DP of 100 was synthesized according to Hoogenboom 

et al.18 SEC analysis against PMMA standards showed a Mn = 14 kDa and ᴆ = 1.14. Gold coated quartz 

chips with a nominal resonance frequency of 10 MHz were purchased from International Crystal 

Manufacturing Co (ICM). Silicon AFM cantilevers with a nominal resonance frequency of 75 kHz and a 

spring constant of 3N/m were obtained from Bruker. All water used in the experiments was of Milli-Q 

grade.  

 

2.2. Quartz Crystal Microbalance (QCM) 

QCM measurements were performed on a Gamry eQCM equipped with an ALS flow cell. Gold coated 

quartz chips were first coated by 1h immersion in an aqueous solution of mercaptosuccinic acid (2 

mg/ml) followed by extensive rinsing with water. Secondly, the quartz chip was immersed into an 

aqueous PEI solution (2 mg/ml) for 1h and again extensively washed with water and dried under a 

gentle nitrogen stream. Next, the chip was mounted into the flow cell, water was injected and the 

measurement was continued until a flat baseline was obtained. Then the measurement was 

restarted and after 100 s 200 µL of tannic acid (TA; 2 mg/ml) was injected. 100 s later, 500 µL of 

water was injected to remove the non-adsorbed TA. 100 s later PnPropOx (2 mg/ml in water) was 

injected and after 100 s again 500 µL was injected. This procedure was repeated until a total of 10 

TA/PnPropOx bilayers were deposited. Multilayer assembly below the TCP of the PnPropOx was 

performed in a cold room thermostatted at 15°C while measurements at 45°C were performed by 

placing the equipment and all solutions in an oven thermostatted at 45°C 

 

2.3 UV-VIS spectroscopy 

Quartz slides rinsed with piranha solution to render them more hydrophilic were coated with PEI 

followed by dip coating with alternating TA (2 mg/ml in water) and PnPropOx (2 mg/ml in water). 

After deposition of each bilayer, the absorption spectrum was recorded with a Shimadzu 

spectrophotometer.  

 

2.4. Atomic Force Microscopy (AFM) 

Silicon wafers were manually cleaved into rectangular pieces, cleaned with piranha (3:1 H2SO4/H2O2). 

Similar to the quartz chips a precursor layer was applied by immersing the wafers for 1h in PEI (2 
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mg/ml in water), followed by extensive rinsing. Subsequently the silicon wafers were alternately dip-

coated with TA (2 mg/ml in water) and PnPropOx (2 mg/ml in water), either at 15°C or 45°C. Between 

each step, the wafers were extensively rinsed with water (at the same temperature as the TA and 

PnPropOx solutions) to remove non-adsorbed material. After the desired number of bilayers was 

reached, the coated wafers were dried under a gentle stream of nitrogen.  

 

3. RESULTS AND DISCUSSION  

In a first series of experiments, we monitored the multilayer build-up of TA and PnPropOx using a 

quartz crystal microbalance (QCM) at 15 °C, i.e. below the TCP of the PnPropOx. A gold-coated quartz 

chip (resonance frequency of 10 MHz) was preconditioned by adsorption of mercaptosuccinic acid 

via thiol-gold monolayer formation followed by the deposition of a poly(ethylene imine) precursor 

layer that facilitates the deposition of the first TA layer. This chip was then mounted onto a flow cell, 

water was injected and the QCM measurement was started. After a stable baseline was reached, 

multilayer assembly was initiated by injection of an aqueous TA solution (2 mg/ml in water). 

Immediately, the resonance frequency dropped and levelled off within 100 s after injection of the TA 

solution. Next, the flow cell was flushed with water to remove weakly bound and non-adsorbed TA. 

This was witnessed by a slight increase of the resonance frequency (also equilibrating within 100 s) 

indicating only minor desorption of the adsorbed TA. Subsequently a PnPropOx solution (2 mg/ml in 

water) was injected and again a drop in resonance frequency took place that levelled off within 100 

s. After a washing step, the whole procedure was repeated until a total of 10 TA/PnPropOx bilayers 

were deposited, resulting in a repetitive pattern in the evolution of the resonance frequency thereby 

indicating a steady growth of the multilayer film, as exemplified by the blue curve in Figure 2A. In 

Figure 2 C and D the raw data of the QCM experiments are shown.  

 

In a next series of experiments we assembled TA with PnPropOx above its TCP. The evolution of Δf 

measured during TA/PnPropOx multilayer assembly above the TCP is represented by the red curve in 

Figure 2A. Note that all steps in the assembly process, including the washing steps with water were 

performed at a constant temperature of 45 °C, well above the PnPropOx’s TCP of 25 °C. Figure 2B 

shows a representative expanded part of the QCM signal recorded from multilayer assembly of TA 

and PnPropOx below and above the TCP of the PnPropOx. From these graphs it is clear that also 

above its TCP, PnPropOx can be assembled in a layer-by-layer fashion with TA. Above the TCP, 

PnPropOx is dehydrated and thus in the collapsed globular state. Therefore it is likely that 

hydrophobic interactions become important as well.20, 21 Additionally, catechol-functional molecules 

such as TA are known to have a high affinity for a variety of substrates.13, 22 
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Figure 2. (A) Evolution of the change in resonance frequency (Δf) during multilayer assembly of TA and 

PnPropOx at 15 °C (below the TCP of the PnPropOx; blue curve) and 45 °C (above the TCP of the PnPropOx; red 

curve), respectively. (B) Representative section of the QCM signal measured during the assembly of a 

TA/PnPropOx bilayer below (blue curve) and above (red curve) the TCP of PnPropOx.  (C,D) The raw data of the 

QCM experiments.  

 

Interestingly, the Δf that is measured upon adsorption of a PnPropOx layer above its LCST is 

significantly higher than the Δf measured upon adsorption below its TCP. Table 1 summarizes the 

mean Δf  values for each of the respective adsorption steps (after washing) that are measured during 

TA/PnPropOx multilayer formation at the different assembly temperatures. This suggests that a 

higher mass of polymer is being deposited when the polymer chains adsorb onto the surface in the 

collapsed globular state (which is the case above their LCST), relative to the adsorption of polymers 

in a coiled state (which is the case below their TCP). In contrast, no significant difference in Δf is 

observed for TA adsorption at 15 °C and 45 °C.  
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Table1. Mean frequency shift measured via QCM upon adsorption of TA and PnPropOx, either below or above 

the TCP of PnPropOx. 

 < TCP > TCP 

Δf (TA) 22 ± 60 Hz 42 ± 55 Hz 

Δf (PnPropOx) 67 ± 15 Hz 382 ± 106 Hz 

 

The QCM measurements were fully confirmed by UV-VIS measurements on quartz slides. These data 

(Figure 3) reveal that the absorbance at 210 nm and 280 nm, owing to TA, quasi linearly increases as 

function of the number of bilayers. In agreement with the QCM data, UV-VIS also shows a much 

higher increase in absorbance when the LbL assembly was performed above the TCP of PnPropOx. 

 

 

Figure 3. LbL assembly on quartz slides monitored by UV-VIS.  

 

To further investigate the difference in multilayer assembly of TA/PnPropOx below and above the TCP 

of PnPropOx, we used atomic force microscopy (AFM) to measure the topography of the films after 

respectively 1, 5 and 10 bilayers. Therefore, silicon substrates were pre-treated with piranha solution 

and dipcoated with a poly(ethylene imine) precursor layer followed by LbL deposition of 

TA/PnPropOx, either below or above the TCP. Figure 4 shows 5x5 µm scans (height channel) of 

TA/PnPropOx films below the TCP and 5x5 µm and 50x50 µm scans of TA/PnPropOx films above the 

TCP. All images were recorded in tapping mode in air (i.e. films were in dried state).  
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Figure 4. AFM scans of TA/PnPropOx films below and above the LCST of PnPropOx. 

 

Multilayer films assembled below the TCP of the PnPropOx exhibit a rather smooth granular 

morphology, starting with features of a few nanometers, gradually becoming larger with an 

increasing number of bilayers. In contrast, multilayer films assembled above the TCP of PnPropOx 

exhibit a dramatically different growth mechanism. During the deposition of the first TA/PnPropOx 

bilayer, granules with a height of 30-40 nm are deposited, likely corresponding to collapsed 

PnPropOx globules that adsorb onto the underlying TA layer. After 5 bilayers, the globules have 

merged into more continuous regions with a height ranging from 100-200 nm. Nonetheless, discrete 

regular holes are still present within the film. After 10 bilayers, the uncoated regions have 

disappeared and a smooth film surface remains. The height of the final 10 bilayer TA/PnPropOx film 
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assembled above the TCP of the PnPropOx was determined by measuring the step-height upon 

scratching the film and was measured to be 250 nm (data not shown).   

 

These observation prompt us to assume that the multilayer growth of the TA/PnPropOx system 

above the TCP of PnPropOx occurs through deposition of PnPropOx globules that first form discrete 

islands that steadily grow in lateral direction until a continuous film is formed. Such growth 

mechanism has earlier been reported for electrostatic self-assembly of so-called ‘soft films’ 

composed of highly hydrated polyelectrolytes such as hyaluronic acid and poly-L-lysine.23 However, in 

the present case, the polymers (i.e. PnPropOx) are present in dehydrated globular state. It is 

worthwhile to note that the multilayer films assembled above the TCP of the PnPropOx do not exhibit 

temperature-responsive behavior anymore. Indeed, exposure of the films to water of 15°C does not 

change their mass (as verified by QCM) nor their morphology (as verified by AFM). This rather 

surprising observation is likely to be attributed to the strong interaction between TA and the 

PnPropOx, hampering (partial) dissolution of the multilayer films, despite the presence of pure 

PnPropOx domains resulting from globule deposition.   

 

4.CONCLUSION 

Summarizing we have shown in this chapter the possibility to construct hydrogen bonded films of 

tannic acid and the temperature-responsive polymer poly(2-n-propyl-2-oxazoline). Multilayer growth 

was possible both below and above the TCP of the polymer with distinctly different growth 

mechanisms.  
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CHAPTER 8  

NANOPOROUS HYDROGEN 

BONDED POLYMERIC 

MICROPARTICLES: FACILE AND 

ECONOMIC PRODUCTION OF 

CROSS-PRESENTATION 

PROMOTING VACCINE 

CARRIERS  

1. INTRODUCTION 

Strategies that allow fast and efficient encapsulation of proteins into hydrophilic and fully hydrated 

microparticles are of great interest for a number of applications in biotechnology, diagnostics and 

biomedicine.1-3 When envisioning intracellular delivery of vaccine antigens, such particles are 

particularly advantageous. Particles in the 0.1-10 µm size range mimic the dimensions of micro-

organisms and are consequently readily recognized and internalized by dendritic cells, the main 

antigen presenting cells and inducers of adaptive immunity.4-6 Once internalized, particulate antigens 

will be processed in the phagosomes and presented as MHC-peptide complexes to T cells. Particulate 

antigens are generally presented via MHCI and MHCII, enabling thereby the simultaneous induction 

of CD8 and CD4 T cell responses. In the appropriate inflammatory context, MHCI-peptide stimulated 

CD8 T cells will differentiate into cytotoxic T cells possessing the unique capacity to recognize and kill 

infected or transformed cells. This path of the immune response is termed cellular immunity and is 

thought to be crucial for effective vaccination against intracellular pathogens such as HIV, malaria, 

tuberculosis etc. and for anti-cancer immune therapy.7 CD4 T cells stimulated by MHCII-peptide 

complexes can differentiate into distinct T helper subsets, which support B cells to produce 

antibodies that mobilize innate immune cells to combat pathogens. In contrast to particulate 
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antigens, presentation of extracellular soluble antigens is almost entirely restricted to the MHCII 

pathway. As a consequence, soluble antigens will largely fail to evoke CD8 T cell responses. 

 

 

Scheme 1. Schematic representation of the encapsulation of protein antigen in porous microparticles based on 

H-bonding interacting species. As pore-former mannitol is used which instantaneously dissolves upon 

redisperion in aqueous medium, thereby creating a highly porous matrix. 

 

Thus currently, there is major interest in the development of adjuvant systems that stimulate cellular 

immune responses via formulation in nano- and microparticles.8-15 In this regard it is crucial to use 

materials and procedures that are biologically friendly and scalable from the laboratory to industry. 

Here we present an all aqueous one-step method to produce antigen loaded microparticles using 

hydrogen bonding as driving force for particle assembly. Based on our previous work16-18 using 

oppositely charged polyelectrolytes that assemble via electrostatic interaction,19-21 we apply 

atomization into air of diluted aqueous liquid containing antigen, H-bonding matrix-forming 

components, and mannitol as pore-forming component. This spray drying process yields solid 

microparticles with sub 10 µm dimension, to assure phagocytocis by DCs. Owing to its dry state, this 

formulation has particularly advantages for long time storage and transportation under non-

refrigerated conditions, which is of major importance for pandemic vaccines and vaccines intended 

for the developing world.22 The role of the pore-forming component in the formulation, is to create a 

nanoporous internal network within the microparticles upon redispersion of the particles in aqueous 

medium. As mannitol is highly water-soluble it will immediately dissolve, i.e. leach out of the 

particles, thereby creating porosity. The process to fabricate such microparticles is schematically 

depicted in Scheme 1. Our hypothesis is that microparticles with a nanoporous interior, unlike 
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monolithic particles, allow a more profound diffusion by intracellular proteases upon cellular uptake. 

This is expected to lead to a faster and more efficient processing and presentation of the full antigen 

payload.  

 

As complementary H-bonding components we used tannic acid (TA; Scheme 2A) as hydrogen bond 

donor and poly(N-vinylpyrrolidone) (PVP; Scheme 2B) as hydrogen bond acceptor.23 PVP is a neutral 

polymer that is available as pharma-grade and is allowed by the FDA as excipient for injectables. TA 

and PVP are known to form strong H-bonded complexes that remain stable over a wide pH range.24-26 

Whereas TA has been used for self-asembly,27 including planar multilayer films and capsules via 

hydrogen bonding28-31 and coordination complex formation,32 the fabrication of microparticles by 

simply spraying species that interact via hydrogen bonding has, to the best of our knowledge, not yet 

been reported so far. Importantly, as polycations are generally regarded as cytotoxic, developing 

systems that can replace electrostatic interaction by hydrogen bonding are of strong interest for the 

biomedical field.33, 34 

 

 

Scheme 2. Molecular structure of (A) tannic acid (TA), and (B) poly(N-vinylpyrrolidone) (PVP). 

 

2. MATERIALS AND METHODS 

2.1. Materials 

Poly(N-vinylpyrrolidone) (Kollidon®12) was purchased from BASF. Tannic acid, N-vinylpyrrolidone 

(NVP),  azobisisobutyronitrile (AIBN), fluorescein-o-acrylate, dimethylacetamide (DMA), 

dichloromethane and Hoechst were purchased from Sigma-Aldrich. Mannitol was purchased from 

Cargill. AlexaFluor488 conjugated ovalbumin (OVA-Alexa Fluor488), DQ-OVA and Alexa Fluor647 

conjugated cholera toxin subunit B (CTB-Alexa Fluor647) were purchased from Life Technologies. The 

xanthate CTA [(S)-2-(ethyl propionate)-(O-ethyl xanthate)] was synthesized according to the 

literature procedure.35 
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2.2. Synthesis of fluorescent PVP (PVP-FITC) 

NVP (2 g), xanthate CTA (26.7 mg) [(S)-2-(ethyl propionate)-(O-ethyl xanthate)] and AIBN (5.91 mg) 

and 6 mL anisole were added to a Schlenk flask at a molar ratio of monomer/CTA/AIBN of 150/1/0.3. 

After degassing by 3 freeze-pump-thaw cycles the Schlenk flask was placed in an oil bath set at 60°C 

for 24h. Subsequently, the reaction was quenched by immersion in an ice bath and exposure to air. 

The reaction mixture was then precipitated in hexane, dissolved in dichloromethane and re-

precipitated in hexane for in total 3 times and recovered as a white powder. GC analysis indicated a 

Mn,th of 11.4 kDa (based on conversion) while size exclusion chromatography (SEC) in DMA indicated 

a Mn,SEC = 7.0 kDa and a dispersity (Ð) of 1.27. The reaction scheme is shown in Scheme 3. For 

fluorescent labeling, 50 mg of PVP and 10 mg of fluorescent-o-acrylate were dissolved in 2 mL and 1 

mL of DMF, respectively, in Schlenk flasks. Prior to modification, the two solutions and propyl amine 

were degassed via 4 freeze-pump-thaw cycles.  Subsequently, 1mL of degassed propyl amine was 

added to PVP solution under N2 atmosphere and stirred for 2 h at room temperature to deprotect 

the thiol end-group of the PVP by aminolysis. Next, the excess of propylamine was removed by rotary 

evaporation. The reaction mixture was then again degassed and the fluorescein-o-acrylate solution 

was added by syringe under N2 atmosphere and stirred overnight at room temperature. After dialysis 

against MilliQ water for 4 days and lyophilization, a fluffy orange colored powder was obtained. 

 

SEC was performed on a Agilent 1260-series HPLC system equipped with a 1260 online degasser, a 

1260 ISO-pump, a 1260 automatic liquid sampler, a thermostated column compartment, a 1260 

diode array detector (DAD) and a 1260 refractive index detector (RID). Analyses were performed on a 

PSS Gram30 column in series with a PSS Gram1000 column at 50 oC. DMA containing 50 mM of LiCl 

was used as eluent at a flow rate of 0.593 mL/min. The spectra were analyzed using the Agilent 

Chemstation software with the GPC add on. Molar mass and dispersity (Ð) values were calculated 

against PMMA standards.  

 

2.3. Quartz Crystal Microbalance 

QCM measurements were performed on a Gamry eQCM equipped with an ALS flow cell. Gold coated 

quartz chips were first coated by 1h immersion in an aqueous solution of mercaptosuccinic acid (2 

mg/mL) followed by extensive rinsing with water. Secondly, the quartz chip was immersed into an 

aqueous PEI solution (2 mg/mL) for 1h and again extensively washed with water and dried under a 

gentle nitrogen stream. Next, the chip was mounted into the flow cell, water was injected and the 

measurement was started and continued until a flat baseline was obtained. Then the measurement 

was restarted and after 100 sec 200 µL of tannic acid (TA; 2 mg/mL in water) was injected. 100 sec 
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later, 500 µL of water was injected to remove the non-adsorbed TA. 100 sec later PVP (2 mg/mL in 

water) was injected and after 100 sec again 500 µL of water was injected. This procedure was 

repeated until a total of 10 TA/PVP bilayers were deposited.  

 

2.4. Preparation of TA/PVP microparticles via spray drying 

Mannitol, PVP, OVA and TA were mixed in water in a 40/5/1/5 ratio and a total solid concentration of 

0.5%. Three different adding sequences were evaluated. First sequence: 400 mg of mannitol, 10 mg 

of OVA and 50 mg of PVP were dissolved in 92 ml water. Subsequently 10 mL water containing 50 mg 

TA was added dropwise under stirring. Second sequence: 400 mg mannitol and 50 mg PVP were 

dissolved in 90 mL water, then 10 mL water containing 50 mg TA was added dropwise followed by 

the addition of 2 mL water containing 10 mg OVA. Both additions proceeded under stirring. Third 

sequence: 400 mg mannitol and 10 mg OVA were dissolved in 82 ml water. Next 10 mL water 

containing 50 mg of TA was added dropwise followed by the addition of 10 ml of water containing 50 

mg of PVP. Both additions proceeded under stirring. Fluorescently labelled particles were prepared 

using either a mixture of OVA with Alexa Fluor488 conjugated ovalbumin or PVP with PVP-

fluorescein, both in a 10:1 ratio. Spray drying was performed with a lab-scale Büchi B290 spray dryer 

equipped with a  two fluid nozzle (0.7 mm diameter). The setting of the inlet temperature was 120°C 

and gas flow 0.55 bar. The mixtures were fed via a peristaltic feed pump at a feed flow of 2.4 ml/min. 

Dry powder was collected. 

 

2.5. Encapsulation efficiency 

The quantification of encapsulation efficiency was determined by resuspending a known amount of 

microspheres (OVA-Alexa Fluor488, PVP-fluorescein microspheres and non-labelled microspheres to 

measure respectively OVA, PVP and TA encapsulation) in phosphate buffered saline (PBS) followed by 

centrifugation and measuring the amount of non-encapsulated OVA-Alexa Fluor488, PVP-fluorescein 

or TA in the supernatant. For OVA-Alexa Fluor488 and PVP-fluorescein this was done via fluorescence 

spectrometry using a Perkin-Elmer Envision multilabel plate reader. TA concentration was measured 

via UV-VIS spectrophotometry at 280 nm. 

 

2.6. Particle characterization 

Laser diffraction was performed on a Malvern Mastersizer equipped with an 300RF objective. 

Scanning Electron Microscopy (SEM) was conducted on a Quanta 200 FEG FEI scanning electron 

microscope. Samples were sputtered with a palladium-gold layer prior to imaging. Transmission 

electron microscopy was performed on a JEOL 1010 instrument. Porosity of the particles was 
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assessed using ImageJ (NIH) by binarizing the TEM images followed by calculating the ratio of black to 

white pixels within a circular region of interest which comprises the microparticle section. Confocal 

microscopy was conducted on a Leica SP5 microscope equipped with a 63X oil immersion objective. 

DC2.4 cells were plated a density of 50 000 per well in 8 well Ibidi chambers and incubated overnight 

with 5 µL of a 25 mg/mL microparticle suspension. CTB-Alexa Fluor647 and Hoechst staining was 

performed according to the manufactures’ instructions.  

 

2.7. In vitro and in vivo experiments 

2.7.1. Cell lines and animals 

C57BL/6 mice were obtained from Janvier. OT-I transgenic mice (C57BL/6) were purchased from 

Harlan. Mice were housed under specific-pathogen-free conditions. All animal experiments were 

approved by the Local Ethical Committee of Ghent University. The immortalized mouse dendritic cell 

line DC2.4 was a kind gift from Prof. Dr. Ken Rock (Dana-Farber Cancer Institute, Boston, MA, USA). 

Bone-marrow-derived DCs were generated by flushing tibia and femurs of 2–4 months old C57BL/6 

mice. After red blood cell lysis, cells were cultured in complete RPMI (Roswell Park Memorial 

Institute) medium containing 20 ng/mL GM-CSF (granulocyte macrophage colony-stimulating factor) 

for 6–8 days.  

 

2.7.2. Cell toxicity assay 

The cytotoxicity of the spray dried particles was assessed according to De Koker et al.36 DC2.4 cells 

were grown and seeded in 96 well plate at a density of 5 x 103 cells/well and incubated with different 

concentrations of the respective samples for 6 hours. Afterwards, the medium was refreshed and 

cells were cultured for another 48 hours. Medium was removed and MTT (3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazolium bromide) was added. MTT is reduced by mitochondrial dehydrogenases 

of living cells into an insoluble purple formazan dye. After 3 hours of incubation at 37°C, cells are 

solubilized by dimethylsulfoxide (DMSO) and the released, solubilized formazan is measured 

spectrophotometrically at 590 nm. The absorbance is a measure of the viability of the cells.  

 

2.7.3. In vitro antigen-presentation assay 

Cell suspensions of OVA-specific CD8 T cells were prepared from spleen and lymph nodes from OT-I 

mice. Single cell suspensions were prepared, and CD8 T cells were isolated from the suspensions 

using Dynal mouse CD8 negative isolation kit (Invitrogen) according to the manufacturers’ 

instructions and subsequently labeled with CFSE (carboxyfluorescein diacetate succinimidyl ester). 

DCs obtained from bone marrow of C57BL/6 mice were pulsed with serial dilutions of the respective 
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samples (corresponding to 0.2, 2 and 5µg/ml OVA) for 24 h, washed, counted and subsequently co-

cultured with OT-I T cells at different DC:T cell ratios (1:5; 1:10; 1:20 and 1:100) for 48 h in round 

bottomed well plates. After 48 h, the division of the OT-I T cells was measured by flow cytometry 

using a BD LSR II. 

 

2.7.4. Readout of in vivo antibody response (ELISA) 

Mice were subcutaneously vaccinated twice with a 3 week interval with 100 μL containing 20 μg of 

either soluble or encapsulated OVA. For the detection of anti-OVA antibodies, blood samples were 

collected from the ventral tail vein. Maxisorp (Nunc) plates were precoated with OVA (10 mg/ml) 

overnight. Wells were blocked with 200 µL PBS 1% (w/v) bovine serum albumin (BSA) (Sigma Aldrich) 

for 2 hours at room temperature. Serial dilutions of serum in PBS 1% BSA were added and incubated 

for 2 hours at room temperature. Subsequently goat anti-mouse IgG1-HRP (Southern Biotech; HRP= 

horseradish peroxidase) and goat anti-mouse IgG2c-HRP (Southern Biolabs) diluted in PBS (1/5000) 

was added for 1 hour at room temperature. Plates were washed 3 times between each step with PBS 

0.1% Tween20 (Sigma Aldrich). Peroxidase activity was measured using 50 µL/well TMB substrate (BD 

OpteiaTM, BD biosciences) and optical densities were read at 450 nm after stopping the reaction by 

adding 25 µL/well 1M H2SO4. Data show antibody titers of individual mice. 

 

2.7.5. Readout of in vivo cellular response (ELISPOT) 

Splenocytes were harvested three weeks after the booster immunization. Suspensions of 2 x 105 

splenocytes were cultured onto IFN-γ ELISPOT plates (Diaclone) in triplicate and restimulated with 5 

mg/mL of either the OVA MHCI epitope peptide SIINFEKL or the OVA MHCII epitope peptide 

ISQAVHAAHAEINEAGR (both Anaspec) and incubated for 24 hours at 37°C in a CO2 incubator.  

Medium alone (100µL) or concanavolin A (100 µL, 2 µg/ml) were used as negative or positive 

controls, respectively. Then, biotinylated detection antibody was added  and incubated at room 

temperature for 1 h 30 min and subsequently 100 µL/well of streptavidin-AP(Alkaline phosphatase) 

conjugate was added and incubated for 1 hour at room temperature.  Plates were washed 3 times 

between each step with PBS 0.05% Tween20 (Sigma Aldrich). Alkaline phosphatase activity was 

determined using 100 µL/well BCIP/NBT (5-bromo-4-chloro-3-indolyl-phosphate/nitro blue 

tetrazolium)  substrate and spots were developed after a 5-10 minutes incubation period. The 

frequency of the resulting coloured spots were counted using an Immunospot ELISPOT reader (AID).  
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2.7.6. Tetramer staining 

To determine the percentage of OVA-specific CD8 T cells post immunization, 200 µl blood of 

immunized mice was collected by tail bleeding. After lysis of red blood cells (ACK red blood cell lysis 

buffer), cells were stained with OVA-specific dextramers (Immudex) according to the manufacturer’s 

instruction. Subsequently, cells were stained with Fc block, CD8 PerCP, CD3-Pacific blue and CD19-

APC-Cy7 (all BD Biosciences) and analysed on a BD LSRII flow cytometer. 

 

3.  RESULTS AND DISCUSSION 

3.1. Assembly of nanoporous hydrogen bonded microparticles 

In this study, we used commercially available PVP, branded as Kollidon®12, which is available as 

endotoxin-free grade. As stated by the manufacturer, it has a molecular weight of 2-3 kDa, which was 

determined in our lab by SEC to be Mn,SEC 1.8 kDa (Ð = 1.89), relative to PMMA standards, for that 

specific lot which was used during the whole study. As the molecular weight of the polymer is 

considerably lower compared to polymers that are commonly used in multilayer build up (i.e. 

typically around 50 kDa), we evaluated whether this PVP was capable to form stable assemblies with 

TA via Quartz Crystal Microbalance (QCM). Therefore, a gold coated quartz chip was pre-conditioned 

by adsorption of a monolayer of mercaptosuccinnic acid, inducing a negative surface charge, 

followed by a cationic poly(ethylene imine) (PEI) layer to promote further Layer-by-Layer (LbL) 

assembly. Subsequently, the multilayer build-up was started by injecting TA into the flow cell, 

followed by an adsorption time of 100 s to reach a stable value of the resonance frequency. A rinsing 

step with demi water was applied to remove non-adsorbed and weakly adsorbed TA from the flow 

cell and next PVP was injected. Immediately a drop in resonance frequency took place that levelled 

of within 100 s, then again followed by a washing step with demi water to remove unadsorbed and 

weakly adsorbed species. This procedure was repeated until a total of 10 TA/PVP bilayers was 

assembled. The raw data of the QCM signal shown in Figure 1A, depicts a steady decrease of the 

resonance frequency upon every adsorption step, with only a minor increase in resonance frequency 

upon each rinsing step. When plotting the evolution of resonance frequency as function of the 

number of deposited layers (Figure 1B), a linear decrease is observed indicating successful 

consecutive LbL build-up. These findings were confirmed by monitoring multilayer assembly (with 

intermittent drying) on quartz substrates with UV-VIS spectroscopy (data not shown). More general, 

this means that PVP with a relatively low molecular weight is able to form stable hydrogen bonded 

complexes with TA. These data are in accordance to earlier reports, albeit that PVP with a 

significantly higher molecular weight was used.24 
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Figure 1. (A) QCM trace during assembly of a 10 TA/PVP bilayer film. (B) Decrease of the resonance frequency 

(Δf) as function of the deposition steps. 

 

Encouraged by these findings, we proceeded with evaluating the formation of TA/PVP microparticles 

via an atomization-evaporation (i.e. spray drying) set up. Previously we have reported on the 

formation of porous particles composed of oppositely charged polyelectrolytes that form a stable 

complex via electrostatic interaction.16-18 Proteins such as vaccine antigens and enzymes could, very 

efficiently, be entrapped within this polyelectrolyte network and key in assuring preservation of the 

biological activity of these proteins was the use of mannitol as pore-forming component mixed with 

the polyelectrolytes and proteins prior to spray drying.17 Mannitol is FDA approved and highly water-

soluble, thereby immediately dissolving and leaching from the particles upon redispersion in aqueous 

medium. Additionally, mannitol is often used in the pharmaceutical industry to enhance the overall 

yield of the spray drying process due to its excellent flow properties.37 Therefore, in the current 

study, we prepared a diluted aqueous dispersion of mannitol, PVP and TA under constant stirring to 

avoid the formation of large precipitates. The ratios of these components were chosen based on our 

previous findings for polyelectrolyte based microparticles.16, 17 The mixture was fed to the nozzle of 

the spray drier and atomized into a heated air stream. After evaporation of the water, the resulting 

solid particles were collected via a cyclone and stored for further studies.  
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Figure 2. (A) Scanning electron microscopy images of the microparticles obtained in dry state after spray 

drying. (B) Size distribution of the microparticles measured by laser diffraction after redispersion in aqueous 

medium. (C) Optical microscopy image of TA/PVP microparticles upon redispersion of the solid spray dried 

powder in aqueous medium. (D) Transmission electron microscopy images (recorded from microtomed epoxy-

embedded microparticles), depicting the high internal porosity of the microparticles after redispersion in 

water. 

 

3.2. Particle characterization 

The obtained microparticles were characterized in the dry state by scanning electron microscopy 

(SEM) and after rehydration in aqueous medium by laser diffraction and transmission electron 

microscopy (TEM). The SEM images in Figure 2A demonstrate that spherically shaped microparticles, 

with diameters in the dry state below 10 µm, are obtained via the spray drying process. Optical 

microscopy (Figure 2C) verifies that the microparticles remain stable upon redispersion in phosphate 

buffered saline (PBS) without agglomerating or disassembling, indicating that the hydrogen bonds 

between the TA and PVP are strong enough to form stable particles in water. This is further 

confirmed by laser diffraction in wet state, showing a monomodal particle size distribution between 

1-10 µm and a volume mean particle diameter of 4.02 ± 0.25 µm (Figure 2B). Analysis of the SEM 

images by Image J yielded a number mean particle diameter of 1.04 ± 0.65 µm. This is markably 

lower than the size distribution obtained via laser diffraction. However it is important to consider the 

fact that laser diffraction was measured on particles in a swollen hydrated state whereas SEM was 

performed on dry particles. Additionally the volume mean diameter calculated by laser diffraction is 

strongly affected by larger particles, which thus accounts for the larger mean diameter measured by 

laser diffraction relative to the number mean diameter measured by SEM. These are important 
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findings in view of applying these particles as intracellular vaccine carriers where particle sizes below 

10 µm are required for efficient phagocytosis by antigen presenting cells. To assess the internal 

structure of the TA/PVP microparticles, they were embedded in an epoxy matrix and cut into 

ultrathin slices via ultramicrotomy. Subsequent TEM imaging revealed a highly porous internal 

structure as depicted in Figure 2D.  

 

The porosity of the microparticles and the role of mannitol to induce this porosity was further 

verified by comparing SEM images (Figure 3) before and after redispersion in water. These 

observations unambiguously proves the formation of a highly porous internal network structure 

within the TA/PVP microparticles after removal of mannitol. Image analysis of the TEM images on 20 

individual particles revealed a pore volume of 36 ± 11 %. 

 

Figure 3. Scanning electron microscopy (SEM) images of microparticles spray dried with and without mannitol. 

The particles were images in native (i.e. after spray drying) state (left panels) and after resuspension in water, 

triple centrifugation washing to remove soluble compounds and finally freeze drying to preserve as much as 

possible the morphology of the particles (right panels).  

 

In a next series of experiments we investigated to which extend such TA/PVP microparticles can 

encapsulate protein antigens. Therefore, ovalbumin (OVA; chicken egg albumin with a molecular 

weight of ∼43 kDa) was used as model antigen. Ovalbumin is a relatively inert antigen containing 

both a MHCI and a MHCII peptide epitope recognized in the C57BL/6 mice strain. In addition, a large 

set of murine-based immunological tools are available to characterize the performance of OVA-based 

vaccine formulations. OVA was added to the aqueous mixture of TA, PVP and mannitol prior to spray 
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drying. As TA will also partly complex to OVA via a combination of hydrogen bonding and 

hydrophobic interactions,38 we analyzed whether the sequence of mixing OVA , TA and PVP prior to 

spray drying (Table 1) has an influence on the extent to which OVA will be retained within the 

microparticles upon redispersion in aqueous medium (i.e. as ‘encapsulation efficiency’). 

 

Table 1. Composition of the OVA formulations. 

 

 

Scheme 3. Reaction scheme of the RAFT/MADIX polymerization of NVP and subsequent fluorescent labeling via 

thio-ene chemistry of the thiol end-group to the acrylate group of fluorescein acrylate. 

 

To measure to which extend OVA remains entrapped within the TA/PVP matrix upon redispersion of 

the particles in aqueous medium (i.e. phosphate buffered saline (PBS)), we centrifuged the 

microparticles and determined the OVA concentration in the supernatant. Therefore, we used 

fluorescently labelled (i.e. Alexa Fluor488) OVA as the presence of TA would interfere with every 

available protein assay. Additionally, to provide full characterization of the particles also the release 

of TA and PVP in the supernatant was measured. Owing to its multitude of aromatic groups, TA can 

easily be detected by UV-VIS spectroscopy. Fluorescently labelled PVP was synthesized via 

RAFT/MADIX polymerization39 followed by end group modification with fluorescein.  

 

As depicted in Scheme 3, this labeling was performed by aminolysis of the xanthate group of the PVP, 

resulting from the chain transfer agent, into a thiol and subsequent Michael addition type thiol-ene 

conjugation with fluorescein-o-acrylate.40 To assess whether the fluorescein group was indeed 

conjugated to the polymer, size exclusion chromatography (SEC) analysis was performed using a 

diode array detector (DAD). As shown in Figure 4, the UV-VIS absorption spectra recorded at the 

Sequence     ratio (wt.%) 

1 mannitol OVA PVP TA 40/1/5/5 

2 mannitol PVP TA OVA 40/5/5/1 

3 mannitol OVA TA PVP 40/1/5/5 
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retention times of PVP clearly reveal the co-elution of fluorescein with the PVP proving the covalent 

linkage.  

 

Figure 4. SEC trace with DAD detector of PVP before and after conjugation with fluorescein-o-acrylate. 

 

To measure the encapsulation efficiency of respectively the protein, TA and PVP, the microparticles 

were redispersed in phosphate buffered saline (PBS) followed by vigorous mixing and centrifugation. 

Next the supernatant was withdrawn and measured to determine the content of the respective 

components. Figure 5 summarizes the encapsulation efficiency of the different formulations, 

expressed as the fraction (in %) of the respective components present in the feed mixture prior to 

spray drying, that is retained within the microparticles upon redispersion in PBS. These data show 

that PVP and TA remain largely entrapped within the microparticles upon redispersion in PBS, 

irrespective of the sequence in which the components are mixed, as in all cases only  ∼10 % of TA 

and PVP is released in the medium. However, the encapsulation efficiency of OVA strongly depends 

on the mixing sequence. On average 80 % of the OVA is retained within the microparticles when TA is 

added last. In the other two cases, a significantly lower amount of OVA (i.e. 20 – 30 %) remains 

entrapped within the microparticles upon redispersion in PBS. When TA is added last, the TA will 

complex simultaneously with OVA and PVP, allowing a better interaction of the OVA with TA 

compared to the situation where PVP and TA are mixed prior to addition of OVA. In this case, the 

strong interaction of PVP with TA likely hampers further complexation of TA with OVA. Why mixing 

TA with OVA prior to addition of PVP results in a low encapsulation efficiency is less clear. Possibly, 

TA-bound OVA becomes displaced when a large excess of a PVP is added, forming predominantly TA-
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PVP complexes (as all three routes yield similar values for the entrapment of TA and PVP) and 

prevents stable entrapment of OVA into the microparticles upon spray drying.  

 

Figure 5. Encapsulation efficiency of PVP, TA and OVA within the porous microparticles upon redispersion in 

phosphate buffered saline. Three different mixing sequences of the components were evaluated. (*: p<0.05). 

 

We also found that the microparticles remain relatively stable during prolongued incubation at 

physiological conditions (i.e. PBS buffer (pH 7.4 and 0.15 M NaCl), 37 °C), with only a minor fraction 

of OVA and TA being released from the microparticles (Figure 6). 
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Figure 6. Retention of tannic acid (TA) and ovalbumin (OVA) as function of time within the porous 

microparticles upon redispersion in phosphate buffered saline.  
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3.3. In vitro evaluation 

3.3.1.Cellular uptake 

Subsequently, TA/PVP(OVA) microparticles were evaluated in a series of in vitro assays. First, we 

assessed whether these particles can be internalized by dendritic cells (DCs). Therefore DC2.4 cells 

were incubated with microparticles containing green fluorescently labelled OVA-Alexa Fluor488. 

Confocal microscopy was used to visualize particle uptake. To unambiguously discriminate between 

internalized particles and particles sticking to the cell wall we counterstained cell nuclei with Hoechst 

and the cell membrane with Alexa Fluor646 conjugated cholera toxin subunit B. By focusing the 

confocal plane on both the cell nuclei and cell membrane it is straightforward to consider particles as 

being internalized when they fall between the enclosure of the cell membrane. As shown in Figure 

7A via flow cytometry and in Figure 7B via confocal microscopy, the microparticles are massively 

internalized by DCs.   

 

 

Figure 7. (A) Flow cytometry histograms of DC2.4 cells pulsed in vitro with microparticles (containing Alexa 

Fluor488-conjugated OVA). (B) Confocal microscopy image of DC2.4 cells pulsed with OVA/PVP/TA 

microparticles. Note that the other particles yielded similar images.  Cell nuclei were stained blue with Hoechst, 

the cell membrane with AF647-conjugated cholera toxin subunit B and microparticles containing Alexa 

Fluor488-conjugated OVA (green fluorescence). 

 

3.3.2.Cytotoxicity 

Next, we assessed whether these particles and their components exhibit any cytotoxic effect (Figure 

8). For this purpose, DC2.4 dendritic cells were incubated with different concentrations of 

microparticles  and their respective individual constituents. Culture medium and DMSO were used as 

respectively negative and positive controls. Mannitol, OVA and PVP induced no cytotoxicity even at 

elevated concentrations as high as 1 mg/mL. TA does show cytotoxicity at 1 mg/mL and 0.1 mg/mL, 



CHAPTER 8: NANOPOROUS HYDROGEN BONDED POLYMERIC MICROPARTICLES: FACILE AND ECONOMIC PRODUCTION 

OF CROSS-PRESENTATION PROMOTING VACCINE CARRIERS 

 

152 
 

but not at 0.01 mg/mL. The microparticles on their turn only showed toxicity at 1 mg/mL 

concentrations. However, it has to be noted that at these elevated concentrations, the cells in the 96 

well plate are fully covered with particles, thereby limiting diffusion of nutrients and mechanically 

damaging the cells. Obviously, the in vivo situation will be different, not involving the above 

mentioned constraints and thereby likely to be tolerant to relatively high particle concentrations. 

 

Figure 8. Cell viability measured by MTT assay performed on DC2.4 cells of the microparticles and their 

respective components. Pure cell culture medium and DMSO were used as negative and positive control, 

respectively. (n=6, technical replicates; *: p <0.05). 

 

3.3.3. Cross-presentation of encapsulated antigen 

To assess whether encapsulation of OVA in TA/PVP microparticles via spray drying still allows OVA to 

be processed upon cellular uptake and, particularly, whether cross-presentation to CD8 T cells is 

promoted, we performed an in vitro CD8 T cell presentation assay. For this purpose, mouse bone 

marrow derived DCs were pulsed with different concentrations of either soluble or encapsulated 

OVA and subsequently co-cultured with OT-I cells. OT-I cells are CD8 T cells isolated  from transgenic 

mice having a single T cell receptor recognizing the MHCI epitope of OVA(SIINFEKL). Prior to culturing 

them with DCs, OT-I cells are fluorescently labelled with CFSE, which is a membrane permeable dye 

that becomes metabolized into a non-membrane permeable variant by cytoplasmic enzymes. If OVA 
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is presented by DCs via MHCI, CFSE labelled OT-I cells will start to divide. Monitoring the decrease of 

the fluorescence from mother to daughter OT-I cells by flow cytometry offers a means to measure 

the quality of antigen cross presentation. 

 

Figure 9A depicts the gating strategy applied to assess transgenic CD8 T cell proliferation. Cells were 

first gated on living cells, then on T cells and subsequently on CD8 T cells. The flow cytometry 

histograms in Figure 9B correspond to a DC to T cell ratio of 1:20, and clearly indicates that soluble 

OVA fails to induce OT-I proliferation at any of the tested OVA concentrations. The graph in Figure 9C 

shows that at all DC:T cell ratios addressed, only marginally response to soluble OVA was detectable. 

Additionally, we verified that empty (i.e. non-OVA containing) microparticles did not induce T cell 

proliferation by themselves (Figure 10). Contrary, encapsulated OVA strongly induced T cell 

proliferation with a clear dose-dependent trend being observed on the flow cytometry histograms 

for both antigen concentration and DC to T cell ratio. Indeed, OVA concentrations as low as 0.2 

µg/mL induced T cell division only to a slight extend. Higher OVA concentrations such as 2 µg/mL 

induced strong T cell division for DC to T cell ratios of 1/20 and less. The quantification of T cell 

proliferation (i.e. percentage of divided OT-I cells) shown by the graphs in Figure 9C for different OVA 

concentrations and different DC:T cell ratios confirms the trends observed in the flow cytometry 

histograms, showing a dramatic increase in T cell proliferation when DCs were pulsed with 

encapsulated versus soluble OVA. Subtle differences are visible between the different types of 

microparticles with PVP/OVA/TA particles eliciting superior T cell proliferation at an OVA 

concentration of 2 µg/mL. However the same trend is not observed at 5 µg/mL. This again attributes 

to the importance of engineering soluble antigens into a particulate form to enhance the cross-

presentation efficiency of exogenous antigen to CD8 T cells. 
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Figure 9. (A) Flow cytometry gating strategy to assess OT-I cell proliferation. (B) Flow cytometry histograms of 

OT-I proliferation in response to co-culturing with DCs pulsed with soluble OVA or encapsulated OVA at 

different OVA concentration. The OT-I cell to DC ratio 1:20. In (C) Quantitative representation of OT-I cells 

division as shown in the gating strategy in panel (A).  
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Figure 10. Flow cytometry histograms of OT-I proliferation in response to co-culturing with DCs pulsed with 

empty particles and OVA loaded particles (i.e. PVP/OVA/TA). The OT-I cell to DC ratio 1:20 and the OVA 

concentration was 2 µg/mL. 

 

3.4. In vivo evaluation 

Once confirmed in vitro that encapsulation of antigen in TA/PVP particles still allows antigen to be 

processed and presented by DCs to T cells, we aimed to assess the capability of our vaccine 

formulation strategy to enhance the antigen-specific cellular and humoral immune responses in vivo. 

As the PVP/OVA/TA particles exhibited the highest OVA encapsulation efficiency (thus providing a 

more defined system), and were most potent in stimulating CD8 T cell proliferation in vitro, we 

restricted the experimental set-up for the in vivo experiments to only one microparticle formulation, 

thereby also reducing the turnover of laboratory animals. Mice (in cohorts of 5) were immunized 

with either soluble OVA or encapsulated OVA following a prime-boost scheme with a 3 week time 

interval. To compare the performance of the hydrogen bonded microparticles with the electrostatic 

bond microparticles described earlier in this work, we evaluated both PVP/OVA/TA and 

DS/OVA/PLARG microparticles. Subsequently, the humoral immune response was quantified by 

measuring anti-OVA antibody titers in serum via enzyme-linked immunosorbent assay (ELISA), while 

the cellular immune response was quantified by measuring OVA-specific CD8 T cells in blood samples 

and the induction of INF-γ secreting CD4 and CD8 T cells in the spleen. Figure 11A summarizes the 

experimental set-up. As shown in Figure 11B, relative to soluble antigen, the IgG1 and IgG2c antibody 

titers for the polyelectrolyte microparticulate formulation were significantly enhanced after prime 

(Figure 11B1 and B3) and booster immunization (Figure 11B2 and B3). In case of the hydrogen 

bonded based microparticles, only IgG1 titers were significantly enhanced after prime and booster 

immunization. Only a very small booster effect is visible for the hydrogen bonded based 

microparticles, while in the case of the polyelectrolyte microparticle formulation the booster effect is 
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even absent for both antibody titers. The exact reason for this event remains unclear and needs to be 

investigated in future research. Tetramer staining on blood samples (Figure 11C) showed an 

significant increase in CTLs in the bloodstream for polyelectrolyte microparticles as well as for the 

hydrogen bonded microparticles compared to soluble OVA. Between the two different 

microparticles, the polyelectrolyte microparticles outperform the hydrogen bonded microparticles, 

especially after the booster immunization.  ELISPOT (Figure 11D) analysis of the spleens showed that 

also the numbers of both IFN-γ secreting CD4 and CD8 T cells were significantly increased when mice 

were vaccinated with encapsulated (polyelectrolyte and hydrogen bonded microparticles) rather 

than soluble antigen, with primarily the CD8 T cell arm of the immune response being enhanced. 

When comparing the microparticles with each other, the number of IFN-γ secreting CD4 and CD8 T 

cells were significantly increased for the polyelectrolyte microparticles compared to the hydrogen 

bonded microparticles.  

 

To investigate the underlying reason for lower induced immune responses for the hydrogen bonded 

PVP/OVA/TA microparticles, we compared the extend of OT-I CD8 T cell proliferation, when DCs 

were pulsed with antigen formulated in either hydrogen bonded PVP/OVA/TA microparticles versus 

electrostatic bound DS/OVA/PLARG microparticles. Cytokine secretions (IFN-γ, IL-12, IL-13 and IL-17) 

measured in the supernatant of the DC-T cell co-cultures (Figure 12), was strongly increased in the 

microparticles group – both electrostatically and hydrogen bonded – relative to soluble OVA. As 

mentioned in Chapter 6, the cytokines IFN-γ, IL-13 and IL-17, are secreted by Th1, Th2 and Th17 cells 

respectively. During the induction of an adaptive immune response, IL-2 is produced by activated 

CD4 and CD8 T cells and is responsible for their proliferation. Overall, the electrostatic bonded 

DS/OVA/PLARG microparticles exhibit superior performance in terms of antigen presentation. 
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Figure 11. (A) Schematic representation of the experimental set-up of the immunization protocol and read out 

of the humoral and cellular immune response. (B) Antibody titers in serum. (C) Tetramer positive CD8 T cells in 

blood. (D) INF-γ secreting CD4 and CD8 T cells in the spleen. (n=5; *: p <0.05))  

 

To investigate whether enzymatic processing of the encapsulated antigen would be more efficient 

when encapsulated in electrostatic bound microparticles rather hydrogen bonded microparticles, we 

prepared particles loaded with DQ-OVA. DQ-OVA is a fluorogenic protease substrate, comprising 

ovalbumin that is strongly labeled, leading to fluorescence quenching. Upon proteolysis of DQ-OVA 

into dye-labeled fragments, the fluorescence quenching is alleviated and bright green fluorescence 

emerges. Figure 13 depicts the increase in fluorescence intensity as function of time when pronase (a 

mixture of proteases) is added to soluble DQ-OVA and DQ-OVA formulated in hydrogen bonded or 

electrostatic bound microparticles. From these kinetics it is clear that antigen formulated in 

electrostatic bound DS/PLARG microparticles is processed to a much higher extend than in case of 

hydrogen bonded TA/PVP microparticles. Thus it is reasonable to assume that the encapsulated 

antigen is too strong complexed to the TA and/or that TA inactivates the enzymatic activity of the 

proteases. 
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Figure 12. (A) Quantitative representation of OT-I cells division in response to co-culture of OT-I cells and DC 

that were pulsed with soluble OVA, PVP/OVA/TA or DS/OVA/PLARG microparticles. (B) Cytokine secretion 

measured by ELISA in the supernatant of the DC – T cell co-cultures.  
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Figure 13. Enzymatic processing of DQ-OVA in soluble form or formulated in hydrogen bonded PVP/TA or 

electrostatic bound DS/PLARG microparticles. 

 

4.  CONCLUSION 

In conclusion we have shown in this chapter that spray drying of TA and PVP with mannitol is a facile, 

efficient and cheap method to encapsulate co-spray dried vaccine protein antigens. Due to the strong 

hydrogen bond interaction between TA and PVP the particles retain their spherical morphology upon 

redispersion in aqueous medium, and stably entrap their payload. Importantly, mannitol acts as 

pore-forming component leading to a nanoporous internal structure of the microparticles. 

Furthermore, TA/PVP particles are non-cytotoxic, are efficiently phagocytosed by DCs in vitro and 

strongly promote cross-presentation to CD8 T cells in vitro. Immunization experiments in mice have 

shown that encapsulation of vaccine protein antigens promotes, relative to soluble antigen, the 

antigen-specific humoral and cellular immune response in vivo.  

 

Compared to vaccine nano- and microparticle formulations that contain in addition to antigen also 

molecular adjuvants (i.e. molecular adjuvants such as Toll like receptor agonists (e.g. CpG and MPLA)) 

that strongly activate antigen presenting cells, the observed immune responses are still modest and 

is at the moment still outperformed by electrostatic bound polyelectrolyte microspheres. To address 

this issue, specially engineered components that exhibit less strong hydrogen bonding could offer a 

solution. Taken together, we believe that this type of delivery system has the potential to be further 

developed for (co)formulation of immune-stimulating cues, clinically relevant antigens against 

intracellular pathogens and for anticancer immune therapy. Additionally, as a dry powder 

formulation is produced, this formulation avoids the cold chain, thereby offering potential for the 

formulation of pandemic vaccines or vaccines intended for the developing world that both suffer 

from logistic issues under refrigerated conditions.  
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SUMMARY AND GENERAL 

CONCLUSIONS 

Throughout the years, vaccines have become more and more important in preventing infectious 

diseases. According to the world health organization, vaccination saves every year 2 to 3 million lives. 

Eliciting potent cellular and humoral responses will be the key for the development of the next 

generation of vaccines against global killers like HIV, malaria and tuberculosis. Unfortunately, the 

currently licensed adjuvants fail in this task. By formulating vaccine antigens in particulate, rather 

than in soluble form, dramatically boosts the induction of cellular immunity, especially the 

generation of cytotoxic T cells (CTLs) that can recognize and eliminate infected or malignant cells. The 

underlying reason for this is that particulates (50 nm – 5 µm) are regarded by the immune system as 

being potentially pathogenic. Compared to soluble antigen, this leads to different routes of cellular 

uptake, processing and presentation to T cells. However, despite their high potential, 

microparticulate vaccine formulations did not yet reach the market. The reason for this can be 

attributed to the harsh conditions to which antigen is exposed during formulation, as well as the 

requirement of multiple batch operations with inherent difficulties for up scaling. 

 

In this thesis a straightforward and scalable method to formulate vaccine antigens into microparticles 

is presented. This generic strategy is based on atomizing protein antigen mixed with oppositely 

interacting species and a pore-forming component into a hot air stream, leading to the production of 

solid microparticles. The latter can be redispersed in aqueous medium forming a stable 

microparticulate suspension. The rationale for designing porous particles was that this would 

facilitate inwards diffusion of intracellular proteases and thereby enhance antigen processing and 

presentation. 

 

In CHAPTER 1, an introduction about the immune system was given. The crucial role of dendritic cells, 

the different pathways  of cross-presentation as well as the failure of current vaccine strategies were 

discussed into detail. 

 

CHAPTER 2 evaluates the applications of polymeric multilayer capsules (PMLC) as vaccine delivery 

systems. These PMLC are fabricated by layer-by-layer coating of interacting species onto a sacrificial  

template followed by the decomposition of this template, yielding hollow capsules. The route of 
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internalization and the intracellular localization of the capsules were described. Different triggers 

such as pH, enzymatic degradation and shift from oxidative and reductive environment were 

reviewed as release mechanisms of an encapsulated payload. Additionally, in vitro and in vivo 

interactions between PMLC and immune cells after pulmonary or subcutaneously delivery were 

addressed showing a high potential of PMLC for vaccine delivery purposes. 

 

These PMLC have not reached the industrial market due to constraints regarding their multistep 

assembly procedure. Therefore in CHAPTER 3, procedures to simplify and automatize LbL assembly 

were discussed. Spray-based approaches were highlighted and in particular the spray drying process 

was described into detail. Finally, applications in pharmaceutical industry of spray drying were 

mentioned.  

 

In CHAPTER 4, we reported on the design of porous polyelectrolyte microspheres by spray drying 

ovalbumin (OVA) as model antigen in combination with the oppositely charged polyelectrolytes 

dextran sulfate as polyanion and poly-L-arginine as polycation, together with calcium carbonate 

nanoparticles as a pore-forming component. The thus obtained solid microspheres showed an 

average size of 6 µm and a ζ-potential of -6.8 mV and remained stable upon resuspension into 

aqueous medium. Resuspending these solid microspheres in an EDTA solution leads to extraction of 

the  CaCO3 nanoparticles and yielded porous microspheres as evidenced by various microscopy 

techniques. These porous microspheres have a ζ-potential of -18 mV and show a similar size to the 

solid ones. By using confocal microscopy and green fluorescent ovalbumin, we could demonstrate 

that the antigen was retained within the polyelectrolyte framework and quantify an encapsulation 

efficiency of 94±1% and 85±1% for the solid and porous microspheres respectively. These are higher 

encapsulation efficiencies compared to a typical 50% encapsulation efficiency reported earlier for the 

hollow polyelectrolyte microcapsules. In vitro experiments with mouse bone marrow derived 

dendritic cells showed that the microspheres were efficiently internalized into acidic intracellular 

vesicles.  

 

In CHAPTER 5,  we used mannitol instead of CaCO3
NP as sacrificial component to co-spray dry with the 

polyelectrolytes. In the case of CaCO3
NP an additional step to remove the core template (i.e. 

dissolving in an EDTA solution) is needed, while mannitol is a biocompatible and highly water soluble 

pore-forming component and does not need to be removed from the formulation prior to use. These 

particles showed to be stable upon resuspension in aqueous medium, having a mean diameter of 7 

µm and an encapsulation efficiency of 99 ± 1% for ovalbumin (i.e. model antigen). Furthermore, 
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XRPD revealed a change in the crystallographic state of mannitol after spray drying. Crude mannitol is 

crystalline, while mannitol after spray drying in combination with polyelectrolytes showed an 

decrease in crystallinity, rendering amorphous mannitol which favors protection of the encapsulated 

protein. By measuring the enzymatic catalytic activity of an enzyme, HRP, that was spray dried 

instead of OVA, we could prove that the biological activity was barely influenced by the spray drying 

process. Like the CaCO3
NP microspheres, these mannitol based microspheres became internalized by 

dendritic cells into intracellular acidic and transmission electron microscopy showed the 

polyelectrolyte microspheres to be deformed intracellularly as function of time. Finally, we were able 

to demonstrate that the encapsulated OVA was still available for cross-presentation as a peptide-

MHCI complex after internalization by DCs.  

  

In CHAPTER 6, we explored the effect of formulation and process parameters on the microparticulate 

vaccine formulations. The relative amount of mannitol that was added before spray drying has an 

influence on particle recovery, particle integrity and encapsulation efficiency. Subsequently, the 

sequence of mixing mannitol, OVA, DS and PLARG before spray drying was investigated and was 

found to influence the ζ-potential and the spatial distribution of the antigen. Both positively and 

negatively loaded particles were efficiently internalized by DCs, did not show cytotoxicity and 

promote cross-presentation to CD8 T cells in vitro. In vivo experiments in mice showed that upon 

subcutaneous injection, the microparticles only induced a mild tissue response. Finally, relative to 

soluble OVA, OVA encapsulated in the microparticles enhanced serum antibody titers and splenic T 

cell responses.  

 

In the field of polymeric self-assembly, hydrogen bonding, as an alternative to electrostatic assembly, 

is witnessing increased popularity. In CHAPTER 7 we reported on the assembly of multilayer films of 

tannic acid and neutral poly(2-oxazolines) via hydrogen bonding. Using the temperature-responsive 

polymer poly(2-(n-propyl)-2-oxazoline), we were able to demonstrate that LbL assembly was possible 

both below and above the cloud point temperature of the polymer.  

 

CHAPTER 8 further elaborates on hydrogen bonding as driving force for self-assembly and reports on 

the synthesis of antigen-loaded microparticles based on hydrogen-bonding between tannic acid and 

poly(N-vinylpyrrolidone). In a first step, the formulation of stable assemblies between the two 

components were assessed. Next TA and PVP were spray dried in combination with mannitol as a 

sacrificial component. After extraction of mannitol upon resuspension in aqueous medium, the 

microspheres remained stable and showed a mean diameter of 4 µm with a highly porous internal 
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structure. Since OVA can interact with TA, the sequence of mixing OVA, TA and PVP had an influence 

on the encapsulation efficiency. Independent on the mixing sequence, TA and PVP remained within 

the microparticles. On the other hand, the encapsulation efficiency of OVA was influenced by the 

mixing sequence. When TA was added last, the highest encapsulation efficiency (i.e. 80%) was 

obtained, likely due to the simultaneously complex formation between TA, OVA and PVP. When 

mixing first TA and PVP, complexes are already formed, which impedes further complexation when 

adding OVA. Also, we could demonstrate that the spray dried TA/PVP particles were efficiently taken 

up by DCs, did not show cytotoxicity and promote cross-presentation to CD8 T cells in vitro. Finally 

IgG1 and IgG2c antibody titers as well as tetramer positive CD8 T cells and IFN-γ producing CD4 and 

CD8 T cells were augmented in mice immunized with the spray dried particles compared to soluble 

antigen. Thus, the encapsulation of vaccine protein antigens in particular form elicits antigen-specific 

humoral and cellular immune response in vivo in contrast to soluble antigen. However the observed 

immune responses are still modest and the electrostatic bound DS/OVA/PLARG microparticles 

outperform the hydrogen bonded PVP/OVA/TA microparticles.  

 

As a general conclusion, the vaccine formulation technology developed in this thesis allows to 

formulate vaccine antigens into microparticles in an easy and scalable way, with a minimum of batch 

steps and at a high encapsulation efficiency with minimal loss of biological activity. Importantly, a dry 

powder formulation avoids the cold chain transport and improves storage stability. Current 

limitations of the technology is the fact that the components used in the formulation still need to 

pass regulatory affairs. Additionally, particle size strongly influences the efficiency at which particles 

are internalized in vivo by antigen presenting cells, with submicron sized particles being much more 

efficient than larger ones.  Therefore a major challenge remains the downsizing of the particles into 

the nanoscale which is extremely tough to realize with current spray drying technology.  

 

Additionally proper evaluation with the current state-of-the art adjuvants has to be done, preferably 

using clinically relevant antigens. As the newer licensed vaccine adjuvants are mostly combination 

products and thus co-formulation with other immune-potentiating components, such as different 

Toll-like receptor agonists or saponins, there are opportunities for co-formulation of antigen and 

these adjuvants via our nanoporous micoparticle technology. In addition to mannitol, also other 

sugar compounds such as trehalose or sorbitol could be evaluated as stabilizing pore formers.  
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SAMENVATTING EN ALGEMEEN 

BESLUIT 

In de loop van de jaren, hebben uitgebreide vaccinatiecampagnes een enorme impact gehad op het 

voorkomen en zelfs uitroeien van infectieuze ziektes. Volgens de Wereldgezondheidsorganisatie, 

redt vaccinatie jaarlijks 2 tot 3 miljoen levens. Het opwekken van krachtige cellulaire en humorale 

responsen wordt geacht de sleutel te zijn in de ontwikkeling van de volgende generatie vaccins tegen 

mondiale doodsoorzaken zoals HIV, malaria en tuberculose. Helaas falen de huidige adjuvantia in 

deze opdracht. Door vaccin antigenen te formuleren in de vorm van nano- of micropartikels, in plaats 

van in een oplosbare vorm, kan de cellulaire immuunrespons drastisch verhoogd worden, in het 

bijzonder het opwekken van cytotoxische T cellen. Deze cellen kunnen geïnfecteerde of verkankerde 

cellen herkennen en vernietigen. De onderliggende reden hiervoor is dat partikelvormig materiaal 

(50 nm -5 µm) door het immuunsysteem mogelijks als pathogeen wordt beschouwd. Wanneer dit 

wordt vergeleken met de antigenen in oplosbare vorm, leidt dit tot andere routes in cellulaire 

opname, het verwerken en presenteren aan T cellen. Niettegenstaande hun groot potentieel, 

hebben microparticulaire vaccinformulaties tot op heden de markt nog niet bereikt. De reden 

hiervoor is te wijten aan de vaak extreme condities waaraan een antigen wordt blootgesteld tijdens 

formulatie, evenals aan de meerdere tijdrovende processtappen die nodig zijn voor het aanmaken 

van nano- of micropartikels. Deze stappen gaan uiteraard gepaard met moeilijkheden bij het 

opschalen.   

 

In deze doctoraatsthesis wordt een vereenvoudigde en schaalbare methode om vaccin antigenen in 

micropartikels te formuleren voorgesteld. Deze algemene strategie is gebaseerd op het vernevelen in 

een warme luchtstroom van een eiwitantigen in combinatie met tegengestelde interagerende  

polymeren samen met een porievormende component. Dit leidt tot de vorming van vaste 

micropartikels, die bij toevoeging van water een stabiele microparticulaire suspensie vormen. De 

achterliggende reden om poreuze partikels te ontwerpen was dat dit de inwaartse diffusie van 

intracellulaire proteasen zou vergemakkelijken en daardoor de  antigenverwerking en presentatie 

verbeteren.  

 

HOOFDSTUK 1  geeft een algemene inleiding over het immuunsysteem. De cruciale rol van dendritische 

cellen (DCs), de verschillende trajecten in kruispresentatie, evenals het falen van de huidige vaccin 

strategieën werden in detail besproken.  
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HOOFDSTUK 2 evalueert de toepassingen van polymeer microcapsules als vaccin toedieningssysteem. 

Deze polymeer microcapsules worden aangemaakt door het coaten op een tijdelijke kern van 

interagerende polymeren via de ‘layer-by-layer’ (LbL) techniek, gevolgd door het verwijderen van de 

desbetreffende tijdelijke kern, waardoor holle capsules bekomen worden. De cellulaire 

internaliseringsroute en de intracellulaire lokalisatie van de capsules werd beschreven. Verschillende 

triggers, zoals pH, enzymatische degradatie en verschuiving van een oxidatieve naar een 

reducerende omgeving werden besproken als mechanismen om de ingekapselde inhoud vrij te 

geven. Bovendien werden in vitro en in vivo interacties tussen PMLC en immuun cellen na 

pulmonaire of subcutane toediening behandeld. Hierbij werd aangetoond dat PMLC een groot 

potentieel als vaccinatie toedieningssysteem bezitten.  

 

Deze polymeer microcapsules hebben het klinisch stadium nog niet bereikt wegens beperkingen 

omtrent hun aanmaakprocedure. Aangezien die bestaat uit meerdere processtappen werd er in 

HOOFDSTUK 3 aandacht besteed aan procedures om de LbL aanmaak te vereenvoudigen en te 

automatiseren. De nadruk werd gelegd op methodes die gebaseerd zijn op sproeien en meer 

specifiek werd het sproeidroogproces in detail beschreven. Tenslotte werden toepassingen van 

sproeidrogen in de farmaceutische industrie vermeld.  

 

In HOOFDSTUK 4, werden poreuze polyelektroliet microsferen geproduceerd door het sproeidrogen 

van ovalbumine (OVA) als modelantigen in combinatie met de tegengestelde geladen 

polyelektrolieten (dextraan sulfaat als polyanion en poly-L-arginine als polykation) en 

calciumcarbonaat nanopartikels (CaCO3
NP) als porievormende component.  De aldus verkregen vaste 

microsferen hadden een gemiddelde grootte van 6 µm en een zetapotentiaal van -6.8 mV. Tevens 

bleven ze stabiel na hersuspensie in waterig midden. Het hersuspenderen van deze vaste 

microsferen in een EDTA oplossing leidt tot de extractie van de calciumcarbonaat nanopartikels en 

leverde poreuze microsferen op zoals blijkt uit verscheidende microscopische technieken. Deze 

poreuze microsferen hadden een zetapotentiaal van -18 mV en een grootte vergelijkbaar aan de 

solide microsferen.  

 

Met behulp van confocale microscopie en groen fluorescent ovalbumine, konden we aantonen dat 

het antigen werd vastgehouden binnen het polyelektroliet netwerk. Een inkapselingsefficiëntie van 

94±1% en 85±1% werd respectievelijk voor de vaste en poreuze microsferen berekend. Deze 

inkapselingsefficiënties zijn hoger vergeleken met de holle polyelektroliet microcapsules. Voor deze 

laatste werd er tijdens vroeger onderzoek typisch een 50% inkapselingsefficiëntie vermeld. In vitro 
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experimenten met dendritische cellen afkomstig van muisbeenmerg toonden aan dat de microsferen 

efficiënt geïnternaliseerd werden in zure intracellulaire vesikels.  

 

In HOOFDSTUK 5 gebruikten we mannitol in plaats van CaCO3
NP als tijdelijke component om te co-

sproeidrogen met de polyelektrolieten. In het geval van CaCO3
NP  is een extra stap vereist om de 

tijdelijke kern te verwijderen, namelijk het oplossen in een EDTA oplossing. Mannitol daarentegen is 

een biocompatibele en een zeer goed water oplosbare porievormende component en hoeft voor 

gebruik niet uit de formulatie  verwijderd worden. Deze partikels zijn stabiel na hersuspensie in 

waterig midden, hebben een gemiddelde diameter van 7 µm en een inkapselingsefficiëntie van 99 ± 

1% voor ovalbumine (d.w.z. het modelantigen).  

  

Bovendien toonde XRPD een verandering aan in de kristallografische staat van mannitol na 

sproeidrogen. Doorgaans is mannitol kristallijn, terwijl mannitol na sproeidrogen in combinatie met 

polyelektrolieten een daling in kristalliniteit vertoonde, en zo amorf mannitol opleverde. Dit is een 

gunstig effect voor de bescherming van het ingekapselde eiwit. Door de enzymatische katalytische 

activiteit van een enzym, HRP, – dat gesproeidroogd was in plaats van OVA–  te meten konden we 

aantonen dat de biologische activiteit nauwelijks beïnvloed werd door het sproeidroogproces. Net 

zoals de CaCO3
NP microsferen, werden de microsferen die gebaseerd waren op mannitol 

geïnternaliseerd door dendritische cellen in de intracellulaire zure vesikels. Transmissie elektronen 

microscopie toonde aan dat de polyelektroliet microsferen intracellulair vervormd werden in functie 

van de tijd. Tenslotte konden we bewijzen dat het ingekapselde OVA nog steeds beschikbaar was 

voor kruispresentatie als een peptide:MHCI complex na internalisering door DCs.  

 

In HOOFDSTUK 6, onderzochten we het effect van formulatie en procesparameters op de 

microparticulaire vaccin formulaties. De relatieve hoeveelheid mannitol die werd toegevoegd voor 

sproeidrogen beïnvloedde de opbrengst na sproeidrogen, de partikelintegriteit en de 

inkapselingsefficiëntie. Vervolgens werd de volgorde van toevoegen van mannitol, OVA, DS en PLARG 

onderzocht en dit bleek een invloed te hebben op de ζ-potentiaal en de ruimtelijke distributie van 

het antigeen. Zowel positief als negatief geladen partikels werden efficiënt opgenomen door 

dendritische cellen, vertoonden geringe celtoxiciteit en bevorderden kruispresentatie aan CD8 T 

cellen in vitro.  Verder toonden in vivo experimenten in muizen aan dat een milde weefselreactie 

werd waargenomen na subcutane injectie van de micropartikels. Tenslotte, verhoogde OVA 

ingekapseld in micropartikels relatief gezien t.o.v. OVA in oplosbare vorm, serum antilichaam titers 

en T cel responsen van de milt.  
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Op het gebied van polymeer ‘self-assembly’, wint waterstofbrugbinding, als een alternatief voor 

elektrostatische aanmaak, aan populariteit. In HOOFDSTUK 7, werden films bestaande uit meervoudige 

lagen van tannine en neutrale poly(2-oxazolines) via waterstofbrugbinding geproduceerd. Door 

gebruik te maken van het temperatuurgevoelige polymeer poly(2-(n-propyl)-2-oxazoline) konden we 

aantonen dat ‘layer-by-layer’ techniek mogelijk was zowel onder als boven de fasetransitie 

temperatuur van het polymeer. 

 

In HOOFDSTUK 8 werd er verder ingegaan op waterstofbrugbinding als drijvende kracht voor polymeer 

‘self-assembly’. Antigenen ingekapseld in micropartikels die gebaseerd zijn op waterstofbrugbinding 

tussen tannine en poly(N-vinylpyrrolidone) (PVP) werden aangemaakt. In een eerste stap werd er 

nagegaan of er stabiele verbindingen tussen beide componenten werd bekomen. Daarna werden 

tannine en PVP gesproeidroogd in combinatie met mannitol als de porievormende component. Na 

hersuspensie in waterig midden, wat leidt tot de extractie van het mannitol bleven de microsferen 

stabiel. Een gemiddelde diameter van 4 µm werd gemeten en een zeer poreuze interne structuur 

werd waargenomen. Aangezien OVA kan interageren met tannine, had de volgorde van toevoegen 

van OVA, tannine en PVP een invloed op de inkapselingsefficiëntie. Tannine en PVP werden niet 

beïnvloed door de volgorde van toevoegen en bleven vastgehouden binnen de micropartikels. 

Anderzijds werd de inkapselingsefficiëntie van OVA wel beïnvloed door de volgorde van toevoegen. 

Wanneer tannine als laatste werd toegevoegd, werd de hoogste inkapselingsefficiëntie bekomen 

(d.w.z. 80%). Dit is waarschijnlijk te wijten aan de gelijktijdige complexvorming tussen tannine, OVA 

en PVP. Bovendien konden we ook aantonen dat de gesproeidroogde tannine/PVP partikels efficiënt 

werden opgenomen door dendritische cellen, geringe cytotoxiciteit vertoonden en kruispresentatie 

aan CD8 T cellen in vitro bevorderden. Tenslotte waren zowel IgG1 en IgG2c antilichaam titers als 

tetrameer positieve CD8 T cellen en IFN- γ producerende CD4 en CD8 T cellen verhoogd in muizen die 

geïmmuniseerd waren met de gesproeidroogde partikels ten opzichte van antigeen in oplossing. Dus, 

de inkapseling van vaccin eiwitantigenen in particulaire vorm verhoogde het opwekken van antigen-

specifieke humorale en cellulaire immuun responsen in vivo in vergelijking met antigenen in 

oplosbare vorm. Toch zijn de waargenomen immuunresponsen maar matig en de elektrostatisch 

gebonden DS/OVA/PLARG micropartikels presteerden beter dan de waterstofbrug gebonden 

PVP/OVA/TA micropartikels 

 

Samengevat, de vaccin formulatie technologie die in deze doctoraatsthesis werd ontwikkeld, laat toe 

om vaccin antigenen in micropartikels te formuleren op een gemakkelijke en schaalbare manier. 

Deze techniek vereist uiterst weinig processtappen en vertoont een hoge inkapselingsefficiëntie met 

een minimaal verlies aan biologische activiteit. Door het als droog poeder te formuleren, kan de 
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koude keten voor het  transport vermeden worden en verbetert de stabiliteit bij het bewaren. Deze 

technologie heeft op dit moment als beperking dat de componenten in deze formulatie nog de 

regelgevende wetgeving moeten passeren. Bovendien beïnvloedt de deeltjesgrootte sterk de 

efficiëntie waarmee in vivo de partikels  geïnternaliseerd worden door de antigen presenterende 

cellen. Partikels met een submicron grootte worden efficiënter opgenomen dan grotere partikels. 

Daardoor blijft het een grote uitdaging om de partikels te verkleinen tot op de nanoschaal. Dit is 

echter uitermate moeilijk te realiseren met de huidige sproeidroogtechnologie.  

 

Verder dient de encapsulatie van de allernieuwste adjuvanten, met voorkeur voor klinisch relevante 

antigenen onderzocht te worden. Meer nog, de meest recent vergunde vaccin adjuvanten zijn vaak 

combinatieproducten en dus co-formulatie met immuun stimulerende componenten, zoals de 

verschillende Toll-like receptor agonisten of saponines, geven mogelijkheden om een antigen met 

deze adjuvanten via onze nanoporeuze micropartikel technologie te co-formuleren. Verder, kan 

naast mannitol andere suikercomponenten zoals trehalose of sorbitol geëvalueerd worden als 

stabiliserende poriënvormers. 
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