
 

Gent, May 2010 

To my parents. 

谨以此博士论文感谢我最敬爱的爸爸妈妈  . 

 

Jingxing MA 

马静星 

 
  



 

 

 
 
 
 
 
 

 

Promoter  :  Prof. dr. ir. Willy VERSTRAETE 

Department of Biochemical and Microbial Technology 
Laboratory of Microbial Ecology and Technology 
Faculty of Bioscience Engineering 
University of Gent 

Dean  :  Prof. dr. ir. Guido VAN HUYLENBROECK 

Rector  :  Prof. dr. Paul VAN CAUWENBERGE 
 



                 

I

LABOR
                                             

STRAT

IN VIEW

Thesis s

FACULT

RATORY O
                                           

TEGIES T

W OF PRO

submitted 
Docto

LTY OF BIO

F MICROB
                                             

ACADEM

 TO ENHA

OCESS S

Jin

in fulfillme
or (PhD) in 

OSCIENCE

BIAL ECO
                                             

MIC YEAR 20

ANCE AN

STABILIT

ngxing M

ent of the re
Applied Bi

 

E ENGINE

OLOGY AN
                                             

009‐2010

NAEROB

TY AND 

MA 

equirement
iological Sc

EERING 

ND TECHN
                             

BIC DIGE

 METHA

ts for the d
iences 

NOLOGY 
               

ESTION 

ANATION

degree of 

           

 

N 

 



Dutch translation of the title: 

Strategieën  voor  hogere  processtabiliteit  en  methaanvorming  bij 
anaerobe vergisting 

The work presented  in  this  thesis was performed  at  the  Laboratory  of Microbial 
Ecology  and  Technology  within  the  Department  of  Biochemical  and  Microbial 
Technology,  and  supported  by  Milieu‐  en  Energietechnologie  Innovatieplatform 
(MIP‐Project). 

ISBN      978‐90‐5989‐374‐0 

The author and the promoter give the authorization to consult and to copy parts of 
this work  for personal use only. Every other use  is  subject  to  the copyright  laws. 
Permission  to reproduce any material  contained  in  this work should be obtained 
from the author. 

Designed by LISMAS 



 
 

Exam committee 

Prof. dr. ir. Willy VERSTRAETE 
Laboratory of Microbial Ecology and Technology 
University of Gent, Belgium 

Prof. dr. ir. André PAUSS 
Group of Integrated Transformations of Renewable Resources 
University of Technology de Compiègne, France 

Prof. dr. ir. Nico BOON 
Laboratory of Microbial Ecology and Technology 
University of Gent, Belgium 

Prof. dr. ir. Marta CARBALLA 
Department of Chemical Engineering 
University of Santiago de Compostela, Spain 

Prof. dr. ir. Jan PIETERS 
Department of Biosystems Engineering 
University of Gent, Belgium 

Prof. dr. ir. Peter GOETHALS 
Department of Applied Ecology and Environmental Biology 
University of Gent, Belgium 

Chairman 

Prof. dr. ir. Herman VAN LANGENHOVE 
Department of Organic Chemistry 
University of Gent, Belgium 
 
   



 
 
 
   



 

NOTATION INDEX 



Strategies to enhance anaerobic digestion in view of process stability and methanation 
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NOTATION INDEX 

Volatile fatty acids 
 

CH3COOH  Acetic acid 
CH3CH2COOH  Propionic acid 
CH3CH2CH2COOH  Butyric acid 
HCOOH  Formic acid 

Gaseous compounds 

CH4  Methane 
CO2  Carbon dioxide 
H2  Hydrogen 
H2S  Hydrogen sulfide 
N2  Nitrogen 

Engineering parameters 

COD  Chemical oxygen demand  g COD L‐1 
CODS  Soluble chemical oxygen demand  g COD L‐1 
CODT  Total chemical oxygen demand  g COD L‐1 
DM  Dry matter  g DM L‐1 
DS  Dry solid content  % 
EHPr  Propionic acid removal efficiency  % 
HRT  Hydraulic retention time  day; hour 
OLR  Organic loading rate  g COD L‐1 d‐1 
RHPr  Propionic acid removal rate  g HPr‐COD L‐1 d‐1 
SRT  Solid retention time  day; hour 
SVI  Sludge volume index  mL L‐1 
TKN  Total kjeldahl nitrogen  g L‐1 
TS  Total solid  g TS L‐1 
TSS  Total suspended solid  g TSSL‐1 
VFA  Volatile fatty acid  g L‐1 
VFAT  Total volatile fatty acids  g L‐1 
VS  Volatile solid  g VS L‐1 
VSS  Volatile suspended solid  g VSS L‐1 
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Notation index 2 

 

Text abbreviations 

CHP  Combined heat and power generator 
CODH  Carbon monoxide dehydrogenase 
CSTR  Continuous stirred tank reactor 
DOC  Dissolved organic carbon 
EDTA  Ethylenediaminetetraacetic acid 
EPAD  Enhanced propionic acid degradation system 
FDH  Formate dehydrogenase 
HAc  Acetic acid 
HC  High conductivity 
HPr  Propionic acid 
KW  Kitchen waste 
MSW  Municipal solid waste 
OFMSW  Organic fraction of municipal solid waste 
NTA  Nitrilotriacetic acid 
SODM  Superoxide dismutase 
POB  Propionate oxidizing bacteria 
PS  Primary sludge 
SRB  Sulfate reducing bacteria 
TOC  Total organic carbon 
UASB  Upflow anaerobic sludge bed reactor 
WAS  Waste activated sludge 
WWTP  Wastewater treatment plant 
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CHAPTER I 

GENERAL INTRODUCTION 

As early as 18th century, a natural process, anaerobic digestion, came into our view. 

Since then, the research of this process went deeper and deeper together with the growth 

of science, and today, this exploration is still going on... 
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1.1 BACKGRAOUND OF ANAEROBIC DIGESTION 

1.1.1 Scientific background 

Anaerobic digestion is a fermentation process in the absence of oxygen, in which 
organic material is degraded by microorganisms. At the same time, biogas, composed of 
mainly methane (CH4) and carbon dioxide (CO2), is produced (Singh and Prerna, 2009). 
This process is carried out by series of metabolic interactions among a large and varied 
group of bacteria and archaea, which normally live in a symbiotic relationship 
(Cardinali-Rezende et al., 2009). 

Theoretically, anaerobic digestion obeys to straightforward stoichiometry, which 
means the degradation of organic matter and the amount of CH4 production can be 
calculated based on the Buswell equation, as Eq.1.1 (Ekama, 2009): 

    Eq. 1.1 

However, complex organic materials are not converted in one step to form CH4 
and CO2. A whole series of microorganisms, each with a limited fermentation capability, 
gradually break down the molecules in a multi-step process of series and parallel 
reactions (Figure 1.1). 

In general, anaerobic digestion is composed out of three elementary biological 
processes: hydrolysis, acidogenesis (also known as acidification or fermentation) and 
methanogenesis, where acetogenesis and methanogenesis happen simultaneously 
(Gavala et al., 2003). 

The digestion processes begin with the enzymatic hydrolysis of the input organic 
polymers: conversion of the complex, undissolved material (e.g. carbohydrates), into 
less complex and soluble compounds. This is followed by the acidification where these 
dissolved compounds are further broken down into a number of simple compounds, 
such as volatile fatty acids (VFAs). The acetogens then convert these resulting VFAs 
into acetic acid (HAc), along with additional hydrogen (H2) and CO2. Simultaneously, 
CH4 is formed by acetotrophic methanogens from HAc and by hydrogenotrophic 
methanogens from H2 and CO2, of which the association is energetic related (Table 1.1) 
(Pavlostathis and Giraldo-Gomez, 1991). 
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Figure 1.1 Schematic overview of the metabolic steps involved in the complete 
degradation of complex organic molecules into CH4 (after Siegrist et al., 1993). 

Table 1.1 Reactions of methanogenic pathways and associated free energy per reaction 
(after Schink, 1997; McInerney, 1999; Winter, 1999; Aiyuk, 2004). 
 Reaction Products △Gº’ (kJ)
 CO2 + 4H2 CH4 + 2H2O -135.6 
Methanogenesis 4HCOOH CH4 + 3CO2 +2H2O -130.1 
 CH3COOH CH4 + CO2 -31.0 

Without H2 used 
by methanogens 

CH3COO- + 4H2O 2HCO3
- + H+ + 4H2 +104.6 

CH3CH2COO- + 3H2O CH3COO- + HCO3
- + H+ + 3H2 +76.1 

CH3CH2 CH2COO- + 2H2O 2CH3COO- + H+ + 2H2 +48.3 

With H2 used by 
methanogens 

4CH3CH2COO- + 3H2O 4CH3COO- + HCO3
- + H+ + 3CH4 -102.4 

2CH3CH2 CH2COO- + HCO3
-+ H2O 4CH3COO- + H+ + CH4 -39.4 
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10,000 to 100,000 IE (Tsagarakis et al., 2003; Nowak, 2006). As a part of an integrated 
waste management system, the most striking advantages of anaerobic digestion are the 
lower production of excess sludge based on the chemical oxygen demand (COD) 
utilization (0.04 g CODbiomass g-1 CODremoved) (Tomei et al., 2009) and the energy 
recovery through the biogas production (theoretically around 0.5 L g-1 CODremoved). 
From an applied point of view, it has a relevant smaller footprint area (0.01-0.05 m2 per 
IE), compared to the conventional aerobic system (0.2-0.5 m2 per IE) (Kalogo, 2001). 
Moreover, as a waste treatment technology, anaerobic digestion decreases the organic 
waste fraction to be disposed and the diffusive uncontrolled CH4 emission. Therefore, it 
can be an alternative for other waste management processes (e.g. landfill). 

1.1.3 Biogas: the glamour of anaerobic digestion today 

Because of the energy crisis due to the depletion of finite resources of fossil fuels, 
the advanced waste management strategies set the priority of waste recovery through 
reuse and recycling, which means that the wastes should be an energy provider and not 
an energy consumer (Meher et al., 2006; Fytili and Zabaniotou, 2008). Therefore a 
change of energy source from fossil fuels to biogas, a clean and renewable form of 
energy, can have important beneficial effects on waste management options. 

Up to date, the only technology that has been shown to be capable of extracting the 
renewable energy from waste streams on a commercial scale is anaerobic digestion, 
which thus has become a major focus of interests (Pham et al., 2006). The most 
important biogas components are CH4 (55-65%), CO2 (35-45%), sulfur components 
(H2S) (0-1%), nitrogen (N2) (0-3%), and H2 (0-1%) (Balat and Balat, 2009), though CH4 
percentages vary due to the organic wastes composition, as shown in Figure 1.3. 

 
Figure 1.3 Biogas composition depending on the mean oxidation state of the carbon in 
substrate, assuming total substrate mineralization (after Gujer and Zehnder, 1983). 
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1.2 LIMITING FACTORS OF ANAEROBIC DIGESTION 

1.2.1 Hydrolysis 

In solid wastes, the dissolved organic carbon (DOC), which is readily accessible 
for the acidogens and methanogens, is typically very low (less than 15%) compared to 
the total organic carbon (TOC) (Kan, 2009). Furthermore, the enzymatic hydrolysis 
rates of the biopolymers under anaerobic conditions are very slow, as listed in Table 1.2. 
As a result, the anaerobic digestion of solid wastes is often limited by very long solid 
retention times (SRT) (20-30 days) and low overall degradation efficiencies (30-50%) 
(Lin et al., 2009). Therefore researches have been focused on pre-treatment technologies 
to enhance the solid hydrolysis (see section 1.3.3). 

Table 1.2 Average hydrolysis rates (KH) of different organic substrates at 34-40ºC, 
based on first order kinetics: ܥ ൌ ଴ܥ ൈ ݁ି௄ಹ௧ (after Gujer and Zehnder, 1983). 

1.2.2 Methanogenesis 

For microorganisms growing on soluble substrates, the specific growth rate (μ) and 
the maximum cell yield (Ymax) are related to the substrate affinity (KS), the maximum 
growth rate (μmax), the substrate concentration (C) and the cellular decay coefficient (Kd) 
(Denac et al., 1988; Buffiere et al., 1998). In a mature steady-state anaerobic process, a 
balanced microbial community should be established. Methanogenesis is normally 
considered as the rate-limiting step in anaerobic digestion of dissolved organics. This is 
due to the much slower growth rate of methanogens compared to acidogens (Table 1.3) 
and their higher sensitivity towards the operational conditions (e.g. pH, temperature, etc) 
(Speece, 1996; Veeken and Hamelers, 2000). Specially, the thermodynamic reactions of 

Biopolymer Hydrolysis products Enzymes involved KH (d-1) 

Lipids 
Fatty acid 

Lipase 
0.4-0.6 

Glycerol 0.1-1.7 
Alcohol 0.08 

Proteins 
Polypepty 

Protease 
Peptidase 

0.02 
Oligopetide 0.03 
Amino acid  

 Polysaccharide 
Cellulase 

0.04 
Cellulose Oligosaccharide 0.1 

 Glucose  

Hemi-cellulose 

Polysacharide 

Hemi-cellulase 
Xylanase 

0.54 
Oligosacharide  

Hexose  
Pentose  



Strategies to enhance anaerobic digestion in view of process stability and methanation 

 24 

the methanogens are often energetically unfavorable for both the acetotrophic 
methanogens and the hydrogenotrophic methanogens, of which the associated energy is 
strongly affected by the hydrogen partial pressure (Table 1.1). 

Table 1.3 Growth kinetics parameters of acidogens and methanogens with different 
substrates (after Denac et al., 1988). 

 

1.2.3 Propionic acid accumulation 

VFAs are important intermediary compounds in the metabolic pathways of 
methane fermentation. A proper balance between the production and consumption of 
VFAs is essential for a stable process (Li and Noike, 1992; Wang et al., 1999), since the 
accumulation of VFAs inhibits not only methanogenesis, but also hydrolysis (Veeken 
and Hamelers, 2000; Chen et al., 2008). 

Up to 30% of all the produced CH4 potentially originates from the COD fraction of 
propionic acid (HPr). The acetogenesis of HPr is only possible, if the hydrogen partial 
pressure is kept between 10-6-10-4 bar (De Bok et al., 2004). Obligate H2 producing 
acetogens, H2 consuming methanogens and acetate consuming methanogens are all 
involved in propionate degradation (Figure 1.4).  

 
Figure 1.4 Three groups of microorganisms involved in propioniate degradation. 

Microorganisms Substrate 
μmax Y Kd

 KS
 

(h-1) (g biomass g-1 CODremoved) (d-1) (g L-1) 
Acidogens Monomers 0.05 0.036 0.8 0.14 

Methanogens 
Acetate 0.014 0.029 0.02 0.17 

Propionate 0.013 0.014 0.01 0.06 
Butyrate 0.015 0.029 0.03 0.5 
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Several causes of HPr accumulation have been suggested: the sensitivity of the 
propionate oxidizing bacteria (POB) against pH below 7.0 (Barredo and Evison, 1991), 
the nutrients deficiency (Espinosa et al., 1995; Osuna et al., 2004), and the inhibition by 
the temperature change either in a slow but continuous way or as an immediate response 
(Dohanyos et al., 1985; Ahn and Forster, 2002; Lindorfer et al., 2008). Since the real 
cause of the HPr accumulation has not been clarified, the accumulation and degradation 
of HPr are still the bottlenecks of anaerobic digestion. 

1.2.4 Low biogas yield 

Currently, more than 4500 biogas plants are under operation in Europe (Balat, 
2008). If only aimed at the energy production, the operation is considered to be highly 
profitable when biogas yields are higher than 30 m3 m-3 biomass treated (approximate 
CH4 yield of 20 m3 m-3 biomass treated) (Angelidaki and Ellegaard, 2003), although it 
is also dependent on the local green energy policy and price (Europe: by average 0.15 € 
kWhgreen-electricity

-1) (Karpenstein-Machan, 2001; Walla and Schneeberger, 2008; Munster 
and Lund, 2009). 

Therefore, for the waste streams with biogas potential lower than this value, 
construction of large centralized biogas plants for combined anaerobic treatment is more 
desirable due to the lower capital costs (Angelidaki and Ellegaard, 2003). Meanwhile, 
several studies have also been focusing on the methods to enhance the biogas yields, 
which might offer the economical possibility of additional income from energy 
production in case of local community-scale digesters (Karpenstein-Machan, 2001). 

1.3 STRATEGIES TO ENHANCE PROCESS PERFORMANCE 

1.3.1 Co-digestion 

1.3.1.1 Improved process stability 

Co-digestion has been applied to a wide range of waste streams. Since the selected 
co-substrates have their special characteristics, the mixture of two or more organic 
wastes can balance the feed parameters, such as the C/N ratio, the buffer capacity, the 
moisture/solid content, etc (Table 1.4). As a consequence, better process stability can be 
obtained due to the more optimal conditions of the feedstock for the digestion 
(Demirekler and Anderson, 1998; Rowena et al., 2008; Hejnfelt and Angelidaki, 2009). 

For instance, when co-digested with other waste streams, manure usually balances 
the high organic content, low alkalinity and nutrients deficiency of other co-substrates, 
while at the same time, the other co-substrates help to lower the ammonia level in 
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manure, which can be up to 10 g L-1 (Creamer et al., 2010). Moreover, the co-digestion 
of OFMSW is necessary and mainly aimed to balance the solid/moisture content and 
buffer capacity, since the digestion process alone is instable and problematic due to its 
complex composition (Bolzonella et al., 2006). 

Apart from the mentioned advantages, other interests of co-digestion that have 
been suggested are: a more successful start-up period, a solution for the possible 
ammonia inhibition and decreasing of the toxic compounds levels (Mata-Alvarez and 
Llabres, 2000; Shanmugam and Horan, 2009). 

1.3.1.2 Enhanced biogas production 

As mentioned in section 1.2.4, anaerobic digestion in the context of energy 
production by using waste streams with a biogas potential lower than 30 m3 m-3 biomass 
treated is not economical. 

In practice, the conventional anaerobic digestion of manure and municipal sludge 
are characterized by low biogas yields, ranging from 0.1 to 0.3 L g-1 volatile solid (VS) 
(Bolzonella et al., 2005; Wang et al., 2009). Anaerobic digestion of OFMSW alone can 
reach the CH4 yield of around 0.3 L g-1 VS, which is approximately18-27 m3 m-3 
OFMSW treated, if taking its density of around 100-150 kg m-3 and VS content of 60% 
into account (Zhang et al., 2008). This value is comparable to the required CH4 yield 
value (20 m3 m-3 biomass treated) in case of economical balance for energy production. 
However, the co-digestion of OFMSW is considered to improve the process stability as 
well as biogas production (Elango et al., 2007). 

Typically, most types of industrial organic wastes have a CH4 potential varying 
from 0.03 to 0.5 L g-1 VS, therefore they are considered as very attractive sources of 
co-substrates for the biogas plants (Angelidaki and Ellegaard, 2003). By selecting easily 
degradable industrial wastes, a much higher gas yield can be obtained during 
co-digestion of municipal sludge and industrial wastes, as shown in Table 1.5.  

In this way, anaerobic treatment becomes more profitable since the co-digestion 
benefits not only from the enhanced energy recovery, but also by sharing the capital and 
operational costs of the biogas plants.
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1.3.1.3 Possible drawbacks 

When wastes are co-digested, there are three possible outcomes on the process 
stability and biogas production: neutral, synergistic and antagonistic (Zitomer et al., 2008). 
Normally, the mixture ratio adjustment of the necessary feed parameters can lead to 
synergistic effects, but co-substrates containing potential toxicants may inhibit biogas 
production from other co-substrates during co-digestion, and thus antagonistic effects can 
be observed (Agdag and Sponza, 2005). 

Therefore the selection of the co-substrates and their mixture ratio play an important 
role and also influence the co-digestion performance. In case of one co-substrate 
containing toxic compounds, the increased portion of other co-substrates in the mixture 
can lower the overall toxicity level in the feed, which is attributed to the dilution effect. 

From an operational view, possible practical inconvenient can rise during the storage 
and transportation of co-substrates from the production site to the digestion site, especially 
for the hygiene and odor control due to the potential pre-fermentation. Besides, the more 
complicated characterizations of the multi-substrates increase the danger of the process 
instability, which requires more strict parameters control during the process. 

1.3.2 Supplementation of micro-nutrients 

1.3.2.1 Requirements for micro-nutrients by microorganisms 

In addition to the essential requirement of macro-nutrients (average COD/N/P ratio of 
around 600/7/1), researchers have shown increasing evidences that deficiencies of 
micro-nutrients (trace metals) can be a severe process limitation and their supplementation 
may substantially improve digester performance (Table 1.6). 

For anaerobic microorganisms, micro-nutrients are crucial constituents in enzymes 
and enzymatic co-factors and they play an important role in many enzymatic reactions 
(Hausinger, 1987; Bhattacharya et al., 1995; Thauer, 1998). However, the understanding 
of the metabolism of trace metals by anaerobic microorganisms is still limited (Lin and 
Lin, 1997; Bae et al., 2002; Chen et al., 2008). 
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1.3.2.2 Supplementation of micro-nutrients 

In practice, metal supplementation dosages differ from case to case, which lead to 
huge differences in the range of the reported stimulation levels in literature, as 
summarized in Table 1.7. These differences are mainly due to the different types of treated 
waste streams and the variety of the operational conditions among the studies. 

Table 1.7 Summary of metal supplementation dosages and chemical formulation in 
literature studies (compiled from Singh et al., 1999). 

Metal Supplementation Unit Chemical formulation 

Mg 0.4-17 mg g-1 COD MgCl2·6H2O; MgCl2·4H2O; MgSO4·7H2O 

Na 2-648 mg g-1 COD NaCl; Na2SO4 

K 10-218 mg g-1 COD KCl 
Ca 0.2-81 mg g-1 COD CaCl2; CaCl2·2H2O; 

Fe 47-2582 μg g-1 COD FeCl2·4H2O; FeCl3·3H2O; FeCl3·6H2O; 
FeSO4·7H2O 

Al 4-36 μg g-1 COD AlCl3 
Zn 2-600 μg g-1 COD ZnCl2 
Ni 1-3360 μg g-1 COD NiCl2; NiCl2·6H2O; NiSO4·7H2O 
Co 6-390 μg g-1 COD CoCl2·2H2O; CoCl2·6H2O; 
Mn 12-617 μg g-1 COD MnCl2·4H2O; MnSO4·H2O; 
Cu 1-245 μg g-1 COD CuCl2; CuCl2·2H2O 
B 0.7-31 μg g-1 COD Na3BO4·10H2O; H3BO3 
Se 2.4-185 μg g-1 COD NaSeO3; Na2SeO3·5H2O 

Mo 4-420 μg g-1 COD (NH4)6Mo7O24·2H2O; (NH4)6Mo7O24·4H2O;
NH4Mo7·4H2O; NH4MoO7·4H2O 

 

Moreover, since the minimum effective levels of necessary micro-nutrients have not 
been clarified yet, the supplementation of the micro-nutrients to industrial digesters in 
practice is preferred in excessive amounts. However, in case of some metal ions which are 
already present in the influent of anaerobic digesters, such as Na, K, Ca and Mg, further 
excessive supplementation can lead to their accumulation in digesters. Consequently, a 
potential metal toxicity effect is possible in case of long-term operation (Bae et al., 2002; 
Chen et al., 2008). 

1.3.2.3 Metal bio-availability 

To clearly define the micro-nutrients requirements and their supplementation 
strategies, the description of the interactions between metals and microbes need to be 
established. The “active” metal should be capable of binding to enzymes and interfering 
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with microbial activities. These metals are defined as bio-available to the microorganisms 
(Aquino and Stuckey, 2007). Although the concept of bio-available metals is important, 
the measurement of bio-available levels is difficult because it varies depending on the type 
of microorganism exposed and the environmental factors, such as the total metal 
concentration, and the kinetics between precipitation, complexation and adsorption 
(Oleszkiewicz and Sharma, 1990). Therefore in a simplified way, the soluble metal 
concentration is often used to approximate the bio-available level (Patidar and Tare, 2008). 
Thus the micro-nutrients supplementation should ensure that their bio-available (soluble) 
levels reach the minimum requirements which would support a desired digester 
performance. 

During the anaerobic treatment of industrial waste streams, metal deficiencies caused 
by their limited bio-availability can be due to extensive precipitation, which decreases the 
soluble metals fraction (Gonzalez-Gil et al., 2003). In these cases, the formation of metal 
complexes with chelators may be expected to give rise to a certain extent of dissolution of 
metal compounds, with the concomitant increase of the bio-available metals, which are 
(directly) available for the uptake by microorganisms (Hu et al., 2008). 

Experimental results also support the decisive role of metal speciation in their 
bio-availability. Gonzalez-Gil et al. (2003) demonstrated that the addition of yeast extract 
improved the bioavailability of Ni and Co, which was suggested by the formation of 
dissolved metal complexes from their sulfides. In another study, metal sulfide 
precipitation could be minimized by additional nitrilotriacetic acid (NTA) at concentration 
levels of μg L-1, which promoted the dissolution of metal ions from precipitates by 
formation of stable complexes with metals (Hu et al., 2008). These observations imply a 
possibility to increase the bio-available metal levels by additional chelators, rather than by 
the direct supplementation of excessive amounts of metals. 

1.3.3 Pre-treatments 

1.3.3.1 Pre-treatment technologies 

Most solid type wastes are by nature heterogeneous in size, composition, structure, 
and properties. Although sugars, starches, lipids and proteins present in the wastes are 
among the materials easier to be degraded by the microorganisms, some other fractions 
such as lignocelluloses and keratin are more difficult to degrade (Romano et al., 2009). 
For the particulate waste streams with high total solid (TS) content, such as municipal 
sludge, animal manure, and agricultural residues, pre-treatments prior to enzymatic 
hydrolysis or digestion are mostly applied to break down the cell walls and release the 
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soluble organic fraction, and consequently enhance the bio-digestibility and methane 
production of the waste streams (Taherzadeh and Karimi, 2008). These pre-treatment 
methods are classified into physical, physico-chemical, chemical and biological (Table 
1.8). However, most of them have not been developed enough yet to be effective for 
full-scale applications. 

Not only enzymes, but also bacteria and fungi can be used for biological 
pre-treatments to improve the digestion as well as the biogas production (Taniguchi et al., 
2005; Kurakake et al., 2007). Normally, delignification can be achieved during the process, 
while the solubilization of the cellulose and hemicellulose can be obtained in part (Eun et 
al., 2006; Jeganathan et al., 2008). Improved process performance (Table 1.8a) has been 
observed at lab-scale with food processing wastes, agriculture residues, slaughterhouse 
wastewater and WAS digestion (Sonakya et al., 2001; Masse et al., 2003; Mendes et al., 
2006; Luste et al., 2009). 

Low energy requirement, no need of chemicals, and mild environmental conditions 
are the main advantages of biological pre-treatments. However, the long treatment 
duration (up to 24 hours) in most biological pre-treatment processes limit their 
commercial application (Sun and Cheng, 2002). 

Physical pre-treatments (e.g. milling) can increase the available surface area by 
decreasing the particle size of the feedstock, and by decreasing the crystallinity and 
degrees of polymerization of cellulose (Wen et al., 2004; Jedrczak and Krolik, 2007).  

Irradiation is no doubt the most powerful pre-treatment method to disrupt cells with 
cell disintegration efficiencies of up to 100%, depending on the power input. However, the 
high power input (up to 2000 kWh m-3 biomass treated) is a serious drawback for its 
industrial applications (Appels et al., 2008; Chen et al., 2008; Park et al., 2010). 
High-pressure homogenization is one of the most frequently used pre-treatment methods 
for large scale application (Appels et al., 2008), although it is considered as less effective 
compared to the irradiation pre-treatments. To obtain significant improvement of digester 
performance, in practice a combination of pressure pre-treatment with thermal 
pre-treatment is sometimes applied (Dereix et al., 2006; Phothilangka et al., 2008a). 

Chemical pre-treatments involve exposure of wastes to a chemical for a period of 
time. Acids (e.g. sulfuric acid) are predominantly applied. The major drawback of the 
chemical pre-treatment methods, particularly at low pH, is the formation of several types 
of inhibitors such as carboxylic acids, furans and phenolic compounds (Taherzadeh and 
Karimi, 2008). These chemicals may not affect the enzymatic hydrolysis, but they usually 
inhibit the microbial growth and fermentative capacity, which results in less biogas 
production (Taherzadeh and Karimi, 2007). Therefore, the chemical pre-treatments at low 
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pH should be applied properly by controlling the pH and temperature in order to avoid or 
at least reduce the formation of these inhibitors. 

The chemical and physico-chemical pre-treatments (Table 1.8b) are among the most 
effective methods and currently they are considered as the most promising processes for 
industrial applications, mainly due to short treatment duration (within several hours), even 
though usually very harsh conditions are required (Kim et al., 2000; Mosier et al., 2005). 

An effective and economical pre-treatment process should enhance the digestibility 
of the feedstock and decrease the residues. During the process the possible formation of 
the inhibitors for hydrolytic enzymes and fermentation microorganisms must be avoided 
(Bougrier et al., 2008). From a practical view, to ensure the economical feasibility of a 
selected pre-treatment method, the costs of materials for the construction of the 
pre-treatment devices and the energy demands should be minimal. 

1.3.3.2 Sludge thermal pre-treatment: commercial Cambi process 

Thermal pre-treatment of sewage sludge has been shown to increase the sludge 
biodegradability as well as dewaterability (Phothilangka et al., 2008b). This pre-treatment 
method is usually under the operational conditions with temperature range of 150-200ºC 
and the adjoining pressures of around 6-25 bar in duration of about 30 minutes. During the 
process the sludge can be partially solubilized and the cells are disintegrated. With a 
decreased sludge viscosity by freeing the cell water, it makes the possibility for the later 
anaerobic digestion to deal with higher sludge concentration (Barlindhaug and Odegaard, 
1996). 

Contrary to the other lab-scale pre-treatment methods, Cambi is a pre-treatment 
technology which has been grown to the commercial level. The process design has been 
developed by the Company Cambi, Norway, based on the thermal pre-treatment process 
and aiming at minimization of the sludge disposal and maximization of the biogas 
production. It’s full-scale applications have been through the Europe for 15 years (Neyens 
and Baeyens, 2003). The basic process is by heating the dewatered sludge with DS content 
of around 15% to around 160-180ºC, and then the temperature is decreased to 100ºC by 
depressurizing. Finally the sludge is further cooled down to 40ºC and fed into the 
anaerobic digester. 
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Table 1.8a Pre-treatm
ent processes reported in literatures: biological pre-treatm

ents and physical pre-treatm
ents. 
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In a Cambi pilot study at HIAS plant, Norway, a solubilization degree of 30% was 
obtained with the pre-treated sludge at 180ºC for 30 minutes (Weemaes and Verstraete, 
1998). Another Cambi full-scale study based on 3 years experience showed stable COD 
solubilization degree of up to 60%, which led to a satisfactory biogas production of 0.49 
m3 kg-1 VS treated (70% CH4). Moreover, the sludge disposal amount was only half of 
that of the conventional process without Cambi, which was due to the 15% higher DS 
content in the sludge cake with the Cambi pre-treatment (35%) comparing to the 
conventional process (20% DS) (Kepp et al., 2000). Moreover, since the total treatment 
cost of Cambi process is around 50 € ton-1 sludge, the expected pay back of a Cambi 
application is usually within 2-4 years (Weisz and Solheim, 1999). 

1.3.3.3 Application limitations of pre-treatment technologies 

Clearly pre-treatment methods are promising techniques to enhance the process 
performance of anaerobic digestion. The decision to apply these technologies in practice 
mainly depends on the magnitude of capital investments, energy requirements, operation 
and maintenance costs. If the energy recovery from the enhanced biogas production can 
compensate these additional costs, the pre-treatment application becomes economically 
feasible for the industries. However, in most cases, they may be only considered beneficial 
for larger WWTP (more than 30,000 IE) due to both the improved biogas production and 
the decrease of the sludge disposal costs, based on the calculation of the economic 
efficiency and energy balance (Boehler and Siegrist, 2006). Otherwise, it may be only of 
interest to plants where severe operational problems exist. 

1.4 OBJECTIVES AND OUTLINE OF THIS WORK 

Although anaerobic digestion is a well established technology, there is still further 
potential to expand its efficiency. Therefore the main objective of this doctoral work is to 
enhance the performance of anaerobic digestion by different approaches, aiming at a better 
process stability and higher biogas production. 

As a first approach for stimulation of the biogas production, co-digestion was 
investigated. Chapter II describes a study dealing with the biogas enhancement by addition 
of glycerol to potato processing wastewater. Besides this, the overall process performance 
was studied, which could be evaluated from the COD and VFAs removal efficiencies. 
Importantly, the extra energy recovery from the improved biogas production was 
compared for three different glycerol products.  

HPr removal is essential in anaerobic digestion since its accumulation leads to 
process instability and even process failure. High HPr removal rates and levels have been 



Chapter I: General introduction 

37 

reported by macro- and micro-nutrients supplementation in upflow anaerobic sludge bed 
(UASB) reactors (Wiegant et al., 1986; Fang et al., 1994). In the study described in 
Chapter III, maximum HPr removal could be achieved under extreme conditions by 
patient biomass adaptation to the long-term exposure to HPr. 

Process failure provoked by HPr accumulation can result in a recovery period of up 
to 2-3 months. Since the causes of HPr accumulation during anaerobic process have not 
been unequivocally clarified yet, an external remedy digester, which can be coupled to the 
main digester to accelerate the recovery, has been developed (Chapter IV). This external 
digester provides a possibility for the selective HPr removal. 

Pre-treatments can improve the substrate digestibility and thus enhance the biogas 
production. However, different pre-treatment methods have distinct effects on different 
types of waste streams, and the optimum pre-treatment to be selected must also be based 
on the economical and practical feasibility, as studied in Chapter V. 

In Chapter VI, several aspects related to the approaches evaluated to enhance the 
anaerobic digestion process are discussed, and finally some major conclusions are 
summarized and suggestions for future research are recommended. 
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CHAPTER II 

ENHANCED BIOGAS PRODUCTION BY 

CO-DIGESTION 

Abstract 

The effect of three different types of glycerol on the performance of upflow 

anaerobic sludge bed (UASB) reactors treating potato processing wastewater was 

investigated. High chemical oxygen demand (COD) removal efficiencies of around 85% 

were obtained in both control and supplemented UASB reactors (UASBC and UASBT, 

respectively). By adding 2 ml of glycerol product per liter of raw wastewater, the biogas 

production could be increased by 0.74 L biogas mL-1 glycerol product, which led to 

energy values in the range of 810-1270 kWhgreen-electricity m-3 product. Moreover, a better 

in-reactor biomass yield, based on the volatile solid (VS) enhancement, was observed for 

the UASBT reactor (0.012 g VS g-1 CODremoved) compared to the UASBC (0.002 g VS g-1 

CODremoved), which suggests a positive effect of glycerol on the sludge blanket growth. 

Chapter redrafted after: Ma J, Van Wambeke M, Carballa M and Verstraete W 2008 Improvement of 
the anaerobic treatment of potato processing wastewater in a UASB reactor by co-digestion with 
glycerol. Biotechnology Letters 30 (5) 861-867. 
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2.1 INTRODUCTION 

Since 2001, the total production of crude biogas in the EU countries has increased 
constantly, corresponding to 2.7 million tons of oil equivalent per year (Demirbas and 
Balat, 2006). Methane (CH4) is the main component of biogas, accounting for 60-70%. 
It’s heat value, about 2.5×104 kJ m-3, is equivalent to 1 kg raw coal or 0.76 kg standard 
coal (Zeng et al., 2007). 

High-rate systems, such as upflow anaerobic sludge bed (UASB) reactors, are widely 
used for the treatment of several types of industrial wastewaters (Van Lier et al., 1996). 
Their productivity can be improved by supplementing with readily digestible co-substrates 
(Van Assche et al., 1983). The aims of using co-substrates can be: i) to maintain a stable 
pH within the methanogenesis range (Brummeler and Koster, 1990; Kaparaju and Rintala, 
2005); ii) to help degradation of low biodegradability substrates (Malpei et al., 1998); iii) 
to decrease the start-up period (Veiga et al., 1992; Veiga et al., 1994); or, iv) to accelerate 
the biogas production (Van Lier et al., 2001). In the latter case, different types of materials 
have been used as co-substrates in anaerobic digestion to enhance the biogas production. 
However, to our knowledge, there is limited information available on the use of glycerol 
as a co-substrate. 

Glycerol is a sugar alcohol, whose production has increased in the last years since it 
is a 10% by-product of bio-diesel manufacture. Compared to other co-substrates (food and 
animal wastes, etc), glycerol has the advantages of being readily digestible and easily 
storable over a long period. Since the large volumes produced would lead to low prices, 
glycerol can be an effective co-substrate to facilitate the operation of existing biogas 
plants.  

The objectives of this work were: i) to evaluate technically the use of glycerol as a 
co-substrate to improve the biogas production during the anaerobic treatment of potato 
processing wastewater; ii) to compare the effects of different types of commercial glycerol 
from the market; and, iii) to evaluate economically the advantages of using glycerol as a 
co-substrate for the anaerobic treatment of industrial wastewaters. 

2.2 MATERIALS AND METHODS 

2.2.1 Wastewater characteristics 

The raw wastewater used as feed was delivered from a full-scale anaerobic digester 
treating potato processing wastewater (Mydibel, Belgium). Its main characteristics are 
shown in Table 2.1. It can be observed that the total chemical oxygen demand (COD) 
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(CODT) and soluble COD (CODS) fluctuated from 4.3 to 14.1 g COD L-1 and from 2.7 to 
13.5 g COD L-1, respectively, during the experimental period. Due to its low pH, sodium 
hydroxide (NaOH) was added to the raw wastewater before feeding the UASB reactors to 
adjust the pH to about 7.5. 

Table 2.1 Main characteristics of the potato processing wastewater (n: number of samples; 
average values with mean error if n<3 or standard deviation if n>3). 

Parameter Unit 
Start-up Phase 1 Phase 2 Phase 3

n=3 n=4 n=2 n=2 
pH  4.8 ± 0.3 5.7 ± 1.2 5.4 ± 0.6 5.5 ± 0.0

CODT g COD L-1 7.3 ± 0.7 4.3 ± 3.2 11.5 ± 2.5 14.1 ± 0.9
CODS g COD L-1 5.8 ± 0.2 2.7 ± 1.0 9.9 ± 3.2 13.5 ± 0.9
VFAT g L-1 2.5 ± 0.2 1.3 ± 1.0 4.0 ± 2.5 7.0 ± 0.3
TKN mg L-1 283 ± 42 244 ± 67 n.d. n.d. 
P total mg L-1 169 ± 122 83 ± 21 n.d. n.d. 
S-SO4

2- mg L-1 43 ± 2 41 ± 3 n.d. n.d. 
TSS g L-1 2.1 ± 1.1 1.0 ± 0.6 2.4 ± 0.1 3.0 ± 0.3
VSS g L-1 1.8 ± 1.0 0.9 ± 0.5 1.6 ± 0.0 2.1 ± 0.2
DM g L-1 7.3 ± 0.8 5.2 ± 3.0 11.7 ± 2.5 14.6 ± 0.5
Ash g L-1 3.3 ± 0.2 2.4 ± 1.4 7.4 ± 1.0 8.6 ± 0.1
SVI mL L-1 79 ± 63 32 ± 36 22 ± 9 70 ± 60

CODT/N/P  100/3.9/2.3 100/5.7/1.9 n.d. n.d. 
*VFAT: total volatile fatty acids (VFAs); TKN: total kjeldahl nitrogen; TSS: total suspended solids; 
VSS: volatile suspended solids; DM: dry matter content; SVI: sludge volume index. n.d.: no data. 

2.2.2 Glycerol 

Three different types of glycerol products from the market were tested in this study, 
i.e. the so called pure glycerol, the crude glycerol and the high conductivity (HC) glycerol. 
Table 2.2 shows the main characteristics of each product. 

Table 2.2 Main characteristics of the three different types of glycerol products used. 
Parameters Unit Theoretical Pure* Crude* HC* 

CODT g COD L-1 1540 1200 1120 925 
Density kg L-1 1.26 1.21 1.22 1.23 
S-SO4

2- g L-1 n.d. 18 (max) 255 254 
VFAT mg L-1 n.d. 145 337 394 

Conductivity ms cm-1 n.d. n.d. n.d. 29 
n.d.: no data. *n=5, standard deviation < 5%. 
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2.2.3 Experimental set-up 

Two lab-scale UASB reactors, the control reactor (UASBC) and the supplemented 
reactor (UASBT) with a diameter of 5 cm and a volume of 2.3 L were installed and 
monitored for the three types of glycerol products (Figure 2.1).  

 
Figure 2.1 Scheme of the lab-scale experimental set-up of the UASB reactor. 

Both UASB reactors were inoculated with 500 mL of seed sludge harvested from the 
full-scale anaerobic digester treating potato processing wastewater (Mydibel, Belgium), 
which led to an in-reactor volatile solid (VS) concentration of approximate 9 g VS L-1. 
They were fed semi-continuously (2 min h-1), with a flow-rate of approximately 50 mL 
min-1 (except in phase 3 of 25 mL min-1), which led to a hydraulic retention time (HRT) of 
20 h (except in phase 3 of 40 h). A recirculation with a liquid up-flow velocity of around 1 
m h-1 was operated continuously in both reactors. The effluents and the biogas overflowed 
into the effluent tank and the gas column, respectively, while the sludge was retained by 
sedimentation in the reactors (Kalogo et al., 2001). 

Temperature was maintained at 33 ± 2°C and pH, COD, volatile fatty acids (VFAs) 
and biogas production were the parameters monitored. 
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2.2.4 Experimental operation 

2.2.4.1 Start-up period 

During the start-up period (14 days), the UASBC reactor was fed with raw 
wastewater at an average organic loading rate (OLR) of 7.0 ± 0.7 g COD L-1 d-1), while 
the UASBT reactor was fed with raw wastewater supplemented with 1 mL of the so-called 
pure glycerol (Table 2.2) per liter wastewater, which corresponded with an average OLR 
of 8.2 ± 1.0 g COD L-1 d-1. The aim was to adapt the sludge of the UASBT reactor to 
glycerol biodegradation. 

2.2.4.2 Experimental period 

Three experimental runs (40 days) were carried out in the two UASB reactors. The 
UASBC was fed with only raw wastewater throughout the whole experimental period, 
while the UASBT was fed with raw wastewater supplemented with the different types of 
glycerol. Table 2.3 shows the main operational parameters during the start-up and 
experimental period. 

Table 2.3 Operational parameters during the start-up and experimental period of the 
UASBC and UASBT reactors (average values with standard deviations). 

Parameters Unit Start-up Phase 1 Phase 2 Phase 3 
Duration day 14 18 12 10 

Type of glycerol - Pure Pure Crude HC 
Glycerol dose mL L-1 1 2 2 2 

OLRC g COD L-1 d-1 7.0 ± 0.7 4.9 ± 2.9 8.4 ± 1.3 8.6 ± 0.8 
OLRT g COD L-1 d-1 8.2 ± 1.0 7.6 ± 2.7 11.7 ± 1.9 8.7 ± 1.0 

During phase 1 (day 15 to 32), the amount of so-called pure glycerol added to the 
UASBT was increased to 2 mL L-1 wastewater to obtain a mature performance of the 
UASBT reactor. Subsequently, the OLR of the UASBT reactor was 7.6 ± 2.7 g COD L-1 d-1 
while the UASBC had a lower OLR of 4.9 ± 2.9 g COD L-1 d-1. During phase 2 (day 33 to 
44), the crude glycerol was tested in the UASBT reactor at the same dose of 2 mL L-1 
wastewater. The higher OLR values obtained in both UASB reactors (UASBC: by average 
of 8.4 ± 1.3 g COD L-1 d-1 and UASBT: 11.7 ± 1.9 g COD L-1 d-1, respectively) compared 
to those of phase 1 were mainly due to the higher CODT concentrations of the raw 
wastewater. Finally, during phase 3 (day 31 to 40), the HC glycerol was tested in the 
UASBT reactor at the same dose as in the previous phases. Due to the high COD 
concentrations in the raw wastewater (14.1 ± 1.2 g COD L-1), the HRT was increased to 
40 h in both reactors to avoid an organic overload. Similar average OLR values were 
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obtained for the UASBC and the UASBT reactors, i.e. 8.6 ± 0.8 and 8.7 ± 1.0 g COD L-1 
d-1, respectively, which are explained by the high COD content of the raw wastewaters 
and the low COD content of the HC glycerol (only 12% of the total COD fed). 

2.2.5 Analytical techniques 

Biogas production was followed by liquid displacement and biogas composition was 
analyzed with an Intersmat IGC 120MB gas chromatograph connected to a 
Hewlett-Packard 3390A integrator. VFAs were extracted with diethyl ether as described 
by Holdeman et al. (1977) and measured in a gas chromatograph (Carlo Erba Fractovap 
4160) equipped with a flame-ionization detector and a Delsi-Nermag integrator 
(ENICA-31). pH values were measured with a pH meter (Consort C532) and the other 
physico-chemical parameters, COD, TSS and VSS, etc, were determined according to the 
standard methods (Greenberg et al., 1992). 

The in-reactor biomass yield (Y) and the particle size distribution were determined in 
both UASB reactors on day 1 and day 33 (before start-up and at the end of phase 1). The 
in-reactor biomass yield (Y, in g VS g-1 CODremoved) was calculated from the mass balance 
of VS in the reactor in relation to the amount of COD removed, as:          

ܻ ൌ ൫௏ௌ೐೙೏ି௏ௌ್೐೒೔೙൯ൈ௏ೝ೐ೌ೎೟೚ೝ
஼ை஽ೝ೐೘೚ೡ೐೏

                                          Eq. 2.1 

To determine the particle size distribution (wet weight basis), settled sludge from the 
UASB reactors was sieved through a 0.5 mm pore size. 

2.3 RESULTS  

2.3.1 Reactors Performance 

During the experimental period, the pH in both reactors was rather stable and varied 
between 7.0 and 7.5 (data not shown). Figure 2.2 illustrates the OLR, the CODT and VFAT 
concentrations in the influent and effluent of both UASB reactors. 

Since real industrial wastewaters were used as feeding of the reactors, the CODT 
(Figure 2.2B) and VFAT (Figure 2.2C) concentrations in the influent fluctuated strongly 
according to the operational conditions of the potato processing industry, which caused 
important variations on the OLRs applied to the UASB reactors, with values ranging from 
2 up to 14 g COD L-1 d-1 (Figure 2.2A). Despite these fluctuations in the influent CODT 
levels, the concentrations in the effluent remained constant and low in both reactors, about 
100 mg COD L-1 (Figure 2.2B), which led to CODT removal efficiencies of around 85%. 
Only during phase 3, lower COD elimination was achieved, i.e. 73% for the UASBC and 
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75% for the UASBT, which was probably due to the increased CODT concentration in the 
raw wastewater, around 14.1 g COD L-1. 

The residual VFAT concentrations in the effluents of both UASB reactors remained 
very low, as shown in Figure 2.2C, leading to the VFAT removal efficiencies higher than 
90% throughout the whole experimental period. The major components of the VFAs in the 
effluents were acetic and propionic acid, accounting for more than 95% of VFAT as COD; 
other VFAs were detected at insignificant concentrations (data not shown). The slight 
increase of residual VFAT during phase 3 fits with the greater CODT levels (Figure 2.2B). 

 
Figure 2.2 (A) OLRs applied to the UASBC and UASBT; (B) Influent and effluent CODT 
concentrations in the UASBC and UASBT; (C) Influent and effluent VFAT concentrations 
in the UASBC and UASBT. 
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2.3.2 Effect on biogas production 

The theoretical amount of the biogas produced per gram of glycerol product can be 
calculated from the Buswell formula (Eq. 2.2) and the ideal gas law (Eq. 2.3).        

ሻଷܪହሺܱܪଷܥ ՜ ସܪܥ1.75 ൅ ଶܱܥ1.25 ൅  ଶܱܪ0.5                           Eq. 2.2 

ሻଷܪହሺܱܪଷܥ2 ൅ 7ܱଶ ՜ ଶܱܥ6 ൅  ଶܱܪ8                                 Eq. 2.3 

            ܸܲ ൌ ܴ݊ܶ                                                             Eq. 2.4 

where P is the absolute pressure, Pa; V is the volume of gas, m3; n is the moles of gas; R is 
the gas constant, 8.314 m3 Pa K−1 mol−1; and, T is the temperature, K. 

Taking into account the density of the theoretical glycerol (1.26 kg L-1, Table 2.2), it 
can be calculated that 0.87 L biogas (0.51 L CH4) can be produced per gram of theoretical 
glycerol. For the three types of glycerol used in this work, the theoretical amounts of CH4 
which can be obtained are: 0.47 L L-1 so-called pure glycerol, 0.44 L L-1 crude glycerol 
and 0.37 L L-1 HC glycerol, respectively (Table 2.4). 

Table 2.4 Comparison of the extra biogas production from the different glycerol products 
tested in the UASBT reactor. 

Parameters Unit Pure Crude HC 
CODT kg COD L-1 1.20 1.12 0.93 

Biogas production L L-1 product 710 ± 200 770 ± 300 740 ± 300 
Methane production L L-1 product 480 ± 135 440 ± 170 300 ± 120 

Theoretical CH4 production L L-1 product 470 440 370 
% theoretical production % 102 100 80 

 

Figure 2.3 shows the biogas produced experimentally in the UASBC and UASBT 
reactors. Throughout the whole experimental period, higher daily biogas production was 
achieved in the UASBT reactor (8.6 ± 2.2 L d-1) than in the UASBC (5.4 ± 2.5 L d-1), 
which is explained by the extra glycerol-COD added (79% in phase 1, 23% in phase 2, 13% 
in phase 3). The biogas produced per liter of wastewater treated was 1.5 times higher in 
the UASBT (4.6 ± 2.3 L L-1 wastewater) than in the UASBC (3.1 ± 2.0 L L-1 wastewater), 
as illustrated in Figure 2.3B. This means that the addition of glycerol enhanced the biogas 
production capacity, around 0.74 L biogas (0.41 L CH4) mL-1 glycerol product added, 
calculated as the average value from the three glycerol products (Table 2.4).  

Comparing the three different types of glycerol products tested (Table 2.4), the 
so-called pure glycerol gave the highest methane production (0.48 L CH4 mL-1 product, 
0.71 L biogas mL-1 product), followed by the crude glycerol (0.44 L CH4 mL-1 product, 
0.77 L biogas mL-1 product), and finally, the HC glycerol (0.30 L CH4 mL-1 product, 0.74 
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L biogas mL-1 product). Hence, as expected, the lower glycerol-COD content in the 
product, the lower methane production. 

 
Figure 2.3 (A) Biogas production (L d-1) in the UASBC and UASBT; (B) Biogas 
production (L L-1 wastewater) in the UASBC and UASBT. 

2.3.3 Effect on biomass granulation 

The in-reactor biomass yield (Y) and the particle size distribution were determined in 
both UASB reactors on day 33 (at the end of phase 1). The results obtained are 
summarized in Table 2.5. A considerable difference between the two granular sludge beds 
could be detected visually. The granular sludge bed increased continuously in the UASBT 
reactor (from 24 cm to 37 cm), while in the UASBC reactor, this increase was less 
significant (from 24 cm to 31 cm). The extra addition of the so-called pure glycerol, and 
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therefore the supplement of extra organic carbon source, favored the growth of active 
biomass in the UASBT reactor (a difference of 3 g VS L-1 was found after 33 days), and 
subsequentially, the in-reactor biomass yield (0.012 g VS g-1 CODremoved) was higher 
compared to that in the UASBC (0.002 g VS g-1 CODremoved). 

Table 2.5 In-reactor biomass yield and particle size distribution at the end of phase 1. 

Parameters Unit UASBC UASBT 
In-reactor biomass growth g VS L-1 0.39 3.39 

CODremoved g COD L-1 208 283 
In-reactor biomass yield g VS g CODremoved

-1 0.002 0.012 
< 0.5mm % 51 59 
> 0.5mm % 49 41 

 

Although no clear difference in sludge structure (granules or fluffy sludge) could be 
detected visually between both UASB reactors, a larger fraction (on wet weight basis) of 
small granules (<0.5 mm) was retained in the UASBT reactor (59%) than in the UASBC 
reactor (51%). 

Since the duration of phase 2 (with crude glycerol) and phase 3 (with HC glycerol) 
was quite short for biomass growth (12 and 10 days, respectively), the effect of these 
glycerol products on biomass granulation was not evaluated. 

2.4 DISCUSSION  

The co-digestion of potato processing wastewater with three different types of 
glycerol increased the biogas, and concomitantly the methane production, per liter of 
wastewater treated by a factor of around 1.5. Among the three glycerol products tested, 
similar results were obtained with the so-called pure glycerol and the crude glycerol. The 
HC glycerol gave a slightly lower methane production, related to its lower purity. 

Because of the variation in the CODT amount of the potato wastewater, the 
percentage of the glycerol-COD added to the wastewater differed strongly (79% in phase 
1, 23% in phase 2, 13% in phase 3). Therefore the higher OLRs in the UASBT, which was 
mainly resulted from the extra glycerol-COD added, were also observed, i.e. 55% higher 
in phase 1, 39% higher in phase 2 and 1% higher in phase 3. 

Importantly, the OLR differences between the UASB reactors were not only 
dependent on the COD amounts of the potato wastewater and the extra glycerol added, but 
also on the influent pump flow-rates. This was the reason that in phase 3 the overall OLRs 
of both reactors differed only 1%, although the glycerol-COD added was 13% of the 



Strategies to enhance anaerobic digestion in view of process stability and methanation 

50 

wastewater-COD. By average values, 0.1 L d-1 difference of the influent flow-rate was 
observed (1.4 and 1.3 L d-1 in each UASB reactor, respectively), and it presented around 
1.4 g COD d-1 higher COD input from the wastewater-COD in the UASBC, which reduced 
the overall difference of the total COD input from the extra glycerol-COD input in the 
UASBT, i.e. 2.4 g glycerol-COD d-1. 

Although the OLRs fluctuated strongly according to the characteristics of the raw 
industrial wastewaters used, no COD or VFAs accumulation occurred in both UASB 
reactors, which indicates their stable operation. Moreover, no significant difference on 
CODT removal efficiency was observed between both reactors (around 85%). Therefore 
the extra amount of the glycerol-COD added did not stress the process performance of the 
UASBT in a long-term of view, and it implied the easily degradability of glycerol. 

Despite the presence of sulfur compounds in the glycerol products, the content of 
H2S in the biogas produced in the UASBT reactor was similar to that in the UASBC reactor 
(0.2%). 

Interestingly, the supplementation of the feeding with glycerol had a positive effect 
on the in-reactor biomass growth. The in-reactor biomass yield of the UASBT was 6 times 
higher than that of the UASBC, i.e. 0.012 and 0.002 g VS g-1 COD removed, respectively. 

The economic evaluation of the three different types of glycerol tested is shown in 
Table 2.6, which was calculated from the average values of the biogas production given in 
Table 2.4. It was assumed that 2.7 kWh electrical energy can be produced from 1 m3 
methane and 0.15 € as the selling price of green energy per kWh (Karpenstein-Machan, 
2001; Walla and Schneeberger, 2008; Munster and Lund, 2009). Although the so-called 
pure glycerol product represents the highest putative income, it has to be bought at a 
reasonable cost to become competitive. Therefore, the most profitable glycerol product for 
co-digestion could be the crude glycerol. 

Table 2.6 Economic evaluation of the three glycerol products tested. 

Parameter Unit Pure Crude HC 
Biogas m3 ton-1 product 590 630 600 

Methane m3 ton-1 product 390 380 240 
Energy kWhelectricity ton-1 product 1050 1017 659 
Income € ton-1 product 157 153 99 

 

Overall, it can be concluded that glycerol is a feasible and economically interesting 
co-substrate to enhance the anaerobic treatment of industrial wastewaters. 
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CHAPTER III 

PROPIONIC ACID REMOVAL BY MACRO- AND 

MICRO- NUTRIENTS SUPPLEMENTATION 

Abstract 

The maximum propionic acid (HPr) removal rate (RHPr) was investigated in two 

lab-scale upflow anaerobic sludge bed (UASB) reactors. Two feeding strategies were 

applied by modifying the hydraulic retention time (HRT) in the UASBHRT and the influent 

HPr concentration in the UASBHPr, respectively. The experiment was divided into 3 main 

phases: phase 1, influent with only HPr; phase 2, HPr with macro-nutrients 

supplementation; and phase 3, HPr with macro- and micro-nutrients supplementation. 

During phase 1, the maximum RHPr achieved was less than 3 g HPr-COD L-1 d-1 in both 

reactors. However, the subsequent supplementation of macro- and micro-nutrients during 

phases 2 and 3 allowed to increase the RHPr up to 18.1 and 32.8 g HPr-COD L-1 d-1, 

respectively, corresponding with an HRT of 0.5 h in the UASBHRT and an influent HPr 

concentration of 10.5 g HPr-COD L-1 in the UASBHPr. Therefore, the high HPr conversion 

with high throughput and high influent HPr level was demonstrated by macro- and 

micro-nutrients supplementation. 

Chapter redrafted after: Ma J, Mungoni LJ, Carballa M and Verstraete W 2009 Maximum removal 
rate of propionic acid as sole carbon source in UASB reactors by macro- and micro- nutrients 
stimulation. Bioresource Technology 100 (14) 3477-3482. 
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3.1 INTRODUCTION 

Despite being a conventional and well-established technology, anaerobic digestion 
stays “fresh” nowadays, since it is not only a part of an integrated waste management 
system, but also a technology for renewable energy production. However, the high capital 
costs and low process efficiencies have limited the level of its industrial application. 
Therefore, the stimulation of this process by different methods attracted much attention in 
the applied industrial field (Boe et al., 2008; La Motta et al., 2008). 

Organic or hydraulic overloading and the presence of toxic compounds are common 
causes of accumulation of fatty acids (mainly propionate, but also acetate and butyrate), 
which can give rise to reactor failure (Gallert and Winter, 2005). Contrary to acetate and 
butyrate, which are gradually consumed, propionic acid (HPr) accumulates easily in the 
reactor since it is not directly subjected to methanogenesis due to its low acetogenic rate 
(McMahon et al., 2004). Consequently, the methanogenic phase is inhibited, which can 
give rise to a low process efficiency (Wang et al., 2006). Although the maximum tolerable 
level of HPr in anaerobic reactors varies according to the type of waste treated and reactor 
used, typical values reported in literature vary from 0.8 g HPr L-1 (1.2 g HPr-COD L-1) 
(Mosche and Jordening, 1998) to 2 g HPr L-1 (3 g HPr-COD L-1) (Barredo and Evison, 
1991). 

The degradation of HPr decreases when high organic loading rates (OLR) and/or low 
hydraulic retention time (HRT) are applied (Elefsiniotis and Oldham, 1994; Demirel and 
Yenigun, 2004). Fang et al. (1994) reported maximum HPr removal rate (RHPr) of 22 g 
HPr-COD L-1 d-1 in mesophilic upflow anaerobic sludge bed (UASB) reactors operating at 
a fixed HRT of 12 h and OLR up to 23 g HPr-COD L-1 d-1. The influent was composed of 
propionate as sole organic substrate (11.5 g HPr-COD L-1) plus trace metals and balanced 
nutrients. These results are comparable with the maximum RHPr of 25 g HPr-COD L-1 d-1 
in a thermophilic UASB reactor, also with an influent composed of propionate as sole 
organic source and supplemented with macro- and micro-nutrients (Wiegant et al., 1986). 
Recently, Tatara et al. (2008) obtained similar maximum RHPr of 20.6 g HPr-COD L-1 d-1 
in termophilic UASB reactors at OLR of 66.4 g COD L-1 d-1 (HRT of 4.8 h) with macro- 
and micro-nutrients supplementation, however, the HPr removal efficiency (EHPr) was 
very low (around 30%). Nevertheless, in all these studies, the effect of the macro- and 
micro-nutrients was not investigated since they were supplemented from the beginning of 
the experiments. 

It is widely known that the growth and activity of the methanogenic consortium in 
anaerobic reactors strongly depend on environmental factors, such as macro- and 
micro-nutrients availability (Cresson et al., 2006). Table 3.1 shows a summary of 
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literature values related to the main functions and the stimulatory concentration ranges of 
different macro- and micro-nutrients commonly used in anaerobic digestion. Already in 
the 60s, the need of nutrients supplementation for stable anaerobic digestion was brought 
forward by Speece and McCarty (1962). Macro-nutrients, such as nitrogen, phosphorus, 
potassium and magnesium, are required for activation or functioning of many 
micro-organisms. Micro-nutrients, mainly trace metals including nickel, cobalt, and iron, 
are known for their role as biochemical cofactors for methane production (Speece, 1996). 
Therefore, it is conceivable that the supplementation of macro- and micro-nutrients can 
improve the HPr degradation during anaerobic digestion. 

The aim of this paper was to evaluate the maximum removal rate of propionic acid in 
UASB reactors fed with propionic acid as sole carbon source by applying two different 
strategies to increase the OLR in the systems: increasing the influent flow rate (UASBHRT) 
and increasing the influent HPr concentration (UASBHPr). In addition, the effect of macro- 
and micro-nutrients supplementation on the propionic acid degradation was evaluated. 
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3.2 MATERIALS AND METHODS 

3.2.1 Experimental set-up 

Due to their high rate performance for the treatment of liquid streams and their 
flexibility for HRT control, two lab-scale UASB reactors were used in order to achieve a 
maximum HPr removal rate (Figure 3.1). Each UASB reactor consisted of one cylindrical 
tube with a diameter of 5 cm and plus a 3-phase separator in the upper part. The total 
reactor volume was 2.3 L (working volume of 2 L). The feeding was time-controlled, 
according to the required flow-rates, and the effluent and the biogas were collected in the 
effluent tank and the gas column, respectively. The reactors were operated under 
mesophilic conditions (33 ± 2°C) and the pH was controlled around 7.5 by adjusting the 
influent pH with NaOH solution (5N). pH, temperature, chemical oxygen demand (COD), 
volatile fatty acids (VFAs) and biogas production were monitored daily. 

 

Figure 3.1 Scheme of the lab-scale experimental set-up of the UASB reactor. 

3.2.2 Inoculum 

Both UASB reactors were inoculated with 500 mL of seed sludge harvested from a 
full-scale anaerobic digester treating potato processing wastewater (Mydibel, Belgium), 
which led to an initial in-reactor volatile solid (VS) concentration of around 10 g VS L-1. 
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3.2.3 Operational strategy 

Two different strategies were applied to the UASB reactors to increase the OLR. In 
the UASBHRT, the HPr concentration in the feeding was kept constant at 0.8 g HPr-COD 
L-1, and the influent flow-rate was increased progressively, thus decreasing the HRT. In 
the UASBHPr, a fixed HRT of 12 h was applied and the influent HPr concentration was 
increased stepwise. 

The experiment was divided into three main operational phases according to the 
feeding composition: phase 1, with only HPr as sole carbon source; phase 2, with HPr 
supplemented with macro-nutrients; and phase 3, with HPr supplemented with macro- and 
micro-nutrients. In addition, an extra phase (phase 4) was applied at the end of the 
experiment to confirm the importance of macro- and micro-nutrients by interrupting 
stepwise their supplementation. 

3.2.4 Chemicals 

Concentrated propionic acid (99%, Merck Schuchardt OHG, Germany) was used to 
prepare the synthetic feeding (HPr solution) and the final pH of the feeding was adjusted 
to 7.5, approximately, by the addition of NaOH solution (5 N).  

The macro-nutrients supplemented are listed in Table 3.2 and they were selected 
according to Fang and Chui (1993). The supplementation of micro-nutrients was carried 
out by the commercial product Methanostim Liquid (Avecom, Belgium), which is a 
solution of technical grade ferric chloride, cobalt chloride hexahydrate, yeast extract and 
citric acid solution. The applied dosage was 15 μL per liter reactor per day based on 
industrial use. The individual doses of the supplemented micro-nutrients are (in μg per 
liter reactor per day): B: 1.26, Co: 0.03, Fe: 2,050, Mn: 6.17, Ni: 0.38 and Zn: 0.30. 

Table 3.2 List of macro-nutrients and their dosages. 
Chemicals Dosage (mg g-1 COD) 

Ammonium chloride 260 
Magnesium sulfate 128 

Potassium monohydrogenphosphate 75 
Potassium dihydrogenphosphate 30 

Sodium citrate 68 
Calcium chloride 52 

 

3.2.5 Analytical techniques 

VFAs were extracted with diethyl ether and their quantitative analysis was 
determined by a capillary gas chromatograph (CE Instruments, Italy) coupled with a flame 
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ionization detector (FID). pH values were measured with a C532 pH meter (Consort, 
Belgium) and the other physico-chemical parameters, soluble COD (CODS), total solid 
(TS) and VS, were determined according to the standard methods (Greenberg et al., 1992). 
Biogas production was followed by liquid displacement. 

3.3 RESULTS 

3.3.1 UASBHRT performance 

The pH of the reactor remained constant, around 7.5 ± 0.4, during the whole 
experimental period. 

Figure 3.2 shows the performance of UASBHRT in terms of applied OLR (Figure 
3.2A), effluent CODS concentration (Figure 3.2B), effluent HPr-COD concentration 
(Figure 3.2C) and biogas production rate (Figure 3.2D) during the whole experimental 
period. 

During phase 1 (day 0-50), with only propionic acid in the feeding, the OLR was first 
increased to 1.1 g HPr-COD L-1 d-1 (HRT of 16 h) from day 0-20, and both the effluent 
CODS and HPr concentrations remained low, around 100 mg COD L-1 and 10 mg 
HPr-COD L-1, respectively. Thus high EHPr and RHPr were obtained, by average 99% and 
1.1 g HPr-COD L-1 d-1, respectively. However, after the further increasing of the OLR to 
2.2 g HPr-COD L-1 d-1 (HRT of 8 h) on day 21, both the effluent CODS and HPr 
concentrations rose to around 260 mg COD L-1 and 235 mg HPr-COD L-1, respectively, 
corresponding with an EHPr of 70% and a RHPr of 1.5 g HPr-COD L-1 d-1. At the end of 
phase 1, the OLR was increased to 4.5 g HPr-COD L-1 d-1 (HRT of 4 h), resulting in 
effluent CODS and HPr concentrations around 400 mg COD L-1 and 350 mg HPr-COD L-1, 
respectively. The biogas production rates remained low during this phase, i.e. 0.4 L L-1 d-1 
(0.27 L g-1 CODremoved). 

After the supplementation of macro-nutrients (from day 51 on), not only the effluent 
CODS and HPr concentrations dropped immediately to around 200 mg COD L-1 and 65 
mg HPr-COD L-1, respectively, but also the biogas production rate increased to 0.8 L L-1 
d-1 (0.31 L g-1 CODremoved). Consequently, both the EHPr and RHPr increased from 48% and 
2.1 g HPr-COD L-1 d-1 (end of phase 1) to 92% and 4.1 g HPr-COD L-1 d-1 (beginning of 
phase 2) under the same OLR of 4.5 g HPr-COD L-1 d-1. In addition, during this phase 2 
(day 61-145), the OLR could be further increased up to 18.8 g HPr-COD L-1 d-1 (HRT of 1 
h), resulting in average effluent CODS and HPr concentrations of 100 mg COD L-1 and 30 
mg HPr-COD L-1, respectively, and biogas production rates of 3.5 L L-1 d-1 (0.30 L g-1 
CODremoved). Consequently, higher EHPr and RHPr, ca. 96% and 18.1 g HPr-COD L-1 d-1, 
were obtained. 
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Figure 3.2 Performance of UASBHRT reactor during the whole experimental period. (A) 
OLR; (B) Effluent CODS concentration; (C) Effluent HPr-COD concentration; and, (D) 
Biogas production rate. Ph.1: phase 1, with only HPr in the feed; Ph.2: phase 2, with HPr 
supplemented with macro-nutrients; Ph.3: phase 3, with HPr supplemented by macro- and 
micro-nutrients; R: recovery period; Ph.4: phase 4, with no-addition of micro-nutrients (4a) 
and macro-nutrients (4b). 
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After the supplementation of micro-nutrients (from day 146 on), the effluent CODS 
and HPr concentrations decreased to less than 50 mg COD L-1 and 5 mg HPr-COD L-1, 
respectively. Besides, an increase of the biogas production rate to 3.8 L L-1 d-1 was 
observed. During phase 3 (day 146-189), the OLR was further increased to 33.8 g 
HPr-COD L-1 d-1 (HRT of 0.5 h) and the effluent CODS and HPr concentrations 
rebounded to 100 mg COD L-1 and around 20 mg HPr-COD L-1, respectively. 
Consequently, not only the EHPr and RHPr increased to 97% and 32.8 g HPr-COD L-1 d-1, 
respectively, but also the biogas production rate was enhanced, i.e. 6.7 L L-1 d-1 (0.34 L g-1 
CODremoved). At the end of this period (day 90 and 91), the OLR was increased to 45 g 
HPr-COD L-1 d-1 (HRT of 0.4 h). However, the experiment could not be further advanced 
under these conditions due to a limitation of the set-up (the reactor tended to overflow at 
these extremely high influent flow-rates, i.e. 60 L L-1 d-1). Yet, during these 2 days of this 
very high throughput, the effluent CODS and HPr concentrations remained at the same 
level, ca. 110 mg COD L-1 and 15 mg HPr-COD L-1, respectively. 

During the recovery period of the influent flow rate at 45 L L-1 d-1 (day 192-195) 
after the reactor overflow, the effluent CODS and HPr concentrations, and the biogas 
production rates reached the same levels as those at the end of phase 3, i.e. around 80 mg 
COD L-1, 10 mg HPr-COD L-1 and 6.4 L L-1 d-1 (0.36 L g-1 CODremoved), respectively. 

In order to confirm the positive effect of the macro- and micro-nutrients 
supplementation during phases 2 and 3, respectively, the inverse effect by interrupting 
their addition was tested during phase 4 (day 196-225). The no-addition of micro-nutrients 
(days 196-205) did not affect significantly the average effluent CODS and HPr 
concentration values (60 mg COD L-1 and 10 mg HPr-COD L-1, respectively), but the 
biogas production rate decreased by 8% (5.9 L L-1 d-1). In contrast, the no-addition of 
macro-nutrients (day 206-225) resulted not only in the decrease of the biogas production 
rate by 42% (3.4 L L-1 d-1), but also the effluent CODS and HPr concentrations increased 
to 233 mg COD L-1 and 211 mg HPr-COD L-1, respectively. 

3.3.2 UASBHPr performance 

Similarly to UASBHRT, the pH of the UASBHPr remained constant during the whole 
experimental period, around 7.5 ± 0.4. 

Figure 3.3 shows the performance of UASBHPr in terms of applied OLR (Figure 
3.3A), effluent CODS concentration (Figure 3.3B), effluent HPr-COD concentration 
(Figure 3.3C) and biogas production rate (Figure 3.3D) during the whole experimental 
period. 
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Figure 3.3 Performance of UASBHPr reactor during the whole experimental period.(A) 
OLR; (B) Effluent CODS concentration; (C) Effluent HPr-COD concentration; and, (D) 
Biogas production rate. Ph.1: phase 1, with only HPr in the feed; Ph.2: phase 2, with HPr 
supplemented with macro-nutrients; Ph.3: phase 3, with HPr supplemented by macro- and 
micro-nutrients; R: recovery period; Ph.4: phase 4, with no-addition of micro-nutrients (4a) 
and macro- nutrients (4b). 
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At the beginning of phase 1 (day 0-27), the OLR was increased from 1.5 to 3 g 
HPr-COD L-1 d-1 (influent HPr concentration: from 0.8 to 1.5 g HPr-COD L-1). The 
effluent CODS and HPr concentrations remained below 0.4 g COD L-1 and 0.2 g 
HPr-COD L-1, respectively. The EHPr and RHPr were high, around 88% and 2.6 g HPr-COD 
L-1 d-1, respectively. However, the reactor performance was deteriorated after the further 
increase of the OLR to 4.5 g HPr-COD L-1 d-1 (influent HPr concentration: 2.3 g 
HPr-COD L-1) on day 28. Indeed, both the effluent CODS and HPr concentrations 
increased to 1.2 g COD L-1 and 1 g HPr-COD L-1, respectively, resulting in low EHPr and 
RHPr, i.e. 54% and 2.4 g HPr-COD L-1 d-1, respectively. Throughout this phase, the biogas 
production rate remained lower than 0.5 L L-1 d-1 (< 0.23 L g-1 CODremoved).  

After the supplementation of macro-nutrients (from day 61 on), the effluent CODS 
and HPr concentrations decreased to less than 0.5 g COD L-1 and 0.3 g HPr-COD L-1, 
respectively, and the biogas production rate increased up to 1.1 L L-1 d-1 (0.32 L g-1 
CODremoved). Furthermore, during this phase 2, the OLR could be increased to 13.5 g 
HPr-COD L-1 d-1 (influent HPr concentration: 6.8 g HPr-COD L-1). Under these conditions, 
high biogas production rate (4.6 L L-1 d-1 or 0.45 L g-1 CODremoved), EHPr (97%) and RHPr 
(13.1 g HPr-COD L-1 d-1) were obtained. 

After the supplementation of micro-nutrients (from day 141 on), the biogas 
production rate increased to 5.1 L L-1 d-1, but also the CODS and HPr concentrations in the 
effluent to around 0.8 g COD L-1 and 0.7 g HPr-COD L-1, respectively. During phase 3 
(day 141-175), the OLR was further increased to 21 g HPr-COD L-1 d-1 (influent HPr 
concentration: 10.5 g HPr-COD L-1), which resulted in 25-30% increase of the biogas 
production rate, i.e.7.2 L L-1 d-1 (0.49 L g-1 CODremoved), as well as the EHPr and the RHPr, 
up to 77% and 16.4 g HPr-COD L-1 d-1, respectively. However, both CODS and HPr 
concentrations in the effluent increased to around 2.4 g COD L-1 and 2.3 g HPr-COD L-1, 
respectively. 

Since the effluent CODS and HPr concentrations at the end of phase 3 were higher 
than 2 g COD L-1, a recovery period (day 176-200) was applied, in which the OLR was 
decreased stepwise to 13.5 g HPr-COD L-1 d-1 (influent HPr concentration: 6.8 g 
HPr-COD L-1) in order to get effluent CODS and HPr concentrations below 1 g COD L-1. 
Consequently, the biogas production rate also decreased and remained constant at 4.2 L 
L-1 d-1 during this recovery period. 

Similarly to UASBHRT, the positive effect of macro- and micro-nutrients was 
confirmed during phase 4 (day 201-220). The no-addition of micro-nutrients (day 201-210) 
resulted in an increase of the effluent CODS and HPr concentrations to 1.5 g COD L-1 and 
1.1 g HPr-COD L-1, respectively, and the biogas production rate decreased by 17% (3.5 L 
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L-1 d-1). The subsequently interruption of macro-nutrients addition (day 211-220) 
accentuated this negative effect by increasing the effluent CODS and HPr concentrations 
to 2.7 g COD L-1 and 2.4 g HPr-COD L-1, respectively, and decreasing the biogas 
production rates by 60-70% (1.1 L L-1 d-1 or 0.15 L g-1 CODremoved). 

3.4 DISCUSSION 

Although in most literature studies related to UASB reactors, the OLR is the common 
used parameter indicating reactor operation conditions, for the start-up phase, the mass 
OLR is also of interest in order to control the sludge granulation process. In general, it is 
suggested that it should be around 0.05 to 0.25 g COD g-1 VS d-1 during the start-up and 
kept below 1 g COD g-1 VS d-1 for a stable performance (Singh et al., 1998). In this study, 
during the first operational days, the mass OLR of both reactors was below 0.12 g COD 
g-1 VS d-1. Afterwards, the highest mass OLR achieved in both reactors was lower than 
0.44 g COD g-1 VS d-1. Since these values were in the range of the recommended ones and 
good granulation was observed, the sludge performance was considered as optimal in 
terms of the mass OLR applied, and this parameter was not considered as a critical for the 
reactors performance.  

Table 3.3 shows a summary of the results obtained in both UASB reactors during the 
last days of each operational phase. 

3.4.1 Without nutrients supplementation 

The performance of both UASB reactors without nutrients supplementation was quite 
poor (Figures 3.2, Figure 3.3 and Table 3.3). The maximum OLR that could be applied in 
both reactors was 4.5 g HPr-COD L-1 d-1, corresponding to an HRT of 4 h in UASBHRT 
and an influent HPr concentration of 2.3 g HPr-COD L-1 in UASBHPr. These operational 
conditions resulted in low EHPr (between 48% and 65%) and RHPr (between 2.1 and 2.9 g 
HPr-COD L-1 d-1). This observation was confirmed during phase 4, where the EHPr 
dropped around 25% in both reactors, upon subsequent interruption of micro- and 
macro-nutrients supplementation. Although the later EHPr was slightly higher than those 
obtained in phase 1, it can be explained by the adaptation of the anaerobic microorganisms 
to HPr degradation after more than 200 days of reactors operation. Concerning the biogas 
production rate, no more than 20% (maximum 0.5 L L-1 d-1) of the theoretical values were 
achieved in both reactors during phase 1. During phase 4, although higher biogas 
production rates were obtained (3.4 and 1.1 L L-1 d-1 in UASBHRT and UASBHPr, 
respectively) as a consequence of the higher OLR applied, the percentages over the 
theoretical values were similar to those obtained in phase 1, around 33% and 18% in 
UASBHRT and UASBHPr, respectively.
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3.4.2 Effect of macro- and micro-nutrients supplementation 

The stimulatory effect of the macro-nutrients was immediately observed after their 
supplementation (phase 2), since the effluent quality was improved in both reactors by a 
decrease of the effluent CODS and HPr concentrations by more than 50%. Consequently, 
the EHPr increased up to 95%. Moreover, the biogas production rates at the beginning of 
phase 2, ca. 0.8 and 1.1 L L-1 d-1 (40% of the theoretical value) in the UASBHRT and 
UASBHPr, respectively, doubled the values obtained at the same OLR (4.5 g HPr-COD L-1 
d-1) during phase 1. At the end of phase 2, the maximum OLR applied in the UASBHRT 
and UASBHPr was 3 and 2 times higher without affecting the EHPr (around 90%), and 
resulting also in greater biogas production rates (59% and 81% of the theoretical values). 

The positive effect of macro-nutrients supplementation was also confirmed during 
phase 4b, since the performance of both reactors deteriorated (the effluent CODS 
concentration increased by 282% and 115%, respectively, and biogas production rate 
decreased by 42% and 69%, respectively) after stopping the addition of macro-nutrients. 

Contrary to the supplementation of macro-nutrients, the stimulatory effects of 
micro-nutrients addition (phase 3) were less pronounced. The effluent CODS and HPr 
concentrations were almost not affected, remaining at the same values or slightly higher 
than those obtained at the end of phase 2. In contrast, the biogas production rate increased 
in both reactors by 10%, approximately. 

Yet, the supplementation of micro-nutrients allowed the OLR to be further increased 
to 33.8 and 21.0 g HPr-COD L-1 d-1 in UASBHRT and UASBHPr,, respectively, which 
corresponded to an HRT of 0.5 h and an influent HPr concentration of 10.5 g HPr-COD 
L-1, respectively. Under these extreme conditions, the RHPr in both reactors could be 
declared to be very high, i.e. 32.8 and 16.4 g HPr-COD L-1 d-1 (EHPr of 97% and 77%), 
respectively. The effluent quality in UASBHRT remained good (residual HPr 
concentrations below 0.1 g HPr-COD L-1), while it was poor in UASBHPr, with residual 
HPr concentration of 2.3 g HPr-COD L-1. However, it should be considered that an 
influent HPr concentration of 10.5 g HPr-COD L-1 was used, which is extremely high and 
less likely to occur in practice. 

When the addition of micro-nutrients was interrupted (phase 4a), no significant effect 
was observed on UASBHRT operation, whereas in UASBHPr the effluent CODS 
concentrations slightly increased. However, the biogas production rates decreased in both 
reactors by 10%. 

With the supplementation of the macro- and micro-nutrients, the applied HRT of 
UASBHRT and the influent HPr concentration of UASBHPr could be stressed to 0.5 h and 
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10.5 g HPr-COD L-1, respectively, without affecting reactor performance (RHPr of 15-30 g 
COD L-1 d-1 and EHPr of 75-95%). These conditions surpassed those values widely 
recommended for UASB configuration by other authors (Barredo and Evison, 1991; 
Elefsiniotis and Oldham, 1994; Hwu et al., 1997), ca. longer than 12 h and less than 2.5 g 
HPr-COD L-1. 

The positive effect of micro-nutrients was also observed by Climenhaga and Banks 
(2008), who emphasized the importance of the micro-nutrients for stable digestion at high 
VFA levels, and Zitomer et al. (2008), who indicated that the propionate utilization rate 
increased by the enhanced biomass activities benefited from the micro-nutrients. 

3.4.3 UASBHRT vs. UASBHPr: practical application 

Two different feeding strategies were applied to increase the OLR in the reactors, 
which consequently affected the performances of the reactors. An extremely short HRT 
was achieved in UASBHRT, ca. 0.5 h, corresponding to a maximum OLR of 33.8 g 
HPr-COD L-1 d-1. Interestingly, due to the good biomass granulation, no significant 
biomass wash-out was observed under these conditions. Moreover, HPr removal was not 
affected either by these extreme operational conditions, achieving RHPr of 32.8 HPr-COD 
L-1 d-1 (EHPr of 97%). In the UASBHPr, the maximum influent HPr concentration was 10.5 
g HPr-COD L-1, corresponding to a maximum OLR of 21 g HPr-COD L-1 d-1, which is 38% 
lower than that obtained in the UASBHRT. The RHPr obtained under these conditions, 16.4 
g HPr-COD L-1 d-1 (EHPr of 77%), was also 50% lower than the value obtained in the 
UASBHRT.  

In our study, the maximum RHPr achieved in the UASBHPr (21 g HPr-COD L-1 d-1) is 
in the same range as the values reported by other authors (20-25 g HPr-COD L-1 d-1), 
whose strategy to increase the OLR was the same as that applied in UASBHPr, i.e. 
increasing the influent HPr concentration (Wiegant et al., 1986; Fang et al., 1994; Tatara 
et al., 2008). However, much higher RHPr was obtained in our study in the UASBHRT, in 
which the OLR was increased by decreasing the HRT. This fact indicates that high 
throughputs could be advantageous compared to high-concentrated streams. In addition, 
the recovery of the UASBHRT from the stress conditions at the end of phase 3 took only 2 
days while it required 25 days for the UASBHPr, thus indicating the quicker recovery from 
high hydraulic regimes. 

Both strategies are representative of different real situations and the selection will 
depend on the characteristics of the waste stream to be treated. If low residual HPr 
concentrations (< 1 g HPr-COD L-1) are expected, the strategy of UASBHRT is suggested, 
which allows the efficient treatment of high waste volumes (HRT of 0.5 h). If residual HPr 
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concentrations higher than 2 g HPr-COD L-1 are expected, a longer HRT is required for its 
efficient removal, and thus the strategy of UASBHPr is more appropriate. In most cases, a 
combination of these two strategies is recommended. 

Although the overall stimulatory effects of the macro- and micro-nutrients 
supplementation were observed in both reactors, i.e. better effluent quality and higher 
biogas production rates, the positive outcome of the macro-nutrients was more 
pronounced on both UASB reactors. The effects of the micro-nutrients supplementation 
was moderate on the UASBHPr, however, more pronounced on the UASBHRT, which can 
be explained by the fact that the influent HPr concentration was 8 times lower than that of 
the UASBHPr.  

In general, in practice, nutrients are added into industrial digesters in excessive 
amounts to ascertain stable performance. But, this excessive supplementation can lead to 
metals accumulation in the digester, and thus causing toxicity. Therefore, a correct 
strategy for nutrients supplementation should be defined based on metal uptake by 
microorganisms and “metal bioavailability”, which also depends on the specific waste 
characteristics. 

3.5 CONCLUSIONS 

This work shows that propionic acid is a recalcitrant compound, whose biological 
degradation is not straightforward. The supplementation of macro- and micro-nutrients 
stimulates the reactors performance, in terms of higher applied OLR, better effluent 
quality and greater biogas production rates. 

For practical applications, a combination of these two strategies according to the 
specific characteristics of the waste stream is proposed. A “shock” of the microbial 
community due to direct exposure to high initial HPr levels should be avoided. On the 
contrary, by increasing gradually the OLR, it is possible to eliminate HPr at high removal 
rate. A strategy according to the characteristics of the specific waste stream should be 
selected, i.e. by lowering the HRT or by increasing the HPr concentration in the influent 
or a combination of both. Besides, the supplementation of macro- and micro-nutrients to 
the digesters at levels of mg L-1 and µg L-1, respectively, can improve the HPr removal. 
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CHAPTER IV 

ACCELERATED PROCESS RECOVERY BY 

EXTERNAL PROPIONIC ACID DEGRADATION 

Abstract 

An enhanced propionic acid degradation (EPAD) system has been conceptually 

designed and experimentally tested at lab-scale. The system consisted of two components: 

a liquid/solid separator containing a microfiltration membrane and an upflow anaerobic 

sludge bed (UASB) reactor specialized in propionic acid (HPr) degradation. Two lab-scale 

continuous stirred tank reactors (CSTR) were used, i.e. the CSTRC and the CSTRT. Firstly, 

the CSTRs were stressed by organic overloading to obtain high HPr levels. During the 

recovery period, besides stop feeding, no actions were taken to decrease the residual HPr 

concentration in the CSTRC, while the CSTRT was connected to EPAD system in order to 

accelerate its recovery. By the end of the experiment, the CSTRT completely recovered 

from HPr accumulation, while no significant decrease of the HPr level in the CSTRC was 

observed. Based on the experimental results, the up-scaling of EPAD system was 

evaluated and it would only account for about 2% of the volume of the full-scale digester, 

thus suggesting that the implementation of a mobile EPAD system in full-scale practice 

should be feasible. 

Chapter redrafted after: Ma J, Carballa M, Van De Caveye P and Verstraete W 2009 Enhanced 
propionic acid degradation (EPAD) system: experimental validation and practical consideration. Water 
Research 43 (13) 3239-3248. 
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4.1 INTRODUCTION 

Anaerobic digestion is a well established technology for the treatment of 
high-strength wastes. However, this technology still requires considerable monitoring and 
optimization due to the frequent process instabilities, which often result in the 
accumulation of propionic acid (HPr) (Verstraete et al., 2005; Wang et al., 2006). 

Two metabolic phases, i.e. acidogenesis and methanogenesis, are involved in 
anaerobic processes. Consequently, the efficiency and performance of an anaerobic 
digester strongly depend on the cooperation between the acidogens and the methanogens 
(Xu et al., 2004). A typical response to this unbalanced cooperation is the accumulation of 
volatile fatty acids (VFAs). More specifically, HPr levels have been found to rise prior to 
methane production inhibition (Pullammanappallil et al., 2001). Although the high 
hydrogen partial pressure or high bio-hydrogen production rate has been suggested by 
many authors as the main reason causing HPr accumulation in anaerobic digesters (Harper 
and Pohland, 1986; Mosey and Fernandes, 1989; Fynn and Syafila, 1990), other studies 
have indicated that HPr accumulation seems to be independent from hydrogen partial 
pressure (Inanc et al., 1996; Ren et al., 1997). From these contradictory results, it can be 
concluded that the cause of HPr accumulation during anaerobic processes has not been 
unequivocally clarified yet. 

Moreover, the reported maximum tolerable levels of HPr before inhibiting methane 
production are not uniform, from 0.8 g L-1 (1.2 g HPr-COD L-1) by Mosche and Jordening 
(1998) to 5 g L-1 (7.5 g HPr-COD L-1) by Hajarnis and Ranade (1994), although the 
common values vary between 1 g L-1 (1.5 g HPr-COD L-1) and 2 g L-1 (3 g HPr-COD L-1) 
(Barredo and Evison, 1991; Dogan et al., 2005). The type of waste treated, the reactor 
configuration and the operational parameters are the main factors affecting this tolerable 
level. In practice, it has been generally accepted that HPr concentrations should be kept 
below 1.5 g L-1 (2.3 g HPr-COD L-1) for a proper process operation. 

Solutions to decrease the HPr concentration include reactor configuration 
modifications, supplementation of proper levels of essential nutrients and bioaugmentation 
(Kim et al., 2004; Bagi et al., 2007; Tepe et al., 2008). The single-stage continuous stirred 
tank reactor (CSTR), a commonly used configuration for solid digestion, often results in a 
poor performance due to the low organic loading rate (OLR) applied and frequent HPr 
accumulation events (Azbar and Speece, 2001). Therefore, the two-stage anaerobic 
process, where the acidogenic and methanogenic phases are separated, has been developed 
to enhance the stability and efficiency of the process. However, the required complex and 
sophisticated control system limits its application (Demirel and Yenigun, 2004; Bolzonella 
et al., 2007). Several studies have indicated that the conversion of acetic acid (HAc) and 
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HPr is stimulated by the addition of macro- and micro-nutrients (Speece, 1996; Cresson et 
al., 2006) and, in practice, the supplementation of FeSO4 in excessive amounts to ascertain 
a stable digester performance has given satisfactory results (Kim et al., 2002; Climenhaga 
and Banks, 2008; Zitomer et al., 2008). Furthermore, the addition of different 
hydrogen-oxidizing bacteria has been reported to improve the degradation of HPr 
(Schmidt and Ahring, 1993; Bagi et al., 2007). However, no mature strategy has been 
shown so far to be reliable and straightforward in terms of “curing” a full scale “sick” 
anaerobic digester (i.e. reactor in which HPr is accumulated, ca. > 1.5 g L-1, resulting in 
the inhibition of methane production). In practice, most industries simply stop feeding the 
digesters and passively wait for the decreasing of the HPr level, which can require months 
before an adequate recovery is obtained.  

Since the origin of HPr accumulation has been extensively studied in the past with 
little success, the objective of this work was not to get insights in the factors causing HPr 
accumulation, but to provide an adequate remedy to accelerate the anaerobic digester 
recovery. With this purpose, an enhanced propionic acid degradation (EPAD) system 
which can be attached to “sick” anaerobic digesters and accelerate their recovery was 
designed. The performance and efficiency of the EPAD system were validated at lab-scale 
and its practical feasibility at full-scale was evaluated based on the experimental results. 
To the best of our knowledge, this is the first study focusing on an add-on remediation 
technique. 

4.2 MATERIALS AND METHODS 

4.2.1 EPAD system concept 

The EPAD system consists of two components (Figure 4.1): a separator (EPADseparator) 
containing a submerged plate membrane aiming to separate the solid and liquid fractions 
of the mixed liquor from the anaerobic digester, and an upflow anaerobic sludge bed 
(UASB) reactor (EPADUASB) which is aimed to degrade HPr at high rate, relying on a 
consortium acclimated to HPr degradation (Ma et al., 2009). 

The working principle is as follows: the mixed liquor of the full-scale “sick” 
anaerobic digester is recycled through the EPADseparator. The resulting permeate is pumped 
into the EPADUASB, where the HPr degradation takes place. The effluent of the EPADUASB, 
with low HPr concentration (< 0.5 g HPr-COD L-1) is also recycled back to the full-scale 
anaerobic digester, with the concomitant lowering effect. Therefore, the goal of the EPAD 
system is to accelerate the decrease of the HPr concentration in the full-scale anaerobic 
digester, by providing a HPr specialized microbial consortium in a side reactor. 
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Figure 4.1 (A) EPAD system connected to a full-scale anaerobic digester; (B) Detailed 
flow sheet of EPAD system. 

4.2.2 Experiment set-up 

4.2.2.1 The CSTRs 

Two lab-scale CSTRs (15 L working volume) were operated to simulate the 
full-scale anaerobic digesters: the control reactor (CSTRC), in which no actions rather than 
the interruption of the feeding were taken to decrease the HPr concentration, and the 
treatment reactor (CSTRT), which besides the interruption of the feeding was connected to 
EPAD system in order to accelerate the reactor recovery. 

The CSTRs were inoculated with mesophilic sludge harvested from a domestic 
wastewater treatment plant (Ossemeersen, Belgium), resulting in an initial in-reactor 
volatile solid (VS) concentration of around 25 g VS L-1. Kitchen waste (KW) diluted with 
tap water was used as the daily feeding at a flowrate of 1 L d-1, resulting in a hydraulic 
retention time (HRT) of 15 d. The composition of the kitchen waste (vegetables, meat, fish, 
potato, rice, pasta, etc.) varied depending on the deliveries. The average total chemical 
oxygen demand (COD) (CODT) and total solid (TS) concentrations were approximately 
220 g COD kg-1 KW and 150 g TS kg-1 KW, respectively. Both the raw kitchen waste and 
the weekly-prepared feeding of the reactors were stored at 4°C. 

The experiment was performed in replicate (experiment 1 and 2) and it consisted of 
two main phases (Table 4.1). In phase 1 (overloading phase), an excessive OLR was 
applied to both CSTRs to obtain high HPr levels; and, in phase 2 (recovery phase), two 
different strategies, i.e. stop feeding and EPAD connection, were applied to recover the 
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CSTRs from HPr accumulation. In experiment 1, the EPAD system was connected to the 
CSTRT at the beginning of phase 2 (day 28), while the feeding was continued in both 
CSTRs. Since the feeding effect surpassed the EPAD system effect, the feeding was 
stopped from day 34 on in both CSTRs. Consequently, in experiment 2, the feeding of 
both CSTRs was stopped at the beginning of phase 2 (day 22), without connecting the 
EPAD system to CSTRT, in order to evaluate the single effect of interrupting the feeding. 
From day 36 on, the EPAD system was connected to the CSTRT. Between both 
experiments, a self recovery period was applied for the CSTRC to obtain good effluent 
quality before starting experiment 2 (data not shown).  

Mesophilic conditions (33 ± 2°C) were applied and the pH of the reactors was 
controlled at around 7.5 with NaOH solution (5N). pH, soluble COD (CODS) and VFAs 
were monitored during the experiments. 

4.2.2.2 The EPADseparator 

The EPADseparator had a working volume of 4.5 L and it contained a submerged plate 
membrane (Solis, Holland) made of chlorinated polyethylene (Kubota, Japan). The pore 
size, the surface membrane area per plate and the specific membrane surface area were 0.4 
μm (microfiltration), 0.1 m2 and 115 m2 m-3, respectively (De Gusseme et al., 2009). 
These plate membranes show good resistance against clogging and they are known for 
their robustness (Hennebel et al., 2009). 

The mixed liquor from the CSTRT was pumped (15 min h-1) into the bottom of the 
EPADseparator, where part of the liquid fraction was separated from the solid fraction by the 
microfiltration membrane. The obtained permeate was pumped into the EPADUASB. To 
control the OLR of the EPADUASB and to abate the membrane fouling, a cycle of 15 min 
extrusion and 45 min relaxation was applied on the membrane, which resulted in permeate 
fluxes of 1 L m-2 h-1 (2.5 L d-1) and 0.2 L m-2 h-1 (0.5 L d-1) for experiments 1 and 2, 
respectively. 

4.2.2.3 The EPADUASB 

The EPADUASB had a working volume of 2 L and it consisted of a cylindrical tube 
with a diameter of 5 cm and one spheriform 3-phase separator at the upper part. The 
inoculum was taken from a full-scale mesophilic anaerobic digester treating potato 
processing wastewater (Mydibel, Belgium) and the initial in-reactor VS concentration was 
approximately 10 g VS L-1. Before starting the EPAD experiments, this anaerobic biomass 
was acclimated to HPr methanation (HPr as sole electron donor in the feeding) for 1-2 
months (data not shown).  
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The reactor content was continuously mixed by recirculation at an upflow velocity of 
around 1 m h-1 and the effluent was recycled back to the CSTRT. During the first days of 
the EPAD system connection to the CSTRT, the OLR of EPADUASB was controlled by the 
permeate flow-rate to avoid an organic overloading. Later, a fixed permeate rate (2.5 L d-1 
in experiment 1 and 0.5 L d-1 in experiment 2) was applied and the OLR decreased 
accordingly with the decrease in the CODS levels in the permeate. The reactor operated at 
mesophilic conditions (33 ± 2°C) and the pH was stable during the whole experimental 
period, around 7.6 ± 0.2. 

4.2.3 Analytical procedures 

Physico-chemical parameters, CODT and CODS, TS and VS, were determined 
according to the standard methods (Greenberg et al., 1992). VFAs were extracted with 
diethyl ether and the quantitative analysis was carried out in a capillary gas chromatograph 
(CE Instruments, Italy) which is coupled with a flame ionization detector. The pH values 
were measured with a pH meter (Consort C532, Germany).  

4.3 RESULTS 

4.3.1 The CSTRs 

The pH in both CSTRs remained constant (7.5 ± 0.2) during the whole experimental 
period. Table 4.1 and Figure 4.2 show the performance of the CSTRs during the two 
experiments in terms of the OLR and the residual CODS, HPr and HAc concentrations. 

4.3.1.1 Experiment 1 

During phase 1 (day 0-27), the OLR was increased gradually in both CSTRs to 2.8 g 
COD L-1 d-1 (Figure 4.2). Consequently the CODS, HPr and HAc concentrations increased 
progressively up to around 12 g COD L-1, 4.5 g HPr-COD L-1 and 5.0 g HAc-COD L-1, 
respectively (Table 4.1). At this moment, both CSTRs were considered “sick” since HPr 
concentrations were above 1.5 g HPr-COD L-1. 

On day 28, the EPAD system was connected to the CSTRT and the feeding was 
continued for both CSTRs (OLR of 2.8 g COD L-1 d-1) during the first days of phase 2 
(day 28-34). Since a further increase of the CODS, HPr and HAc concentrations was 
observed in both CSTRs (Figure 4.2), up to 18.2 g COD L-1, 5.3 g HPr-COD L-1 and 6.6 g 
HAc-COD L-1 (Table 4.1), respectively, on day 35, the feeding of the CSTRs was 
interrupted. From that point, CODS, HPr and HAc concentrations started to decrease in 
both CSTRs (Figure 4.2). By the end of phase 2 (day 65), a significant decrease of 91% of 
the CODS concentration was observed in the CSTRT (from 17.4 to 1.5 g COD L-1), while  
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Figure 4.2 Performance of CSTRs during experiment 1 (A, C, E, G) and experiment 2 (B, 
D, F, H). Phase 1: Overloading phase; Phase 2: recovery phase. (▲) OLR; (■) CSTRC; (□) 
CSTRT. Dashed line indicates when EPAD system effect was evaluated without feeding 
the reactors. 

in the CSTRC, it was decreased by only 53% (from 17.8 to 8.4 g COD L-1). Similarly, HPr 
and HAc were almost completely removed in the CSTRT (from 5.4 to 0.1 g HPr-COD L-1 
and from 5.8 to 0.3 g HAc-COD L-1), respectively, whereas a lower elimination was 
observed in the CSTRC (from 5.3 to 3.6 g HPr-COD L-1 and from 6.6 to 3.5 g HAc-COD 
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L-1), respectively. Overall, the accelerated HPr recovery of the CSTRT by the connection 
of the EPAD system without feeding took 30 days for experiment 1. 

4.3.1.2 Experiment 2 

Analogously to experiment 1, both CSTRs became highly dysfunctional during phase 
1 when the OLR was increased gradually to 4.2 g COD L-1 d-1 (Figure 4.2). The CODS, 
HPr and HAc concentrations increased sharply to up to 37.9 g COD L-1, 13.9 g HPr-COD 
L-1 and 11.8 g HAc-COD L-1, respectively (Table 4.1). Considering the observations 
during experiment 1 that the feeding effect surpassed the EPAD system effect, a different 
experimental strategy was applied in experiment 2 (Table 4.1). At the beginning of phase 
2 (day 22), the feeding of both CSTRs was interrupted without the connection of the 
EPAD system to the CSTRT. As a consequence, the CODS, HPr and HAc concentrations 
did not increase anymore, but they remained more or less constant for 15 days (Figure 4.2). 
Therefore, on day 36, the EPAD system was connected to the CSTRT, resulting in an 
immediate decrease of the CODS, HPr and HAc concentrations with removal efficiencies 
of 90% (from 28.8 to 2.8 g COD L-1), 97% (from 12.3 to 0.4 g HPr-COD L-1) and 95% 
(from 11.5 to 0.6 g HAc-COD L-1), respectively, by the end of the experiment (Table 4.1). 
Meanwhile, the same levels were maintained in the CSTRC (around 33 g COD L-1, 11 g 
HPr-COD L-1 and 11 g HAc-COD L-1, respectively). In this case, the accelerated HPr 
recovery of the CSTRT by the connection of the EPAD system took 55 days. 

4.3.2 The EPADseparator 

The ratios between the concentrations of the CODS and HPr in the permeate and in 
the bulk liquid (CSTR mixed liquor) were by average 78% and 98%, respectively, during 
experiment 1 and 88% and 94%, respectively, during experiment 2 (data not shown). 
However, the HPr permeate flux depended on the permeate flux and the permeate HPr 
concentration. In experiment 1, the permeate flux was fixed at 1 L m-2 h-1 (2.5 L d-1) and 
the initial (maximum) permeate HPr concentration was 5 g HPr-COD L-1, which resulted 
in the maximum HPr permeate flux of 5 g HPr-COD m-2 h-1 (12.5 g HPr-COD d-1). 
Although the initial (maximum) permeate HPr concentration was higher in experiment 2, 
i.e. 6.7 g HPr-COD L-1, lower HPr permeate flux was obtained, i.e. 1.3 g HPr-COD m-2 h-1 
(3.4 g HPr-COD d-1), because the permeate flux was 5-fold lower, 0.2 L m-2 h-1 (0.5 L d-1).  

4.3.3 The EPADUASB 

Figure 4.3 illustrates the performance of the EPADUASB during the two experiments 
regarding to the OLR, CODS, HPr and HAc concentrations. 
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Figure 4.3 Performance of the EPADUASB during experiment 1 (A, C, E, G) and 
experiment 2 (B, D, F, H). (▲) OLR; (■) Influent; (□) Effluent. 

In experiment 1, the maximum OLR applied to the EPADUASB during the first days of 
operation was 16 g COD L-1 d-1, which corresponded to a maximum permeate HPr 
concentration of 5 g HPr-COD L-1. The effluent CODS, HPr and HAc concentrations 
increased from 2.4 to 8.8 g COD L-1, from 1.0 to 3.8 g HPr-COD L-1 and from 1.1 to 4.0 g 
HAc-COD L-1, respectively, which resulted in low removal efficiencies (< 30%). From 
day 35 on, the effluent quality improved gradually and by the end of the experiment, the 



Strategies to enhance anaerobic digestion in view of process stability and methanation 

80  

CODS, HPr and HAc concentrations of the effluent decreased to less than 0.5 g COD L-1 
(Figure 4.3). The maximum CODS, HPr and HAc removal rates obtained during 
experiment 1 were 4.9 g COD L-1 d-1 (COD removal efficiency of 61%), 1.9 g HPr-COD 
L-1 d-1 (HPr removal efficiency of 92%) and 1.0 g HAc-COD L-1 d-1 (HAc removal 
efficiency of 75%), respectively. 

In experiment 2, since the initial CODS, HPr and HAc concentrations in the 
permeate/influent were very high, ca. 20.7 g COD L-1, 6.7 g HPr-COD L-1 and 7 g 
HAc-COD L-1, respectively, a low influent flow-rate of 0.5 L d-1 was used in order to 
control the OLR at below 5.5 g COD L-1 d-1. During the first days of phase 2 (day 35 to 
46), the effluent CODS, HPr and HAc concentrations increased up to 16.8 g COD L-1, 4.5 
g HPr-COD L-1 and 5.6 g HAc-COD L-1, respectively, resulting in low removal 
efficiencies (< 10%). From day 47 on, the removal of HPr improved gradually and a 
maximum HPr removal rate of 0.8 g HPr-COD L-1 d-1 was obtained on day 77, 
corresponding to an HPr removal efficiency of 92%. Similarly to experiment 1, low 
effluent CODS and HAc concentrations (around 0.5 g COD L-1) were achieved at the end 
of experiment 2 (Figure 4.3). 

4.4 DISCUSSION 

4.4.1 EPAD system effect: experiment 1 versus experiment 2 

In both experiments, the aim of phase 1 was to overload the CSTRs to achieve high 
HPr levels, and thus giving rise to process failure. The applied OLR could be increased up 
to 4.2 g COD L-1 d-1 in 21 days in experiment 2 before process failure occurred, which 
was 1.5 times higher than that of experiment 1 (2.8 g COD L-1 d-1 in 27 days). 
Consequently, the CODS, HPr and HAc concentrations at the end of phase 1 were 
approximately 1.5-2 times higher in experiment 2 compared to those in experiment 1. The 
latter indicates that, in experiment 2, both CSTRs tolerated higher HPr levels before full 
process failure occurred, which can be explained by the adaptation of the microorganisms 
to the HPr accumulation problem since experiment 2 was carried out subsequently after 65 
days of experiment 1. 

In experiment 1, the feeding of both reactors was continued during the first days of 
phase 2 (day 28-34), and the CSTRT was simultaneously connected to the EPAD system. 
Although the CODS concentrations evolved similarly in both CSTRs (increase from 12 to 
18 g COD L-1), a better evolution was observed in CSTRT in terms of HPr and HAc 
concentrations (less increase). These observations implied that the stress imposed by the 
feeding surpassed the positive effect of the EPAD system. To verify if the interruption of 
the feeding stress could be sufficient enough for the CSTRs to recover, the feeding was 
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stopped at the beginning of phase 2 in experiment 2 (day 22-35), without connecting the 
EPAD system to the CSTRT. During these 14 days, the CODS, HPr and HAc 
concentrations in both reactors slightly increased (around 10-20%), which was due to the 
hydrolysis and acidification of the residual kitchen waste. These results demonstrated that 
the simply interruption of the feeding is not sufficient to assure the process recovery, and 
thus, an active auxiliary help (EPAD system) to restart the failed CSTRs is required. 

The acceleration effect of the EPAD system was immediately observed in both 
experiments. In experiment 1, the HPr concentrations in the CSTRT decreased to less than 
0.1 g HPr-COD L-1 (around 98% removal) after 30 days of connection, while those of the 
CSTRC only decreased to 3.6 g HPr-COD L-1 (around 32% removal). Similar results were 
observed during experiment 2. After 55 days of connection, low HPr levels were obtained 
in the CSTRT (0.5 g HPr-COD L-1) while those of the CSTRC stayed almost constant, at 
around 12 g HPr-COD L-1. Therefore, it can be concluded that the EPAD system 
significantly contributed to the recovery of the CSTRT from the HPr accumulation 
problem. 

Noticeable, the recovery period in experiment 2 was twice longer than in experiment 
1. The latter can be explained by the lower HPr removal capacity of the EPAD system in 
experiment 2, due to the higher influent HPr level of the EPADUASB (6.7 g HPr-COD L-1) 
and the lower OLR that could be applied (5.5 g COD L-1 d-1) compared to those of 
experiment 1, i.e. 5 g HPr-COD L-1 and 16 g COD L-1 d-1, respectively. 

4.4.2 HPr removal in the EPAD system 

Membrane modules have been applied in anaerobic bioreactors in order to enhance 
the biomass retention. However, the problems related to cake formation and biofouling 
limits its acceptance for anaerobic digestion (Choo and Lee, 1998). In general, gas 
sparging (submerged membrane) and liquid cross-flow superficial velocities (side-stream 
configuration) are the most common strategies applied to provide surface shear, and 
subsequently, to control particle deposition (Jeison and Van Lier, 2007). However, both 
strategies imply an important energy consumption. 

In this work, to avoid a complex high-suspended solids content influent entering the 
EPADUASB, which would likely disturb its stable performance, a microfiltration membrane 
was used in the EPADseparator to separate the liquid and the solid fractions of the mixed 
liquor from the CSTRT. A maximum permeate flux was not required, but it was tuned to 
the OLR to be applied in the EPADUASB. Consequently, low permeate fluxes were applied 
(1.0 and 0.2 L m-2 h-1 for experiments 1 and 2, respectively) compared to the common 
values found in literature, ranging from 5 to 50 L m-2 h-1 (Fuchs et al., 2003; Dhaouadi and 
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Marrot, 2008). In addition, a cycle of 15 min extrusion and 45 min relaxation was used to 
avoid excessive membrane fouling. 

As most of the removal of HPr was accomplished in the EPADUASB, a high HPr 
removal rate in the EPADUASB is essential for the overall accelerated effect of the EPAD 
system. In literature, maximum HPr removal rates of 15-20 g HPr-COD L-1 d-1 operating 
at influent HPr concentrations of up to 17 g HPr-COD L-1 were achieved under mesophilic 
conditions by increasing gradually the OLR (Fang et al., 1994; Tatara et al., 2008; Ma et 
al., 2009). In this work, the removal efficiency of the EPADUASB was low during the first 
days of the connection to the CSTRT in both experiments, which indicates a “shock” of the 
microbial community due to the direct exposure to high initial HPr concentrations (around 
4-6 HPr-COD L-1). In this respect, it might be advisable for future implementation of this 
approach to previously adapt the microbiota of the dedicated EPADUASB to HPr 
degradation by gradual exposure to higher HPr levels. Moreover, the supplementation of 
macro- and micro-nutrients was also shown to be effective to increase the HPr removal 
rates (Ma et al., 2009). 
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4.5 UP-SCALING FEASIBILITY 

When the full-scale anaerobic digester is connected to the EPAD system, a dynamical 
process takes place. Figure 4.4 shows the scheme of the calculations performed to estimate 
the up-scaling feasibility of the EPAD system. 

 

Figure 4.4 Scheme of calculations for the up-scaling feasibility of EPAD system. 
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In general, full-scale anaerobic digesters can have volumes up to 10,000 m3, although 
small digesters (< 3000 m3) also exist (Angelidaki et al., 2006). A full-scale anaerobic 
digester of 3000 m3 (VCSTR) with a HPr accumulation level of 1.5 kg m-3 or 2.3 g 
HPr-COD L-1 (C0) is assumed. The objective of the EPAD system is to decrease the HPr 
levels to 0.5 kg m-3 or 0.8 g HPr-COD L-1 (Cn) in 10 days (n). Therefore, the total amount 
of HPr (M) to be removed is 3000 kg HPr (4500 kg HPr-COD) and the daily HPr removal 
by the EPAD system (m) is 300 kg d-1 (450 kg HPr-COD d-1). The daily HPr concentration 
(Ct(t)) in the full-scale digester will decrease with time (t), i.e. 2.3, 2.2, ... 1.0, 0.8 g 
HPr-COD L-1 on days 0, 1, ... 9, 10, respectively. 

Based on the experimental results, a constant ratio (f) between the concentrations of 
HPr in the permeate (Cp(t)) and in the bulk liquid (Ct(t)) of 0.9 was considered for the 
EPADseparator. Since the HPr concentrations in the bulk liquid (Ct(t)) decreases with time, 
the corresponding Cp(t) also varies with time, i.e. 2.1, 2.0, ... 0.9, 0.7 g HPr-COD L-1 on 
days 0, 1, ... 9, 10, respectively. In order to maintain a constant OLR in the EPADUASB, an 
increasing permeate flowrate (Q(t)) is required to compensate the decreasing Cp(t) levels 
(217, 232, ... 523, 625 m3 d-1 on days 0, 1, ... 9, 10, respectively). According to literature 
results (Fuchs et al., 2003; Dhaouadi and Marrot, 2008), a permeate flux of around 40 L 
m-2 h-1 results in moderate membrane operation. Taking into account that in the EPAD 
system the permeate flux increases with time, a membrane surface area (S) of 650 m2 is 
selected to ensure that the maximum permeate flux does not surpass 40 L m-2 h-1. 

Considering a specific membrane surface area (SMS) of 115 m2 m-3 (De Gusseme et 
al., 2009) and an installation safety factor of 200%, the necessary volume of the 
EPADseparator is about 12 m3.  

Taking into account that 450 kg HPr-COD d-1 must be degraded in EPADUASB 
(optimal operational conditions: constant OLR of 15 kg HPr-COD m-3 d-1 and stable HPr 
removal efficiency (E) of 80%), the required volume for the liquid phase of the EPADUASB 
(VUASB) is estimated in 30 m3 (total volume 35 m3). Because of the increasing influent 
flowrate (Q(t)), the HRT of the EPADUASB decreases with time, i.e. 3.1, 2.9, ... 1.3, 1.1 h 
on days  0, 1, ... 9, 10, respectively. Although an HRT of 1 h is rather low for UASB 
reactors, Ma et al. (2009) obtained a very high HPr removal rate of 32.8 g HPr-COD L-1 
d-1 (influent HPr concentration of 0.8 g HPr-COD L-1) at an extremely low HRT of 0.5 h, 
which illustrates that low HRT can be applied on UASB reactors by gradually microbial 
adaptation to the dedicated substrate. 

According to the aforementioned calculations, the total volume of the EPAD system 
would account for 50 m3 (less than 2% of full-scale anaerobic digester volume). The latter 
gives the possibility to build the EPAD system as a mobile unit, which would be flexible 
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to be connected to different industrial anaerobic digesters suffering from HPr 
accumulation problems, thus avoiding the investment by one single industry. 

For example, the connection of the previously designed EPAD system optimized to 
remove HPr at a rate of 12 kg HPr-COD m-3 d-1 to a full-scale “sick” digester of 5000 m3 
volume and HPr level of 3 kg HPr-COD m-3 will allow the digester to recover (i.e. 
decrease the HPr level to 0.5 kg HPr-COD m-3) in 1 month. 

4.6 CONCLUSIONS 

Interrupting the feeding of the overloaded anaerobic digester will not normally 
suffice to obtain rapid recovery from the HPr accumulation. 

The EPAD system significantly contributed to the recovery of the CSTRT from the 
HPr accumulation problem, thus allowing for the tested experimental conditions a 
re-established functionality in 1 to 2 months. 

Membrane fouling was successfully avoided in EPADseparator by applying cycles of 15 
min extrusion and 45 min relaxation, at low VS concentrations and low extrusion rate. The 
efficiency of the EPAD system will tend to increase with decreasing levels of solids in the 
mixed liquor. 

The performance of the EPADUASB is essential for an optimal functioning of EPAD 
system. In that way, an anaerobic consortium adapted to HPr degradation should be used 
in the HPr dedicated EPADUASB.  

Theoretical calculations estimated a total volume for EPAD system of 50 m3, which 
allows its construction as a mobile unit. 
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CHAPTER V 

IMPROVEMENT OF PROCESS PERFORMANCE BY 

PRE-TREATMENTS 

Abstract 

Five different pre-treatment methods, i.e. acid, thermal, thermo-acid, 

pressure-depressure and freeze-thaw, were investigated to enhance the solubilization and 

biodegradability of kitchen waste (KW). In the batch solubilization test, the solubilization 

of different pre-treatments had as hierarchy: thermo-acid > thermo > freeze-thaw > acid = 

pressure-depressure. However, based on the accumulative biogas production obtained in 

the batch biodegradability tests, the order observed was: pressure-depressure > 

freeze-thaw > thermo > control > thermo-acid > acid. In the continuous tests, the 

performance hierarchy in terms of an acceptable biogas production efficiency of 60% was: 

pressure-depressure > freeze-thaw > acid > thermo-acid > thermo > control. The highest 

organic loading rate (OLR) (5 g COD L-1 d-1) was applied in the pressure-depressure and 

freeze-thaw reactors, almost doubled that of the control reactor (3 g COD L-1 d-1). From 

the overall analysis, also taking the economical aspects into account, the freeze-thaw 

pre-treatment was the most feasible process with a net potential profit of around 8.5 € ton-1 

KW. 

Chapter redrafted after: Ma J, Duong HT, Smits M, Verstraete W and Carballa M 2009 Enhanced 
biomethanation of kitchen waste by different pretreatments. Bioresource technology, submitted. 
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5.1 INTRODUCTION 

In Europe, approximately 2.5 billion tons of kitchen waste (KW) are produced yearly, 
which represents a tremendous potential of utilisable biomass. In the past, the disposal of 
KW was mostly done by composting or reutilization as animal feed (Kelley and Walker, 
1999). However, the latter has been prohibited by the EU since November 2006 
(Regulation (EC) No 1774/2002), and since then, most KW has been landfilled with other 
wastes, resulting in various environmental problems, such as odor emanation, vermin 
attraction, toxic gases emission, groundwater contamination and waste of valuable land 
(Shin et al., 2001). Moreover, considering the increasing world population and the 
significant urbanization in heavily populated countries, the production of KW is likely to 
increase and, consequently, alternative KW disposal technologies have become a major 
concern in the last years (Adhikari and Barrington, 2006). 

The high biodegradability and water content of KW make it a good candidate for 
anaerobic digestion with the concomitant benefit of biogas production (Heo et al., 2004). 
However, due to the high organic particulate matter content, the single-phase anaerobic 
digestion of KW is not straightforward.  

On the one hand, accumulation of intermediary compounds occurs easily, giving rise 
to an unbalanced fermentation, and consequently, diminishing the stability of the process 
(Ince, 1998). On the other hand, the soluble organics are converted rapidly to volatile fatty 
acids (VFAs) at an early stage of the digestion process (Cho et al., 1995), resulting in a 
drastic pH drop if no sufficient buffering capacity is present (Veeken et al., 2000). In 
addition, KW has a high protein and fat content which can lead to inhibitory levels of 
ammonia, sulphide and long chain fatty acids (Braun et al., 2003; Amaral et al., 2004). As 
a result, anaerobic treatment of KW is often performed at low organic loading rates (OLR) 
of 2-3 g COD L-1 d-1 to prevent process failure (Hecht and Griehl, 2009), and the biogas 
yields are usually low, around 50-60% (Banks et al., 2008).  

In general, liquefaction (solubilization) and hydrolysis of solids are considered the 
rate-limiting steps during anaerobic digestion of solid wastes, and their intensification 
usually leads to a better digestion performance (Shin et al., 2001). By cell disruption, the 
intracellular and cell wall polymers, including polysaccharides, proteins, lipids, and other 
macromolecules, are released into the surrounding medium (Bien et al., 2004), becoming 
more available to microorganisms. Different disintegration methods, such as mechanical 
(e.g. sonication), chemical (e.g. alkali or acid), osmotic (e.g. NaCl treatment, freezing), 
oxidative (e.g. ozone), thermal and biological (e.g. enzyme) have been proposed to 
improve the anaerobic digestion of sewage sludge and the organic fraction of municipal 
solid waste (OFMSW) (Mata-Alvarez et al., 2000; Kim et al., 2006; Carballa et al., 2009). 
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However, few studies are available on the effect of these pre-treatment methods on the 
anaerobic digestion of KW. 

The aim of this study was to evaluate the effect of different pre-treatment methods on 
the anaerobic digestion of KW, in terms of the solubilization efficiency, biodegradability 
and biomethanation potential. Besides, the practical feasibility of the selected 
pre-treatment methods was economically evaluated. 

5.2 MATERIALS AND METHODS 

5.2.1 Kitchen waste and sewage 

The KW was provided by a company collecting and treating the organic fraction of 
industrial kitchens (Trans Vanheede Environment Group, Belgium) and its composition 
(vegetable, meat, pasta, potato, fish, etc.) varied depending on the deliveries. Table 5.1 
shows the characterization of the KW and sewage, such as the total and soluble chemical 
oxygen demand (COD) (CODT and CODS), total solid (TS) and volatile solid (VS), etc. 
After each delivery, the KW was mixed with a kitchen blender and stored in the fridge 
(4ºC). In order to achieve the required OLR, KW was diluted with sewage coming from a 
domestic wastewater treatment plant (WWPT) (Ossemeersen, Belgium). 

Table 5.1 Main characteristics (average values with standard deviation) of the KW (n=10) 
and sewage (n=10) used to prepare the feeding of the reactors. 

Parameter 
KW (n=10) Sewage (n=10) 

(g kg-1) (mg L-1) 
pH 3.8 ± 0.2 6.8 ± 0.2 

CODT
 238 ± 40 350 ± 30 

CODS 75 ± 7 80 ± 10 
TS 166 ± 14 260 ± 20 
VS 155 ± 13 235 ± 10 

 

5.2.2 Pre-treatment methods 

All pre-treatment methods were performed just before preparing the feedings for the 
reactors, which were stored in the fridge at 4ºC for maximum 2 weeks during the 
continuous experiments. All pre-treatments were applied to the raw KW (without dilution 
with sewage), except the pressure-depressure method, for which dilution was first 
performed. 
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5.2.2.1 Acid pre-treatment 

Of the raw mixed KW, 1 kg was acidified with HCl (10 N) at room temperature (18 ± 
2ºC) until pH 2, checking this value after 24 h of contact time. During the pre-treatment, 
the KW was continuously mixed for the well distribution of the HCl and the pH was 
measured at different spots in the container. 

5.2.2.2 Thermal pre-treatment 

Of the raw mixed KW, 1 kg was autoclaved (Manufacture Belge de Gembloux, 
Belgium) at 120ºC (1 bar) with the following operational cycle: 30 min pre-heating to 
120ºC + 30 min autoclaving at 120ºC + 30 min cooling to room temperature (18 ± 2ºC). 

5.2.2.3 Thermo-acid pre-treatment 

Of the raw mixed KW, 1 kg was firstly acidified by HCl (10 N) until pH 2 as 
described in the acid pre-treatment. After 24 h of contact time, the acidified KW was 
autoclaved at 120ºC as described in thermal pre-treatment. 

5.2.2.4 Pressure-depressure pre-treatment 

A 5 L pressurization reactor (diameter of 16 cm and height of 25 cm) was used. 
Previous experiments carried out to determine the optimal operational conditions of the 
pressurization reactor showed that lower initial TS content in the KW and quick 
depressurization resulted in higher solubilization percentages (data not shown). 
Consequently, 1 L of mixed KW (previously diluted according to the OLR applied) was 
pressurized to 10 bar with CO2 as pressurizing gas. After few minutes of contact time, the 
depressurization of the reactor to ambient pressure (1 bar) was performed by quickly 
releasing the CO2 gas. 

5.2.2.5 Freeze-thaw pre-treatment 

Of the raw mixed KW, 150 g was frozen to -80°C in an ultra low temperature freezer 
(New Brunswick Scientific, USA). After 6 h, the frozen KW was thawed in a thermal 
oven at 55 ± 2ºC (Memmert, Germany) for 30 minutes. 

5.2.3 Solubilization efficiency 

Samples were taken before and after pre-treatments to evaluate the solubilization 
effects. The CODT and CODS, and TS and VS were the parameters analyzed. 
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5.2.4 Batch anaerobic biodegradability tests 

Seven 1.2 L Erlenmeyers were used as reactors for the anaerobic biodegradability 
tests, defined according to the different feedings: Rcontrol, fed with raw KW; Racid, fed with 
acidified KW; Rthermal, fed with thermally pre-treated KW; Rthermo-acid, fed with 
thermo-acidified KW; Rpressure-depressure, fed with pressure-depressure pre-treated KW and 
Rfreeze-thaw, fed with freeze-thawed KW. 

The reactors were inoculated with 500 mL thermophilic sludge harvested from a 
pilot-scale thermophilic reactor treating potato wastes (55.8 ± 8.4 g TS L-1 and 30.0 ± 5.6 
g VS L-1). The non-pre-treated and pre-treated KWs were added into each reactor 
according to a VSKW/VSinoculum ratio of 1 and the reactors were filled up to 1 L with 
sewage. 3 g NaHCO3 was added into each reactor to provide sufficient buffer capacity and 
the initial pH of the reactors was adjusted to around 7.5 with NaOH (10 N). 

The reactors were operated under thermophilic conditions (55 ± 2ºC) in a thermal 
oven (Memmert, Germany). Biogas production was monitored daily and samples from the 
mixed liquor were taken 3 times a week for pH, CODT, CODS and VFAs analyses. 

5.2.5 Continuous anaerobic tests 

Continuous tests in thermophilic range (55 ± 2ºC) were performed subsequently after 
the batch anaerobic biodegradability tests. The pH and the temperature of the feeding were 
adjusted to 7.5 with NaOH (10 N) and 55ºC in the oven, respectively, before feeding the 
reactors.  

The initial OLR applied was 0.5 g COD L-1 d-1 in the Rcontrol, Racid, Rthermal and 
Rthermo-acid and 1.5 g COD L-1 d-1 in the Rpressure-depressure and Rfreeze-thaw, and it was stepwisely 
increased by increasing the concentration of KW in the feed. The initial hydraulic 
retention time (HRT) was kept constant at 18 days and it was doubled to 36 days when the 
OLR reached 4 g COD L-1 d-1. 

Biogas production was monitored daily and samples were taken from the supernatant 
of the reactors (after 30 min of sedimentation to enhance the biomass retention in the 
reactors) twice a week for pH, CODS and VFAs determinations. The pH of the reactors 
was adjusted to around 7.5 with NaOH (10 N) if the pH of below 7.0 was observed. 

5.2.6 Analytical techniques 

VFAs were extracted with diethyl ether and their quantitative analysis was 
determined by a capillary gas chromatograph (CE Instruments, Italy) coupled with a flame 
ionization detector. The pH values were measured with a C532 pH meter (Consort, 
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Belgium) and the other physico-chemical parameters, CODT and CODS, TS and VS, were 
determined according to the standard methods (Greenberg et al, 1992). Biogas production 
was followed by liquid displacement. 

5.2.7 Cost and benefit analysis 

5.2.7.1 Net profits 

The net profits (EURnet-profit: € ton-1 KW) were calculated as the difference between 
the extra benefit from the extra biogas production enhanced by the pre-treatments 
(EURtotal-extra-benifit: € ton-1 KW) and the extra costs associated with the pre-treatments 
(EURextra-cost: € ton-1 KW). 

5.2.7.2 Extra benefits 

The extra benefits from the pre-treatments result from the extra biogas production 
achieved with the pre-treated KW, compared to the raw KW. The biogas produced from 
anaerobic digestion is usually converted on-site by a combined heat and power generator 
(CHP) to produce energy, of which about 40% and 50% of green electricity and useable 
heat can be obtained. Therefore, the extra benefits can be calculated as: 

EURtotal-extra-benifit = EURbenifit-green-electrilty + EURbenifit-thermal      Eq. 5.1 

where: EURbenifit-green-electrilty: extra benefit gained from green electricity production; 
 EURbenifit-thermal: extra benefit gained from thermal energy production. 

EURbenifit-green-electricity = Ebiogas × Vbiogas × fgreen-electricity × EURkWh-green-electricity   Eq. 5.2 

where: Ebiogas: energy content of biogas with 65% of CH4 content: 6.5 
  kWhtotal m-3 (Verstraete et al., 2009); 
 Vbiogas: extra biogas production due to pre-treatment, m3; 
 fgreen-electricity: energy conversion yield factor for green electricity: 40% 
  (Walla and Schneeberger, 2008; Pertl et al., 2010); 
 EURkWh-green-electricity: green electricity selling price: 0.15 € kWhgreen-electricity

-1 
  (Karpenstein-Machan, 2001; Walla and Schneeberger, 
  2008; Munster and Lund, 2009). 

EURbenifit-thermal = Ebiogas × Vbiogas × fthermal × EURkWh-thermal       Eq. 5.3 

where: fthermal: energy conversion yield factor for thermal energy: 50% 
  (Walla and Schneeberger, 2008; Pertl et al., 2010); 
 EURkWh-thermal: thermal energy selling price: 0.03 € kWhthermal

-1 (Europe’s
  energy portal, 2010). 
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5.2.7.3 Extra costs 

Acid pre-treatment 

The extra costs of the acid pre-treatment are due to the required HCl for the KW 
pre-treatment and the NaOH for the neutralization of the pre-treated KW. Considering the 
technical product prices for HCl and NaOH of 0.1 € L-1 and 0.4 € kg-1 (VWR, Belgium), 
respectively, and taking into account that their required amounts were 10 L HCl ton-1 KW 
and 4.8 kg NaOH ton-1 KW (data not shown), the extra costs of acid pre-treatment are 
approximately 2.9 € ton-1 KW. 

Thermal pre-treatment 

Assuming no heat loss or water evaporation, the energy requirement of 110 
kWhthermal ton-1 KW for the thermal pre-treatment can be calculated as (Daniel, 1998): 

Ethermal = CKW × MKW ×∆T + Cwater × Mwater × ∆T            Eq. 5.4 

where: CKW: specific heat capacity of dry KW, 1.92 kJ kg-1 °C-1; 
 MKW: dry mass of KW, taking TS value of 166 kg ton-1 KW; 
 Cwater: specific heat capacity of water, 4.18 kJ kg-1 °C-1; 
 Mwater: mass of water in KW, 834 kg ton-1 KW; 
 ∆T: temperature increase, 105°C (from 25 to 120°C). 

If using gas to provide this thermal energy, the extra costs of the thermal 
pre-treatment are approximately 6.6 € ton-1 KW (0.03 € kWhthermal

-1), taking into account 
of the utilization efficiency (50%); if considering the electrical energy, the extra cost is 
about 15.9 € ton-1 KW (industrial electricity price: 0.13 € kWhelectricity

-1 (Europe’s energy 
portal, 2010)), taking into account of the utilization efficiency (90%. Thus the lower cost 
from thermal energy is taken for this study, i.e. 6.6 € ton-1 KW.  

Thermo-acid pre-treatment 

The extra costs of the thermo-acid pre-treatment can be estimated by the sum of those 
of the acid and thermal pre-treatments, i.e. 9.5 € ton-1 KW. 

Pressure-depressure pre-treatment 

The extra costs of pressure-depressure pre-treatment are estimated by the energy 
demand for the compression of certain amount of gas from the initial pressure to the 
required pressure. According to ideal gas equation, 
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஺ܲ ൈ ஺ܸ ൌ ஻ܲ ൈ ஻ܸ                       Eq. 5.5 

where: VA: initial gas volume, m3; 
 VB: ending gas volume, m3; 
 PA: initial gas pressure, bar; 
 PB: ending gas pressure, bar; 

In this study, the pressure was increased from 1 to 10 bar,  

஺ܸ ൌ 10 ஻ܸ                            Eq. 5.6 

Assuming a compressor with an active/head space volume ratio of 1:1, the required initial 
gas volume is 10 m3 kg-1 KW (KW density: 1 kg m-3).  

Assuming the adiabatic compression (no heat exchange), the energy requirement can 
be calculated as (Perry et al., 1997): 

௣௥௘௦௦௨௥௘ܧ ൌ ׬ ቆ ஺ܲ ൅ ቀ௉ಳି௉ಲ
௏ಳି௏ಲ

ቁ ൈ ሺܸ െ ஺ܸሻቇ ܸ݀
௏ಳ
௏ಲ

            Eq. 5.7 

Taking the values: VA of 10 m3 kg-1 KW at PA of 1 bar, VB of 1 m3 kg-1 KW at PB of 10 
bar, the required energy input is 1400 kWh ton-1 KW. Assuming the compressor efficiency 
of 80%, the required energy input is around 1750 kWh ton-1 KW. With the industrial price 
of 0.13 € kWhelectricity

-1, the extra cost of the pressure-depressure pre-treatment is about 
227.5 € ton-1 KW. 

Freeze-thaw pre-treatment 

The costs for freeze-thaw pre-treatment result from the energy consumption of the 
freezer, which can be calculated as follows (Daniel, 1998): 

Efreezing = CKW × MKW ×∆T1 + Lwater × Mwater 

+ Cwater × Mwater × ∆T2 + Cice × Mice × ∆T3       Eq. 5.8 

where: Lwater: latent heat of fusion of water, 335 kJ kg-1; 
 Cice: specific heat capacity of ice, 2.09 kJ kg-1 °C-1; 
 Mice: mass of ice in KW, 834 kg ton-1 KW; 
 ∆T1: temperature decrease of KW, 45°C (from 25 to -20°C); 
 ∆T2: temperature decrease of water, 25°C (from 25 to 0°C); 
 ∆T3: temperature decrease of ice, 20°C (from 0 to -20°C). 

Taking into account the industrial electricity price of 0.07 € kWhelectricity
-1 and the 

utilization efficiency of the industrial freezer of 90%, the extra costs of freeze-thaw 
pre-treatment are around 18.8 € ton-1 KW (we assume that the energy to thaw the KW 
comes from the ambient environment). 
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5.3 RESULTS 

5.3.1 Solubilization efficiency 

Table 5.2 shows the effect of different pre-treatments on the KW characteristics. 
After the pre-treatments, the pH of the KW remained at around 4, except for the acid and 
thermo-acid pre-treatments, after which the pH was about 2.  

Table 5.2 Summary of the results obtained during the solubilization tests (n=2). 

Pre-treatment pH 
TS VS CODT CODS CODS/CODT *Sol. 

(g kg-1) (g kg-1) (g kg-1) (g kg-1) (%) (%) 

Control 3.8±0.2 166±14 155±13 238±40 75±7 32±8 -- 

Acid 2.0±0.3 170±23 155±23 247±43 86±9 35±12 13±7 

Thermal 3.8±0.3 175±29 162±25 237±35 93±8 39±9 19±3 

Thermo-acid 2.0±0.3 181±25 165±21 246±40 111±8 45±9 32±8 
Pressure 3.8±0.2 178±19 162±18 244±20 85±14 35±5 12±7 

Freeze-thaw 3.8±0.2 159±27 148±29 228±21 89±4 39±5 16±4 

*Sol.: solubilization percentage calculated as the CODS difference (between the CODS after 
pre-treatment and the CODS before pre-treatment) divided by the CODS after pre-treatment. 

In each pre-treatment, both the CODS/CODT ratio and the solubilization percentage 
increased compared to that of the control (KW without pre-treatment). The highest 
solubilization was achieved with the thermo-acid pre-treatment (32%), and the lower 
values (12%) were obtained with the acid and the pressure-depressure pre-treatments. 

5.3.2 Batch anaerobic biodegradability tests 

Table 5.3 summarizes the results obtained during the batch biodegradability tests and 
Figure 5.1 illustrates the accumulated biogas production during this test. 

Table 5.3 Summary of the results obtained during the batch biodegradability tests. 

Reactor *Days
CODT (g COD L-1) Accumulated biogas production

Initial Final Removed (L L-1) (L g-1 CODT removed)
Rcontrol 36 38.2 19.4 18.8 6.5 0.35 
Racid 26 38.5 24.4 14.1 2.2 0.16 
Rthermal 36 42.5 22.5 20.0 7.2 0.36 
Rthermo-acid 36 44.4 18.4 26.0 7.7 0.30 
Rpressure 20 39.9 23.0 16.9 8.8 0.52 
Rfreeze-thaw 30 34.1 21.0 13.1 8.3 0.38 

*Total duration until 3 subsequent days without additional biogas production. 

The highest cumulative biogas production was obtained in the Rpressure-depressure, ca. 8.8 
L L-1, corresponding to 0.52 L g-1 CODT removed, while the lowest production, ca. 2.2 L 
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L-1 (0.16 L g-1 CODT removed), was observed in the Racid. Similar biogas yields were 
obtained in the Rcontrol, Rthermal and Rfreeze-thaw (around 0.35-0.38 L g-1 CODT removed), 
while a slightly lower value was achieved in the Rthermo-acid (0.30 L g-1 CODT removed). 
The pH of all the reactors during the tests was around 7.5-7.9. 

The biogas production in the Rcontrol, Rthermal and Rthermo-acid evolved similarly, starting 
to decrease from day 20 on and reaching the plateau after 35 days (Figure 5.1). In contrast, 
Rpressure-depressure and Rfreeze-thaw reached the maximum biogas production faster, after 
approximately 15 and 20 days, respectively. The accumulated biogas production in the 
Racid was only 34% of that observed in the Rcontrol, reaching this value after 25 days of 
experiment. 

 
Figure 5.1 Cumulative biogas production during the batch biodegradability tests. 

5.3.3 Continuous anaerobic tests 

Figure 5.2 presents the performance of each reactor during the continuous anaerobic 
tests in terms of OLR applied, residual CODS concentration and biogas production rate. 

In the Rcontrol (Figure 5.2A), the OLR was gradually increased from 0.5 to 3.0 g COD 
L-1 d-1 during days 0-79, and consequently the biogas production rate rose to around 0.9 L 
L-1 d-1, corresponding to an average yield of 55% of the theoretical value. The residual 
CODS and propionic acid (HPr) concentrations remained around 3 g COD L-1 and below 
0.5 g HPr-COD L-1, respectively. During days 80-100, the residual CODS and HPr 
concentrations increased sharply to 15.8 g COD L-1 and 2.3 g HPr-COD L-1, respectively, 
and the biogas production rate decreased to 0.4 L L-1 d-1 (26% of theoretical value) as a 
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response to the further increase of the OLR to 4.0 g COD L-1 d-1. Therefore, from day 101 
on, the HRT was increased to 36 days. However, the residual CODS and HPr 
concentrations continued accumulating to 35.7 g COD L-1 and 2.9 g HPr-COD L-1, 
respectively, for the last 10 days and no biogas production was observed. The reactor was 
stopped on day 111. 

 

Figure 5.2 Reactors performance during the anaerobic continuous tests in terms of the 
OLR applied, residual CODS (■) and biogas production rate (Ж). (A) Rcontrol, the control; 
(B) Racid, acidification pre-treatment; (C) Rthermal, thermal pre-treatment; (D) Rthermo-acid, 
acidification-thermal pre-treatment; (E) Rpressure, pressure-depressure pre-treatment and (F) 
Rfreeze-thaw, freeze-thaw pre-treatment. 
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During the first days of the Racid operation (OLR of 0.5 g COD L-1 d-1), a neglectable 
biogas production rate (around 0.02 L L-1 d-1) was observed (Figure 5.2B), corresponding 
to only 10% of the theoretical value, and the residual CODS concentration increased to 3.5 
g COD L-1. During days 24-72, when the OLR gradually increased up to 3.0 g COD L-1 d-1, 
the biogas production rate increased to 1.4 L L-1 d-1 (95% of theoretical value), and the 
CODS and HPr concentrations stabilized at around 2.5-3.0 g COD L-1 and below 0.5 g 
HPr-COD L-1, respectively. Therefore, the OLR was further increased to 4.0 g COD L-1 
d-1 on day 73, and as a response, the biogas production rate reached the peak of 1.9 L L-1 
d-1 (89% of theoretical value) on day 84. However, during the next 20 days, the CODS and 
HPr concentrations increased sharply to 12.8 g COD L-1 and 2.6 g HPr-COD L-1, 
respectively, and the biogas production rate decreased to 1.2 L L-1 d-1 (60% of theoretical 
value) by day 104. Thereafter, the HRT was increased to 36 days, which resulted in stable 
CODS and HPr concentrations and biogas production rate of around 17.5 g COD L-1, 3.8 g 
HPr-COD L-1 and 1.1 L L-1 d-1 (58% of theoretical value), respectively. From day 121 on, 
the OLR was further increased to 5 g COD L-1 d-1, and the CODS and HPr concentrations 
increased again to around 34.5 g COD L-1 and 3.6 g HPr-COD L-1, respectively, and the 
biogas production rate dropped to 0.3 L L-1 d-1, which accounted for only 13% of the 
theoretical value. The reactor was stopped on day 139. 

In the Rthermal (Figure 5.2C), the biogas production rate increased to around 1.0 L L-1 
d-1 (90% of theoretical value) with the gradual increase of the OLR up to 2 g COD L-1 d-1, 
and the CODS and HPr concentrations increased and stabilized at around 3.2 g COD L-1 
and 0.4 g HPr-COD L-1, respectively. On day 78, the OLR was increased to 3.0 g COD L-1 
d-1, resulting in higher CODS and HPr concentrations of 4.5 g COD L-1 and 1.1 g 
HPr-COD L-1, respectively, but the biogas production rate remained at 1.1 L L-1 d-1 (70% 
of theoretical value). Although the HRT was increased to 36 days from day 92 on, the 
increase of the OLR to 4 g COD L-1 d-1 resulted in higher CODS and HPr concentrations, 
ca. 30.5 g COD L-1 and 2.5 g HPr-COD L-1, respectively, and lower biogas production 
rates of 0.3 L L-1 d-1 (15% of theoretical value). The reactor was stopped on day 126. 

The OLR was gradually increased up to 3.0 g COD L-1 d-1 in the Rthermo-acid during 
days 0-92 (Figure 5.2D), and the residual CODS and HPr concentrations and the biogas 
production rate gradually increased to around 6.4 g COD L-1, 1.2 g HPr-COD L-1 and 1.2 
L L-1 d-1 (80% of theoretical value), respectively. From day 93 on, the OLR was increased 
to 4.0 g COD L-1 d-1, which resulted in higher CODS and HPr concentrations of 33.1 g 
COD L-1 and 3.4 g HPr-COD L-1, respectively, and lower biogas production rates of 0.4 L 
L-1 d-1 (20% of theoretical value). The increase of the HRT to 36 days on day 93 did not 
have any effect on the reactor performance. The reactor was stopped on day 120. 
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During the first days (0-44) of operation of the Rpressure-depressure at OLR of 1.5 and 3 g 
COD L-1 d-1, the CODS and HPr concentrations remained below 8 g COD L-1 and 1.2 g 
HPr-COD L-1, respectively, and the biogas production rate increased up to 1.4 L L-1 d-1 
(Figure 5.2E). During days 45-72 (OLR of 4 g COD L-1 d-1), the biogas production rate 
decreased to around 1.0 L L-1 d-1 (50% of theoretical value) and the CODS concentration 
increased to around 14 g COD L-1, despite the HRT was increased to 36 days on day 45. 
The CODS and HPr concentrations continued accumulating up to 25 g COD L-1 and 3.3 g 
HPr-COD L-1, respectively, when the OLR was increased to 5 g COD L-1 day-1 on day 73, 
but the biogas production rate also rose to 2.0 L L-1 d-1 (80% of theoretical value). The 
highest OLR applied was 6 g COD L-1 d-1, which resulted in a sharp increase of the CODS 
and HPr concentrations to 53.7 g COD L-1 and 5.8 g HPr-COD L-1, respectively, by the 
end of the experiment (day 120), and the biogas production decreased to negligible values.  

The operation of the Rfreeze-thaw was quite satisfactory up to an OLR of 4 g COD L-1 
d-1, since the CODS and HPr concentrations remained below 7.0 g COD L-1 and 1.0 g 
HPr-COD L-1, respectively, and a high biogas production rate was reached, ca. 1.7 L L-1 
d-1 (85% of theoretical value) (Figure 5.2F). However, the increase of the OLR to 5 g 
COD L-1 d-1 resulted in higher values of the residual CODS (around 40 g COD L-1) and 
lower biogas production rates, ca. 1.4 L L-1 d-1. When the OLR went up to 6 g COD L-1 d-1, 
the CODS and HPr concentrations increased sharply to almost 60 g COD L-1 and 8 g 
HPr-COD L-1, respectively, and the biogas production stopped immediately. The reactor 
was interrupted on day 133. 

5.4 DISCUSSION 

The results from the solubilization and batch biodegradability tests showed that there 
has no direct correlation between the solubilization effect of the pre-treatment and the 
enhancement of the KW biodegradability. The highest solubilization effect (expressed as 
solubilization percentage) was observed with the thermo-acid pre-treatment (32%), 
followed by the thermo, freeze-thaw, acid = pressure-depressure methods. However, the 
highest cumulative biogas production (expressed by L g-1 CODT removed) was observed 
with the pressure-depressure pre-treatment (0.52 L g-1 CODT removed) followed by 
freeze-thaw, thermo, control, thermo-acid and acid methods. Therefore, the highest 
accumulative biogas production was observed in the less effective pre-treatment in terms 
of solubilization (pressure-depressure) and, conversely, the highest solubilization 
pre-treatment (thermo-acid) resulted in less biogas production than the control. In both the 
solubilization and batch biodegradability tests, the acid pre-treatment showed the poorest 
performance. 
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This discrepancy between the solubilization effect and the biodegradability is 
probably explained by the formation of inhibitory or refractory compounds during the 
pre-treatments, as previously described by Carballa et al. (2006). During acid 
pre-treatment, the possible formation of several types of inhibitors at low pH, such as 
carboxylic acids, furans and phenolic compounds, has been reported by Taherzadeh and 
Karimi (2007). These undesirable by-products inhibit the fermentation process and can 
invoke less biogas production (Taherzadeh and Karimi, 2008). 

The good reactor performance during the continuous anaerobic test was evaluated 
based on an acceptable biogas production efficiency (60% of theoretical value) and stable 
in-reactor CODS and VFA concentrations. In this sense, the optimal OLR applied 
depended on the type of pre-treatment, i.e. 3 g COD L-1 d-1 in the Rcontrol, Rthermo and 
Rthermo-acid, 4 g COD L-1 d-1 in the Racid and, 5 g COD L-1 d-1 in the Rpressure-depressure and 
Rfreeze-thaw. The Rcontrol gave the poorest reactor performance among all reactors (0.8 L L-1 
d-1; 53%), followed by the Rthermo and Rthermo-acid, in which higher biogas production rates 
(around 1.2 L L-1 d-1, 73-80% of theoretical value) were achieved at the same OLR (3 g 
COD L-1 d-1). These three reactors failed at the OLR of 4 g COD L-1 d-1, with the 
difference that the biogas production in the Rcontrol ceased within 10 days, while those of 
the Rthermo and Rthermo-acid gradually decreased to around 0.4 L L-1 d-1, still accounting for 
20% of the theoretical value.  

The best performance of the Racid was observed at OLR of 4 g COD L-1 d-1 with an 
average biogas production rate of 1.4 L L-1 d-1 (75% of theoretical value). Deterioration of 
this reactor was observed at OLR of 5 g COD L-1 d-1, although the biogas production did 
not cease completely. During the continuous operation of the Racid, no clear inhibition 
effect from the acid pre-treatment was observed as in the solubilization and batch 
biodegradability tests. The reason was probably the lower levels of the possible inhibitory 
by-products present in the feeding. In the batch biodegradability test, the initial CODT 
input of the KW (24 g CODT) was about 50 times higher than the daily feeding during the 
continuous anaerobic test (from 0.5 to 4 g CODT). Therefore, assuming that the same 
percentage of the possible inhibitory by-products was formed during the acid 
pre-treatment, their levels during the continuous anaerobic test should have been 50 times 
lower than in the batch biodegradability test, thus not causing inhibition on biogas 
production. 

The Rpressure-depressure and Rfreeze-thaw showed the best performance among all reactors, 
tolerating OLR of 5 g COD L-1 d-1, with biogas production rates of 2 and 1.4 L L-1 d-1, 
respectively. Both reactors failed at the OLR of 6 g COD L-1 d-1, but the negative effect of 
this high OLR was more pronounced in the Rfreeze-thaw, where the biogas production 
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sharply ceased, than in the Rpressure-depressure, where the biogas production decrease was 
more gradual. Besides, although the CODS concentrations were at the same level, around 
55 g COD L-1, the HPr concentration in the Rfreeze-thaw (7.7 g L-1) was 35% higher than in 
the Rpressure-depressure (5.7 g L-1). Therefore, it can be concluded that the best reactor 
performance was the Rpressure-depressure.  

Pressure pre-treatment has been shown to physically disrupt the cellular material by 
breaking up the microbial cell walls, and thus intracellular carbon sources as well as 
nutrients can be released. However, high pressures of more than 200 bar are required (Rai 
and Rao, 2009). A common machine used for this pre-treatment is the high-pressure 
homogenizer, which is already commercialized. It is a device consisting of a multistage 
high-pressure pump and a homogenizer valve (Odegaard, 2004). In this process, 
disintegration of cells is obtained during the pressuring stage. However, in case of 
increasing the pressure by injecting gas into a fixed volume of material, the disintegration 
can happen not only during the pressuring stage, but also during the depressurizing stage, 
due to the gas explosion effect. Moreover, gas plasticization helps to break down the 
polymers. In the study of Schimel (2007) with pressure swing pre-treatment (3 
pressure-depressure cycles) combined with gas plasticization (biogas) showed 50% higher 
COD biodegradability under an operation pressure of 1.5 bar. In our study, a single 
pressure-depressure cycle was applied and CO2 was used. Although the pressure was 10 
bar, the solubilization enhancement was only 12% (Table 5.2). 

Although it has been suggested that longer HRT can help the reactor stabilization 
(Rincon et al., 2008), in our study, the change of HRT from 18 to 36 days at OLR of 4 g 
COD L-1 d-1 did not enhance the reactor performance. The slow hydrolysis rates (lipid: 
0.1-0.4 d-1; protein: 0.02-0.04 d-1 and cellulose: around 0.05 d-1) are the limiting factors of 
anaerobic digestion of the high TS content wastes (Gujer and Zehnder, 1983). First order 
kinetics is often considered to describe the hydrolysis of particulate organic matter: 

ௗ஼
ௗ௧
ൌ െܭுܥ                        Eq. 5.7 

Assuming a substrate with an initial concentration of C0 (g L-1) and a hydrolysis rate 
constant of KH (d-1), the substrate concentration on day t (Ct ) is: 

௧ܥ  ൌ ଴ܥ ൈ ݁ି௄ಹ௧                        Eq. 5.8 

If requiring 60% degradation on day t, Ct should equal to 40%C0, which gives the 
following equation: 

ݐ ൌ ଴.ଽଶ
௄ಹ

                          Eq. 5.9 
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Concerning lipids (assuming an average KH value of 0.2 d-1), 60% degradation will 
be achieved in 5 days. However, for protein and cellulose with much lower hydrolysis rate 
(average KH values of 0.02 and 0.05 d-1, respectively), 60% degradation will be achieved 
in approximately 46 days and 19 days, respectively.  

In our experiment, neither HRT of 18 days or 36 days helped the process 
performance at OLR of 4 g COD L-1 d-1. According to the kinetics calculation, more than 
45 days are required to obtain 60% degradation of proteins and cellulosic materials. 
Therefore, the slow degradation rate of KW might be due to its high protein content of up 
to 30% (dry weight) (Tang et al., 2008). Another possible explanation for the no effect of 
the HRT could be the already stressful state of the reactors when this modification was 
performed. Thus, an earlier application of longer HRT might have given a more 
significant influence. 

The maximum applicable OLR for anaerobic digestion of KW varies among studies. 
Although very high OLR of up to 15 g COD L-1 d-1 could be achieved in Asian studies 
(Cho et al., 1995; Shin et al., 2001; Park et al., 2008), other works in Europe could only 
obtain moderate reactor performance at OLR of around 3 g COD L-1 d-1 without 
pre-treatment (Banks et al., 2008; Hecht and Griehl, 2009). In this study with Belgian KW, 
the best performance in the Rcontrol was obtained at the OLR of 3 g COD L-1 d-1, which was 
similar to other European studies. Besides the variation in the operational parameters 
(reactor type, feeding frequency, etc), these discrepancies among several studies can be 
explained by the variability in the regional food composition. One important factor might 
be the fat content in the KW, because the anaerobic digestion of fat-rich wastes is 
problematic due to the formation of long chain fatty acids, which are inhibitory for the 
methanogens (Carucci et al., 2005). 

5.5 ECONOMICAL CONSIDERATIONS 

Although all the pre-treatment methods improved the reactor performance, they can 
be practically feasible only if the economical benefit derived from the extra biogas 
obtained compensates their application costs. This economical estimation was based on 
the maximum biogas production rate of each reactor achieved during the good 
performance period in the continuous tests: 0.8 (Rcontrol), 1.4 (Racid), 1.1 (Rthermo), 1.2 
(Rthermo-acid), 2 (Rpressure-depressure) and 1.4 (Rfreeze-thaw) L L-1 d-1. 

Table 5.4 presents the summary of the operational cost and benefit analysis of each 
pre-treatment method. The electrical requirement of the pretreatment is the main factor 
affecting the net profits/costs, because the acid pre-treatment without electrical input  
gave the highest net profit of 20.5 € ton-1 KW, while the pressure-depressure pre-treatment 
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with the highest electrical input, resulted in net costs of more than 200 € ton-1 KW. 
Although the thermal-related pre-treatments have considerably high energy requirements, 
the biogas enhancement is able to cover the extra costs, thus a net profit of about 5 € 
(thermal) and 10 € (thermo-acid) ton-1 KW can be obtained. Of course, to obtain a 
complete estimation, the capital investment of the pre-treatment should also be brought 
into the balance. Although this aspect warrants further research, the fact that already some 
KW are frozen at the site of production to optimize hygiene makes the freeze-thaw 
pre-treatment (net profit of 8.5 € ton-1 KW) of particular interest. 

However, it should be noticed that these economical calculations were very roughly 
estimated. Many issues can affect the profit/cost balance, c.a. local energy price, plant 
capacity, biogas quality, capital investment, etc. 

5.6 CONCLUSIONS 

The thermo-acid pre-treatment gave the highest solubilization effect, while the acid 
and the pressure-depressure methods resulted in low solubilization percentages. On the 
contrary, the pressure-depressure method gave the highest cumulative biogas production 
during the batch biodegradability tests, which indicates that the application of such 
pre-treatments may give rise to the formation of toxic or recalcitrant compounds. 

In the continuous tests, all pre-treatments improved the anaerobic digestion of 
kitchen waste compared to the control in term of higher biogas production rates as well as 
higher OLR applied. The best performance was achieved with the pressure-depressure and 
the freeze-thaw methods. 

The net profits of the pre-treatments strongly relate to the energy requirements they 
impose. The highest profits, i.e. 20.5 € ton-1 KW was achieved with the least energy 
intensive methods, i.e. the acid pre-treatment. Overall, the freeze-thaw treatment (net 
profit of 8.5 € ton-1 KW) opens interesting perspectives because it does not consume any 
chemicals, and nevertheless, exhibits a strongly positive effect on the overall 
biomethanation of KW. Moreover, the odor can be controlled during the kitchen waste 
storage and transportation.



C
ha

pt
er

 V
: I

m
pr

ov
em

en
t o

f p
ro

ce
ss

 p
er

fo
rm

an
ce

 b
y 

pr
e-

tre
at

m
en

t 

10
5 

 Ta
bl

e 
5.

4 
C

os
t a

nd
 b

en
ef

it 
an

al
ys

is
 o

f 
th

e 
pr

e-
tre

at
m

en
t m

et
ho

ds
 a

pp
lie

d 
to

 th
e 

K
W

 b
as

ed
 o

n 
th

e 
bi

og
as

 p
ro

du
ct

io
n 

ob
ta

in
ed

 d
ur

in
g 

th
e 

co
nt

in
uo

us
 te

st
s. 

Pr
e-

tr
ea

tm
en

t 
U

ni
t 

A
ci

d 
T

he
rm

o 
T

he
rm

o-
ac

id
Pr

es
su

re
 

-d
ep

re
ss

ur
e 

Fr
ee

ze
-t

ha
w

 

Th
er

m
al

 e
ne

rg
y 

Ex
tra

 b
io

ga
s p

ro
du

ct
io

n 
(6

5%
 C

H
4) 

m
3  to

n-1
 K

W
 

48
 

24
 

40
 

48
 

56
 

G
re

en
 e

le
ct

ric
ity

 e
ne

rg
y 

ob
ta

in
ed

 
kW

h e
le

ct
ric

ity
 to

n-1
 K

W
12

4.
8 

62
.4

 
10

4 
12

4.
8 

14
5.

6 

Ex
tra

 b
en

ef
it 

fr
om

 g
re

en
 e

le
ct

ric
ity

 e
ne

rg
y

€ 
to

n-1
 K

W
 

18
.7

 
9.

4 
15

.6
 

18
.7

 
21

.8
 

Th
er

m
al

 e
ne

rg
y 

ob
ta

in
ed

 
kW

h t
he

rm
al
 to

n-1
 K

W
 

15
6 

78
 

13
0 

15
6 

18
2 

Ex
tra

 b
en

ef
it 

fr
om

 th
er

m
al

 e
ne

rg
y 

€ 
to

n-1
 K

W
 

4.
7 

2.
3 

3.
9 

4.
7 

5.
5 

To
ta

l e
xt

ra
 b

en
ef

it 
€ 

to
n-1

 K
W

 
23

.4
 

11
.7

 
19

.5
 

23
.4

 
27

.3
 

Pr
e-

tre
at

m
en

t c
os

t 
€ 

to
n-1

 K
W

 
2.

9 
6.

6 
9.

5 
22

7.
5 

18
.8

 

N
et

 p
ro

fit
(+

)/c
os

t(-
) 

€ 
to

n-1
 K

W
 

+2
0.

5 
+5

.1
 

+1
0 

-2
04

.1
 

+8
.5

 

 
 

 



 

 

 
  



Chapter V: Improvement of process performance by pre-treatments 

107 

GENERAL DISCUSSION 
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CHAPTER VI 

GENERAL DISCUSSION 

Thanks to the increasing price and taxation of the fossil fuels, the biogas utilization holds 

its modern importance to economize fossil fuels. Today, the attention for biogas is rising 

rapidly all over the world ... 
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6.1 PROCESS ENHANCEMENT BY CO-DIGESTION 

6.1.1 Stimulation of biogas production with glycerol 

In the past, the main objectives for co-digestion of different wastestreams was to 
obtain better process stability by the adjustment of the unbalanced C/N ratio, the high 
solid content, the buffer capacity, etc. Nowadays, due to the requirement of the sustainable 
energy recovery, another main drive for co-digestion is the stimulation of the methane 
production. Indeed, since waste treatment plants were recognized as biogas plants, 
methane as an energy product becomes the major focus. 

Because of many newly established anaerobic digesters, the traditional types of 
organic industrial wastes are foreseen to become scarce. Therefore new types of 
co-substrates to boost biogas production are sought, and the major requirements are rapid 
digestion and high methane production.  

Under this concept, glycerol qualifies as a satisfactory co-substrate for anaerobic 
digestion. In Chapter II, different types of glycerol were proven to be easily digestible 
with 100% biogas production compared to the expected theoretical value. However, the 
application feasibility depends on the economical balance between the investment due to 
the glycerol product price and the extra energy income which is obtained from the 
enhanced biogas production. It has been shown in Chapter II that even by supplementation 
of a very low quality glycerol product (conductivity of 29 ms cm-1), a stable biogas 
production of 0.6 L g-1 glycerol input could be obtained, which resulted in the income of 
66 € ton-1 glycerol input. The available crude glycerol price in the market today has 
dropped to only around 40-50 € ton-1 (ICIS pricing, 2009), and a further price crush may 
be possible (Pachauri and He, 2006). Therefore, an overall benefit of more than 20 € ton-1 
glycerol can be possible. 

The additional costs for co-digestion of glycerol are mainly transportation, without 
any extra operational investments, such as pre-treatment and special storage or dosing 
equipments. The payback can be directly obtained from the instantaneously increased 
biogas production. Therefore, with a large quantity produced from the bio-diesel 
manufacturing (glycerol as by-product) and moderate prices in the market, glycerol can be 
a good co-substrate to facilitate the existing anaerobic plants to enhance their biogas 
production. 

6.1.2 Enhanced biomass granulation with glycerol 

One main difficulty of anaerobic digestion is the low yield of methanogenic biomass, 
which leads to in-reactor biomass shortage if severe biomass wash-out occurs. Therefore, 
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enhanced methanogenic biomass growth rate and better granulation to improve sludge 
settling capacity have been pointed out as the crucial pre-conditions for an efficient 
anaerobic process (Tiwari et al., 2006). Although the rapid growth and granulation depend 
on a variety of factors, such as, cell surface characteristics, shear due to upflow and gas 
production, organic loading rate (OLR), etc (Tiwari et al., 2006), the high energy 
carbohydrates provide an important contribution to this phenomenon (Thaveesri, 1995). 

In Chapter II, enhancements of both the methanogenic biomass growth and 
granulation by glycerol supplementation were observed in the treatment reactor. 
Co-digestion with an easily biodegradable substrate (e.g. glycerol) can stimulate the 
sludge granulation due to the extra chemical oxygen demand (COD) amount received, but 
other substrates (e.g. protein, cellulose) might deteriorate the sludge characterization 
(Thaveesri et al, 1994).  

6.1.3 Possible drawback of co-digestion with glycerol 

A successful co-digestion depends not only on the selection of a suitable co-substrate, 
but also on the operational parameters applied, specially the mixture ratio, which strongly 
affects the final characterization of the feedstock. Overdosing of one co-substrate can 
possibly lead to negative effects, when dealing with substrates containing potential 
inhibitory degradation products. 

Taking glycerol as an example, although glycerol itself has been accepted as a 
non-inhibitory compound towards anaerobic digestion (Vidal et al., 2000), its degradation 
products, i.e. volatile fatty acids (VFAs), are important intermediates for the subsequent 
methane formation (Holm-Nielsen et al., 2008). Therefore, in the view of potential VFA 
accumulation, the supplementation of glycerol should not surpass specific levels to avoid 
the possible process failure by the VFA inhibitory action on the methanogens. Moreover, 
since the fat content of crude glycerol which is produced from bio-diesel manufactory is 
high, i.e. up to 15% (Thompson and He, 2006), long chain fatty acids (LCFAs) should be 
expected as one intermediate product during the degradation of glycerol. However, since 
glycerol is currently underutilized as feedstock for anaerobic digestion or as co-digestion 
substrate, the effects of LCFAs degraded from glycerol have not been studied. 

From different studies, this benchmark level was limited to a supplementation of no 
more than 100 g glycerol-COD L-1 d-1 for mesophilic conditions at around 32ºC 
(Holm-Nielsen et al., 2008), and no more than 45 g glycerol-COD L-1 d-1 for the 
thermophilic conditions at around 53ºC (Amon et al., 2006; Holm-Nielsen et al., 2008). 
Further increase of the glycerol supplementation could cause strong process instability, 
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especially when the glycerol concentration inside the reactor exceeds 7 g L-1, surely due to 
the increase of the VFAs concentrations (Holm-Nielsen et al., 2008). 

6.1.4 Co-digestion for sewage anaerobic treatment 

Although anaerobic digestion has been widely applied for the treatment of medium to 
high strength wastestreams (Foresti, 2002), its application to low strength domestic 
wastewater treatment has received only limited attention (Kalogo and Verstraete, 2001).  

One technical problem is the poor granule build-up (even degranulation) during the 
sewage treatment (Aiyuk et al., 2006). Both the low amount of readily biodegradable 
COD (RBCOD) in domestic sewage (25-50 mg L-1 on a CODT around 500 mg L-1) and the 
adsorption of the suspended solids to the biomass are responsible. These lead to the 
decrease of the sludge activity (Kim et al., 2003; Aiyuk and Verstraete, 2004). Moreover, 
the low available COD amount has a direct effect on the low CH4 production of around 
50-100 mL g-1 COD removed (compared to the expected value of 350 mL g-1 CODremoved) 
during the anaerobic treatment of domestic sewage, as shown in Figure 6.1. This low CH4 
production makes energy recovery infeasible and thus significantly affects the overall 
economy (Van Haandel and Lettinga, 1994). 

 
Figure 6.1 The influence of the COD concentration on the CH4 production at ambient 
temperature (after Van Haandel and Lettinga, 1994). 

To complement the low COD concentrations of the domestic wastewaters, it is 
evident that the co-digestion process of sewage with other high strength wastestreams can 
increase the CH4 production. Moreover, the more balanced feedstock characterization by a 
diverse mixture has also a positive impact on the process stability (Verstraete et al., 2009). 
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In Chapter IV, co-digestion of sewage with kitchen waste has been studied. On the 
one hand, the low COD concentration of sewage was no longer a limiting factor since it 
was negligible compared to that of the kitchen waste, i.e. around 240 g COD kg-1. The 
biogas production rate obtained was satisfactory, i.e. higher than 0.3 L g-1 COD removed. 
On the other hand, anaerobic digestion of kitchen waste has been reported problematic 
since the intermediary products accumulate easily, e.g. ammonia, VFA, long chain fatty 
acids (LCFAs), etc, due to the high protein (around 55 g albumin L-1) and lipid content 
(around 20 g L-1) (Braun et al., 2003; Araya-Kroff et al., 2004; Park et al., 2008). 
Therefore the mixture with sewage had a dilution effect to the kitchen waste, which 
potentially offered a buffer to balance such accumulations. 

6.2 ENHANCEMENT BY METALS SUPPLEMENTATION 

6.2.1 The uncertainty of metal supplementation 

Due to the different types of wastestreams used as feedstock and the variety of the 
operational conditions, the metals supplementation methods and dosages found in 
literature vary widely. Besides, due to the limited knowledge in the microbial metal uptake 
mechanisms, the boundary layer between the metal deficiency and metal toxicity in 
anaerobic digestion is also unclear. 

In practice, metals are added into industrial digesters in excessive amounts to 
ascertain the stable performance, which in the long term can lead to accumulation of 
metals in the digester and thus causing accumulated toxicity effect (Mueller and Steiner, 
1992; Bae et al., 2002; Chen et al., 2008). In addition, the relative toxicities of some 
metals also depend on pH, type and form of metal ions, and strength and affinity of the 
binding groups to the surfaces of prevalent microorganisms, which leads to huge 
differences in the range of both the reported stimulation and toxicity levels in literature. 

Consequently, the knowledge of the metals supplementation in anaerobic digestion is 
limited and thus the supplementation strategies still need to be clarified. However, it is of 
crucial importance to elucidate this aspect since the costs due to the metal supplementation 
can be very costly in case of long-term supplementation (techno quality products: FeSO4 
of 8 € kg-1; NiCl2 of 17 € kg-1; CoSO4 of 30 € kg-1, etc) (VWR International, 2009).  
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6.2.2 Metal supplementation methods 

6.2.2.1 Supplementation strategies 

When supplementing metals to the anaerobic digesters, two strategies are commonly 
applied: booster supplementation in the beginning and continuous supplementation 
throughout the operational period. 

Research aimed at cobalt supplementation for methanol conversion by Gonzalez-Gil 
et al. (1999) showed that the continuous supplementation strategy was more effective than 
the booster supplementation in overcoming cobalt limitations by 60% higher accumulated 
CH4 production, while 10 times lower amount of cobalt in total was required in the 
continuous strategy. However, a 10 hour delay of the exponential increase of CH4 yield in 
the continuous supplementation (30 h after the start-up) was observed, comparing to that 
of the booster supplementation (20 h after the start-up). This delay was probably due to 
the lower supplementation amount of the continuous strategy. Thus, a method combining 
these two strategies is suggested: the booster supplementation in the beginning for an 
effective recovery of the metal deficiency and the continuous supplementation to 
compensate the metals losses from the precipitation in the digester and the washout in the 
effluent. 

Moreover, a pulse supplementation occasionally during the process with a moderate 
dosage (5 times of the continuous supplementation dosage) can be necessary to overcome 
an acute metal limitation. Yet, the metal losses from the wash-out in this strategy can be 
up to 30 times higher than that of the continuous supplementation (Fermoso et al., 2008). 

6.2.2.2 Supplementation unit 

Often, the nutrients supplementation medium is prepared based on the reactor volume 
(per m3 reactor) without taking into account of the particular process conditions such as 
the OLR, the feedstock characterization and the amounts of metals already present in the 
feeding. In this way, the medium preparation may not match the actually required metals 
for the specific process, but simply ensures the metal variety with excessive dosages. 

An alternative method is by preparing the supplementation medium per g COD of the 
feedstock (Fang et al., 1994). This strategy seems more reasonable since the requirement 
of the metals varies with the strength of the applied OLR. The argument can be that the 
major requirements of the metals in anaerobic digestion are for the growth and metabolism 
of microorganism. Thus another strategy based on the in-reactor biomass amount (per g 
volatile solid (VS) in reactor) might be also appropriate (Osuna et al., 2004). For instance, 
the supplementation of cobalt can be achieved by pre-incubating the inoculum in a CoCl2 
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solution (0.13 g L-1) for 24 hours. However, after 77 days of operation, about 55% of the 
cobalt was washed out with the reactor effluent (Zandvoort et al., 2004). 

6.2.2.3 Importance of feed pre-characterization 

Different types of industrial wastestreams already contain a wide range of metals 
with different soluble concentrations. Therefore, supplementation of all metals is actually 
not necessary. Instead, it should be focused on the absent or insufficient metals. Moreover, 
accumulated toxicity effects derived from the continuous metals supplementation with 
excessive amounts can be observed, if no sufficient sulfate is available in the bulk for the 
later metal precipitation, especially in the lab-scale studies (section 1.3.2.2). 

From the economical view, since the metal supplementation is normally in a 
long-term continuous way, the pre-characterization of the wastestreams is important to 
find out the types of metals that are already available in the feedstock. Thus the costs can 
be minimized by only supplementation of the metals in deficiency.  

Considering the supplementation of one metal with a rather low dosage of 10 μg g-1 
COD (Table 1.7) to a 5000 m3 industrial anaerobic digester with OLR of 10 g COD L-1 d-1, 
the total metal supplementation amount is 0.5 kg d-1. Taking an average price of a metal 
techno production of 20 € kg-1 (section 6.2.1), the daily supplementation cost is about 10 € 
d-1. In case of the presence of sulfate, multiple metals supplementation or booster 
supplementation, this daily cost can go easily 10 times higher. Currently the analysis cost 
of one waste sample in laboratory is in the range of 200-400 € (estimated as half day 
engineering work). Hence, the saving from a more dedicated metal supplementation recipe 
complied after the per-characterization can be cost-effective. 

6.2.3 Metal bio-availability 

Supplementation of metals can increase the metal bio-available (soluble) levels, but it 
can be economical undesirable due to the chemical costs. Another possibility is to 
supplement chelators to the digester, which may dissolve metal compounds by 
complexation from their precipitation, and thus the increased soluble metal levels can give 
rise to the metal uptake by microorganisms (Hu et al., 2008). 

Common chelators to increase the metal soluble concentrations are citrate, yeast 
extract, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), amino acids, 
etc. However, microorganisms can also produce chelators to uptake metal ions and diffuse 
them through cell membrane (Clemens, 2001). If strong chelators, such as EDTA, are 
supplemented to the digester, stable metal complex are formed in the solution. In this case, 
although the soluble metal levels are increased, the metal ions are actually not 
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bio-available for the microorganisms since the chelators produced by microorganisms are 
not strong enough to re-complex and transfer the metal ions from their stable complex 
forms to the cell. Therefore, the supplemented chelators should be a “bridge” between the 
metal precipitation and the uptake by microorganisms. This can be achieved by the weak 
chelators (e.g. citrate, NTA), rather than by the strong ones (e.g. EDTA), which can cause 
a metal “sink” in solution. As one example, in a batch experiment of Aquino and Stuckey 
(2007) comparing the chelation effects of EDTA and NTA on methanogenesis, it was 
observed that EDTA (1 mM) decreased the CH4 production rate while the NTA (1 mM) 
solubilized almost all of the available metals. The inhibitory effect of EDTA addition was 
explained by the unavailability of metals caused by the metals complexation with EDTA. 

An important concern of the supplementation of chelators is the chemical cost. 
Taking yeast extract as example, trace doses of yeast extract may be effective in keeping 
essential metals in solution (Gonzalez-Gil et al., 2003). However, the addition of yeast 
extract to full-scale anaerobic reactors may not be economically feasible due to its high 
market price (techno quality product of 40 € kg-1) (VWR International, 2009). On the 
other hand, using the cheaper chelation agents, such as citrate (techno quality product of 5 
€ kg-1) (VWR International, 2009), the operational costs can be minimized by lowering the 
metal supplementation dosage. 

6.3 ABATEMENT OF PROPIONIC ACID ACCUMULATION 

6.3.1 Propionic acid accumulation in anaerobic digestion 

HPr accumulation in anaerobic digesters has long been considered as a problem for 
process stability. The HPr level can be used as an indicator of potential process instability 
(Nielsen et al., 2007), since it is a sensitive parameter against the change of the operational 
conditions, such as pH, temperature or OLR (Barredo and Evison, 1991; Lindorfer et al., 
2008). 

The reported maximum HPr concentrations vary from 1.2 to 7.5 g HPr-COD L-1, 
depending on different wastestreams and operational conditions (Hajarnis and Ranade, 
1994; Mosche and Jordening, 1998). Moreover, it is also important to keep the in-reactor 
propionate to acetate ratio below 1 (Pullammanappallil et al., 2001). 

The gradual build-up of the HPr levels can happen during reactor start-up and 
operational shock (e.g. overloading), which results in the delay of full sludge activity 
(Gallert and Winter, 2008). It can take weeks to months before the reactor recovers 
(Lindorfer et al., 2008). However, there is not yet a promising and effective recovery 
method for HPr accumulation. 
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6.3.2 Microbial adaptation tolerance 

Although propionate oxidizing bacteria (POB) are sensitive to pH, temperature, 
toxins, etc, high HPr utilization rate (Chapter III: up to 33 g HPr-COD L-1 d-1) can be 
achieved by a slow and patient adaptation of POB, by means of the gradual increase of the 
OLR (Wiegant et al., 1986; Fang et al., 1994; Tatara et al., 2008). 

Moreover, the HPr tolerable level of the microorganisms can be improved as well. In 
Chapter IV, the CSTR failed in the first experiment at an OLR of 2.8 g COD L-1 d-1 and an 
HPr concentration of 5 g HPr-COD L-1. The failure of this reactor in the second 
experiment happened at an OLR of 5 g COD L-1 d-1 and an HPr concentration of 13 g 
HPr-COD L-1, indicating that the tolerance level of the CSTR doubled after a successful 
HPr recovery.  

6.3.3 Supplementation of nutrients 

Trace metals supplementation, especially Fe, Ni and Co, can accelerate the HPr 
degradation rate (Espinosa et al., 1995; Osuna et al., 2004). In Chapter III, the maximum 
HPr utilization rates without and with nutrients supplementation were 3 and 33 g 
HPr-COD L-1 d-1, respectively, which indicated a 10 fold enhancement. Yet, the 
application to the industrial wastewaters is not clear, since very dynamic process kinetics 
are involved. 

For example, in some cases of process failure due to the HPr accumulation, 
supplementation of FeSO4 was often found to be helpful , but in others not (Jansen et al., 
2007). Actually, trace metals appear to be present in many industrial effluents (Speece, 
1988; Espinosa et al., 1995), but their soluble levels are not always sufficient to the 
microorganisms, due to the metal precipitation by sulfate compounds. Consequently, a 
successful supplementation of the trace metals strongly depends on the degree of the 
further precipitation in the digester, as discussed in session 6.2.3.  

6.3.4 Recovery by means of a side reactor 

The increase of the HPr level in the anaerobic digesters is always a potential danger 
to process failure. Although it is possible to obtain high HPr degradation rates by slow 
adaptation of the microorganisms, the adaptation process can take very long time (Chapter 
III: more than 200 days). Therefore it is often not practical feasible to apply this approach 
to industrial digesters.  

Since the HPr recovery is not straightforward, an external remedy technology is 
necessary to accelerate the HPr degradation in the main digester. In Chapter IV, an extra 
system was designed and specialized for the HPr degradation, which mainly relied on the 
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HPr degradation capacity in a upflow anaerobic sludge bed (UASB) reactor with a 
consortium acclimated to HPr degradation. The advantage is that the time-consuming 
adaptation process is applied to a separated system without interfering with the main 
digester process. Moreover, after the HPr abatement by the connection of such a system, 
the recovered main digesters can be expected to be able to tolerate more stressful HPr 
conditions, as discussed in 6.3.2. 

According to the calculated system for a volume of 50 m3 (Chapter IV: less than 2% 
of a full-scale 3000 m3 digester), the roughly estimated capital investment of such a 
system will be around 10,000-15,000 € (Gettier and Moser, 1998; EPA, 2002; Nelson and 
Lamb, 2002), which is quite costly for the occasional HPr accumulation events. However, 
its mobility/flexibility due to the small system volume gives the possibility to be 
connected to different industrial digesters. Thus the required investment can be shared by 
several partners. 

6.4 PRE-TREATMENTS APPLICATION 

6.4.1 Focus of the pre-treatments 

The aim of the pre-treatments has always been to obtain enhanced hydrolysis. 
Mechanical pre-treatments were the first methods used to decrease the solid particle size 
prior to anaerobic fermentation process and the changes in the particle surface area were 
expected to improve the biological degradation. The obvious link is that the smaller 
particles with increased surface area can be better reached by microorganisms and 
exoenzymes. However, the improvement of the degradation was not significant because of 
the slow biological hydrolysis rates (Table 1.2). Irradiation pre-treatments are able to 
decrease the particle size of the substrates, produce no microbial inhibitors and usually 
lead to up to 60% higher solid reduction. However, these methods have high energy 
demands (up to 2000 kWh m-3 biomass treated) and are not economically attractive 
(Hendriks and Zeeman, 2009). 

On the other hand, the dissolution of the cell content from the cell wall rupture makes 
these organic components readily available for degradation. Thus pre-treatments aiming at 
enhancing solubilization have been studied intensely. However, the degree of the 
solubilization improvement does not ensure the same degree of the digestibility 
improvement (see Chapter V). During the pre-treatment processes, especially through 
chemical methods, toxic compounds might be formed. During thermal pre-treatment at 
temperatures higher than 200°C, sugars and amino acids react to melanoidines, which are 
difficult to degrade, and other toxic compounds, such as phenols and furfural, can be 
formed (Hendriks and Zeeman, 2009). 
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Therefore digestibility becomes a more relevant description for the pre-treatment 
efficiency than solubilization. A successful pre-treatment process relies on the combined 
enhancement of the COD removal, VS conversion and biogas production in the 
subsequent batch digestion as well as in the long-term stability of the anaerobic digestion 
process. Thus, research of pre-treatments should always be based on a more sophisticated 
experimental setup, including solubilization test, batch CH4 production test and 
continuous feeding test. 

6.4.2 From the research laboratory to the field 

In recent years, more and more pre-treatment researches are focused on the 
irradiation technology. When providing extreme conditions such as temperatures of more 
than 3500ºC, pressures of 50 MPa, complete cell wall destruction can be achieved (Jin et 
al., 2009; Park et al., 2010). However, the costs associated with these kinds of 
pre-treatment methods are electrical input related and, although the latter has been always 
mentioned in literature, the average numbers have not been calculated (Ahn et al., 2009; 
Naddeo et al., 2009). 

At laboratory scale, a satisfactory pre-treatment method is defined by the improved 
digestibility and increased biogas production, even if little enhancement is observed (less 
than 10% improvement) (Kidak et al., 2009). However, at industrial scale, the application 
of a pre-treatment method mainly depends on the increase of the biogas production, and it 
will be only feasible if the benefit from the extra biogas production can compensate the 
pre-treatment investment. Often the payback time is expected to be within 2-3 years. 
Today there is clearly still a huge gap between the laboratory and the industrial practice, 
since the pre-treatment method in research has been moved on to the electronic technology 
and the industrial full-scale pre-treatments implemented are still limited to simple physical, 
chemical or mechanical methods. 

The question to the researchers can be formulated as follows: Is it more relevant to 
explore the high treatment efficiencies based on high energy consuming technologies, 
which is still economically infeasible? Or would it not be better to search for the methods 
with slightly reduced treatment efficiencies but which are economically directly related to 
practice? 

Therefore, in Chapter V the investigated methods chosen were thermal, thermo-acid, 
pressure-depressure and freeze-thaw pre-treatments, which are possibly economically 
feasible. Although the acid pre-treatment gave the highest net profit of approximately 20.5 
€ ton-1 kitchen waste, the lag phase during the beginning gave uncertainty to this method, 
since the chemical pre-treatments have the possibility of release or formation of toxic 
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compounds during the process. In this case, the physical pre-treatments are more favorable. 
With respect to the freeze-thaw pre-treatments, although the net profit was lower, around 
8.5 € ton-1 kitchen waste, the extra benefit was the odor control during the kitchen waste 
storage and transportation. Therefore, after an overall consideration, freeze-thaw would be 
the best pre-treatment method for anaerobic digestion of kitchen waste. 

6.5 GENERAL CONCLUSIONS AND FUTURE R&D 

In terms of the commercial biogas production, research is exploring new types of 
feedstock to be co-digested for the existing anaerobic digesters. Crude glycerol from 
bio-diesel manufactory was proved a suitable co-substrate for this purpose. The process 
performance was not disturbed by the additional glycerol-COD and higher biogas 
production rate was achieved. An overall benefit of more than 20 € ton-1 glycerol can be 
possible, although depending on the glycerol quality and the price. Further researches 
should also focus on the potential inhibitions from the intermediate products during 
glycerol degradation, such as LCFAs. Moreover, reliable resources are important both in 
terms of adequate amounts and the long-term supply. In order to create a feedstock market 
with low prices, researches are encouraged to give priority to the waste streams which are 
involved with high disposal costs or increasing production amounts, such as the industrial 
by-products, the organic fraction from the landfill, etc. 

Although both the macro- and micro-nutrients supplementation enhanced the process 
performance of the UASB reactors with satisfactory HPr removal rate under extreme 
conditions, more pronounced results was observed from the macro-nutrients 
supplementation in both reactors. Therefore the further researches on the role of the 
micro-nutrients to microorganisms are required. The understanding of metal uptake by 
microorganisms is complex since a dynamic system is involved with several individual 
metal systems and various processes, such as chemical speciation, precipitation, biological 
uptake, etc. The difficulty on dosage quantification is that the interaction between the 
metal and biomass from the microbial aspect is still unclear. Therefore, in order to develop 
a more rational method for the metals supplementation, studies on process kinetics of the 
metals in the bulk (precipitation and dissolution) and the kinetics of metal uptake by the 
microorganisms are important. Besides, more studies on chelation effects on the metal 
bioavailability are necessary.  

Although the reactor recovery from HPr accumulation could be stimulated by an 
external reactor which was dedicated to the HPr removal with high capacity, it is still 
important to explore the process mechanisms related to the HPr accumulation topic. The 
key point of HPr accumulation is the H2 partial pressure. Besides that, the interactions 
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with HAc and formate are also crucial. Therefore, a combined mathematic model may 
help to understand better the evolution of these compounds during the process. Moreover, 
it is important to prevent the HPr accumulation, therefore reliable process indicators and 
evaluation strategies should be developed for a better control of the HPr levels inside the 
reactor. 

The researches on the pre-treatments present a variety of technologies. Often the 
pre-treatment could increase the solubilization of the feedstock, but it must be taken into 
consideration that pre-treatments (such as thermal or acid methods) may give rise to the 
formation of toxic or recalcitrant compounds. For long-term continuous operation, a stable 
operation should be evaluated from the process evolution based on the COD, VFA and 
biogas production. However, the applicability of these methods is dependent on the extra 
biogas production achieved, which is actually the income resource to cover the extra cost 
due to the operation of the pre-treatments. Nevertheless, the link between the laboratory 
and the industry is weak, especially lack of information related to the pre-treatment cost. 
Experiments should be completed by several steps, including the solubilization test, batch 
CH4 production test and continuous feeding test. Moreover, the economical aspects should 
be considered, which can give more confidence in relation to practical feasibility of the 
investigated technologies. 
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ABSTRACT 

A variety of wastestreams have been shown to be suitable for anaerobic treatment, 
both in laboratory studies and industrial applications. Nowadays, the energy recovery from 
biogas production and the treatment of organic wastes are equally important when 
evaluating anaerobic digestion. Although the latter has been recognized as a 
well-established technology, solids hydrolysis, slow growth of methanogens, propionate 
accumulation and limited biogas yields are still the major drawbacks of this technology. 
Therefore, further studies aiming at expanding the treatment efficiencies of anaerobic 
digestion are necessary. 

The objective of this doctoral thesis is to enhance the performance of anaerobic 
digestion by different approaches, aiming at a better process stability and a higher biogas 
production. 

As a first approach, co-digestion for intensification of the biogas production was 
investigated in Chapter II by supplementing three different types of glycerol to potato 
processing wastewater. The addition of 2 mL of glycerol product per liter of raw 
wastewater could increase the biogas production by 0.74 L biogas mL-1 glycerol product 
without affecting the COD removal efficiency (85%). In energetic terms this resulted in 
810-1270 kWhelectricity per m-3 glycerol product, depending on the glycerol quality. Besides, 
a 5-fold higher biomass yield was observed in the reactor supplemented with glycerol 
compared to the control reactor, which suggests a positive effect of glycerol on the sludge 
blanket growth. 

Propionic acid (HPr) removal is essential during anaerobic digestion since its 
accumulation leads to process instability and even process failure. It has been reported in 
the literature that high HPr removal rates could be achieved by macro- and micro-nutrients 
supplementation. In the study described in Chapter III, two feeding strategies, by 
modifying the hydraulic retention time (HRT) and the influent HPr concentration, 
respectively, were applied to obtain maximum HPr removal in up-flow anaerobic sludge 
bed (UASB) reactors. After a patient biomass adaptation to the long-term exposure to HPr 
together with nutrients supplementation, a maximum HPr removal rate of up to 32.8 g 
HPr-COD L-1 d-1 could be achieved under extreme conditions with high HPr throughput 
(HRT of 0.5 h) and high influent HPr levels (10.5 g HPr-COD L-1). Therefore, the 
presence of macro- and micro-nutrients is clearly essential for stable and high HPr 
removal in anaerobic digestion. 

Since the HPr accumulation events occur occasionally during anaerobic digestion, an 
enhanced propionic acid degradation (EPAD) system, an external remedy digester, has 
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been conceptually designed and experimentally tested at lab-scale (Chapter IV). The 
system consisted of two components: a liquid/solid separator containing a microfiltration 
membrane and an UASB reactor specialized in HPr degradation. The experimental results 
demonstrated that the interruption of the feeding was not sufficient for the digester to 
recover from HPr accumulation. However, a complete recovery could be obtained by 
connecting the anaerobic digester to the EPAD system. Moreover, the up-scaling of the 
EPAD system was economically estimated and it would only account for about 2% of the 
volume of the full-scale digester, thus suggesting that the implementation of a mobile 
EPAD system in full-scale practice should be feasible. 

In Chapter V, five pre-treatment methods, i.e. acid, thermal, thermo-acid, 
pressure-depressure and freeze-thaw, were investigated to enhance the solubilization, 
biodegradability and biomethanation of kitchen waste (KW). The highest solubilization 
percentage obtained in the batch solubilization tests did not correspond with the best 
biodegradability efficiency achieved in the digestibility tests, which was probably due to 
the formation of inhibitory compounds during the pre-treatments. In the continuous tests, 
the performance hierarchy in terms of the maximum organic loading rate (OLR) applied 
that allowed an acceptable biogas production efficiency of 60% was: pressure-depressure 
(5 g COD L-1 d-1) > freeze-thaw > acid > thermo-acid > thermo > control (3 g COD L-1 
d-1). From the overall analysis, also taking the economical aspects into account, the 
freeze-thaw pre-treatment was the most profitable process with a net potential profit of 
around 8.5 € ton-1 KW, as well as the positive hygienic and odour control aspects. 

In conclusion, new types of feedstock for co-digestion are important, in terms of 
stimulation of biogas production. The requirements relate to both adequate amounts and 
the long-term supply. Considering the process stability, metal bio-availability is crucial for 
metal supplementation, however, the knowledge is limited. A variety of technologies are 
available for pre-treatments, nevertheless, the link between the laboratory and the industry 
is weak, mainly due to the economical aspects. 
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SAMENVATTING 

Anaerobe vergisting is geschikt voor de behandeling van diverse afvalstromen, zowel 
op laboschaal als voor industriële toepassingen. De energierecuperatie uit de 
biogasproductie en de behandeling van organisch afval zijn beiden belangrijke aspecten 
bij het evalueren van de anaerobe vergisting. Alhoewel dit proces beschouwd wordt als 
een ingeburgerde technologie, zijn er nog steeds enkele obstakels zoals een moeilijke 
hydrolyse van vaste stoffen, trage groei van methanogenen, accumulatie van propionzuur 
en een beperkte biogasopbrengst. Dit benadrukt de noodzaak van verder onderzoek om de 
behandelingsefficiëntie van anaerobe vergisting te verbeteren. 

Dit doctoraatsonderzoek is toegespitst op de verbetering van anaerobe vergisters met 
als ultieme doel om een betere processtabiliteit en een hogere biogasproductie te bekomen. 

In Hoofdstuk II werd co-vergisting onderzocht ter verbetering van de biogasproductie 
door het toevoegen van drie verschillende soorten glycerolproducten aan afvalwater uit de 
aardappelindustrie. Het toevoegen van 2 mL glycerolproduct per liter afvalwater kon de 
biogasproductie verhogen met 0.74 L biogas mL-1 glycerolproduct zonder de COD 
verwijderingsefficiëntie (85%) te beïnvloeden. In energetische termen resulteerde dit in 
810-1270 kWhelektriciteit per m-3 glycerolproduct, afhankelijk van de glycerol kwaliteit. 
Bovendien werd ten opzichte van de controlereactor een vijfmaal hogere 
biomassa-opbrengst waargenomen in de reactor behandeld met glycerol. Deze 
waarneming wijst op een positief effect van glycerol op de groei van het slibbed. 

De verwijdering van propionzuur (HPr) is onontbeerlijk tijdens anaerobe vergisting 
aangezien accumulatie leidt tot een onstabiel proces of zelfs falen van het proces. In de 
literatuur wordt vermeld dat hoge HPr verwijderingssnelheden kunnen bekomen worden 
door toevoegen van macro- en micro-nutriënten. Om een maximale HPr verwijdering te 
bekomen in opwaartse-stroom anaerobe slib bed reactoren (UASB), werden twee 
voedingsstrategieën toegepast in Hoofdstuk III door het aanpassen van respectievelijk de 
hydraulische verblijftijd (HRT) en de HPr concentratie in het influent. Na een geleidelijke 
aanpassing van de biomassa aan de langdurige blootstelling aan HPr in combinatie met 
nutriëntentoevoeging, werd een maximale HPr verwijderingssnelheid bereikt van 32.8 g 
HPr-COD L-1 d-1. Dit gebeurde onder extreme omstandigheden met een snelle HPr 
verwerkingscapaciteit (HRT van 0.5 u) en hoge HPr influent concentraties (10.5 g 
HPr-COD L-1). De aanwezigheid van macro- en micro-nutriënten bleek uit dit onderzoek 
essentieel om een stabiele en hoge HPr verwijdering te garanderen bij anaerobe vergisting. 

Aangezien HPr accumulatie regelmatig wordt waargenomen tijdens anaerobe 
vergisting, werd een enhanced propionic acid degradation (EPAD) systeem conceptueel 
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ontworpen en experimenteel getest op laboschaal (Hoofdstuk IV). Deze externe 
hulpvergister bestaat uit twee componenten: een vloeistof/vaste stof afscheidingstoestel 
dat een microfiltratie membraan bevat en een UASB reactor gespecialiseerd in HPr 
afbraak. De experimentele resultaten toonden aan dat de onderbreking van de voeding niet 
voldoende is om een vergister te laten herstellen van HPr accumulatie. Volledig herstel 
kon daarentegen wel bekomen worden door de anaerobe vergister te verbinden met het 
EPAD systeem. De opschaling van het EPAD systeem werd economisch berekend en zou 
slechts 2% van het totale volume vereisen, wat aangeeft dat de implementatie van een 
mobiel EPAD systeem een haalbare oplossing is in praktijk. 

In Hoofdstuk V werden vijf voorbehandelingsmethoden, namelijk zuur, thermisch, 
thermisch-zuur, compressie-decompressie en vriezen-dooien, onderzocht voor de 
bevordering van het oplosbaar maken, de biodegradeerbaarheid en de biogasomzetting van 
keukenafval. Het hoogste percentage van oplosbaar maken van het keukenafval in 
batchtesten, kwam niet overeen met de hoogste biodegradeerbaarheid efficiëntie tijdens 
vergistingstesten. Dit is waarschijnlijk te wijten aan vorming van inhiberende 
componenten tijdens de voorbehandelingen. Tijdens continue testen werd de hiërarchie 
bepaald in termen van maximale organische volumetrische belasting (OLR) met een 
aanvaardbare biogasproductie efficiëntie van 60%: compressie-decompressie (5 g COD 
L-1 d-1) > vriezen-dooien > zuur > thermisch-zuur > thermisch > controle (3 g COD L-1 
d-1). In een globale evaluatie die ook economische aspecten in rekening bracht, was de 
vriezen-dooien voorbehandeling het meest rendabele proces met een netto potentiële winst 
van ongeveer 8.5 € ton-1 keukenafval en bijkomende voordelen in de vorm van 
hygiënische aspecten en beperkte geurhinder. 

Als besluit kan gesteld worden dat nieuwe grondstoffen voor co-vergisting belangrijk 
zijn voor de stimulatie van de biogas productie. Een grondstof is geschikt als ze in 
voldoende mate beschikbaar is en op lange termijn een gegarandeerde aanvoer heeft. Met 
het oog op processtabiliteit is inzicht in de biobeschikbaarheid van metalen cruciaal om de 
benodigde metaal toevoeging te bepalen. De kennis hierover is tot dusver beperkt, wat 
aangeeft dat verder onderzoek noodzakelijk is. Tot slot is er een breed gamma aan 
voorbehandelingstechnologieën beschikbaar, maar de link tussen labo-onderzoek en 
industrie is nog beperkt, voornamelijk door economische aspecten. 

 
  



ABSTRACT - SAMENVATTING 

145 

CURRICULUM VITAE 



Strategies to enhance anaerobic digestion in view of process stability and methanation 

146 

Jingxing MA 

Nick name : Echo 
Gender : Female 
Place of birth : Shanghai, China 
E-mail : kalaxi@hotmail.com 

Academic education 
September 1999 – July 2003            Bachelor degree of civil engineering 
Faculty of Urban Construction and Environment, University of Shanghai for Science and Technology, 
Shanghai, China. 

October 2004 – September 2006         Master degree of Bio-engineering 
Center of Environmental Sanitation, Faculty of Bioscience Engineering, University of Gent, Gent, 
Belgium. 

February 2007 – February 2010         PhD research of Bio-engineering 
Laboratory of Microbial Ecology and Technology (LabMET), Department of Biochemical and 
Microbial Technology, Faculty of Bioscience Engineering, University of Gent, Gent, Belgium. 

Publications 
Ma J, Van Wambeke M, Carballa M and Verstraete W 2008 Improvement of the anaerobic treatment of 
potato processing wastewater in a UASB reactor by co-digestion with glycerol. Biotechnology Letters 
30 (5) 861-867. 

Ma J, Mungoni LJ, Carballa M and Verstraete W 2008 Maximum removal rate of propionic acid as sole 
carbon source in UASB reactors by macro- and micro- nutrients stimulation. Communication in 
Agricultural and Applied Biological Sciences 73 (1) 173-176. 

Ma J, Mungoni LJ, Carballa M and Verstraete W 2009 Maximum removal rate of propionic acid as sole 
carbon source in UASB reactors by macro- and micro- nutrients stimulation. Bioresource Technology 
100 (14) 3477-3482. 

Ma J, Carballa M, Van De Caveye P and Verstraete W 2009 Enhanced propionic acid degradation 
(EPAD) system: experimental validation and practical consideration. Water Research 43 (13) 
3239-3248. 

Ma J, Duong HT, Smits M, Verstraete W and Carballa M 2009 Enhanced biomethanation of kitchen 
waste by different pretreatments. Bioresource technology, submitted. 

Supervised thesis and practicum 
Environmental microbiology - microbiological research of environment pollution. Practical exercises, 
2008 – 2009. Laboratory of Microbial Ecology and Technology (LabMET), Faculty of Bioscience 
Engineering, University of Gent, Gent, Belgium. 
Propionic acid removal in UASB reactors. Lucy Mungony. Master thesis in Environmental Sanitation, 
September 2007 – September 2008, nominated for the Sidmar Prize 2008. Laboratory of Microbial 
Ecology and Technology (LabMET), Faculty of Bioscience Engineering, University of Gent, Gent, 
Belgium. 

 



ABSTRACT - SAMENVATTING 

147 

 

Evaluation of different pre-treatments to enhance the biomethanation of kitchen waste. Hang Thu 
Duong. Master thesis in Environmental sanitation, September 2008 – July 2009. Laboratory of 
Microbial Ecology and Technology (LabMET), Faculty of Bioscience Engineering, University of Gent, 
Gent, Belgium. 

Strategies concerning the process optimisation of anaerobic digestion. Marianne Smits. Master thesis 
in Chemistry and bioprocess technology, August 2008 – July 2009. Laboratory of Microbial Ecology 
and Technology (LabMET), Faculty of Bioscience Engineering, University of Gent, Gent, Belgium. 

Participation in research project 
Second life of sewage as a matrix for dilution of organic waste streams (Sewage Plus). 2007 – 2009. 
Milieu- en Energietechnologie Innovatieplatform (MIP-Project, SUSTDEV-2005-3.II.3.2), Belgium. 
Principal investigator: Willy Verstraete. 

Contributions of congresses and seminars 
Vth International Symposium on Anaerobic Digestion of Solid Wastes and Energy Crop. Ma J, Van 
Wambeke M, Carballa M and Verstraete W “Anaerobic co-digestion of potato processing wastewater 
with Glycerol”. Oral presentation. Hammamet, Tunisia, May 25 to 28, 2008. 

14th PhD Symposium on Applied Biological Sciences. Ma J, Mungoni LJ, Carballa M and Verstraete 
W “Maximum removal rate of propionic acid as sole carbon source in UASB reactors by macro- and 
micro- nutrients stimulation”. Poster communication. Gent, Belgium, September 15, 2008, 1st 
excellent poster prize. 

Belgian International Water Association B-IWA Happy Hour. Ma J, Mungoni LJ, Carballa M and 
Verstraete W “Maximum removal rate of propionic acid as sole carbon source in UASB reactors by 
macro- and micro- nutrients stimulation”. Poster communication. Doornik, Belgium, October 20, 
2008. 

Life Science Convention-Knowledge for Growth. Ma J, Carballa M, Van De Caveye P and Verstraete 
W “Enhanced propionic acid degradation (EPAD) system”. Oral presentation. Gent, Belgium, May 7, 
2009. 

Life Science Convention-Knowledge for Growth. Ma J, Carballa M, Van De Caveye P and Verstraete 
W “Enhanced propionic acid degradation (EPAD) system”. Poster communication. Gent, Belgium, 
May 7, 2009. 

Specialized Conference on Microbial Population Dynamics in Biological Wastewater Treatment – 
ASPD 5. Carballa M, Marzorati M, Ma J, Boon N and Verstraete W “Linking functionality and 
microbial population dynamics in anaerobic digesters”. Poster communication. Aalborg, Denmark, 
May 24 to 27, 2009. 

Vth IWA Specialized Membrane Technology Conference for Water and Wastewater Treatment. 
Ma J, Carballa M and Verstraete W “Enhanced propionic acid degrading (EPAD) system: propionic 
acid rich stream obtained by ultrafiltration membrane and degradation by a side UASB reactor”. Oral 
presentation. Beijing, China, September 1 to 3, 2009. 
 
1st IWA BeNeLux Regional Young Water Professionals Conference. Ma J, Carballa M, Etchebehere 
C, and Verstraete W “Enhanced performance of an upflow anaerobic sludge bed (UASB) reactor by 
coupled with a microbial electrolysis cell (MEC)”. Oral presentation. Eindhoven, Holland, September 
30 to October 02, 2009. 



Strategies to enhance anaerobic digestion in view of process stability and methanation 

148 

 

Attendances of congresses, seminars and courses 
Sustainable Anaerobic Technology: Now and in the future. 10 year anniversary symposium organized 
by Lettinga Associates Foundation (LeFA). Wageningen, Holland, June, 2007. 

Summer School of Modeling Membrane Bioreactor Process. Organized by the Department of Applied 
Mathematics, Biometrics and Process Control (Biomath). Gent, Belgium, July 15 to 17, 2008. 

Special symposium on Water/Wastewater Science and Technology for Sustainable Development. 
Organized by the Institute for Water Education, UNESCO-ISH. Delft, Holland, June 12, 2009. 

Academic awards 
Special-rate Excellent Scholarship of USST. Conceded by University of Shanghai for Science and 
Technology. Shanghai, China, May 2000. 
Second-Rate Excellent Scholarship of USST. Conceded by University of Shanghai for Science and 
Technology. Shanghai, China, May 2003. 

1st Excellent Poster Prize. Conceded by 14th PhD Symposium on Applied Biological Sciences, Ghent 
University and Katholieke Universiteit Leuven. Ma J, Mungoni LJ, Carballa M and Verstraete W 
“Maximum removal rate of propionic acid as sole carbon source in UASB reactors by macro- and 
micro- nutrients stimulation”. Gent, Belgium, September 15, 2008.



 

 

Gent, May 2010 

I would like to thank my promoter and supervisor, all my friends and colleagues,  

for your supports through all these years ! 

I will always think of you no matter where I am ! 

 

Echo 




