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Ubiquitination, the covalent attachment of ubiquitin (Ub) to a target protein,  is a post-

translational modification that is involved in most, if not all, biological processes in eukaryotic 

organisms. Ubiquitination of a target protein requires the consecutive action of three enzymes 

(E1, E2 and E3). The E3 Ub ligase is of special interest because it is responsible for recruiting 

the target protein, determining the specificity of this modification. The Ub system contributes 

to the regulation of the production, perception and signal transduction of plant hormones. 

These hormones are critical for correct plant development and adaptation to the variable 

environmental conditions plants are exposed to during their life cycle.  

Jasmonic acid and its derivatives, known as jasmonates (JAs), act as signalling 

compounds regulating plant development and plant responses to various biotic and abiotic 

stress conditions. Even though more than 1500 E3 ligases are encoded by the genome of the 

model plant Arabidopsis thaliana, very few have been associated with JA biosynthesis or signal 

transduction. Best characterized is the SCFCOI1 E3 ligase, a component of the JA-receptor. 

Making use of transcriptomic data and a bio-informatics approach, we have identified a set of 

22 E3 ligases with a putative role in JA-signalling (see Chapter 3), further extending the 

connection between the Ub system and JA-signalling.  

Despite the large number of E3s present in plants, very few ubiquitination targets have 

been associated with a specific E3 ligase. Here, we used a customized Tandem Affinity 

Purification (TAP) platform to identify E3-interacting proteins that constitute potential 

ubiquitination substrates. Customization consisted of inactivation of the Ub-ligase activity of 

the E3s by introduction of specific mutations in their RING domain, preventing target 

ubiquitination and resulting in stabilization of the E3-target interaction. Mutated E3s where 

then used as baits in purification experiments. This approach led to the identification of 

potential targets of several E3 ligases with a predicted function in JA-signalling, including AE31, 

ATL23, BRIZ1/2, KEG and RGLG3/4 (see Chapter 3 and 5). 

To cope with the restraints that in vitro ubiquitination assays impose on the ability to 

demonstrate ubiquitination of a protein by a specific E3 ligase, we attempted to develop an 

alternative in vivo assay. The yeast S. cerevisiae was chosen as a heterologous host to maintain 

modification of the potential target protein by related or unrelated E3s  to a minimum. The 

principle of this assay is based on the assembly of plant E3 ligases with the yeast ubiquitination 

machinery. Upon expression of the suspected target-E3 couple, the target would be 

ubiquitinated, and this should be dependent on co-expression of the (functional) E3. Because 

yeast is relatively resistant to proteasome inhibition, and target ubiquitination in most cases 

leads to proteasome mediated degradation of the latter, we first engineered a strain that had 

increased sensitivity to proteasome inhibition and determined which treatment was most 

efficient to attain this inhibition (see Chapter 3). We also generated a set of MultiSite Gateway 

compatible vectors for the expression of genes in S. cerevisiae, as this cloning technology is 
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widely used by plant researchers (see Chapter 4). The assay was tested using the 

heterodimeric E3 ligase BRIZ1/2 and its candidate target LARP6b. Although we could not 

detect ubiquitination of the LARP6b protein after purification of the protein under denaturing 

conditions, we did detect a modified form of the protein and this was dependent on co-

expression of both BRIZ1 and BRIZ2 (see Chapter 3).  

 Further work focussed on the redundant E3 ligases RGLG3/4 that were reported to be 

involved in JA-signalling. We identified PKC-θ INTERACTING PROTEIN COUSIN OF 

THIOREDOXIN 1 (PICOT1/GRXS17) and HEMOGLOBIN 3 (GLB3) as potential targets of RGLG3/4 

using the customized TAP approach described above, followed by confirmation of direct 

interaction using yeast two-hybrid (Y2H). We further demonstrated RGLG3/4 mediate PICOT1 

poly-ubiquitination and subsequent proteasomal degradation. PICOT1 is an iron-sulfur (Fe-S) 

cluster binding glutathioredoxin that localizes to the nucleus and the cytoplasm in Arabidopsis. 

The use of PICOT1 as a bait in TAP experiments further showed that PICOT1 forms a protein 

complex with nearly all components of the cytosolic Fe-S assembly pathway as well as with 

some other known Fe-S proteins. In contrast to the human and yeast orthologs of PICOT1, 

which function in Fe-homeostasis and Fe-S cluster assembly, the activity of the PICOT1-

interacting Fe-S protein XANTHINE DEHYDROGENASE 1 was only marginally affected in picot1 

seedlings. In addition to Fe-S proteins, PICOT1 interacted with several proteins involved in 

tRNA thiolation. Accordingly, plants carrying mutations in genes involved in tRNA modification 

were found to resemble picot1 plants phenotypically (see Chapter 5). 

Our most remarkable finding, however, was that PICOT1 potentially regulates the JA-

receptor F-box component COI1. The thioredoxin domain of PICOT1 mediates direct 

interaction with COI1 in the nucleus. In addition, the short-root phenotype of picot1 seedlings 

was partially rescued in coi1-16picot1 lines. Despite their physical and genetic interaction 

however, picot1 seedlings did not show alterations in their response to JA. Transcriptome 

analysis of picot1, coi1-16 and coi1-16picot1 seedlings revealed a set of genes are upregulated 

in coi1-16 in a PICOT1-dependent manner. These genes were not related to JA-signalling, and 

included a set of co-regulated genes that are expressed in response to infection with 

Hyaloperonospera arabidopsidis (previously known as H. parasitica). We therefore propose 

PICOT1 regulates the JA-independent function of COI1 (see Chapter 6).  

In conclusion, a bio-informatics approach combined with customized protein-protein 

interaction mining was effective in extending our knowledge on the role of the Ub system in 

JA-signalling. Additionally, we have identified the E3 ligases RGLG3/4 and their target PICOT1 

as molecular players in COI1-dependent but JA-independent signalling. 
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Ubiquitinatie, de covalente binding van ubiquitine (Ub) aan een substraateiwit, is een 

post-translationele modificatie die betrokken is in bijna alle biologische processen in 

eukaryote organismen. Ubiquitinatie van een substraat vereist de opeenvolgende werking van 

drie enzymen (E1, E2 en E3). Het E3 ligase is van uitzonderlijk belang omdat het 

verantwoordelijk is voor de rekrutering van het substraateiwit en op die manier de specificiteit 

van de modificatie bepaalt. Het Ub systeem draagt bij aan de regulatie van de aanmaak, de 

perceptie en de signaaltransductie van plantenhormonen. Deze hormonen zijn van cruciaal 

belang voor de correcte ontwikkeling en voor aanpassing van planten aan de wisselende 

omstandigheden waaraan deze gedurende hun levenscyclus worden blootgesteld. 

Jasmijnzuur en derivaten, gekend als jasmonaten (JAs), werken als signaalmoleculen 

die plantenontwikkeling en verdedigingsresponsen tegen verscheidene biotische en 

abiotische stresscondities reguleren. Hoewel er meer dan 1500 E3 ligasen gecodeerd zijn in 

het genoom van de modelplant Arabidopsis thaliana (zandraket), zijn er slechts enkelen 

geassocieerd met JA-biosynthese of signaaltransductie. Het best gekarakteriseerde E3 ligase 

hierbij is SCFCOI1, dat deel uitmaakt van de JA-receptor. We hebben tijdens dit onderzoek de 

link tussen het Ub systeem en JA-signalisatie verder versterkt door 22 nieuwe E3 ligasen te 

identificeren die mogelijk een rol spelen in JA-signalisatie, via een bio-informatica analyse van 

transcriptoom data (zie Hoofdstuk 3).  

Ondanks het grote aantal E3s aanwezig in planten, zijn er slechts weinig substraten 

geassocieerd met een specifiek E3 ligase. We hebben hier gebruik gemaakt van een aangepast 

platform voor Tandem Affiniteitszuivering (TAP) om eiwitten te identificeren die met E3s 

interageren en dus potentiele substraten vormen. De aanpassing bestond uit het inactiveren 

van de Ub-ligase activiteit van de E3s door het gericht invoeren van mutaties binnen het RING 

domein waardoor ubiquitinatie van het substraat verstoord wordt, wat resulteert in 

stabilisatie van de E3-substraat interactie. Deze aanpak leidde tot het ontdekken van 

potentiele substraten van verschillende E3 ligasen met een voorspelde functie in JA-

signalisatie waaronder AE31, ATL23, BRIZ1/2, KEG en RGLG3/4 (zie Hoofdstuk 3 en 5). 

Om komaf te maken met de beperkingen die door in vitro ubiquitinatie-assays 

opgelegd worden op de mogelijkheid om ubiquitinatie van een substraateiwit door een 

specifiek E3 ligase aan te tonen, werd een poging ondernomen om een alternatieve in vivo 

assay te ontwikkelen. Om de modificatie van potentiёle substraateiwitten door 

(on)gerelateerde E3s tot een minimum te beperken werd de gist S. cerevisiae gekozen als 

heterologe gastheer. Het principe achter deze assay is dat planten E3s in staat zijn om te 

assembleren met de ubiquitinatie uitrusting van gist. Bij expressie van het verdachte 

substraat-E3 koppel zou het substraat geübiquitineerd worden, afhankelijk van de 

aanwezigheid van het (functionele) E3. Omdat gist relatief resistent is tegen proteasoom-

inhibitie, en ubiquitinatie van een substraat meestal leidt tot de proteasoom-afhankelijke 
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afbraak ervan, werd er eerst een giststam ontwikkeld die verhoogde gevoeligheid vertoont 

aan proteasoom-inhibitie, en werd er bepaald welke behandelingen resulteerden tot de 

hoogste graad van inhibitie (zie Hoofdstuk 3). Daarnaast werd een set MultiSite Gateway-

compatibele vectoren gegenereerd voor de expressie van genen in S. cerevisiae, gezien deze 

kloneringsmethode veel gebruikt wordt binnen het plantenonderzoek (zie Hoofdstuk 4). De 

assay werd getest met het heterodimeer E3 ligase BRIZ1/2 en zijn kandidaatsubstraat LARP6b. 

Hoewel we geen ubiquitinatie van LARP6b konden detecteren na zuivering van het eiwit onder 

denaturerende condities, werd er wel een gemodificeerde vorm van het eiwit gedetecteerd 

die afhankelijk was van co-expressie met zowel BRIZ1 als BRIZ2 (zie Hoofdstuk 3).  

Het verdere werk concentreerde zich op de redundante E3 ligasen RGLG3/4 waarvan 

de functie in JA-signalisatie reeds gerapporteerd werd. Gebruik makend van de hierboven 

beschreven aangepaste TAP procedure identificeerden we twee kandidaatsubstraten: PKC-θ 

INTERACTING PROTEIN COUSIN OF THIOREDOXIN 1 (PICOT1/GRXS17) en HEMOGLOBIN 3 

(GLB3). Directe interactie werd vervolgens bevestigd aan de hand van yeast two-hybrid (Y2H). 

We toonden verder aan dat RGLG3/4 de ubiquitinatie en vervolgens proteasoom-afhankelijke 

degradatie van PICOT1 mediëren. PICOT1 is een ijzer-zwavel (Fe-S) cluster bindend 

glutathioredoxine dat in de celkern en het cytoplasma lokaliseert in Arabidopsis. Wanneer 

PICOT1 gebruikt werd als aas in TAP experimenten vonden we dat PICOT1 eiwitcomplexen 

vormt met bijna alle componenten van de cytosolische Fe-S assemblage pathway en ook met 

andere gekende Fe-S eiwitten. In tegenstelling tot de orthologen van PICOT1 in mensen en 

gist, die een functie hebben in Fe-homeostase en Fe-S samenstelling, was de activiteit van het 

Fe-S enzym XANTHINE DEHYDROGENASE 1 nauwelijks verminderd in picot1 zaailingen. Naast 

Fe-S eiwitten, interageerde PICOT1 ook met verschillende eiwitten betrokken bij tRNA 

thiolatie. Overeenkomstig hiermee vertoonden planten die mutaties dragen in genen 

betrokken bij tRNA modificatie een gelijkaardig fenotype als picot1 planten (zie Hoofdstuk 5). 

Onze meest opmerkelijke bevinding was echter dat PICOT1 een potentiele regulator is 

van de JA-receptor component COI1. Het thioredoxinedomein van PICOT1 medieert 

rechtstreekse interactie met COI1 in de celkern. Bovendien werd het korte-wortel-fenotype 

van picot1 zaailingen gedeeltelijk ongedaan gemaakt in coi1-16picot1 lijnen. Ondanks hun 

fysieke en genetische interactie, vertoonden picot1 zaailingen echter geen gewijzigde JA-

respons. Transcriptoomanalyse van picot1, coi1-16 en coi1-16picot1 onthulde een set genen 

die opgereguleerd waren in coi1-16 op PICOT1-afhankelijke wijze. Deze genen waren niet 

gerelateerd aan JA-signalisatie en bevatten een set van co-gereguleerde genen die 

geëxpresseerd worden als reactie op infectie met Hyaloperonospera arabidopsidis (vroeger 

gekend als H. parasitica). Op basis hiervan stellen we PICOT1 voor als een regulator van de JA-

onafhankelijke functie van COI1 (zie Hoofdstuk 6). 
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Tot besluit kunnen we stellen dat bio-informatica gecombineerd met aangepaste 

eiwit-eiwit-interactieonderzoek een effectieve aanpak was om onze kennis over de rol van het 

Ub systeem in JA-signalisatie te versterken. Daarnaast hebben we aangetoond dat de E3 

ligasen RGLG3/4 en hun substraateiwit PICOT1 moleculaire componenten zijn van de COI1-

afhankelijke maar JA-onafhankelijke signaaltransductie. 
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PREFACE 

Plants harvest energy from the sun and provide both food and habitat for other 

organisms, placing them at the basis of our ecosystem. The maintenance of plant homeostasis 

depends on a finely orchestrated balance between protein synthesis and protein breakdown. 

In the past, researchers focussed mainly on the mechanism and regulation of protein 

synthesis. However, pathways regulating protein degradation have gained interest in the last 

couple of decades (Smalle and Vierstra, 2004; Callis, 2014). 

Protein synthesis during organism development or in response to changing 

environmental conditions is often regulated by the production of signalling molecules such as 

hormones. Jasmonates (JA) are fatty-acid derived compounds that act as signalling molecules 

during plant development, and during plant responses to biotic and abiotic stress. Upon 

perception of JAs, plants will activate gene expression and protein production to arm 

themselves against threats, including pathogenic bacteria and herbivores. 

Conversely, targeted protein breakdown can influence how a plant adapts to new 

environmental conditions, or to attack by other organisms, directly by facilitating the 

degradation of rate-limiting enzymes. Alternatively, plants can be dependent on protein 

degradation for turning on the production of proteins that are required only under specific 

conditions. In many cases this is achieved by removal of transcriptional repressors that block 

specific responses at times when they are not required. For example, defence artillery against 

pathogens is costly for the plant, at the expense of resources that could otherwise be used for 

growth and reproduction, and should therefore only be employed at the appropriate occasion. 

In this introduction we will give an overview on the role of two strongly intertwined 

pathways influencing plant homeostasis. We will describe one of the most important 

pathways leading to protein breakdown in eukaryotic organisms, the “ubiquitin system” and 

how this system influences plant hormonal signalling cascades, focussing on the JA signalling 

pathway. 

  



Introduction 

 

3 

 

THE UBIQUITIN SYSTEM 

The ubiquitin conjugation pathway: E1 – E2 – E3 

Ubiquitin (Ub) is a polypeptide (76 amino acids) present in all eukaryotes. Its protein 

sequence is highly conserved and plant Ub differs from human Ub by only three amino acids 

(Callis et al., 1989). Ub and Ub-like polypeptides have a characteristic fold conferring tight 

packing and high structural stability (Ciechanover et al., 1980). Ub is encoded by multiple 

genes as a poly-Ub multimer or as a translational fusion between Ub and a different protein. 

Production of functional Ub-monomers therefore requires post-translational processing, 

achieved by Ub-specific proteases known as de-ubiquitinases (DUBs). These enzymes 

recognize the C-terminal end of Ub and cleave specifically after Ub’s amino acid 76 (Callis, 

2014).  

At least three enzymes are required for Ub-conjugation to a target protein (Figure 1-1). 

First, Ub is activated by the Ub activating enzyme (E1). This step requires ATP hydrolysis and 

yields a complex (E1~Ub) where Ub is covalently bound to the E1 active-site Cys residue 

through a thioester bond. The Arabidopsis genome encodes two E1s (UBA1-2) (Smalle and 

Vierstra, 2004).  

 

Figure 1-1. Enzymatic steps in the ubiquitin conjugation pathway. 

Ubiquitin (Ub) is activated and bound by the E1 in an ATP-dependent reaction through a thioester bond. Ub is 

then transferred to E2 where it is also bound through a thioester bond. The E3 interacts simultaneously with the 

target and the E2~Ub conjugate, facilitating transfer of Ub to the target. 

The second step in the Ub-conjugation cascade involves a Ub-conjugating enzyme (E2). 

During this step, Ub is transferred from E1~Ub to the E2, where it is again covalently bound to 

the active site Cys residue through a thioester bond. Arabidopsis encodes 48 proteins with a 

typical Ub conjugating enzyme (UBC) domain, of which 8 lack the active site Cys and three are 

involved in conjugation of Ub-like proteins (Kraft et al., 2005).  

Finally, the Ub ligase or E3 interacts forms a complex with E2~Ub and target, facilitating 

transfer of Ub to the target where it is covalently bound to a Lys residue. In most cases E2~Ub 

and E3 interact non-covalently, although exceptions where Ub is first covalently bound to the 

E3 through a thioester bond also occur. Because the E3 is responsible for target recognition, 
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it constitutes the main specificity determinant of the Ub system. More than 1,500 E3s are 

encoded in the genome of Arabidopsis (Hua and Vierstra, 2011). 

 

Classes of Ub ligases (E3s) 

Ub ligases can be subdivided into three mechanistic types that in most cases correlate 

with the presence of a conserved domain that mediates interaction with the E2~Ub. While 

RING-type and U-box type E3 ligases do not interact covalently with the E2-bound Ub, HECT 

(Homologous to the E6-AP Carboxyl Terminus) type E3s form a thioester-bound E3~Ub 

intermediary before Ub-transfer to the target protein. 

The RING (REALLY INTERESTING NEW GENE) family of E3 ligases is characterized by the 

presence of a conserved RING domain, which mediates interaction with the E2~Ub. The RING 

domain contains 8 conserved His or Cys metal binding residues that coordinate two Zn atoms 

forming a cross-brace secondary structure (Stone et al., 2005). A similar structure that also 

serves as the E2 docking site is present in U-box type E3s. The U-box domain, however, does 

not coordinate Zn atoms and thanks its protein fold to a network of hydrogen bonds that is 

further stabilized by hydrophobic interactions and salt bridges (Andersen et al., 2004). The 

model plant Arabidopsis encodes 490 proteins that contain a RING domain and 64 U-box 

proteins (Callis, 2014). 

To mediate interaction with the target, protein-protein interaction domains are often 

present in addition to the RING/U-box domain. Alternatively, multi-protein complexes 

containing a RING protein, a CULLIN protein and one or more adaptor modules also function 

as complex RING-type E3 ligases and are known as CRLs (CULLIN-RING ligases, Figure 1-2). The 

structural organization of CRLs is highly conserved between plants and animals. In Arabidopsis, 

a CULLIN isoform (CUL1/3/4) functions as a scaffold and accommodates the RING-domain 

containing protein RBX1a (RING BOX1) and one of three types of substrate interacting module.  

The most abundant type of CRL in plants are SCF CRLs characterized by the presence 

of CUL1 and a substrate-recognition module composed of ASK1/2 (ARABIDOPSIS SKP1 

HOMOLOG 1 / 2) in combination with an F-box protein (Figure 1-2). In contrast to the situation 

in yeast or humans where a low number of F-box proteins is present (20 and 69, respectively), 

the Arabidopsis F-box family is very large and contains at least 700 members. A second related 

CRL complex is the BTB CRL that contains CUL3 and a member of the BTB (broad complex/tram 

track/bric-a-brac) family (Figure 1-2). Finally, CRLs containing CUL4 and a substrate adaptor 

molecule composed of a DDB1 (DNA DAMAGE-BINDING PROTEIN 1) and a DWD (DDB1-

BINDING/WD-40 DOMAIN CONTAINING) family protein are known as DWD CRLs (Figure 1-2). 

No relatives of CUL2 or CUL5 have been found in plants yet, however, in animals they each 

define an additional CRL type. In these organisms, Elongin C connects CUL2 to a VHL (Von 

Hippel–Lindau) family protein in VBC (VHL/Elongin B,C/CUL2) CRLs. Alternatively, Elongin C 
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can also connect CUL5 with a SOCS-box protein in SOCS CRLs. Although a sequence orthologue 

of Elongin C is universally present, no proteins related to CUL2, CUL5, VHL nor SOCS have been 

identified in plants (Hua and Vierstra, 2011).  

Finally, the Anaphase Promoting Complex (APC) is an atypical mega-subunit CRL-type 

E3 ligase. This complex is essential for the transition from metaphase to anaphase during 

mitosis and is highly conserved. In plants, the APC has been shown to be required for plant 

development, controlling both cell division and cell differentiation. The Arabidopsis APC 

consists of at least 11 core subunits of which APC11 contains a RING-domain and APC2 shows 

sequence similarity to cullin proteins (Heyman and De Veylder, 2012). 

 

Figure 1-2. RING-type E3 ligases identified in plants. 

The structural organization and components of single subunit (left) or complex RING-type E3 ligases. Cullin-RING 

ligases (CRLs) are composed of a RING-protein (RBX1) a CULLIN (CUL1/3/5) and a target recognition module. The 

Anaphase-Promoting-Complex (APC) is a mega-subunit E3 ligase that is classified as a member of the CRLs due 

to the presence of a RING-protein (APC11) and a CULLIN-like protein (APC2). The numbers in parentheses indicate 

the predicted number of A.thaliana genes that encode the target recognition component in each E3 type. Figure 

adapted fromVierstra (2009). 

 

Versatility of the ubiquitin system 

During Ub conjugation, a covalent bond is formed between the C-terminal Gly residue 

of Ub and the ε-amino group of a Lys residue in the target protein, termed an isopeptide bond. 

Exceptions have been observed in mammals where Ub was found to be ligated to alternative 

amino acid residues (Ser, Thr or Cys) or to the N-terminal amino group of the target protein. 

The attachment of one Ub entity is referred to as mono-ubiquitination. Additional Lys residues 

within a single target protein can be modified with Ub resulting in multi-monoubiquitination 

(Figure 1-3). Reversible mono-ubiquitination of histones H2A and H2B has been associated 

with transcriptional repression or activation, respectively (Feng and Shen, 2014). 



Chapter 1 

 

6 

 

Ub contains 7 Lys residues (K6, K11, K27, K29, K33, K48 and K63) that can be modified 

with Ub themselves, giving rise to the formation of Ub-chains. Modification of a protein by 

covalent attachment of Ub-chains is known as poly-ubiquitination. In addition, Ub can also 

form chains by attachment to the N-terminal amino group of the previous Ub moiety, forming 

linear Ub-chains. The Ub-packing in a chain is determined by the internal Ub Lys residue used 

for chain assembly (i.e. the Ub “linkage”, Figure 1-3). This structural difference is thought to 

be the basis for the different roles of the different linkage-types of poly-Ub. A final factor that 

further increases the complexity of the Ub system is the formation of mixed linkage chains 

and branched poly-Ub chains on target proteins, of which the role is still not well understood. 

The different signals arising by various structurally different forms of ubiquitination can be 

recognized and interpreted by proteins containing an array of ubiquitin binding domains (Dikic 

et al., 2009). 

 

Figure 1-3. Versatility of the Ub system. 

Attachment of a single Ub to one or multiple Lys residues in the target protein is referred to mono-ubiquitination 

or multi-monoubiquitination, respectively. Attachment of Ub to one of the seven Lys residues present in Ub itself, 

leads to the assembly of Ub chains with varying linkages. In addition, the N-terminal amino group of Ub can also 

serve as a Ub-acceptor resulting in the formation of linear Ub chains. The versatility of the ubiquitin system can 

further be increased by the generation of mixed-linkage chains or forked/branched Ub chains that result from 

the attachment of two Ub moieties to two different Lys residues within a single Ub molecule. These differences 

in Ub chain topology lead to structural variations, forming the basis for functional diversification in the ubiquitin 

system. Figure adapted from Ye and Rape (2009). 

Much effort has been invested to identify motifs for Ub addition by examining Ub-

attachment sites through proteome-wide Ub analysis. However, identification of such a 

consensus sequence has failed, indicating a universal Ub-motif does not exist. Instead, the 
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mechanism of E3 ligases recruiting E2~Ub and the target protein, results in the creation of a 

“hot zone” in the target protein that is in close proximity to the Ub moiety (Meierhofer et al., 

2008; Xu et al., 2009; Kim et al., 2013). 

While Ub proteomic studies have succeeded to detect all 8 possible Ub-linkage types 

in yeast and humans (Meierhofer et al., 2008; Xu et al., 2009), K27-linked Ub chains and linear 

Ub-chains have not been detected in plants (Kim et al., 2013). The best characterized and most 

abundant linkage-type arises from K48-linked Ub-chains. Modification of a target protein with 

K48-linked poly-Ub marks the protein for proteolytic degradation (Fu et al., 1998). The Ub 

system therefore plays a crucial role in regulated protein turnover.  

The second most abundant linkage type of poly-Ub identified on target proteins is K63-

linked. In yeast and mammalian cells K63 poly-Ub has been associated to regulatory non-

proteolytic functions such as DNA repair and kinase activation, and particularly to intracellular 

trafficking events. Although K63-linkage is poorly understood in plants, it has been implicated 

in intracellular trafficking by mediating endocytosis and subsequent vacuolar targeting of the 

auxin efflux carrier protein PIN2 (Leitner et al., 2012). K63 Ub-chains have also been shown to 

be involved in plant iron homeostasis (Li and Schmidt, 2010).  

The third most abundant Ub linkage type in plants is K11-linked Ub (Kim et al., 2013). 

In yeast and animals, K11 poly-ubiquitination is thought to target proteins to the proteasome, 

and its formation has been shown to play a role in cell cycle progression, mediated by the APC 

E3 ligase (Matsumoto et al., 2010; Wickliffe et al., 2011). The function of K11 linked Ub-chains 

has not been studied in plants. However, treatment of seedlings with the proteasome inhibitor 

MG132 increases the amount of K11 Ub-modified proteins detected in proteome wide 

analysis indicating their function in proteasomal degradation is conserved in plants. The 

remaining Ub-linkage types found in plants were much less abundant than K48, K63 or K11, 

and their function is still unknown (Kim et al., 2013). 

 

The proteasome 

In all organisms studied so far, it has been shown that proteins that are poly-

ubiquitinated with K48-linked Ubs are eventually degraded by a 2 MDa proteolytic complex: 

the 26S proteasome. This ATP-dependent multi-subunit protease is similarly organized in 

yeasts, mammals and plants and can be divided in two particles: the 20S core particle and the 

19S regulatory particle (Figure 1-4). The 20S core particle consists of four heptameric rings of 

α and β subunits. The α subunits restrict entrance to the active site by creating a narrow gated 

channel that is only accessible to unfolded proteins (Vierstra, 2009). Enzymatic activity is 

conferred by the β1, β2 and β5 subunits. Each subunit has a specific proteolytic activity. The 

β1-subunit (encoded in yeast by Pre3) confers peptidyl-glutamyl peptide-hydrolysing (PGHG)-

like activity, the β2 subunit (encoded in yeast by Pup1) confers trypsin-like activity and the β5 
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subunit (encoded in yeast by Pre2) is responsible for the chymotrypsin-like activity 

(Heinemeyer et al., 1997). 

 

Figure 1-4. Structure of the plant 26S proteasome. 

Schematic overview of the plant 26S proteasome, existing of a 20S Core particle capped at both ends by the 19S 

regulatory particle. The latter can further be subdivided into a Lid and a Base complex. Figure adapted from 

Sullivan et al. (2003). 

Each end of the 20S core particle is capped by a 19S regulatory particle. This particle 

can be further subdivided into a Lid and a Base complex. The Lid is thought to assist in the 

recognition of poly-ubiquitinated proteins and to release poly-Ub from substrates. The Base 

contains ATP-dependent subunits that probably help to unfold the substrate and to transport 

it into the 20S core particle (Vierstra, 2009). 
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UBIQUITIN-LIKE MODIFIERS 

Ub structure is characterized by a core β-grasp fold where a 5-stranded β sheet appears 

to grasp a diagonally held α helix (Figure 1-5). This structure is referred to as the Ubiquitin-

fold. Several polypeptides have been identified that, despite their low sequence homology, 

show high structural similarity to Ub and share the common Ub-fold. In plants these Ubiquitin-

like modifiers (UBLs) currently include RUB/Nedd8 (related to Ub), SUMO (small Ub-like 

modifier), URM1 (Ub-related modifier-1), ATG8/12 (autophagy 8/12), MUB (membrane 

anchored Ub), UFM1 (Ub-fold modifier-1) and HUB1 (homology to Ub-1). Like in the case of 

Ub, UBL-conjugation generally depends on a E1-E2-E3 cascade and targets the ε-amino acid 

group of Lys residues (Vierstra, 2012). 

 
Figure 1-5. Structure of Ub-like polypeptides. 

The schematic structure of the Ub-fold and the ribbon structure of Ub and four UBLs: SUMO, small ubiquitin-like 

modifier; URM1, ubiquitin-related modifier-1; RUB1/Nedd8, related to ubiquitin-1. Figure adapted from Vierstra 

(2012).  

Although UBLs share a similar fold, their functions and properties differ from Ub and 

from each other. Little is known about the function or conjugation of UFM1, MUB, HUB1 and 

ATG8/12 in plants. While knowledge on UFM1 is completely missing in plants, E1-E2-E3 

enzymes for UFM1 conjugation have been characterized in mammals (Komatsu et al., 2004; 

Tatsumi et al., 2010). MUB is anchored to the membrane owing to the presence of a 

prenylation signal at its C-terminus instead of the usual di-Gly motif (Downes et al., 2006). In 

yeast and mammals HUB1 functions non-covalently. Accordingly, no E1-E2-E3 cascade has 
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been identified for this UBL. Finally, ATG8 and ATG12 are UBLs with an essential role in 

autophagy and this role is conserved in yeast, humans and plants (Ohsumi, 2001; Li and 

Vierstra, 2012). 

 

Related to Ub - Nedd8/RUB 

Amongst the UBLs, Nedd8/RUB is most closely related to Ub and is strongly conserved 

across species (Vierstra, 2012). Three copies of Nedd8 are encoded in the Arabidopsis genome 

(RUB1-3), and neddylation is essential for plant growth and development (Bostick et al., 2004). 

In Arabidopsis, ECR1/AXR1 form a heterodimeric Nedd8 activating enzyme (E1, del Pozo et al., 

2002) while RCE1 and RCE2 (for RUB-CONJUGATING ENZYME) encode two Nedd8-specific 

conjugating enzymes (E2s, del Pozo and Estelle, 1999).  

The best characterized Nedd8 conjugated proteins in all eukaryotic organisms are 

CULs, the scaffold proteins of CRLs. Remarkably, the RING-component of CRLs, RBX1, was 

found to be necessary not only for the ubiquitination of CRL targets but also as a Nedd8 E3 

ligase to catalyse CUL neddylation (Kamura et al., 1999; Morimoto et al., 2003). Neddylation 

of CUL is essential for the activation of CRL complexes and is crucial for regulating their activity 

(Hua and Vierstra, 2011). In mammals and yeast, several other RING-type E3 ligases have 

recently been reported to function in Nedd8 conjugation, in addition to RBX1 (Enchev et al., 

2015). Only two non-CUL neddylation substrates are known in plants: DDB1, a CUL4-CRL 

subunit and ML3, a protein involved in pathogen responses whose exact function is not well 

understood (Mergner and Schwechheimer, 2014). 

 

Small Ub-like modifier - SUMO 

The SUMO pathway is essential for plants and mutations cause embryo lethality. The 

SUMO conjugation cascade in plants involves a heterodimeric E1 (SAE1a/b and SAE2, for 

SUMO ACTIVATING ENZYME) and the SUMO conjugating enzyme SCE1 (E2). At least two 

SUMO-specific E3 ligases are known in plants, SIZ1 and HYP2/MMS21 (Saracco et al., 2007; 

Novatchkova et al., 2012). In addition, SUMO can also form chains, generating poly-

SUMOylated proteins. This modification does not serve as a signal for proteolytic degradation 

by the proteasome but rather seems involved in modulating the ability of substrates to 

interact with other proteins (Melchior, 2000). In plants, various forms of abiotic stress cause 

a dramatic rise of SUMO conjugates, mainly in the nucleus (Kurepa et al., 2003; Saracco et al., 

2007; Miller et al., 2013). Accordingly, in yeast and mammals SUMO-modification has been 

shown to activate transcription factors or to cause translocation of cytosolic factors to the 

nucleus (Melchior, 2000). SUMOylation is therefore thought to help shift the plant from 

growth to a protective mode (Saracco et al., 2007).  
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Ub-related modifier-1 - URM1 

The URM1 pathway is thought to be reminiscent of the ancient roles of UBLs in 

prokaryotic sulfur chemistry. This UBL has been shown to be involved in the thio-modification 

of transfer RNAs (tRNAs). In this context, URM1 is activated by an E1 (CNX5 in Arabidopsis) 

resulting in formation of a thioester linked E1~URM1 where URM1 is thiocarboxylated and the 

sulfur atom is donated by a desulfurase (Nakai et al., 2008; Van der Veen et al., 2011; Nakai et 

al., 2012). Subsequently, a highly conserved complex formed by CTU1-CTU2 (named 

Ncs6/Tuc1-Ncs2/Tuc2 in yeast) mediates transfer of the sulfur atom from URM1 to the uridine 

at the first anticodon position of Glu, Lys and Gln tRNAs (Dewez et al., 2008; Philipp et al., 

2014). This process is dependent on the cytosolic and mitochondrial assembly of iron-sulfur 

cofactors, although it remains to be determined which protein possesses this cofactor (Shigi, 

2014). 

Alternatively, URM1 has been shown to be conjugated to Lys residues in target 

proteins in yeast and mammals. This process is dependent on both thioester formation with 

the E1 and thiocarboxylation of URM1. Attachment of URM1 to a target protein results in 

release of the sulfur moiety. The respective E2 and E3 involved in this process remain unknown 

(Goehring et al., 2003; Van der Veen et al., 2011). 
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JASMONATES: PLANT STRESS HORMONES 

Jasmonic acid (JA) together with its precursors and derivatives, referred to in general 

as jasmonates (JAs), are plant-specific signalling molecules. These phyto-hormones are 

produced upon wounding or pathogen infection and support the establishment of adequate 

defence responses against these threats. Induction of secondary metabolism by JAs 

contributes to a large part of this response. In addition, JAs are also important for plant 

development and resistance to abiotic stress (Browse, 2009; Wasternack and Hause, 2013). 

The wide range of processes influenced by JAs is reflected in a marked alteration of the plant 

transcriptome upon treatment with JAs (Pauwels et al., 2008; Pauwels et al., 2009).  

 

Biosynthesis of jasmonates 

The production of JAs is triggered by wounding, caused mechanically or by herbivore 

attack, by infection with necrotrophic pathogens or by exposure to several abiotic stress 

conditions(Browse, 2009). JAs are cyclic oxylipins derived from fatty acid catabolism through 

the octadecanoid pathway (Browse and Howe, 2008). Membrane damage causes release of 

α-linolenic acid and this is used as a substrate for JA biosynthesis. The first part of this process 

takes place in the chloroplast whereas the final production of JA takes place in the peroxisome 

(Browse, 2009). JA is then further metabolized into various derivatives, including the volatile 

compound methyl jasmonic acid (MeJA) (Wasternack, 2007; Wasternack and Hause, 2013). 

Another JA derivative is formed by conjugation of JA with an amino acid. JASMONATE 

RESISTANT1 (JAR1) encodes the JA-amino synthetase responsible for the conjugation of JA to 

isoleucine and jar1 mutants are defective in the JA response (Staswick and Tiryaki, 2004; 

Westfall et al., 2012). JA-Ile has two chiral centres and the isomer (+)-7-iso-Jasmonyl-L-

isoleucine was identified as the endogenous bioactive form of the hormone (Fonseca et al., 

2009). It is noteworthy that most of the genes coding for enzymes of the JA-Ile biosynthesis 

pathway are upregulated by wounding as well as by JA itself suggesting that JA production is 

regulated by a positive feedback mechanism (Wasternack, 2007; Browse, 2009). The 

metabolic fate of JA and JA-Ile is diverse, and new JA-metabolites are still being identified. It 

remains to be determined whether these metabolites show biological activity independent of 

JA-Ile or function solely as a storage or inactivation mechanism for JA-Ile (Figure 1-6, 

Wasternack and Hause, 2013). 
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Figure 1-6. Metabolic derivatives of jasmonic acid (JA) and JA-Ile.  

The chemical structure of JA-related compounds is shown. JAR1, JA-amino acid synthetase; JMT, JA methyl 

transferase; ST2A, sulfotransferase 2A. Figure adapted from Wasternack and Hause (2013). 

 

Jasmonates function in defence responses 

JAs regulate the wound response and the defence response against herbivore insects. 

Mechanical wounding together with the involuntary release of elicitors in oral secretions of 

herbivore insects during feeding trigger JA production at the site of attack (Koo et al., 2009). 

JA accumulation at the site of wounding leads to the synthesis of JA-Ile and volatile MeJA. In 

addition, the JA biosynthesis intermediate 12-oxo-phytodienoic acid (OPDA) has also been 

shown to have a signalling function in the defence response (Howe and Jander, 2008). 

In response to tissue injury, JA-Ile triggers transcription of JA responsive defence-

related genes. Direct responses include induction of proteinase inhibitors, as well as other 

proteins depending on the plant species, which target the insect’s food consumption, leading 

to restriction of insect growth and development (Howe and Jander, 2008). Next to this local 

response, MeJA and other volatile compounds which are produced upon wound-induced JA 

accumulation act as signals that can reach distal tissues in the same plant as well as 

neighbouring plants, as was demonstrated in tobacco and tomato (Heil and Ton, 2008; Howe 

and Jander, 2008). Perception of this volatile compounds leads to direct activation of defence 

or can prime the defence response (Heil and Ton, 2008). Subsequent insect attack will induce 
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a more rapid or stronger defence response in primed tissues. In addition, release of volatiles 

can help establish tritrophic interactions which are beneficial for the plant. For example, the 

plant volatiles can attract predators of the herbivore insect under whose attack it is (Howe 

and Jander, 2008). MeJA has been suggested to be involved in the systemic induction of 

resistance in the plant, based on tomato grafting experiments (Heil and Ton, 2008). Finally, 

the JA-dependent broad-spectrum response to feeding insects is further modulated by 

crosstalk with several other phyto-hormones (Erb et al., 2012). 

The defence response against necrotrophic pathogens is also regulated by JAs. In 

contrast to biotrophic pathogens, who feed on living tissue, necrotrophs kill host tissue and 

feed on what’s left over. While the response to biotrophic pathogens is regulated by salicylic 

acid (SA), resistance to necrotrophic pathogens is regulated by JA as well as by ethylene (ET), 

and this response shows considerable overlap with the wound response described above 

(Glazebrook, 2005). Arabidopsis plants defective in JA biosynthesis or perception show 

severely compromised resistance to necrotrophic fungi (Vijayan et al., 1998).  

JA biosynthesis is increased upon perception of necrotroph attack. Accumulation of JA 

triggers the expression of defensive effector genes. Induction of some of these genes, such as 

PDF1.2, depend on both JA and ET signalling in Arabidopsis (Thomma et al., 2002; Glazebrook, 

2005). This crosstalk between JA and ET is thought to be mediated by two APETALA2/Ethylene 

Response Factor (AP2/ERF)-domain transcription factors (TFs) ERF1 (ETHYLENE RESPONSE 

FACTOR 1) and ORA59 (Lorenzo et al., 2003; Zarei et al., 2011).  

 

Jasmonates function in abiotic stress resistance 

JAs further contribute to plant plasticity by regulating responses to abiotic stresses. 

Tolerance to cold/freezing stress is mediated by the bHLH TFs ICE1 and ICE2. In the absence 

of JAs, expression of ICE1 and ICE2 is repressed by the JA signalling machinery. Exposure to 

cold leads to elevated biosynthesis and accumulation of JAs in the plant, triggering ICE1/2 

expression (Hu et al., 2013b). Alternatively, JAs also function as positive regulators of heat 

stress tolerance. While JA and SA-signalling are generally regarded as antagonistic pathways, 

JAs function synergistically with SA to promote tolerance to excess heat (Clarke et al., 2009). 

JAs have also been implicated in the responses to drought stress. One method plants 

employ to cope with drought is to induce stomatal closure, preventing further water loss due 

to transpiration. The JA-precursor OPDA, but not JA, was found to accumulate during drought 

treatment and to induce stomatal closure independent of abscisic acid (ABA) signalling, thus 

functioning as a positive regulator of drought tolerance (Savchenko et al., 2014). JAs were also 

shown to contribute to drought tolerance by increasing the root capacity to take up water 

from soil with limited moisture (Kazan, 2015). 
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Abiotic stress caused by high salinity is another factor compromising plant growth and 

productivity. JAs have recently been implicated as positive regulators of salt stress tolerance 

(Kazan, 2015). Overexpression of wheat JA-biosynthesis genes in Arabidopsis increases salt 

tolerance. Accordingly, JA accumulation in wheat confers salt stress tolerance. Remarkably 

this process is ABA-dependent or ABA-independent, depending on which gene is 

overexpressed (Dong et al., 2013; Zhao et al., 2014). The Mediator complex is a multi-subunit 

complex, conserved in eukaryotes, involved in the transcription of protein coding genes. The 

complex can link DNA-binding proteins (i.e. TFs) to the transcription machinery as well as to 

numerous other coactivators and corepressors to regulate gene transcription. The Mediator 

complex also connects JA-signalling to salt tolerance. The Mediator subunit MED25 positively 

regulates JA-dependent gene expression (Cevik et al., 2012; Chen et al., 2012). In addition, 

MED25 interacts with the TF DREB2A, a positive regulator of salt tolerance, independent of 

ABA-signalling (Elfving et al., 2011).  

In addition to the stress-types mentioned above, JAs are involved in the response to 

several other types of abiotic stress including ozone-triggered cell death and UV radiation 

(Wasternack and Hause, 2013; Kazan, 2015). 

 

Jasmonates steer secondary metabolite production 

JAs also trigger the induction of secondary metabolism in response to wounding, 

herbivore attack or pathogen infection. Secondary metabolites are small organic compounds 

which, in contrast to primary metabolites, are not essential for plant growth and 

development. The presence of different classes of secondary metabolites can therefore be 

restricted to different groups of plant families. These compounds fulfil diverse roles during the 

plant life cycle. Amongst other functions, they contribute to plant defence against predators 

and pathogens. Many of these compounds are toxic to insects or have antibiotic activity. 

Various secondary metabolites are constitutively produced in the plant and form a basal 

defence mechanism, but the synthesis of many of these secondary metabolites is induced 

during responses established by JAs. Plant secondary metabolites can be categorized into 

three major classes (terpenoids, alkaloids and phenylpropanoids) although more exist. 

Exogenous administration of JAs induces production of secondary metabolites in all these 

classes (De Geyter et al., 2012). This profound alteration of secondary metabolism is 

accomplished by extensive transcriptional reprogramming in response to JA accumulation 

(Pauwels et al., 2009).  

In Arabidopsis, JAs trigger the synthesis of glucosinolates, phenylpropanoids including 

flavonoids and anthocyanins, isoprenoids and the indole alkaloid camalexin (Pauwels et al., 

2009; De Geyter et al., 2012). While many of these compounds are toxic to chewing insects or 

pathogens, others protect plants by filtering UV-radiation or stimulate plant development by 
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attracting pollinators or symbionts (Bednarek et al., 2009; Chamam et al., 2013; Emiliani et al., 

2013). In tobacco, JAs have been shown to induce expression of genes involved in synthesis of 

alkaloids and phenylpropanoids (Goossens et al., 2003; Heil and Ton, 2008; Zhang and 

Memelink, 2009). In periwinkle (Catharanthus roseus), JAs also induce expression of all genes 

involved in terpenoid indole alkaloid (TIAs) synthesis. Several of this TIAs have pharmaceutical 

applications, for example, vinblastine and vincristine are potent antitumor drugs. Remarkably, 

MeJA also induces genes involved in production of primary metabolites that form precursors 

for TIA biosynthesis (Memelink et al., 2001; Zhang and Memelink, 2009; De Geyter et al., 

2012). Defence-related secondary metabolites can also be toxic to the plant, and are therefore 

often stored as non-toxic precursors until they are activated by herbivore detection (Howe 

and Jander, 2008).  

 

Jasmonates are necessary for plant development 

Next to their clearly defined role in defence responses to biotic and abiotic stresses, 

JAs are also essential for normal plant development and growth. Many of the functions of JAs 

were discovered by analysing the phenotype of wild type (WT) plants grown on medium 

containing JAs or coronatine (COR), as well as by analysing JA biosynthesis and perception 

mutants. COR is a bacterial phytotoxin, produced by strains of Pseudomonas syringae, that 

structurally and functionally mimics JA-Ile (Wasternack, 2007; Fonseca et al., 2009, Figure 1-7).  

The JA-insensitive mutant, coi1-1 (coronatine-insensitive 1), the JA-receptor mutant 

(see next section) and the fad3-2 fad7-2 fad8 triple mutant, which is deficient in the JA 

biosynthesis precursor linolenic acid, show deficiency in flower development and are male 

sterile. In the fad3-2 fad7-2 fad8 triple mutant the male sterility phenotype can be rescued by 

exogenous application of JA to the flower buds. JAs therefore seem to be essential in 

Arabidopsis for correct stamen development by regulating filament elongation, anther 

dehiscence and the final stages of pollen development (Feys et al., 1994; McConn and Browse, 

1996; Pauwels et al., 2009; Shih et al., 2014). 

 

Figure 1-7. Coronatine functionally and structurally resembles JA-Ile. 

The phytotoxin coronatine functionally and structurally resembles the functional hormone (+)-7-iso-L-JA-Ile. 

Figure adapted from Fonseca et al. (2009). 
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When WT plants are grown on medium supplemented with JAs or with COR, they 

undergo root growth inhibition. Because JA-insensitive mutants do not show this phenotype 

upon treatment, it is often used to screen for mutants that have reduced sensitivity to JAs 

(Feys et al., 1994; Wasternack, 2007; Wasternack and Hause, 2013). This root growth 

inhibition is the result of reduction of meristem activity and decreased cell elongation in the 

root differentiation zone by JAs (Chen et al., 2011; Acosta et al., 2013).  

Seed germination is inhibited by JAs and ABA. However, this is not achieved by JA-Ile 

but by the jasmonate precursor OPDA, in a COI1-independent manner (Dave et al., 2011). 

Another developmental process regulated by JAs is the onset of leaf senescence, a 

developmental program that causes a type of slow, programmed cell death. This program is 

regulated both by intrinsic factors, such as hormones, and by external factors, such as 

environmental conditions. JA production is increased during leaf senescence and JAs have 

been shown to positively regulate the onset of natural and dark induced senescence. This 

effect is at least partially dependent on ethylene signalling (Kim et al., 2015) and is antagonized 

by auxin signalling (Jiang et al., 2014).  

Glandular trichomes are often involved in the defence response to herbivores as they 

produce high amounts of secondary metabolites and defence proteins. In addition, together 

with non-glandular trichomes they provide a physical barrier against insects (Wasternack and 

Hause, 2013). Gibberellins (GAs) and JAs synergistically regulate trichome initiation in 

Arabidopsis by targeting the activation of TF complexes required for this process (Qi et al., 

2011; Qi et al., 2014). 

In the last five years, research concerning the integration of light signals into 

developmental responses through JA-signalling has made significant progress. Plants possess 

several photoreceptors that allow them to fine-tune their development in response to light 

quantity, quality, direction and periodicity. Shade caused by plant growth under dense 

canopies is perceived as a reduction in the red:far-red (R:FR) light ratio. Low R:FR ratios 

promote plant growth to outcompete neighbours, known as the shade avoidance response. 

Low R:FR ratios were found to negatively regulate JA-dependent defence responses, including 

the production of secondary metabolites and green leaf volatiles. In this way, plants prioritize 

resource allocation to growth over immune responses during the shade avoidance response 

(Cerrudo et al., 2012; Kegge et al., 2013; Cargnel et al., 2014). 

In addition to the key function of JAs in the processes mentioned above, JAs also 

function during development during lateral and adventious root formation, in growth 

inhibition of above-ground plant parts, in the induction of tuber formation in potato, 

regulation of tendril coiling in Bryonia, leaf movements (nyctinasty and hyponasty) in Albizzia, 

fruit ripening and the modulation of symbiotic interactions (Wasternack, 2007; Balbi and 

Devoto, 2008; Wasternack and Hause, 2013).   
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THE JA-SIGNALLING PATHWAY 

As described above, JAs are involved in numerous plant defence and developmental 

processes. Because of the large impact of this phyto-hormone on different cellular and 

developmental programs, considerable research effort has been spent to the characterization 

of the JA signal transduction pathway. 

Until recently, the core JA signalling module was defined as composed by: MYC2, a key 

transcription factor regulating expression of JA-responsive genes (Lorenzo et al., 2004), JAZ 

proteins, repressors that inhibit MYC2 activity in the absence of the hormone (Chini et al., 

2007; Thines et al., 2007) and COI1 that acts as the JA receptor in vivo and, in response to JA-

Ile, targets the repressor for proteolytic degradation (Fonseca et al., 2009; Yan et al., 2009). 

The co-repressors NINJA and TPL were later identified as members of the core JA-signalling 

complex, mediating the repressor-effect of JAZ proteins (Pauwels et al., 2010, Figure 1-8). The 

components of the core JA signalling module are considered essential for JA signal 

transduction as mutations affecting this complex disturb many (or all) JA responses 

(Wasternack, 2007; Chico et al., 2008; Browse, 2009).  

 

Figure 1-8. Overview of the JA-signalling pathway. 

In the absence of JA-Ile, the activity of transcription factor MYC2, bound to the G-box of jasmonate (JA) 

responsive promotors, is repressed by interaction with JAZ proteins. JAZ proteins bind to the JAZ-interacting 

domain (JID) of MYC2 through their Jas domain. Simultaneously JAZ proteins interact through their ZIM domain 

with the C-domain of NINJA. Finally, NINJA recruits the co-repressor TOPLESS (TPL) to the promotors of JA-

responsive genes through its EAR domain. Upon perception of the hormone, the CRL E3 ligase with F-box 

component COI1 binds and ubiquitinates JAZ proteins. Subsequently, JAZ proteins are degraded and MYC2 

activates transcription of JA-responsive genes eventually resulting in a JA-response. Figure adapted from Pauwels 

and Goossens (2011). 

 

MYC2 regulates the transcription of JA-responsive genes 

The transcription factor MYC2 plays a central role in regulating the transcriptional 

reprogramming in response to JAs. MYC2 was first identified as JASMONATE INSENSITIVE-1 

(JIN1/JAI1) in two different screens for mutants with a reduced JA sensitivity. The 

jin1/jai1/myc2 mutant shows reduced root growth inhibition and anthocyanin production 

when treated with MeJA compared to WT plants. MYC2 expression is induced by JAs or 
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wounding and overexpression (OE) of the TF renders plants hypersensitive to JAs (Berger et 

al., 1996; Lorenzo et al., 2004). 

MYC2 encodes a nuclear localized basic helix-loop-helix-leucine zipper (bHLH)-type TF. 

This TF specifically regulates (at least) two branches of the JA response, in an antagonistic 

manner. One branch includes JA-responsive genes with a role in defence against pathogens or 

a role in secondary metabolism. Expression of these genes is repressed by MYC2 upon JA-

treatment, and their induction requires activation of both JA and ET signalling. A second 

branch includes genes responsive to mechanic or biotic wounding and genes involved in 

flavonoid metabolism or oxidative stress tolerance. Expression of genes in this branch is 

activated by MYC2 in response to JA (Lorenzo et al., 2004; Kazan and Manners, 2013). 

Furthermore, MYC2 has been shown to be a positive regulator of JA-mediated oxidative stress 

tolerance, flavonoid biosynthesis and anthocyanin biosynthesis, and of the ABA-mediated 

drought response. As a negative regulator, MYC2 represses JA-dependent Trp metabolism and 

the subsequent biosynthesis of indole glucosinolates (Dombrecht et al., 2007; Kazan and 

Manners, 2013). 

MYC2 binds to the G-box, a CACGTG palindrome hexamer, and G-box related motifs 

present in the promoters of a great number of genes that are activated by JA through its basic 

amino acids (Toledo-Ortiz et al., 2003; Dombrecht et al., 2007; Godoy et al., 2011). The MYC2 

promoter itself also contains a G-box motif and the TF regulates its own transcription 

(Dombrecht et al., 2007). The HLH-domain is required for the formation of homo or 

heterodimers with other related TFs (Fernandez-Calvo et al., 2011). The N-terminal part of 

MYC2 contains a transcriptional activation domain, that mediates interaction with the 

Mediator complex subunit MED25 for transcription initiation (Fernandez-Calvo et al., 2011; 

Cevik et al., 2012; Chen et al., 2012), and a JAZ interaction domain (JID) that mediates 

interaction with the JAZ repressors (Chini et al., 2007; Fernandez-Calvo et al., 2011). 

The transcriptional reprogramming induced by JAs has been shown to enclose two 

different transcriptional waves. An early transcriptional wave induces expression of genes 

encoding primary regulators of JA signalling such as the JAZ proteins and MYC2. A subsequent 

wave consists of both positive and negative regulation of genes including other TFs (Pauwels 

et al., 2009). Jin1/jai1 mutants are not fully impaired in all JA-mediated responses. For that 

reason, the transcriptional reprogramming following JA perception cannot be entirely 

performed by MYC2 (Chico et al., 2008). Indeed, the TFs MYC3/ATR2 and MYC4 that are closely 

related to MYC2 were also shown to activate JA-dependent transcription upon perception of 

the hormone. Similarly to MYC2, MYC3/4 transcriptional activity was directly inhibited by 

binding with JAZ proteins. Finally, loss-of-function mutations in any of the two TFs rendered 

the plants partially insensitive to JA and aggravated the JA-insensitive phenotype when 

combined with the jin1/jai1 mutant (Fernandez-Calvo et al., 2011). 
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JAZ proteins repress JA-signalling 

Jasmonate ZIM-domain (JAZ) proteins have recently been shown to constitute the 

missing link between the transcriptional regulation of JA responses and the perception of JA. 

In the absence of jasmonates, members of the JAZ protein family repress expression of JA-

responsive genes by inhibiting MYC2 activity. Upon treatment with the hormone, JAZ proteins 

are degraded by the 26S proteasome, thereby allowing transcriptional activation of JA-

responsive genes. This degradation is dependent on direct interaction between JAZ and COI1 

(Chini et al., 2007; Thines et al., 2007; Sheard et al., 2010). 

The JAZ protein family has 13 members in Arabidopsis (Chini et al., 2007; Thireault et 

al., 2015) and homologues have been identified in several plant species, both dicotyledons 

and monocotyledons, but not outside the plant kingdom (Chini et al., 2007; Ye et al., 2009; 

Thireault et al., 2015). Null mutations in JAZ proteins do not have a clear phenotypic effect 

suggesting JAZ proteins are functionally redundant (Thines et al., 2007; Chico et al., 2008; 

Grunewald et al., 2009).  

JAZ proteins contain three conserved domains: the ZIM domain, a region of weak 

homology at the N-terminus and the C-terminal Jas domain which is most strongly conserved 

(Figure 1-9). The Jas domain is essential for JAZ stability, as it constitutes the interaction 

platform between JAZ and COI1 upon hormone treatment (Chini et al., 2007; Thines et al., 

2007; Melotto et al., 2008). Mutation of essential amino acid residues within the Jas domain 

generates plants with a JA-insensitive phenotype similar to that of coi1-1 (Melotto et al., 

2008). The ZIM domain refers to a 36-amino acid domain, containing a conserved motif, 

shared by Zinc-finger expressed in the inflorescence meristem (ZIM) and ZIM-like (ZML) 

proteins. Within the ZIM domain, a strongly conserved amino acid pattern forms the TIFY 

motif (Vanholme et al., 2007). The ZIM domain mediates hormone-independent homo- and 

hetero-dimerization of JAZ proteins (Chini et al., 2009; Chung and Howe, 2009). The newest 

member of the JAZ family (JAZ13), contains a divergent TIFY-motif and Jas domain. This protein 

was shown to be a functional member of the JAZ family and to repress JA-responses through 

interaction with the TF MYC2. However, the divergent TIFY-motif does not mediate hetero-

dimerization of JAZ13 with other members of the JAZ-family (Thireault et al., 2015). 

Finally, a negative feedback loop is induced during JA-signalling as JAZ proteins have a 

G-box (or a variant of it) overrepresented in their promoter. JA-mediated induction of JAZ 

expression results in a pulsed response followed by subsequent desensitization, avoiding a 

harmful runaway response (Chini et al., 2007; Thines et al., 2007).  
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Figure 1-9. Structure and phylogeny of Arabidopsis JAZ proteins 

JAZ proteins contain three conserved domains: the N-terminal ZIM domain (yellow), the C-terminal Jas domain 

(pink) and a region of weak homology at the N-terminus (not shown). In addition, JAZ13 contains an additional 

Ser-rich C-terminal tail. Figure adapted from Browse (2009) and Thireault et al. (2015). 

 

NINJA and TOPLESS are negative regulators of JA-responses 

The molecular mechanism by which JAZ proteins manage to repress transcription of 

JA-inducible genes was discovered recently. JAZ proteins were shown to bind a previously 

unknown protein designated NOVEL INTERACTOR OF JAZ (NINJA) that functions as an adaptor 

protein to recruit the co-repressor TOPLESS (TPL) and TPL related (TPR) proteins to the MYC-

JAZ complex (Pauwels et al., 2010). 

NINJA is related to the family of ABI5 binding proteins (AFPs, Pauwels et al., 2010). This 

small, plant-specific protein family contains four highly conserved members that play a role in 

ABA-signalling by regulating the TF ABI5 (Garcia et al., 2008). AFPs are localized in the nucleus 

and possess three conserved domains - A, B and C – as is the case for NINJA (Garcia et al., 

2008; Pauwels et al., 2010). NINJA interacts directly with JAZ proteins through its C-domain. 

Reversibly, JAZs do not bind to the C-domain of AFPs, suggesting the specificity of JAZ proteins 

for NINJA. This interaction is dependent on the presence of the TIFY motif within the ZIM 

domain of JAZ proteins. The ZIM domain, consequently, has a dual function: it is not only 

necessary for dimerization of JAZ proteins but also for binding of these proteins to the 

NINJA/TPL complex. NINJA therefore acts as a negative regulator of JA signalling (Pauwels et 

al., 2010). 

NINJA exerts its co-repressor activity by interacting with TOPLESS (TPL). TPL is a 

Groucho/Tup1-type co-repressor that has been shown to play a role in the auxin signalling 

pathway (Long et al., 2006; Szemenyei et al., 2008). It is recruited by repressors of the auxin 
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response through an Ethylene Response Factor (ERF)-associated amphiphilic repression motif 

(EAR motif, Szemenyei et al., 2008). The EAR motif is present on several repressors and is 

essential for their repressor activity (Ohta et al., 2001). This motif is also present within the A 

domain of NINJA which thereby recruits the TPL co-repressor to the MYC-JAZ complex, bound 

to promoters of JA-responsive genes. NINJA therefore functions as an adaptor protein 

between JAZ repressors and the TPL and TPR co-repressors. JAZ8 and JAZ13 contain an EAR 

motif themselves, and this EAR motif mediates direct interaction with the TPL co-repressor 

without the need for the adaptor NINJA (Shyu et al., 2012; Thireault et al., 2015). 

 The EAR motif is also present on AFP proteins, and these were shown to interact with 

TPL as well. TPL and TPR therefore probably act as general co-repressors that are recruited to 

different signalling pathways by specific adaptor proteins (Pauwels et al., 2010). Recently, the 

identification of new ninja mutants revealed the role of NINJA as a co-repressor of JA-

signalling was predominant in hypocotyls and in the root, where a functional NINJA-complex 

is necessary to repress basal JA-signalling and allow cell elongation and root growth under 

standard conditions (Acosta et al., 2013). 

 

COI1 links the Ubiquitin system to JA-signalling 

As mentioned earlier, coronatine (COR) is a phytotoxin produced by Pseudomonas 

syringae that structurally and functionally resembles JA-Ile. Based on the property of COR and 

JAs to inhibit seedling root and shoot growth, a screen for COR-insensitive mutants led to the 

discovery of the CORONATINE-INSENSITIVE1 (COI1) gene. Coi1-1 loss-of-function mutants are 

insensitive to COR/JA and are male sterile in Arabidopsis (Feys et al., 1994). In addition, coi1-

1 mutants are resistant to P. syringae infection (Vijayan et al., 1998; Glazebrook, 2005; Howe 

and Jander, 2008). Because COR is a molecular mimic of JA-Ile, both are perceived by the same 

receptor and, in WT plants, COR triggers JA-signalling, which antagonizes SA-dependent 

defence mechanisms that are normally needed to limit P. syringae growth. This explains why 

coi1-1 plants are resistant to P. syringae (Glazebrook, 2005; Browse, 2009). 

The COI1 protein was characterized as an F-box protein that, next to its N-terminal F-

box domain, also contains 16 leucine rich repeats (LRRs, Xie et al., 1998). The F-box domain of 

COI1 is characteristic for proteins that associate with SCF ubiquitin-ligase complexes and the 

protein is closely related to other F-box proteins with a function in hormone signalling (Figure 

1-10A). Accordingly, COI1 has been shown to associate with RBX1, CUL1, and either ASK1 or 

ASK2 to assemble functional SCFCOI1 complexes in Arabidopsis (Dai et al., 2002) and plants 

deficient in other components or regulators of SCF complexes also show impaired JA 

responses (Lorenzo et al., 2004; Chico et al., 2008). 

In 2010, (Sheard et al., 2010) published the crystal structure of COI1 in complex with 

ASK1, JA-Ile and the JAZ1 degron, the region of JAZ1 necessary to mediate its SCFCOI1-
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dependent degradation (Figure 1-10 B-C). This finally revealed the exact mechanism for JA-

perception. The overall structure of COI1 resembles that of the auxin receptor F-box protein 

TIR1. The 18 tandem LRRs of COI1 form a horseshoe-shaped solenoid domain, housing the JA-

Ile binding pocket. High affinity JA-Ile binding however requires both COI1 and the JAZ degron, 

thus implying JA-perception is mediated by a co-receptor complex existing of COI1 and JAZ. 

Part of the JAZ1 degron interacts with JA-Ile while the other part interacts with COI1. The JAZ1 

degron is therefore referred to as a bi-partite degron. Four loops (loop-2,-12,-14 and loop-C) 

protrude at the top surface of the COI1 LRR domain and are important for JA-Ile and JAZ 

binding. Finally, inositol-pentakisphosphate was identified as a COI1 cofactor, binding at the 

centre of the protein, underneath the JA-Ile binding pocket, and crucial for the formation of a 

high-affinity co-receptor complex (Sheard et al., 2010). 

 

Figure 1-10. COI1 phylogeny and crystal structure. 

A. Phylogenetic tree showing part of the C4 F-box subfamily. This subfamily includes TIR1 and AFB1-5 (involved 

in auxin perception) and MAX2 (involved in strigolactone perception). Bars represent the branch length 

equivalent to a 0.1 amino acid change per residue. Figure adapted from Gagne et al. (2002). B, C. COI1 structure 

(green ribbon) in complex with ASK1 (grey ribbon), the JAZ1 degron peptide (orange ribbon) and (3R,7S)-JA-Ile 

(yellow space-fill representation). Figure adapted from Sheard et al. (2010). 

The presence of ASK1 in complex with COI1 during crystallization was later found to be 

essential, as COI1 turned out to be an unstable protein when dissociated from the SCF-

complex. COI1 instability is, again, mediated by the ubiquitin system as its degradation was 

proteasome dependent and involved ubiquitination at Lys297 (Yan et al., 2013). COI1 protein 

levels are thus strictly regulated and maintained at a level essential for proper activation of 

JA-responses. 

SCFCOI1, thus, links the Ub system to JA perception by forming a co-receptor complex 

with JAZ for the bioactive JA-Ile as well as for its molecular mimic COR. Perception of the 

phyto-hormone by the F-box protein COI1 leads to ubiquitination of JAZ repressors by SCFCOI1 

and their subsequent degradation in the proteasome. This causes de-repression of TFs 

involved in the activation of JA-mediated responses. The variety of phenotypes associated 
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with the coi1-1 mutation, however, suggest that SCFCOI1 might have multiple targets (Xu et al., 

2002). In addition, as the jar1 mutant, defect in the enzyme responsible for JA-Ile production, 

does not display all the defects that are observed in the coi1 mutant (Kazan and Manners, 

2008), other signals than JA-Ile might be recognized by the same or a different receptor to 

activate JA signalling. On the other hand, there might be redundancy in JA-Ile conjugating 

enzymes. 

 

Beyond the core JA-signalling module 

In addition to all known JAZ proteins, MYC3/4 and the Mediator complex subunit 

MED25, MYC2 interacts with several other proteins. These include AHP5 (HISTIDINE 

CONTAINING PHOSPHOTRANSFER FACTOR 5), implicated in cytokinin signalling, TIC (TIME FOR 

COFFEE) involved in circadian signalling, SGB3 (SUPRESSOR OF G BETA 3) implicated in 

heterotrimeric G-protein signalling, the stress response regulator RCD1 (RADICAL INDUCED 

CELL DEATH 1) protein and all members of the DELLA protein family (Kazan and Manners, 

2013). Many of the MYC2 interacting proteins form points of crosstalk with other signalling 

pathways, further fine-tuning the JA-response. 

During JA-signalling, MYC2 negatively regulates genes involved in pathogen defence, 

as well as positive regulators of these genes. Expression of these genes in response to JA is 

dependent on two of these positive regulators: the TFs ORA59 (OCTADECANOID-RESPONSIVE 

ARABIDOPSIS AP2/ERF59) and ERF1 (Kazan and Manners, 2013). Remarkably, activation of the 

SA-signalling pathway causes degradation of ORA59, thus suppressing JA-signalling during SA-

JA antagonism (Van der Does et al., 2013). Finally, ABA differentially affects the two branches 

of JA-responsive gene expression similarly to the dual effect of MYC2 (Kazan and Manners, 

2013).  

As mentioned earlier, JAs are also involved in light signalling, including circadian 

signalling. Both MYC2 expression and protein accumulation seem to be under control of the 

circadian clock. Rhythmic MYC2 accumulation is regulated by the Ub system, as interaction of 

MYC2 with TIC, a component of the circadian clock, leads to proteasome-dependent 

degradation of MYC2. In addition, JA-perception is also regulated in a circadian manner as the 

expression of COI1 is also controlled by TIC (Shin et al., 2012). 

DELLA proteins, repressors of GA-responses, interact with both MYC2 and JAZ proteins 

to modulate JA-responses. These interactions are especially important during shade 

avoidance responses (see above) when resource allocation is primarily directed from defence 

to growth. At low GA concentrations, DELLAs compete with MYC2 for JAZ-binding, modulating 

the JA-response. Low R:FR ratios (i.e. shade) trigger GA-mediated degradation of DELLAs 

increasing the capacity of JAZ proteins to bind and inactivate MYC-type TFs. Moreover, low 

R:FR light conditions increase the stability of several JAZs while increasing MYC2/3/4 turnover, 
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resulting in increased repression of the JA-response. In addition, one DELLA protein (RGL3) 

was shown to positively regulate MYC2 and thus be required for full activation of JA-responses 

(Pieterse et al., 2014). 

Since the discovery of JAZ proteins in 2007, a wide array of additional TFs that are 

capable to interact with JAZ proteins have been identified (Pauwels and Goossens, 2011; 

Sasaki-Sekimoto et al., 2013; Toda et al., 2013; Fonseca et al., 2014; Sasaki-Sekimoto et al., 

2014), often involved in specific processes, an overview is given in Figure 1-11. These TFs are 

also necessary to integrate signals generated by alternate hormonal signalling pathways, in 

addition to JA-signalling, to fine-tune the different responses that are mediated by JAs to allow 

optimal adaptation or response to diverse environmental and developmental cues. 

 

Figure 1-11. Alternative transcription factors involved in JA-signalling. 

Overview of different transcription factors that are repressed by JAZ proteins (and domains mediating their 

interactions) and their role in JA-signalling responses. Figure adapted from Pauwels and Goossens (2011). 

Recently, the VQ-motif containing protein JAV1 (JASMONATE-ASSOCIATED VQ MOTIF 

GENE 1) was identified as a negative regulator of JA-mediated plant defence responses against 

pathogens and herbivore insects. In addition, COI1-dependent JA perception leads to JAV1 

protein degradation. This degradation is proteasome dependent and thus regulated by the Ub 

system. Because SCFCOI1 does not interact directly with JAV1, the E3 Ub ligase responsible for 

JAV1 ubiquitination and subsequent degradation remains to be identified (Hu et al., 2013a).  

The phospholipase A1 protein DAD1 (DEFICIENT IN ANTHER DEHISCENCE1) catalyses 

the initial step of JA-biosynthesis, the release of α-linolenic acid from chloroplast membranes. 

Dad1 mutants are deficient in anther dehiscence and in pollen maturation, eventually 

resulting in a male-sterile phenotype, which can be rescued by exogenous application of JA to 

the flower buds (Ishiguro et al., 2001). Similar phenotypes were observed when expression of 

the E3 Ub ligase DAF/ATL73 (DAD1-ACTIVATING FACTOR) was suppressed (Peng et al., 2013). 

DAF belongs to the ATL sub-group of RING-type E3 Ub ligases (Serrano et al., 2006), linking the 

Ub system to JA-biosynthesis. DAF was shown to act upstream of DAD1, and to be necessary 

for the expression of DAD1 to enable correct JA-mediated flower development. The function 



Chapter 1 

 

26 

 

of DAF was dependent on the integrity of its RING-domain, however, no DAF ubiquitination 

target has been identified yet (Peng et al., 2013). 

Two additional E3 Ub ligases have been associated to JA-signalling. RGLG3 and RGLG4 

belong to the RGLG (RING DOMAIN LIGASE) family of E3 ligases that contains five members in 

Arabidopsis (Stone et al., 2005; Zhang et al., 2012). RGLG3 and RGLG4 were reported to 

function redundantly as positive regulators of JA-responses (Zhang et al., 2012). Additionally, 

recent research involucrated RGLG3 and RGLG4 in the regulation of crosstalk between SA and 

JA in response to infection with the fungal pathogen Fusarium moniliforme (Zhang et al., 

2015). The molecular mechanisms underlying RGLG3 and RGLG4 function in these processes 

and the ubiquitination target(s) of RGLG3 and RGLG4 remain to be identified. 
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THE UBIQUITIN SYSTEM AND OTHER PLANT HORMONE SIGNALLING PATHWAYS 

Auxin 

There is a striking parallelism between auxin and JA signalling. The auxin receptor TIR1 

is an F-box protein closely related to COI1 and assembles into SCFTIR1. Bioactive auxin forms a 

molecular glue between TIR1 and the auxin repressor proteins AUX/IAA that recruit the co-

repressor TPL to promoters of auxin responsive genes. Degradation of AUX/IAA repressors 

eventually leads to de-repression of auxin responsive genes and activation of the auxin 

response (Cuéllar Pérez and Goossens, 2013; Figure 1-12). 

 

Figure 1-12. Parallelism between the auxin and the JA signalling pathways. 

Formation of the co-receptor complexes in the presence of the hormone and inositol polyphosphates leads to 

ubiquitination of the Aux/IAA repressors by SCFTIR1/AFB1-5 (left) or JAZ repressors by SCFCOI1 (right). EAR, ETHYLENE 

RESPONSE FACTOR (ERF)-associated amphiphilic repression; IAA, indole-acetic acid; InsP5, inositol 

pentakisphosphatephosphate; InsP6, inositol hexakisphosphate; ZIM, Zinc-finger protein expressed in 

Inflorescence Meristems. Figure adapted from Cuéllar Pérez and Goossens (2013). 

 

Gibberellic acid 

Gibberellins are best known as growth promoting hormones and in the absence of the 

hormone gibberellin responses are negatively regulated by DELLA proteins. Perception of 

gibberellin by GID1 leads to its interaction with DELLA proteins. This interaction enhances the 

affinity of the F-box protein SLY1/GID2 towards DELLAs. Subsequent ubiquitination of DELLAs 

by SCFSLY1/GID2 leads to their degradation and de-repression of the gibberellin response (Wang 

and Deng, 2011; Figure 1-13). 

 

Figure 1-13. Gibberellic acid (GA) induced DELLA protein degradation. 

In the presence of GA, formation of the GA-GID1-DELLA complex promotes the recruitment of DELLAs by the 

SCFSLY1/GID2 E3 complex. DELLA protein degradation enables GA responsive genes to become activated. Figure 

adapted from Wang and Deng (2011). 
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Ethylene 

Ethylene (ET) is a gaseous hormone that, in addition to its role in the defense response 

to necrotrophic pathogens (see above), is also involved in cell expansion, senscence and fruit 

ripening and abscission (An et al., 2010). In contrast to auxin, JA and gibberellins, perception 

of ET leads to stabilization of positive transcriptional regulators by inhibition of the F-box 

component of SCFEBF1 and SCFEBF2. In the absence of ET, these E3 ligases are responsible for 

the degradation of (at least) two master TFs ETHYLENE INSENSITIVE3 (EIN3) and EIN3-LIKE1 

(EIL1) that positively regulate the ET-response (An et al., 2010). In addition, ET biosynthesis is 

also regulated by the Ub system. The BTB protein Ethylene-Overproducer 1 (ETO1), the target 

recognition module of a CUL3-type CRL, regulates the stability of a key enzyme involved in 

ethylene production (Wang et al., 2004; Figure 1-14A). 

 

Figure 1-14. Involvement of the Ub system in ET biosynthesis and SL signalling. 

A. Regulation of ET biosynthesis by the E3 ligase component ETO1. ETO1 recognizes the ET biosynthetic enzyme 

ACS5. ETO1 is a BTB protein and is part of a CUL3-type E3 ligase, interaction with ACS5 leads to proteasome-

dependent degradation of the latter. Figure adapted from Wang et al. (2004). B. Hypothetical model of SL 

signalling. Binding of SL to D14 causes a conformational change that enables tight interaction of D14 with D53. 

The D14/D53 complex forms a substrate for ubiquitination by SCFMAX2 (purple). Figure adapted from Bennett and 

Leyser (2014). 

 

Strigolactone 

Although strigolactones (SLs) are an ancient class of plant hormones, they have been 

noticed by researches only recently. Nevertheless, their signalling pathway has partly been 

identified and resembles that of JA and auxin. Upon SL perception, the CRL-type E3 ligase 

SCFMAX2 targets the ubiquitination of the SL repressor proteins D14 and D53 (SMXL6/7 in 

Arabidopsis). SMXL proteins contain EAR motifs that could possibly recruit TPL and repress the 

activation of SL-responsive genes in the absence of the hormone (Bennett and Leyser, 2014; 

Figure 1-14B). 
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Salicylic acid 

Salicylic acid (SA) is essential for plant immune responses against biotrophic 

pathogens. Recently, the BTB proteins NPR2 and NPR3 were shown to act as SA receptors. The 

CRL-type E3 ligases BTBNPR2 and BTBNPR3 regulate NPR1, stability in an SA-dependent manner. 

NPR1 is the key regulator of SA-responses (Fu et al., 2012). 

 

Abscisic acid 

Abscisic acid (ABA) is involved in plant responses to numerous types of abiotic stresses. 

The abundance of two ABA-responsive TFs is regulated by two RING-type E3 ligases: AIP2 

(ABI3-Interacting Protein-2) and KEG (Keep on Going). Remarkably, ABA differentially 

regulates the activity of these E3 ligases towards their targets (Stone and Callis, 2007). 

 

Brassinosteroids 

Brassinosteroids (BRs) are plant hormones critical to plant growth and development. 

In the absence of BRs, the kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) accumulates and 

negatively regulates BR signalling. Exogenous application of active BRs trigger the 

proteasome-dependent degradation of BIN2, allowing activation of BR responsive gene 

expression (Peng et al., 2008). In addition, the TF CES (CESTA or ‘basket’ in Spanish), a 

phosphorylation target of BIN2 and regulator of BR responses, is regulated by sumoylation. 

Sumoylation of CES controls the subnuclear localization of the TF and is antagonized by CES 

phosphorylation mediated by BIN2 (Khan et al., 2014).  
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The ubiquitin (Ub) system is involved in most, if not all, biological processes in 

eukaryotes. The major specificity determinants of this system are the E3 ligases, as they are 

responsible for target recruitment to the ubiquitination machinery. Based on the large 

number of E3 ligases encoded in the model plant Arabidopsis (>1500), it is unlikely that SCFCOI1 

is the only E3 ligase involved in jasmonate (JA) signalling. The aim of this research was to 

further investigate the connection between the Ub system and JA-signalling through 

identification and target characterization of novel E3 ligases involved in this pathway. In 

addition, we aimed to improve the methodology for specific identification and 

characterization of plant E3 ligase targets. 

A first step to strengthen the link between JA-signalling and the Ub system, constitutes 

of the identification of additional E3 ligases with a putative role in JA-signalling. A bio-

informatics screen will be performed, based on available transcriptomic data, to identify E3 

ligases with a potential function in JA-signalling. Subsequent identification of possible 

ubiquitination targets of these E3s is crucial for their functional characterization. Despite the 

large number of E3 ligases present in plants, ubiquitination of only few proteins has been 

specifically associated with a certain E3. We therefore will use a specific experimental 

approach to identify putative E3 substrates. This approach is based on protein-interaction 

studies using Tandem Affinity Purification (TAP) in combination with targeted mutation of E3 

ligases (see Chapter 3). 

Another reason why only few E3-specific targets are known in plants is because this 

relationship is difficult to proof based on the currently available methods. Hence, we will set 

up an innovative in vivo platform to unambiguously validate target ubiquitination by a specific 

plant-derived E3 ligase using a heterologous yeast host system. To allow efficient expression 

of plant proteins in this system, we also need to generate a set of yeast vectors that is 

compatible with the -by plant researchers frequently used- Gateway cloning system (see 

Chapter 4). 

Finally, we will extensively characterize the RING-type E3 ligases RGLG3 and RGLG4, 

which were reported to function in JA-signalling during the course of this PhD (Zhang et al., 

2012; Zhang et al., 2015). The above mentioned TAP strategy, will allow identification of a 

putative target of these E3 ligases (PICOT1). Identification of PICOT1 interacting proteins will 

be used to investigate in which biological processes the protein is involved. This knowledge 

will then enable us to look into more detail at the function of PICOT1 in specific molecular 

processes (see Chapter 5). The function of PICOT1 in JA-signalling (see Chapter 6) will be 

investigated using a reverse genetics approach, based on phenotypic characterization of 

plants with altered PICOT1 expression. 
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SUMMARY 

Several E3 ligases have been associated to phytohormone signalling pathways. 

However, only one E3 ligase (SCFCOI1) has a well characterized function in jasmonate (JA)-

signalling. To identify new E3 ligases with a possible function in JA-signalling, we performed a 

transcriptomics-based bio-informatics screen. Subsequently, we looked for candidate targets 

of these E3 ligases by identifying proteins that can interact with them using tandem affinity 

purification (TAP). Direct interaction was confirmed between a number of E3 ligases and 

candidate targets. Finally, we developed an in vivo heterologous ubiquitination assay using 

the yeast Saccharomyces cerevisiae as a host. This assay was used to investigate the 

relationship between a heterodimeric E3 ligase (BRIZ1/2) and its candidate target protein 

(LARP6b). We found that LARP6b is post-translationally modified in yeast when co-expressed 

with BRIZ1/2. 
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INTRODUCTION 

The ubiquitin (Ub) system has been shown to be involved in phytohormone signalling 

at multiple levels (Kelley and Estelle, 2012). The specificity of the system is guaranteed by 

target recruitment through dedicated E3 ligases. According to the sequenced Arabidopsis 

genome, more than 1,500 different E3 ligases can be assembled (Hua and Vierstra, 2011). 

However, SCFCOI1 remains to date the only E3 ligase with a well characterized function in JA-

signalling. The F-box component COI1 functions together with JAZ and inositol 

pentakisphosphate (InsP₅) as a three-molecule co-receptor complex for the bioactive JA-

hormone (+)-7-jasmonyl-L-isoleucine (Fonseca et al., 2009; Sheard et al., 2010). Formation of 

the receptor complex is believed to trigger SCFCOI1-mediated poly-ubiquitination of JAZ 

proteins leading to their degradation, eventually resulting in de-repression of JA-responsive 

genes (Chini et al., 2007; Thines et al., 2007).  

Despite the vast number of E3 ligases encoded by the Arabidopsis genome, only a few 

targets have been associated with a specific E3 ligase. Current approaches for the 

identification of ubiquitinated proteins can be divided in targeted and non-targeted 

approaches. Non-targeted proteomic approaches are based on affinity purification of 

ubiquitinated proteins followed by MS-analysis of the purified proteins. Enrichment of 

ubiquitinated proteins is achieved by expressing ubiquitin (Ub) with a tag (e.g. 6xHIS-Ub, Peng 

et al., 2003) or by making use of Ub-binding motifs attached to a resin (e.g. TUbEs, Hjerpe et 

al., 2009). Alternatively, the total protein content can first be digested with trypsin, which will 

also digest Ub leaving a di-Gly rest on the formerly ubiquitinated peptide, followed by 

purification with specific antibodies against this di-Gly rest. Unfortunately, Ub-related 

modifiers will also leave a di-Gly hallmark after trypsin digest (Udeshi et al., 2013). The main 

disadvantage of non-targeted approaches, however, is their inability to link a specific E3 ligase 

to its target. Targeted approaches, on the other hand, are low-throughput and have yielded 

satisfying results only sporadically. 

In our group, the composition of the JA core signalling complex was studied using 

Tandem Affinity Purification (TAP) in Arabidopsis PSB-D cell cultures. When COI1-GS was used 

as bait, we could identify multiple components of the core JA-signalling pathway including 

JAZ12 (Pauwels et al., submitted). Therefore, TAP is a suitable technique to identify transient 

E3-target interactions (Yumimoto et al., 2012). However, once the E3 and target interact, the 

latter will probably be ubiquitinated and eventually degraded. Stabilization of the E3-target 

interaction can overcome this hazard and can be achieved by disturbing the E3-E2 interaction. 

In the case of F-box proteins, this could be done by simply deleting the F-box domain of the 

bait (Salahudeen et al., 2009). Deletion of the F-box domain of COI1 was however shown to 

destabilize the protein (Zhou et al., 2013) and this approach is likely not to work for COI1. 
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The largest group of single-subunit E3 ligases is the RING-type. Interaction with the Ub-

charged E2 is mediated by the characteristic RING domain, which contains eight conserved 

residues (Cys or His) that together coordinate two Zn ions resulting in a conserved cross-brace 

tertiary structure. RING-type E3 ligases can be further classified based on the distance 

between the conserved metal binding residues and the number of His-residues. The 

interaction between RING-type E3s and corresponding E2s can be easily disturbed by mutating 

at least one of the metal binding residues (Stone et al., 2005) thus abolishing E3 ligase activity.  

Four RING-type E3 ligases are being studied in our group because of a possible link with 

JA signalling: BOTRYTIS SUSCEPTIBLE 1 INTERACTOR (BOI), KEEP ON GOING (KEG) and the 

BRAP2 RING ZnF UBP domain-containing proteins 1 and 2 (BRIZ1 and BRIZ2). Besides sharing 

a conserved RING domain these E3s have very different domain structures (Figure 3-1). 

 

Figure 3-1. Structure of E3 ligases with putative function in JA-signalling 

Structure of four RING-type E3 ligases: BOTRYTIS SUSCEPTIBLE1 INTERACTOR (BOI), BRAP2 RING ZNF UBP 

DOMAIN-CONTAINING PROTEINS 1 and 2 (BRIZ1 and BRIZ2) and KEEP-ON-GOING (KEG). Protein domain 

abbreviations: WRD, a central domain conserved in BOI and BOI-RELATED GENES; BRAP2, BRCA1-associated 

protein 2; UBP, zinc finger Ub-binding protein; CC, coiled-coil region; HERC2-like, HECT and RCC1 like. 

BOI is a RING-type E3 ligase being studied in our group because it negatively regulates 

pathogen and stress-induced cell death, thereby contributing to plant disease resistance and 

abiotic stress tolerance. In addition to a C-terminal RING domain, BOI contains a central WRD 

domain that is essential for interaction with the MYB transcription factor BOTRYTIS 

SUSCEPTIBLE1 (BOS1/MYB108). BOS1 has been shown to be a ubiquitination target of BOI in 

vitro (Luo et al., 2010). Interestingly, the pathway leading to disease or stress-induced cell 

death that is regulated by BOI-BOS1 is, at least partially, controlled by JA (Mengiste et al., 

2003; Luo et al., 2010). BOI and its homologs BOI-RELATED GENE1-3 (BRG1-3) also negatively 

regulate GA-responses through association with DELLA proteins, although DELLA protein 

stability was not affected in quadruple boibrg1-3 KO mutants when compared to WT plants. 

Instead, the authors showed BOI can bind a subset of GA responsive gene promoters and 

repress their expression levels (Park et al., 2013). 

Two other RING-type E3 ligases that caught our attention are BRIZ1 and BRIZ2. These 

E3s are essential for normal seed germination and post-germination growth in Arabidopsis. 

Both proteins are closely related and share four common domains with the mammalian BRCA1 

Associated Protein 2 (BRAP2): a BRAP2-domain, a RING domain, a zinc finger (ZnF) Ub-binding 
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protein (UBP) domain and a coiled-coil (CC) region. BRIZ1 and BRIZ2 were shown to form 

dimers through their CC region with preference for assembly into hetero-dimers. Both 

proteins showed Ub ligase activity in vitro, which was dependent on the integrity of their RING 

domain, but only BRIZ2 could bind Ub in vitro. Despite their similarity, loss of function 

mutations in either BRIZ1 or BRIZ2 lead to defects in germination and post-germination arrest, 

implying BRIZ1 and BRIZ2 are both essential for these processes and do not function 

redundantly but rather function together in the same complex (Hsia and Callis, 2010). The 

targets of BRIZ1 and BRIZ2 are currently unknown. Nevertheless, a genetic interaction has 

been observed with ABA signalling (Hsia and Callis, in preparation). The ABA and JA signalling 

pathways share some similarities. For example, the co-repressor protein NINJA is related to 

the family of ABI5 binding proteins, that play a role in ABA signalling by regulating the TF ABI5. 

In addition, our group recently characterized the specific interaction between a JAZ protein 

and an E3 ligase involved in ABA signalling (see below). Because of this parallel structure of 

ABA and JA signalling pathways, the BRIZ E3 ligases might also influence JA signalling.  

A fourth and last RING-type E3 ligase of interest to our research group is KEG. KEG 

encodes a 178kDa-large protein assembled from the combination of four different types of 

functional domains. KEG thanks its dual enzymatic activity to the presence of an N-terminal 

RING domain that accounts for KEG’s E3-ligase activity, followed by a serine/threonine protein 

kinase domain. Large protein-protein interaction platforms offer docking sites for KEG 

substrates and consist of nine consecutive ankyrin repeats followed by twelve consecutive 

repeats of a HERC2-like protein domain (Figure 3-1). In the absence of ABA, KEG interacts with 

and ubiquitinates the transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5) in the cytosol, 

thereby mediating ABI5 proteasome dependent degradation (Stone et al., 2006; Liu and 

Stone, 2013). The ABI5 related TFs ABF1 and ABF3 can interact with ABI5 and like ABI5, they 

are unstable proteins that accumulate in the presence of ABA. ABF1 and ABF3 are degraded 

in vivo in a proteasome-dependent manner and were also shown to be ubiquitinated in vitro 

by KEG (Chen et al., 2013). ABI5, ABF1 and ABF3 positively regulate ABA-responses including 

ABA-induced post-germinative growth arrest under adverse environmental conditions (Stone 

et al., 2006; Chen et al., 2013; Liu and Stone, 2013).  

Seedlings carrying loss of function mutations in KEG (keg-1, keg-2 and keg-3, here 

collectively referred to as kegKO) arrest growth soon after germination. This seedling-lethal 

phenotype is mediated, at least partly by ABA-hypersensitivity in these mutants (Stone et al., 

2006). Upon treatment of plants with ABA, KEG preferentially self-ubiquitinates and, as a 

result, is degraded by the 26S proteasome. KEG is also phosphorylated in vivo but the degree 

of phosphorylation does not differ before or after ABA treatment. Nevertheless, (auto-) 

phosphorylation is a prerequisite for KEG self-ubiquitination, and the specific site of 

phosphorylation is thought to switch the E3 ligase activity of KEG towards itself or towards 

alternative targets such as ABI5, ABF1 and ABF3 (Liu and Stone, 2010). In kegKO seedlings, 
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ABI5/ABF1/ABF3 accumulate even in the absence of ABA, blocking post-germinative growth 

under normal growth conditions. Loss of function mutations in ABI5, ABF1 or ABF3 can 

partially complement the kegKO phenotype (Stone et al., 2006; Chen et al., 2013). However, 

restoring ABA-sensitivity in kegKO seedlings does not complement all mutant phenotypes. 

Indeed, KEG has been shown to play additional roles in the plant cell.  

In 2008, a new allele of KEG was identified (keg-4) during a screen for suppression of 

the enhanced disease resistance1 (edr1) mutation. This mutation confers resistance to 

powdery mildew, to drought-induced growth inhibition and to ethylene-induced senescence. 

In addition, edr1 mutants are hypersensitive to ABA. All these phenotypes were suppressed 

by the keg-4 mutation which carries a missense mutation (G1144S) in one of the HERC2-like 

repeats of KEG. Surprisingly, keg-4 seedlings do not show hypersensitivity to ABA nor glucose, 

as was previously described for kegKO alleles, but supressed the ABA hypersensitivity of the 

edr1 mutant (Wawrzynska et al., 2008). Further studies showed that the HERC2-like repeats 

of KEG were essential for its interaction with EDR1 in the trans-golgi network/early endosomes 

(TGN/EE). In plants, the TGN and EE cannot be distinguished from each other. The TGN/EE is 

necessary for protein sorting to the vacuole and the plasma membrane as well as for endocytic 

trafficking (Gu and Innes, 2011). KEG was shown to be required for transport of certain plasma 

membrane proteins to the vacuole through ARA6-associated multi-vesicular bodies that 

originated from the TGN/EE. KegKO seedlings develop defects in vacuole formation, which in 

turn leads to defects in cell expansion. These defects are reflected in the smaller size of kegKO 

cells, together with alterations in the cell wall structure. Finally, KEG is also required for 

apoplastic protein secretion. Remarkably, during powdery mildew infection, KEG localizes at 

fungal penetration sites where it seems to be degraded, emphasizing KEG is involved in 

regulating responses to both biotic and abiotic stress (Gu and Innes, 2012).  

Recently, we found JAZ12 to interact with KEG. JAZ12 belongs to the JAZ family that 

consists out of 13 members in Arabidopsis. The level of redundancy or specificity amongst 

these members is currently not well understood. In addition to KEG, JAZ12 also interacted 

during TAP experiments with SCFCOI1 components, matching with observed in vivo 

ubiquitination and with rapid degradation after treatment with JA. JAZ12, encoded by the 

most highly expressed JAZ gene, was further characterized in our group. This member of the 

JAZ family interacted with the transcription factors MYC2, MYC3 and MYC4 in vivo and 

repressed MYC2 activity, two properties characteristic for members of the this protein family. 

To study the functional role of the interaction between JAZ12 and KEG, we circumvented the 

lethality of keg mutants by knocking down KEG using an amiRNA approach. Both ABA 

treatment and knock down of KEG led to a decrease in JAZ12 protein levels. Correspondingly, 

KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our 

results provide additional evidence for KEG as an important factor in plant hormone signalling 

and a positive regulator of JAZ12 stability (Pauwels et al., submitted). 
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Here, we used a bio-informatics approach based on existing transcriptomics data to 

identify additional E3 ligases with a possible role in JA-signalling resulting in a list of 22 

candidate E3 ligases. A selected group of candidate E3 ligases, together with E3 ligases that 

are already being studied in our group, were subsequently mutated to inactivate their intrinsic 

E3 ligase activity and used as baits in tandem affinity purification (TAP) experiments. Mass 

spectrometry (MS)-based identification of co-purifying proteins resulted in identification of 

co-purifying proteins for a number of E3 ligases. These E3 ligase interacting proteins constitute 

a list of potential Ub-targets for the respective E3s. Finally, we developed a novel heterologous 

yeast ubiquitination assay (HUbA) to further investigate plant E3-target couples. The BRIZ1/2 

interacting protein LARP6b was found to be post-translationally modified when co-expressed 

with the respective E3 ligases in yeast. 
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RESULTS AND DISCUSSION 

Putative E3s involved in JA-signalling 

The E3 ligase SCFCOI1 was the only E3 ligase complex reported to play a role in JA-

signalling at the start of this project. To identify additional E3 ligases that could be involved in 

JA-signalling, we performed a bio-informatics screen. This screen was based on transcriptome 

data, which due to the rise of transcript-profiling technologies (e.g. micro-array experiments) 

is readily available within the research community. First, co-expression networks were 

established based on transcriptomics data. The ‘guilt by association’ principle states that 

differentially co-expressed genes are often involved in similar or related biological processes. 

This principle can therefore be used for new functional annotation of proteins based on the 

function of their neighbours in the network.  

We started our screen based on four established sampling compendia. Three of these 

compendia contain expression data obtained in perturbational experiments, where a 

treatment or growth condition was compared to a control condition, and were related to cell-

cycle processes, plant Environmental Ontology (EO) term ‘methyl jasmonate’ or EO term 

‘abscisic acid regimen’, respectively (further referred to as ‘CC’, ‘MeJA’ and ‘ABA’ compendia). 

The fourth compendium contains expression data of three different wild-type Arabidopsis 

accessions that were grown under the same macroscopic conditions, in six different labs. 

Accession, lab and lab x accession effects were removed from this dataset and the residual 

expression variation was retained. This sampling compendium is referred to as “Agronomics 

residuals” compendium and has proven to be a valuable tool to infer the function of yet 

uncharacterized genes in a certain process, including the JA-response (Massonnet et al., 2010; 

Bhosale et al., 2013). 

ENIGMA (Expression Network Inference and Global Module Analysis) was used on each 

of these compendia to assemble four networks of co-regulated differentially expressed genes, 

i.e. genes whose expression is regulated similarly over a subset of perturbations (Maere et al., 

2008). Finally, the obtained networks of differentially co-expressed genes were subsequently 

analysed with the Cytoscape plug-in PiNGO (Smoot et al., 2011). PiNGO is a tool that can be 

used to screen biological networks for candidate genes, allowing the prediction of their 

functional annotation, based on the annotation of their neighbours. More precisely, we 

looked for Ub E3 ligases that are co-expressed with genes involved in JA-signalling. This 

approach targeted the identification of E3 ligases involved in secondary or tertiary JA-

responses, as E3 ligases involved in primary JA-responses are probably not transcriptionally 

regulated by JA, as is the case for COI1. This resulted in a list of 22 E3 ligase encoding genes 

with a potential function in JA-signalling (p-value<0.05, Table 3-1). Additionally, substantial 

overlap between the genes identified over the four different networks (Figure 3-2) 

underscores the robustness of this method.  



Identification of E3 ubiquitin ligase target proteins 

 

51 

 

The list of 22 candidate genes was further narrowed down based on literature mining 

and manual curation. Characteristics taken into account were, amongst others, the availability 

of Arabidopsis T-DNA insertion lines in the gene and the amount of redundancy expected due 

to the presence of homologous genes. Homologous genes appearing as tandem repeats on 

the genome were also discarded due to the inability to make double knock-out lines. We 

preferentially selected genes with unknown function. Accordingly, genes being currently 

investigated by other research groups were also discarded. As RING-type E3 ligases can easily 

be made inactive we preferentially retained RING-type E3 ligases in our final list of candidates 

(Table 3-1). 

 

Table 3-1. E3 ligases with a putative role in JA-signalling 

AGI Name E3-type Compendium 

At1g08050 

At3g05200 

At5g42200 

At5g27420 

At1g66160 

At5g64660 

At3g07360 

At3g46510 

At1g60190 

At3g52450 

At2g35930 

At3g11840 

At3g19380 

At5g10380 

At2g22010 

At4g03510 

At3g47990 

At1g21410 

At1g77000 

At5g61560 

At3g49060 

At5g67340 

AE31* 

ATL6 

ATL23* 

ATL31/CNI1 

CMPG1 

CMPG2 

PUB9 

PUB13 

PUB19 

PUB22 

PUB23 

PUB24 

PUB25 

ATL55/RING1* 

RKP 

RMA1 

SIS3* 

SKP2A 

SKP2B 

 

RING 

RING 

RING 

RING 

U-box 

U-box 

U-box 

U-box 

U-box 

U-box 

U-box 

U-box 

U-box 

RING 

RING 

RING 

RING 

F-box 

F-box 

U-box 

U-box 

U-box 

CC 

CC, ABA, Agronomics residuals 

Agronomics residuals 

CC, JA, Agronomics residuals 

CC, ABA 

CC, ABA, JA, Agronomics residuals 

CC 

Agronomics residuals 

CC, ABA 

CC 

CC, ABA 

CC, ABA, JA 

CC 

CC, ABA 

CC 

CC 

Agronomics residuals 

CC 

CC 

ABA 

Agronomics residuals 

JA 

Asterisks indicate E3 ligases that were selected for further characterization.  

Our screen identified several members of the ARABIDOPSIS TOXICOS EN LEVADURA 

(ATL) family of H2-type RING E3 ligases as being putatively involved in JA-signalling. The ATL 

family comprises 80 members in Arabidopsis and is characterized by a conserved Proline 

residue within the RING H2 motif. In addition, ATL family members have a conserved N-

terminal hydrophobic stretch and a GLD-motif which is located between the hydrophobic 

stretch and the C-terminal RING domain. Several of these genes have been shown to be 

induced by fungal or bacterial elicitors, including ATL6 and ATL31 which were also identified 

in our screen (Maekawa et al., 2012). The tomato ortholog of Arabidopsis ATL6 (LeATL6) was 

shown to possess E3 ligase activity and is also thought to contribute to JA-mediated elicitor-

activated defence responses triggered by the bio-control agent Pythium oligandrum (Hondo 
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et al., 2007). In addition, at least one (ATL43) shows altered responses to ABA treatment 

(Serrano et al., 2006).  

 
Figure 3-2. E3-ligases identified using PiNGO.  

Numbers indicate the identified number of genes encoding E3 ligases that are co-regulated with JA-responsive 

genes (p<0.05) in the four different ENIGMA-generated networks. 

Two members of the ATL family were chosen for further analysis: ATL23 and 

ATL55/RING1. RING1 was previously shown to possess E3 ligase activity and this activity is 

dependent on the integrity of the RING-domain. It is a relatively unstable protein whose 

expression is up-regulated after treatment with fungal elicitors or after pathogen infection. 

The resulting up-regulation of RING1 expression and stability leads to the onset of 

programmed cell death. Because RING1 associates with lipid rafts in the plasma membrane, it 

is thought to function as a signalling molecule to trigger programmed cell death, therefore 

contributing to plant defence against biotic stress (Lin et al., 2008). 

A third E3 ligase selected for further studies is SUGAR-INSENSITIVE 3 (SIS3). SIS3 was 

first identified in a screen for mutants resistant to the detrimental effects of high exogenous 

sugar levels on early seedling development. While most WT seeds grown on medium 

supplemented with high levels of glucose or sucrose arrest growth early after germination, 

sis3 KO seeds often develop into seedlings with relatively normal shoot systems. SIS3 was 

therefore suggested to have a positive regulatory role on sugar signalling during early seedling 

development (Huang et al., 2010). SIS3 possesses E3-ligase activity in vitro and this activity is 

dependent on the presence of a H2-type RING domain (Stone et al., 2005; Huang et al., 2010). 

The target protein(s) for ubiquitination by SIS3 remain unknown. Although germination has 

been linked to ABA and GA signalling, sis3 KO seedlings do not exhibit altered ABA or GA-

responses when compared to WT, indicating SIS3 affects germination through a signalling 

pathway differing from ABA or GA signalling (Huang et al., 2010). Unfortunately, the sensitivity 

of sis3 KO seeds to the inhibitory effect of JA on germination was not investigated during this 

study. 
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Finally, a yet uncharacterized E3 ligase identified in our screen, which we named 

Astrid’s E3 ligase-1 (AE31, At1g08050), was also selected for further characterization. AE31 

encodes a 641 amino-acid (AA) long protein with an N-terminal H2-type RING-domain (AA68-

113, Stone et al., 2005). In addition, AE31 contains both a von Willebrand Factor type A 

domain (AA204-AA376, vWA) and a vWA / Hedgehog protein intein-like domain (551-623, 

Vwaint, Burglin, 2008). While the function of the Vwaint-domain is unknown, the vWA-domain 

is thought to function as a protein-protein interaction platform. Although vWA-domain 

proteins appeared early during evolution and were originally intracellular proteins, most vWA-

containing proteins in humans are extracellular. Indeed, the domain is found in various blood 

plasma proteins and mutations lead to a number of known human diseases. Remarkably, in 

Arabidopsis only one fifth of the 25 vWA-domain proteins are predicted to be localized outside 

the cell. Finally, thirteen of the predicted intracellular vWA-proteins also contain a RING-

domain. Proteins that have this domain architecture include the RING Ligase family that 

contains five members in Arabidopsis (RGLG1-5) and is characterized by an additional RING 

domain C-terminal of the vWA domain. The remaining eight proteins contain an N-terminal 

RING-domain in addition to the vWA domain. Four members have been involved in the 

gravitropic response (WAV3, WAVH1-2 and EDA40) while the remaining four (including AE31) 

have not been characterized yet and contain a metal ion binding motif in their vWA domain 

(Whittaker and Hynes, 2002). 

 

Differential Tandem Affinity Purification for the identification of E3 targets 

Identification of E3 ligase substrates is essential to unravel the biological function or 

contribution of an E3 ligase to a process of interest, in our case the JA-signalling pathway. We 

therefore sought to identify targets of the E3 ligases selected from our bio-informatics screen, 

or of E3 ligases that were already being studied in our group due to their possible role in JA-

signalling. In first instance, we looked for proteins interacting with the respective E3 ligase, as 

interaction with the E3 is required to be a candidate target.  

In contrast to stable protein-protein interactions, the interaction of an E3-ligase with 

its target is thought to be transient, as ubiquitination in most cases will lead to recognition of 

the substrate by the proteasomal degradation machinery, eventually leading to the 

degradation of the target. Our group previously showed TAP is a suitable technique to identify 

both stable and transient protein-protein interactions and can be used to identify targets of 

E3 ligases. Indeed, JAZ was co-purified with SCFCOI1 when COI1 was used as bait in cell cultures 

(Pauwels et al., submitted). For this reason, TAP was chosen to search for proteins that 

interact with the E3 ligases of interest, which then constitute putative targets of these E3 

ligases. 
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To increase our chances to identify E3 ligase targets two modifications were 

introduced in bait proteins. First, mutations in the RING-domain of baits were introduced 

(referred to as mRING-variants) to avoid ubiquitination and subsequent degradation of target 

proteins during the course of the purification procedure. As mentioned earlier, the E3 ligase’s 

main function is to bring the target and the Ub-charged E2 in close proximity to facilitate Ub-

transfer from E2 to target. Mutation of at least one of the eight conserved metal-binding 

residues present in the RING-domain interferes with the formation of the typical cross-brace 

structure of the RING-domain, which is necessary to interact with the E2 conjugase. As a result, 

ubiquitination of the target protein following interaction with the corresponding mutated E3 

ligase is prevented and enrichment of the target is achieved. In addition, disruption of the E3-

E2 interaction will also lead to stabilization of the E3 ligase due to diminished auto-

ubiquitination activity. A second modification was made to baits that were predicted to be 

localized at membranes, which could be the case for E3 ligases with a predicted trans-

membrane domain. In that case, the trans-membrane domain was removed (referred to as 

dTM-variants) to avoid loss of the bait protein during protein extraction caused by reduced 

solubility due to the hydrophobic character of the trans-membrane domain. 

The CDS of respective baits was fused carboxy(C) or amino(N) terminally to a TAP-tag. 

The GS TAP-tag was chosen as it has been previously shown to be superior in our system. This 

tag consists of two immunoglobulin G-binding domains of Protein G, combined with a 

streptavidin binding peptide, separated by a specific Tobacco Etch Virus (TEV) protease 

cleavage site (Burckstummer et al., 2006; Van Leene et al., 2008). During the course of this 

project, an improved version of this tag, where the TEV cleavage site was replaced by a double 

Rhinovirus3C protease cleavage site (GSrh, Van Leene et al., 2015), became available and was 

implemented in our experiments. The TAP-tagged bait was expressed in Arabidopsis PSB-D 

cells under a constitutive cauliflower mosaic virus 35S promoter (pCaMV35S). After expression 

of the bait was verified in cell cultures using Western Blot, purifications were performed both 

with WT and altered E3 ligases as baits and the results of TAP experiments are shown in Table 

3-2. 

A dozen variations of four E3 ligases identified during our bio-informatics screen were 

used as baits for TAP purifications, as described in Table 3-2. Unfortunately, SIS3 and BOI could 

not be expressed in our system to a level detectable on immunoblots when expressed as a 

TAP-tagged fusion in cell cultures. Our research on these two E3 ligases was therefore 

discontinued. Also, no RING1 interacting proteins could be identified yet, two constructs 

remain to be tested. When a mRING version of AE31 was used as bait, SRPK4 (SR PROTEIN 

SPECIFIC KINASE 4), co-purified with AE31mRING in all TAPs performed (Table 3-2, 

Supplementary File S1). SRPK4 was shown to interact and phosphorylate 12 Ser/Arg-rich (SR) 

splicing factors in vitro, implicating the kinase in RNA metabolism (de la Fuente van Bentem 

et al., 2006). 
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Several proteins could be co-purified with ATL23 when a specific variant was used 

(Table 3-2, Supplementary File S1). This ATL variant consisted of a truncated mRING bait where 

the first 54 amino-acids that constitute the hydrophobic stretch, typically found in ATL family 

proteins, were removed. NIT1 and NIT2 encode two nitrilases that are involved in auxin 

biosynthesis (Bartel and Fink, 1994) while ACX2 encodes an acyl-CoA oxidase involved in 

peroxisomal oxidation and JA biosynthesis (Dave et al., 2011). ERMO2/SEC24B encodes a coat 

protein complex II (COPII) vesicle coat subunit involved in endoplasmic reticulum (ER)-to-Golgi 

trafficking  in  the  early  secretory  pathway  (Qu et al.,  2014).  ERMO2/SEC24B  and  SEC24C  

Table 3-2. Summary of E3 ligase-interactors identified in TAP experiments 

Bait Construct Alteration TAP-

tag 

Expression Interactors Name Score 

-JA +JA 

RING1 FL none C-GSrh Yes No    

   N-GS Yes No    

 dTM Δ1-62 C-GSrh Yes N/A    

   N-GSrh No     

 mRING C135A 

C138A 

C-GSrh Yes No    

  N-GSrh No     

 dTMmRING Δ1-62 

C135A 

C138A 

C-GSrh Yes No    

  
N-GSrh Yes N/A    

ATL23 FL none C-GS Yes N/A    

   N-GS No     

 dTM Δ1-54 C-GSrh No     

   N-GSrh No     

 mRING C104A 

C107A 

C-GSrh Yes No    

  N-GSrh No     

 dTMmRING Δ1-54 

C104A 

C107A 

C-GSrh Yes AT5G65110 ACX2 1/1 1/1 

    AT3G07100 ERMO2 1/1 1/1 

    AT5G51970 SDH 1/1 1/1 

     AT1G09300 unknown 1/1 1/1 

     AT1G47128 RD21A 1/1 1/1 

     AT3G09350* FES1A* 1/1 0/1 

     AT3G44310* NIT1* 1/1 1/1 

     AT3G44300* NIT2* 0/1 1/1 

     AT1G07750* unknown* 1/1 1/1 

   N-GSrh No     

AE31 FL none C-GSrh No     

   N-GSrh  Yes No    

 mRING C109A  C-GSrh Yes AT3G53030 SRPK4 2/2 2/2 

  C112A N-GSrh No     

SIS3 FL none C-GSrh No     

   N-GSrh No     

 mRING H258A 

C261A 

C-GSrh No     

  N-GSrh No     

BOI FL None C-GSrh No     

   N-GSrh No     

 mRING C275A 

C278A 

C-GSrh No     

  N-GSrh No     

FL, Full length; mRING, protein with mutated RING domain; dTM, protein without transmembrane domain; N/A, 

TAP not performed; *, possible background protein. The score indicates the incidence of protein identification 

out of the total number of experiments performed. 
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function redundantly during the development of plant reproductive cells (Tanaka et al., 2013). 

FES1A encodes a Hsp70-binding protein that prevents cytosolic Hsp70 degradation, thereby 

negatively regulating heat-shock transcription (Zhang et al., 2010). SDH (sorbitol 

dehydrogenase) oxidizes sorbitol, which functions as a means to translocate photo-

assimilated carbon from source to sink, to metabolically accessible fructose (Aguayo et al., 

2013). AT1G09300 encodes a metallopeptidase M24 family protein of yet unknown function 

(The Arabidopsis Information Resource, TAIR, Lamesch et al., 2012). RD21A encodes a vacuole 

and ER-body localized protease that has been shown to provide immunity to the necrotrophic 

pathogen Botrytis cinerea and to be involved in the onset of senescence and the resistance to 

several biotic and abiotic stresses (Gu et al., 2012; Shindo et al., 2012; Lampl et al., 2013). 

AT1G07750 encodes a protein of unknown function, characterized by the presence of an 11-

S seed storage protein domain and an RmcI-like cupin domain (TAIR, Lamesch et al., 2012).  

 

Figure 3-3. ERMO2 and RD21A interact directly with ATL23. 

Y2H-assay of ATL23 interactions with ERMO2 and RD21A. ATL23-variants included ATL23 without trans-

membrane domain (dTM) and/or with a mutated RING domain (mRING). Transformed yeasts were spotted in 

10-fold and 100-fold dilutions on control medium (-2), selective medium (-3) or selective medium containing 500 

μM 3-Amino-1,2,4-triazole (-3 +3AT). 

To discriminate whether proteins identified in a complex with ATL23 are interacting 

directly or indirectly with the bait, yeast two-hybrid (Y2H) assays were performed between 

ATL23 or ATL23-variants and the interacting proteins. Only ERMO2 and RD21A were able to 

interact with ATL23 after deletion of its trans-membrane domain (ATL23dTM, Figure 3-3). 

Because RD21A fused to the DNA-binding domain of GAL4 was able to activate transcription 

of the reporter gene HIS3 in the absence of additional proteins, a phenomenon referred to as 

auto-activation, the experiment was repeated in the presence of 3-amino-1,2,4-triazole (3AT). 

This compound acts as a quantitative inhibitor of the HIS3 reporter and can therefore be used 

to discriminate between a false-positive result due to low HIS3 activity caused by auto-

activation or a true-positive result caused by high-affinity interaction between bait and prey 

proteins. In the presence of 500 μM 3AT, auto-activation was inhibited while the interaction 

between RD21A and ATL23dTM was still clearly positive. Additionally, mutations in the RING 
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domain of ATL23dTM (ATL23dTMmRING) seemed to positively affect the degree of 

interaction, with both ERMO2 and RD21A, which we also encountered when testing other E3 

ligase-substrate interactions via this method. ERMO2 and RD21A therefore constitute two 

candidate targets of the E3 ligase ATL23. The relationship between ATL23 and ERMO2/RD21A 

is being further studied within our group and will not be discussed in this PhD thesis. 

 

KEG interacts with a diverse set of proteins 

To further unravel the role of KEG in JA signalling, we tried to identify new unknown 

(ubiquitination) substrates of KEG in a TAP experiment. We used N-terminally TAP-tagged 

KEGmRING (C29A, H31A, and C34A) as bait. The cultures were treated with 50 μM JA or a 

mock solution (100% ethanol) for 1 minute before harvesting. Proteins that co-purified with 

KEGmRING are shown in Table 3-3 (Supplementary File S1). Note that there was no overlap 

with the KEG-interacting proteins identified previously in our group when truncated versions 

of KEG were used as bait (Geerinck 2010, PhD thesis). However, neither EDR1 nor any of the 

previously identified ubiquitination targets of KEG were retrieved in the experiment using a 

truncated protein.  

Table 3-3. Summary of GSrh-KEGmRING interacting proteins identified in TAP experiments. 

Interactors Name 
Score /2 

-JA +JA 

At1g05460 SDE3 0 2 

At3g55620 eIF6A 0 2 

At5g21326 CIPK26 0 2 

At2g42810 PP5* 2 2 

At4g29040 RPT2a* 2 2 

At5g37130 Unknown* 2 2 

At1g23900 γ-ADAPTIN1* 1 1 

At1g60850 RPAC42* 1 2 

At1g60620 RPAC43* 0 1 

* Possible background protein. The score indicates the incidence of protein identification out of two experiments. 

Four KEG interacting proteins could only be identified in JA-treated cells: SDE3, eIF6A, 

CIPK26 and RPAC43. Silencing Defective 3 (SDE3), facilitates the onset/maintenance of 

amplified cytoplasmic post-transcriptional gene silencing (PTGS) at specific transgenic and 

endogenous loci. Additionally, SDE3 might have a dual function where PTGS might provide an 

initial trigger for transition to TGS (Garcia et al., 2012). Remarkably, RPT2a which was also 

identified as a KEG-interacting protein, negatively regulates TGS at transgenes and 

endogenous loci through DNA methylation of target promoters (Sako et al., 2012). RPAC43 is 

an RNA polymerase subunit. RPAC42 and RPAC43 are orthologs of yeast RNA polymerase 

subunit AC40 of RNA Polymerase I and III, two of the three nuclear DNA-dependent RNA 

polymerases present in this organism (Ulmasov et al., 1995).  
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The eukaryotic Initiation Factor 6 protein eIF6A, which is involved in translation 

initiation, was also identified as a KEG interacting protein in the presence of JA. During 

mammalian ribosome biogenesis, eIF6 phosphorylation by activated protein kinase C (PKC) is 

mediated by interaction of both proteins with Receptor for Activated Protein Kinase 1 

(RACK1).This contributes to 80S ribosome assembly and leads to initiation of translation 

elongation. eIF6A interacts with all Arabidopsis RACK1-orthologs in vivo and loss of function 

mutations in eIF6A cause an embryo-lethal phenotype. Remarkably, the expression of both 

RACK1 and eIF6A is negatively regulated by ABA. Since eIF6A was only co-purified with KEG in 

the presence of JA, interaction of KEG with eIF6A may influence the rate of translation 

elongation initiation at the post-transcriptional level depending on the presence of JA and/or 

ABA, as KEG was shown to self-ubiquitinate in the presence of ABA (Liu and Stone, 2010). 

eIF6A might therefore constitute a point of cross-talk for JA and ABA hormone signalling 

pathways. Further research is needed to verify if the KEG-eIF6A interaction is direct and 

depends on JA, and if so, what the biological outcome is. 

Calcineurin B-like Interacting Protein Kinase 26 (CIPK26) was the fourth KEG-

interacting protein that could only be identified in JA-treated cells via TAP. The group of Sophia 

Stone picked up the same protein in a Y2H screen using KEG as bait (Lyzenga et al., 2013). The 

interaction was localized to the cytoplasm and the TGN/EE. CIPK26 was proposed to be a 

ubiquitination target of KEG, as protein stability was influenced by KEG expression levels and 

by proteasomal activity. CIPK26 interacted with the protein phosphatases ABA Insensitive 1 

and 2 (ABI1 and ABI2), both negative regulators of ABA-responses. In addition, CIPK26 also 

interacted with and was able to phosphorylate the transcription factor ABI5 thereby positively 

regulating ABA responses. KEG thus negatively regulates ABA responses by targeting CIPK26 

and ABI5, both positive regulators of ABA signalling, for proteasomal degradation in the 

absence of the hormone (Lyzenga et al., 2013). Because we only identified CIPK26 via TAP of 

JA-treated cell cultures, our results slightly contradict above mentioned findings. Therefore, 

further investigation of the JA-dependency of the KEG-CIPK26 interaction should be carried 

out. It is worth mentioning, however, that in general, a higher number of interactors were 

identified in JA-treated cells than in mock-treated cells. It cannot be excluded that this 

difference could be due to an effect of JA on the stability of the bait rather than on its 

functionality. 

Taken together, we identified a number of proteins that interacted with KEG in planta, 

among which the proposed E3 target CIPK26 (Lyzenga et al., 2013). Unfortunately, we did not 

identify additional proteins with a probable role in the JA-signalling pathway besides JAZ12. 

Therefore, further work on KEG during this PhD was discontinued. 
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LARP6b is a candidate target of the BRIZ1/2 E3 ligase complex  

TAP with BRIZ2 or BRIZ2mRING (C186A, H188A) as bait was performed in an attempt 

to identify candidate targets of this E3 ligase (Table 3-4, Supplementary File S1). The E3 ligases 

BRIZ1 and BRIZ2 were previously reported to preferentially occur as heterodimeric complexes 

(Hsia and Callis, 2010). We were able to confirm the occurrence of BRIZ1 and BRIZ2 in 

biologically relevant complexes via TAP.  

As expected, the introduction of mRING mutations in BRIZ2 allowed us to identify at 

least one additional interacting protein: the La-related protein 6b (LARP6b, Figure 3-4A). The 

La-motif was first identified in the Lupus auto-antigen (La) protein. Genuine La-proteins are 

RNA-binding proteins that function in the metabolism of nascent RNA Polymerase III 

transcripts or modulate the translation of certain mRNAs (Bayfield et al., 2010). Accordingly, 

they contain two RNA recognition motifs (RRMs), one of them immediately following the La-

motif. Although La-related proteins (LARPs) do not have this classical La-RRM1-RRM2 

organization, LARP6b has a conserved region at the place of RRM1 that is also predicted to 

adopt an RRM-like fold. In addition, the C-terminal stretch of the three LARP6 proteins present 

in Arabidopsis is highly conserved and shows homology to a motif present at the C-terminal 

end of Cold-shock Response Protein 1 (CSP1) from various animals, this motif is therefore 

called the La and S1 associated (LSA) motif (Bousquet-Antonelli and Deragon, 2009). 

Table 3-4. Proteins co-purified with BRIZ2 in TAP experiments 

Bait Construct Alteration TAP-tag Expression Interactors Name Score /2 

BRIZ2 FL none N-GS Yes AT2G42160 BRIZ1 2 

 mRING C186A N-GS Yes AT2G42160 BRIZ1 2 

  H188A   AT2G43970 LARP6b 2 

FL, Full length, mRING, protein with mutated RING domain. The score indicates the incidence of protein 

identification out of two experiments. 

In order for LARP6b to be a substrate of BRIZ1/2, direct interaction was assessed in a 

Y2H assay (Figure 3-4B). Due to the functional conservation of the RING domain in both yeasts 

and plants, heterologous E3 ligases expressed in yeast are thought to associate with the yeast 

ubiquitination machinery. Therefore, when the E3 ligase interacts with its substrate during 

Y2H, the substrate will probably be degraded, causing only very transient assembly of the 

GAL4 transcription factor, which might not be enough for the transcriptional activation of the 

reporter gene. Indeed, LARP6b interaction with full length BRIZ2 could only be observed when 

the mRING mutations were present in BRIZ2.  

Truncated constructs of BRIZ1 and BRIZ2 were used to determine which region is 

responsible for LARP6b interaction. A construct comprising the BRAP2-domain and the RING-

domain (BRIZ-BR) was sufficient for interaction of both E3s with LARP6b in yeast (Figure 3-4B). 

We also confirmed that a truncation containing only the coiled coil region of BRIZ1 (BRIZ1-C) 

is essential and sufficient for interaction with BRIZ2 (Hsia and Callis, 2010, Figure 3-4B).  
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Figure 3-4. LARP6b interacts with the E3 ligases BRIZ1 and BRIZ2 

A. Structure of LARP6b. The protein contains a La-motif (residues 193-270), an RNA recognition motif-like (RRM-

L, residues 286-378) and a C-terminal La and S1-associated motif (LSA, residues 516-538). B. Y2H-assay of BRIZ-

LARP6b interactions and BRIZ1-BRIZ2 heterodimerization. In addition to mRING-versions, also several truncated 

versions of the E3 ligases were used as shown in the left panel. Transformed yeasts were spotted in 10-fold and 

100-fold dilutions on control medium (-2) or selective medium (-3). 

Together, our results indicate that the BRIZ1/2 E3 ligase complex interacts directly with 

the LARP6b protein. In addition, the use of BRIZ2 containing RING mutations for Y2H assays 

stabilizes the interaction with LARP6b further supporting the possibility that LARP6b is a 

ubiquitination target of BRIZ1/2. 

 

Heterologous Ubiquitination Assay development 

In vitro ubiquitination assays are currently the best accepted assays to demonstrate 

the specific activity of a certain E3 ligase towards its substrate protein. These assays, however, 

require recombinant production of (at least) the E3 ligase and the substrate, what often can 

become a hurdle. In addition, since the Ub-linkage is determined by the E2 Ub-conjugase used, 

in vitro assays can be biased towards certain types of ubiquitination depending on the E2 used. 

Taking into account that the Arabidopsis genome encodes 37 E2s (Kraft et al., 2005), and that 

often in vitro ubiquitination assays are performed using commercially available human E2s, it 

would be preferable to have an alternative method.  

One main advantage of the in vitro procedure, however, is that there is no background 

activity originating from similar E3 ligases and that simple omission of the E3 ligase from the 
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reaction mix is sufficient to investigate the relation between the E3 ligase and the 

ubiquitination-status of the suspected substrate. To obtain a comparable level of straight-

forwardness, we decided to use yeast (S. cerevisiae) as a heterologous expression host for the 

study of our plant-derived E3-ligases. Due to the high degree of conservation of the 

ubiquitination machinery throughout different organisms, expression of only the 

heterologous F-box component of multi-subunit SCF-E3 ligases in this host is sufficient to 

assemble a functional E3 ligase complex, as the F-box domain will mediate assembly with the 

endogenous Skp1. The functionality of this approach has been demonstrated as expression of 

AtTIR1 in yeast leads to IAA-mediated degradation of a GFP equipped with the AUX/IAA 

degron motif (Nishimura et al., 2009). 

The principle of the newly developed Heterologous Ubiquitination Assay (HUbA) is that 

co-expression of an E3 ligase together with its target leads to ubiquitination of the target. 

Treatment of the yeast cells with proteasome inhibitors prevents degradation of the 

ubiquitinated target which can then be purified and visualised in immunoblots with antibodies 

that detect (poly-) Ub or the target protein (Figure 3-5).  

 

 

Figure 3-5. Principle of the Heterologous Ubiquitination Assay (HUbA) 

The E3 ligase, corresponding target and optionally also the E2, are expressed in the S. cerevisiae strain 

pre3pup1pdr5. After growth in the presence of the proteasome inhibitor MG132 and 0.003% SDS in the medium, 

proteins are extracted and the ubiquitinated target is purified under denaturing conditions based on immobilized 

metal ion chromatography (e.g. Ni-NTA beads). The purified target protein and the ubiquitinated target proteins 

are detected in immunoblots using anti-FLAG and anti-Ub antibodies, respectively. 

In first instance, we engineered a S. cerevisiae strain to increase its sensitivity to the 

proteasome inhibitor MG132 as WT yeast is relatively resistant to proteasome inhibitors. The 

yeast proteasome has three different proteolytic activities: a chymotrypsin-like, a trypsin-like 

and a caspase-like activity that correlate with the Pre2, the Pup1 and the Pre3 proteasomal 

subunits, respectively. Proteasome inhibitors like MG132 or Bortezomib, particularly block the 

chymotrypsin-like activity (Pre2) of the proteasome. However, in yeast, the two other 

proteasomal proteolytic activities are thought to compensate for proteasome function when 

the chymotrypsin-like activity is blocked. We therefore first obtained a strain (pre3pup1) 

where two of three proteolytic activities of the proteasome are disabled (Heinemeyer et al., 

1997).  Growth of the yeast strains in the presence of MG132 was used as  a measure for the  
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Figure 3-6. Yeast proteasome inhibition measured by growth rate. 

The indicated yeast strains were pre-grown to stationary phase and then diluted to the same OD600 in YPD 

medium and incubated 6 hours in the presence of different compounds. The OD600 was measured at three 

different time points (0, 4 and 6 hours) after start of the treatment and normalized with respect to the OD600 at 

0 hours. A. Growth rate inhibition by incubation with 50 µM MG132 or DMSO was compared between WT and 

pre3pup1 yeast strains. B. Growth rate inhibition by incubation with 50 µM MG132 in the presence or absence 

of 0.003% SDS was compared between pre3pup1 and pre3pup1pdr5 stain. C. Growth rate inhibition by incubation 

with 50 µM MG132 or 50 µM Bortezomib was assessed in the pre3pup1pdr5 yeast strain. Error bars represent 

±SEM of 7 biological repeats. 
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inhibition of proteasomal activity. The pre3pup1 strain grows at a similar rate as WT yeast 

under control (DMSO) conditions. However, growth of the pre3pup1 strain is slowed down 

when incubated with MG132, while there was almost no growth inhibition by MG132 in the 

WT yeast strain (Figure 3-6A).  

A second property that prevents efficient inhibition of yeast proteasomal activity, is 

the low permeability of yeast cell membranes. We therefore knocked-out the PDR5 gene in 

the pre3pup1 mutant background using homologous recombination with a KanMX disruption 

cassette (Guldener et al., 1996) yielding the pre3pup1pdr5 strain. PDR5 functions as a drug-

efflux pump and is thought to literally pump inhibitors/drugs back out of the yeast cell. In 

addition, including low amounts of SDS in the growth medium leads to mild permeabilization 

of the yeasts cells, resulting in higher uptake of MG132 (Collins et al., 2010). Accordingly, this 

treatment was included in our growth assays. Under control conditions (DMSO or SDS 

treatments), the pre3pup1pdr5 strain showed no defects in growth when compared to the 

pre3pup1 strain. Treatment with MG132 in the presence of SDS in the medium resulted in 

almost complete growth arrest in the pre3pup1pdr5 strain. The effect of MG132 on cell 

growth in the presence of SDS was significantly stronger in this strain than in the parental 

pre3pup1 strain (Figure 3-6B).  

We also evaluated the use of an alternative 26S proteasome inhibitor, namely 

Bortezomib (Tsukamoto and Yokosawa, 2009), by comparing yeast growth in the presence of 

equimolar amounts of Bortezomib or MG132 (Figure 3-6C). Our results indicate MG132 

treatment of the pre3pup1pdr5 strain in combination with SDS has the most pronounced 

effect on yeast growth rate and are well-suited for our Heterologous Ubiquitination Assay 

(HUbA).  

Finally, to efficiently express plant genes in the heterologous yeast host, we 

constructed a set of vectors that were compatible with expression in yeast, while making 

optimal use of the resources available for the cloning of plant genes. This resulted in the 

construction of a set of three-fragment MultiSite Gateway™ destination vectors (Nagels 

Durand et al., 2012, see Chapter 4). In addition, we constructed a number of tags that are 

optimized for the HUbA assay. First, a nuclear localization signal (NLS) was included in every 

tag in order to target all expressed proteins to the same subcellular compartment. Second, a 

HIS-tag that allows affinity purification under denaturing conditions, was combined with a 

sensitive epitope tag for specific immunodetection with low background. Under denaturing 

conditions, de-ubiquitinating enzymes and proteasomal subunits are unfolded, preventing de-

ubiquitination or proteolytic degradation of the target during the purification procedure. This 

resulted in the construction of a NLS-V5-tag and a NLS-3x myc-tag for fusion to the E3 Ub-

ligase, and a NLS-3x FLAG-6x HIS-tag for fusion to the substrate (Figure 3-5). 
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Taken together, we engineered a yeast host strain and determined adequate 

treatments that make it suitable for the study of ubiquitinated proteins due to increased 

sensitivity to MG132. In addition, we developed appropriate expression vectors that enable 

efficient expression of adequately tagged plant E3 ligase/target pairs in this host strain. 

 

AtLARP6b is post-translationally modified by BRIZ1/2 during HUbA 

To investigate if LARP6b is a target of BRIZ1/2, we performed a HUbA with these 

proteins. Because LARP6b was identified originally as a BRIZ2-interacting protein in 

Arabidopsis cell cultures, we compared LARP6b expression in yeast in the presence of BRIZ2 

alone, or both BRIZ1 and BRIZ2, as both homologs were published to function together in a 

non-redundant manner (Hsia and Callis, 2010). We expressed the proteins in the HUbA yeast 

strain (pre3pup1pdr5), extracted total protein lysates and visualized the respective proteins 

on immunoblots (Figure 3-7A). Only when both E3 ligases were simultaneously co-expressed 

with their putative target LARP6b, a higher molecular weight band appeared on top of the 

band corresponding to LARP6b (marked with an asterisk in Figure 3-7A). As this higher 

molecular weight band was much less abundant than the unmodified LARP6b band, we 

included a cycloheximide (CHX) treatment in the next experiments. CHX inhibits translation 

and because LARP6b is expressed under control of a constitutive promoter, blocking synthesis 

of new LARP6b protein might result in relatively higher accumulation of the (presumably 

modified) higher molecular weight band. Yeasts expressing LARP6b together with BRIZ1 and 

BRIZ2 were upscaled and treated with MG132 in the presence of CHX, before being harvested 

for immobilized-metal affinity chromatography (IMAC) based purification of LARP6b. When 

an aliquot of the total protein extract was analysed on immunoblot, we indeed saw 

enrichment of the LARP6b higher molecular weight band. Additionally, the effect of MG132 

treatment now became visible as the LARP6b protein accumulated in the presence of the 

proteasome inhibitor (Figure 3-7B). The higher molecular weight form co-purified with LARP6 

during IMAC, confirming this protein is a modified form of HIS-tagged LARP6b. However, when 

the same blot was re-probed with anti-Ub antibodies, no ubiquitinated proteins could be 

detected. Because only one higher molecular weight band was present, it is possible that the 

sensitivity of the anti-Ub antibody we used is restricted to poly-Ub entities rather than mono-

Ub. Alternatively, the covalent modification detected could be of a different nature than Ub. 
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Figure 3-7. Heterologous Ubiquitination Assay of LARP6b by BRIZ1/2. 

A. LARP6b was expressed in pre3pup1pdr5 yeast in the presence of BRIZ2 alone, or both BRIZ1 and BRIZ2. The 

yeasts were grown at 30°C in selective medium and treated or not with 50 µM MG132, in the presence of 0.003% 

SDS for 1 hour before total protein extracts were analysed on immunoblots. B. LARP6b was expressed in 

pre3pup1pdr5 yeast in the presence of both BRIZ1 and BRIZ2. The yeasts were grown at 25°C in selective medium 

and treated with 50 µM MG132 or DMSO in the presence of 0.003%SDS for 1 hour and additionally with 1 mg/ml 

CHX 30 minutes before harvesting. LARP6b was purified from total protein extracts using IMAC. LARP6b and Ub 

or Ub-conjugates were detected before and after purification on immunoblots using anti-Ub antibodies. LARP6b, 

BRIZ1 and BRIZ2 were detected using anti-FLAG, anti-myc or anti-V5 antibodies, respectively. Asterisks indicate 

a higher molecular weight form of LARP6b. Expected molecular weights including epitope tag: LARP6b 67kDa, 

BRIZ1 62kDa and BRIZ2 60kDa. 

BIRZ1/2 are highly homologous, and also have high similarity to the mammalian 

BRAP2/IMP protein. BRAP2 contains a BRAP2-domain comprising an RNA-recognition motif 

(RRM, Marchler-Bauer et al., 2015), a RING domain followed by a ZnF UBP domain and a coiled 

coil domain. This domain architecture is remarkably similar to that of the BRIZ1 and BRIZ2 

proteins (Hsia and Callis, 2010), (Figure 3-1). BRAP2 was first identified as a BRCA-1 interacting 

protein and shown to be a cytoplasmic protein that binds to the NLS motifs of BRCA-1 and 

several other proteins, functioning as a cytoplasmic retention factor for nuclear and nuclear-

envelope localized proteins (Li et al., 1998; Fulcher et al., 2010; Davies et al., 2013). BRAP2 has 

also been involved in the control of NF-κB localization. NF-κB plays a crucial role in the 

regulation of diverse cellular functions including the inflammatory response. Under normal 

conditions, NF-κB is sequestered in the cytoplasm by IκB. Upon stimulation with inflammatory 

cytokines, IκB is degraded and NF-κB translocates to the nucleus. BRAP2 was shown to 

influence cytokine-mediated NF-κB nuclear translocation. Additionally the authors showed 

BRAP2 is able to bind tandem Nedd8 and Nedd8-conjugated proteins in a RING-dependent 

manner. Remarkably, BRAP2 itself is also neddylated in vivo (Takashima et al., 2013). No 

ubiquitination target of BRAP2 has been identified yet. Note that when BRIZ2 (but not BRIZ1) 

was expressed in yeast for HUbA assays, it was always detected as two bands on western blots 
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(Figure 3-7). The molecular weight of the yeast NEDD8 homolog is around 9 kDa. Although, 

the two BRIZ2-bands seem to have a larger difference in molecular weight, it is still possible 

that BRIZ2 is being modified with multiple NEDD8 entities. Alternatively, the two BRIZ2-bands 

can be originated by other post-translational modifications like proteolytic processing. 

In animals, LARP6 proteins are involved in control of developmental decisions in 

neurons and muscle cells. The HsLARP6 (Acheron) contains both a NLS and a NES (nuclear 

export signal). HsLARP6 has been associated with enhanced breast tumour growth and 

vascularization when constitutively targeted to the nucleus, indicating controlled shuttling of 

HsLARP6 between the nucleus and the cytoplasm is crucial to properly exert its function (Shao 

et al., 2012). 

To investigate if BRIZ1/2 could act as a cytoplasmic retention factor for LARP6b in 

plants, we first observed LARP6b localization by transiently expressing LARP6b-GFP under 

control of a constitutive pCaMV35S promotor in Nicotiana benthamiana mesophyll cells. 

LARP6b-GFP localization was nucleo-cytoplasmic (Figure 3-8 A), indicating it can shuttle 

between nucleus and cytoplasm analogous to the human HsLARP6 protein. The influence of 

BRIZ1/2 overexpression on LARP6b localization was then examined by transiently co-

expressing BRIZ1/2 with LARP6b-GFP in N. benthamiana. We noticed no apparent alteration 

in LARP6b-GFP localization when co-expressed with BRIZ1/2 under the conditions tested 

(Figure 3-8 B). 

 

Figure 3-8. LARP6b subcellular localization is not influenced by BRIZ1/2 overexpression. 

N. benthamiana leafs were transiently transfected with LARP6b-GFP alone or LARP6b-GFP and BRIZ1/2 in 

addition to a P19 expressing construct. Lower epidermal leaf cells were imaged 3-5 days after infiltration using a 

Leica SP2 upright confocal microscope. 
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Taken together, we have identified LARP6b that interacts directly with the 

heterodimeric E3 ligase BRIZ1/2. In addition, we have shown that LARP6b is modified in yeast 

when co-expressed with BRIZ1/2. We have failed, however, to identify the nature of this 

modification, as anti-Ub antibodies were unsuccessful in recognizing the modified LARP6b 

protein. Since BRIZ1/2 closely resemble the human BRAP2 protein, and this protein has been 

shown to bind neddylated proteins, it is possible that the covalent modification observed on 

LARP6b is not Ub but rather the Ub-related protein Nedd8. No Nedd8-specific E3 ligase has 

been identified yet, however, neddylation has been reported to be sometimes mediated (at 

least in the case of RBX1) by RING-type proteins (Scott et al., 2014). Because the RING domain 

of BRAP2 was reported to be essential for Nedd8 binding, and BRIZ1/2 and BRAP2 share high 

homology, it is tempting to state that they might function as Nedd8 E3 ligases. In accordance 

with this, we did not succeed in identifying an Arabidopsis Ub-conjugase (E2) that could 

interact with either BRIZ1 or BRIZ2 in Y2H (results not shown), further supporting BRIZ1/2 

could function in a pathway other than Ub-ligation.  

  



Chapter 3 

 

68 

 

 

CONCLUSION 

Our bio-informatics screen combined with TAP of E3 ligase interactors led to the 

successful identification of potential targets of at least four E3 ligases (ATL23, AE31, KEG and 

BRIZ1/2) with a possible function in JA-signalling. To further investigate ubiquitination we 

developed a new in vivo ubiquitination assay in yeast (HUbA). Although proof of concept for 

this assay is still missing, preliminary tests with BRIZ1/2 and their candidate target LARP6b 

indicate the assay might be useful for detecting Ub E3-ligase activity but also for Ub-like E3 

ligase activity (e.g. Nedd8). Further experiments will be needed to discriminate between Ub 

or Ub-like E3 ligase activity of BRIZ1/2, which could be achieved by MS analysis of LARP6b after 

HUbA or by detection of the purified protein on western blot with antibodies against specific 

Ub-like modifications. 
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EXPERIMENTAL PROCEDURES 

Bio-informatics screen 

The raw microarray data was obtained from the AGRON-OMICS repository (http://www.agron-omics.eu) for the 

‘Agronomics residuals’ compendium or from CORNET (De Bodt et al., 2010) for the ‘CC’, ‘MeJA’ and ‘ABA’ 

compendia. The Bioconductor R package, version 2.5 (Gentleman et al., 2004), was used to RMA (Robust Multi-

array Average) normalize the raw data. Only the Affymetrix ATH1 probe sets present on the AGRONOMICS1 array 

were retained for calculating gene expression levels, to facilitate comparisons between this data set and the 

sample data sets for pooled plants. A linear model was fit to the expression levels using Limma (Linear Modelling 

of Microarray data) R package (Wettenhall and Smyth, 2004).  

To categorize genes as being differentially (up or down) regulated the ‘Agronomics residuals’ data set was 

standardized using a log ratio threshold of 0.3498 while for the ‘CC’, ‘MeJA’ and ‘ABA’ datasets the log ratios 

were subjected to a moderated t-test (p<0.01). Co-differential expression networks and expression modules for 

the different data sets were obtained using ENIGMA 1.1 (Maere et al., 2008). The FDR (false discovery rate) level 

for detecting significant co-differential expression links was set to 0.01. For functional annotation on the level of 

expression modules, GO ontology information and annotations for Arabidopsis were obtained from the GO 

database (www.geneontology.org) and annotations with non-experimental evidence codes IEA, ISS, and RCA 

were discarded. GO enrichment of gene modules was assessed using hypergeometric tests, and the resulting p 

values were corrected for multiple testing using the Benjamini and Hochberg FDR correction at FDR = 0.05. 

Potential regulators of a module were predicted from the set of genes annotated to “biological regulation” in GO 

(GO:0065007) at FDR = 0.01. The remaining ENIGMA parameters were set to default values. For use in gene 

function predictions, negative correlation edges were removed from the co-differential expression networks. 

Basic network topology parameters (network density and clustering coefficient for the major connected 

component of each network) were obtained using NetworkX 2.6.4 (http://networkx.github.com/). 

Ontology terms for PiNGO (Smoot et al., 2011) input were selected from AmiGO 

(http://amigo.geneontology.org/). Start GO’s where ‘ubiquitin-protein ligase activity’ (GO: 0004842), ‘protein 

ubiquitination’ (GO: 0016567) or ‘ubiquitin-dependent protein catabolic process’ (GO: 0006511). Target GO’s 

where ‘jasmonic acid mediated signalling pathway’ (GO: 0009867) or ‘response to jasmonic acid stimulus’ (GO: 

0009753). 

 

Generation of Entry-clones 

ORFs were amplified from a cDNA template by PCR using Phusion High-fidelity Polymerase (NEB), with specific 

primers including attB sites and subsequently recombined with pDONR207. Forward primers annealing after 

transmembrane regions including attB1 and a new start codon were used for the construction of dTM variants. 

For the creation of C-terminal fusions, reverse primers did not include a stop codon. For the construction of 

mRING variants, corresponding full-length Entry vectors were amplified using Pfu DNA polymerase (Promega) 

and primers containing the mutations. The PCR product was digested using DpnI before transformation to E. coli. 

Positive colonies were picked and sequence verified. All primers used are listed in Supplementary Table S1. 

Entry vectors encoding KEGmRING, BRIZ1, BRIZ2 and BRIZ truncations were kindly provided by Judy Callis. BRIZ 

truncations contained ORF of BRIZ encoding amino-acids (AA) as follows: BRIZ1-BR AA 1-229 , BRIZ1-UC AA 231-

488 , BRIZ1-C AA 277-488 , BRIZ2-BR AA 1-241, BRIZ2-UC AA 207-479 and BRIZ2-C AA 240-479. 

 

Tandem affinity purification 

N or C-terminally tagged TAP constructs (GS or GSrh tag) were generated as described (Van Leene et al., 2015), 

used for the transformation of Arabidopsis PSB-D cell suspension cultures without callus selection and further 

grown and subcultured as described (Van Leene et al., 2011). Stably transformed cultures were scaled up and 

harvested 6 days after subculturing. Cells were treated with 50 µM JA (Duchefa) for 1 min before harvesting. 

Purifications were performed as described (Van Leene et al., 2015) with the exception that no Benzonase 

treatment was performed on the cell extracts. Expression of TAP-tagged constructs in stably transformed 

Arabidopsis PSB-D cultures was verified on an aliquot of total protein extract before purification. 
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Immunodetection of proteins 

Yeasts were pre-cultured over-night to stationary phase, diluted to OD600 0.1 and grown to exponential phase 

(OD600>0.3). Total yeast protein extracts were obtained under denaturing conditions as described (Hampton and 

Rine, 1994). Cells were washed with 0.1% NaN3 and resuspended in 100 μl SUTE buffer (8 M urea, 1% SDS, 10 

mM Tris, 10 mM EDTA, pH 7.5) containing protease inhibitor cocktail (cOmplete ULTRA, Roche). 100 μl of acid-

washed 0.5mm glass beads were added and the mixture was vortexed at maximum speed for 2.5 min. 100 μl of 

USB buffer (8 M urea, 4% SDS, 125 mM Tris, 10% β-mercapto-ethanol, pH 6.8) was added and the mixture was 

incubated 10 min at 65°C. Protein lysates were finally obtained by centrifuging 1 min at 10 000 rpm.  

Protein concentrations were quantified using the Bradford Protein Assay (Bio-Rad). Samples were combined with 

5x Laemmli loading buffer and denatured for 10 min at 95°C. Subsequently, 30 μg total protein was separated on 

a 4–15% Mini-PROTEAN TGX Precast Gel (Bio-Rad) and transferred to a PVDF membrane using the Trans-Blot 

Turbo transfer system (Bio-Rad). Detection was performed using the following primary antibodies: Peroxidase 

anti-peroxidase (Sigma-Aldrich), anti-FLAG (Sigma), anti-myc-HRP (Invitrogen), anti-V5 (Sigma) and anti-Ubiquitin 

(VU-1, LifeSensors). 

  

Immobilized Metal Affinity Chromatography 

Yeasts were pre-cultured over-night to stationary phase, diluted to OD600 0.1 and grown to OD600>0.8. Cells were 

washed with ice-cold water and resuspended in 200 μl buffer A (8 M urea, 50 mM NaH2PO4, 300 mM NaCl, 0.5% 

Triton X-100, pH 8). 100 μl of acid-washed 0.5mm glass beads were added and the mixture was vortexed at 

maximum speed for 2.5 min. Protein lysates were obtained by centrifuging 5 min at 14 000 rpm and incubated 

with 25 μl effective volume Ni-NTA resin (Ni-NTA Superflow, Qiagen) for 2 h at room temperature on a rotating 

wheel. Resin-bound proteins were washed in a Mobicol column (ImTec Diagnostics NV, Belgium) first with 250 

μl Buffer A and then with 250 μl buffer A containing 20mM imidazole. Bound proteins were eluted by incubating 

the resin for 5 minutes with 50 μl 1x Laemmli loading buffer containing 150 mM imidazole. An aliquot of the total 

protein lysate (before purification) was taken to estimate protein concentrations based on Coomassie staining 

after electrophoresis. 

 

Yeast transformation and Yeast two-hybrid 

Expression clones for yeast two-hybrid were generated by LR Gateway recombination between respective Entry-

clones and pGADT7 or pGBKT7 and co-transformed in competent yeast cells of the S. cerevisiae strain PJ69-4A 

using the LiAc/SS carrier DNA/PEG method (Gietz and Schiestl, 2007). Transformants were selected on SD media 

lacking Leu and Trp (-2). Dropping was performed as described (Cuéllar Pérez et al., 2013). 

 

Yeast strain construction and treatments 

The pre3pup1 strain (YWO1641:pre3-T20A pup1-T30A) was kindly provided by Dieter Wolf and described in 

(Heinemeyer et al., 1997). A KanMX disruption cassette (Guldener et al., 1996) was PCR-amplified using primers 

that included regions homologous to the PDR5 gene. The PCR product was purified and transformed into the 

pre3pup1 strain, followed by selection on YPD containing 200 µg/ml geneticin (G-418). Disruption of the PDR5 

gene was verified by PCR. This resulted in the isolation of the pre3pup1pdr5 strain. The pre3pup1 and 

pre3pup1pdr5 strain are isogenic with the WT strain WCG4a, kindly provided by Dieter Wolf (YWO0898:MATα 

leu2-3,112 ura3 his3-11,15 Cans GAL). For treatments, yeasts were pre-grown at 30°C in YPD or selective medium 

until stationary phase, diluted to OD600 0.1 and grown to exponential phase (OD600> 0.3). Then, 50 µM MG132, 

50 µM Bortezomib, 0.003% SDS and/or 1mg/ml CHX were included in the medium for the indicated time. 

 

Agorbacterium mediated transient expression in Nicotiana benthamiana 

WT N. benthamiana plants (3–4 weeks old) were used for transient expression of constructs by Agrobacterium 

tumefaciens-mediated transient transformation of lower epidermal leaf cells as previously described (Boruc et 

al., 2010) using a modified infiltration buffer (10 mM MgCl2, Merck; 10 mM MES pH 5.7, Duchefa; 100 μM 

Acetosyringone, Sigma-Aldrich) and addition of a P19 expressing Agrobacterium strain to boost protein 

expression (Voinnet et al., 2003). All Agrobacterium strains were grown for 2 days, diluted to OD 1 in infiltration 

buffer and incubated for 2-4 h at room temperature before mixing in a 1:1 ratio with other strains and injecting. 

Lower epidermal leaf cells were imaged 3-5 days after infiltration using a Leica SP2 upright confocal microscope. 
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SUMMARY 

Recombinatorial cloning using the GatewayTM technology has been the method of 

choice for high-throughput omics projects, resulting in the availability of entire ORFeomes in 

GatewayTM compatible vectors. The MultiSite GatewayTM system allows combining multiple 

genetic fragments such as promoter, ORF and epitope tag in one single reaction. To date, this 

technology has not been accessible in the yeast Saccharomyces cerevisiae, one of the most 

widely used experimental systems in molecular biology, due to the lack of appropriate 

destination vectors. Here, we present a set of three-fragment MultiSite GatewayTM 

destination vectors that have been developed for gene expression in S. cerevisiae and that 

allow the assembly of any promoter, open reading frame, epitope tag arrangement in 

combination with any of four auxotrophic markers and three distinct replication mechanisms. 

As an example of its applicability, we used yeast three-hybrid to provide evidence for the 

assembly of a ternary complex of plant proteins involved in jasmonate signalling and 

consisting of the JAZ, NINJA and TOPLESS proteins. Our vectors make MultiSite GatewayTM 

cloning accessible in S. cerevisiae and implement a fast and versatile cloning method for the 

high-throughput functional analysis of (heterologous) proteins in one of the most widely used 

model organisms for molecular biology research. 
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INTRODUCTION 

The model organism Saccharomyces cerevisiae has contributed greatly to our current 

understanding on eukaryotic genes, their products, and their functions. Decades of study have 

resulted in an extensive knowledge on yeast physiology, genetics, and the molecular functions 

and interactions of its proteins. Furthermore, this unicellular eukaryotic system is well suited 

for the study of basic cellular processes which are often conserved in higher eukaryotes. 

Because of its ease for genetic modification and fast growth, yeast became the system of 

choice for in vivo protein analyses from other eukaryotes. S. cerevisiae was used, for example, 

to perform proteome-wide analysis of the human protein-protein interaction networks (Rual 

et al., 2005), to systematically analyze protein-DNA interaction networks of the nematode C. 

elegans (Deplancke et al., 2006), and to produce high-value bioactive plant secondary 

metabolites through metabolic engineering approaches (Ro et al., 2006). 

Large scale genomics approaches to uncover protein function are adopted more and 

more in the current era of systems biology research. To cope with the large amounts of 

constructs needed, scientists make use of high-throughput cloning technologies, such as the 

GatewayTM technology (Invitrogen; http://www.invitrogen.com/), which is based on the site-

specific recombination system from the bacteriophage lambda that facilitates the integration 

of the phage’s DNA into the Escherichia coli chromosome (Hartley et al., 2000). DNA segments 

that are flanked by the appropriate recombination sites in a standard vector (pENTR) can easily 

be transferred to a compatible vector (pDEST) for functional analysis (Figure 4-1A). MultiSite 

GatewayTM uses modified recombination sites to allow the combination of multiple DNA 

segments in one single in vitro recombination reaction. The segments are joined in a pDEST in 

a predefined order and orientation, maintaining the reading frame and with low risk for 

mutations (Hartley et al., 2000) (Figure 4-1B). Three-segment MultiSite GatewayTM makes it 

possible to easily make any combination of a promoter, gene and tag without the need of 

redesigning new destination vectors for each new experimental approach. The ability to 

choose a promoter allows varying temporal, spatial, and quantitative control of gene 

expression, while different possible tags enable the inclusion of fluorescent protein tags for 

localisation or epitope tags for detection or purification, or the creation of protein chimeras 

(Figure 4-2). The flexibility introduced by the MultiSite GatewayTM technology is illustrated by 

the large amount of “building blocks” already made available as pENTR clones by several 

research groups (Burckstummer et al., 2006; Karimi et al., 2007a; Kwan et al., 2007; Van Leene 

et al., 2007; Benhamed et al., 2008; Van Leene et al., 2008; Petersen and Stowers, 2011). 

Existing pENTR collections include ORFeomes from multiple prokaryotic and eukaryotic 

organisms (ATOME 1 and ATOME 2; Pathogen Functional Genomics Resource Center; The 

ORFeome Collaboration; Reboul et al., 2003; Dricot et al., 2004; Labaer et al., 2004; Lamesch 

et al., 2004; Brettin et al., 2005; Gelperin et al., 2005; Schroeder et al., 2005; Matsuyama et 
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al., 2006; von Brunn et al., 2007; de Chassey et al., 2008; Yilmaz et al., 2009; Rajagopala et al., 

2010). 

Single-segment pDEST vectors are available for virtually all commonly used systems, 

such as Drosophila (Akbari et al., 2009). Moreover, for plants an extensive repertoire of pDEST 

for two- and three-segment MultiSite GatewayTM has been established (Karimi et al., 2007b). 

Three-segment MultiSite GatewayTM destination vectors are also available for Gram-positive 

bacteria (Perehinec et al., 2007). In S. cerevisiae, single-segment pDEST vectors are available 

for yeast two-hybrid screens (Invitrogen), and two-segment (promoter::ORF) MultiSite 

GatewayTM vectors have been described (Cheo et al., 2004). An extensive set of single-

fragment GatewayTM vectors was constructed, allowing N-terminal fusions with four 

fluorescent tags, and C-terminal fusions with five different fluorescent tags, an affinity tag and 

an epitope tag under the control of the inducible GAL1 or constitutive GPD promoter (Alberti 

et al., 2007). Alternatively, tags that are not present in this vector set can be fused to the gene 

of interest through 2-step PCR fusion (Atanassov et al., 2009) before performing the BP 

reaction. However, to our knowledge no three-segment MultiSite GatewayTM pDEST vectors 

exist for S. cerevisiae to date. As a consequence, a large number of commonly used protein 

tags already available as pENTR clones are not readily applicable in the organism that - 

together with E. coli - is the workhorse of molecular biology.  

In this paper we present a set of eleven functionally validated three-segment MultiSite 

GatewayTM pDEST vectors for use in S. cerevisiae. The vector set features the four most 

commonly used auxotrophic markers for selection of yeast transformants combined with 

three different replication mechanisms. The presence of the CYC1 terminator in these vectors 

allows construction of any promoter::ORF:tag combination. In addition, a number of useful 

entry clones harbouring commonly used yeast promoters and entry clones with protein tags 

to be used with these pDESTs are presented and validated. These vectors have been appended 

to our collection of ‘Gateway™ vectors for functional studies’ and can be ordered through the 

website http://gateway.psb.ugent.be/. Finally, we illustrate the applicability of this vector set 

by confirming the formation of a ternary complex between the jasmonate ZIM-domain (JAZ), 

the Novel Interactor of JAZ (NINJA) and the TOPLESS (TPL) proteins, with NINJA acting as a 

bridging protein. This complex was previously shown to be involved in jasmonate signalling in 

the model plant Arabidopsis (Arabidopsis thaliana) (Pauwels et al., 2010). 
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RESULTS AND DISCUSSION 

Construction of MultiSite GatewayTM vectors 

The MultiSite GatewayTM cassette of pKm43GW (http://gateway.psb.ugent.be/) 

flanked by attR4 and attR3 sites, was PCR amplified adding XhoI and SacI restriction sites 

(Supplementary Table S1). The amplification product was subsequently cloned into the XhoI 

and SacI sites present in the backbones of the vectors of the pAG-series (Alberti et al., 2007). 

This step replaced the original GatewayTM cassette and the eukaryotic promoter from the pAG 

vectors, while maintaining the CYC1 terminator. Ligation products were transformed into ccdB 

resistant E. coli cells (One shot ccdB survivalTM, Invitrogen). The pAG vectors contain an 

ampicillin resistance gene for selection in E. coli, one of four different auxotrophic selection 

markers (HIS3, LEU2, TRP1, and URA3) and one of three different replication determinants (2µ 

ori, CEN, or Integrating) thus giving rise to a MultiSite GatewayTM vector set (Figure 4-1C) for 

expression in S. cerevisiae (see Table 4-1 for nomenclature). We did not succeed in creating 

the Integrating vector with the HIS3 autotrophic marker (Table 4-1). 
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Table 4-1. Nomenclature of the S. cerevisiae MultiSite GatewayTM pDEST vectors. 

Name* Replication Selectable marker 

pMG304 Integrating TRP1 

pMG305 Integrating LEU2 

pMG306 Integrating URA3 

pMG413 CEN HIS3 

pMG414 CEN TRP1 

pMG415 CEN LEU2 

pMG416 CEN URA3 

pMG423 2µ HIS3 

pMG424 2µ TRP1 

pMG425 2µ LEU2 

pMG426 2µ URA3 

*pMGXYZ where MG indicates the presence of the MultiSite GatewayTM cassette; X stands for the presence (4) 

or absence (3) of replication determinants on the vector; Y stands for the replication determinant: Integrating 

(0), CEN (1) or 2µ (2); Z indicates the auxotrophic selection marker: HIS3 (3), TRP1 (4), LEU2 (5) or URA3 (6). 

 

Testing the versatility of the system 

To illustrate the flexibility of this vector collection, we took advantage of a few 

“building blocks” for MultiSite GatewayTM cloning that were available in-house as entry clones 

(Figure 4-2, http://gateway.psb.ugent.be/). One of the assets of MultiSite GatewayTM 

destination vectors is that any promoter of interest can be used, provided it is available as an 

entry clone flanked by attL4 and attR1 sites. To achieve this, we cloned two constitutively 

active promoters (pGPD/TDH3 and pADH1) and a galactose-inducible promoter (pGAL1) into 

pDONR P4-P1R (Invitrogen). The inducibility of the GAL1 promoter was verified by expression 

in yeast of a heterologous Arabidopsis gene fused to a NLS-FLAG-HIS tag under the control of 

the GAL1 promoter using pMG416 (Figure 4-3A). 

 

Figure 4-1. Schematic overview of (MultiSite) GatewayTM cloning and properties of the constructed destination 

vectors. (A) Overview of the GatewayTM cloning procedure. Attachment of attB sites to a DNA segment of choice, 

often generated by PCR or as synthetic DNA, allows recognition by the BP ClonaseTM and recombination into a 

donor vector (pDONR) containing attP sites, yielding an entry clone (pENTR) carrying attL sites. The DNA segment 

in the pENTR clone can then be transferred to a destination vector (pDEST) by recombination between attL and 

attR sites present on the pDEST vector mediated by the LR ClonaseTM. This yields an expression clone (pEXP) in 

which the DNA segment again becomes flanked by attB sites. Positive selection of pENTR and pEXP clones on 

medium containing appropriate antibiotics together with negative selection of starting products and by-products 

(shown in grey) based on the presence of a negative (ccdB) selection marker between the recombination sites 

(GatewayTM Cassette) further increases the efficiency of the system. (B) A combination of existing pENTRs, or 

new pENTRs, are easily assembled in a single MultiSite GatewayTM reaction catalyzed by the LR II ClonaseTM Plus 

using pMG as destination vector. (C) Schematic representation of the MultiSite GatewayTM compatible vector set 

(pMG) for transformation of S. cerevisiae.  

GOI, POI and TOI indicate gene, promoter and tag of interest, respectively. CmR, AmpR and KmR indicate 

chloramphenicol, ampicillin and kanamycin resistance, respectively. B1-B4, P1-P2, L1-L4 and R1-R4 stand for the 

respective att sites. CycT indicates the CYC1 terminator on the vector’s backbone. 
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Figure 4-2. Flexibility of the MultiSite Gateway™ cloning system 

The flexibility of the MultiSite GatewayTM system is illustrated by the ample possibilities to combine any gene of 

interest (GOI) with any promoter of interest (POI) and tag of interest (TOI), depending on the experimental needs. 

Many of such sequences, including whole ORFeomes (cloned without STOP codon) of several model organisms 

(ATOME 1 and ATOME 2; Gelperin et al., 2005; von Brunn et al., 2007; Yilmaz et al., 2009) and a broad range of 

tags (Burckstummer et al., 2006; Karimi et al., 2007a; Van Leene et al., 2007; Van Leene et al., 2008) are already 

available in suitable pDONR vectors. L1-L4 and R1-R2 stand for the att sites attL1-attL4 and attR1-attR2, 

respectively. 

Asterisks mark constructs generated in this study, lower case letters indicate constructs generated previously by 

others: a (Benhamed et al., 2008), b (Cheo et al., 2004), c (Gelperin et al., 2005), d (ATOME 1 and ATOME 2; 

Dricot et al., 2004), e (Karimi et al., 2007a), f (Van Leene et al., 2008), g (Van Leene et al., 2007), h (Burckstummer 

et al., 2006).  

Another advantage of the MultiSite GatewayTM system is that several different tag 

sequences are readily available (Figure 4-2) and can easily be introduced to acquire 

translational fusions, since the att sites do not disturb the reading frame. For proof-of-

concept, we cloned different plant genes (without STOP codon) in a C-terminal translational 

fusion with either a V5, c-myc, or FLAG-HIS tag. To make these constructs compatible with 

protein interaction studies in yeast, we additionally fused each epitope tag with a nuclear 

localization signal (NLS) derived from SV40, thereby creating the NLS-3xV5, NLS-3xc-myc, and 

NLS-3xFLAG-6xHIS tags, respectively. Such constructs allow avoiding false negative 

experimental outcomes that result from protein localisation in different cellular 

compartments, for instance. Tagged plant proteins were expressed in yeast under the control 

of the constitutive GPD or ADH1 promoters in different vectors from our set. Total protein 

extracts were obtained and the expressed proteins were visualized through immunoblot 

analysis (Figure 4-3B). The (NLS)FLAG-HIS tag is particularly suitable when protein purification 

under denaturing conditions is needed, while, at the same time, low background detection on 

immunoblots is desired.  
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Figure 4-3. Versatility of the newly generated MultiSite GatewayTM vector set. 

(A) Inducibility of the pGAL1 promoter. Arabidopsis genes At4g32295 and At3g24150 were expressed in yeast 

under the control of the pGAL1 promoter and fused with an NLS-FLAG-HIS tag using the pMG416 vector. After 

total protein extraction, expression was verified in inducing (+) and non-inducing (-) medium through 

immunoblot analysis with anti-FLAG antibodies. (B) Functionality of newly developed C-terminal translational 

fusion epitope tags. Yeasts were transformed with pMG425-ADH1::JAZ12:NLS-FLAG-HIS, pMG423-GPD::COI1-

C:NLS-V5 where COI1-C is a truncated version of COI1, or pMG423-GPD::At2g26000:NLS-c-myc. Expression of the 

different constructs was verified with immunoblot analysis of total protein extracts with anti-FLAG, anti-V5 and 

anti-c-myc antibodies, respectively. (C) Interaction of proteins in the trimeric JAZ3-TPL-NINJA complex in Y3H 

assays. Transformed yeasts were spotted in 10-fold and 100-fold dilutions on control medium (-3: SD-Leu-Trp-

Ura) and selective medium (-4: SD-His-Leu-Trp-Ura). Gene constructs in the pGBKT7 and pGADT7 vectors carry 

the DNA-binding domain or the transcription activation domain, respectively, in contrast to constructs expressed 

in pMG426, which do not carry DNA-binding or transcription activation domains. (D) Verification of expression 

of NINJA:NLS-FLAG-HIS in the Y3H set-ups shown in panel C. After total protein extraction, NINJA:NLS-FLAG-HIS 

was detected through immunoblot analysis with anti-FLAG antibodies. Arrowheads indicate the fusion protein. 

To express C-terminal translational fusions by means of our promoters, tags and 

destination vectors, entry vectors containing the GOI should be cloned with a start codon and 

without a stop codon, and the manufacturer’s guidelines regarding the reading frame should 

be adopted (http://www.invitrogen.com). Organisms for which ORFeome collections contain 

vectors that match these criteria include several bacterial collections [Brucella melitensis 

(Dricot et al., 2004), Pseudomonas aeruginosa (Labaer et al., 2004), Bacillus anthracis, 

Francisella tularensis, Helicobacter pylori, Mycobacterium tuberculosis, Rickettsia prowazekii, 

Staphylococcus aureus, Streptococcus pneumoniae, Vibrio cholerae (Pathogen Functional 

Genomics Resource Center)], human and mouse (The ORFeome Collaboration), plants 

[Arabidopsis (ATOME 1 and ATOME 2), maize, sorghum, sugarcane, rice (Yilmaz et al., 2009)], 

viruses (von Brunn et al., 2007) and yeasts [S. cerevisiae (Gelperin et al., 2005) and 

Schizosaccharomyces pombe (Matsuyama et al., 2006)]. Caution is advised since some 

ORFeome collections contain entry clones both with and without stop codon (The ORFeome 

Collaboration, ATOME1 and ATOME 2). ORFeome collections that comprise only GOI’s 

provided with a stop codon, as is the case for some bacterial and viral ORFeomes [Neisseria 

gonorrhoeae (Brettin et al., 2005), Sinorhizobium meliloti (Schroeder et al., 2005), Yersinia 

pestis (Pathogen Functional Genomics Resource Center), and Hepatitis C (de Chassey et al., 



A MultiSite GatewayTM vector set for Saccharomyces cerevisiae 

 

83 

 

2008)] are not compatible with our vectors. Other ORFeomes in which the GOI is cloned 

without a start and without a stop codon [Caenorhabditis elegans (Reboul et al., 2003; 

Lamesch et al., 2004), E. coli (Rajagopala et al., 2010)], are not compatible with our current 

promoters but can be used for expression of C-terminal translational fusions with our vectors 

provided the promoter is cloned followed by a start codon. Since this ORFeome list is non-

exhaustive and, as described above, different approaches are used when cloning the GOI, the 

compatibility of available pENTR collections should always be corroborated either in silico 

before assembling the different sequences into expression vectors or through epitope tag 

detection in immunoblots. Finally, the destination vector set presented here also allows 

expression of N-terminal fusions, provided the att sites flanking the different fusion 

components are adapted accordingly. 

 

Value of the vector set 

The value of this vector set was exemplified by a yeast three-hybrid (Y3H) experiment, 

in which we investigated the formation of the ternary protein complex by the Arabidopsis 

JAZ3, NINJA, and TPL proteins. We have proposed recently that the adaptor protein NINJA 

bridges the JAZ proteins to TPL proteins and thereby forms a repressor complex that blocks 

the cellular programs regulated by the jasmonates, ubiquitous plant hormones that regulate 

various aspects of plant growth, development, and survival (Pauwels et al., 2010). TPL 

interacts with the ETHYLENE RESPONSIVE FACTOR–associated amphiphilic repression (EAR) 

motif that is present in NINJA (Pauwels et al., 2010) but absent in most JAZ proteins, including 

JAZ3. Some JAZ proteins however, i.e. JAZ5 to JAZ8, contain EAR motifs themselves and are 

capable of direct interaction with TPL (Pauwels and Goossens, 2011; Causier et al., 2012; Shyu 

et al., 2012). 

The N-terminal domain of TPL contains the LisE and CTHL domains and was previously 

shown to be essential for binding the EAR motif in Aux/IAA proteins (Szemenyei et al., 2008). 

Therefore we cloned this part (denominated TPL-N) as a bait protein for Y2H. In agreement 

with the proposed models, the interaction of TPL-N with NINJA was confirmed but TPL-N could 

not interact with JAZ3 (Figure 4-3C). 

Commonly used Y2H vectors such as pGADT7 and pGBKT7 (Clontech) are designed such 

that the bait and prey fusion proteins are targeted to the same subcellular compartment (i.e. 

nucleus) and are equipped with an epitope tag, HA and c-myc, respectively, allowing easy 

confirmation of expression through immunoblot. To verify whether NINJA can connect EAR-

lacking JAZs with TPL, as previously proposed (Pauwels et al., 2010), we performed a Y3H assay 

in which we expressed NINJA, under control of a constitutive promoter (pGPD), as a bridging 

protein. Hereby we used the MultiSite GatewayTM vector pMG426 (Table 4-1) that carries the 

URA3 auxotrophic marker that is often still available in yeast strains used for Y2H. As a C-
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terminal tag we used the NLS-FLAG-HIS tag. Only when NINJA is co-expressed, yeast growth 

was observed on selective –His medium, indicating that interaction between JAZ3 and TPL 

requires the involvement of NINJA (Figure 4-3C and 4-3D). 

 
 

DISCUSSION AND CONCLUSION 

We have successfully constructed a set of three-segment MultiSite GatewayTM 

destination vectors for S. cerevisiae. Our findings make high-throughput recombinatorial 

cloning of multiple genetic segments in one single reaction accessible in one of the most 

widely used experimental model systems in molecular biology. The availability of different 

auxotrophic markers in this vector set, together with the large amount of existing compatible 

building blocks for MultiSite GatewayTM cloning already available in several research groups, 

creates a versatile utility for these vectors. In addition, we have cloned two constitutive and 

one inducible yeast promoter in appropriate pENTR vectors and constructed three novel 

epitope tags, each including a NLS, which are suitable for interaction studies in yeast. 

The usefulness of the MultiSite GatewayTM vectors was demonstrated in a Y3H assay 

with which we corroborated the hypothesis that NINJA connects the JAZ proteins with the co-

repressor TPL. This trimeric complex mediates repression of jasmonate responsive genes in 

the absence of the hormone (Pauwels et al., 2010). 

Implementation of the vector set presented in this article, together with the cloning of 

more promoters and (epitope) tags according to personal experimental needs, will facilitate 

gene functional studies and contribute to the high-throughput versatile expression of 

heterologous (plant) proteins in yeast. 
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EXPERIMENTAL PROCEDURES 

Strains and growth conditions 

The E. coli strains used were either the ccdB resistant strain DB3.1 (Invitrogen) or the ccdB sensitive strain DH5α. 

Both were grown at 37°C in LB broth medium with appropriate antibiotics. Several different commonly used 

yeast lab-strains were grown at 30°C in synthetic defined medium (Clontech) lacking the appropriate amino acids. 

 

MultiSite GatewayTM cloning and yeast transformation 

MultiSite LR reactions were performed in 10 µL total volume containing 10 fmoles of each entry vector, 20 fmoles 

of destination vector, and 2 µL LR II ClonaseTM Plus (Invitrogen). The reaction was incubated overnight at 25°C. 

After proteinase treatment, the mix was transformed into E. coli DH5α. Colonies that grew on selective medium 

were picked and the insert was sequenced using M13 forward and reverse primers (Additional file 1). To maintain 

the reading frame, necessary for expression of translational fusions, MultiSite GatewayTM cloning was carried out 

according to the manufacturer’s guidelines (http://www.invitrogen.com). Note that in order to produce C-

terminal translational fusions, the ORFs used should be without STOP codon. A convenient method to obtain 

simultaneously clones of ORFs with and without STOP codon has been described (Underwood et al., 2006). 

Competent yeast cells were transformed using the LiAc/SS carrier DNA/PEG method (Gietz and Schiestl, 2007). 

 

Promoter cloning 

The attB4 and attB1 sites were introduced in the primers used for promoter amplification (Supplementary Table 

S1). A PCR was performed using Phusion High-Fidelity PCR Kit (Thermo Fisher Scientific) on 50 ng of pBEVY-A, 

pBEVY-GL (Miller et al., 1998), and pGAD424 (Clontech) as template for the GPD, GAL, and ADH1 promoters, 

respectively. PCR products were purified with the GeneJET Gel Extraction kit (Fermentas). BP reactions were 

performed in a total volume of 5 µl containing 1 µl enzyme, 300 ng pDONR P4-P1R (Invitrogen), and 30 ng of PCR 

product. Incubation and subsequent treatments were the same as those for MultiSite LR reactions. 

 

Epitope-tag design and immunoblot analysis 

Synthetic DNA encoding NLS-3xFLAG-6xHIS, NLS-3xV5, and NLS-3xc-myc flanked by attB2R-attB3 sites were 

designed in Vector NTI® (Invitrogen) and ordered from GenScript as clones in the pUC57 vector. These tags were 

introduced into pDONR P2R-P3 through a BP reaction. The resulting entry vectors were transformed into E. coli 

and sequence verified. 

Total yeast protein extracts were obtained as described (Hampton and Rine, 1994) and concentration quantified 

using the Bio-Rad Protein Assay (Bio-Rad). Samples were combined with 5x Laemmli loading buffer and 

denatured for 10 minutes at 95ºC. Subsequently, 30 µg total protein was loaded on a 4-15 % Mini-PROTEAN® 

TGX™ Precast Gel (Bio-Rad) and transferred to a PVDF membrane using the Trans-Blot Turbo transfer system 

(Bio-Rad). Detection was performed using the following primary antibodies: anti-FLAG (Sigma), anti-c-myc-HRP 

(Invitrogen), anti-HA (Roche), and anti-V5 (Sigma).  

 

Yeast two- and three-hybrid 

The primers were designed to clone the ORF corresponding to TPL-N with and without STOP codon 

(Supplementary Table S1) (Underwood et al., 2006). The entry clones pEN-L4-GPD-R1, pEN-R2-NLS-3xFLAG-

6xHis-L3, and pEN-L1-NINJA-L2 were recombined by MultiSite GatewayTM LR reaction with pMG426 as 

destination vector. Construction of the pGADT7- and pGBKT7-clones, and the Y2H and Y3H were carried out as 

described (Pauwels et al., 2010) except that transformed yeast cells (strain PJ69-4a) were selected on SD-Ura-

Trp-Leu.  
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SUMMARY 

Many enzymes depend on iron-sulfur (Fe-S) cofactors for their activity. The human 

monothiol glutathioredoxin PKCθ-interacting Protein (PICOT/GRX3) is a putative Fe-S carrier 

protein delivering Fe-S to apo-proteins in the nucleus and cytosol. However, information on 

regulation of PICOT and its targets is scarce. Here, we identified and characterized 

PICOT1/GRXS17, the ortholog of PICOT in the model plant Arabidopsis thaliana. PICOT1 was 

found as a target of RGLG3 and RGLG4, two E3 ubiquitin ligases involved in stress signalling. 

RGLG3/4 mediated poly-ubiquitination and degradation of PICOT1. Nucleo-cytoplasmic 

PICOT1 was found to be part of Fe-S assembly complexes and contributed to the maturation 

of the Fe-S protein XANTHINE DEHYDROGENASE1 (XDH1) that is involved in purine 

degradation. In contrast to its human ortholog, however, PICOT1 was not essential for the 

maturation of nuclear and cytoplasmic Fe-S proteins. Instead, the plant ortholog of PICOT was 

found in a complex with various proteins involved in at least two unrelated processes: purine 

catabolism and tRNA modification. In accordance with a role in XDH1 maturation, plants with 

reduced PICOT1 protein levels accumulated purine catabolism intermediaries and showed 

early onset of senescence. In addition, seedlings with mutations in genes involved in tRNA 

modifications phenotypically resembled picot1 knock-out mutants confirming a general role 

for PICOT1 in this process.   
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INTRODUCTION 

As in any eukaryote, abundance of proteins in plants is often regulated by the ubiquitin 

(Ub) system. The 76-amino acid polypeptide Ub is covalently attached to target proteins by an 

enzymatic cascade involving an E1 Ub activating enzyme, a E2 Ub conjugating enzyme and 

finally an E3 Ub ligase in a process called ubiquitination (Callis, 2014). Ub itself can further be 

ubiquitinated on one of its lysine residues forming a polyubiquitin chain. Most often in plants 

this is lysine (K) 48, leading to a signal for degradation by the 26S proteasome. However, other 

linkages are also possible in plants, leading to different outcomes (Kim et al., 2013). The E2 

enzyme constitutes the primary determinant of Ub chain linkage (Ye and Rape, 2009), whereas 

the specificity of the site of ubiquitination and the target protein is dependent on the E3 ligase 

(Mattiroli and Sixma, 2014). The most expanded family of plant E3 ligases is characterized by 

the presence of a RING domain, which mediates interaction of the E3 with the E2~Ub 

conjugate by interacting with both the E2 and the donor ubiquitin (Plechanovova et al., 2012). 

Other domains present in RING E3 ligases or their complexes mediate interaction with target 

proteins (Deshaies and Joazeiro, 2009).  

One subfamily of plant RING-type E3 ligases is the RING DOMAIN LIGASE (RGLG) family 

that contains five members in the model plant Arabidopsis thaliana and is characterized by 

the presence of a von Willebrand factor type A or copine domain in addition to the 

characteristic HCa-type RING-domain (Stone et al., 2005; Zhang et al., 2012). RGLG1 and 

RGLG2 function redundantly in Arabidopsis and seedlings with loss-of-function mutations in 

both genes have severely altered phenotypes such as loss of apical dominance, altered 

phyllotaxy and leaf shape and increased cell size (Yin et al., 2007). While no ubiquitination 

targets of RGLG3/4/5 are known presently, two targets of RGLG2 have been identified. First, 

the auxin transporter PIN2 was shown to be K63 poly-ubiquitinated in vivo and this 

ubiquitination was affected in rglg1rglg2 double knock-outs (KOs) (Leitner et al., 2012). RGLG1 

and RGLG2 were localized predominantly to the plasma membrane, like PIN2 proteins, and 

this was mediated by a myristoylation site present in their N-terminus (Yin et al., 2007). 

Second, RGLG1 and RGLG2 were shown to translocate from the plasma membrane to the 

nucleus under salt stress, where they both target the AP2/ERF family transcription factor 

ERF53 for proteasomal degradation. ERF53 was shown to be mono-ubiquitinated in vitro by 

RGLG2 and human UbcH5c/UBE2D3 (Cheng et al., 2012). 

Two other members of the RGLG family, RGLG3 and RGLG4, have been associated with 

JA-signalling (Zhang et al., 2012). RGLG3 and RGLG4 were shown to function redundantly as 

double KO rglg3rglg4 seedlings were less sensitive to JA-mediated root growth inhibition. 

Alternatively, overexpression of either RGLG3 or RGLG4 led to enhanced sensitivity to JA-

mediated root growth inhibition, and this was dependent on COI1 (Zhang et al., 2012). 

Recently, RGLG3/4 were also reported to regulate the mycotoxin Fumonisin B1 (FB1)-
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triggered programmed cell death (PCD) elicited during infection with the fungal pathogen 

Fusarium moniliforme (Zhang et al., 2015). Nothing is known yet on the activity and role of 

RGLG5. 

RGLG1/2, but not RGLG3/4, were found to interact in yeast-two hybrid (Y2H) with the 

E2 UBC35 (Yin et al., 2007; Zhang et al., 2012). UBC35/UBC13a and UBC36/UBC13b are known 

to interact with the E2-like proteins UEV1-4 to mediate K63 Ub-chain formation (Michelle et 

al., 2009; Callis, 2014). Accordingly RGLG2 mediated K63 poly-Ub chain assembly in vitro with 

UBC35 (Yin et al., 2007). In plants, UBC35/36 have been involved in the response to iron-

deficiency, together with RGLG1/2 (Pan and Schmidt, 2014).  

A large fraction of plant intracellular Fe is incorporated in Fe-S prosthetic groups which 

are well suited for electron transfer reactions and are often essential for the catalytic function 

of several enzymes (Balk and Schaedler, 2014). There are three pathways for the assembly of 

Fe-S clusters in plants: a mitochondrial, a plastidic and a cytosolic pathway. The cytosolic Fe-S 

assembly (CIA) pathway provides [Fe-S] clusters to cytosolic and nuclear proteins. The three 

pathways share a common mechanism where the [Fe-S] is pre-assembled on a scaffold protein 

and then transferred to apo-proteins by carriers or targeting factors (Figure 5-1, Couturier et 

al., 2013; Balk and Schaedler, 2014).  

 

Figure 5-1. Overview of the cytosolic Fe-S assembly (CIA) pathway. 

A sulfide compound originating from the mitochondria and iron, whose source is still unclear, are required for 

the CIA pathway. TAH18 and DRE2 provide the required electrons. The Fe-S cluster is pre-assembled on the 

scaffold protein NBP35 and then transferred to target apoproteins via a NAR1-CIA1-AE7-MET18 complex. Figure 

adapted from Couturier et al., 2013. 
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The yeast proteins ScGrx3/4 have been associated to the CIA pathway. Deletion of 

ScGrx3/4 leads to defects in cytosolic and mitochondrial Fe-S assembly, de-regulation of Fe-

homeostasis and defects in proteins containing di-iron centres. ScGrx3/4 belong to the PICOT 

protein family and contain one N-terminal thioredoxin (Trx) and one C-terminal glutaredoxin 

(Grx) domain (Muhlenhoff et al., 2010), also known as PICOT homology domains. The PICOT 

homology domain is evolutionary conserved and present in a broad array of species including 

bacteria, yeast, mammalian and plant organisms (Isakov et al., 2000). Like its human and yeast 

homologs, Arabidposis PICOT1/GRXS17 was shown to bind [2Fe-2S] clusters. Picot1 KO mutant 

plants, however, exhibited only a minor decrease in the activity of cytosolic Fe-S enzymes. 

Instead, Arabidopsis picot1 plants were hypersensitive to high temperature and long-day 

photoperiod (Haunhorst et al., 2010; Muhlenhoff et al., 2010; Cheng et al., 2011; Knuesting et 

al., 2015).  

In this chapter, we looked for ubiquitination targets of RGLG3/4 and identified PICOT1 

as a RGLG3/4 interacting protein. We show PICOT1 is a ubiquitination target of RGLG3/4 and 

is degraded in plants in a proteasome-dependent manner. PICOT1 was found to interact with 

the CIA pathway machinery and with the Fe-S protein Xanthine Dehydrogenase 1 (XDH1) 

which showed a minor activity decrease in picot1 KO seedlings. We thus link two extra 

members of the RGLG-family with one of the major Fe-consuming processes in the cell. In 

addition, we propose a role for PICOT1 in tRNA modification based on interaction with two 

known proteins involved in this process and a phenotypic resemblance between picot1 plants 

and plants carrying mutations in genes involved in tRNA modification. 
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RESULTS 

RGLG3 and RGLG4 interact with the GRX protein PICOT1 

Previously, two members of the RGLG-family (RGLG1 and RGLG2) were localized at the 

plasma membrane. This was attributed to a myristoylation site present in the N-terminal 

region of both proteins (Yin et al., 2007). RGLG3 and RGLG4 form a separate clade in the RGLG-

family (Figure 5-2A). While the entire N-terminal region is absent in RGLG3, the N- 

 

Figure 5-2. RING domain ligase (RGLG) protein family of Arabidopsis. 

A. Phylogenetic tree of Arabidopsis RGLG-proteins, adapted from Zhang et al. (2012). B. Amino acid sequence 

alignment of RGLG proteins. Yellow to green shading indicate low to high conservation, respectively. Dashed line 

indicates N-terminal region as determined by Zhang et al., 2012, full line indicates von Willebrand factor type A 

(vWA) domain and dotted line indicates RING domain.  
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terminal region of RGLG4 lacks the myristoylation site (Figure 5-2B, Zhang et al., 2012) 

implying a different subcellular localization for these proteins. 

To identify the ubiquitination targets of RGLG3 and RGLG4 we used a “substrate 

trapping” approach combined with Tandem Affinity Purification (TAP, Harper and Tan, 2012, 

see Chapter 3). We first introduced mutations in the RING-domain of each of these proteins, 

known to disrupt correct folding of the RING-domain (Stone et al., 2005). The resulting 

proteins (named RGLG3mRING and RGLG4mRING) lose interaction with the Ub-charged E2 

ligase, but presumably maintain interaction with target proteins. As the targets cannot be 

ubiquitinated and degraded this may result in enrichment of the interacting target protein 

during affinity purification. RGLG3mRING and RGLG4mRING were fused carboxy-terminally to 

a TAP-tag and expressed in Arabidopsis cells under a cauliflower mosaic virus (CaMV) 35S 

promoter.  

 

Figure 5-3. PICOT1 interacts with RGLG3 and RGLG4  

A. Y2H assay of RGLG3/4 and RGLG3/4mRING with PICOT1. Transformed yeasts were spotted in 10-fold and 100-

fold dilutions on control medium (-2) and selective medium (-3). B. RGLG3/4mRING and PICOT1 interaction by 

BiFC. Head (h) or tail (t) eGFP fusions were transiently expressed in N. benthamiana. Controls with unfused eGFP 

fragments did not result in detectable fluorescent signals (data not shown). C. Confocal root tip images of 4-day-

old Arabidopsis seedlings overexpressing PICOT1-GFP, GFP-RGLG3mRING and RGLG4mRING-GFP. Propidium 

iodide was used to visualize the cell wall. 

Using this strategy, we identified the protein PICOT1/GRXS17 as a putative target of 

RGLG4mRING (Supplementary File S1). PICOT1 was confirmed to interact both with 

RGLG3mRING and RGLG4mRING in yeast two-hybrid (Y2H) and split-GFP assays (Figure 5-3 A 

and B). Additionally, both the individual protein fused to GFP as well as the 

PICOT1/RGLG3mRING and PICOT1/RGLG4mRING pairs were observed to be nucleo-

cytoplasmic (Figure 5-3 B and C, Figure 5-4 A). We also observed heterodimerization of RGLG3 

and RGLG4 both in TAP and Y2H (Supplementary File S1, Figure 5-4 B).  
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Figure 5-4. Subcellular localization and heterodimerization of RGLG3 and RGLG4. 

A. Confocal images of N. benthamiana leaves transiently expressing PICOT1-GFP, GFP-RGLG3mRING and GFP-

RGLG4mRING. B. Y2H assay of RGLG3/4 and RGLG3/4mRING. Transformed yeasts were spotted in 10-fold and 

100-fold dilutions on control medium (-2) and selective medium (-3). 

 

PICOT1 is ubiquitinated by RGLG3 in vitro 

The Arabidopsis genome encodes 37 different E2 ubiquitin conjugases (AtUBC1 to 

AtUBC37, Kraft et al., 2005). To determine which E2 works as the ubiquitin donor together 

with RGLG3 and RGLG4 we screened for interaction of RGLG4 against Arabidopsis E2s by Y2H 

(Figure 5-5 A). At least one representative of each UBC-group (based on Kraft et al., 2005) was 

tested, except for group XII. RGLG4 interacted with a subset of Arabidopsis E2’s consisting of 

two UBC’s belonging to group VI (UBC8 and UBC30) and three UBC’s belonging to group VII 

(UBC15, UBC17 and UBC18), but not with K63-chain forming UBC35 or UBC36 (Figure 5-5) that 

were reported to interact with RGLG1 and RGLG2 (Yin et al., 2007). RGLG3 interacted with the 

same subset of E2’s and, as anticipated, this interaction was lost with the mRING versions 

(Figure 5-5 B). 
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Figure 5-5. RGLG3 and RGLG4 interact with a specific subset of UBC enzymes in Y2H.  

A. Y2H assay between RGLG4 and a panel of 30 Arabidopsis E2 ubiquitin conjugases. RGLG4 was fused to the 

activation domain in pGADT7. The transmembrane domain of group XIV UBC’s (UBC32, UBC33 and UBC34) was 

removed to avoid false negative results (named UBC32t, UBC33t, and UBC34t). B. Validation using RGLG3/4 and 

mRING variants. Transformed yeasts were spotted in 10-fold and 100-fold dilutions on control medium (-2) and 

selective medium (-3). 

We next re-assessed the E3 ligase activity of RGLG3 and RGLG4 in the presence of the 

different Arabidopsis UBC’s identified in Figure 5-5 using in vitro ubiquitination assays. Initially, 

RGLG3 and RGLG4 were expressed in E. coli as GST-tagged proteins, unfortunately GST-RGLG3 

could not be produced efficiently. GST-RGLG4 auto-ubiquitinated only when UBC30 or its 

human ortholog HsUbcH5b were included as E2 in the reaction (Figure 5-6). Note that no 

UBC15~Ub conjugate could be detected, indicating UBC15 was not active in our assay. RGLG4 
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auto-ubiquitination was dependent on the presence of each critical reaction component 

(Figure 5-6 B). When we included PICOT1 in the reaction and PICOT1 was visualized specifically 

on immunoblots, no differential bands were observed in the presence or absence of RGLG4 

(Figure 5-6 B).  

 
Figure 5-6. PICOT1 in vitro ubiquitination assays using GST-RGLG4 

A. Auto-ubiquitination assay of GST-RGLG4 (70 kDa) in combination with various Arabidopsis E2’s and HA-Ub 

(immunodetection with anti-HA antibodies). B. Extended auto-ubiquitination assay of GST-RGLG4 with UBC30 as 

E2, in the presence or absence of PICOT1. Note that in lane 4 and lane 8 UBC30-Ub and PICOT1, respectively, are 

not clearly visible due to a technical issue during blotting (air bubble). Ubiquitinated proteins were detected with 

anti-HA antibodies (Upper panel). GST-RGLG4 was detected using anti-GST antibodies (left lower panel). PICOT1-

V5-HIS (55 kDa) was detected using anti-V5 antibodies (right lower panel).  

For the rest of this study, we focused on UBC30, which is probably involved in K48 poly-

ubiquitination and which is closely related to human HsUbcH5b that was shown previously to 

work with RGLG3 and RGLG4 in vitro (Zhang et al., 2012). To circumvent GST-RGLG3 

insolubility, RGLG3/4 were produced as MBP-fused proteins in E. coli and their activity was 

tested in combination with UBC30 and HsUbcH5b (Figure 5-7). Unfortunately the MBP-RGLG4 

yield was very low and this reflected on its E3 ligase activity during in vitro assays. We could 

confirm in vitro auto-ubiquitination of RGLG3 using UBC30 in combination with HA-tagged 

ubiquitin (Figure 5-7 A). When PICOT1 was included in the reaction and specifically visualized 

on immunoblots, additional higher molecular weight bands could be detected (Figure 5-7B, 

arrowheads). Remarkably, inclusion of RGLG4 in addition to RGLG3 abolished the formation 

of higher molecular weight bands of PICOT1. Because RGLG3 and RGLG4 form dimers, RGLG4 

can possibly serve as a ubiquitination substrate in addition to PICOT1, making ubiquitination 

of PICOT1 less abundant in these experiments. 
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Figure 5-7. PICOT1 in vitro ubiquitination assays using MBP-fused RGLG3/4 

In vitro PICOT1 ubiquitination assays using MBP-RGLG3 and MBP-RGLG4 in combination with UBC30 or 

HsUbcH5b. HA-Ub conjugated proteins (A) and PICOT1-V5-HIS (B) were visualized using anti-HA antibodies or 

anti-V5 antibodies, respectively. Arrowheads indicate higher molecular weight bands originating from PICOT1-

V5-HIS modification. 

It was remarkable that the expected Ub-ladder resembled a smear rather than 

individual bands. Particularly when PICOT1 ubiquitination was of interest, we wanted to 

reduce the amount of auto-ubiquitinating E3 visualized during Ub-immunodetection. We 

therefore tested lower concentrations of both E2 and E3 in the in vitro ubiquitination reaction 

mix. Based on these assays, we reduced the amounts of enzyme used per reaction five-fold 

and ten-fold for E2 and E3, respectively (Figure 5-8).  

 

Figure 5-8. Optimalization of the in vitro ubiquitination assay. 

Different quantities of MBP-RGLG3 and UBC30 were used for optimalization of the in vitro ubiquitination assay, 

in the presence or absence of PICOT1. HA-Ub conjugates and PICOT1-V5-HIS were visualized on immunoblots 

using anti-HA antibodies and anti-V5 antibodies, respectively. Arrowheads indicate higher molecular weight 

bands originating from PICOT1-V5-HIS modification. 
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Using this optimized assay, we showed that the activity of RGLG3 was dependent on 

the integrity of the RING-domain (Figure 5-9A). When PICOT1 was included in the assay with 

functional RGLG3, ubiquitination was now clearly detected at lower molecular weight which 

could correspond to in vitro ubiquitination of PICOT1 by RGLG3 (Figure 5-9B, asterisk). 

Detection with an anti-V5 antibody indeed identified the lower molecular weight bands as 

originating from the PICOT1 protein, thus confirming RGLG3-mediated ubiquitination (Figure 

5-9C).  

 

Figure 5-9. RGLG3 mediated PICOT1 ubiquitination. 

A. In vitro auto-ubiquitination using recombinant HA-Ub, UBC30 as E2 and MBP-fused RGLG3 or RGLG4 as E3. 

Ubiquitinated proteins were detected using anti-HA antibodies. B. In vitro ubiquitination assay as in A, but 

including recombinant PICOT1-V5-HIS. C. In vitro ubiquitination assay as in B but detection using anti-V5 

antibodies. D. PICOT1 protein sequence. Lysines for which a di-glycine rest was detected are highlighted in grey. 

The thioredoxin domain and the three glutaredoxin domains are shown in blue and orange, respectively. E. 

Summary of the number of peptides detected with or without a di-glycine modified Lys-residue. Asterisks 

indicate higher molecular weight bands originating from modified PICOT1-V5-HIS proteins. 

Finally, we investigated which Lys-residue(s) in PICOT1 is preferentially targeted by 

RGLG3 in vitro. After separation of the in vitro reaction proteins by SDS-PAGE, proteins 

corresponding to the molecular weight of PICOT1 and higher were isolated, digested with 

trypsin and analysed using MS. We identified nine Lys-residues in PICOT1 that were specifically 

ubiquitinated by RGLG3 based on a di-glycine mass shift (Figure 5-9D). In contrast, when 

RGLG3mRING was used as E3, no ubiquitination sites were found (Figure 5-9E). Remarkably, 

three additional ubiquitinated Lys-residues were identified as a result of the in vitro reaction 

with RGLG3, two of them in the att-site between PICOT1 and the epitope tags, and one in the 

V5-tag (Supplementary Table S2). 
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PICOT1 is targeted for degradation by the E3 ligase complex RGLG3/4 in vivo 

To test if PICOT1 is also in vivo ubiquitinated, we generated a stable transformed 

Arabidopsis line expressing PICOT1-3xHA under control of a constitutive CaMV 35S promoter. 

Seedling cultures were treated or not with MG132, which had no effect on total PICOT1-HA 

levels in the corresponding protein extracts (Figure 5-10 A). Using Tandem Ubiquitin Entities 

(TUbEs, Hjerpe et al., 2009) we successfully isolated poly-ubiquitinated proteins form the total 

protein extracts (Figure 5-10 B). A high molecular weight smear was detected for PICOT1-HA 

in TUbE-purified extracts of MG132-treated seedlings, indicating PICOT1-HA poly-

ubiquitination (Figure 5-10 C). 

 

Figure 5-10. PICOT1 is ubiquitinated and degraded by the proteasome in a RGLG3/4 dependent way.  

A-C. TUbE assay. A. Immunoblot detecting PICOT1-HA levels in the total protein extracts of seedlings treated 

overnight with 50 µM MG132 or mock. B. Immunoblot detecting ubiquitinated proteins after isolation of poly-

ubiquitinated proteins using TUbE or mock resin. C. Immunoblot detecting PICOT1-HA after TUbE purification. D-

E. Cell-free degradation assays. D. Total protein extracts were obtained from 10-day old PICOT1-HA seedlings 

and incubated for the time indicated with or without 50µM MG132. E. 300 ng PICOT1-V5-HIS recombinant 

protein was added to total protein extracts that were obtained from 10-day old WT Col-0 or rglg3rglg4 double 

mutants and incubated for the time indicated. PICOT1 protein levels were detected by immunoblot with anti-HA 

or anti-V5 antibodies in D and E, respectively. The coomassie stained membrane is shown as a loading control. F. 

In vivo degradation assay. PICOT1-His was transiently expressed in N. benthamiana mesophyll cells, alone or in 

the presence of RGLG3/RGLG4 or their mRING-versions (3mRING/4mRING). PICOT1 protein levels were detected 

in total protein extracts prepared from the infiltrated areas by immunoblot with anti-HIS antibodies. GFP was co-

transfected as an internal transfection efficiency control and detected by immunoblot using anti-GFP antibodies. 

Three biological repeats are shown for each condition. G. Quantification of protein levels detected in F. 

Using the same PICOT1-HA line, protein stability was visualized over time in the 

presence or absence of MG132 (Figure 5-10 D) using cell-free degradation assays. When 

PICOT1-HA was visualized in total protein extracts from 35S::PICOT1-HA seedlings, the protein 

was degraded over time only in the absence of MG132 confirming PICOT1 degradation is 
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mediated by the 26S proteasome (Figure 5-10 D). Recombinant PICOT1-V5-His was also 

degraded over time when incubated in wild-type (WT) cell-free extracts (Figure 5-10 E) but 

less in extracts derived from the rglg3rglg4 double mutant (Zhang et al., 2012, see also Figure 

6-3). This indicates that 26S proteasome-mediated degradation of PICOT1 is dependent on the 

presence of functional RGLG3 and/or RGLG4 (Figure 5-10 E).  

To further evaluate the effect of RGLG3 and RGLG4 on PICOT1 stability in planta we 

expressed PICOT1 together with RGLG3 and RGLG4 transiently in N. benthamiana leaves using 

agro-infiltration. In the absence of RGLG3 or RGLG4, PICOT1 accumulated as detected in total 

protein extracts prepared from the infiltrated area. Upon co-expression of PICOT1 with RGLG3 

and RGLG4, PICOT1 protein levels were strongly decreased (Figure 5-10 F). Together, these 

findings indicate that RGLG3 and RGLG4 function together to mediate PICOT1 degradation in 

planta. 

 

PICOT1 interacts with the CIA complex 

To get insight into PICOT1 function, we performed TAP on Arabidopsis cell cultures and 

seedlings expressing TAP-tagged PICOT1. Co-purified proteins included nearly all core 

components of the CIA pathway, two known Fe-S proteins and a number of proteins involved 

in tRNA metabolism (Table 5-1 and Supplementary File S1).  

The CIA pathway is responsible for providing [Fe-S] clusters to respective apo-proteins 

in the cytosol and the nucleus (Bernard et al., 2013, Figure 5-1). During plant CIA, assembly of 

the [Fe-S] cluster occurs first on the scaffold protein NBP35 (Bych et al., 2008; Kohbushi et al., 

2009). Electrons, which are provided by NADPH oxidation, are mobilized by ATR3 and 

transferred to NBP35 by DRE2/CIAPIN1 (Bernard et al., 2013). Once the cluster has been 

assembled on the NBP35 scaffold, it is transferred to apo-proteins by dedicated proteins 

forming the CIA targeting complex. In Arabidopsis this complex is composed of NAR1, CIA1, 

AE7/CIA2 and MET18 and locates to both the cytoplasm and the nucleus (Luo et al., 2012). 

MET18 is thought to determine the target-specificity of the complex while CIA1 and CIA2 

would facilitate transfer of the Fe-S cluster from NAR1 to the final acceptor proteins (Luo et 

al., 2012).  

Although human and yeast PICOT1 homologs are essential for the maturation of 

cytosolic and nuclear Fe-S proteins (Muhlenhoff et al., 2010; Haunhorst et al., 2013), 

Arabidopsis PICOT1 was recently shown to play only a minor role in maintaining the activity of 

two classes of cytosolic Fe-S enzymes (aconitases and aldehyde oxidases, Knuesting et al., 

2015). Here, two Fe-S proteins were co-purified with PICOT1 during TAP: XANTHINE 

DEHYDROGENASE 1 (XDH1) and BolA2. PICOT1 and BolA2 were reported to form [2Fe-2S]-

bridged heterodimers in the cytosol and nucleus (Couturier et al., 2014). Interaction between 

PICOT and XDH1 has not been reported previously.  
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Table 5-1. Overview of a selection of PICOT1 interacting proteins identified by TAP.  

  

  PICOT1 
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  Name Locus 

 PICOT1   4 2 2 1   

Cytoplasmic [Fe-S] assembly pathway             

 MET181,2 AT5G48120 4 2 2 1 9 

 CIAPIN / DRE21,3 AT5G18400 4 2 2   8 

 AE7 / CIA2 AT1G68310 2       2 

 NAR1 AT4G16440 3       3 

 CIA1 AT2G26060 2       2 

Purine catabolism and salvage             

 XDH1 | Xanthine dehydrogenase 1 AT4G34890 3 2 1   6 

 URH1 | Uridine-ribohydrolase 1 AT2G36310   2   1 3 

 URH2 | Uridine-ribohydrolase 2 AT1G05620   2   1 3 

 UREG | Urease accessory protein G AT2G34470   2     2 

tRNA modifications             

 CTU1/ROL5 | Cytoplasmic thiouridylase 1 AT2G44270     1   1 

 CTU2 | Cytoplasmic thiouridylase 2 AT4G35910 1   1   2 

 2-thiocytidine tRNA biosynthesis protein (TtcA) AT1G76170 2       2 

 YbaK/aminoacyl-tRNA synthetase-associated domain AT1G44835 1       1 

 Aminoacyl-tRNA ligase6 AT1G09620   2   1 3 

Other known Fe-S proteins             

 AtBolA24,5 AT5G09830 3       3 

  Radical SAM superfamily protein7 AT2G39670   1     1 

Proteins identified with LTQ Orbitrap Velos, with at least 2 significant peptides per identification. Only proteins 

that were identified in at least 2 TAP experiments with the same bait are retained. Background is subtracted. 

Numbers in columns indicate how many times the protein was identified in 2 TAP experiments per column 

(except for N-GSrh seedlings: only 1 experiment performed).Interaction was confirmed in yeast (1Tarassov et al., 

2008), in humans (2Stehling et al., 2012, 3Saito et al., 2011) or in Arabidopsis (4Couturier et al., 2014, 5Braun et 

al., 2011). 6Possible background. 7Found in only 1 TAP experiment. 

XDH1 belongs to the family of Xanthine oxidoreductases (XORs) that catalyse the 

oxidation of hypoxanthine and xanthine to uric acid during purine degradation. XDH1 is active 

as a homodimer in which each monomer has 3 cofactors: two [2Fe-2S] prosthetic groups, one 

FAD molecule, and one molybdenum cofactor (Moco), bound to the N-terminal, central and 

C-terminal part of the protein, respectively (Zarepour et al., 2010). In addition to XDH1, three 

other proteins involved in purine degradation were also identified in complex with PICOT1: 

URIDINE RIBOHYDROLASE 1 and 2 (URH1/2) and the UREASE ACCESORY PROTEIN UREG. 

URH1/2 are nucleoside ribohydrolases with inosine and xanthosine hydrolytic activity, 

resulting in hypoxanthine and xanthine generation (Riegler et al., 2011; Figure 5-12A). Urease 

catalyses the hydrolysis of urea to ammonia and carbon dioxide, the final products of purine 
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degradation. In Arabidopsis, Urease activation is mediated by the accessory proteins UreD, 

UreF and UreG (Witte et al., 2005), only the latter was identified in a complex with PICOT1 

(Table 5-1). 

Finally, a number of proteins related to tRNA modifications were identified as PICOT1 

interacting proteins. CYTOPLASMIC THIOURIDYLASE 1 and 2 (CTU1/2) mediate thiolation of 

uridine at the wobble position of Glu, Gln and Lys tRNAs (Leidel et al., 2009; Philipp et al., 

2014). 

 

PICOT1 regulates XDH1 activity 

When we produced recombinant PICOT1 in E. coli, the pellet showed a red brownish 

colour, confirming its capacity to bind [2Fe-2S] clusters (Knuesting et al., 2015). Because XDH1 

contains two [2Fe-2S] cofactors that are involved in electron transfer for the reduction of the 

substrates xanthine and hypoxanthine (Zarepour et al., 2010), we investigated the PICOT1-

XDH1 interaction more closely. Direct interaction between XDH1 and PICOT1 was confirmed 

in a Y2H assay (Figure 5-11 A). To examine the physiological relevance of this interaction, we 

measured XDH1-activity in Arabidopsis seedlings with altered PICOT1 expression (Figure 5-11 

B). We found a reproducible but non-significant minor decrease of XDH1-activity in picot1 

seedlings compared to WT or rglg3rglg4 double mutant seedlings (Figure 5-11 C). The 

difference in activity was not due to a difference in XDH1 protein abundance (data not shown). 

Our findings indicate that PICOT1 contributes to, but is not essential for XDH1 activity, as 

previously also reported for other cytosolic Fe-S enzymes (Knuesting et al., 2015). In contrast 

to what is expected, the XDH1 activity was not increased in rglg3rglg4 seedlings, indicating 

other E3 ligases might still regulate PICOT1 protein levels in the absence of RGLG3 and RGLG4. 

 

Figure 5-11. PICOT1 interacts with XDH1 and contributes to its activity. 

A. Y2H assay between PICOT1 and XDH1. Transformed yeasts were spotted in 10-fold and 100-fold dilutions on 

control medium (-2) and selective medium (-3). B. XDH1 activity measurements. 100 µg total protein extract 

obtained from the indicated plant lines was loaded in each lane of a native polyacrylamide gel and subsequently 

stained using hypoxanthine as substrate. C. Quantification of the XDH1-activity measured in B. Bars represent 

means ±SEM of three independent biological samples. 
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The picot1 mutant differentially accumulates purine catabolism intermediaries  

Next to XDH1, that catalyses the rate-limiting step in purine catabolism, three 

additional enzymes involved in this pathway where identified in a complex with PICOT1 via 

TAP (Table 5-1, Figure 5-12 A). To evaluate the impact of altered PICOT1 expression on this 

pathway, we measured the accumulation of uric acid precursors (xanthine and xanthosine) 

and of ureides (uric acid, allantoin and allantoic acid) in WT, picot1 and rglg3rglg4 seedlings 

(Figure 5-12 B). WT seedlings grown in the presence of the XDH1-inhibitor allopurinol were 

included to mimic XDH1-deficiency.  

The accumulation of xanthine and uric acid showed similar trends between allopurinol 

treated WT seedlings and picot1 seedlings. Reduced activity of XDH1 in picot1 seedlings 

correlated with enhanced accumulation of xanthine, while unexpectedly, uric acid 

accumulated in both allopurinol treated WT seedlings and picot1 seedlings. While xanthosine 

and allantoic acid accumulated differentially between control and allopurinol treated WT 

seedlings, no alterations in the accumulation of these compounds was seen in picot1 

seedlings. Finally, the ureide allantoic acid showed opposite accumulation levels in allopurinol 

treated WT seedlings and picot1 seedlings. These results suggest that picot1 seedlings have 

altered accumulation of purine catabolism intermediaries, of which some can be accounted 

for by a minor decrease of XDH1 activity in these seedlings. Remarkably, in rglg3rglg4 double 

KO seedlings the accumulation of the purine catabolism intermediaries measured here always 

showed the same trend as in picot1 seedlings when compared to WT seedlings. This again 

indicates that RGLG3 and RGLG4 are probably not the only proteins regulating PICOT1 protein 

levels or activity. 
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Figure 5-12. Quantification of purine degradation intermediaries. 

A. Overview of purine degradation pathway. Enzymes identified in complex with PICOT1 via TAP are encircled. 

URH1/2, URIDINE HYDROLASE 1/2; URE, UREASE; URED/F/G, UREASE ACCESSORY PROTEIN D/F/G. B. 

Quantification of purine degradation intermediaries in whole seedlings grown 10 days on MS media 

supplemented with 1% sucrose and 0.5 mM allopurinol (WT allopurinol) or DMSO (WT, picot1, rglg3rglg4). Error 

bars represent mean ±SEM of n=5 (*, p<0.05; **, p<0.01; t-test). Leucine was measured as a control.  
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RGLG3/4 positively regulate cell death 

XDH1-deficient plants have been reported to show earlier onset of age-dependent and 

dark-induced leaf senescence (Nakagawa et al., 2007; Brychkova et al., 2008). Ureides, like 

allantoin and allantoate, have been shown to be strong reactive oxygen species (ROS) 

scavengers, indicating the phenotypes observed in XDH1-deficient plants could also be caused 

by an excess in ROS due to decreased ROS-scavenging (Brychkova et al., 2008). 

 

Figure 5-13. PICOT1-degradation leads to early onset of senescence in N. benthamiana. 

WT or mRING versions of RGLG3 and RGLG4 were transiently co-expressed in N. benthamiana mesophyll cells. 

GFP was used as a negative control. Early onset of senescence is seen as yellowing of the infiltrated areas. 

To investigate the role of PICOT1 in XDH1-mediated ROS scavenging, we reasoned 

PICOT1 depletion could lead to a slight decrease in active XDH1 holo-protein. To mimic PICOT1 

depletion, we transiently overexpressed RGLG3 and RGLG4 in N. benthamiana leaves. We 

noticed patches of senescent tissue at the infiltrated areas, but not at the surrounding areas 

(Figure 5-14). This phenotype was dependent on the integrity of the RING-domain. Together, 

these results indicate transient overexpression of RGLG3 and RGLG4 in N. benthamiana results 

in early onset of senescence, possibly by depletion of the endogenous PICOT1 protein. This 

early onset of senescence might result from a disturbance in endogenous XDH1-activity. In 

addition our results are in accordance to the recently published role for RGLG3 and RGLG4 as 

positive regulators of programmed cell death induced by the phytotoxin Fumonisin B1 (Zhang 

et al., 2015).  
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PICOT1 interacts with tRNA modification enzymes 

As mentioned above, two proteins with a known function in tRNA modification were 

identified as PICOT1 interacting proteins via TAP. CYTOPLASMIC THIOURIDYLASE 1 and 2 

(CTU1/ROL5 and CTU2) mediate thiolation of uridine at the wobble position of Glu, Gln and 

Lys tRNAs. This modification is conserved throughout bacteria and eukaryotes (Leidel et al., 

2009; Philipp et al., 2014) and is important for maintaining translational fidelity. To further 

investigate their interaction with PICOT1, we cloned CTU1/2 based on a cDNA template. 

Notably, two new alternative splicing variants were also picked up, where intron retention 

leads to introduction of an early stop. We named these splicing variants CTU1-N and CTU2-N, 

as they encode mainly the N-terminal part of the protein (Figure 5-14 A). Because picot1 

mutants have been phenotypically associated with elongata mutants (Knuesting et al., 2015) 

and the Elongator complex is essential for mcm5s2 tRNA modification, the interaction between 

PICOT1 and components of the Elongator complex was also investigated using Y2H. We 

confirmed direct interaction between PICOT1 and both CTU1/2 splicing variants. In addition, 

ELP4/ELO1 was also able to directly interact with PICOT1 in yeast (Figure 5-14 B). To see if the 

phenotype of seedlings with loss-of-function mutations in CTU1/2 resemble picot1 or elongata 

phenotypes, a KO line for each gene was obtained (rol5-2 and ctu2-2, Leiber et al., 2010; 

Philipp et al., 2014). As the different subunits of the Elongator complex function non-

redundantly and most of the elo mutants are in the Ler background, we included the weak 

elo3-6 mutant line that has Col-0 background (Nelissen et al., 2010) as a representative 

member of the elongata mutants. At first sight, all mutant lines seem to have strongly 

elongated leaves when compared to WT plants (Figure 5-14 C). The physical interaction 

between PICOT1 and CTUs/ELO1 combined with the phenotypic resemblance of KO mutants 

in the respective genes indicate PICOT1 might be involved in the process of tRNA modification. 
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Figure 5-14. PICOT1 interacts directly with proteins involved in tRNA modification. 

A. Schematic visualization of CTU1 and CTU2 gene structure and T-DNA insertions. Grey boxes represent exons. 

B. Y2H assay of PICOT1 and different splicing-variants of CTU1/CTU2 and ELP4. Transformed yeasts were spotted 

in 10-fold and 100-fold dilutions on control medium (-2) and selective medium (-3). C. Photographs were taken 

4 weeks after sowing. Plants were grown under long day conditions with 16 h light/8 h dark cycles. WT, wild type 

Col-0. Scale bar is 13 mm. 
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DISCUSSION 

We have shown here that the E3 ligases RGLG3/4 mediate PICOT1 poly-ubiquitination 

eventually leading to PICOT1 degradation by the proteasome. We used an optimized in vitro 

ubiquitination assay, where we first identified which Arabidopsis E2 can associate with the 

respective E3’s and is thus best appropriate for the in vitro reaction. In contrast to RGLG1/2, 

RGLG3/4 did not interact with K63-specific E2s (UBC35/36). However, since only a truncated 

version of RGLG2 was able to interact with UBC35 (Yin et al., 2007) and our screen was only 

performed using full-length RGLG3/4, we cannot exclude that this interaction could take place 

in vivo. Instead, RGLG3/4 interact with two different groups of E2 conjugases, UBC15/17/18 

(homologous to HsUbe2w) and UBC8/30 (homologous to HsUbcH5b). While UBC30 

characteristically catalyses K48 Ub-chain formation and was functional for in vitro poly-

ubiquitination of PICOT1 by RGLG3, HsUbe2w has been reported to be an atypical ubiquitin-

conjugase that catalyses the attachment of ubiquitin to the N-terminal –NH2 group of the 

substrate protein (Scaglione et al., 2013). RGLG3/4 auto-ubiquitinating activity was, however, 

absent in the presence of UBC17. We cannot exclude that the use of N-terminally tagged E3 

ligases or absence of additional (unknown) components might be at the basis of the lack of 

auto-ubiquitination activity, as in general expression of N-terminally tagged PICOT1 constructs 

was less efficient than that of the C-terminally tagged ones, indicating an intact PICOT1 N-

terminus could be important for protein stability. 

We found several ubiquitinated Lys-residues resulting from PICOT1 in vitro 

ubiquitination in the presence of RGLG3 and UBC30. This probably reflects the artificial nature 

of in vitro work as we also identified a Ub-modified Lys-residue in the V5 sequence and two 

additional Ub-modified Lys-residues in the attB2 site between the PICOT1 protein and the V5-

HIS-tag. Our results emphasize the importance of careful interpretation of results obtained 

from in vitro experiments, as ubiquitination of an epitope tag or att-site can lead to false 

positive results and the lack of additional factors affecting the specificity of the reaction can, 

on the other hand, lead to false negative results. Despite the partial artificial nature of the in 

vitro ubiquitination assay, no ubiquitinated peptides of PICOT1 were identified when the assay 

was performed in the presence of RGLG3mRING emphasizing the reaction reflects an 

authentic E3-target relationship. In addition, poly-ubiquitination of PICOT1 by RGLG3 in 

collaboration with the K48-specific UBC30 is in accordance with our findings that in vivo 

PICOT1 protein stability is dependent on proteasomal activity. 

PICOT1’s domain architecture resembles that of its closest human homolog, HsPicot, 

which is composed of one Trx domain and two Grx domains (Li et al., 2012). In humans, HsPicot 

has been shown to be involved in multiple processes including regulation of signalling 

pathways associated with cancer and cardiac hypertrophy, regulation of intracellular Fe 

homeostasis and the assembly and trafficking of Fe-S clusters. (Cha et al., 2008; Jeong et al., 
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2008; Qu et al., 2011; Haunhorst et al., 2013). The Trx domain of PICOT proteins lacks the 

dithiol motif in the catalytic centre, and therefore probably functions as a protein-protein 

interaction platform independent of redox activity (Haunhorst et al., 2010). The Grx domains 

of PICOT proteins belong to the monothiol class of Grxs, characterized by a CGFS-motif at the 

redox centre. Monothiol Grxs have not been shown to possess deglutathionylation-activity, 

instead, they have the possibility to bind [2Fe-2S] clusters (Stroher and Millar, 2012). Four 

monothiol Grxs are encoded in the Arabidopsis genome: GRXS14/CXIP1/GRXCp, GRXS15, 

GRXS16/CXIP2 and PICOT1. PICOT1 is the only monothiol Grx in Arabidopsis that localizes to 

the nucleus and cytoplasm, as CXIP1 and CXIP2 localize to plastids and GRXS15 to both plastids 

and mitochondria (Couturier et al., 2013). 

Interactions between PICOT proteins and BolA proteins are conserved in yeast, 

humans and plants, where it has been demonstrated that the Grx-domain and the BolA-

domain are bridged by binding of a [2Fe-2S] cluster (Li et al., 2009; Li et al., 2012; Couturier et 

al., 2014). In yeast, the PICOT1 homologs ScGrx3/4 are localized in the nucleus where they 

regulate the nuclear export of ScAft1, a transcription factor that regulates Fe-responsive gene-

expression under low Fe conditions (Pujol-Carrion et al., 2006). Heterodimerization of 

ScGrx3/4 with the BolA-protein ScFra2 leads to nuclear export of ScAft1 (Pujol-Carrion et al., 

2006; Li et al., 2009). In plants, BolA2 does not seem to play a role in Fe-homeostasis and the 

biological outcome of PICOT1-BolA2 interaction remains an unanswered question (Couturier 

et al., 2014; Roret et al., 2014). In both yeasts and humans, PICOT-homologs play an important 

role in Fe utilization. ScGrx3/4 deficient yeasts have defects in de novo synthesis of [Fe-S] 

clusters and heme, two of the major Fe-consuming processes in these organisms. Fe-content 

is not decreased in these yeasts, but the Fe is not bio-available due to deficient Fe-delivery to 

mitochondria. A similar defect in Fe bio-availability was observed in zebrafish and HeLa cells 

when HsPicot (or the zebrafish ortholog) was depleted (Muhlenhoff et al., 2010; Haunhorst et 

al., 2013).  

The role of PICOT proteins in the CIA pathway is still not well understood. In yeast, 

incorporation of [Fe-S] clusters into both cytosolic and mitochondrial proteins is dependent 

on ScGrx3/4 (Muhlenhoff et al., 2010). We found that in plants, PICOT1 interacts with several 

components of the CIA, including DRE2, NAR1 and MET18. PICOT1-DRE2 interaction is 

conserved in yeast and humans where the ortholog of DRE2, Anamorsin, interacts directly 

with HsPicot. Disturbance of the Anamorsin-Picot interaction has been proposed as a strategy 

to reduce cell proliferation in solid tumours where Anamorsin expression is enhanced 

(Tarassov et al., 2008; Saito et al., 2011). The study of the plant ortholog PICOT1 may therefore 

contribute to research for drug targets. Remarkably, maturation of the yeast Fe-S proteins 

ScDre2, ScMet18 and ScGrx3/4 itself, is independent of CIA and requires only a functional ISC 

pathway. In addition, maturation of ScDre2 and ScMet18 is dependent on ScGrx3/4. Despite 

the fact that PICOT1 interacts with members of the CIA pathway, it does not seem to have an 
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essential role in de novo Fe-S biogenesis as picot1 plants do not show the embryonic lethal 

phenotypes associated with core components of the CIA pathway in Arabidopsis. In addition, 

the absence of PICOT1 was previously shown to have only minor effects on the activity of 

cytosolic Fe-S proteins like aconitases and aldehyde oxidases (Knuesting et al., 2015). 

We identified the [2Fe-2S] containing XDH1 protein as a PICOT1-interacting protein. 

XDH1 belongs to the family of Xanthine Oxidoreductases (XORs) and is a central player in 

purine catabolism where it catalyses the oxidation of hypoxanthine and xanthine to uric acid. 

In mammals, XOR proteins can possess xanthine dehydrogenase (XDH) or xanthine oxidase 

(XO) activity. In Arabidopsis two XOR-genes are present with a strict XDH activity: Xanthine 

dehydrogenase 1 and 2 (XDH1 and XDH2). Although both genes are located closely to each 

other on the same chromosome, XDH2 is expressed constitutively at basal levels while XDH1 

is differentially expressed upon several stimuli (Hesberg et al., 2004). Like XDHs from other 

organisms, XDH1 is active as a homodimer where each monomer binds three cofactors: two 

[2Fe-2S], one FAD, and one molybdenum cofactor (Moco), at respectively the N-terminal, 

central and C-terminal part of the protein (Zarepour et al., 2010). During purine degradation, 

xanthine or hypoxanthine are bound by the sulfurated Moco cofactor and subsequently 

oxidized to uric acid. During this process electrons are transported through the Fe-S clusters 

to NAD+ which docks at the FAD-cofactor, producing NADH as a by-product. When NAD+ 

concentrations are low, O2 can replace NAD+ as the electron acceptor leading to superoxide 

anion (O2
.-) production (Hesberg et al., 2004). We showed here XDH1 activity is only 

moderately reduced in picot1 KO plants, in accordance with previous findings (Knuesting et 

al., 2015). Alternatively, XDH1 also possesses NADH-oxidase activity, which is independent of 

the Moco cofactor. In this case, NADH functions as the enzyme substrate and O2 acts as the 

only electron acceptor, producing NAD+ and O2
.- (Zarepour et al., 2010). It remains to be 

determined if PICOT1 also contributes to the NADH oxidase activity of XDH1, or only to the 

xanthine/hypoxanthine oxidase activity.  

 Plants deficient in XDH1 are affected in normal growth and development. Seedlings 

with RNAi-mediated silencing of XDH1 are smaller than WT plants with shorter flowering 

stems, smaller fruit size and higher sterility rate (Nakagawa et al., 2007). In addition, XDH1-

deficient plants also show earlier onset of age-dependent and dark-induced leaf senescence 

(Nakagawa et al., 2007; Brychkova et al., 2008) and decreased tolerance to drought stress 

(Watanabe et al., 2010). In accordance with the function of XDH1 in purine catabolism, 

precursors of uric acid (xanthine and hypoxanthine) are more abundant in XDH1-defficient 

plants, while downstream products (allantoin and allantoate) are less abundant (Nakagawa et 

al., 2007; Brychkova et al., 2008). Quantification of these primary metabolites in picot1 KO 

plants indicates some of these purine catabolism intermediaries also accumulate differentially 

in the absence of PICOT1.  
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Figure 5-15. PICOT1 co-expression network. 

The co-expressed gene network around PICOT1 includes CNX3, involved in molybdenum cofactor biosynthesis 

and CIA1, involved in Fe-S cluster maturation. Dots indicate genes encoding spliceosome components. Figure 

adapted from ATTED-II (Obayashi et al., 2009). 

In contrast to mammals, where purine catabolism stops at the level of urea which can 

be subsequently excreted, nitrogen constitutes a much scarcer molecule for plants. Indeed, 

plants have evolved a mechanism to recycle the degradation products of purines by further 

degrading them into products that can be subsequently transported and incorporated again 

into new molecules. The pleiotropic phenotypic characteristics associated with decreased 

XDH1 protein levels are thus thought to result from a limitation in nitrogen availability as 

ureides with high N to C ratio can act as N-transport molecules from source to sink (Werner 

and Witte, 2011). XDH1 is the rate limiting enzyme in this process and in the light of the 

upcoming problems due to nitrogen over-fertilization of crops resulting in excess nitrates 

contaminating the ground water and the health risks associated, understanding the regulation 

of the purine catabolism pathway could enable the engineering of crops to improve nitrogen 

utilization and therefore reduce the need for nitrogen-rich fertilizers. Factors regulating 
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transcription of XDH1 include the phytohormone abscisic acid and stress triggers like drought, 

senescence and salinity. As mentioned earlier, xanthine/hypoxanthine oxidizing activity of 

XDH1 is dependent on the presence of a C-terminal sulfurated Moco (Hesberg et al., 2004; 

Zarepour et al., 2010). Therefore, Moco cofactor incorporation and sulfuration, constitute two 

important processes that regulate XDH1 post-translationally and can therefore also influence 

the purine catabolism pathway. Here, we identified a third mechanism for post-translational 

regulation of XDH1-activity by PICOT1, possibly involved in the maturation of the [2Fe-2S] 

cluster on XDH1. Notably, PICOT1 expression is closely co-regulated with CIA1 and CNX3 

expression (Figure 5-15, Obayashi et al., 2009), a component of the CIA targeting machinery 

(Luo et al., 2012) and a protein involved in the first steps of Moco biosynthesis (Teschner et 

al., 2010), respectively. Thus, the biosynthesis of two different co-factors required for XDH1 

activity are co-regulated at the transcriptional level.  

Next to XDH1, three additional enzymes involved in purine degradation where 

identified in a complex with PICOT1: URH1/2 and UREG. URH1/2 catalyse the cleavage of N-

glycosidic bonds in inosine and xanthosine, yielding ribose and the respective base 

(hypoxanthine and xanthine, Riegler et al., 2011). UreG encodes a urease accessory protein, 

necessary for the activation of Urease that catalyses the last step of purine degradation (Witte 

et al., 2005). Ureides that are produced during purine degradation (e.g. allantoin and 

allantoate) have been shown to be strong ROS-scavengers. During senescence, ureides 

accumulate in WT plants but not in XDH1-defficient plants (Brychkova et al., 2008) and this is 

thought to contribute to the early onset of senescence in these plants. Remarkably, ectopic 

overexpression of RGLG3/4 in N. benthamiana also leads to early onset of senescence in the 

infiltrated areas. This could be attributed to their ability to target endogenous PICOT1 for 

degradation thereby disturbing the accumulation of specific purine catabolism intermediaries 

that can act as ROS scavengers. Indeed, PICOT1 function has been associated with protection 

against oxidative stress in both Arabidopsis and tomato. The authors showed PICOT1 can 

supress the growth defects of a yeast strain where ScGrx3/4 had been deleted. In addition, 

expression of PICOT1 in this strain restored the cell survival phenotype under oxidative stress 

(Cheng et al., 2011; Wu et al., 2012). Heat stress is also known to stimulate the formation of 

ROS, eventually damaging the cell. Accordingly, picot1 seedlings have been reported to 

accumulate higher levels of ROS under heat stress and thermotolerance was compromised in 

these plants (Cheng et al., 2011).  

In addition to a function for PICOT1 in purine catabolism, we have identified a new role 

for PICOT1 in tRNA modification. Several Fe-S proteins have been associated with RNA 

modifications, which are necessary for proper RNA function (Kimura and Suzuki, 2015). The 

best known representative of this category is the Elongator complex, that is required for tRNA 

wobble uridine modification resulting in 5-methoxycarbonyl-methyluridine (and derivatives) 

at position 34 (mcm5U34) of the anticodon. Elongator consists of six proteins (ELP1-6 or ELO1-
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6 in plants), of which ELP3/ELO3 is the enzymatic core, containing a radical SAM domain and 

binding an Fe-S cluster (Mehlgarten et al., 2010). We found that PICOT1 interacts with a 

component of the Elongator complex, ELP4/ELO1, but not with the known Fe-S protein 

ELP3/ELO3. A possible link between Elongator and PICOT1 was expected based on phenotypic 

characteristics of the corresponding mutants. In addition, we identified CTU1 and CTU2, two 

tRNA thiolating enzymes, as PICOT1 interacting proteins. CTU1/2 catalyse tRNA 

thiomodification at the wobble uridine (s2U34, Philipp et al., 2014). Although this modification 

is thought to be Fe-S independent (Kimura and Suzuki, 2015), we showed here that CTU1/2 

interact with PICOT1 thus linking an Fe-S protein to this tRNA modification. In addition, 

seedlings deficient in CTU1 or CTU2 also show the characteristic elongated leaf phenotype 

that is also present in picot1 or elo3-6 mutants. Furthermore, an uncharacterized protein with 

homology to bacterial TtcA (two-thio-cytidine) was also identified as a PICOT1 interacting 

protein. TtcA is responsible for s2C32 tRNA modification and contains an Fe-S cluster (Bouvier 

et al., 2014). Although this modification has not been identified in Arabidopsis yet (Chen et al., 

2010), conservation of the protein in plants and interaction with the Fe-S protein PICOT1 that 

interacts with several other tRNA modifying proteins indicate it might have a conserved 

function in plants. tRNA profiling of picot1 seedlings should allow us to estimate to what 

extent PICOT1 is necessary for the various modifications described above. Notably, tRNA 

modifications are important to maintain translational fidelity including accurate decoding of 

tRNA and maintenance of the reading-frame. Picot1 seedlings were previously shown to be 

hypersensitive to high temperature (Cheng et al., 2011; Knuesting et al., 2015), a condition 

wherein accurate translation is put to the test, indicating the newly identified role of PICOT1 

in tRNA modification might contribute to this phenotype. 

Finally, it deserves to be mentioned that the evolutionary conservation of the 

processes described in this chapter is amazing. Both the CIA complex, PICOT-proteins, XOR-

proteins and tRNA-modifying enzymes are conserved in plants and humans. Additionally, 

HsPicot also seems to be regulated by the ubiquitin-proteasome system in human cells, as it 

has been detected in proteome-wide experiments where ubiquitinated proteins were 

identified through MS (Kim et al., 2011). Fe-S proteins are thought to be reminiscent of the 

origin of life, where Fe and S were readily available and which took place under a reducing, 

anaerobic environment. Metabolic pathways that evolved at these early stages of life became 

essential to all living organisms and many of them require Fe-S proteins (Sheftel et al., 2010). 

As Arabidopsis picot1 seedlings show only mild developmental defects (Cheng et al., 2011; 

Knuesting et al., 2015) in contrast to the strong developmental defects associated with PICOT-

depletion in yeast or animal cells, plants must have evolved alternative proteins or pathways 

that can take over these evolutionary conserved tasks. It will be interesting in the future to 

know whether the maturation of other cytosolic or nuclear proteins is also influenced by 

PICOT1, and if PICOT1-function is restricted to [2Fe-2S] containing proteins or also affects 
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those that contain other types of Fe-S clusters or Fe-centres. Since we identified PICOT1 as a 

protein interacting with both early and late-acting factors in CIA, further functional analyses 

combined with interaction studies will be performed to situate PICOT1 more accurately within 

this pathway. 
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EXPERIMENTAL PROCEDURES 

Plant material and growth conditions 

All mutant lines used in this study were in the Columbia-0 ecotype background. picot1/grxs17 (SALK_021301), 

rglg3rglg4 (SALK_098983, SALK_096022), rol5-2 (GABI_709D04), ctu2-2 (GABI_686B10) and elo3-6 

(GABI_555H06) mutants were previously described (Cheng et al., 2011; Zhang et al., 2012; Philipp et al., 2014; 

Leiber et al., 2010; Nelissen et al., 2010).  

Arabidopsis seeds were sterilized by the chlorine gas method and sown on sterile plates containing the 

corresponding growth media. Plates were kept in the dark at 4°C two days for stratification before being 

transferred to a growth room with 21°C temperature and a 16 h light / 8 h dark regime, unless mentioned 

otherwise.  

 

Cloning and site-directed mutagenesis 

ORFs were amplified from a cDNA template by PCR using Phusion High-fidelity Polymerase (NEB), with specific 

primers including attB sites and subsequently recombined with pDONR207. For the creation of C-terminal 

fusions, reverse primers did not include a stop codon. For the construction of mRING variants, corresponding 

full-length Entry vectors were amplified using Pfu DNA polymerase (Promega) and primers containing the 

mutations. The PCR product was digested using DpnI before transformation to E. coli. Positive colonies were 

picked and sequence verified. All primers used are listed in Supplementary Table S1. UBC and ELP-entry clones 

were kindly provided by Judy Callis (UC, Davis) and Mieke Van Lijsebettens (PSB/VIB, UGhent). 

 

Yeast transformation and Yeast two-hybrid 

Expression clones for yeast two-hybrid were generated by LR Gateway recombination between respective Entry-

clones and pGADT7 or pGBKT7 and co-transformed in competent yeast cells of the S. cerevisiae strain PJ69-4A 

using the LiAc/SS carrier DNA/PEG method (Gietz and Schiestl, 2007). Transformants were selected on SD media 

lacking Leu and Trp (-2). Dropping was performed as described (Cuéllar Pérez et al., 2013). 

 

Bimolecular Fluorescence Complementation (BiFC) 

35S::ORF-tag constructs using the N and C-terminal halves of EGFP (head and tail, respectively) were constructed 

by triple Gateway reactions using pK7m34GW or pH7m34GW (Karimi et al., 2005) as described in (Boruc et al., 

2010). 35S::tag-ORF constructs were generated by double Gateway recombination using pH7m24GW2 or 

pK7m24GW2 (Boruc et al., 2010). The constructs were co-expressed in N. benthamiana using Agrobacterium-

mediated transient transformation. Interactions were scored by screening the lower epidermal cells for 

fluorescence using confocal microscopy 3-5 days after transformation using a Leica SP2 confocal microscope. 

 

Agrobacterium-mediated transient transformation of N. benthamiana 

WT N. benthamiana plants (3–4 weeks old) were used for transient expression of constructs by Agrobacterium 

tumefaciens-mediated transient transformation of lower epidermal leaf cells as previously described (Boruc et 

al., 2010) using a modified infiltration buffer (10 mM MgCl2, Merck; 10 mM MES pH 5.7, Duchefa; 100 μM 

Acetosyringone, Sigma-Aldrich) and addition of a P19 expressing Agrobacterium strain to boost protein 

expression (Voinnet et al., 2003). All Agrobacterium strains were grown for 2 days, diluted to OD 1 in infiltration 

buffer and incubated for 2-4 h at room temperature before mixing in a 1:1 ratio with other strains and injecting. 

 

Tandem affinity purification 

N or C-terminally tagged TAP constructs (GS or GSrh tag) were generated as described (Van Leene et al., 2015), 

used for the transformation of Arabidopsis PSB-D cell suspension cultures without callus selection and further 

grown and subcultured as described (Van Leene et al., 2011). Stably transformed cultures were scaled up and 

harvested 6 days after subculturing.  

Transgenic Arabidopsis seeds were generated by floral dip (Clough and Bent, 1998), using Col-0 as the 

background ecotype and the same constructs as for cell culture transformation. Transformants were selected as 
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described (Van Leene et al., 2015). Purifications were performed as described (Van Leene et al., 2015) with the 

exception that no Benzonase treatment was performed on the cell culture extracts. Expression of TAP-tagged 

constructs was verified on an aliquot of total protein extract before purification. 

 

Cell-free degradation assays 

Total protein extracts were prepared by resuspending ground tissue in cold extraction buffer (25 mM Tris HCl pH 

7.5, 10 mM NaCl, 10 mM MgCl2, 4 mM PMSF, 5 mM DTT 5 mM, 10 mM ATP) at a ratio of 1 g tissue per ml 

extraction buffer and centrifuged at 12000 g for 15 minutes, twice. To test PICOT1 stability, 10-day-old PICOT-

HA seedlings were grown under continuous light at 21°C and 50 µM MG132 (Boston Biochem) or 1 % v/v dimethyl 

sulfoxide as a control was added to the total protein extract. Each reaction was incubated at room temperature 

and samples were harvested at the indicated time points. To stop the reaction, SDS sample buffer was added, 

followed by boiling for 10 minutes before gel analysis. 

To test protein stability in wild type and mutant background, total protein extraction was performed as above 

but PMSF, DTT, ATP and 300 ng PICOT1:V5-His were added to 3.5 µg/µl of each protein extract (Bradford, 1976) 

just before the room temperature incubation. 

 

Localization studies 

For generation of transgenic plants with 35S::ORF-GFP or 35S::GFP-ORF expression, entry clones containing 

PICOT1, RGLG3mRING or RGLG4mRING were recombined with the pFAST-R05 or pFAST-R06, respectively. 

Transgenic Arabidopsis seeds were generated by floral dip (Clough and Bent, 1998), using Col-0 as the 

background ecotype. Transformants were selected based on the seed fluorescent marker (RFP) and homozygous 

T3 plant lines were used in the assays. Localization studies were performed on the roots of 4-day old transgenic 

seedlings grown vertically on MS plates (10 g/L sucrose and 8 g/L agar), after a brief incubation in propidium 

iodide (3 mg/L, Sigma) using a Leica SP2 confocal microscope. For localization studies in N. benthamiana, leafs 

were transiently transformed with the same constructs that were used to generate Arabidopsis transgenic lines, 

in addition to a P19 expressing construct. Lower epidermal leaf cells were imaged 3-5 days after infiltration using 

a Leica SP2 confocal microscope. 

 

Immunodetection 

After quantification of the protein content as described by (Bradford, 1976), the indicated protein samples were 

loaded on a 4–15% TGX gel (Bio-Rad) and ran for 20 min at 300 V. Next, proteins were transferred to 0.2 µm 

PVDF membranes (Bio-Rad) with the Trans-blot Turbo (Bio-Rad). A 1/1000 dilution of rat monoclonal anti-HA 

antibodies (clone 3F10, Roche) were used to detect PICOT1-HA or HA-Ub conjugated proteins. A 1/2000 dilution 

of polyclonal rabbit anti-V5 antibodies (Sigma) were used to detect recombinant PICOT1-V5-HIS. A 1/1000 

dilution of monoclonal mouse anti-Ubiquitin antibodies (Millipore, clone FK2) were used to detect mono- and 

polyubiquitinated proteins. A 1/5000 dilution of HRP-conjugated monoclonal anti-GFP antibodies (Miltenyi 

Biotech Inc.) were used to detect free GFP. A mixture containing both a 1/2000 dilution of anti-tetra-HIS and a 

1/2000 dilution of anti-penta-HIS mouse monoclonal antibodies (Roche) was used to detect PICOT1-HIS. A 

1/1000 dilution of polyclonal mouse anti-GST antibodies were used to detect GST-RGLG4. Chemiluminescent 

detection was performed with Western Bright ECL (Isogen).  

 

Affinity purification of ubiquitinated proteins 

Isolation of ubiquitinated proteins was performed as previously described (Manzano et al., 2008) with small 

modifications. Briefly, 35S::PICOT1-HA seedlings were grown in half-strength liquid MS medium and treated for 

24 h with 50 µM MG132 or DMSO before harvesting. Proteins were extracted using buffer BI (50 mM Tris–HCl 

pH 7.5; 20 mM NaCl; 0.1% NP-40 and 5 mM ATP) plus plant protease inhibitors cocktail (Sigma), 1 mM of PMSF, 

50 µM MG132, 10 nM ubiquitin aldehyde and 10 mM N-Ethylmaleimide. Protein extracts were incubated with 

40 µL pre-washed TUbE-agarose resin (Hjerpe et al., 2009) or the agarose resin alone at 4°C during 4 h. 

Afterwards, the beads were washed 2 times with 1 mL BI buffer and once more with 1 mL BII buffer (BI plus 200 

mM NaCl) and proteins were eluted by boiling into 50 µL SDS loading buffer. The eluted proteins were separated 

by SDS-PAGE and analysed by immunoblotting. 
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In vitro ubiquitination assay 

6X-His-E2, His-MBP-E3s, GST-E3s and PICOT1:V5-His fusions were expressed in Escherichia coli BL21 and purified 

according to manufacturer’s instructions (Amylose resin, New England Biolabs or Ni-NTA superflow, Qiagen). 

Proteins were stored in buffer containing 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.2 mM DTT and 20 % v/v glycerol 

and kept at -80°C until needed. Recombinant 6X-His-HsUbcH5b was obtained from Sigma. 

Ubiquitination assays were carried out incubating 50 ng E1 (E-304, Boston Biochem), 50 ng E2, 50 ng E3, 500 ng 

PICOT-V5-His, 0.1 U CREATINE PHOSPHOKINASE (Sigma, C3755) and 5 µg HA-Ubiquitin (U-110, Boston Biochem) 

in 1X ubiquitination buffer (50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 0.2 mM DTT, 1 mM ATP and 10 mM 

phosphocreatine) for 2 hours at 30°C. The reactions were stopped by adding SDS sample buffer and boiling for 

10 minutes. Samples were separated on a 4-15% SDS-PAGE gel (Bio-Rad) followed by immunoblotting with anti-

HA (Roche) or anti-V5 (Sigma). 

Ubiquitinated sites were analysed by Q- Exactive mass spectrometer in LC-MS/MS. Gel samples were prepared 

for mass spectrometry, 7 slices were cut from Nupage Bis-Tris Gel (4-12%, Invitrogen) and digested with trypsin. 

The supernatants containing the peptides were separated from the gel pieces by sonication and concentrated by 

vacuum drying. Every sample was re-dissolved in 20 µl loading solvent for LC-MS/MS. 5 µl of the prepared 

samples were analysed by the Q-Exactive mass spectrometer in LC-MS/MS mode. The MS/MS data, obtained 

were presented against the NCBI E. coli K12 protein database concatenated with the V5-His-tagged sequence of 

PICOT1. To identify the proteins, each peptide was linked to a protein by the Mascot algorithm. Each 

identification was performed with 99% confidence settings. 

 

Metabolites quantification 

Metabolite profiling by LC-MS was carried out according to (Tohge and Fernie, 2010). 

 

Enzymatic activity measurement (XDH) 

XDH1 activity measurements in plant crude extracts were performed as described in (Hesberg et al., 2004). 

Briefly, total protein extract was obtained from 10-day-old Arabidopsis seedlings. Plant tissue was grown in liquid 

nitrogen, resuspended in 2 volumes of extraction buffer (100 mM Tris-HCl pH 7.5, 2.5 mM EDTA, 5 mM DTT) and 

centrifuged. Supernatants were concentrated using Nanosep centrifugal devices (30K Omega, Pall Life Sciences) 

and 100 µg of total protein quantified by the method of (Bradford, 1976) were used for activity assays. 4-16% 

native polyacrylamide gels under non-reducing conditions were run at 4°C, followed by in-gel staining with 1 mM 

hypoxanthine, 1 mM 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide (MTT) and 0.1 mM phenazine 

methosulfate in 250 mM Tris-HCl pH 8.5. Bands were quantified using ImageJ software. 
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SUMMARY 

Jasmonates (JAs) are a class of plant hormones that regulate plant development and 

are involved in the response of plants to both biotic and abiotic stresses. The ubiquitin system 

is essential for the onset of most hormonal responses by controlling both hormone 

biosynthesis and signal transduction. In the JA-signalling pathway, the E3 ubiquitin ligase 

component COI1 is essential for the perception of the hormone. Two additional E3 ubiquitin 

ligases RING LIGASE 3 and 4 (RGLG3 and RGLG4) have been proposed to contribute to JA-

signalling, however their precise mode of action during this process is unknown. Here we show 

that the ubiquitination target of RGLG3/4, the glutathioredoxin PKC-θ INTERACTING COUSIN 

OF THIOREDOXIN-1 (PICOT1/GRXS17), is a potential regulator of COI1 function. PICOT1 was 

found to physically interact with COI1 in vivo. Evaluation of the JA-response of rglg3rglg4 

double knock-out seedlings revealed these E3 ligases function in JA-signalling only in the 

presence of low amounts of JAs. Additionally, coi1-16, a temperature sensitive missense allele 

of COI1, could partially complement the picot1 short-root phenotype. Transcriptome analysis 

of picot1, coi1-16 and picot1coi1-16 mutants revealed a set of genes that are upregulated in 

coi1-16 in a PICOT1-dependent but JA-independent manner. Our results identify a potential 

new molecular mechanism for JA-independent COI1 functioning involving RGLG3/4 and 

PICOT1.  
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INTRODUCTION 

Despite the well-established function of ubiquitination in the control of several 

hormonal responses in plants (see Chapter 1), only one ubiquitin E3 ligase has been 

thoroughly characterized in the jasmonate (JA) signalling pathway. The F-box protein COI1 

assembles with ASK1/2, RBX1 and CUL1 resulting in a complex E3 ligase. Binding of the 

bioactive JA hormone JA-Ile, or the analogue chemical Coronatine, enables SCFCOI1 to bind to 

JAZ repressors and trigger their ubiquitination and subsequent proteolytic degradation. 

Together, SCFCOI1 and JAZ constitute the JA-receptor (Chini et al., 2007; Thines et al., 2007; 

Sheard et al., 2010). Degradation of JAZ proteins relieves multiple transcription factors of 

repression, eventually resulting in activation of downstream responses (Pauwels and 

Goossens, 2011; Kazan and Manners, 2012). 

Members of the RING DOMAIN LIGASE (RGLG) family of Arabidopsis have recently 

been associated with various hormone and stress signalling pathways. The RGLG protein 

family belongs to a subfamily of plant RING-type E3 ligases and contains five members in 

Arabidopsis. Family members are characterized by the presence of a von Willebrand factor 

type A or copine domain in addition to the characteristic RING-domain (Whittaker and Hynes, 

2002; Stone et al., 2005). RGLG1 and RGLG2 were shown to function redundantly and 

simultaneous loss-of-function mutations in both genes causes severely altered phenotypes 

including loss of apical dominance, altered phyllotaxy and leaf shape and increased cell size. 

These phenotypes are at least partially caused by alterations in the directional flow of auxin, 

which is mediated by PIN-proteins (Yin et al., 2007). Accordingly, RGLG2 was shown to interact 

with PIN1 and PIN2 (Yin et al., 2007; Leitner et al., 2012). PIN1-type auxin carrier proteins are 

located at the plasma membrane and are regulated by poly-ubiquitination, amongst others, 

resulting in endocytosis, vacuolar targeting and finally, proteolytic degradation. Poly-

ubiquitination of PIN2 was decreased in rglg1rglg2 plants, suggesting RGLG1/2 substantially 

contribute to this process (Leitner et al., 2012).  

In addition to a role in polar auxin transport, RGLG1 and RGLG2 have also been shown 

to be involved in the response to abiotic stresses such as drought, salt stress and heat stress 

by regulating the stability of the abscisic acid-responsive AP2/ERF transcription factor (TF) 

ERF53. These stress conditions trigger translocation of RGLG1/2 from the plasma membrane 

to the nucleus, where they both interact with ERF53. Finally, mono-ubiquitination of ERF53 by 

RGLG2 was confirmed in vitro (Cheng et al., 2012; Hsieh et al., 2013). 

RGLG3 and RGLG4, two other members of the RGLG family have been associated with 

JA-signalling (Zhang et al., 2012). JA-mediated root growth inhibition was reported to be 

decreased in rglg3rglg4 double knock-out (KO) plants, but not in single KO plants indicating 

RGLG3 and RGLG4 have redundant functions during JA-signalling. Accordingly, plants 

overexpressing either RGLG3 or RGLG4 experience enhanced JA-mediated root growth 
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inhibition. The JA-insensitivity of rglg3rglg4 seedlings was confirmed on the transcriptional 

level as induction of JA-responsive genes is decreased when these seedlings are treated with 

exogenous JA (Zhang et al., 2012).  

Although RGLG3 and RGLG4 perform redundant functions in JA-signalling, their 

expression is regulated by JA in different ways. While in mature leafs RGLG3 is mainly 

expressed in the veins and its transcription is induced by MeJA treatment, RGLG4 expression 

is diffused throughout the tissue and is repressed after MeJA treatment (Zhang et al., 2012). 

Based on the requirement of functional COI1 for the JA-hypersensitivity phenotypes of 

RGLG3/4 overexpressing plants, a model was proposed where RGLG3 and RGLG4 function 

upstream of the known JA core signalling complex (COI1-JAZ-MYC-NINJA). Although 

experimental confirmation is still needed, the authors speculate RGLG3/4 could be involved 

in the signal transduction from JA-Ile to COI1 or could influence JA-production through 

feedback regulation (Zhang et al., 2012). 

RGLG3/4 were also reported to function in biotic stress tolerance by regulating 

Fumonisin B1 (FB1)-triggered programmed cell death (PCD). FB1 is a mycotoxin produced by 

the fungal pathogen Fusarium moniliforme that triggers PCD by inhibiting sphingolipid 

biosynthesis. In addition to the JA-signalling pathway, FB1-elicited PCD also requires activation 

of the salicylic acid (SA) signalling pathway. RGLG3 and RGLG4 were postulated to regulate the 

crosstalk between SA and JA in response to F. moniliforme infection (Zhang et al., 2015).  

In Chapter 5 we showed that RGLG3 and RGLG4 regulate PKC-θ INTERACTING COUSIN 

OF THIOREDOXIN1 (PICOT1/GRXS17) protein levels by ubiquitination, triggering subsequent 

proteasomal degradation of the latter. We further also investigated the molecular function of 

the PICOT1 protein. The glutathioredoxin PICOT1 is the Arabidopsis ortholog of yeast GRX3 

and human PICOT, but the physiological and molecular role of PICOT1 in plants is not well 

understood (Couturier et al., 2013). PICOT1 function has been associated with protection 

against oxidative stress in Arabidopsis and with thermotolerance in Arabidopsis and tomato 

(Cheng et al., 2011; Wu et al., 2012; Knuesting et al., 2015). Picot1 loss-of-function plants were 

hypersensitive to heat stress and this was associated with alterations in polar auxin transport 

in these mutants (Cheng et al., 2011).  

PICOT1 also interacts with and regulates the redox state of BolA2, whose biological 

function is still unknown in plants. Interaction of PICOT1 with BolA2 is mediated by 

simultaneous coordination of an iron-sulfur cluster (Fe-S) by both proteins (Couturier et al., 

2014; Roret et al., 2014). PICOT1 can also bind Fe-S clusters independent of BolA2 interaction, 

through the formation of Fe-S bridged homo-dimers, and it can contribute to the activity of 

cytosolic Fe-S enzymes (Knuesting et al., 2015; see Chapter 5). Finally, PICOT1 has recently 

been reported to interact with the TF NF-YC11/NC2α and seedlings carrying loss-of-function 
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mutations in the latter exhibited phenotypes similar to those of the picot1 mutant (Knuesting 

et al., 2015). 

In this chapter we further characterize the role of RGLG3 and RGLG4 in JA-signalling. 

We identified more proteins that appear in a complex with RGLG3/4 in vivo in the presence or 

absence of exogenous JA and confirm direct interaction with the hemoglobin GLB3 in addition 

to PICOT1. While in Chapter 5 we focussed on the molecular interactions between PICOT1 and 

RGLG3/4, here, we focus on the contribution of RGLG3/4 and PICOT1 to the plant’s JA-

responses. We demonstrate that PICOT1 interacts with the JA-receptor F-box component 

COI1 and that the phenotype of picot1 seedlings can be partially rescued by coi1-16, a 

thermosensitive COI1-allele. Finally, the genetic interaction between COI1 and PICOT1 was 

studied in more detail on the transcriptome level and we identified a set of SA-responsive 

genes that are up-regulated in coi1-16 in a PICOT1-dependent manner in the absence of SA-

treatment. 
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RESULTS 

PICOT1 and GLB3 interact with RGLG4 

In the previous chapter, Tandem Affinity Purification (TAP) in combination with 

targeted mutations in RGLG3/RGLG4 were used to identify targets of these E3 ligases. Here, 

TAP was used to investigate the influence of exogenous JA-treatment on protein interactions 

mediated by RGLG3 or RGLG4. PSB-D cell cultures expressing TAP-tagged WT or mRING-

variants of RGLG3 or RGLG4 were treated with 50 µM JA or 100% ethanol (mock treatment) 

for 1 minute before harvesting. To increase the sensitivity of the assay, the ultra-sensitive MS 

device Q-exactive was used to re-analyse the samples of previous TAPs (Table 6-1). We were 

able to identify additional proteins interacting with RGLG4mRING. However, only two of these 

proteins have a (predicted) nuclear or cytosolic localization: PICOT1/GRXS17 and 

HEMOGLOBIN 3 (GLB3). Note that GLB3 was only identified in complex with RGLG4mRING in 

the JA-treated samples and not in mock-treated samples. 

Table 6-1. Summary of RGLG3/4 interacting proteins identified via TAP. 

 

Respecitve baits were fused C or N-terminally to a GS or GSrhino TAP-tag (C/N-GS or C/N-GSrh, respectively) and 

expressed in Arabidopsis cell cultures. The cultures were treated with 50 µM JA or 100% ethanol (mock) for 1 

minute before harvesting. Purified complexes were analysed using mass-spectrometry devices (LTQ Orbitrap 

Velos or Q-Exactive). Numbers represent the incidence of protein identification out of two experiments. Only 

proteins that were identified in at least 2 TAP experiments with the same bait are retained. Background is 

subtracted. Proteins with predicted or experimentally verified localization in chloroplasts or mitochondria are 

indicated in grey.  

The Arabidopsis genome encodes three non-symbiotic haemoglobins (Hbs, GLB1-3). In 

contrast to GLB1 and GLB2 that have a 3-on-3 globin fold, GLB3 is a truncated plant Hb with a 

2-on-2 globin fold that is more closely related to bacterial Hbs (Watts et al., 2001).  While the 

biological function of GLB3 is currently unknown, a role for GLB1 and GLB2 has been proposed 

in shoot organogenesis and NO-scavenging (Wang et al., 2011; Mur et al., 2012). We 

confirmed the predicted nucleo-cytoplasmic localization of GFP-fused GLB3 by expressing this 

construct in N. benthamiana mesofyll cells (Figure 6-1 A). Based on Y2H assays, we show that 
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GLB3 can interact directly with RGLGs, as was the case for PICOT1. Remarkably, both RGLG-

interacting proteins PICOT1 and GLB3 were able to interact directly, as seen in Y2H assays 

(Figure 6-1 B).  

 

Figure 6-1. GLB3 localization and direct interactions with RGLG3/4.  

A. GFP-GLB3 was transiently overexpressed in N. benthamiana under control of a CaMV 35S promoter. B. Y2H 

assay of GLB3 against RGLG3, RGLG4 and PICOT1. Transformed yeasts were spotted in 10-fold and 100-fold 

dilutions on control medium (not shown) or selective medium. 

In previous studies, PICOT1 was reported to migrate from the cytoplasm to the nucleus 

upon heat stress in N. benthamiana (Wu et al., 2012). We therefore also analyzed PICOT1 

localization after wounding and after exogenous JA-treatment in stably transformed PICOT1-

GFP seedlings. Under these conditions, we did not see any change in PICOT1 subcellular 

localization. Because ubiquitination could alter the subcellular localization of PICOT1, we 

visualized PICOT1-GFP in N. benthamiana mesophyll cells after co-transfection with WT RGLG3 

and RGLG4. No alterations in PICOT1-GFP localization were observed (data not shown). 

 

PICOT1 interacts with the JA-receptor COI1 

To determine the role of PICOT1 in the JA-signalling pathway, we investigated the 

effect of JA-treatment on PICOT1 interacting proteins via TAP (Table 6-2). PSB-D cell cultures 

and seedlings expressing GSrhino-tagged PICOT1 were generated during previous research 

(see Chapter 5) and were additionally treated with JA or 100% ethanol (mock treatment) for 

1 minute or for 1 hour before harvesting. 

Besides components of the cytoplasmic iron-sulfur (Fe-S) assembly complex, several 

tRNA modifying proteins and known Fe-S proteins (described in detail in previous chapter), 

several enzymes that catalyse redox reactions, and thus would benefit from the presence of 

an Fe-S cofactor, were also identified as PICOT1 interacting proteins. However, the most 

interesting finding was that the JA-receptor COI1 forms a complex with PICOT1, both in cell 

cultures and in seedlings. 

To verify that PICOT1 interacts with COI1 in planta, we first confirmed that the two 

proteins co-localize in the same subcellular compartment. COI1 was N-terminally fused to GFP 

and expressed under control of a CaMV 35S promoter. Both in stably transformed seedlings 
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(Figure 6-2A) or transiently transfected N. benthamiana mesophyll cells (Figure 6-2B), GFP-

COI1 localized exclusively to the nucleus. We subsequently used bimolecular fluorescence 

complementation (BiFC) combined with transient expression in N. benthamiana to show that 

the interaction between PICOT1 and COI1 is direct and takes place exclusively in the nucleus 

(Figure 6-2C). 

The plant PICOT-protein contains one N-terminal thioredoxin (Trx) domain and three 

C-terminal glutaredoxin (Grx) domains, also known as PICOT-homology domains (Isakov et al., 

2000). To test which protein domain of PICOT1 is required for interaction with COI1 we made 

an N-terminal and C-terminal truncation of PICOT1 containing either the Trx-domain or the 

three Grx-domains. The Trx domain of PICOT1 lacks the dithiol motif in the catalytic center, 

and is therefore thought to function as a protein-protein interaction platform independent of 

redox activity (Haunhorst et al., 2010). Accordingly, the fragment containing the Trx domain 

of PICOT1 was sufficient to mediate interaction with COI1 in BiFC experiments (Figure 6-2C) 

while interaction with COI1 could not be supported by the C-terminal truncation of PICOT1 

(data not shown). 

 

Figure 6-2. PICOT1 interacts with the JA-receptor COI1 

Subcellular localization of COI1. A. Confocal root tip images of 4-day-old Arabidopsis seedlings overexpressing 

GFP-COI1. Propidium iodide was used to visualize the cell wall. B. GFP-COI1 was transiently overexpressed in N. 

benthamiana mesophyll cells. Controls with unfused eGFP fragments did not result in detectable fluorescent 

signals (data not shown). C. COI1 and PICOT1 interaction by BiFC. Head (h) or tail (t) eGFP fusions of COI1, PICOT1 

or Trx-domain of PICOT1 were transiently expressed in N. benthamiana.  
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Table 6-2. PICOT1-GSrh interacting proteins identified using TAP 
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  Name Locus                 

JA-signalling     

              

 COI1 AT2G39940 2 2    2      6 

                  

Cytoplasmic [Fe-S] assembly pathway                  

 MET18 AT5G48120 2 2 2 2 2 2 2 1 15 

 CIAPIN / DRE2 AT5G18400 2 2 2 2 2 2 2   14 

 AE7 / CIA2 AT1G68310 2 2  1   2     7 

 NAR1 AT4G16440 2 2 1 1        6 

 CIA1 AT2G26060 2 2  1        5 

                  

Purine catabolism and salvage                  

 XDH1 | Xanthine dehydrogenase 1 AT4G34890 2 2 1 1 2 2 1   11 

 URH1 | Uridine-ribohydrolase 1 AT2G36310       2 1   1 4 

 URH2 | Uridine-ribohydrolase  2 AT1G05620       2 2   1 5 

 UREG | Urease accessory protein G AT2G34470       2      2 

                  

tRNA modifications                  

 CTU1/ROL5 | Cytoplasmic thiouridylase 1 AT2G44270         1 1   2 

 CTU2 | Cytoplasmic thiouridylase 2 AT4G35910 1 2      1 1   5 

 2-thiocytidine tRNA biosynthesis protein (TtcA) AT1G76170 2        1     3 

 YbaK/aminoacyl-tRNA synthetase-associated AT1G44835 1 2           3 

 Aminoacyl-tRNA ligase1 AT3G04600  1           1 

 Aminoacyl-tRNA ligase2 AT1G09620       2    1 3 

 Phenylalanyl-tRNA synthetase AT3G58140       2      2 

                  

Other known Fe-S proteins                  

 AtBolA2 AT5G09830 2 2 1 2   1     8 

 Radical SAM superfamily protein1 AT2G39670       1      1 

 NIFS12 AT5G65720       2      2 

 AtSUFE1 AT4G26500 1 2    1 1 1 1 7 

 AtBolA11 AT1G55805  1           1 

                  

Thioredoxins                  

 ACHT2 | Atypical Cys /His-rich thioredoxin 21 AT4G29670  1           1 

 TRXF1 | Thioredoxin F-type 11 AT3G02730       1      1 

                  

Kinases and phosphatases                  

 HXK1 | Hexokinase 1 AT4G29130       2    1 3 
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 Phosphofructokinase family protein AT1G20950       2    1 3 

 VTC1 | Vitamin C defective 11 AT2G39770       1      1 

                  

Miscellaneous                  

 AtLARP1a AT5G21160 2 2           4 

 XCT | XAP5 family protein AT2G21150 1 2           3 

 CA2 | Carbonic anhydrase 2 AT5G14740       2      2 

 DEA(D/H)-box RNA helicase family protein AT5G60990       2      2 

 LON2 |Lon protease 2 AT5G47040       1    1 2 

 MLP34 | MLP-like protein 34 AT1G70850       1    1 2 

 CINV1 | Cytosolic invertase 11 AT1G35580       1      1 

 Adenine nucleotide alpha hydrolases-like1 AT3G53990            1 1 

 Aluminium induced protein AT3G22850 2 2      1 2   7 

 Aluminium induced protein2 AT5G43830       2      2 

 RING-protein1,2 AT3G54360       1      1 

 F-box protein1 AT1G24800          1   1 

 Ub interaction motif-containing protein AT1G43690  2  1        3 

 unknown protein AT3G60660 2 1 2 2    1   8 

 unknown protein AT5G06590 2 2 1 1        6 

 unknown protein AT2G24970    1 1        2 

 unknown protein AT2G22660 1 1           2 

 unknown protein1 AT1G18060       1      1 

 PSAF | Photosystem I subunit F2 AT1G31330       2      2 

 PSAK | Photosystem I subunit K AT1G30380       2      2 

 PSAN | Photosystem I reaction center subunit2 AT5G64040       2      2 

 NAI2 | DNA topoisomerase-related2 AT3G15950       2      2 

 CHLI1| Subunit of magnesium chelatase AT4G18480       2      2 

 ISE1 | DEAD-box RNA helicase AT1G12770       2      2 

 Small subunit of acetolactate synthase AT2G31810       2      2 

 FAB1/KAS2 | Fatty acid biosynthesis 1 AT1G74960       2      2 

 LACS6 | Long-chain acyl-CoA synthetase 6 AT3G05970       2      2 

 ATPE | ATP synthase ε chain ATCG00470       2      2 

 ATP3 | γ subunit of Mt ATP synthase AT2G33040       1    1 2 

 ATPC1 | γ subunit of chloroplast ATP syntase1 AT4G04640       1      1 

 GTP-binding family protein AT3G12080       2      2 

 NOS1/NOA1/RIF1 | Nitric oxide synthase 11 AT3G47450       1      1 

 ABA1/ZEP | Zeaxanthin epoxidase1 AT5G67030       1      1 

 ASNAP | α-soluble NSF attachment protein 21 AT3G56190            1 1 

  trigger factor type chaperone family1 AT5G55220               1 1 

PICOT1 was fused C or N-terminally to a GSrhino TAP-tag (C-GSrh or N-GSrh, respectively) and expressed in 

Arabidopsis cell cultures or seedlings under control of a CaMV 35S promoter. The cell cultures were treated with 

50µM JA or 100% ethanol (mock) for 1 minute or 1 hour before harvesting. Proteins identified with LTQ Orbitrap 

Velos, with at least 2 significant peptides per identification. Only proteins that were identified in at least 2 TAP 

experiments with the same bait are retained. Background is subtracted. Numbers represent the incidence of 

protein identification out of two experiments or a single experiment (N-GSrh seedlings). Proteins with predicted 

or experimentally verified localization in chloroplasts or mitochondria are indicated in grey. 1Found in only 1 TAP 

experiment. 2Possible background. 
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Generation of loss-of-function and overexpression lines 

To study the contribution of RGLG3, RGLG4 and PICOT1 to JA-signalling, we acquired 

Arabidopsis lines with T-DNA insertions in the respective genes. In addition to the RGLG3 and 

RGLG4 KO alleles described by (Zhang et al., 2012, renamed rglg3-1 and rglg4-1), we isolated 

two extra alleles: rglg3-2 and rglg4-2, both in the Col-0 ecotype. The T-DNA insertions were 

mapped and transcript levels in the respective genes were verified by quantitative Real-time 

PCR (qRT-PCR, Figure 6-3). 

 

Figure 6-3. Characterization of T-DNA insertional mutants. 

Schematic visualization of RGLG3 (A), RGLG4 (B) and PICOT1 (C) gene structure, T-DNA insertions in the 

corresponding mutants and the primers used for genotyping and for transcript quantifications (D). Black boxes 

represent exons. Data represent mean ±SEM of three biological replicates (**, p<0.01; ***, p<0.001; t-test). UBC 

(At5g25760) was used as internal control and expression values were normalized to those of the wild-type (WT). 

The genetic interaction between PICOT1 and COI1 was investigated in picot1 (Col-0) 

lines containing additional mutations in COI1. More specifically, we generated picot1coi1-1, 

picot1coi1-16, picot1coi1-21 and picot1coi1-22 double mutant lines. While coi1-1 is a male 
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sterile full KO allele of COI1 introducing an early stop codon (Xie et al., 1998), the three 

additional coi1 alleles used are point mutations leading to amino acid substitutions in the LRR-

domain of COI1 (Figure 6-4). These alleles are hypo-sensitive to JA-treatment but can still be 

maintained as homozygous lines at room temperature or at 16°C in the case of the thermo-

sensitive coi1-16 allele (Ellis and Turner, 2002; He et al., 2012).  

 

Figure 6-4. COI1 alleles used in this study 

Schematic overview of the COI1 protein structure (592 amino acids) with F-box domain and LRR repeats. The 

allele designation and associated amino acid change is shown in relation to its linear position. Figure adapted 

from (He et al., 2012). 

Finally, we also generated Arabidopsis lines stably expressing PICOT1 fusions to GFP or 

a hemagglutinin epitope tag (HA) under control of the CaMV 35S promotor. Three 

independent lines with gradually increasing overexpression were selected for further assays 

based on immunodetection of the PICOT1 protein levels (Figure 6-5). 

 

Figure 6-5. PICOT1 overexpression levels. 

PICOT1-GFP (81kDa) and PICOT1-HA (58kDa) were stably expressed in Arabidopsis seedlings under control of a 

pCaMV35S promotor. Three independent lines were selected based on gradually increasing protein levels of 

PICOT1 detected with on immunoblots with anti-GFP antibody (A) or anti-HA antibody (B). Arrowheads indicate 

PICOT1. 

 

Phenotypic characterization of seedlings overexpressing PICOT1 

Seedlings grown in the presence of exogenous JA, characteristically respond with a 

reduction in growth and a boost in secondary metabolism. These effects can be assessed by 

measuring the fresh weight, main root length and anthocyanin production of the seedlings. 

These properties were used to evaluate the JA-sensitivity of different lines with altered 

expression of RGLG3, RGLG4 and PICOT1.  

Both, GFP and HA-tagged PICOT1 lines did not show obvious alterations in JA-

responses based on growth parameters (fresh weight and main root length) or the production 

of secondary metabolites (anthocyanins) when grown on medium containing increasing 

concentrations MeJA (Figure 6-6). Although some significant alterations in JA-response could 
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be detected, these did not show a dose-response effect upon increasing MeJA concentrations 

in the medium nor increasing PICOT1 expression levels and are therefore not considered 

relevant alterations. 

 

Figure 6-6. JA-responses of PICOT1 overexpression lines. 

Seedlings expressing different levels of GFP or HA-tagged PICOT1 were grown on MS supplemented with 0 μM, 

2.5 μM or 10 μM MeJA. A. Fresh weight per seedling of 14 day-old seedlings. B. Main root length of 11 day-old 

seedlings. C. Anthocyanin accumulation was determined in the same seedlings as (A). Data represent mean ±SEM 

of n=4 (A,C) or n>16 (B) (*, p<0.05; **, p<0.01; ***, p<0.001; t-test; ↑ or ↓, value significantly larger or smaller 

than expected, respectively). 
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rglg3 rglg4 seedlings are not hyposensitive to JA 

We next evaluated the JA-response of rglg3 and rglg4 KO seedlings. Rglg3 or rglg4 

single KO seedlings were smaller than WT in control conditions. Although measurement of the 

fresh weight, main root length and anthocyanin content (Figure 6-7 A, B) sometimes indicated 

an altered sensitivity to JA, significant alterations did not correlate with increasing MeJA 

concentration in the medium, were only seen in one of the two KO mutants of each gene or 

were contradictory depending on the parameter measured. These results confirm that rglg3 

and rglg4 single KO mutants do not respond differentially to JA, as was reported previously 

(Zhang et al., 2012). 

 

Figure 6-7. JA-mediated growth inhibition and anthocyanin accumulation in rglg single KO lines. 

Seedlings were grown for 14 days on solid (A,B) or liquid (C) MS with 0 μM, 2.5 μM or 10 μM MeJA. A. The fresh 

weight per seedling was measured at 14 days. B. The main root length was measured at 11 days. C. Anthocyanins 

per gram fresh weight were measured at 14 days. Error bars represent ±SEM of n=3 (A,B) or n=4 (C) (*, p<0.05; 

**, p<0.01; ***, p<0.001; t-test; ↑ or ↓, value significantly larger or smaller than expected, respectively). 
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We subsequently investigated the JA-sensitivity of rglg3rglg4 double mutant lines 

(Figure 6-8). Similar to single rglg mutant seedlings, double mutants were smaller than WT 

seedlings under control conditions. This defect was however more pronounced in double 

mutants than in single mutants, based on their fresh weight. This could indicate that RGLG3 

and RGLG4 might have non-redundant functions in addition to their redundant role in JA-

signalling. Strikingly, rglg3rglg4 double mutant seedlings did not show the severe JA-

insensitive phenotype published earlier (Zhang et al., 2012), but rather presented a minor but 

significant decrease in JA-sensitivity when grown in the presence of low amounts of MeJA (2.5 

µM). This effect was almost completely lost when seedlings were grown in the presence of 

higher MeJA concentrations.  

 

Figure 6-8. JA-mediated growth inhibition and anthocyanin accumulation in rglg3rglg4 double mutant lines. 

Seedlings were grown for 14 days on solid MS with 0 μM, 2.5 μM or 10 μM MeJA. A. The fresh weight per seedling 

was measured at 14 days. B. The main root length was measured at 11 days. C. Anthocyanins per gram fresh 

weight were measured at 14 days. Error bars represent ±SEM of n=4 (A,C) or n>22 (B) (*, p<0.05; **, p<0.01; ***, 

p<0.001; t-test; ↑ or ↓, value significantly larger or smaller than expected, respectively). 
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To further assess the JA-sensitivity of rglg3rglg4 seedlings, we repeated the 

experiment with the exact same conditions as described in Zhang et al. (2012). Main root 

length measurement did not reveal an altered JA-sensitivity as both KO lines showed 

contradicting phenotypes (Figure 6-9 A). These seedlings were then used to inspect the 

expression of two JA-marker genes (VSP2 and PDF1.2). Zhang et al reported negligible 

induction of PDF1.2 and around 4-fold lower induction of VSP2 by JA-treatment in rglg3-

1rglg4-1 seedlings. However, our expression analyses did not reveal significant alterations in 

response to JA-treatment when compared to WT seedlings (Figure 6-9B), indicating both 

rglg3rglg4 KO lines behave as WT when grown in the presence of high (> 2.5 µM) MeJA 

concentrations. 

 

Figure 6-9. JA-mediated root growth inhibition and gene induction in rglg3rglg4 seedlings 

Seedlings were grown for 9 days on MS with or without 50 μM MeJA. A. The main root length was measured at 

day 9, error bars represent ±SEM (n>40). B. qRT-PCR analysis of JA-responsive expression of PDF1.2 and VSP2 in 

the seedlings used in A. Data represent mean ±SEM of three biological replicates (*, p<0.05; **, p<0.01; ***, 

p<0.001; t-test; ↑ or ↓, value significantly larger or smaller than expected, respectively). UBC (At5g25760) was 

used as internal control and expression values were normalized to those of the wild-type after mock treatment. 

 

Genetic interaction between PICOT1 and COI1 

To investigate the relationship between PICOT1 and COI1, we first assessed the JA-

response of picot1 KO seedlings and of picot1coi1 double mutants. As reported previously, 

picot1 grown under standard conditions (long-day photoperiod, 21°C) already had a shorter 

root in the absence of exogenous hormone treatment (Knuesting et al., 2015; Figure 6-10A). 

Root growth of picot1 seedlings was further reduced upon MeJA treatment, although to a 

lower extent than in WT seedlings (Figure 6-10B). 

Next, we evaluated the genetic interaction between PICOT1 and COI1 by assessing the 

JA-responses of picot1coi1 double mutant lines. In the absence of exogenous MeJA, we 

observed partial rescue of the picot1 short-root phenotype by coi1-16 (Figure 6-11 A-C). This 

partial rescue of picot1 phenotype was even stronger when coi1-21picot1 was studied (Figure 

6-11 D-E).  
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Figure 6-10. Root length elongation of picot1 seedlings in the presence of MeJA. 

The main root length was measured of 11 day-old seedlings that were grown on MS in the presence of 0 µM, 2.5 

µM or 10 µM MeJA, shown as absolute measurements (A) or relative measurements (B) where the root length 

at 0 μM was used to normalize measurements and corresponds to 100%. Data represent mean ±SEM of n>14 (*, 

p<0.05; **, p<0.01; ***, p<0.001; t-test). 

Surprisingly, introduction of the coi1-22 allele did not rescue the picot1 short-root 

phenotype (Figure 6-12). In contrast to other coi1 lines tested here, single mutant coi1-22 

seedlings were already smaller than WT in the absence of exogenous JA (Figure 6-12 A, Figure 

6-13 A), similar to picot1 seedlings. Compared to WT seedlings, coi1-22 seedlings were only 

slightly hyposensitive to JA. In addition, coi1-22picot1 double mutant seedlings were even 

smaller than either of the single mutant seedlings. Moreover, double mutants were chlorotic, 

prompting us to investigate chlorophyll levels in these lines (Figure 6-13). Although picot1 or 

coi1-22 single mutant seedlings had more or similar chlorophyll content as WT plants, 

picot1coi1-22 double mutants showed a strong decrease in chlorophyll b content (Figure 6-13 

B). Finally, picot1coi1-22 seedlings also contained less carotenoids than WT or the single 

mutants (Figure 6-13 C). Taken together, our results indicate that some coi1 mutant alleles 

can partially rescue the picot1 short-root phenotype, whereas others, like coi1-22, aggravate 

or create other phenotypes when combined with picot1, including phenotypes that were not 

obvious in either of the single mutant lines. 
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Figure 6-11. The short-root phenotype of picot1 is partially rescued by coi1-16 and coi1-21. 

The main root length of 11 day-old (A-C) or 7 day-old (D-E) seedlings grown on MS with or without MeJA was 

measured. Root lengths are indicated as absolute measurements (A,D) or relative to the WT and coi1 background 

at 0 μM MeJA for picot1 and picot1coi1, respectively (B,E). Representative seedlings are shown in C, scale bar 

corresponds to 5 mm. Data represent mean ±SEM of n>28 (A-C), or n>10 (D,E) (*, p<0.05; **, p<0.01; ***, 

p<0.001; t-test). 
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Figure 6-12. JA-mediated growth inhibition in picot1coi1-22 double mutants. 

Seedlings were grown on MS with or without MeJA. A-B. Fresh weight of 14 day-old coi1-21picot1 seedlings. C-

D. Main root length of 11 day old-seedlings. Measurements are expressed as absolute values (A,C) or as relative 

percentages of WT or coi1-22 at 0 μM MeJA for picot1 or picot1coi1-22, respectively. Data represent mean ±SEM 

of n=4 (A-B) or n>18 (C-D) (NS, non-significant; *, p<0.05; **, p<0.01; ***, p<0.001; t-test). 
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Figure 6-13. Picot1coi1-22 double KO seedlings are chlorotic. 

Seedlings were grown on MS supplemented with 0 μM, 2.5 μM or 10 μM MeJA for 14 days. A. Representative 

seedlings of each line and treatment, 14 days old. Chlorophyll (B) and carotenoid (C) accumulation was measured 

in the different lines. Data represent mean ±SEM of n=4. 
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Transcript profiling of picot1 and coi1-16picot1 

The phenotypic characterization of seedlings with altered expression of PICOT1 did not 

reveal a clear role for PICOT1 in JA-signalling. Nevertheless, coi1-16 and coi1-21 could 

successfully rescue part of the short-root phenotype seen in picot1 KO lines. To further 

elucidate the function of PICOT1, we analysed the transcriptome of picot1, coi1-16 and 

picot1coi1-16 double mutant by performing RNA-seq (see Supplementary Tables S3-5).  

Because coi1-16 could partially rescue the picot1 short root phenotype, we looked for 

genes that were up-regulated in picot1 and whose up-regulation was lost in the coi1-16picot1 

cross. These included a small number of genes involved in JA-biosynthesis or signalling (Figure 

6-14 A). The starting product for the biosynthesis of JAs is α-linolenic acid, present in 

chloroplast membranes. Consecutive action of three enzymes – a 13-LIPOXYGENASE (LOX), a 

13-ALLENE OXIDE SYNTHASE (AOS) and a ALLENE OXIDE CYCLASE (AOC) – yields the JA-

precursor cis-12-oxophytodienoic acid (OPDA). Four genes in Arabidopsis encode AOCs (AOC1-

4) and 13-LOXs (LOX1-4). AOCs have organ-specific expression patterns with AOC1 and AOC2 

expressed in fully developed leaves but not in roots or vasculature bundles (Stenzel et al., 

2012). While two 13-LOXs (LOX3 and LOX4) are essential for JA-biosynthesis during flower 

development (Caldelari et al., 2011), LOX2 is involved in senescence-related and wound-

induced JA-production (Glauser et al., 2009; Seltmann et al., 2010). ETHYLENE RESPONSE 

FACTORs (ERFs) TFs are members of the APETALA2 (AP2)-TF family that bind to the GCC-box 

motif present in promotors of several ethylene and JA-inducible genes as well as 

pathogenesis-related genes. Expression of AtERF2 was shown to be induced by JA or by 

infection with the necrotrophic fungus Fusarium oxysporum. AtERF2 functions as a positive 

regulator of JA-responsive defence genes and concomitant resistance to F. oxysporum. In 

addition, AtERF2 also enhances JA-induced root growth inhibition (McGrath et al., 2005). 

 

Figure 6-14. General outcome of transcript profiling of picot1, coi1-16 and coi1-16picot1 

A. Gene cluster comprising JA-biosynthesis that are upregulated in picot1. B-C. Number of genes differentially 

down-regulated (B) or upregulated (C) in the different mutant lines when compared to wild type (WT). D. Number 

of overlapping genes that are differentially up or down regulated in the different mutant lines when compared 

to WT.  
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Figure 6-15. Up-regulated genes in coi1-16 are less up-regulated in coi1-16picot1. 

Up-regulated genes in coi1-16 seedlings could be grouped in five clusters. Cluster I contains genes that are 

similarly up-regulated in all mutant lines. Clusters II-V contain genes whose up-regulation is counteracted in coi1-

16picot1 seedlings. Genes belonging to the LURP (late upregulated in response to Hyaloperonospera parasitica) 

regulon are indicated. 
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In total, 209 genes were significantly down-regulated and 188 genes were significantly 

up-regulated at least two-fold in picot1 when compared to WT. Inspection of the overlap 

between differentially regulated genes between the picot1 and the coi1-16 line indicated the 

major overlap was seen between up-regulated genes in both lines (Figure 6-14 D). A major 

trend that caught our attention was that a great number of genes (164) are up-regulated in 

untreated coi1-16 seedlings, indicating functional COI1 is required to negatively regulate these 

genes in the absence of JA. Remarkably, 129 of these genes are less up-regulated in the coi1-

16picot1 line compared to the coi1-16 single mutant line (Figure 6-15), indicating functional 

PICOT1 protein is necessary for the induction of these genes. Several of these genes belong to 

the LURP (late upregulated in response to Hyaloperonospora parasitica, Hp, now known as H. 

arabidopsidis) regulon (Figure 6-16), a group of genes that are co-ordinately up-regulated in 

response to the pathogen (Eulgem et al., 2004; Knoth et al., 2007). The LURP regulon 

representative gene LURP1, was shown to be an important component of the plant immune 

system and to function in SA-dependent defence pathways mediating R-protein-triggered and 

basal resistance to Hp (Knoth and Eulgem, 2008). 

 

Figure 6-16. Coi1-16 affects expression of genes belonging to the LURP regulon. 

Co-expressed gene network of LURP1 (late upregulated in response to Hyaloperonospera parasitica-1), 

representative gene of the LURP-regulon. Genes that were up-regulated in coi1-16 are highlighted. Figure 

adapted from ATTED-II (Obayashi et al., 2009). 
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DISCUSSION 

RGLG3 and RGLG4 positively regulate JA-signalling at low hormone concentrations 

Since the identification of SCFCOI1 as an essential E3 ligase in JA-signalling, only two 

other E3 ligases have been proposed to function in this pathway: the RING-type E3-ligases 

RGLG3 and RGLG4. RGLG3/4 were proposed to function redundantly as positive regulators of 

JA-signalling, and to function upstream of COI1 (Zhang et al., 2012). Surprisingly, in our assays, 

rglg3rglg4 seedlings grown in the presence of exogenous JA had WT-like phenotypes. 

However, when grown in the presence of low JA concentrations (2.5µM) rglg3rglg4 double 

KO seedlings became slightly insensitive to JA-treatment. We can therefore state that 

RGLG3/4 contribute to the induction of JA-responses only in response to low JA 

concentrations.  

 

PICOT1 binds to iron-sulfur proteins 

Although RGLG3/4 have been proposed to function upstream of COI1, no molecular 

basis for their function is known yet. We have identified two proteins that interact directly 

with RGLG3 and RGLG4, and have focussed our research on elucidating the function of one of 

them: the glutathioredoxin PICOT1, which is a ubiquitination target of RGLG3/4 (described in 

Chapter 5). PICOT1 interacts with a large number of proteins in vivo. While some of the 

PICOT1-interacting proteins are involved in specific pathways (i.e. cytosolic Fe-S cluster 

assembly, purine catabolism and tRNA modification) others are seemingly unrelated. PICOT1 

is known to bind Fe-S clusters (Couturier et al., 2014; Knuesting et al., 2015), and several of 

the identified PICOT1-interacting proteins are Fe-S proteins.  

Remarkably, PICOT1 interacted with a large number of enzymes. Because Fe-S 

prosthetic groups have the ability to transfer electrons or stabilize reaction intermediaries, 

they are essential for the catalytic function of several enzymes (Balk and Schaedler, 2014). 

PICOT1 contains an N-terminal Trx domain, in addition to three C-terminal Grx domains that 

are responsible for Fe-S cluster binding. Because the Trx domain of PICOT proteins lacks the 

dithiol motif in the catalytic centre, this domain probably functions as a protein-protein 

interaction platform independent of redox activity (Haunhorst et al., 2010; Hoffmann et al., 

2011). We therefore speculate that our results reflect a mix of a number of proteins that 

interact specifically with PICOT1, probably through its Trx domain, while many other proteins 

interact with PICOT1 through one of its Fe-S clusters. Distinction between these two groups 

of PICOT1-interacting proteins could be made in the future by performing new TAP 

experiments with solely the N-terminal part of PICOT1 containing the Trx domain as bait. 
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PICOT1 regulates the JA-receptor COI1 

Besides the JAZ proteins, COI1 has only been shown to physically interact with two 

components of SCF-complexes, SKP1 and CULLIN1, and with the histone deacetylase 

HDA6/RPD3b (Dai et al., 2002; Devoto et al., 2002; Chini et al., 2007; Thines et al., 2007). Here, 

we show that PICOT1 interacts directly with COI1 in planta. This interaction is mediated only 

by the Trx-domain of PICOT1, in accordance with the fact that COI1 has not been reported to 

bind an Fe-S cluster and does not have signature motifs corresponding to Fe-S binding sites.  

A reducing environment has been reported to positively influence the interaction 

between COI1 and JAZ proteins, in the presence of JA-Ile or the analogue chemical coronatine 

(Yan et al., 2009). It is therefore tempting to speculate that PICOT1 could influence COI1 

function by altering its redox status. However, phenotypic analysis of seedlings with altered 

PICOT1 expression did not point to alterations in the JA-response. In addition, transcriptome 

analysis of picot1 seedlings did not reveal major changes in the expression of JA-responsive 

genes, indicating PICOT1 does not play a significant role in JA-signalling. 

Seedlings with deficient PICOT1 expression showed strongly impaired root growth 

when grown under normal conditions even in the absence of exogenous JA. This short-root 

phenotype was partially rescued by introduction of specific COI1 mutant alleles in the picot1 

background. Partial rescue was visible in coi1-16picot1 and coi1-21picot1 seedlings, but not in 

coi1-22picot1 seedlings. The picot1 short-root phenotype thus appears to be COI1-dependent 

in a JA-independent manner.  

JA-independent functions of COI1 have been reported previously. Infection of 

Arabidopsis plants with the soil-borne fungal pathogen Verticillium longisporum causes 

reduced shoot growth and induces early senescence. COI1 was shown to be required for plant 

susceptibility to this vascular pathogen, independent of JA-Ile or any JA-Ile mimic (Ralhan et 

al., 2012). Alternatively, phytoprostanes inhibit root growth and induce the production of 

secondary metabolites similarly to JA. The inhibition of root growth by phytoprostanes was 

shown to be COI1-dependent but JA-independent (Stotz et al., 2013). When transcript 

profiling of picot1, coi1-16 and coi1-16picot1 seedlings was performed, we noticed a large set 

of genes was differentially up-regulated in coi1-16 in the absence of exogenous JA-treatment. 

The majority of this genes was less up-regulated in coi1-16picot1 seedlings, suggesting their 

expression is dependent on PICOT1.  

 

Coi1-16 is an atypical coi1 allele 

Coi1-16 is a conditional fertile coi1-allele that is almost completely sterile when grown 

at room temperature but becomes fertile when grown at 16°C (Ellis and Turner, 2002), it 

therefore seems probable that this mutation differs from other coi1 mutations. COI1 protein 
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levels have been evaluated in the different coi1 alleles and cannot account for these 

differences. While coi1-1 is a true null allele, low coi1 protein levels could be detected in coi1-

16 and coi1-21 plants, and coi1-22 accumulated the highest level of coi1 protein, which was 

still much lower than the COI1-level in WT plants (He et al., 2012). 

Coi1-16 contains a point mutation leading to incorporation of a phenylalanine residue 

instead of a leucine residue at position 245 in the protein (Ellis and Turner, 2002). The crystal 

structure of COI1 has been determined, making it possible to map this mutation onto the 

structure. The LRR repeats of COI1 form a barrel-like structure where the top surface has three 

long loops that are involved in substrate binding (Sheard et al., 2010). A fourth loop formed 

by LRR-8 protrudes both at the top and at the side of the barrel (red loop in Figure 6-17). The 

Leu residue at position 245 (blue spheres in Figure 6-17) is located at the base of LRR-7, in 

close proximity to the base of LRR-8. In coi1-16 this Leu is substituted by a Phe and, although 

Leu and Phe are both considered hydrophobic amino acids, the aromatic benzyl side chain of 

Phe is larger than the isobutyl side chain of Leu. This amino acid substitution might therefore 

disturb the formation or positioning of the LRR-8 loop.  

 

Figure 6-17. Crystal structure of COI1 in complex with ASK1, JA-Ile and the JAZ degron. 

COI1–ASK1 (grey and purple ribbons, respectively) with the JAZ degron peptide (responsible for interaction of 

JAZ with COI1 and JA-Ile, orange ribbon) and JA-Ile (yellow space-fill representation). The conserved Cys residues 

of COI1 are shown as green ribbons. The residue mutated in the coi1-16 allele is shown in blue space-fill 

representation. The loop formed by LRR-8 is highlighted as a red ribbon. Figure adapted from (Sheard et al., 

2010). 

The up-regulation of JA-independent gene transcription in coi1-16 indicates a JA-

independent function of COI1 is altered in this mutant, which could be caused by alteration of 

LRR-8 loop formation or positioning. Comparison between the transcriptome analysis of coi1-

16 and coi1-16picot1 indicates this JA-independent function of COI1 is, at least partially, 

dependent on PICOT1.  
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Based on phenotypic and transcriptomic data obtained during this research we 

propose a possible model for PICOT1 function during COI1-dependent signalling (Figure 6-18). 

We propose that the protein COI1 functions in two distinct pathways: one involves JA-

perception leading to the initiation of JA-responses, while the other is JA-independent. Given 

the fact that not all coi1-alleles rescue the picot1 phenotype, we propose that COI1 exists in 

two different states, determining in which pathway the protein will function. Consistent with 

our results, we propose that coi1-16 encodes a protein that is trapped in one state, which is 

involved in the regulation of JA-independent gene expression. In this model PICOT1 functions 

as a positive regulator of JA-independent COI1 function. 

 

Figure 6-18. Possible mode of action of RGLGs and PICOT1 during COI1-dependent signalling. 

Model where COI1 functions downstream of PICOT1. RGLG3/4 control PICOT1 protein stability. COI1 exists in 

two states (COI1-A and COI1-B). PICOT1 interacts with COI1-A or COI1-B and either regulates transition to COI1-

B state or stimulates the activity of COI1-B to activate the expression of JA-independent genes.  

Among the genes that were upregulated in coi1-16 seedlings, members of a set of co-

regulated genes referred to as the LURP (late upregulated in response to Hyaloperonospora 

parasitica) regulon (Eulgem et al., 2004) were overrepresented. Members of the LURP-regulon 

are involved in the defence response against this biotrophic pathogen that is responsible for 

causing downy mildew disease (Knoth et al., 2007). Their induction is dependent on SA-

signalling (Knoth and Eulgem, 2008). Our results indicate that in coi1-16 seedlings, induction 

of the LURP-regulon is independent of pathogen infection pointing to a role for the JA-

receptor in mediating transcription of SA-dependent genes in the absence of SA.  

Taken together, we have provided a molecular link between the E3 ubiquitin ligases 

RGLG3/4 and the core JA-signalling pathway. This link is constituted by the ubiquitination 

target of RGLG3/4 that interacts directly with COI1. PICOT1 regulates a JA-independent 

function of COI1. It is well recognized that there is extensive cross-talk between JA-signalling 

and SA-signalling and in most cases it concerns antagonistic interactions (Caarls et al., 2015). 

Our results indicate a JA-independent role for COI1 in the induction of SA-dependent gene 

expression in the absence of SA. 
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EXPERIMENTAL PROCEDURES 

Plant material and growth conditions 

All mutant lines used in this study were in the Columbia-0 ecotype background, except coi1-16 that was 

generated by EMS mutagenesis of Col-gl1 plants homozygous for VSP1::luciferase as described (Ellis and Turner, 

2002). Coi1-21 and coi1-22 were obtained in a rar1-21 suppressor screen through EMS-mutagenesis (Hubert et 

al., 2009) and have been described in (He et al., 2012). Picot1/grxs17 (SALK_021301), rglg3-1 (SALK_098983), 

rglg4-1 (SALK_096022) mutants were previously described (Cheng et al., 2011; Zhang et al., 2012). Additional T-

DNA insertion mutants were obtained from the GABI-Kat T-DNA collection (Kleinboelting et al., 2012) or the SALK 

T-DNA collection: rglg3-2 (GABI_577A04) and rglg4-2 (SALK_042504). In the case of T-DNA insertion mutants, 

homozygous plants were selected by PCR screening with the appropriate primers (Supplementary Table S1). For 

coi1-16, coi1-21 and coi1-22 homozygous plants were selected in picot1 background with PCR-based dCAP 

markers (Supplementary Table S1).  

 Arabidopsis seeds were sterilized by the chlorine gas method and sown on sterile plates containing the 

corresponding growth media. Plates were kept in the dark at 4°C two days for stratification before being 

transferred to a growth room with 21°C temperature and a 16 h light / 8 h dark regime, unless mentioned 

otherwise.  

 

Generation of PICOT1 overexpression lines 

35S::PICOT1-GFP construct was generated by LR Gateway recombination between PICOT1 Entry clone and 

pFAST-R05. The 35S::PICOT1-HA construct was generated by MultiSite Gateway recombination between Entry 

clones encoding the cauliflower 35S promoter, PICOT1 and the HA-tag and pK8m34GW-FAST. Transgenic 

Arabidopsis seeds were generated by floral dip (Clough and Bent, 1998), using Col-0 as the background ecotype 

Transgenic seeds were selected based on the seed-fluorescent marker (Shimada et al., 2010; Vanholme et al., 

2013). 

 

Cloning and site-directed mutagenesis 

ORFs were amplified from a cDNA template by PCR using Phusion High-fidelity Polymerase (NEB), with specific 

primers including attB sites and subsequently recombined with pDONR207. For the creation of C-terminal 

fusions, reverse primers did not include a stop codon. For the construction of mRING variants, corresponding 

full-length Entry vectors were amplified using Pfu DNA polymerase (Promega) and primers containing the 

mutations. The PCR product was digested using DpnI before transformation to E. coli. Positive colonies were 

picked and sequence verified. PICOT1 N-terminal domain (amino acids 1-135) and C-terminal domain (amino 

acids 138-488) were cloned using specific primers including att-sites and a new stop or start codon, respectively. 

All primers used are listed in Supplementary Table S1.  

 

Yeast transformation and Yeast two-hybrid 

Expression clones for yeast two-hybrid were generated by LR Gateway recombination between respective Entry-

clones and pGADT7 or pGBKT7 and co-transformed in competent yeast cells of the S. cerevisiae strain PJ69-4A 

using the LiAc/SS carrier DNA/PEG method (Gietz and Schiestl, 2007). Transformants were selected on SD media 

lacking Leu and Trp (-2). Dropping was performed as described (Cuéllar Pérez et al., 2013). 

 

Bimolecular Fluorescence Complementation (BiFC) 

35S::ORF-tag constructs using the N and C-terminal halves of eGFP (head and tail, respectively) were constructed 

by triple Gateway reactions using pK7m34GW or pH7m34GW (Karimi et al., 2005) as described in (Boruc et al., 

2010). 35S::tag-ORF constructs were generated by double Gateway recombination using pH7m24GW2 or 

pK7m24GW2 (Boruc et al., 2010). The constructs were co-expressed in N. benthamiana using Agrobacterium-

mediated transient transformation. Interactions were scored by screening the lower epidermal cells for 

fluorescence using confocal microscopy 3-5 days after transformation using a Leica SP2 upright confocal 

microscope. 
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Agrobacterium-mediated transient transformation of N. benthamiana 

WT N. benthamiana plants (3–4 weeks old) were used for transient expression of constructs by Agrobacterium 

tumefaciens-mediated transient transformation of lower epidermal leaf cells as previously described (Boruc et 

al., 2010) using a modified infiltration buffer (10 mM MgCl2, Merck; 10 mM MES pH 5.7, Duchefa; 100 μM 

Acetosyringone, Sigma-Aldrich) and addition of a P19 expressing Agrobacterium strain to boost protein 

expression (Voinnet et al., 2003). All Agrobacterium strains were grown for 2 days, diluted to OD 1 in infiltration 

buffer and incubated for 2-4 h at room temperature before mixing in a 1:1 ratio with other strains and injecting. 

 

Tandem affinity purification 

N or C-terminally tagged TAP constructs (GS or GSrh tag) were generated as described (Van Leene et al., 2015), 

used for the transformation of Arabidopsis PSB-D cell suspension cultures without callus selection and further 

grown and subcultured as described (Van Leene et al., 2011). Stably transformed cultures were scaled up and 

harvested 6 days after subculturing. Cells were treated with 50 µM JA (Duchefa) for 1 min before harvesting. 

Expression of TAP-tagged constructs in stably transformed Arabidopsis PSB-D cultures was verified on an aliquot 

of total protein extract before purification. 

Transgenic Arabidopsis seeds were generated by floral dip (Clough and Bent, 1998), using Col-0 as the 

background ecotype and the same constructs as for cell culture transformation. Transformants were selected as 

described (Van Leene et al., 2015). Purifications were performed as described (Van Leene et al., 2015) with the 

exception that no Benzonase treatment was performed on the cell extracts.  

 

Localization studies 

Entry clones containing GLB3 or COI1 were recombined with pFAST-R06, generating 35S::GFP-ORF expression 

vectors. N. benthamiana leafs were transiently transformed with these constructs, in addition to a P19 expressing 

construct. Lower epidermal leaf cells were imaged 3-5 days after infiltration using a Leica SP2 upright confocal 

microscope. 

 

Immunodetection 

Total protein extracts were obtained from 14 day-old seedlings grown on MS media supplemented with 1% 

sucrose using HB-buffer as described in (Van Leene et al., 2015). After quantification of the protein content using 

the Bradford assay (Bio-Rad), the indicated protein samples were loaded on a 4–15% TGX gel (Bio-Rad) and ran 

for 20 min at 300 V. Next, proteins were transferred to 0.2 µm PVDF membranes (Bio-Rad) with the Trans-blot 

Turbo (Bio-Rad). A 1/1000 dilution of rat monoclonal anti-HA antibodies (clone 3F10, Roche) were used to detect 

PICOT1-HA. A 1/5000 dilution of HRP-conjugated monoclonal anti-GFP antibodies (Miltenyi Biotech Inc.) were 

used to detect PICOT1-GFP. Chemiluminescent detection was performed with Western Bright ECL (Isogen). 

 

qRT-PCR 

Seedlings were grown on MS (1% sucrose) with agar, horizontally, for 14 days. Total RNA was extracted with an 

RNeasy plant mini kit (Qiagen) from whole seedlings. For cDNA synthesis, 500 ng to 1μg of RNA was used with 

the iScript cDNA Synthesis Kit (Bio-Rad) according to the instructions of the manufacturer. The primer sequences 

used in the qRT-PCR experiments are listed in Supplementary Table S1. Relative expression levels were 

determined with the Light-Cycler 480 Real-TimeSYBR green PCR System (Roche). The data were first normalized 

to the expression level of the housekeeping genes for each RNA sample. 

 

RNA-seq analysis 

Seedlings were grown on MS (1% sucrose) with agar, vertically, for 14 days. Three biological replicates were 

harvested for each line. RNA was isolated using the RNeasy Plant Mini Kit (Qiagen) and DNase I treated 

(Promega). RNA samples were processed by first preparing a Trueseq RNA-Seq library (Illumina) and then 

sequenced at 50bp single read using Illumina HiSeq 2000 technology at GATC Biotech Ltd - Germany. Read quality 

control, filtering, mapping to the TAIR10 Arabidopsis genome and read counting were carried out using the 

Galaxy portal running on an internal server (http://galaxyproject.org/). Sequences were filtered and trimmed, 
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respectively with the Filter FASTQ v1 and FASTQ Quality Trimmer v1 tools with default settings 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Reads were subsequently mapped to the TAIR10 

version of the Arabidopsis genome using GSNAPv2 (Wu and Nacu, 2010) allowing a maximum of 5 mismatches. 

The concordantly paired reads that uniquely map to the genome where used for quantification on the gene level 

with HTSeq-count from the HTSeq python package (Anders et al., 2015). Data was normalized using TMM, 

implemented in edgeR (Robinson et al., 2010) and common dispersion was then estimated using the conditional 

maximum likelihood method (Robinson and Smyth, 2008). Differentially expressed genes were defined by a 2-

fold difference between mutant lines and the wild-type control with P-value<0.05. The false discovery rate (FDR) 

was limited to 5% according to Benjamini and Hochberg (1995). 

 

Root measurements 

The indicated plant lines were germinated and grown vertically on MS media supplemented with 1% sucrose for 

11 days. The main root length was determined using ImageJ software (http://imagej.nih.gov/ij/). 

 

Anthocyanin quantification 

Anthocyanin content was measured of whole seedlings grown on MS supplemented with 1% sucrose for 14 days 

as described in (Vanderauwera et al., 2005). Briefly, chlorophylls and anthocyanins were extracted in MeOH HCl 

1%. Back-extraction of the chlorophylls was performed using chloroform. The supernatant was transferred to a 

96-well plate and absorbance at wavelengths 663nm and 646nm were measured using a microplate 

spectrophotometer. The anthocyanin concentration per sample is expressed as (A530-A657) per gram fresh weight. 

 

Chlorophyll and carotenoid quantification 

Chlorophyll content was determined using spectrophotometry as described in (Wellburn et al., 1983). 

Chlorophyll was extracted from ground frozen plant material by incubation in 80% aqueous acetone during 1 

hour at 4°C. Remaining cellular debris was separated from chlorophylls by centrifugation. The supernatant was 

transferred to a 96-well plate and absorbance at wavelengths 663nm and 646nm were measured using a 

microplate spectrophotometer (Molecular Devices, US). 

Chlorophyll a/b content was calculated as: Ca = 12.21 x A663 - 2.81 x A646 or Cb = 20.13 x A646 – 5.03 x A663. 

Carotenoid content (xanthophylls and carotenes) was calculated as: Carotenoids = (1000 x A470 – 3.27 x Ca – 104 

x Cb)/227. Results are expressed as Ca / Cb / carotenoids per miligram fresh weight.  
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During the course of this research we aimed at extending the knowledge on the 

relationship between the ubiquitin (Ub) system and the jasmonate (JA) signalling pathway, by 

identifying and characterizing additional E3s functioning in the latter pathway. Here, we 

provide an overview on the conclusions that can be drawn based on the findings described in 

previous chapters. Characteristic to scientific research, new findings lead to new questions. 

Accordingly, open questions that have risen from our findings will be discussed, and 

approaches to address some of this issues will be proposed.  

 

The Ubiquitin system and Jasmonate signalling 

At the time this research started, SCFCOI1 was the only E3 Ub ligase known to function 

in JA-signalling. In 2012, Zhang and colleges reported two RING LIGASE family members 

(RGLG3 and RGLG4) also participate in JA-signalling. We have further expanded the list of 

candidate E3 ligases involved in JA-signalling, based on available transcriptomic data, and 

identified candidate targets for a number of these E3s. My research further focussed on the 

characterization of two E3-target couples (BRIZ1/2-LARP6b and RGLG3/4-PICOT1), while 

AE31-SRPK4, ATL23-RD21A and RGLG3/4-GLB3 were further characterized in our group by Dr. 

Andres Ritter, Dr. Patricia Fernández-Calvo and Dr. Sabrina Iñigo, respectively. Though we 

could not identify putative targets for the rest of the candidate E3s, further phenotypic 

characterization of the JA-response of mutants with altered expression of the corresponding 

genes should allow verification of their involvement in JA-signalling. 

 

Methods to identify E3 ligase targets 

During this research, targets of E3 ligases were identified based on the combination of 

two protein-protein interaction techniques. First, a customized Tandem Affinity Purification 

(TAP; Van Leene et al., 2015) assay was employed to identify all proteins that appear as a 

complex with the E3 of choice. The TAP platform was developed in the lab of Prof. Dr. Geert 

De Jaeger and allows screening for protein interactions in cell cultures, without the need for 

generation of transgenic lines. Customization concerned the introduction of specific 

mutations in the E3 ligases used as baits. Next, yeast two-hybrid was employed to differentiate 

between direct and indirect interactions with the E3 ligase. Both experiments can be 

performed in a relatively small time-frame, and, as demonstrated in the previous chapters, 

are efficient for the identification of plant E3 ligase targets. 

For the study of in vivo ubiquitination of Arabidopsis proteins in yeast (Saccharomyces 

cerevisiae), we generated a set of Multisite Gateway destination vectors for expression of 

(plant) proteins in yeast (Nagels Durand et al., 2012). These vectors have a broader purpose, 

as expression of heterologous proteins in yeast is often performed to characterize the function 
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of the gene, complementation of yeast mutations by heterologous orthologs being the most 

straight-forward example. These vectors have indeed proven to be useful, for example, in 

yeast three-hybrid assays (Cuéllar Pérez et al., 2014). 

The “Heterologous Ubiquitination Assay” (HUbA) in yeast did not achieve the expected 

results (yet). Nevertheless, modification of LARP6b, candidate target of the heterodimeric E3 

ligase BRIZ1/2, was dependent on co-expression of both BRIZ1 and BRIZ2 in yeast. However, 

we could not detect the modified LARP6b as being a ubiquitinated protein. In other words, we 

succeeded in molecularly re-assembling the modification reaction of LARP6b in yeast, but we 

were not able to detect and correctly interpret this modification.  

Some general aspects of the HUbA could still be improved in order to succeed in our 

intention to use this platform as an in vivo ubiquitination assay. First, production of an active 

plant E3 ligase in yeast should be evaluated as a pre-requisite for target modification. It is 

generally believed that E3 ligases have the ability to auto-ubiquitinate, and this property 

should be exploited to select for yeast strains that express active E3 ligase. Why heterologous 

E3 ligases are sometimes not active in yeast is still not clear. One possibility is that epitope 

tagging of the E3 could interfere with correct folding of the protein or disturb interaction with 

the endogenous E2. Another possibility could be that high expression of the heterologous 

proteins interferes with their production in yeast. HUbA assays described in this thesis were 

performed using high copy-number plasmids and constitutive promotors. A second point of 

action would thus be to reduce expression levels of the heterologous proteins by using low 

copy-number plasmids (e.g. centromeric or integrative plasmids, available as Multisite 

Gateway compatible destination vectors) or by expressing the constructs under control of 

inducible promotors (which were also cloned as Multisite Gateway compatible building blocks 

during this research). Especially when the post-translational modification machinery of the 

host is needed, expression levels of the heterologous proteins should not exceed the 

endogenous capacity of the host to modify these proteins. In the particular case of BRIZ1/2, 

detection of the modified LARP6b should be repeated using anti-Nedd8 antibodies, as the 

closely related human protein BRAP2 has been linked to Nedd8-modification (Takashima et 

al., 2013).  
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PICOT1 constitutes a ubiquitination target of the E3 ligases RGLG3 and RGLG4 

Using the customized TAP strategy, we were able to identify two putative targets of 

RGLG3 and RGLG4: PICOT1 and GLB3. Subsequent research showed PICOT1 is ubiquitinated 

by RGLG3/4, eventually leading to degradation of the protein by the proteasome. The research 

described in this thesis focussed on PICOT1, while GLB3 is currently the research topic of Dr. 

Sabrina Iñigo, a member of our group.  

The human and yeast orthologs of PICOT1 function in the regulation of iron (Fe) 

homeostasis (Muhlenhoff et al., 2010; Haunhorst et al., 2013). RGLG1 and RGLG2, were shown 

to associate with UBC35 (Yin et al., 2007) to mediate K63 poly-ubiquitination of PIN2, thereby 

regulating directional auxin flow (Leitner et al., 2012). Intriguingly, both rglg1rglg2 and ubc35 

mutants have altered Fe-responses (Li and Schmidt, 2010; Pan and Schmidt, 2014) while polar 

auxin transport is affected in picot1 mutants (Cheng et al., 2011). These subtle connections 

encourage future investigation on PICOT1 protein stability in rglg1rglg2 plants and, 

conversely, investigation of Fe-responses of picot1 seedlings. From the results presented in 

this thesis, it cannot be excluded that other RGLG-proteins could target ubiquitination of 

PICOT1.  

In addition to K48-forming E2 Ub conjugases, our research showed RGLG3/4 can 

interact with E2s that typically catalyse attachment of Ub to the N-terminus of target proteins. 

Because N-terminal tagging of PICOT1 often lead to inefficient expression of the construct, we 

can speculate on a requirement of PICOT1 N-terminal ubiquitination for protein stability. This 

phenomenon could be investigated in first instance by expression of a translational fusion 

construct Ub-PICOT1. Evaluation of protein stability, protein-protein interactions or 

phenotypic characteristics should highlight the impact of PICOT1 N-terminal ubiquitination. 

 

PICOT1 associates with Fe-S proteins 

PICOT1 has been reported to form Fe-S bridged homo or hetero-dimers (Couturier et 

al., 2014; Knuesting et al., 2015). TAP experiments using PICOT1 as bait revealed PICOT1 

binding to Fe-S proteins is a general feature of this protein. The number of cytosolic or nuclear 

proteins that are known to bind Fe-S clusters in Arabidopsis is low (<20 confirmed Fe-S 

proteins; Balk and Pilon, 2011). In addition, pathways leading to the assembly of Fe-S clusters 

in plants are still poorly characterized, with most knowledge being extrapolated from other 

organisms based on the conservation of orthologous genes. Remarkably, almost the entire 

cytosolic Fe-S assembly complex was isolated from Arabidopsis cell cultures using PICOT1 as a 

bait during TAP assays. As the glutaredoxin (Grx) domains of PICOT1 account for its ability to 

bind Fe-S clusters, these domains could be used as baits to further inventarize Fe-S proteins 

and the Fe-S assembly machinery in Arabidopsis, given that our results bring TAP forward as 

a suitable platform for the investigation of this pathway.  



Conclusions and perspectives 

 

163 

 

PICOT1 is involved in tRNA modification 

A useful tool to study transfer RNA (tRNA) modifications at the third anti-codon 

position uridine (Wobble uridine) in yeast is zymocin. Zymocin is a killer toxin produced by the 

yeast Kluyveromyces lactis, that cleaves tRNAs that carry modified wobble uridine bases in S. 

cerevisiae. Screen for mutants with increased resistance to zymocin identified all Elongator 

complex subunits, the yeast orthologs of CTU1 and CTU2, the gene encoding the Ub-like URM1 

and the yeast URM E1 (Jablonowski et al., 2001). In a different screen, elevated expression of 

one of the yeast orthologs of PICOT1 (ScGrx3) was shown to decrease the sensitivity of the 

organism for the toxin (Jablonowski et al., 2001). Based on the results presented in this thesis, 

one would expect mutations in ScGrx3 would also lead to zymocin resistance. However, 

ScGrx3 and ScGrx4 (both PICOT1 orthologs) function redundantly in yeast (Pujol-Carrion et al., 

2006), indicating mutation of both genes would be necessary to reveal a potential function in 

zymocin resistance. Why overexpression of ScGrx3 leads to zymocin resistance remains 

unclear, but nevertheless points to a conserved function of PICOT1 orthologs in tRNA 

modification. We have set up a collaboration with the group of Prof. Dr. Raffael Schaffrath, to 

investigate the effect of overexpression of Arabidopsis PICOT1 on zymocin resistance in yeast. 

Further tRNA profiling of Arabidopsis WT and picot1 seedlings should contribute to clarify the 

role of PICOT1 in tRNA modification. 

 

PICOT1 as a potential regulator of COI1 JA-independent function. 

During this research we identified interaction between COI1 and PICOT1 at three 

different levels. First, at the protein level, COI1 and PICOT1 interact directly with each other 

in the nucleus. Second, COI1 and PICOT1 genes interact genetically since coi1-16 can rescue 

the short root phenotype of picot1 in the coi1-16picot1 mutant. Finally, PICOT1 and COI1 

interact on the transcript level as the majority of genes that are upregulated in coi1-16 are 

partially dependent on PICOT1 for their upregulation and thus are less upregulated in coi1-

16picot1 plants. Remarkably, we did not identify alterations in the JA-response of picot1 

seedlings.  

Based on the above mentioned observations we have proposed a possible model for 

PICOT1-mediated regulation of COI1 function, independent of JA-Ile perception. In this model, 

COI1 exists in two states where one state (COI1-A) is involved in JA-Ile perception and the 

activation of JA-responses through degradation of JAZs, and the other state (COI1-B) is 

involved in the transcription of a different set of (JA-independent) genes.  

It is not clear at this moment if PICOT1 functions to promote transition of COI1-A to 

COI1-B or stimulates the activity of COI1-B once it has reached this state. Another unanswered 

question would be what this “state” differences are. Structural differences in COI1 might alter 

its function and these could be mediated by PICOT1. PICOT1 is known to form dimers where 
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the active site of each Grx domain of one monomer is bridged by a [2Fe-2S] cluster to a Grx 

domain in the other monomer. Because PICOT1 interacts with COI1 through its thioredoxin 

(Trx) domain, COI1 binding can be mediated either by PICOT1 monomer or dimer. In the case 

where a PICOT1 monomer is able to mediate COI1 interaction, it could still form homodimers 

through its Grx domains, thus binding two COI1 proteins simultaneously. This could be a 

mechanism to stabilize COI1-dimers that, in turn, might function in a process unrelated to JA-

Ile perception. The occurrence of COI1 or PICOT1 dimers in vivo could be verified by preparing 

and separating protein extracts under native conditions (native-PAGE) followed by detection 

of the proteins on immunoblots.  

The absence of up-regulated JA-responsive genes in the transcriptome analysis of coi1-

16 further indicates the upregulated genes in this line are not regulated by TFs known to play 

a role in JA-signalling. Because COI1 has not been shown to bind DNA, transcription of these 

genes must thus be mediated by yet unknown factors. Based on our hypothesis that in coi1-

16 plants, COI1L245F protein is trapped in the COI1-B state, a possible approach to identify 

additional factors with a role in the pathway regulated by COI1-B could be to use of COI1L245F 

as a bait in TAP experiments, provided that we could overexpress this protein to an acceptable 

level in Arabidopsis cell cultures.  

PICOT1 was recently found to interact with TF NF-YC11/NC2α (Knuesting et al., 2015). 

Because the phenotype of picot1 seedlings resembles that of nf-yc11 seedlings, NF-YC11 is a 

candidate TF that could regulate COI1-B dependent gene expression. The expression levels of 

COI1-B-dependent genes in the nf-yc11 mutant should be measured to test this hypothesis. 

Because COI1 is an F-box protein and PICOT1 can interact with both COI1 and with NF-YC11, 

NF-YC11 protein levels could be regulated by COI1. This hypothesis could easily be tested in 

the picot1 background (vs WT) or using transient expression of the respective proteins in N. 

benthamiana. Another possibility to identify proteins involved in the regulation of COI1-B 

dependent gene expression would be to use the data generated during transcriptome analysis 

of coi1-16 to search for overrepresentation of transcription binding sites in the promotors of 

differentially upregulated genes based on bio-informatics approaches. 

The mutant phenotype of the aerial parts of picot1 seedlings has been shown to be 

affected by photoperiod in a temperature dependent manner (Knuesting et al., 2015). 

Accordingly, the authors describe picot1 seedlings behave like WT when grown at 15°C. It will 

therefore be interesting to test if the short-root phenotype of picot1 seedlings is also affected 

in a temperature dependent manner and to test the different lines generated during the time-

course of this PhD at different conditions: long-day vs short-day photoperiod, high-light 

condition and elevated as well as decreased temperatures (28°C, 21°C and 15°C). In addition, 

lines overexpressing RGLG3 or RGLG4 are being generated, and these lines will contribute to 

the investigation of the role of PICOT1 in planta.  
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ABSTRACT 

Jasmonate (JA) signalling is mediated by the JASMONATE-ZIM DOMAIN (JAZ) repressor 

proteins, which are degraded upon JA perception to release downstream responses. The ZIM 

protein domain is characteristic of the larger TIFY protein family. It is currently unknown if the 

atypical member TIFY8 is involved in JA signalling. Here we show that the TIFY8 ZIM domain is 

functional and mediated interaction with PEAPOD proteins and NINJA. TIFY8 interacted with 

TOPLESS through NINJA and accordingly acted as a transcriptional repressor. TIFY8 expression 

was inversely correlated with JAZ expression during development and after infection with 

Pseudomonas syringae. Nevertheless, transgenic lines with altered TIFY8 expression did not 

show changes in JA sensitivity. Despite the functional ZIM domain, no interaction with JAZ 

proteins could be found. In contrast, TIFY8 was found in protein complexes involved in 

regulation of dephosphorylation, deubiquitination and O-linked N-acetylglucosamine 

modification suggesting an important role in nuclear signal transduction. 

 

Author contribution: Generation of TIFY8-GS expressing Arabidopsis cell cultures and tandem 

affinity purification of TIFY8 interacting proteins. 
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A Repressor Protein Complex Regulating Leaf 
Growth in the Dicot Arabidopsis 
Nathalie Gonzalez°, Laurens Pauwels°, Alexandra Baekelandt°, Liesbeth De Milde, Jelle Van 
Leene, Nienke Besbrugge, Ken S Heyndrickx, Amparo Cuéllar Pérez, Astrid Nagels Durand, 
Rebecca De Clercq, Eveline Van De Slijke, Robin Vanden Bossche, Dominique Eeckhout, Kris 
Gevaert, Klaas Vandepoele, Geert De Jaeger, Alain Goossens, and Dirk Inzé* 
 

 

ABSTRACT 

Cell number is an important determinant of final organ size. In the leaf, a large 

proportion of cells are derived from the stomatal lineage. Meristemoids undergo asymmetric 

divisions, generating several pavement cells next to the two guard cells. However, the 

mechanism controlling the asymmetric divisions of these stem cells before they differentiate 

is not well understood. Here, we characterized PEAPOD (PPD) proteins, the only 

transcriptional regulators known to negatively regulate meristemoid division. PPD proteins 

interact with KIX8 and KIX9, which act as adaptor proteins for the co-repressor TOPLESS. D3-

type cyclin encoding genes were identified among direct targets of PPD2, being negatively 

regulated by PPDs and KIX8/9. Accordingly, kix8-kix9 mutants phenocopied PPD loss-of-

function producing larger leaves resulting from increased meristemoid amplifying divisions. 

The identified conserved complex might be specific for leaf growth in the second dimension, 

since it is not present in Poaceae (grasses), which also lack the developmental program it 

controls. 

 

Author contribution: Generation of GS-tagged KIX8 expressing Arabidopsis cell cultures and 

tandem affinity purification of KIX8 and PPD2 interacting proteins.  
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Supplementary data 



Name Sequence Strand Application Target Remarks

#1171 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGAGAACCCGAACAACTTG Rv Cloning AE31 attB1-AE31

#1172 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMGCTTTGCTCTCCACGAC Fw Cloning AE31 AE31-attB2

#1173 AAACAGGATTGCCCCTTTAGCCAGAACTCAG Rv Mutagenesis AE31 AE31mRING

#1174 AATCCTGTTTCCGTGTTTGACGTTGGAG Fw Mutagenesis AE31 AE31mRING

#1159 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCACTACACACGCATCTC Fw Cloning ATL23 attB1-ATL23

#1160 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMACATGGACTTTGATTTTC Rv Cloning ATL23 ATL23-attB2

#1167 ATCAACGGAAGCTGCTGTTGCCCTTGAAGAT Fw Mutagenesis ATL23 ATL23mRING

#1168 TTCCGTTGATCTAGCTATTACGGCTAGC Rv Mutagenesis ATL23 ATL23mRING

#1338 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTGCTCCACACGGCGTCG Fw Cloning ATL23 attB1-ATG-ATL23dTM

#1100 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGCTGTTCAAGCTCATCA Fw Cloning BOI attB1-BOI

#1101 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMAGAAGACATGTTAACATGC Rv Cloning BOI BOI1-attB2

#1102 TTTGTGTTTGGCTACGGTTGCTGGTGGTTCG Fw Mutagenesis BOI BOI1mRING

#1103 CAAACACAAATGACGACATGGTAACACC Rv Mutagenesis BOI BOI1mRING

#1406 CACAACCATGGCCAATGCTTCCTTCCATTG Fw Mutagenesis BRIZ2 BRIZ2mRING

#1407 CATGGTTGTGAGAATGCCACCTGTGTCTTG Rv Mutagenesis BRIZ2 BRIZ2mRING

#1739 AGGATGGTAAGTGGCTTCATGA FwP Genotyping COI1 coi1-16 dCAPS primer, XbaI cuts WT (224 vs 200bp)

#1740 CAAGGAGCCACCACAAAATTCTTCTA RvP Genotyping COI1 coi1-16 dCAPS primer, XbaI cuts WT (224 vs 200bp)

#1707 GTTTTTCTTCAGACAAGGAATGTAACCG FwP Genotyping COI1 coi1-21 dCAPS primer, HpaII cuts WT (190 vs 212bp)

#1708 GTTATATCTGAGACATACACCGCCATGTAT RvP Genotyping COI1 coi1-21 dCAPS primer, HpaII cuts WT (190 vs 212bp)

#1709 CTTTGGCTCAGGGCTGCC FwP Genotyping COI1 coi1-22 dCAPS primer, BamHI cuts WT (190 vs 210bp)

#1710 GCAAATCGTCTGAGTTTCTTGGAT RvP Genotyping COI1 coi1-22 dCAPS primer, BamHI cuts WT (190 vs 210bp)

#2096 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGAGGCCAAGAAC Fw Cloning CTU1 attB1-ROL5

#2097 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMGAAATCCAGAGATCC Rv Cloning CTU1 ROL5-attB2

#2104 TCGTCGGAGTTGGATCAATAG Fw Genotyping CTU1 GABI_709D04 rol5-2

#2105 TGGAGAAGTAATCCAGCTTCTTG Rv Genotyping CTU1 GABI_709D04 rol5-2

#2098 CTTCGACGATGGAAGATTCTG Fw Genotyping CTU2 GABI_686B10 ctu2-2

#2099 TCGAAGTGGAAGTACAATGGG Rv Genotyping CTU2 GABI_686B10 ctu2-2

#2163 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGCTTGTAATTCCTC Fw Cloning CTU2 attB1-CTU2

#2164 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMGACAACCTCTTCATC Rv Cloning CTU2 CTU2-attB2

#1408 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGCAATCGCTGCAAGATAAG Fw Cloning GLB3 attB1-GLB3

#1409 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMTTCTTCTGCTGGTTTATTG Rv Cloning GLB3 GLB3-attB2

#1493 GATAATGGCTTGGAATTGCAG Fw Genotyping GLB3 SALK_060213 glb3-1

#1494 TGCTATTGCAAATTTGCAGTG Rv Genotyping GLB3 SALK_060213 glb3-1

#992 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGCTGATCAACAAACCCTAG Fw Cloning LARP6b attB1-LARP6b

#993 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMCTCTGCCTGAACCATAACCG Rv Cloning LARP6b LARP6b-attB2

pGPD-Fw ATAGAAAAGTTGTTGGATCCGTCGAAACTAAG Fw Cloning pBEVY-A attB4-pGPD

pGPD-Rv TGTACAAACTTGTACTGCCATTTCAAAGAATACG Rv Cloning pBEVY-A pGPD-attB1R

pGAL1-Fw AGAAAAGTTGAACAACTTCTTTTC Fw Cloning pBEVY-GL attB4-pGAL1

pGAL1-Rv GTACAAACTTGTAGTTGATTGTAT Rv Cloning pBEVY-GL pGAL1-attB1R

#1021 GGTGATGATATTAAGAAACATTTTCG Fw Genotyping PDR5 pdr5 verification primer

#1022 GTCATTCAATAATCGTTGGTCGACTTC Rv Genotyping PDR5 pdr5 verification primer

pADH1-Fw ATAGAAAAGTTGTTACGGATTAGAAGCCGCC Fw Cloning pGAD424 attB4-pADH1

pADH1-Rv TGTACAAACTTGTGGTTTTTTCTCCTTGACGTTA Rv Cloning pGAD424 pADH1-attB1R

Supplementary Table 1. Primer pairs used in this research.



#1402 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAGCGGTACGGTGAAG Fw Cloning PICOT1 attB1-PICOT1

#1403 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMCTCGGATAGAGTTGCTTTG Rv Cloning PICOT1 PICOT1-attB2

#1415 CTTTCGCATTCTCCTTCACAG  Fw Genotyping PICOT1 SALK_021301 picot1

#1416 CCTTCTCCCTCTTCGAAGATG  Rv Genotyping PICOT1 SALK_021301 picot1

#1472 CGCCAAGGCCTTAAAGTGTA Fw qPCR PICOT1 PICOT1(1)

#1473 CATAAGCTCGCCTTTCACG Rv qPCR PICOT1 PICOT1(1)

#1537 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGCTTCTTTACAAGACCGAGC Fw Cloning PICOT1-Grx attB1-ATG-3xGrx(PICOT1)

#1536 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCAATTCTCCTTCACAGTTTCAAG Rv Cloning PICOT1-Trx Trx(PICOT1)-attB2 (+stop)

#1549 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCCATTCTCCTTCACAGTTTCAAG Rv Cloning PICOT1-Trx Trx(PICOT1)-attB2 (-stop)

XhoI-attR4 GCAGTACGGAGCTCCAACTTTGTATAGAAAAGTTG Fw Cloning pKm43GW XhoI-attR4

SacI-attR3 GATAGTGTCTCGAGCAACTATGTATAATAAAGTTG Rv Cloning pKm43GW SacI-attR3

#1019 CTTTTAAGTTTTCGTATCCGCTCGTTCGAAAGACTTTAGACAAAACAGCTGAAGCTTCG Fw Mutagenesis pUG6 PDR5 disruption cassette

#1020 GTCCATCTTGGTAAGTTTCTTTTCTTAACCAAATTCAAAATTCTAGCATAGGCCACTAGTGGATCTG Rv Mutagenesis pUG6 PDR5 disruption cassette

#1146 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGAACATGAGCAATAAACG Fw Cloning RGLG3 attB1-RGLG3

#1147 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMAGTGTACAGCCTTATCC Rv Cloning RGLG3 RGLG3-attB2

#1153 TCACACGACAGCCAAGGAAGCCGGAGTTGTTA Fw Mutagenesis RGLG3 RGLG3mRING

#1154 TGTCGTGTGACCGCAGCTAAAAGCCATGTC Rv Mutagenesis RGLG3 RGLG3mRING

#1282 TGGAGTAGGAGATGGACCATG Fw Genotyping RGLG3 SALK_098983 rglg3-1

#1283 TTTTTCCATTGGTATCGTTGC Rv Genotyping RGLG3 SALK_098983 rglg3-1

#1284 GTTTCATTGTGTCCCATGGTC Fw Genotyping RGLG3 GABI_577A04 rglg3-2

#1285 TTCTGAAGGTTCTTGTGCTGC Rv Genotyping RGLG3 GABI_577A04 rglg3-2

#1286 ATGGGAGAACTTTCCACAACC Fw Genotyping RGLG3 GABI_577A04 rglg3-2

#1287 AGTCTCGGTCATACACATCCG RvP Genotyping RGLG3 GABI_577A04 rglg3-2

#1462 GTCCCACATTTGAAGTTGTCC Fw qPCR RGLG3 RGLG3(2)

#1463 GGTATTGCATATTGTTCTGCTCA Rv qPCR RGLG3 RGLG3(2)

#1464 CAGATGACAGAAACTGCAGAGAA Fw qPCR RGLG3 RGLG3(3)

#1465 GTCAAGCAAATCGGGCATAC Rv qPCR RGLG3 RGLG3(3)

#1822 TTACCAAGAGCAATGAGTGGACA Fw qPCR RGLG3 RGLG3(1)

#1823 TGGATTCTGTCTTTTACCAATGGC Rv qPCR RGLG3 RGLG3(1)

#1824 AGAACATTGTACAGTCCAAGCAGA Fw qPCR RGLG3 RGLG3(4)

#1825 CGCATATCTCCTTGTTTCGGC Rv qPCR RGLG3 RGLG3(4)

#1148 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGACTATGGGGAATTTCTTAAAG Fw Cloning RGLG4 attB1-RGLG4

#1149 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMTGTGTAAAGCTTTAGCCG Rv Cloning RGLG4 RGLG4-attB2

#1155 CACATGACTGCTGGAGATGCCGGATCCA Fw Mutagenesis RGLG4 RGLG4mRING

#1156 AGTCATGTGGCCACAGCTGAAAGCCACG Rv Mutagenesis RGLG4 RGLG4mRING

#1274 AAGCCATGACATGGAGAATTG Fw Genotyping RGLG4 SALK_096022 rglg4-1

#1275 ATGTTTAAGTCCCCATCTGGC Rv Genotyping RGLG4 SALK_096022 rglg4-1

#1278 AAGCCATGACATGGAGAATTG Fw Genotyping RGLG4 SALK_096022 rglg4-1

#1279 GTAATGATTGTTGCCGCGTAG Rv Genotyping RGLG4 SALK_096022 rglg4-1

#1466 ATCAAGCAGCCATCGAACTC Fw qPCR RGLG4 RGLG4(3)

#1467 TGGCCTCGGAACTATTGTCT Rv qPCR RGLG4 RGLG4(3)

#1468 ATCCCTTGTTTCGGCTTTG Fw qPCR RGLG4 RGLG4(2)

#1469 TGGAGAATTGTCGCTATGGA Rv qPCR RGLG4 RGLG4(2)

#1820 TCCTTGGCGTCTTGAAGAGT Fw qPCR RGLG4 RGLG4(1)

#1821 TTCGAATTGGAATTCAGATTTTT Rv qPCR RGLG4 RGLG4(1)

#1157 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGCGTTTAATCACAGAAAAATG Fw Cloning RING1 attB1-RING1



#1158 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMACTGGTGTTACCAGTTAC Rv Cloning RING1 RING1-attB2

#1165 CGGCACAGAAGCCTCTGTCGCCTTAAACGAG Fw Mutagenesis RING1 RING1mRING

#1166 TTCTGTGCCGTCGATTATCCCTTCTCCC Rv Mutagenesis RING1 RING1mRING

#1339 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTACCTCCACATCACGCAAC Fw Cloning RING1 attB1-ATG-RING1dTM

#1175 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGCGATGAGAGGTGTCG Rv Cloning SIS3 attB1-SIS3

#1176 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMTCTCCGAGATGGAGATAG Fw Cloning SIS3 SIS3-attB2

#1177  CCATAATTTCGCTGTGGAGGCCATAGACCAG Rv Cloning SIS3 SIS3mRING

#1178 GAAATTATGGGCGCAAGGTAAACCTC Fw Cloning SIS3 SIS3mRING

#669 ATTTTGCCGATTTCGGAAC Genotyping T-DNA SALK T-DNA primer

#1041 CCCATTTGGACGTGAATGTAGACAC Genotyping T-DNA Gabi-Kat T-DNA primer

TPL-N-Fw GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGTCTTCTCTTAGTAGAGAG Fw Cloning TPL attB1-TPL-N

TPL-N-Rv GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMATTTTTACAAAGCTGGTGTTG Rv Cloning TPL TPL-N-attB2

#1644 GGGGACAAGTTTGTACAAAAAAGCAGGCTCCATGGGTTCACTGAAAAAGG FwP Cloning XDH1 attB1-XDH1

#1645 GGGGACCACTTTGTACAAGAAAGCTGGGTCTCMAACACTAAGATTAGGGTAGAAATC RvP Cloning XDH1 XDH1-attB2

M13-Fw GTAAAACGACGGCCAGT Fw PCR M13-Fw

M13-Rv CCAGGAAACAGCTATGACCAT Rv PCR M13-Rv



Supplementary Table 2. Overview of PICOT1 peptides identified by MS after in vitro ubiquitination assays.
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NH2-DIVSK<GGe>AELDNLR-COOH 7 18 11 1 1 2 0

NH2-QMDQVFSHLATDFPR-COOH 38 52 33 3 6 6 6 2 0 37 9 9 8 5 2 1 71 56

NH2-VEAEEHPEISEAYSVAAVPYFVFFK-COOH 58 82 11 1 1 0 0 0 0 14 2 0 2 1 0 1 20 13

NH2-DGK<GGe>TVDTLEGADPSSLANK-COOH 83 101 85 1 1 2 0

NH2-DGKTVDTLEGADPSSLANK-COOH 83 101 1 1 0

NH2-TVDTLEGADPSSLANK-COOH 86 101 11 0 1 1 2 1 0 11 3 3 3 1 0 0 21 16

NH2-VGK<GGe>VAGSSTSAEPAAPASLGLAAGPTILETVK-COOH 102 133 104 1 1 0

NH2-VAGSSTSAEPAAPASLGLAAGPTILETVK-COOH 105 133 5 1 5 2 2 9 6

NH2-VAGSSTSAEPAAPASLGLAAGPTILETVKENAK-COOH 105 137 2 2 0

NH2-ENAK<GGe>ASLQDR-COOH 134 143 137 2 1 1 4 0

NH2-AQPVSTADALK-COOH 144 154 4 1 1 1 1 4 1 1 1 7 8

NH2-AQPVSTADALK<GGe>SR-COOH 144 156 154 1 1 1 3 0

NH2-AQPVSTADALKSR-COOH 144 156 1 1 0

NH2-LTNSHPVMLFMK-COOH 160 171 6 0 0 1 0 0 0 4 3 0 0 0 0 0 7 7

NH2-EVNVDFGSFDILSDNEVR-COOH 191 208 0 0 2 2 1 0 0 11 1 1 1 1 0 1 16 5

NH2-FSNWPTFPQLYC<Prp>NGELLGGADIAIAM<Mox>HESGELK-COOH 214 246 1 0 1

NH2-DAFK<GGe>DLGITTVGSK-COOH 247 260 250 1 2 3 0

NH2-DAFKDLGITTVGSK-COOH 247 260 2 1 1 2

NH2-DLGITTVGSK-COOH 251 260 3 0 0 1 1 1 1 6 1 1 1 0 0 1 10 7

NH2-DLGITTVGSK<GGe>ESQDEAGK-COOH 251 268 260 1 1 0

NH2-DLGITTVGSKESQDEAGK-COOH 251 268 1 1 0

NH2-ESQDEAGK<GGe>GGGVSSGNTGLSETLR-COOH 261 284 268 1 1 1 1 1 1 6 0

NH2-ESQDEAGKGGGVSSGNTGLSETLR-COOH 261 284 1 1 1 1

NH2-GGGVSSGNTGLSETLR-COOH 269 284 6 1 2 1 3 1 1 8 3 1 1 1 1 1 16 15

NH2-ARLEGLVNSK-COOH 285 294 1 0 1

NH2-ARLEGLVNSKPVM<Mox>LFM<Mox>K-COOH 285 301 4 0 0 0 0 0 0 3 0 0 0 0 0 0 3 4

NH2-LEGLVNSK-COOH 287 294 2 1 1 1 1 2 1 1 1 1 1 1 8 6

NH2-LEGLVNSKPVMLFMK-COOH 287 301 6 0 0 0 0 0 0 6 0 2 1 0 0 0 9 6

NH2-VVEILNQEK-COOH 315 323 2 1 1 1 2 1 1 1 5 5

NH2-IEFGSFDILLDDEVR-COOH 324 338 23 0 2 3 2 1 1 18 17 13 5 4 3 2 62 32

Spectral count



NH2-VYSNWSSYPQLYVK-COOH 343 356 5 1 1 1 7 2 1 1 1 1 1 14 8

NH2-GELMGGSDIVLEMQK-COOH 357 371 73 1 4 4 4 3 2 76 29 12 6 4 2 4 133 91

NH2-VLTEK<GGe>GITGEQSLEDR-COOH 378 393 382 1 1 2 1 1 6 0

NH2-VLTEKGITGEQSLEDR-COOH 378 393 1 0 1

NH2-GITGEQSLEDR-COOH 383 393 7 1 1 1 1 6 2 1 1 1 1 12 11

NH2-GITGEQSLEDRLK-COOH 383 395 2 2 0

NH2-ALINSSEVMLFMK-COOH 396 408 26 3 2 5 3 0 0 17 7 5 6 3 2 1 41 39

NH2-GENVSFGSFDILTDEEVR-COOH 428 445 34 1 3 4 1 2 1 41 19 5 4 3 2 2 76 46

NH2-NFSNWPTFPQLYYK-COOH 450 463 4 0 1 2 1 0 0 6 2 2 1 1 1 0 13 8

NH2-GELIGGCDIIMELSESGDLK-COOH 464 483 7 0 0 0 0 0 0 8 1 0 0 0 0 0 9 7

Tag/att-site:

NH2-ATLSEGDPAFLYK-COOH 484 496 6 6 0

NH2-ATLSEGDPAFLYK-COOH 484 496 2 2 0

NH2-ATLSEGDPAFLYK-COOH 484 496 5 0 5

NH2-ATLSEGDPAFLYK-COOH 484 496 1 1 1 1 1 1 1 1 1 1 5 5

NH2-ATLSEGDPAFLYK<GGe>VVINSK-COOH 484 502 496 1 1 0

NH2-ATLSEGDPAFLYKVVINSK-COOH 484 502 1 1 1 1

NH2-VVINSK<GGe>LEGK-COOH 497 506 502 1 2 3 0

NH2-LEGK<GGe>PIPNPLLGLDSTR-COOH 503 519 506 1 1 1 3 0

NH2-LEGKPIPNPLLGLDSTR-COOH 503 519 6 4 2 2 8 6

NH2-PIPNPLLGLDSTR-COOH 507 519 14 14 0

NH2-PIPNPLLGLDSTR-COOH 507 519 8 0 8

NH2-PIPNPLLGLDSTR-COOH 507 519 1 1 2 1 1 3 1 2 2 2 1 11 6

Bands indicate gel-fragments isolated after separation of the proteins used in in vitro ubiquitination assays. Bands 14 -12 -11 - 10 - 9 - 8 - 7: originated from in vitro assay using WT E3 ligase. Band 14 corresponds to the 

molecular weight of unmodified PICOT1, 12-7: fragments with increasing molecular weight. Bands 13 -6 - 5 - 4 - 3 - 2 - 1: originated from in vitro assay using mutant E3 ligase. Band 13 corresponds to the molecular 

weight of unmodified PICOT1, 6-1: fragments with increasing molecular weight.



Locus logFC logCPM PValue FDR Short description

AT2G03130 7.8431 -0.9583 1.64E-23 4.36E-21 Ribosomal protein L12/ ATP-dependent Clp protease adaptor protein ClpS family protein

AT2G24255 7.5244 -1.2068 1.41E-19 2.61E-17 Protein of unknown function (DUF295)

AT1G30170 6.7259 0.9718 2.32E-73 5.05E-70 Protein of unknown function (DUF295)

AT4G17710 5.9496 -0.9566 2.33E-23 5.94E-21 homeodomain GLABROUS 4 (HDG4)

AT5G53230 5.1691 1.1845 5.76E-80 1.41E-76 Protein of unknown function (DUF295)

AT5G14490 4.9533 -0.6570 2.03E-24 5.85E-22 NAC domain containing protein 85 (NAC085)

AT5G55270 4.7198 -0.0076 2.91E-33 1.78E-30 Protein of unknown function (DUF295)

AT5G59390 4.6879 -0.2682 3.65E-30 1.66E-27 XH/XS domain-containing protein

AT5G54560 4.6639 -1.3435 1.14E-15 1.52E-13 Protein of unknown function (DUF295)

AT5G53240 4.6525 -0.9294 2.67E-19 4.80E-17 Protein of unknown function (DUF295)

AT3G01345 4.4126 0.2226 1.98E-40 1.62E-37 Expressed protein

AT4G05380 4.3607 0.0290 1.26E-33 8.00E-31 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT5G60250 4.3006 2.8474 1.98E-145 1.29E-141 zinc finger (C3HC4-type RING finger) family protein

AT4G05370 4.2930 -0.6389 1.14E-21 2.66E-19 BCS1 AAA-type ATPase

AT2G20800 4.1930 2.0061 2.66E-91 8.69E-88 NAD(P)H dehydrogenase B4 (NDB4)

AT4G22470 3.9753 2.9779 4.65E-13 4.16E-11 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein

AT3G01600 3.7631 3.0316 7.30E-144 3.58E-140 NAC domain containing protein 44 (NAC044)

AT2G18720 3.6950 -0.4126 1.82E-23 4.76E-21 Translation elongation factor EF1A/initiation factor IF2gamma family protein

AT2G39030 3.6676 0.4972 4.77E-08 1.93E-06 Acyl-CoA N-acyltransferases (NAT) superfamily protein

AT4G12490 3.6453 3.2611 3.06E-20 6.18E-18 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT3G22860 3.0983 -0.7617 4.34E-14 4.45E-12 eukaryotic translation initiation factor 3 subunit C2 (TIF3C2)

AT5G47000 3.0965 -0.0307 1.80E-21 4.11E-19 Peroxidase superfamily protein

AT4G32510 3.0591 -1.4097 3.57E-10 2.11E-08 HCO3- transporter family

AT5G20240 3.0528 -0.8197 1.06E-14 1.19E-12 PISTILLATA (PI)

AT4G12480 2.9736 6.9036 1.06E-57 1.57E-54 pEARLI 1

AT5G58610 2.9158 1.6751 9.47E-58 1.55E-54 PHD finger transcription factor, putative

AT5G13210 2.8400 3.3197 2.04E-87 5.73E-84 Uncharacterised conserved protein UCP015417,  vWA

AT3G54530 2.8270 -0.3893 4.72E-16 6.61E-14 unknown protein

AT4G12470 2.8266 4.8391 1.06E-28 4.17E-26 azelaic acid induced 1 (AZI1)

AT5G24280 2.8123 4.1506 1.02E-127 4.00E-124 GAMMA-IRRADIATION AND MITOMYCIN C INDUCED 1 (GMI1)

AT3G18610 2.7156 1.9487 1.12E-57 1.57E-54 nucleolin like 2 (NUC-L2)

AT5G64060 2.6805 1.8069 7.69E-54 9.42E-51 NAC domain containing protein 103 (NAC103)

AT1G36180 2.6310 5.8323 6.22E-167 6.10E-163 acetyl-CoA carboxylase 2 (ACC2)

AT1G03710 2.5470 -0.9329 1.63E-10 1.02E-08 Cystatin/monellin superfamily protein

AT4G21680 2.4794 1.2493 6.10E-20 1.17E-17 NITRATE TRANSPORTER 1.8 (NRT1.8)

AT1G17960 2.4753 2.4977 1.75E-66 3.43E-63 Threonyl-tRNA synthetase

Supplementary Table S3. Differentially expressed genes obtained by RNA-Sequencing analysis of the picot1 line.



AT1G11070 2.4537 2.2998 5.34E-51 5.81E-48 Similar to Hydroxyproline-rich glycoprotein family protein

AT1G30160 2.4404 0.8004 6.13E-29 2.50E-26 Protein of unknown function (DUF295)

AT1G49570 2.4232 3.1231 6.18E-57 8.07E-54 Peroxidase superfamily protein

AT5G24640 2.3760 0.4693 3.29E-21 7.19E-19 unknown protein

AT5G09570 2.3161 1.7229 1.58E-39 1.24E-36 Cox19-like CHCH family protein

AT1G05490 2.2963 0.7971 1.71E-25 5.25E-23 chromatin remodeling 31 (chr31)

AT2G18190 2.2698 -0.5504 1.49E-11 1.10E-09 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT5G44575 2.2674 0.1789 2.43E-11 1.72E-09 unknown protein

AT5G07200 2.1916 0.0057 1.44E-15 1.88E-13 gibberellin 20-oxidase 3 (GA20OX3)

AT5G12030 2.1478 -0.4739 4.01E-11 2.72E-09 heat shock protein 17.6A (HSP17.6A)

AT3G58270 2.1348 2.4710 4.66E-51 5.37E-48 Arabidopsis phospholipase-like protein (PEARLI 4) with TRAF-like domain

AT2G47520 2.1346 -0.1203 8.29E-15 9.52E-13 HYPOXIA RESPONSIVE ERF (ETHYLENE RESPONSE FACTOR) 2 (HRE2)

AT5G58840 2.1010 -0.7230 2.76E-09 1.42E-07 Subtilase family protein

AT2G18193 2.0929 4.6821 3.26E-38 2.46E-35 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT1G20350 2.0614 -0.6479 3.49E-10 2.08E-08 translocase inner membrane subunit 17-1 (TIM17-1)

AT1G76470 2.0370 -0.6079 1.02E-09 5.65E-08 NAD(P)-binding Rossmann-fold superfamily protein

AT1G70260 2.0312 2.0482 5.53E-33 3.29E-30 nodulin MtN21 /EamA-like transporter family protein

AT1G30660 2.0098 -0.9147 8.56E-08 3.25E-06

AT3G27620 1.9986 -0.0357 1.32E-12 1.13E-10 alternative oxidase 1C (AOX1C)

AT2G38340 1.9289 0.0990 8.10E-14 8.10E-12 Integrase-type DNA-binding superfamily protein

AT4G12735 1.9024 -0.2646 1.12E-09 6.14E-08 unknown protein

AT3G09950 1.8924 -0.4923 1.03E-09 5.70E-08 unknown protein

AT5G51440 1.8907 2.9705 4.93E-46 5.09E-43 HSP20-like chaperones superfamily protein

AT2G21450 1.8832 -0.6898 1.61E-08 7.23E-07 chromatin remodeling 34 (CHR34)

AT1G18100 1.8678 2.3204 1.17E-24 3.48E-22 E12A11

AT2G21640 1.8663 2.4958 2.10E-30 9.79E-28 unknown protein

AT4G15350 1.8526 -0.7776 8.00E-08 3.06E-06 cytochrome P450, family 705, subfamily A, polypeptide 2 (CYP705A2)

AT2G41730 1.8312 2.7400 1.39E-36 9.41E-34 unknown protein

AT1G65570 1.8228 0.6566 1.68E-17 2.72E-15 Pectin lyase-like superfamily protein

AT1G53540 1.7874 -0.5366 6.84E-08 2.66E-06 HSP20-like chaperones superfamily protein

AT4G16590 1.7828 -0.6030 4.41E-08 1.80E-06 cellulose synthase-like A01 (CSLA01)

AT1G70440 1.7752 0.8400 4.33E-18 7.20E-16 similar to RCD one 3 (SRO3)

AT1G20400 1.7694 0.7318 6.06E-15 7.11E-13 FUNCTIONS IN: molecular_function unknown

AT2G38250 1.7461 1.0757 2.73E-20 5.57E-18 Homeodomain-like superfamily protein

AT3G46230 1.7274 0.7771 2.46E-13 2.31E-11 heat shock protein 17.4 (HSP17.4)

AT5G19470 1.7022 2.7655 5.44E-09 2.65E-07 nudix hydrolase homolog 24 (NUDT24)

AT3G28580 1.6985 1.3791 1.19E-11 8.96E-10 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT1G49920 1.6932 -0.8888 1.97E-06 5.28E-05 MuDR family transposase

AT1G61255 1.6724 -0.8046 6.06E-07 1.86E-05 Similar to glycine-rich protein



AT1G67760 1.6513 0.6887 4.77E-15 5.84E-13 TCP-1/cpn60 chaperonin family protein

AT5G11410 1.6440 0.7932 1.66E-14 1.81E-12 Protein kinase superfamily protein

AT2G04050 1.6328 3.8197 1.93E-14 2.06E-12 MATE efflux family protein

AT1G65500 1.6113 1.4600 3.21E-13 2.97E-11 unknown protein

AT5G67060 1.6049 -0.2688 1.73E-08 7.72E-07 HECATE 1 (HEC1)

AT5G25230 1.5970 0.9286 4.52E-16 6.38E-14 Ribosomal protein S5/Elongation factor G/III/V family protein

AT1G52120 1.5967 3.2178 1.04E-28 4.17E-26 Mannose-binding lectin superfamily protein

AT4G36570 1.5946 0.9778 2.13E-12 1.75E-10 RAD-like 3 (RL3)

AT2G42430 1.5888 1.0904 3.22E-17 4.96E-15 lateral organ boundaries-domain 16 (LBD16)

AT1G18835 1.5868 -0.8893 5.81E-06 1.35E-04 MINI ZINC FINGER 3 (MIF3)

AT4G30250 1.5855 0.7416 2.27E-05 4.44E-04 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT1G53130 1.5774 0.6593 3.27E-13 3.01E-11 GRIM REAPER (GRI)

AT3G45730 1.5712 2.2311 2.70E-24 7.67E-22 unknown protein

AT3G47030 1.5694 -0.0415 4.69E-09 2.31E-07 F-box and associated interaction domains-containing protein

AT1G54890 1.5664 0.8721 3.84E-14 3.98E-12 Late embryogenesis abundant (LEA) protein-related

AT5G19700 1.5645 1.4530 1.95E-18 3.30E-16 MATE efflux family protein

AT4G20690 1.5636 -0.3952 7.10E-08 2.75E-06 unknown protein

AT4G15210 1.5388 2.4580 1.74E-15 2.23E-13 beta-amylase 5 (BAM5)

AT2G44570 1.5291 0.8942 7.31E-15 8.49E-13 glycosyl hydrolase 9B12 (GH9B12)

AT3G21720 1.4924 2.1238 4.06E-13 3.67E-11 isocitrate lyase (ICL)

AT5G67430 1.4863 2.8286 5.21E-20 1.02E-17 Acyl-CoA N-acyltransferases (NAT) superfamily protein

AT1G66920 1.4782 0.6856 1.04E-10 6.75E-09 Protein kinase superfamily protein

AT5G37490 1.4712 -0.8576 5.53E-05 9.57E-04 ARM repeat superfamily protein

AT3G59930 1.4592 -0.7282 1.06E-05 2.28E-04 FUNCTIONS IN: molecular_function unknown

AT1G19380 1.4538 1.0789 3.89E-08 1.60E-06 Protein of unknown function (DUF1195)

AT2G23170 1.4324 3.1675 1.62E-31 8.61E-29 GH3.3

AT5G44574 1.4300 -0.6117 7.97E-06 1.78E-04 unknown protein

AT5G46050 1.4238 0.0951 1.71E-06 4.66E-05 peptide transporter 3 (PTR3)

AT1G52060 1.4216 3.9461 9.97E-38 7.24E-35 Mannose-binding lectin superfamily protein

AT4G33970 1.4064 -0.6773 1.76E-05 3.58E-04 Leucine-rich repeat (LRR) family protein

AT1G64160 1.4019 0.1512 3.73E-08 1.54E-06 Disease resistance-responsive (dirigent-like protein) family protein

AT4G02700 1.3892 1.3765 5.50E-15 6.57E-13

AT4G15160 1.3807 6.5393 2.11E-15 2.69E-13 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT3G11260 1.3767 -0.7107 2.10E-05 4.15E-04 WUSCHEL related homeobox 5 (WOX5)

AT3G48520 1.3548 1.7855 5.27E-16 7.28E-14 cytochrome P450, family 94, subfamily B, polypeptide 3 (CYP94B3)

AT4G22960 1.3530 0.4665 1.31E-08 5.97E-07 Protein of unknown function (DUF544)     

AT4G11720 1.3369 -0.7358 4.02E-05 7.33E-04 HAPLESS 2 (HAP2)

AT3G14060 1.3310 2.7325 6.70E-16 9.12E-14 unknown protein

AT3G20710 1.3242 -0.3587 3.46E-05 6.43E-04 F-box family protein



AT1G52070 1.3060 4.9117 2.99E-26 9.93E-24 Mannose-binding lectin superfamily protein

AT1G61800 1.3046 1.7120 4.32E-16 6.13E-14 glucose-6-phosphate/phosphate translocator 2 (GPT2)

AT2G32830 1.3018 -0.8245 6.91E-05 1.16E-03 Encodes Pht1

AT3G08860 1.2867 4.8593 1.75E-42 1.49E-39 PYRIMIDINE 4 (PYD4)

AT2G04070 1.2790 0.2872 1.21E-07 4.42E-06 MATE efflux family protein

AT3G22142 1.2738 6.1850 1.37E-21 3.16E-19 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT3G24780 1.2735 1.2546 8.11E-13 7.10E-11 Uncharacterised conserved protein UCP015417,  vWA

AT5G55110 1.2731 0.4314 7.67E-07 2.29E-05 Stigma-specific Stig1 family protein

AT1G76930 1.2718 8.2336 2.02E-24 5.85E-22 extensin 4 (EXT4)

AT2G34340 1.2705 0.8270 1.31E-10 8.38E-09 Protein of unknown function, DUF584

AT1G52040 1.2676 5.2807 4.34E-21 9.35E-19 myrosinase-binding protein 1 (MBP1)

AT3G13130 1.2666 -0.7931 1.42E-04 2.11E-03 unknown protein

AT3G04320 1.2614 1.4747 4.93E-14 5.01E-12 Kunitz family trypsin and protease inhibitor protein

AT3G52780 1.2561 -0.6598 4.49E-05 8.04E-04 PAP20

AT4G38340 1.2488 0.0141 1.41E-06 3.96E-05 Plant regulator RWP-RK family protein

AT4G30140 1.2473 5.6542 1.19E-25 3.75E-23 CUTICLE DESTRUCTING  FACTOR 1 (CDEF1)

AT2G38823 1.2451 1.0749 2.01E-09 1.06E-07 unknown protein

AT3G45060 1.2406 -0.4820 1.77E-05 3.60E-04 high affinity nitrate transporter 2.6 (NRT2.6)

AT3G13080 1.2397 6.2305 9.98E-44 9.31E-41 multidrug resistance-associated protein 3 (MRP3)

AT4G06746 1.2280 -0.0902 3.52E-06 8.77E-05 related to AP2 9 (RAP2.9)

AT3G58190 1.2241 -0.9177 8.01E-04 8.61E-03 lateral organ boundaries-domain 29 (LBD29)

AT3G21520 1.2209 0.5942 6.23E-09 3.00E-07 DUF679 domain membrane protein 1 (DMP1)

AT1G68480 1.2169 -0.2766 4.98E-06 1.19E-04 JAGGED (JAG)

AT3G14700 1.2141 -0.5033 6.55E-05 1.11E-03 SART-1 family

AT5G61740 1.2083 0.3148 1.01E-07 3.72E-06 ABC2 homolog 14 (ATH14)

AT4G01985 1.2070 1.7042 1.27E-05 2.68E-04 unknown protein

AT5G58390 1.1941 3.0264 7.78E-09 3.66E-07 Peroxidase superfamily protein

AT3G48700 1.1923 1.5956 1.43E-12 1.22E-10 carboxyesterase 13 (CXE13)

AT1G34460 1.1906 -0.9363 6.62E-04 7.46E-03 B1 type cyclin

AT1G27020 1.1844 2.0929 1.49E-04 2.20E-03 unknown protein

AT5G48850 1.1749 3.6637 5.39E-19 9.44E-17 SULPHUR DEFICIENCY-INDUCED 1 (ATSDI1)

AT2G27550 1.1703 2.9705 3.96E-18 6.63E-16 centroradialis (ATC)

AT5G12330 1.1676 3.2921 2.95E-11 2.05E-09 LATERAL ROOT PRIMORDIUM 1 (LRP1)

AT5G38700 1.1664 -0.1246 2.05E-05 4.06E-04 unknown protein

AT3G19200 1.1633 0.1635 7.24E-07 2.18E-05 unknown protein

AT1G24260 1.1613 0.0822 1.76E-06 4.78E-05 SEPALLATA3 (SEP3)

AT5G44568 1.1566 -0.1104 1.25E-05 2.64E-04 unknown protein

AT2G43590 1.1538 6.2958 1.68E-13 1.61E-11 Chitinase family protein

AT4G13680 1.1516 -0.0465 9.14E-06 2.00E-04 Protein of unknown function (DUF295)



AT5G63090 1.1422 0.7759 2.46E-07 8.38E-06 LATERAL ORGAN BOUNDARIES (LOB)

AT5G60520 1.1360 2.5943 9.96E-16 1.33E-13 Late embryogenesis abundant (LEA) protein-related

AT1G13330 1.1330 1.0768 1.18E-09 6.45E-08 Arabidopsis Hop2 homolog (AHP2)

AT1G03660 1.1276 -0.4460 6.79E-05 1.14E-03 Ankyrin-repeat containing protein

AT3G62270 1.1246 5.8965 2.87E-11 2.01E-09 HCO3- transporter family

AT1G52770 1.1192 0.4271 4.09E-07 1.31E-05 Phototropic-responsive NPH3 family protein

AT1G24095 1.1189 2.1256 6.03E-15 7.11E-13 Putative thiol-disulphide oxidoreductase DCC

AT1G43910 1.1135 2.4765 3.53E-15 4.38E-13 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT1G19630 1.0978 0.4228 5.04E-07 1.58E-05 cytochrome P450, family 722, subfamily A, polypeptide 1 (CYP722A1)

AT4G16240 1.0960 -0.2926 1.02E-04 1.62E-03 unknown protein

AT3G49580 1.0863 4.2018 1.16E-13 1.14E-11 RESPONSE TO LOW SULFUR 1 (LSU1)

AT4G16563 1.0837 3.0586 3.32E-14 3.46E-12 Eukaryotic aspartyl protease family protein

AT1G69310 1.0802 3.6718 2.17E-22 5.25E-20 WRKY DNA-binding protein 57 (WRKY57)

AT5G20820 1.0797 0.2187 2.89E-06 7.37E-05 SAUR-like auxin-responsive protein family 

AT3G27630 1.0785 -0.8287 1.23E-03 1.20E-02 unknown protein

AT3G15720 1.0762 1.5566 2.73E-11 1.92E-09 Pectin lyase-like superfamily protein

AT4G14780 1.0761 0.2935 7.71E-06 1.73E-04 Protein kinase superfamily protein

AT4G16600 1.0748 0.2866 3.06E-06 7.75E-05 Nucleotide-diphospho-sugar transferases superfamily protein

AT4G23130 1.0697 -0.4296 5.99E-04 6.88E-03 cysteine-rich RLK (RECEPTOR-like protein kinase) 5 (CRK5)

AT2G18600 1.0673 1.6474 2.32E-11 1.64E-09 Ubiquitin-conjugating enzyme family protein

AT5G13330 1.0615 2.6651 4.88E-16 6.79E-14 related to AP2 6l (Rap2.6L)

AT3G62460 1.0506 3.4776 2.44E-12 1.99E-10 Putative endonuclease or glycosyl hydrolase

AT3G13210 1.0443 -0.3164 1.62E-04 2.37E-03 crooked neck protein, putative / cell cycle protein, putative

AT3G61630 1.0412 3.6366 2.21E-20 4.61E-18 cytokinin response factor 6 (CRF6)

AT5G39580 1.0361 2.8709 1.74E-13 1.65E-11 Peroxidase superfamily protein

AT5G18180 1.0347 -0.6141 5.93E-04 6.82E-03 H/ACA ribonucleoprotein complex, subunit Gar1/Naf1 protein

AT3G28500 1.0311 -0.4333 2.18E-04 3.03E-03 60S acidic ribosomal protein family

AT3G05660 1.0295 0.9974 5.07E-08 2.04E-06 receptor like protein 33 (RLP33)

AT5G60040 1.0288 4.3056 4.74E-27 1.66E-24 nuclear RNA polymerase C1 (NRPC1)

AT3G44300 1.0195 6.4975 2.95E-26 9.93E-24 nitrilase 2 (NIT2)

AT5G19880 1.0158 0.1457 7.14E-05 1.19E-03 Peroxidase superfamily protein

AT4G22710 1.0111 0.7508 7.39E-07 2.22E-05 cytochrome P450, family 706, subfamily A, polypeptide 2 (CYP706A2)

AT1G20620 1.0100 10.4325 4.03E-24 1.11E-21 catalase 3 (CAT3)

AT2G36270 1.0057 0.3976 4.88E-06 1.17E-04 ABA INSENSITIVE 5 (ABI5)

AT5G52940 1.0028 0.8410 3.51E-07 1.15E-05 Protein of unknown function (DUF295)

AT4G20235 -1.0020 -0.8017 1.91E-03 1.69E-02 cytochrome P450, family 71, subfamily A, polypeptide 28 (CYP71A28)

AT5G53380 -1.0025 -0.8501 2.19E-03 1.89E-02 O-acyltransferase (WSD1-like) family protein

AT4G04700 -1.0048 1.3951 6.54E-09 3.13E-07 calcium-dependent protein kinase 27 (CPK27)

AT1G24130 -1.0048 -0.0500 2.61E-04 3.54E-03 Transducin/WD40 repeat-like superfamily protein



AT1G12570 -1.0092 2.2742 7.33E-11 4.85E-09 Glucose-methanol-choline (GMC) oxidoreductase family protein

AT1G14220 -1.0100 0.3891 4.83E-06 1.16E-04 Ribonuclease T2 family protein

AT5G38710 -1.0203 1.8201 1.42E-11 1.06E-09 Methylenetetrahydrofolate reductase family protein

AT3G29630 -1.0206 1.5082 1.25E-09 6.78E-08 UDP-Glycosyltransferase superfamily protein

AT4G12520 -1.0207 2.5350 2.07E-12 1.71E-10 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT3G12460 -1.0216 -0.6949 1.64E-03 1.51E-02 Polynucleotidyl transferase, ribonuclease H-like superfamily protein

AT3G13610 -1.0229 5.8197 2.13E-23 5.49E-21 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT5G67090 -1.0235 0.3223 5.45E-06 1.28E-04 Subtilisin-like serine endopeptidase family protein

AT3G45430 -1.0283 1.3272 9.13E-10 5.13E-08 Concanavalin A-like lectin protein kinase family protein

AT5G59360 -1.0294 0.7129 3.15E-07 1.03E-05 unknown protein

AT5G65030 -1.0298 -0.0636 1.20E-04 1.84E-03 unknown protein

AT5G45960 -1.0312 1.1336 1.12E-08 5.14E-07 GDSL-like Lipase/Acylhydrolase superfamily protein

AT3G05155 -1.0320 0.0818 1.38E-05 2.89E-04 Major facilitator superfamily protein

AT5G10946 -1.0328 0.7462 4.04E-07 1.30E-05 unknown protein

AT5G53250 -1.0341 3.3419 2.62E-13 2.44E-11 arabinogalactan protein 22 (AGP22)

AT5G18050 -1.0344 0.9515 1.41E-07 5.08E-06 SAUR-like auxin-responsive protein family 

AT3G09960 -1.0387 0.3340 3.35E-06 8.38E-05 Calcineurin-like metallo-phosphoesterase superfamily protein

AT5G62340 -1.0392 2.5366 7.04E-12 5.47E-10 Plant invertase/pectin methylesterase inhibitor superfamily protein

AT5G39110 -1.0473 -0.8864 1.68E-03 1.54E-02 RmlC-like cupins superfamily protein

AT2G43440 -1.0510 -0.1713 3.59E-05 6.63E-04 F-box and associated interaction domains-containing protein

AT5G40990 -1.0515 -0.5197 3.79E-04 4.76E-03 GDSL lipase 1 (GLIP1)

AT2G18800 -1.0536 1.7143 8.47E-12 6.49E-10 xyloglucan endotransglucosylase/hydrolase 21 (XTH21)

AT4G04760 -1.0573 -0.7666 1.62E-03 1.50E-02 Major facilitator superfamily protein

AT3G09400 -1.0574 0.1178 2.78E-05 5.29E-04 pol-like 3 (PLL3)

AT5G46900 -1.0582 4.0158 7.05E-25 2.13E-22 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT5G42510 -1.0587 1.2436 7.50E-08 2.89E-06 Disease resistance-responsive (dirigent-like protein) family protein

AT2G41480 -1.0594 2.4384 9.87E-15 1.11E-12 Peroxidase superfamily protein

AT1G18970 -1.0594 3.4860 2.47E-22 5.90E-20 germin-like protein 4 (GLP4)

AT2G24310 -1.0649 -0.5752 8.13E-04 8.72E-03 unknown protein

AT3G55900 -1.0673 -0.6467 5.24E-04 6.19E-03 F-box family protein

AT1G16530 -1.0693 1.6295 3.67E-11 2.52E-09 ASYMMETRIC LEAVES 2-like 9 (ASL9)

AT3G47220 -1.0705 0.9287 1.45E-08 6.59E-07 phosphatidylinositol-speciwc phospholipase C9 (PLC9)

AT5G63140 -1.0714 2.3215 5.80E-14 5.86E-12 purple acid phosphatase 29 (PAP29)

AT2G38995 -1.0746 2.4936 1.88E-14 2.03E-12 O-acyltransferase (WSD1-like) family protein

AT2G04800 -1.0777 1.4511 4.48E-10 2.64E-08 unknown protein

ATCG00810 -1.0798 -0.6254 3.88E-04 4.85E-03 ribosomal protein L22 (RPL22)

AT3G52770 -1.0801 -0.1099 5.67E-05 9.76E-04 LITTLE ZIPPER 3 (ZPR3)

AT2G40960 -1.0811 3.1766 2.81E-21 6.32E-19 Single-stranded nucleic acid binding R3H protein

AT1G63520 -1.0821 0.2984 8.90E-06 1.96E-04 Protein of unknown function (DUF3527)



AT1G17147 -1.0842 1.5033 1.37E-11 1.02E-09 VQ motif-containing protein

AT5G49780 -1.0851 0.9635 7.15E-09 3.39E-07 Leucine-rich repeat protein kinase family protein

AT3G29430 -1.0854 -0.4161 1.31E-04 1.98E-03 Terpenoid synthases superfamily protein

AT2G18470 -1.0917 1.3664 2.85E-10 1.74E-08 roline-rich extensin-like receptor kinase 4 (PERK4)

AT5G43230 -1.0967 0.2060 3.16E-06 7.94E-05 unknown protein

AT5G42600 -1.1031 4.0057 1.20E-25 3.75E-23 marneral synthase (MRN1)

AT2G18690 -1.1115 2.5207 3.30E-11 2.28E-09 unknown protein

AT1G52890 -1.1122 -0.1563 5.44E-05 9.45E-04 NAC domain containing protein 19 (NAC019)

AT1G28480 -1.1153 -0.0084 1.06E-05 2.28E-04 GRX480

AT5G57010 -1.1195 1.2466 1.58E-10 9.93E-09 calmodulin-binding family protein

AT5G65690 -1.1237 1.1879 7.40E-10 4.20E-08 phosphoenolpyruvate carboxykinase 2 (PCK2)

AT1G66090 -1.1266 0.0648 2.24E-05 4.38E-04 Disease resistance protein (TIR-NBS class)

AT2G30432 -1.1268 0.0545 5.20E-06 1.23E-04 TRICHOMELESS1 (TCL1)

AT3G48940 -1.1283 -1.0066 2.29E-03 1.95E-02 Remorin family protein

AT3G19615 -1.1319 -0.7102 1.54E-04 2.27E-03 unknown protein

AT1G10340 -1.1382 0.1564 4.20E-06 1.03E-04 Ankyrin repeat family protein

AT5G56970 -1.1425 -1.0816 3.63E-03 2.76E-02 cytokinin oxidase 3 (CKX3)

AT1G66270 -1.1439 6.4364 1.49E-37 1.04E-34 BGLU21

AT1G26380 -1.1446 2.2712 2.99E-14 3.16E-12 FAD-binding Berberine family protein

AT3G22910 -1.1472 -0.0154 5.63E-06 1.31E-04 ATPase E1-E2 type family protein / haloacid dehalogenase-like hydrolase family protein

AT4G36880 -1.1490 2.0825 7.32E-15 8.49E-13 cysteine proteinase1 (CP1)

AT1G13550 -1.1502 -1.1018 1.95E-03 1.72E-02 Protein of unknown function (DUF1262)

AT4G23493 -1.1506 0.4891 1.65E-07 5.79E-06 unknown protein

AT5G49770 -1.1506 0.1634 1.87E-06 5.03E-05 Leucine-rich repeat protein kinase family protein

AT2G01520 -1.1556 7.6398 3.15E-21 7.01E-19 owering.

AT5G51470 -1.1582 -0.5327 1.68E-04 2.44E-03 Auxin-responsive GH3 family protein

AT2G38600 -1.1589 -0.0932 4.35E-06 1.06E-04 HAD superfamily, subfamily IIIB acid phosphatase 

AT3G01260 -1.1596 3.5702 2.53E-28 9.74E-26 Galactose mutarotase-like superfamily protein

ATCG00800 -1.1698 0.0952 1.64E-06 4.50E-05 RESISTANCE TO PSEUDOMONAS SYRINGAE 3 (RPS3)

AT1G62280 -1.1709 1.8365 6.13E-12 4.81E-10 SLAC1 homologue 1 (SLAH1)

AT5G38970 -1.1790 0.1946 1.60E-06 4.42E-05 brassinosteroid-6-oxidase 1 (BR6OX1)

AT1G15050 -1.1829 -0.8399 5.01E-04 5.96E-03 indole-3-acetic acid inducible 34 (IAA34)

AT5G23030 -1.1839 -0.3150 9.72E-06 2.11E-04 tetraspanin12 (TET12)

AT1G63295 -1.1839 1.2409 1.44E-10 9.16E-09 Remorin family protein

AT4G24340 -1.1846 1.9909 1.19E-14 1.32E-12 Phosphorylase superfamily protein

AT1G21550 -1.1850 0.0975 2.76E-06 7.06E-05 Calcium-binding EF-hand family protein

AT5G47450 -1.1934 3.6940 8.37E-12 6.43E-10 TONOPLAST INTRINSIC PROTEIN 2;3 (TIP2;3)

AT1G29270 -1.1950 -0.2486 2.03E-05 4.02E-04 unknown protein

AT3G45860 -1.1950 0.7122 6.80E-09 3.24E-07 cysteine-rich RLK (RECEPTOR-like protein kinase) 4 (CRK4)



AT4G15480 -1.1951 0.5771 2.52E-08 1.08E-06 UGT84A1

AT5G59680 -1.2039 1.7169 1.47E-14 1.61E-12 Leucine-rich repeat protein kinase family protein

AT4G01895 -1.2077 -0.6976 1.77E-04 2.54E-03 systemic acquired resistance (SAR) regulator protein NIMIN-1-related

AT3G55890 -1.2153 0.7965 3.44E-09 1.74E-07 Yippee family putative zinc-binding protein

AT5G13320 -1.2206 2.2826 1.53E-16 2.24E-14 AVRPPHB SUSCEPTIBLE 3 (PBS3)

AT5G25250 -1.2219 1.7383 5.69E-15 6.76E-13 SPFH/Band 7/PHB domain-containing membrane-associated protein family

AT1G66020 -1.2270 0.4517 2.04E-08 8.94E-07 Terpenoid cyclases/Protein prenyltransferases superfamily protein

AT4G37060 -1.2279 -1.0030 4.70E-04 5.66E-03 PATATIN-like protein 5 (PLP5)

AT1G19510 -1.2371 -1.0787 1.69E-03 1.55E-02 RAD-like 5 (RL5)

AT4G40020 -1.2437 -0.0582 1.63E-06 4.49E-05 Myosin heavy chain-related protein

AT4G26320 -1.2468 2.8844 1.31E-09 7.09E-08 arabinogalactan protein 13 (AGP13)

AT1G05650 -1.2481 1.2816 5.89E-11 3.94E-09 Pectin lyase-like superfamily protein

AT2G24850 -1.2561 -0.3611 4.37E-06 1.06E-04 tyrosine aminotransferase 3 (TAT3)

AT1G65680 -1.2579 -1.0713 1.70E-03 1.56E-02 expansin B2 (EXPB2)

AT1G53625 -1.2616 1.9558 3.32E-13 3.04E-11 unknown protein

AT2G31083 -1.2649 -0.2696 4.02E-06 9.85E-05 CLAVATA3/ESR-RELATED 5 (CLE5)

AT5G02540 -1.2678 2.3772 4.36E-20 8.64E-18 NAD(P)-binding Rossmann-fold superfamily protein

AT1G73330 -1.2697 8.5723 1.56E-27 5.56E-25 drought-repressed 4 (DR4)

AT4G21380 -1.2715 1.8533 3.47E-15 4.36E-13 receptor kinase 3 (RK3)

AT5G39120 -1.2834 -0.2125 1.51E-06 4.23E-05 RmlC-like cupins superfamily protein

AT5G14470 -1.2859 -0.8977 2.59E-04 3.52E-03 GHMP kinase family protein

AT4G12545 -1.2905 3.2621 3.12E-26 1.02E-23 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT1G52800 -1.2947 1.0146 1.83E-11 1.33E-09 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT5G23990 -1.2987 3.5405 8.78E-31 4.41E-28 ferric reduction oxidase 5 (FRO5)

AT1G67980 -1.2987 -0.2667 1.88E-05 3.80E-04 caffeoyl-CoA 3-O-methyltransferase (CCOAMT)

AT5G65600 -1.2997 -0.2630 1.40E-06 3.95E-05 Concanavalin A-like lectin protein kinase family protein

AT4G22212 -1.3105 2.2161 1.21E-18 2.08E-16 Arabidopsis defensin-like protein

AT5G23830 -1.3109 4.0591 1.28E-27 4.75E-25 MD-2-related lipid recognition domain-containing protein

AT2G15220 -1.3116 4.1452 2.29E-29 9.96E-27 Plant basic secretory protein (BSP) family protein

AT1G63450 -1.3137 0.4091 4.06E-09 2.02E-07 root hair specific 8 (RHS8)

AT5G65340 -1.3171 -0.7314 6.60E-05 1.12E-03 Protein of unknown function, DUF617

AT5G35480 -1.3264 0.4694 6.73E-10 3.84E-08 unknown protein

AT4G25510 -1.3361 -0.9906 7.72E-05 1.28E-03 unknown protein

ATCG01020 -1.3397 -0.6836 6.41E-06 1.47E-04 ribosomal protein L32 (RPL32)

AT1G01380 -1.3410 0.0404 4.77E-08 1.93E-06 ENHANCER OF TRY AND CPC 1 (ETC1)

AT2G19500 -1.3413 0.3691 1.16E-08 5.30E-07 cytokinin oxidase 2 (CKX2)

AT4G12550 -1.3504 4.0289 3.15E-29 1.32E-26 Auxin-Induced in Root cultures 1 (AIR1)

AT3G21800 -1.3519 -0.7510 6.08E-05 1.04E-03 UDP-glucosyl transferase 71B8 (UGT71B8)

AT4G07960 -1.3583 0.7383 2.13E-11 1.53E-09 Cellulose-synthase-like C12 (CSLC12)



AT5G09730 -1.3663 0.4021 5.80E-09 2.80E-07 beta-xylosidase 3 (BXL3)

AT3G47480 -1.3676 0.6708 7.87E-11 5.19E-09 Calcium-binding EF-hand family protein

AT2G16230 -1.3677 -0.3527 4.97E-06 1.19E-04 O-Glycosyl hydrolases family 17 protein

AT5G35940 -1.3693 0.2423 3.80E-08 1.56E-06 Mannose-binding lectin superfamily protein

AT3G19320 -1.3708 0.1317 1.67E-08 7.48E-07 Leucine-rich repeat (LRR) family protein

AT1G13510 -1.3778 1.0620 1.76E-13 1.67E-11 Protein of unknown function (DUF1262)

AT2G46495 -1.3789 1.4571 7.31E-16 9.81E-14 RING/U-box superfamily protein

AT5G46890 -1.3834 3.9260 5.00E-30 2.23E-27 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT2G28210 -1.3864 0.3070 1.23E-09 6.71E-08 alpha carbonic anhydrase 2 (ACA2)

AT5G02170 -1.3902 1.4776 6.93E-17 1.05E-14 Transmembrane amino acid transporter family protein

AT2G02300 -1.3947 -0.9436 1.21E-04 1.86E-03 phloem protein 2-B5 (PP2-B5)

AT3G55910 -1.3987 -0.5078 5.61E-06 1.31E-04 unknown protein

AT1G77520 -1.4010 3.6112 1.36E-27 4.94E-25 O-methyltransferase family protein

AT5G39000 -1.4076 -0.7000 1.38E-05 2.88E-04 Malectin/receptor-like protein kinase family protein

AT5G39670 -1.4121 1.2667 1.45E-15 1.88E-13 Calcium-binding EF-hand family protein

AT1G27140 -1.4190 2.4551 6.80E-24 1.85E-21 glutathione S-transferase tau 14 (GSTU14)

AT3G27940 -1.4210 -0.8901 4.57E-05 8.16E-04 LOB domain-containing protein 26 (LBD26)

AT1G18990 -1.4400 -0.6674 7.09E-06 1.62E-04 Protein of unknown function, DUF593

AT3G02850 -1.4428 1.4973 2.53E-17 4.00E-15 SKOR, a member of Shaker family potassium ion (K+) channel

AT5G53200 -1.4535 0.5258 8.40E-10 4.73E-08 TRIPTYCHON (TRY)

AT1G36622 -1.4614 0.6185 2.05E-11 1.48E-09 unknown protein

AT3G62760 -1.4667 1.1924 4.58E-13 4.12E-11 GSTF13

AT1G09240 -1.4684 0.1296 4.40E-09 2.17E-07 nicotianamine synthase 3 (NAS3)

AT3G13784 -1.4757 2.5095 3.79E-26 1.22E-23 cell wall invertase 5 (CWINV5)

AT5G23780 -1.4811 -0.7783 4.47E-05 8.01E-04 DOMAIN OF UNKNOWN FUNCTION 724 9 (DUF9)

AT4G10310 -1.4845 2.5781 2.00E-19 3.67E-17 high-affinity K+ transporter 1 (HKT1)

AT1G13520 -1.4874 2.4387 2.26E-20 4.67E-18 Protein of unknown function (DUF1262)

AT2G24720 -1.4973 0.5066 9.47E-11 6.19E-09 glutamate receptor 2.2 (GLR2.2)

AT1G74080 -1.5010 -0.6139 3.15E-06 7.94E-05 myb domain protein 122 (MYB122)

AT3G12240 -1.5059 -0.5085 2.38E-06 6.24E-05 serine carboxypeptidase-like 15 (SCPL15)

AT5G45000 -1.5101 -0.1424 9.74E-08 3.63E-06 Disease resistance protein (TIR-NBS-LRR class) family

AT4G12510 -1.5108 1.7979 3.30E-21 7.19E-19 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT3G26610 -1.5109 1.6467 2.13E-19 3.88E-17 Pectin lyase-like superfamily protein

AT3G46300 -1.5112 -0.7070 3.32E-06 8.30E-05 unknown protein

AT5G26920 -1.5170 3.0398 7.13E-17 1.07E-14 CAM-BINDING PROTEIN 60-LIKE G (CBP60G)

AT1G60470 -1.5171 2.8804 8.62E-20 1.63E-17 galactinol synthase 4 (GolS4)

AT5G37478 -1.5176 -0.7532 8.32E-06 1.84E-04 TPX2 (targeting protein for Xklp2) protein family

AT5G25260 -1.5268 1.2281 1.36E-13 1.32E-11 SPFH/Band 7/PHB domain-containing membrane-associated protein family

AT5G54190 -1.5335 3.6517 2.09E-32 1.17E-29 protochlorophyllide oxidoreductase A (PORA)



AT1G06310 -1.5358 -0.5068 8.85E-07 2.60E-05 acyl-CoA oxidase 6 (ACX6)

AT3G55710 -1.5371 3.5858 7.01E-43 6.24E-40 UDP-Glycosyltransferase superfamily protein

AT1G04660 -1.5396 0.0637 2.17E-08 9.47E-07 glycine-rich protein

AT2G29130 -1.5398 1.4243 3.01E-19 5.36E-17 laccase 2 (LAC2)

AT1G08090 -1.5427 2.3119 1.27E-14 1.41E-12 nitrate transporter 2:1 (NRT2:1)

AT3G17520 -1.5442 -0.6028 2.57E-06 6.65E-05 Late embryogenesis abundant protein (LEA) family protein

AT4G04990 -1.5648 1.9176 1.85E-16 2.69E-14 Protein of unknown function (DUF761)

AT5G44120 -1.5685 -0.3150 1.62E-03 1.50E-02 CRUCIFERINA (CRA1)

AT2G30750 -1.6009 5.6456 1.80E-34 1.18E-31 cytochrome P450, family 71, subfamily A, polypeptide 12 (CYP71A12)

AT2G23270 -1.6354 -0.6232 1.19E-06 3.41E-05 unknown protein

AT5G62420 -1.6677 0.0531 3.12E-10 1.87E-08 NAD(P)-linked oxidoreductase superfamily protein

AT5G23840 -1.6721 1.8956 2.35E-26 8.09E-24 MD-2-related lipid recognition domain-containing protein

AT5G48430 -1.6750 2.5495 1.58E-22 3.87E-20 Eukaryotic aspartyl protease family protein

AT1G47890 -1.6858 -0.4473 1.97E-08 8.67E-07 receptor like protein 7 (RLP7)

AT1G06923 -1.6951 -0.9855 3.28E-06 8.22E-05 Similar to: ovate family protein 17

AT3G16670 -1.6985 4.2932 1.63E-31 8.61E-29 Pollen Ole e 1 allergen and extensin family protein

AT1G26410 -1.7207 1.7210 8.40E-13 7.32E-11 FAD-binding Berberine family protein

AT4G14630 -1.7369 3.4311 1.06E-23 2.84E-21 germin-like protein 9 (GLP9)

AT5G48400 -1.8203 0.3353 9.70E-15 1.11E-12 ATGLR1.2

AT3G62950 -1.8204 0.7386 5.07E-17 7.70E-15 Thioredoxin superfamily protein

AT2G35980 -1.8565 1.8498 2.88E-31 1.48E-28 YELLOW-LEAF-SPECIFIC GENE 9 (YLS9)

AT3G61390 -1.8581 0.5484 6.52E-16 8.94E-14 RING/U-box superfamily protein

AT4G33120 -1.8585 1.7435 2.41E-29 1.03E-26 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein

AT3G06220 -1.8836 -0.9115 2.95E-07 9.74E-06 AP2/B3-like transcriptional factor family protein

AT4G31970 -1.8911 2.3145 1.26E-10 8.07E-09 cytochrome P450, family 82, subfamily C, polypeptide 2 (CYP82C2)

AT1G52790 -1.8948 -0.9856 6.69E-07 2.02E-05  contains PF03171 2OG-Fe(II) oxygenase superfamily domain

AT1G53610 -1.9288 -1.1991 3.89E-06 9.58E-05 unknown protein

AT3G21660 -1.9314 -0.4035 5.29E-10 3.08E-08 UBX domain-containing protein

AT1G49030 -1.9358 -0.7558 1.05E-08 4.81E-07 PLAC8 family protein

AT4G22214 -2.0124 1.4553 2.08E-30 9.79E-28 Defensin-like (DEFL) family protein

AT5G49870 -2.0173 -1.0526 8.32E-08 3.17E-06 Mannose-binding lectin superfamily protein

AT3G01175 -2.0224 -0.9018 2.24E-08 9.73E-07 Protein of unknown function (DUF1666)

AT4G33720 -2.0302 0.3790 3.36E-04 4.33E-03 CAP (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 protein)

AT1G50930 -2.0389 -1.2092 1.08E-06 3.14E-05 unknown protein

AT4G11170 -2.0556 0.5013 1.34E-18 2.28E-16 Disease resistance protein (TIR-NBS-LRR class) family

AT2G19060 -2.0879 0.6011 1.15E-19 2.15E-17 SGNH hydrolase-type esterase superfamily protein

AT1G13500 -2.1453 -1.2325 6.64E-07 2.01E-05 Protein of unknown function (DUF1262)

AT4G15990 -2.1715 -0.3416 2.85E-12 2.30E-10 unknown protein

AT1G77530 -2.2366 2.6955 1.52E-60 2.72E-57 O-methyltransferase family protein



AT1G26390 -2.3131 3.7957 1.33E-17 2.17E-15 FAD-binding Berberine family protein

AT1G52820 -2.3279 2.9611 1.72E-32 9.92E-30 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT3G21460 -2.4625 0.0957 8.27E-19 1.43E-16 Glutaredoxin family protein

AT5G38910 -2.6048 2.0703 7.04E-44 6.91E-41 RmlC-like cupins superfamily protein

AT1G58320 -2.6543 0.7670 1.15E-30 5.62E-28 PLAC8 family protein

AT1G05880 -2.6857 -1.1877 7.95E-09 3.71E-07 ARIADNE 12 (ARI12)

AT5G06900 -3.6295 -0.5686 6.05E-20 1.17E-17 cytochrome P450, family 93, subfamily D, polypeptide 1 (CYP93D1)

AT4G27570 -3.6929 -0.8894 3.07E-17 4.77E-15 UDP-Glycosyltransferase superfamily protein

AT3G05950 -3.7672 -1.3139 2.96E-13 2.75E-11 RmlC-like cupins superfamily protein

AT4G04950 -7.8621 4.2847 0.00E+00 0.00E+00 PICOT1

FC, fold change; CPM, counts per million; FDR, false discovery rate 



Locus logFC logCPM PValue FDR Short description

AT4G04500 9.9652 0.8849 3.55E-26 1.08E-23 cysteine-rich RLK (RECEPTOR-like protein kinase) 37 (CRK37)

AT5G55150 8.3031 -0.6530 1.19E-30 4.34E-28 Protein of unknown function (DUF295)

AT1G13470 7.5525 0.5473 4.38E-45 2.97E-42 Protein of unknown function (DUF1262)

AT1G33960 6.2681 0.9408 2.91E-16 3.95E-14 AVRRPT2-INDUCED GENE 1 (AIG1)

AT1G21240 4.9667 0.8382 1.03E-20 2.08E-18 wall associated kinase 3 (WAK3)

AT2G14560 4.7646 1.1353 1.13E-15 1.41E-13 LATE UPREGULATED IN RESPONSE TO HYALOPERONOSPORA PARASITICA (LURP1)

AT5G52760 4.5195 0.2640 3.79E-24 1.04E-21 Copper transport protein family

AT4G23210 4.3403 0.7977 1.93E-19 3.43E-17 cysteine-rich RLK (RECEPTOR-like protein kinase) 13 (CRK13)

AT2G18660 4.3197 0.6285 4.54E-22 1.03E-19 PLANT NATRIURETIC PEPTIDE A (PNP-A)

AT4G23140 3.9441 0.7534 1.95E-18 3.19E-16 cysteine-rich RLK (RECEPTOR-like protein kinase) 6 (CRK6)

AT3G57260 3.7758 2.2335 3.85E-15 4.52E-13 beta-1,3-glucanase 2 (BGL2)

AT4G38560 3.6313 0.7998 3.56E-19 6.09E-17 Arabidopsis phospholipase-like protein (PEARLI 4) family

AT5G10760 3.4986 1.9842 2.20E-20 4.21E-18 Eukaryotic aspartyl protease family protein

AT2G32680 3.4618 0.5675 8.15E-18 1.27E-15 receptor like protein 23 (RLP23)

AT2G18190 3.2717 0.3521 1.17E-34 5.00E-32 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT4G11890 3.2395 0.5607 2.71E-19 4.72E-17 Protein kinase superfamily protein

AT3G01345 3.0515 -0.8581 1.05E-14 1.17E-12 Expressed protein

AT1G21250 2.9781 3.4643 6.58E-39 3.16E-36 cell wall-associated kinase (WAK1)

AT1G11785 2.9037 -0.8441 2.86E-14 2.98E-12 unknown protein

AT3G22231 2.8970 1.8937 2.74E-10 1.62E-08 PATHOGEN AND CIRCADIAN CONTROLLED 1 (PCC1)

AT5G26270 2.8638 3.2136 8.05E-133 2.64E-129 unknown protein

AT3G30720 2.8482 2.6632 5.57E-103 1.22E-99 QUA-QUINE STARCH (QQS)

AT2G45550 2.6667 -1.0164 1.04E-10 6.62E-09 cytochrome P450, family 76, subfamily C, polypeptide 4 (CYP76C4)

AT2G18180 2.6222 -0.7411 2.82E-13 2.57E-11 Sec14p-like phosphatidylinositol transfer family protein

AT2G15042 2.5982 1.2988 1.62E-44 1.03E-41 Leucine-rich repeat (LRR) family protein

AT1G73805 2.5959 0.5783 8.48E-14 8.20E-12 Calmodulin binding protein-like

AT4G23220 2.5346 0.8378 8.00E-19 1.33E-16 cysteine-rich RLK (RECEPTOR-like protein kinase) 14 (CRK14)

AT3G50480 2.5238 2.5512 1.82E-16 2.51E-14 homolog of RPW8 4 (HR4)

AT1G05675 2.5054 -0.7659 6.05E-13 5.23E-11 UDP-Glycosyltransferase superfamily protein

AT2G04070 2.4707 1.2448 7.68E-34 3.09E-31 MATE efflux family protein

AT4G14365 2.4685 1.9156 9.35E-24 2.46E-21 XB3 ortholog 4 in Arabidopsis thaliana (XBAT34)

AT5G12030 2.4598 -0.1591 1.19E-05 2.44E-04 heat shock protein 17.6A (HSP17.6A)

AT4G12490 2.3762 2.1785 7.41E-04 7.59E-03 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT2G34655 2.3410 0.6134 7.86E-27 2.50E-24 unknown protein

AT5G13210 2.3253 2.9275 3.11E-46 2.27E-43 Uncharacterised conserved protein UCP015417,  vWA

AT4G14400 2.3245 3.7050 1.83E-14 1.94E-12 ACCELERATED CELL DEATH 6 (ACD6)

Supplementary Table S4. Differentially expressed genes obtained by RNA-Sequencing analysis of the coi1-16 line.



AT5G60900 2.2963 0.6806 9.63E-18 1.49E-15 receptor-like protein kinase 1 (RLK1)

AT2G03821 2.2588 -0.5869 5.45E-12 4.25E-10 unknown protein

AT4G04490 2.2503 1.1674 3.27E-18 5.33E-16 cysteine-rich RLK (RECEPTOR-like protein kinase) 36 (CRK36)

AT2G04450 2.1810 0.7690 5.45E-20 1.03E-17 nudix hydrolase homolog 6 (NUDT6)

AT2G32140 2.1786 -0.0478 1.11E-14 1.22E-12 transmembrane receptors

AT1G65790 2.1277 -0.5827 7.76E-12 5.90E-10 receptor kinase 1 (RK1)

AT3G22235 2.1017 0.3017 6.14E-10 3.43E-08 unknown Similar to:pathogen and circadian controlled 1

AT1G01680 2.0556 -0.4611 1.62E-11 1.21E-09 plant U-box 54 (PUB54)

AT2G17040 2.0212 1.3012 1.10E-20 2.22E-18 NAC domain containing protein 36 (NAC036)

AT4G11460 2.0173 0.1466 4.89E-16 6.33E-14 cysteine-rich RLK (RECEPTOR-like protein kinase) 30 (CRK30)

AT1G53490 2.0172 2.3071 5.81E-50 4.40E-47 RING/U-box superfamily protein

AT3G09922 2.0014 -0.5415 1.29E-10 8.05E-09 INDUCED BY PHOSPHATE STARVATION1 (IPS1)

AT2G41100 1.9921 4.7519 7.56E-21 1.57E-18 TOUCH 3 (TCH3)

AT5G54610 1.9731 0.7269 3.91E-11 2.73E-09 ankyrin (ANK)

AT2G13810 1.9649 1.1287 1.13E-14 1.24E-12 AGD2-like defense response protein 1 (ALD1)

AT2G29220 1.8855 -0.3141 6.79E-11 4.58E-09 Concanavalin A-like lectin protein kinase family protein

AT5G37450 1.8847 -0.6376 1.01E-09 5.40E-08 Leucine-rich repeat protein kinase family protein

AT5G42530 1.8498 6.1899 9.75E-18 1.50E-15 unknown protein

AT4G23130 1.8484 0.1822 6.65E-11 4.50E-09 cysteine-rich RLK (RECEPTOR-like protein kinase) 5 (CRK5)

AT2G46400 1.8453 1.0557 3.65E-16 4.89E-14  Group III

AT1G23840 1.8386 -0.8097 4.26E-09 2.02E-07 unknown protein

AT5G58610 1.7803 0.8057 1.98E-20 3.83E-18 PHD finger transcription factor, putative

AT2G04050 1.7328 3.9272 1.26E-16 1.76E-14 MATE efflux family protein

AT1G75040 1.7294 2.5521 4.98E-14 5.06E-12 pathogenesis-related gene 5 (PR5)

AT1G35230 1.7247 0.8949 1.92E-10 1.17E-08 arabinogalactan protein 5 (AGP5)

AT1G49920 1.7103 -0.8250 1.98E-07 6.44E-06 MuDR family transposase

AT2G20800 1.7097 -0.0515 1.34E-11 1.00E-09 NAD(P)H dehydrogenase B4 (NDB4)

AT2G04040 1.6914 1.6100 6.44E-29 2.19E-26 TX1

AT1G01560 1.6745 1.0963 2.02E-07 6.58E-06 MAP kinase 11 (MPK11)

AT3G56710 1.6367 1.6666 4.36E-11 3.01E-09 SIGMA FACTOR BINDING PROTEIN 1 (SIB1)

AT2G36710 1.6308 -0.9985 3.33E-06 8.07E-05 Pectin lyase-like superfamily protein

AT5G58840 1.6268 -1.0006 4.73E-06 1.10E-04 Subtilase family protein

AT5G59670 1.6115 0.8204 1.82E-17 2.72E-15 Leucine-rich repeat protein kinase family protein

AT3G52970 1.6093 0.6390 3.52E-09 1.70E-07 cytochrome P450, family 76, subfamily G, polypeptide 1 (CYP76G1)

AT3G22910 1.6012 1.4396 8.96E-14 8.61E-12 ATPase E1-E2 type family protein / haloacid dehalogenase-like hydrolase family protein

AT2G20142 1.5963 0.4663 1.45E-10 8.99E-09 Toll-Interleukin-Resistance (TIR) domain family protein

AT1G35710 1.5758 3.9213 6.05E-16 7.79E-14 Protein kinase family protein with leucine-rich repeat domain

AT5G44568 1.5726 0.2439 7.11E-12 5.42E-10 unknown protein

AT2G41090 1.5596 6.1766 1.67E-19 2.99E-17 Calcium-binding EF-hand family protein



AT3G44260 1.5588 2.0659 1.14E-15 1.41E-13 Polynucleotidyl transferase, ribonuclease H-like superfamily protein

AT2G24600 1.5580 1.1452 2.21E-11 1.61E-09 Ankyrin repeat family protein

AT5G51190 1.5562 0.6202 6.94E-14 6.80E-12 Integrase-type DNA-binding superfamily protein

AT1G19250 1.5442 2.0108 4.77E-14 4.86E-12 flavin-dependent monooxygenase 1 (FMO1)

AT5G42380 1.5152 -0.1397 2.34E-08 9.47E-07 calmodulin like 37 (CML37)

AT5G52750 1.5109 0.8851 9.66E-13 8.12E-11 Heavy metal transport/detoxification superfamily protein 

AT4G34400 1.5065 0.0298 7.85E-10 4.23E-08 AP2/B3-like transcriptional factor family protein

AT4G16240 1.5009 0.0110 1.25E-09 6.55E-08 unknown protein

AT3G29430 1.4733 0.9234 3.95E-16 5.22E-14 Terpenoid synthases superfamily protein

AT3G46230 1.4609 0.6300 1.36E-05 2.75E-04 heat shock protein 17.4 (HSP17.4)

AT1G24260 1.4469 0.3238 1.15E-10 7.25E-09 SEPALLATA3 (SEP3)

AT4G18250 1.4414 0.5065 4.44E-10 2.53E-08 receptor serine/threonine kinase, putative

AT1G15540 1.4356 -0.1908 3.30E-07 1.03E-05 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT3G16650 1.4266 1.5234 1.67E-21 3.61E-19 Transducin/WD40 repeat-like superfamily protein

AT3G16530 1.4188 3.4177 2.55E-13 2.34E-11 Legume lectin family protein

AT5G35525 1.3965 -0.4731 1.07E-06 3.02E-05 PLAC8 family protein

AT4G20690 1.3691 -0.4728 1.07E-06 3.02E-05 unknown protein

AT1G78030 1.3670 -0.5809 3.30E-06 8.00E-05 unknown protein

AT1G23110 1.3664 1.0231 7.92E-15 8.87E-13 unknown protein

AT1G10340 1.3657 1.4330 1.32E-08 5.71E-07 Ankyrin repeat family protein

AT5G54710 1.3561 2.3868 1.23E-20 2.45E-18 Ankyrin repeat family protein

AT3G56400 1.3556 3.5210 4.47E-11 3.08E-09 WRKY DNA-BINDING PROTEIN 70 (WRKY70)

AT4G15680 1.3467 0.2671 2.39E-09 1.20E-07 Thioredoxin superfamily protein

AT1G66920 1.3415 0.6551 1.91E-11 1.41E-09 Protein kinase superfamily protein

AT5G56810 1.3390 -0.6156 3.28E-06 7.99E-05 F-box/RNI-like/FBD-like domains-containing protein

AT5G08760 1.3226 1.7277 2.29E-12 1.86E-10 unknown protein

AT3G60420 1.3208 2.4023 1.11E-10 7.02E-09 Phosphoglycerate mutase family protein

AT1G78750 1.2983 0.0115 1.98E-08 8.23E-07 F-box/RNI-like superfamily protein

AT1G15125 1.2967 0.6703 1.83E-05 3.53E-04 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein

AT2G25510 1.2908 5.4645 1.72E-13 1.61E-11 unknown protein

AT2G14580 1.2595 1.1878 1.40E-04 1.93E-03 basic pathogenesis-related protein 1 (PRB1)

AT2G36750 1.2589 0.3908 3.99E-09 1.91E-07 UDP-glucosyl transferase 73C1 (UGT73C1)

AT5G09470 1.2584 -0.8934 1.22E-04 1.72E-03 dicarboxylate carrier 3 (DIC3)

AT1G80840 1.2494 0.5234 1.41E-09 7.30E-08 WRKY DNA-binding protein 40 (WRKY40)

AT4G00970 1.2446 1.4273 5.45E-15 6.28E-13 cysteine-rich RLK (RECEPTOR-like protein kinase) 41 (CRK41)

AT1G17710 1.2326 -0.2332 3.06E-06 7.54E-05 Pyridoxal phosphate phosphatase-related protein

AT3G18610 1.2291 0.8352 2.93E-10 1.72E-08 nucleolin like 2 (NUC-L2)

AT1G56150 1.2186 0.1413 3.40E-08 1.33E-06 SAUR-like auxin-responsive protein family 

AT2G46440 1.1856 1.3682 1.19E-10 7.49E-09 cyclic nucleotide-gated channels (CNGC11)



AT5G67060 1.1771 -0.4966 2.27E-05 4.24E-04 HECATE 1 (HEC1)

AT1G57630 1.1758 -0.0750 4.64E-05 7.65E-04 Toll-Interleukin-Resistance (TIR) domain family protein

AT4G23170 1.1748 1.7632 2.39E-15 2.85E-13 EP1

AT5G54720 1.1721 0.6490 3.49E-08 1.36E-06 Ankyrin repeat family protein

AT5G55450 1.1651 2.4319 1.60E-09 8.29E-08 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT3G27940 1.1571 0.3011 3.13E-08 1.24E-06 LOB domain-containing protein 26 (LBD26)

AT3G50930 1.1547 3.2089 4.84E-16 6.31E-14 cytochrome BC1 synthesis (BCS1)

AT2G18193 1.1496 4.0049 5.06E-14 5.11E-12 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT1G29110 1.1445 -0.7885 2.25E-04 2.84E-03 Cysteine proteinases superfamily protein

AT4G33970 1.1443 -0.7922 2.28E-04 2.87E-03 Leucine-rich repeat (LRR) family protein

AT1G28370 1.1366 -0.3929 5.61E-05 8.98E-04 ERF domain protein 11 (ERF11)

AT5G20710 1.1348 0.9632 8.48E-08 3.03E-06 beta-galactosidase 7 (BGAL7)

AT5G55460 1.1307 -0.0643 2.80E-06 6.96E-05 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT3G49110 1.1236 2.4987 5.88E-05 9.33E-04 peroxidase CA (PRXCA)

AT2G32830 1.1178 -0.8959 3.63E-04 4.26E-03 Encodes Pht1

AT1G78970 1.1177 4.6326 9.86E-41 5.12E-38 ARABIDOPSIS THALIANA LUPEOL SYNTHASE 1 (LUP1)

AT1G19960 1.1166 4.0161 3.32E-14 3.44E-12 unknown Similar to:transmembrane receptors

AT4G15670 1.1156 -0.5706 7.93E-05 1.21E-03 Thioredoxin superfamily protein

AT3G29410 1.1146 3.5647 1.04E-18 1.72E-16 Terpenoid cyclases/Protein prenyltransferases superfamily protein

AT5G20790 1.1145 2.8994 1.37E-05 2.76E-04 unknown protein

AT5G39110 1.1093 0.1605 6.08E-07 1.81E-05 RmlC-like cupins superfamily protein

AT4G12470 1.1075 3.5123 1.88E-15 2.27E-13 azelaic acid induced 1 (AZI1)

AT2G02010 1.1061 1.2512 7.57E-07 2.20E-05 glutamate decarboxylase 4 (GAD4)

AT1G65110 1.1049 -0.8227 2.82E-04 3.44E-03 Ubiquitin carboxyl-terminal hydrolase-related protein

AT3G11010 1.0998 2.1408 5.80E-13 5.05E-11 receptor like protein 34 (RLP34)

AT5G60250 1.0987 0.2286 7.60E-06 1.65E-04 zinc finger (C3HC4-type RING finger) family protein

AT3G23120 1.0887 -0.2011 1.40E-05 2.81E-04 receptor like protein 38 (RLP38)

AT5G06900 1.0851 0.9005 2.16E-08 8.86E-07 cytochrome P450, family 93, subfamily D, polypeptide 1 (CYP93D1)

AT1G20400 1.0806 0.2803 2.36E-06 5.98E-05 FUNCTIONS IN: molecular_function unknown

AT3G47100 1.0715 -1.0105 1.84E-03 1.56E-02 unknown protein

AT2G44460 1.0704 1.9807 5.38E-08 2.01E-06 beta glucosidase 28 (BGLU28)

AT4G36570 1.0677 0.6435 2.02E-08 8.34E-07 RAD-like 3 (RL3)

AT4G29610 1.0631 1.2926 7.31E-11 4.88E-09 Cytidine/deoxycytidylate deaminase family protein

AT4G24570 1.0590 2.1024 5.66E-11 3.87E-09 dicarboxylate carrier 2 (DIC2)

AT5G54490 1.0583 0.9280 1.01E-07 3.53E-06 pinoid-binding protein 1 (PBP1)

AT3G20440 1.0514 4.6220 1.96E-35 8.56E-33 EMBRYO DEFECTIVE 2729 (EMB2729)

AT3G45730 1.0330 1.8904 3.69E-11 2.60E-09 unknown protein

AT3G14900 1.0309 4.5835 7.44E-30 2.62E-27 unknown protein

AT1G30190 1.0297 -0.7969 1.85E-03 1.57E-02 unknown protein



AT4G14819 1.0273 0.4819 1.90E-07 6.22E-06 Protein of unknown function (DUF1677)

AT5G01540 1.0206 1.9083 1.07E-13 1.02E-11  LecRKA4.2 At5g01550

AT4G23340 1.0155 -0.7834 3.80E-04 4.41E-03 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT4G22470 1.0147 0.5808 6.10E-04 6.49E-03 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein

AT4G37370 1.0105 3.4308 1.03E-11 7.70E-10 cytochrome P450, family 81, subfamily D, polypeptide 8 (CYP81D8)

AT5G25250 1.0104 2.8319 5.74E-07 1.71E-05 SPFH/Band 7/PHB domain-containing membrane-associated protein family

AT5G44585 1.0091 -0.0618 6.13E-05 9.70E-04 unknown protein

AT1G21520 1.0064 1.3839 5.40E-11 3.71E-09 unknown protein

AT5G47600 1.0060 -0.4501 2.11E-04 2.70E-03 HSP20-like chaperones superfamily protein

AT5G16980 1.0043 2.7873 1.46E-20 2.84E-18 Zinc-binding dehydrogenase family protein

AT5G18180 1.0011 -0.6099 4.93E-04 5.45E-03 H/ACA ribonucleoprotein complex, subunit Gar1/Naf1 protein

AT2G34010 -1.0028 -0.1767 2.71E-05 4.92E-04 unknown protein

AT3G02480 -1.0083 2.4558 1.07E-04 1.55E-03 Late embryogenesis abundant protein (LEA) family protein

AT2G23348 -1.0092 -0.8237 1.68E-03 1.46E-02 unknown protein

AT5G44120 -1.0097 -0.1895 6.02E-03 3.89E-02 CRUCIFERINA (CRA1)

AT3G12900 -1.0111 4.6611 8.48E-07 2.44E-05 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT2G21510 -1.0121 -0.9398 1.34E-03 1.22E-02 DNAJ heat shock N-terminal domain-containing protein

AT1G24147 -1.0121 1.2556 6.97E-09 3.16E-07 unknown protein

AT4G13800 -1.0141 2.4659 3.14E-13 2.84E-11 Protein of unknown function (DUF803)

AT2G28700 -1.0145 -0.5645 1.62E-04 2.18E-03 AGAMOUS-like 46 (AGL46)

AT3G47340 -1.0198 4.5466 1.12E-12 9.28E-11 glutamine-dependent asparagine synthase 1 (ASN1)

AT2G32290 -1.0210 1.9749 3.05E-15 3.62E-13 beta-amylase 6 (BAM6)

AT4G31940 -1.0234 7.3241 9.65E-07 2.76E-05 cytochrome P450, family 82, subfamily C, polypeptide 4 (CYP82C4)

AT4G08870 -1.0250 6.1942 6.29E-30 2.25E-27 Arginase/deacetylase superfamily protein

AT1G33055 -1.0341 -0.7649 4.19E-04 4.77E-03 unknown protein

AT3G21620 -1.0525 -0.4970 5.73E-05 9.13E-04 ERD (early-responsive to dehydration stress) family protein

AT1G18990 -1.0525 -0.5875 1.45E-04 1.99E-03 Protein of unknown function, DUF593

AT1G28530 -1.0531 2.8037 1.31E-22 3.08E-20 unknown protein

AT5G03210 -1.0671 -0.7165 1.28E-04 1.79E-03 unknown protein

AT2G23010 -1.0728 2.4086 8.79E-12 6.66E-10 serine carboxypeptidase-like 9 (SCPL9)

AT5G62040 -1.0752 1.0278 2.04E-10 1.23E-08 PEBP (phosphatidylethanolamine-binding protein) family protein

AT1G22590 -1.0758 2.8848 1.14E-23 2.95E-21 AGAMOUS-like 87 (AGL87)

AT5G15500 -1.0773 2.3148 1.10E-12 9.20E-11 Ankyrin repeat family protein

AT5G38420 -1.0773 10.7362 3.62E-33 1.42E-30 Ribulose bisphosphate carboxylase (small chain) family protein

AT5G25640 -1.0788 -1.0118 6.60E-04 6.95E-03 Rhomboid-related intramembrane serine protease family protein

AT5G25880 -1.0879 1.1502 6.24E-12 4.80E-10 NADP-malic enzyme 3 (NADP-ME3)

AT5G42650 -1.0888 6.6993 2.52E-27 8.14E-25 allene oxide synthase (AOS)

AT5G17220 -1.0926 3.5892 3.82E-08 1.48E-06 glutathione S-transferase phi 12 (GSTF12)

AT1G09180 -1.0949 0.4794 1.93E-08 8.02E-07 secretion-associated RAS super family 1 (SARA1A)



AT2G37260 -1.0985 1.2802 9.69E-13 8.12E-11 TRANSPARENT TESTA GLABRA 2 (TTG2/WRKY44)

AT1G52120 -1.0995 1.8018 8.23E-09 3.66E-07 Mannose-binding lectin superfamily protein

AT5G42580 -1.1059 2.9352 7.22E-24 1.95E-21 cytochrome P450, family 705, subfamily A, polypeptide 12 (CYP705A12)

AT4G13410 -1.1076 0.2661 7.47E-08 2.72E-06 ATCSLA15

AT4G15440 -1.1144 2.3570 6.13E-21 1.29E-18 hydroperoxide lyase 1 (HPL1)

AT3G59710 -1.1288 0.6938 1.11E-09 5.86E-08 NAD(P)-binding Rossmann-fold superfamily protein

AT4G25510 -1.1291 -0.9744 3.57E-04 4.19E-03 unknown protein

AT2G34810 -1.1443 3.5864 1.33E-14 1.45E-12 FAD-binding Berberine family protein

AT5G09720 -1.1516 -1.0687 3.04E-04 3.66E-03 Magnesium transporter CorA-like family protein

AT2G43530 -1.1571 3.1764 1.65E-22 3.78E-20 Scorpion toxin-like knottin superfamily protein

AT3G03341 -1.1683 0.1225 1.60E-07 5.35E-06 unknown protein

AT4G34550 -1.1701 0.0366 5.51E-07 1.65E-05 unknown Similar to:F-box family protein

AT1G17380 -1.1781 -0.2371 1.38E-06 3.75E-05 jasmonate-zim-domain protein 5 (JAZ5)

AT5G40790 -1.1819 -0.7423 5.11E-05 8.29E-04 unknown protein

AT5G23840 -1.1828 2.0400 1.22E-19 2.20E-17 MD-2-related lipid recognition domain-containing protein

AT5G44050 -1.1864 2.4182 1.58E-22 3.65E-20 MATE efflux family protein

AT1G25450 -1.1941 4.3039 4.13E-52 3.39E-49 3-ketoacyl-CoA synthase 5 (KCS5)

AT3G20340 -1.1946 0.6569 8.91E-11 5.79E-09 FUNCTIONS IN: molecular_function unknown

AT4G38730 -1.2052 2.4657 2.33E-24 6.54E-22 Protein of unknown function (DUF803)

AT5G57123 -1.2068 0.6667 8.11E-11 5.36E-09 unknown protein

AT1G11112 -1.2105 -0.3849 1.34E-06 3.66E-05 unknown protein

AT1G79840 -1.2289 3.2651 2.02E-23 5.09E-21 GLABRA 2 (GL2)

AT3G29590 -1.2364 2.6249 1.95E-09 9.92E-08 AT5MAT

AT1G18830 -1.2582 -0.2745 6.75E-07 1.98E-05 Transducin/WD40 repeat-like superfamily protein

AT1G74650 -1.2618 0.1447 4.31E-09 2.04E-07 myb domain protein 31 (MYB31)

AT4G22880 -1.2653 4.1288 1.37E-07 4.63E-06 leucoanthocyanidin dioxygenase (LDOX)

AT3G25770 -1.2671 5.9072 2.80E-42 1.58E-39 allene oxide cyclase 2 (AOC2)

AT4G23600 -1.2988 5.6803 6.43E-10 3.55E-08 CORONATINE INDUCED 1 (CORI3)

AT1G13650 -1.3009 5.6307 1.39E-76 1.71E-73 unknown Similar to:18S pre-ribosomal assembly protein gar2-related

AT3G55500 -1.3273 3.1294 4.93E-15 5.71E-13 expansin A16 (EXPA16)

AT5G10946 -1.3307 0.6544 1.37E-12 1.13E-10 unknown protein

AT3G25830 -1.3567 -1.0219 3.26E-05 5.76E-04 terpene synthase-like sequence-1,8-cineole (TPS-CIN)

AT1G70700 -1.3600 3.5629 2.96E-51 2.33E-48 TIFY7

AT1G45616 -1.3698 -0.0469 7.63E-09 3.41E-07 receptor like protein 6 (RLP6)

AT5G42800 -1.3836 4.3597 2.07E-07 6.71E-06 dihydroflavonol 4-reductase (DFR)

AT2G33850 -1.3917 5.7182 1.61E-52 1.38E-49 unknown protein

AT1G66100 -1.3972 5.8987 5.34E-36 2.50E-33 Plant thionin

AT5G54060 -1.3976 2.7554 3.29E-08 1.29E-06 UDP-glucose:flavonoid 3-o-glucosyltransferase (UF3GT)

AT2G33380 -1.4126 3.6553 2.23E-27 7.31E-25 RESPONSIVE TO DESSICATION 20 (RD20)



AT1G01600 -1.4323 2.9463 8.89E-33 3.43E-30 cytochrome P450, family 86, subfamily A, polypeptide 4 (CYP86A4)

AT1G10657 -1.4356 2.1380 1.58E-29 5.45E-27 Plant protein 1589 of unknown function

AT3G55240 -1.4790 3.1566 6.83E-20 1.28E-17 FUNCTIONS IN: molecular_function unknown

AT2G21140 -1.5176 4.9770 4.23E-87 6.41E-84 proline-rich protein 2 (PRP2)

AT1G48470 -1.5203 -0.8974 1.41E-06 3.83E-05 Encodes cytosolic glutamine synthase isozyme.  Expression of mRNA is not detectable in roots.

AT3G25760 -1.5543 3.5368 3.76E-46 2.65E-43 allene oxide cyclase 1 (AOC1)

AT1G64160 -1.5596 -1.2024 7.15E-06 1.56E-04 Disease resistance-responsive (dirigent-like protein) family protein

AT2G27550 -1.6092 1.7076 5.71E-25 1.68E-22 centroradialis (ATC)

AT3G27920 -1.6120 -0.5301 3.04E-09 1.49E-07 myb domain protein 0 (MYB0)

AT1G52890 -1.6135 -0.3154 1.79E-09 9.16E-08 NAC domain containing protein 19 (NAC019)

AT5G65070 -1.6171 -0.4077 1.35E-09 7.02E-08 MADS AFFECTING FLOWERING 4 (MAF4)

AT5G05340 -1.6583 0.5918 2.22E-08 9.03E-07 Peroxidase superfamily protein

AT1G52400 -1.7564 7.3563 2.18E-39 1.10E-36 beta glucosidase 18 (BGLU18)

AT1G02065 -1.8264 0.7592 2.32E-15 2.78E-13 squamosa promoter binding protein-like 8 (SPL8)

AT1G12570 -1.8684 2.0497 8.32E-41 4.55E-38 Glucose-methanol-choline (GMC) oxidoreductase family protein

AT4G13570 -1.8935 0.5649 6.12E-22 1.35E-19 histone H2A 4 (HTA4)

AT1G18710 -1.8975 3.1336 1.96E-68 2.15E-65 myb domain protein 47 (MYB47)

AT1G56650 -1.9531 1.4544 1.33E-21 2.91E-19 production of anthocyanin pigment 1 (PAP1)

AT5G39520 -1.9734 -0.2560 3.13E-07 9.79E-06 Protein of unknown function (DUF1997)

AT4G13560 -1.9866 0.4807 4.71E-22 1.05E-19 unfertilized embryo sac 15 (UNE15)

AT3G28270 -2.0180 4.0495 9.88E-41 5.12E-38 Protein of unknown function (DUF677)

AT4G13572 -2.0534 1.2375 5.68E-36 2.60E-33 unknown protein

AT5G64667 -2.0673 -1.1665 1.46E-08 6.25E-07 inflorescence deficient in abscission (IDA)-like 2 (IDL2)

AT3G52550 -2.1274 -0.1118 3.47E-17 5.07E-15 unknown Similar to:ovate family protein 18 

AT1G73325 -2.1410 -0.5551 3.65E-13 3.26E-11 Kunitz family trypsin and protease inhibitor protein

AT5G40330 -2.1912 1.0369 1.50E-34 6.30E-32 myb domain protein 23 (MYB23)

AT2G43440 -2.1994 -0.4826 3.44E-15 4.06E-13 F-box and associated interaction domains-containing protein

AT4G27435 -2.2026 1.9863 7.22E-59 6.47E-56 Protein of unknown function (DUF1218)

AT2G24850 -2.4168 -0.6618 1.11E-15 1.39E-13 tyrosine aminotransferase 3 (TAT3)

AT2G28210 -2.4665 0.0554 1.99E-23 5.08E-21 alpha carbonic anhydrase 2 (ACA2)

AT2G39330 -2.5220 1.9532 5.53E-63 5.18E-60 jacalin-related lectin 23 (JAL23)

AT1G27940 -2.5530 1.0133 1.60E-43 9.86E-41 P-glycoprotein 13 (PGP13)

AT4G13575 -2.5536 3.3265 6.30E-91 1.03E-87 unknown protein

AT5G24770 -2.5934 7.2913 3.15E-235 2.07E-231 vegetative storage protein 2 (VSP2)

AT1G14250 -2.6188 4.6968 3.39E-73 3.93E-70 GDA1/CD39 nucleoside phosphatase family protein

AT3G61840 -2.6385 -1.0314 3.14E-13 2.84E-11 Protein of unknown function (DUF688)

AT3G59010 -2.6886 2.5049 4.13E-96 8.13E-93 pectin methylesterase 61 (PME61)

AT1G52000 -2.7118 5.7300 1.10E-126 3.10E-123 Mannose-binding lectin superfamily protein

AT3G28220 -2.7129 5.7672 2.18E-93 3.90E-90 TRAF-like family protein



AT1G63710 -2.7312 0.8388 2.54E-43 1.51E-40 cytochrome P450, family 86, subfamily A, polypeptide 7 (CYP86A7)

AT1G52030 -2.8024 1.9539 5.45E-68 5.64E-65 myrosinase-binding protein 2 (MBP2)

AT5G11190 -2.8109 -0.9724 8.68E-16 1.11E-13 shine3 (SHN3)

AT2G20870 -3.0503 -0.9517 4.39E-17 6.36E-15 cell wall protein precursor, putative

AT3G44860 -3.1195 0.5698 1.68E-42 9.72E-40 farnesoic acid carboxyl-O-methyltransferase (FAMT)

AT5G24780 -3.3470 4.5954 6.55E-159 2.58E-155 vegetative storage protein 1 (VSP1)

AT4G17470 -3.5482 1.3699 6.79E-77 9.56E-74 alpha/beta-Hydrolases superfamily protein

AT5G55720 -4.5980 -0.0932 1.38E-44 9.03E-42 Pectin lyase-like superfamily protein

AT5G33370 -5.3220 2.8650 1.59E-184 7.83E-181 GDSL-like Lipase/Acylhydrolase superfamily protein

AT1G52040 -5.8173 3.5560 4.36E-245 4.30E-241 myrosinase-binding protein 1 (MBP1)

AT2G38540 -6.3760 9.0168 0.00E+00 0.00E+00 lipid transfer protein 1 (LP1)

AT1G06100 -6.4194 0.8777 2.96E-67 2.91E-64 Fatty acid desaturase family protein

AT1G65450 -6.5960 1.2969 1.71E-123 4.21E-120 HXXXD-type acyl-transferase family protein

AT3G13540 -7.9834 -1.1813 1.76E-24 5.04E-22 myb domain protein 5 (MYB5)

AT2G04032 -9.8319 0.6410 8.46E-77 1.11E-73 zinc transporter 7 precursor (ZIP7)

FC, fold change; CPM, counts per million; FDR, false discovery rate 



Supplementary Table S5. Differentially expressed genes obtained by RNA-Sequencing analysis of the coi1-16picot1 line.

Locus logFC logCPM PValue FDR Short description

AT1G30170 6.1922 0.5012 3.82E-28 9.13E-26 Protein of unknown function (DUF295)

AT3G01345 5.2932 1.0514 2.56E-57 2.39E-54 Expressed protein

AT5G53230 4.9445 0.9866 1.96E-67 2.40E-64 Protein of unknown function (DUF295)

AT5G53240 4.8660 -0.7295 4.25E-23 7.45E-21 Protein of unknown function (DUF295)

AT2G20800 4.0891 1.9020 1.26E-90 3.10E-87 NAD(P)H dehydrogenase B4 (NDB4)

AT5G59390 4.0363 -0.8310 2.31E-19 2.85E-17 XH/XS domain-containing protein

AT5G55270 4.0059 -0.6352 7.52E-22 1.21E-19 Protein of unknown function (DUF295)

AT5G60250 3.8351 2.4100 1.52E-76 2.30E-73 zinc finger (C3HC4-type RING finger) family protein

AT4G05380 3.8130 -0.4292 1.39E-22 2.33E-20 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT5G44120 3.5612 2.7694 7.77E-07 1.62E-05 CRUCIFERINA (CRA1)

AT3G01600 3.4787 2.7633 1.21E-84 2.64E-81 NAC domain containing protein 44 (NAC044)

AT2G18720 3.4193 -0.6189 3.31E-19 4.00E-17 Translation elongation factor EF1A/initiation factor IF2gamma family protein

AT5G20240 3.2208 -0.6612 1.35E-18 1.58E-16 PISTILLATA (PI)

AT5G65080 3.0209 1.1303 5.30E-48 3.15E-45 MADS AFFECTING FLOWERING 5 (MAF5)

AT5G13210 3.0179 3.4750 6.02E-80 1.18E-76 Uncharacterised conserved protein UCP015417,  vWA

AT2G14560 2.8452 -0.5441 1.86E-15 1.51E-13 LATE UPREGULATED IN RESPONSE TO HYALOPERONOSPORA PARASITICA (LURP1)

AT2G18190 2.7908 -0.1089 1.00E-17 1.06E-15 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT3G22860 2.7360 -1.0251 5.98E-11 2.83E-09 eukaryotic translation initiation factor 3 subunit C2 (TIF3C2)

AT5G24240 2.6883 2.4294 3.42E-10 1.44E-08

AT5G58610 2.6818 1.4782 2.56E-53 2.09E-50 PHD finger transcription factor, putative

AT3G18610 2.6105 1.8529 7.99E-50 5.22E-47 nucleolin like 2 (NUC-L2)

AT5G24280 2.5722 3.9336 1.24E-71 1.74E-68 GAMMA-IRRADIATION AND MITOMYCIN C INDUCED 1 (GMI1)

AT1G49570 2.5329 3.2141 1.16E-40 4.86E-38 Peroxidase superfamily protein

AT5G47000 2.4154 -0.5567 1.10E-13 7.53E-12 Peroxidase superfamily protein

AT5G09570 2.3859 1.7763 3.74E-53 2.93E-50 Cox19-like CHCH family protein

AT5G58840 2.3778 -0.5060 1.77E-13 1.19E-11 Subtilase family protein

AT5G64060 2.3565 1.5326 6.54E-46 3.47E-43 NAC domain containing protein 103 (NAC103)

AT2G04050 2.3531 4.3865 2.54E-18 2.84E-16 MATE efflux family protein

AT1G17960 2.3454 2.3854 5.44E-43 2.54E-40 Threonyl-tRNA synthetase

AT2G18193 2.3169 4.8584 9.50E-30 2.55E-27 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT1G30160 2.2967 0.6928 3.36E-27 7.33E-25 Protein of unknown function (DUF295)

AT1G36180 2.2349 5.4874 3.30E-126 1.29E-122 acetyl-CoA carboxylase 2 (ACC2)

AT5G19470 2.2324 3.1797 9.56E-08 2.46E-06 nudix hydrolase homolog 24 (NUDT24)

AT3G54530 2.1973 -0.8452 1.06E-09 4.11E-08 unknown protein

AT1G73805 2.1851 0.1900 6.61E-11 3.11E-09 Calmodulin binding protein-like

AT5G24640 2.1573 0.3255 5.41E-20 7.32E-18 unknown protein



AT3G21720 2.1455 2.6172 1.45E-21 2.23E-19 isocitrate lyase (ICL)

AT1G71280 2.1384 -1.1660 3.24E-08 9.18E-07 DEA(D/H)-box RNA helicase family protein

AT4G12480 2.0979 6.1458 1.28E-48 8.09E-46 pEARLI 1

AT3G30720 2.0973 2.0030 1.22E-23 2.26E-21 QUA-QUINE STARCH (QQS)

AT5G10760 2.0462 0.7022 6.53E-10 2.64E-08 Eukaryotic aspartyl protease family protein

AT4G12735 1.9974 -0.1727 1.49E-12 8.93E-11 unknown protein

AT1G53490 1.9949 2.2435 5.17E-43 2.47E-40 RING/U-box superfamily protein

AT3G27620 1.9938 -0.0182 1.74E-14 1.31E-12 alternative oxidase 1C (AOX1C)

AT1G70260 1.9738 1.9908 7.93E-41 3.38E-38 nodulin MtN21 /EamA-like transporter family protein

AT2G04070 1.9640 0.7982 4.27E-20 5.90E-18 MATE efflux family protein

AT4G12490 1.9439 1.7856 1.00E-17 1.06E-15 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT2G47520 1.8994 -0.2862 3.89E-12 2.22E-10 HYPOXIA RESPONSIVE ERF (ETHYLENE RESPONSE FACTOR) 2 (HRE2)

AT4G21680 1.8918 0.8078 3.87E-20 5.38E-18 NITRATE TRANSPORTER 1.8 (NRT1.8)

AT3G45730 1.8741 2.4654 3.07E-16 2.75E-14 unknown protein

AT3G53040 1.8734 -0.1856 3.22E-09 1.13E-07 late embryogenesis abundant protein, putative / LEA protein, putative

AT5G51440 1.8707 2.9516 1.17E-42 5.34E-40 HSP20-like chaperones superfamily protein

AT2G41730 1.8496 2.7505 1.45E-36 5.18E-34 unknown protein

AT4G14365 1.8469 1.3729 2.97E-08 8.44E-07 XB3 ortholog 4 in Arabidopsis thaliana (XBAT34)

AT1G05490 1.8285 0.4471 6.47E-17 6.32E-15 chromatin remodeling 31 (chr31)

AT3G15670 1.8224 0.4290 9.34E-06 1.41E-04 Late embryogenesis abundant protein (LEA) family protein

AT4G12470 1.8151 3.9871 1.88E-26 3.80E-24 azelaic acid induced 1 (AZI1)

AT5G12030 1.7801 -0.7478 6.29E-08 1.67E-06 heat shock protein 17.6A (HSP17.6A)

AT3G58270 1.7727 2.1887 2.15E-42 9.58E-40 Arabidopsis phospholipase-like protein (PEARLI 4) with TRAF-like domain

AT1G30660 1.7559 -1.0933 4.71E-06 7.91E-05

AT5G25230 1.7333 1.0243 9.24E-22 1.47E-19 Ribosomal protein S5/Elongation factor G/III/V family protein

AT5G19700 1.7232 1.5829 3.19E-14 2.33E-12 MATE efflux family protein

AT2G35300 1.6907 -0.5506 1.71E-08 5.16E-07 Late embryogenesis abundant protein, group 1 protein

AT5G67060 1.6901 -0.1854 7.43E-11 3.47E-09 HECATE 1 (HEC1)

AT1G49920 1.6768 -0.8925 7.28E-07 1.53E-05 MuDR family transposase

AT1G20400 1.6731 0.6490 4.45E-14 3.17E-12 FUNCTIONS IN: molecular_function unknown

AT5G10140 1.6433 0.2429 1.99E-13 1.32E-11 FLOWERING LOCUS C (FLC)

AT2G38250 1.6393 1.0049 1.55E-20 2.22E-18 Homeodomain-like superfamily protein

AT2G45135 1.6336 -1.0024 2.00E-06 3.75E-05 RING/U-box superfamily protein

AT3G13130 1.6242 -0.5495 6.84E-08 1.81E-06 unknown protein

AT2G38340 1.6200 -0.1334 2.88E-10 1.23E-08 Integrase-type DNA-binding superfamily protein

AT1G18100 1.6192 2.1226 4.99E-27 1.06E-24 E12A11

AT2G15042 1.6174 0.4854 1.32E-14 1.01E-12 Leucine-rich repeat (LRR) family protein

AT3G28580 1.5992 1.2909 4.64E-21 6.79E-19 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT4G23220 1.5990 0.0657 1.09E-08 3.44E-07 cysteine-rich RLK (RECEPTOR-like protein kinase) 14 (CRK14)



AT1G70440 1.5746 0.7015 7.38E-16 6.35E-14 similar to RCD one 3 (SRO3)

AT1G34460 1.5616 -0.6972 4.62E-07 1.02E-05 B1 type cyclin

AT3G50480 1.5604 1.7409 4.23E-08 1.17E-06 homolog of RPW8 4 (HR4)

AT4G38340 1.5578 0.2284 1.33E-11 6.93E-10 Plant regulator RWP-RK family protein

AT5G07200 1.5511 -0.4841 1.03E-07 2.63E-06 gibberellin 20-oxidase 3 (GA20OX3)

AT2G23170 1.5391 3.2407 1.17E-19 1.51E-17 GH3.3

AT2G41100 1.5278 4.3533 5.47E-12 3.02E-10 TOUCH 3 (TCH3)

AT5G09470 1.5009 -0.7806 4.23E-06 7.19E-05 dicarboxylate carrier 3 (DIC3)

AT5G19890 1.4858 -0.1140 2.23E-08 6.52E-07 Peroxidase superfamily protein

AT2G44570 1.4501 0.8377 8.34E-15 6.47E-13 glycosyl hydrolase 9B12 (GH9B12)

AT3G50930 1.4402 3.3704 1.92E-21 2.90E-19 cytochrome BC1 synthesis (BCS1)

AT1G65570 1.4379 0.3822 5.24E-11 2.50E-09 Pectin lyase-like superfamily protein

AT4G22470 1.4275 0.8139 3.78E-14 2.73E-12 protease inhibitor/seed storage/lipid transfer protein (LTP) family protein

AT2G43590 1.4176 6.4706 8.65E-20 1.13E-17 Chitinase family protein

AT2G17040 1.4163 0.8019 6.52E-13 4.08E-11 NAC domain containing protein 36 (NAC036)

AT3G13080 1.3813 6.3200 1.34E-37 5.04E-35 multidrug resistance-associated protein 3 (MRP3)

AT2G21640 1.3737 2.1219 4.87E-23 8.46E-21 unknown protein

AT1G43910 1.3704 2.6502 3.42E-27 7.36E-25 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT5G67430 1.3699 2.7364 1.48E-16 1.39E-14 Acyl-CoA N-acyltransferases (NAT) superfamily protein

AT3G61630 1.3609 3.8496 1.22E-16 1.16E-14 cytokinin response factor 6 (CRF6)

AT4G04490 1.3564 0.4445 9.91E-05 1.05E-03 cysteine-rich RLK (RECEPTOR-like protein kinase) 36 (CRK36)

AT1G67760 1.3521 0.4723 2.78E-11 1.40E-09 TCP-1/cpn60 chaperonin family protein

AT4G30140 1.3446 5.7121 2.03E-25 3.99E-23 CUTICLE DESTRUCTING  FACTOR 1 (CDEF1)

AT1G21890 1.3438 -0.5452 2.55E-06 4.60E-05 nodulin MtN21 /EamA-like transporter family protein

AT2G47770 1.3386 -0.2472 3.62E-04 3.03E-03 TSPO(outer membrane tryptophan-rich sensory protein)-related (TSPO)

AT5G26270 1.3309 1.9620 1.08E-03 7.26E-03 unknown protein

AT3G09950 1.3202 -0.8633 5.19E-05 6.09E-04 unknown protein

AT3G48700 1.3178 1.6602 2.97E-19 3.64E-17 carboxyesterase 13 (CXE13)

AT2G36750 1.3084 0.3678 6.52E-09 2.13E-07 UDP-glucosyl transferase 73C1 (UGT73C1)

AT1G11070 1.3073 1.4119 3.05E-13 1.98E-11 unkonwn protein

AT4G13680 1.3071 0.0465 8.87E-08 2.29E-06 Protein of unknown function (DUF295)

AT4G20690 1.2990 -0.5725 5.21E-06 8.61E-05 unknown protein

AT2G42430 1.2964 0.8697 1.96E-12 1.16E-10 lateral organ boundaries-domain 16 (LBD16)

AT2G20142 1.2926 0.2125 1.89E-07 4.64E-06 Toll-Interleukin-Resistance (TIR) domain family protein

AT1G03660 1.2895 -0.3584 9.11E-07 1.85E-05 Ankyrin-repeat containing protein

AT4G13420 1.2816 2.8688 2.21E-09 8.04E-08 high affinity K+ transporter 5 (HAK5)

AT2G33070 1.2678 0.3340 5.95E-03 2.80E-02 nitrile specifier protein 2 (NSP2)

AT4G11720 1.2664 -0.8013 8.52E-05 9.30E-04 HAPLESS 2 (HAP2)

AT1G52770 1.2645 0.5182 5.05E-10 2.08E-08 Phototropic-responsive NPH3 family protein



AT3G24780 1.2613 1.2382 2.45E-10 1.06E-08 Uncharacterised conserved protein UCP015417,  vWA

AT1G21250 1.2611 2.0443 6.64E-07 1.41E-05 cell wall-associated kinase (WAK1)

AT1G52120 1.2609 2.9683 1.01E-27 2.37E-25 Mannose-binding lectin superfamily protein

AT4G36570 1.2565 0.7345 1.47E-11 7.61E-10 RAD-like 3 (RL3)

AT1G33280 1.2468 0.0150 1.29E-07 3.23E-06 NAC domain containing protein 15 (NAC015)

AT1G53130 1.2351 0.4006 7.29E-09 2.36E-07 GRIM REAPER (GRI)

AT5G37450 1.2189 -1.1426 5.41E-04 4.22E-03 Leucine-rich repeat protein kinase family protein

AT2G46400 1.2177 0.5578 4.62E-07 1.02E-05  Group III

AT4G32810 1.2120 0.5590 9.40E-10 3.70E-08 carotenoid cleavage dioxygenase 8 (CCD8)

AT4G37390 1.1958 3.1048 1.32E-12 7.92E-11 BRU6

AT1G19630 1.1902 0.4905 2.11E-09 7.69E-08 cytochrome P450, family 722, subfamily A, polypeptide 1 (CYP722A1)

AT1G35230 1.1875 0.4690 1.97E-07 4.80E-06 arabinogalactan protein 5 (AGP5)

AT2G38210 1.1870 0.6456 1.29E-09 4.92E-08 putative PDX1-like protein 4 (PDX1L4)

AT4G01985 1.1773 1.6867 1.18E-12 7.15E-11 unknown protein

AT3G22142 1.1730 6.1021 5.91E-19 7.06E-17 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT3G57260 1.1705 0.0336 1.87E-05 2.56E-04 beta-1,3-glucanase 2 (BGL2)

AT2G34340 1.1663 0.7432 3.35E-10 1.42E-08 Protein of unknown function, DUF584

AT5G44568 1.1609 -0.0875 1.71E-06 3.28E-05 unknown protein

AT3G21520 1.1576 0.5400 2.97E-09 1.06E-07 DUF679 domain membrane protein 1 (DMP1)

AT5G19650 1.1500 -0.2205 1.98E-06 3.71E-05 ovate family protein 8 (OFP8)

AT1G23110 1.1488 0.8230 8.83E-06 1.34E-04 unknown protein

AT4G16240 1.1487 -0.2761 7.45E-05 8.32E-04 unknown protein

AT4G24110 1.1481 0.2612 2.28E-07 5.47E-06 unknown protein

AT5G52300 1.1452 1.4803 1.00E-06 2.03E-05 LOW-TEMPERATURE-INDUCED 65 (LTI65)

AT4G14780 1.1388 0.3364 2.87E-07 6.75E-06 Protein kinase superfamily protein

AT4G30250 1.1369 0.4619 3.36E-06 5.86E-05 P-loop containing nucleoside triphosphate hydrolases superfamily protein

AT4G25010 1.1200 -0.8432 6.45E-04 4.83E-03 Nodulin MtN3 family protein

AT2G39510 1.1185 3.3818 1.65E-07 4.08E-06 nodulin MtN21 /EamA-like transporter family protein

AT1G21460 1.1155 3.3743 1.44E-17 1.51E-15 Nodulin MtN3 family protein

AT1G09380 1.1129 0.2709 3.65E-07 8.23E-06 nodulin MtN21 /EamA-like transporter family protein

AT1G09080 1.1125 1.3673 1.53E-11 7.92E-10 BIP3

AT2G44460 1.1119 1.9541 7.43E-05 8.31E-04 beta glucosidase 28 (BGLU28)

AT5G65980 1.1105 0.3571 1.35E-07 3.38E-06 Auxin efflux carrier family protein

AT1G05680 1.1059 4.8227 2.00E-08 5.97E-07 Uridine diphosphate glycosyltransferase 74E2 (UGT74E2)

AT5G59670 1.1037 0.4224 6.71E-08 1.78E-06 Leucine-rich repeat protein kinase family protein

AT3G48520 1.0949 1.6014 1.86E-11 9.54E-10 cytochrome P450, family 94, subfamily B, polypeptide 3 (CYP94B3)

AT1G69720 1.0920 -0.9048 1.38E-03 8.77E-03 heme oxygenase 3 (HO3)

AT5G52390 1.0916 1.2167 4.88E-10 2.02E-08 PAR1 protein

AT5G17760 1.0861 3.6094 3.65E-32 1.07E-29 P-loop containing nucleoside triphosphate hydrolases superfamily protein



AT5G48850 1.0805 3.5834 3.95E-05 4.85E-04 SULPHUR DEFICIENCY-INDUCED 1 (ATSDI1)

AT1G08430 1.0779 2.8263 6.33E-09 2.08E-07 aluminum-activated malate transporter 1 (ALMT1)

AT4G24150 1.0774 0.1019 5.55E-06 9.10E-05 growth-regulating factor 8 (GRF8)

AT3G20710 1.0740 -0.5046 2.86E-04 2.49E-03 F-box family protein

AT2G04040 1.0723 1.1239 1.02E-09 3.99E-08 TX1

AT3G46230 1.0718 0.3067 2.09E-06 3.89E-05 heat shock protein 17.4 (HSP17.4)

AT1G65500 1.0691 1.0795 1.70E-09 6.29E-08 unknown protein

AT4G15160 1.0679 6.3080 6.37E-09 2.09E-07 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT1G21520 1.0561 1.3713 1.03E-11 5.45E-10 unknown protein

AT3G62460 1.0524 3.4628 2.27E-23 4.05E-21 Putative endonuclease or glycosyl hydrolase

AT2G21350 1.0366 0.6850 5.19E-08 1.41E-06 RNA-binding CRS1 / YhbY (CRM) domain protein

AT4G33040 1.0283 2.4920 1.57E-16 1.46E-14 Thioredoxin superfamily protein

AT2G04450 1.0244 -0.0980 1.80E-05 2.47E-04 nudix hydrolase homolog 6 (NUDT6)

ATMG00030 1.0220 2.4321 3.25E-08 9.19E-07 unknown protein.

AT1G61800 1.0213 1.5180 1.11E-06 2.23E-05 glucose-6-phosphate/phosphate translocator 2 (GPT2)

AT5G56990 1.0194 1.1003 6.12E-10 2.49E-08 unknown protein

AT3G14700 1.0131 -0.6369 6.75E-04 5.01E-03 SART-1 family

AT4G02700 1.0108 1.1084 7.01E-10 2.82E-08

AT1G28370 1.0069 -0.5293 6.28E-04 4.74E-03 ERF domain protein 11 (ERF11)

AT5G12330 1.0063 3.1694 2.35E-13 1.54E-11 LATERAL ROOT PRIMORDIUM 1 (LRP1)

AT1G23940 1.0036 1.8592 9.90E-14 6.83E-12 ARM repeat superfamily protein

AT3G14060 1.0029 2.4971 3.06E-09 1.08E-07 unknown protein

AT1G69310 1.0028 3.6114 2.47E-28 6.07E-26 WRKY DNA-binding protein 57 (WRKY57)

AT5G51190 1.0015 0.1899 9.95E-06 1.49E-04 Integrase-type DNA-binding superfamily protein

AT3G13784 -1.0055 2.6240 1.50E-10 6.70E-09 cell wall invertase 5 (CWINV5)

AT2G25130 -1.0057 -0.9474 1.59E-03 9.83E-03 ARM repeat superfamily protein

AT1G06310 -1.0136 -0.4118 1.71E-04 1.65E-03 acyl-CoA oxidase 6 (ACX6)

AT3G45280 -1.0138 -1.0563 1.43E-03 9.00E-03 syntaxin of plants 72 (SYP72)

AT2G43510 -1.0149 3.9776 3.40E-25 6.61E-23 trypsin inhibitor protein 1 (TI1)

AT5G36140 -1.0162 2.6771 1.19E-12 7.16E-11 cytochrome P450, family 716, subfamily A, polypeptide 2 (CYP716A2)

AT5G19110 -1.0213 1.2892 4.36E-11 2.12E-09 Eukaryotic aspartyl protease family protein

AT3G06160 -1.0224 1.1399 9.73E-10 3.82E-08 AP2/B3-like transcriptional factor family protein

AT1G13520 -1.0245 2.5527 2.75E-14 2.02E-12 Protein of unknown function (DUF1262)

AT1G52800 -1.0301 1.0738 5.01E-09 1.69E-07 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT5G47450 -1.0325 3.7270 3.60E-08 1.01E-06 TONOPLAST INTRINSIC PROTEIN 2;3 (TIP2;3)

AT4G22610 -1.0330 0.7314 2.40E-08 6.98E-07 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT5G04150 -1.0338 2.1567 1.48E-03 9.25E-03 BHLH101

AT5G57810 -1.0371 -0.7399 4.09E-04 3.35E-03 tetraspanin15 (TET15)

AT1G53660 -1.0410 -0.8508 6.54E-04 4.88E-03 nodulin MtN21 /EamA-like transporter family protein



AT3G51450 -1.0419 2.2806 2.30E-18 2.59E-16 Calcium-dependent phosphotriesterase superfamily protein

AT4G37060 -1.0434 -0.9903 1.40E-03 8.83E-03 PATATIN-like protein 5 (PLP5)

AT5G49780 -1.0434 0.9575 4.53E-09 1.55E-07 Leucine-rich repeat protein kinase family protein

AT3G21180 -1.0471 2.0056 1.82E-13 1.22E-11 autoinhibited Ca(2+)-ATPase 9 (ACA9)

AT1G22340 -1.0479 -0.9470 1.20E-03 7.88E-03 UDP-glucosyl transferase 85A7 (UGT85A7)

AT5G39520 -1.0488 -0.0271 4.62E-03 2.29E-02 Protein of unknown function (DUF1997)

AT3G26610 -1.0504 1.7532 2.13E-13 1.40E-11 Pectin lyase-like superfamily protein

AT1G73330 -1.0508 8.6273 4.23E-55 3.60E-52 drought-repressed 4 (DR4)

AT1G52410 -1.0510 4.8274 3.43E-16 3.03E-14 TSK-associating protein 1 (TSA1)

AT1G56160 -1.0514 -0.1841 3.46E-05 4.35E-04 myb domain protein 72 (MYB72)

AT1G52890 -1.0538 -0.1620 5.23E-05 6.14E-04 NAC domain containing protein 19 (NAC019)

AT4G37940 -1.0566 1.4217 1.11E-11 5.85E-10 AGAMOUS-like 21 (AGL21)

AT5G24420 -1.0567 4.1361 9.88E-36 3.40E-33 6-phosphogluconolactonase 5 (PGL5)

AT1G74080 -1.0577 -0.5427 2.12E-04 1.98E-03 myb domain protein 122 (MYB122)

AT2G19800 -1.0609 2.9707 3.06E-17 3.06E-15 myo-inositol oxygenase 2 (MIOX2)

AT1G25450 -1.0679 4.3059 1.48E-26 3.06E-24 3-ketoacyl-CoA synthase 5 (KCS5)

AT5G04370 -1.0700 0.7743 4.52E-09 1.55E-07 NAMT1

AT5G40590 -1.0703 0.9818 5.16E-10 2.12E-08 Cysteine/Histidine-rich C1 domain family protein

AT5G24410 -1.0721 0.7805 4.65E-09 1.58E-07 6-phosphogluconolactonase 4 (PGL4)

AT2G31180 -1.0742 -0.0970 1.28E-05 1.84E-04 myb domain protein 14 (MYB14)

AT4G04840 -1.0760 4.5228 1.17E-26 2.46E-24 methionine sulfoxide reductase B6 (MSRB6)

AT1G16120 -1.0771 0.4514 8.12E-08 2.11E-06 wall associated kinase-like 1 (WAKL1)

AT3G55890 -1.0775 0.8064 2.12E-09 7.72E-08 Yippee family putative zinc-binding protein

AT4G37700 -1.0796 0.1218 2.62E-06 4.70E-05 unknown protein

ATCG00810 -1.0797 -0.6563 2.22E-04 2.05E-03 ribosomal protein L22 (RPL22)

AT2G34810 -1.0804 3.5698 3.37E-21 5.01E-19 FAD-binding Berberine family protein

AT1G77520 -1.0816 3.6932 1.79E-11 9.21E-10 O-methyltransferase family protein

AT2G24310 -1.0826 -0.6289 1.88E-04 1.79E-03 unknown protein

AT4G14630 -1.0831 3.5923 3.61E-07 8.17E-06 germin-like protein 9 (GLP9)

AT1G29270 -1.0832 -0.2513 3.17E-05 4.05E-04 unknown protein

AT1G19510 -1.0842 -1.1115 1.08E-03 7.25E-03 RAD-like 5 (RL5)

AT2G21510 -1.0868 -0.9673 1.64E-03 1.00E-02 DNAJ heat shock N-terminal domain-containing protein

AT4G39950 -1.0928 6.5636 3.04E-41 1.32E-38 cytochrome P450, family 79, subfamily B, polypeptide 2 (CYP79B2)

ATCG00740 -1.0938 -0.2052 9.73E-06 1.46E-04 RNA polymerase subunit alpha (RPOA)

AT4G01630 -1.0938 2.5582 1.94E-19 2.42E-17 expansin A17 (EXPA17)

AT5G05600 -1.0966 3.5183 1.63E-27 3.67E-25 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT4G23600 -1.0999 5.7013 4.45E-43 2.18E-40 CORONATINE INDUCED 1 (CORI3)

AT5G18050 -1.1017 0.9086 1.53E-09 5.73E-08 SAUR-like auxin-responsive protein family 

AT2G43440 -1.1102 -0.2164 5.87E-06 9.53E-05 F-box and associated interaction domains-containing protein



AT3G25830 -1.1145 -0.9539 7.60E-04 5.50E-03 terpene synthase-like sequence-1,8-cineole (TPS-CIN)

AT4G36880 -1.1162 2.0669 3.22E-18 3.55E-16 cysteine proteinase1 (CP1)

AT4G21830 -1.1182 2.0173 5.87E-18 6.36E-16 methionine sulfoxide reductase B7 (MSRB7)

AT1G47395 -1.1204 4.1999 1.19E-03 7.83E-03 unknown protein

AT5G47240 -1.1244 2.3533 3.21E-18 3.55E-16 nudix hydrolase homolog 8 (NUDT8)

AT5G56550 -1.1248 0.7747 1.79E-09 6.59E-08  involved in tolerance to heavy metals and oxidative stress.

AT2G15220 -1.1260 4.1833 1.03E-38 3.96E-36 Plant basic secretory protein (BSP) family protein

AT2G31083 -1.1309 -0.2826 4.15E-06 7.09E-05 CLAVATA3/ESR-RELATED 5 (CLE5)

AT1G66800 -1.1317 2.8650 1.31E-22 2.21E-20  NOT a cinnamyl-alcohol dehydrogenase.

AT1G66270 -1.1382 6.4264 3.63E-35 1.23E-32 BGLU21

AT1G54095 -1.1398 -0.8494 3.69E-04 3.07E-03 Protein of unknown function (DUF1677)

AT1G60470 -1.1422 2.9650 2.26E-17 2.32E-15 galactinol synthase 4 (GolS4)

AT5G25880 -1.1455 1.1066 5.88E-12 3.23E-10 NADP-malic enzyme 3 (NADP-ME3)

AT3G26040 -1.1455 -0.2242 3.58E-06 6.20E-05 HXXXD-type acyl-transferase family protein

AT5G44050 -1.1462 2.3924 6.46E-22 1.06E-19 MATE efflux family protein

AT4G26320 -1.1581 2.8883 1.15E-11 6.01E-10 arabinogalactan protein 13 (AGP13)

AT2G33850 -1.1608 5.7470 1.03E-27 2.37E-25 unknown protein

AT3G59340 -1.1622 1.0595 1.27E-10 5.71E-09 Eukaryotic protein of unknown function (DUF914)

AT1G47400 -1.1625 3.4391 2.87E-04 2.49E-03 unknown protein

AT3G01260 -1.1705 3.5500 4.17E-36 1.46E-33 Galactose mutarotase-like superfamily protein

AT2G01880 -1.1712 2.3285 3.63E-18 3.97E-16 purple acid phosphatase 7 (PAP7)

AT4G21780 -1.1742 -0.6214 4.38E-05 5.32E-04 unknown protein

AT3G55910 -1.1779 -0.4965 2.36E-05 3.14E-04 unknown protein

AT1G50930 -1.1814 -1.0717 6.65E-04 4.95E-03 unknown protein

AT4G13410 -1.1859 0.2235 3.36E-08 9.48E-07 ATCSLA15

AT3G09940 -1.1874 2.9686 2.14E-29 5.67E-27 monodehydroascorbate reductase (MDHAR)

AT1G66280 -1.1904 5.7803 9.57E-33 2.93E-30 BGLU22

AT1G21550 -1.1937 0.0532 3.35E-07 7.68E-06 Calcium-binding EF-hand family protein

AT1G22890 -1.1950 1.6245 1.01E-14 7.75E-13 unknown protein

AT5G24140 -1.1956 0.5601 4.84E-10 2.00E-08 squalene monooxygenase 2 (SQP2)

AT4G11170 -1.2000 0.6780 1.19E-09 4.57E-08 Disease resistance protein (TIR-NBS-LRR class) family

AT3G19320 -1.2011 0.1408 4.04E-08 1.12E-06 Leucine-rich repeat (LRR) family protein

AT1G13609 -1.2012 3.9328 1.06E-03 7.15E-03 Defensin-like (DEFL) family protein

AT3G27920 -1.2029 -0.4205 6.98E-06 1.10E-04 myb domain protein 0 (MYB0)

AT1G13510 -1.2095 1.0911 5.31E-13 3.34E-11 Protein of unknown function (DUF1262)

AT1G11112 -1.2143 -0.3924 3.77E-06 6.50E-05 unknown protein

AT1G27940 -1.2206 1.2908 2.60E-13 1.70E-11 P-glycoprotein 13 (PGP13)

AT5G04000 -1.2235 -0.2762 2.19E-06 4.04E-05 unknown protein

AT4G15700 -1.2262 -0.8042 1.24E-04 1.27E-03 Thioredoxin superfamily protein



AT1G27140 -1.2271 2.4940 8.23E-21 1.19E-18 glutathione S-transferase tau 14 (GSTU14)

AT5G37478 -1.2296 -0.7308 3.87E-05 4.78E-04 TPX2 (targeting protein for Xklp2) protein family

AT2G30750 -1.2322 5.7324 2.55E-17 2.61E-15 cytochrome P450, family 71, subfamily A, polypeptide 12 (CYP71A12)

AT3G62430 -1.2331 -1.1433 6.47E-04 4.84E-03 Protein with RNI-like/FBD-like domains

AT1G53610 -1.2350 -1.1140 1.96E-04 1.85E-03 unknown protein

AT5G53380 -1.2360 -0.9747 9.14E-05 9.88E-04 O-acyltransferase (WSD1-like) family protein

AT3G45330 -1.2367 -0.7633 3.33E-05 4.21E-04 Concanavalin A-like lectin protein kinase family protein

AT1G21100 -1.2374 4.9610 2.01E-37 7.29E-35 O-methyltransferase family protein

AT3G02850 -1.2442 1.5416 6.06E-17 5.94E-15  II (inward rectifying channel): KAT1 (AT5G46240) and KAT2 (AT4G18290)

AT5G65030 -1.2461 -0.1750 6.11E-07 1.32E-05 unknown protein

AT3G09960 -1.2481 0.2442 1.15E-08 3.60E-07 Calcineurin-like metallo-phosphoesterase superfamily protein

AT4G24340 -1.2496 1.9500 1.49E-19 1.89E-17 Phosphorylase superfamily protein

AT3G22570 -1.2509 1.2060 7.38E-15 5.77E-13 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT5G46890 -1.2532 3.9441 2.89E-33 8.99E-31 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT2G37025 -1.2600 1.4416 7.92E-12 4.27E-10 TRF-like 8 (TRFL8)

AT1G65680 -1.2605 -1.1431 2.74E-04 2.40E-03 expansin B2 (EXPB2)

AT4G27570 -1.2606 -0.5780 1.15E-05 1.68E-04 UDP-Glycosyltransferase superfamily protein

AT5G45960 -1.2625 1.0386 2.72E-13 1.77E-11 GDSL-like Lipase/Acylhydrolase superfamily protein

AT2G28860 -1.2741 -0.9189 5.61E-05 6.52E-04 cytochrome P450, family 710, subfamily A, polypeptide 4 (CYP710A4)

AT1G26410 -1.2876 1.8064 6.17E-14 4.34E-12 FAD-binding Berberine family protein

AT1G54790 -1.2909 1.4390 3.37E-17 3.35E-15 GDSL-like Lipase/Acylhydrolase superfamily protein

AT4G10310 -1.2923 2.6218 9.08E-17 8.81E-15 high-affinity K+ transporter 1 (HKT1)

AT1G16370 -1.2927 0.1787 1.44E-08 4.41E-07 organic cation/carnitine transporter 6 (OCT6)

AT2G25220 -1.2939 1.0919 3.39E-14 2.46E-12 Protein kinase superfamily protein

AT1G63295 -1.2964 1.1990 2.09E-13 1.38E-11 Remorin family protein

AT3G45430 -1.2994 1.2266 1.04E-15 8.74E-14 Concanavalin A-like lectin protein kinase family protein

AT5G38910 -1.3015 2.3190 2.87E-16 2.58E-14 RmlC-like cupins superfamily protein

AT1G09500 -1.3185 1.1002 3.06E-14 2.24E-12 NAD(P)-binding Rossmann-fold superfamily protein

AT1G22590 -1.3214 2.7739 1.08E-32 3.23E-30 AGAMOUS-like 87 (AGL87)

AT3G25655 -1.3247 -0.7664 1.98E-05 2.68E-04 inflorescence deficient in abscission (IDA)-like 1 (IDL1)

AT1G72450 -1.3310 4.1603 8.00E-47 4.36E-44 jasmonate-zim-domain protein 6 (JAZ6)

AT5G02540 -1.3371 2.3435 1.53E-27 3.48E-25 NAD(P)-binding Rossmann-fold superfamily protein

AT5G43520 -1.3379 1.7669 1.64E-18 1.89E-16 Cysteine/Histidine-rich C1 domain family protein

AT1G34510 -1.3437 -0.2667 1.41E-07 3.53E-06 Peroxidase superfamily protein

AT5G59510 -1.3481 0.3754 1.12E-10 5.10E-09 ROTUNDIFOLIA like 5 (RTFL5)

AT5G23990 -1.3565 3.5055 7.82E-47 4.36E-44 ferric reduction oxidase 5 (FRO5)

AT5G65600 -1.3602 -0.3133 2.98E-07 6.98E-06 Concanavalin A-like lectin protein kinase family protein

AT5G48400 -1.3646 0.4143 4.40E-11 2.13E-09 ATGLR1.2

AT1G09240 -1.3658 0.1144 1.46E-09 5.51E-08 nicotianamine synthase 3 (NAS3)



AT4G20210 -1.3699 -0.2562 9.35E-08 2.41E-06 Terpenoid cyclases/Protein prenyltransferases superfamily protein

AT1G52790 -1.3701 -0.9291 3.16E-05 4.05E-04  contains PF03171 2OG-Fe(II) oxygenase superfamily domain

AT1G66460 -1.3711 -0.1710 5.13E-08 1.40E-06 Protein kinase superfamily protein

AT3G05155 -1.3824 -0.0523 5.15E-09 1.73E-07 Major facilitator superfamily protein

AT3G27940 -1.3850 -0.9293 3.35E-05 4.22E-04 LOB domain-containing protein 26 (LBD26)

AT5G64120 -1.3901 6.6920 5.15E-45 2.66E-42 Peroxidase superfamily protein

AT3G13540 -1.3937 -0.6963 2.61E-06 4.69E-05 myb domain protein 5 (MYB5)

AT1G06100 -1.4075 1.3263 9.73E-09 3.09E-07 Fatty acid desaturase family protein

AT1G52000 -1.4143 5.9465 4.65E-61 4.80E-58 Mannose-binding lectin superfamily protein

AT3G61840 -1.4159 -0.7791 4.16E-06 7.10E-05 Protein of unknown function (DUF688)

AT1G15050 -1.4182 -0.9590 1.40E-05 1.99E-04 indole-3-acetic acid inducible 34 (IAA34)

AT1G48470 -1.4183 -0.8716 1.48E-05 2.09E-04 glutamine synthase isozyme

AT1G12570 -1.4254 2.1274 2.90E-26 5.81E-24 Glucose-methanol-choline (GMC) oxidoreductase family protein

ATCG00630 -1.4256 -1.1337 4.15E-05 5.09E-04 PSAJ

AT3G21800 -1.4330 -0.8274 5.48E-06 9.01E-05 UDP-glucosyl transferase 71B8 (UGT71B8)

AT1G17380 -1.4370 -0.3164 4.18E-08 1.16E-06 jasmonate-zim-domain protein 5 (JAZ5)

AT3G52550 -1.4437 0.0395 6.61E-10 2.67E-08 Similar to ovate family protein 18

AT4G12520 -1.4492 2.3952 1.75E-26 3.57E-24 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

ATCG00800 -1.4519 -0.0158 1.61E-09 6.00E-08 RESISTANCE TO PSEUDOMONAS SYRINGAE 3 (RPS3)

AT2G29130 -1.4532 1.4152 3.54E-21 5.21E-19 laccase 2 (LAC2)

AT1G05650 -1.4559 1.1739 1.87E-14 1.39E-12 Pectin lyase-like superfamily protein

AT2G22330 -1.4598 5.6156 4.40E-78 7.20E-75 cytochrome P450, family 79, subfamily B, polypeptide 3 (CYP79B3)

AT5G02170 -1.4618 1.4327 1.24E-21 1.92E-19 Transmembrane amino acid transporter family protein

AT5G23780 -1.4630 -0.8384 6.95E-06 1.09E-04 DOMAIN OF UNKNOWN FUNCTION 724 9 (DUF9)

AT2G35980 -1.4635 1.9214 1.25E-25 2.47E-23 YELLOW-LEAF-SPECIFIC GENE 9 (YLS9)

AT3G05730 -1.4638 5.5233 5.89E-62 6.80E-59 LOCATED IN: endomembrane system

AT5G42600 -1.4905 3.8827 3.78E-29 9.88E-27 marneral synthase (MRN1)

AT3G46300 -1.4909 -0.7601 8.49E-07 1.75E-05 unknown protein

AT5G62420 -1.4943 0.0404 1.72E-10 7.58E-09 NAD(P)-linked oxidoreductase superfamily protein

AT2G19060 -1.4943 0.6967 1.80E-14 1.35E-12 SGNH hydrolase-type esterase superfamily protein

AT2G26370 -1.5053 -0.8923 4.07E-06 6.96E-05 MD-2-related lipid recognition domain-containing protein

AT1G62280 -1.5069 1.7071 4.45E-24 8.32E-22 SLAC1 homologue 1 (SLAH1)

AT4G40020 -1.5078 -0.1742 1.11E-09 4.28E-08 Myosin heavy chain-related protein

AT1G26390 -1.5087 3.9480 5.88E-20 7.89E-18 FAD-binding Berberine family protein

AT5G40330 -1.5098 1.1624 9.93E-20 1.29E-17 myb domain protein 23 (MYB23)

AT2G02300 -1.5111 -1.0316 8.30E-06 1.27E-04 phloem protein 2-B5 (PP2-B5)

AT4G22212 -1.5130 2.1309 4.23E-32 1.22E-29 Arabidopsis defensin-like protein

AT5G36130 -1.5245 1.0306 2.65E-17 2.70E-15 Cytochrome P450 superfamily protein

AT1G47890 -1.5338 -0.4674 2.17E-08 6.39E-07 receptor like protein 7 (RLP7)



AT2G20870 -1.5366 -0.6778 1.66E-07 4.11E-06 cell wall protein precursor, putative

AT1G26700 -1.5380 -0.7302 3.44E-07 7.85E-06 MILDEW RESISTANCE LOCUS O 14 (MLO14)

AT3G21660 -1.5494 -0.3750 1.29E-08 3.97E-07 UBX domain-containing protein

AT5G65340 -1.5498 -0.8470 1.35E-06 2.65E-05 Protein of unknown function, DUF617

AT4G12510 -1.5578 1.7651 1.26E-23 2.30E-21 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT1G63710 -1.5635 1.0489 1.07E-18 1.26E-16 cytochrome P450, family 86, subfamily A, polypeptide 7 (CYP86A7)

AT1G18990 -1.5671 -0.7428 3.59E-07 8.12E-06 Protein of unknown function, DUF593

AT5G46350 -1.5720 -0.2723 3.21E-09 1.13E-07  Group II-c

AT4G15690 -1.5754 -0.2437 5.70E-10 2.33E-08 Thioredoxin superfamily protein

AT5G28630 -1.6049 -0.8200 4.15E-07 9.25E-06 glycine-rich protein

AT3G44860 -1.6058 0.8195 1.27E-16 1.21E-14 farnesoic acid carboxyl-O-methyltransferase (FAMT)

AT1G36622 -1.6083 0.5551 1.70E-15 1.40E-13 unknown protein

AT2G19500 -1.6091 0.2448 1.58E-13 1.07E-11 cytokinin oxidase 2 (CKX2)

AT4G15990 -1.6455 -0.2976 4.05E-10 1.69E-08 unknown protein

AT3G61390 -1.6486 0.5546 1.90E-15 1.53E-13 RING/U-box superfamily protein

AT3G01175 -1.6528 -0.8894 4.96E-07 1.09E-05 Protein of unknown function (DUF1666)

AT5G23830 -1.6629 3.9546 4.07E-35 1.35E-32 MD-2-related lipid recognition domain-containing protein

AT4G12545 -1.6677 3.1511 2.47E-59 2.42E-56 Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein

AT1G52400 -1.6794 7.3349 6.54E-56 5.83E-53 beta glucosidase 18 (BGLU18)

AT3G59010 -1.6853 2.6636 8.21E-40 3.36E-37 pectin methylesterase 61 (PME61)

AT5G10946 -1.7012 0.5355 1.71E-16 1.58E-14 unknown protein

AT1G13500 -1.7306 -1.2265 3.91E-06 6.71E-05 Protein of unknown function (DUF1262)

AT5G33370 -1.7307 3.1851 3.93E-19 4.73E-17 GDSL-like Lipase/Acylhydrolase superfamily protein

AT5G64667 -1.7567 -1.0904 1.49E-06 2.90E-05 inflorescence deficient in abscission (IDA)-like 2 (IDL2)

AT5G49870 -1.7675 -1.0672 3.08E-07 7.16E-06 Mannose-binding lectin superfamily protein

AT5G24780 -1.8124 4.7860 1.13E-79 2.01E-76 vegetative storage protein 1 (VSP1)

AT3G62950 -1.8151 0.6961 5.36E-20 7.30E-18 Thioredoxin superfamily protein

AT1G52820 -1.8400 3.0356 3.33E-21 4.99E-19 2-oxoglutarate (2OG) and Fe(II)-dependent oxygenase superfamily protein

AT3G28220 -1.8938 5.8677 3.54E-50 2.40E-47 TRAF-like family protein

AT5G24770 -1.8968 7.3739 3.99E-34 1.28E-31 vegetative storage protein 2 (VSP2)

AT1G73325 -1.9036 -0.5192 3.64E-11 1.79E-09 Kunitz family trypsin and protease inhibitor protein

AT1G58320 -1.9506 0.8418 9.98E-25 1.90E-22 PLAC8 family protein

AT1G14250 -1.9665 4.7699 7.44E-62 8.11E-59 GDA1/CD39 nucleoside phosphatase family protein

AT4G33120 -1.9861 1.6907 1.55E-37 5.74E-35 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein

AT4G12550 -1.9959 3.8635 2.82E-100 9.23E-97 Auxin-Induced in Root cultures 1 (AIR1)

ATCG01020 -2.0024 -0.8700 1.76E-09 6.48E-08 ribosomal protein L32 (RPL32)

AT5G48430 -2.0092 2.4552 2.55E-39 1.00E-36 Eukaryotic aspartyl protease family protein

AT1G77530 -2.0455 2.7134 2.99E-31 8.37E-29 O-methyltransferase family protein

AT3G21460 -2.0829 0.1032 3.18E-18 3.54E-16 Glutaredoxin family protein



AT4G22214 -2.2144 1.3997 1.49E-39 5.95E-37 Defensin-like (DEFL) family protein

AT2G28210 -2.2579 0.0898 1.85E-19 2.33E-17 alpha carbonic anhydrase 2 (ACA2)

AT4G36700 -2.2905 1.2058 6.88E-07 1.46E-05 RmlC-like cupins superfamily protein

AT5G23840 -2.3106 1.7418 1.33E-52 1.00E-49 MD-2-related lipid recognition domain-containing protein

AT2G04032 -2.3241 0.9097 1.64E-28 4.07E-26 zinc transporter 7 precursor (ZIP7)

AT5G55720 -2.4027 0.1140 6.01E-22 9.91E-20 Pectin lyase-like superfamily protein

AT1G65450 -2.4737 1.5125 3.40E-51 2.47E-48 HXXXD-type acyl-transferase family protein

AT4G17470 -2.4884 1.4711 2.02E-48 1.24E-45 alpha/beta-Hydrolases superfamily protein

AT3G05950 -2.6155 -1.2816 7.18E-10 2.87E-08 RmlC-like cupins superfamily protein

AT2G39330 -2.7390 1.8900 5.95E-70 7.77E-67 jacalin-related lectin 23 (JAL23)

AT2G24850 -3.1492 -0.7427 2.25E-18 2.55E-16 tyrosine aminotransferase 3 (TAT3)

AT1G52030 -3.5464 1.8504 2.62E-95 7.35E-92 myrosinase-binding protein 2 (MBP2)

AT5G06900 -3.6952 -0.6516 2.39E-23 4.22E-21 cytochrome P450, family 93, subfamily D, polypeptide 1 (CYP93D1)

AT3G16670 -3.7452 3.9900 4.95E-181 2.43E-177 Pollen Ole e 1 allergen and extensin family protein

AT1G52040 -5.4508 3.5315 1.04E-200 6.80E-197 myrosinase-binding protein 1 (MBP1)

AT2G38540 -6.0115 8.9814 0.00E+00 0.00E+00 lipid transfer protein 1 (LP1)

AT4G04950 -7.6232 4.2675 0.00E+00 0.00E+00 PICOT1

FC, fold change; CPM, counts per million; FDR, false discovery rate 
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