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Summary 

 

 

Smart materials are material classes, which have several properties, such as coupling 

electrical and mechanical properties, changing properties from one surface to the other 

across the thickness, high strength and stiffness, moisture resistance, etc. Some of the 

most popular and common types of smart materials are as follows: 

 

o Piezoelectric materials are materials in which a voltage is produced when 

load/stress is applied and vice versa.  

 

o Carbon nanotube-reinforced composites are a class of new materials, which are 

being developed to take advantage of electrical conductivity and the high tensile 

strength of carbon nanotube materials. Regarding mechanical properties, carbon 

nanotubes are the stiffest and strongest materials yet discovered in terms of 

elastic modulus and tensile strength. This strength leads to the covalent sp
2
 bonds 

formed between the individual carbon atoms.   

 

o Shape memory alloys (SMA) are materials that through stress changes (pseudo-

elasticity) or temperature changes, large deformation can be produced and 

recovered. This is due to the martensitic phase change and induced elasticity at 

higher temperatures. And this phenomenon is called the shape memory effect. 

 

The smart materials offer a considerable interest in many practical applications, such as 

micro-electromechanical systems (MEMS), automotive sensors, actuators, transducers, 

active damping devices and smart material systems, especially in the medical and 

aerospace industries. With these complex problems, i.e., coupling problems, 

https://en.wikipedia.org/wiki/Carbon_nanotube
https://en.wikipedia.org/wiki/Elastic_modulus
https://en.wikipedia.org/wiki/Tensile_strength
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Nano-structures, etc., it is very difficult or impossible to find exact solutions or 

analytical solutions by solving the partial differential equations (PDEs). Hence, 

approximated solutions or numerical solutions are considered to be the most suitable in 

order to analyze and simulate these problems.  

 

For numerical methods, isogeometric analysis (IGA) has been recently proposed as a 

useful numerical method of computational analysis with the aim of integrating Finite 

Element Analysis (FEA) and Computer Aided Design (CAD) into one model. Data 

generated from CAD can be used directly for FEA. It means that the IGA uses Non-

Uniform Rational B-Splines (NURBS), which are commonly used in CAD in order to 

describe both the geometry and the unknown variables for analyzed problems. Hence, 

the exact geometry is expressed in both design and mechanical analysis. Therefore, the 

process of re-meshing in IGA can be omitted. And an advantage of NUBRS is its ability 

to easily control the continuity, as C
p-1

 continuity is obtained by using p-th order 

NURBS. 

 

In this thesis, IGA is developed for analyzing and simulating smart plate structures. Four 

main contributions have been obtained from the results of the research as follows: 

 

o Firstly, a simple and effective formulation using IGA based on higher-order 

shear deformation theory (HSDT) is presented to investigate dynamic control of 

piezoelectric composite plates. There are two field variables, which need to be 

approximated, including mechanical displacement field and electrical potential 

field. In composite plates, the mechanical displacement field is approximated 

according to the HSDT model with five degrees of freedom per each control 

point using isogeometric elements based on Non-Uniform Rational B-Spline 

(NURBS) basis functions. These achieve naturally any desired degree of 

continuity through the choice of the interpolation order, so that the method easily 

fulfils the C
1
-continuity requirement of the HSDT model. To simulate numerical 

results, NURBS with quadratic, cubic and quartic functions are considered. 

Besides, the electric potential is assumed to vary linearly through the thickness 

for each piezoelectric sublayer. Finally, governing equations of piezoelectric 

composite plates for static, free vibration analyses and dynamic control are 

expressed. In control section, a displacement and velocity feedback control 

algorithm is used for the active control of the static deflection and of the dynamic 
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response of the plates through a closed-loop control with bonded or embedded 

distributed piezoelectric sensors (the bottom layer) and piezoelectric actuators 

(the top layer). The displacement feedback control is based on the actuator, and 

the velocity feedback control gives the velocity component. The accuracy and 

reliability of the proposed method is verified by comparing its numerical 

predictions with those of other available numerical approaches. 

 

o Secondly, IGA based on a generalized shear deformation theory for 

geometrically nonlinear transient analysis of smart piezoelectric functionally 

graded material (FGM) plates is developed. In this part, the electrical field is 

assumed to be independent on each layer and the mechanical displacements are 

approximated by the generalized higher order shear deformation theory. The 

nonlinear transient formulation for plates is formed with the total Lagrange 

approach based on the von Kármán strains. For nonlinear transient solution, 

Newmark’s method and Newton-Raphson method are used to find 

displacements, velocities and accelerations at each time step. Besides, thermo-

piezoelectric effects are also considered. Temperature distributions of the bottom 

surface and top surface of piezoelectric FGM model are assumed to be constant. 

The temperature variation along the thickness is obtained by solving the one-

dimensional steady state heat equation. The material properties vary through the 

thickness of FGM and are assumed to follow the rule of mixture. To consider the 

interactions among the constituents, the Mori-Tanaka scheme is used. For 

numerical results, many examples are investigated and compared to other 

available numerical methods to show the accuracy and effectiveness of the 

present method. The effects of volume fraction exponents on frequencies and 

displacements of the piezoelectric FGM plates are examined. And the effects of 

thermo-electro-mechanical loads on the behavior of the plates are also studied. 

 

o Thirdly, IGA based HSDT is proposed to investigate the static and dynamic 

vibration behavior of functionally graded carbon nanotube-reinforced composite 

plates. The material properties of functionally graded carbon nanotube-reinforced 

composites (FG-CNTRCs) are assumed to be graded through the thickness 

direction according to several linear distributions of the volume fraction of 

carbon nanotubes. Four distributions are considered UD (uniform), FG-V, FG-O 

and FG-X. For the FG-V type, the top surface of the CNTRC plate is CNT-rich. 
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In FG-X, the top and the bottom surface of CNTRC plate are CNT-rich. And in 

case of FG-O, the CNT-rich zone is in the middle of the CNTRC plate. The 

displacements of the CNTRC plates are approximated according to the third-

order shear deformation theory. Numerical results proved the high accuracy and 

reliability of the proposed method in comparison with other available numerical 

approaches. 

 

o Fourthly, an efficient computational approach based on a generalized 

unconstrained approach in conjunction with IGA are proposed for dynamic 

control of smart piezoelectric composite plates. A new function for the 

unconstrained third order shear deformation theory (UHSDT) is introduced. In 

this theory, there are seven degrees of freedom per control point. Constant gains 

of the displacement feedback control and velocity feedback control are used in 

active control analysis in order to predict geometrically nonlinear transient 

response of the piezoelectric composite plates. An optimization procedure using 

genetic algorithm (GA) is considered to search optimal design for actuator input 

voltages. Various numerical examples are investigated to demonstrate the 

effectiveness of the proposed method. 

 

 

  

 

 

 

 



 

 

 

  

 

Samenvatting 

 

 

Slimme materialen zijn materiaalsoorten met verschillende voordelen. Zo kunnen in 

deze materialen elektrische en mechanische eigenschappen aan elkaar gekoppeld worden 

en kunnen bepaalde kenmerken (zoals dikte, sterkte, hardheid, weerstand tegen vocht) 

van verschillende oppervlakken variëren. De meest voorkomende vormen van slimme 

materialen zijn de volgende: 

 

o Piëzo-elektrische materialen zijn materialen waarin elektrische spanning wordt 

geproduceerd door druk, en andersom, druk op de structuren tot stand komt 

wanneer er elektrische spanning op wordt aangelegd. 

 

o Koolstofnanobuiscomposieten zijn een klasse van nieuwe materialen die worden 

ontwikkeld om te profiteren van de elektrische geleidbaarheid en de hoge 

treksterkte van koolstofnanobuismaterialen. Wat betreft mechanische 

eigenschappen, zijn koolstofnanobuisjes op het vlak van elasticiteitsmodule en 

treksterkte de stijfste en sterkste materialen tot dusver ontdekt. Deze sterkte leidt 

tot covalente sp
2
-binding tussen de afzonderlijke koolstofatomen. 

 

o Geheugenmetaal is een materiaal dat door spanningsveranderingen (pseudo-

elasticiteit) of temperatuurveranderingen grote deformatie kan produceren, maar 

ook naar diens originele geometrie kan terugkeren. Dit is het gevolg van een 

martensitische faseverandering en geïnduceerde elasticiteit bij hogere 

temperaturen. Dit fenomeen heet het vormgeheugeneffect. 

 

Slimme materialen kennen vele praktische toepassingen, zoals micro-

elektromechanische systemen, sensoren voor automobielen, actuatoren, transducers, 

actieve dempingapparaten, vooral gebruikt in de medische en luchtvaartindustrie. Deze
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toepassingen zijn bijzonder complex en onderzoekers worden geconfronteerd met 

verschillende problemen, zoals koppelingsproblemen en problemen met nanostructuren. 

Het is zeer moeilijk of onmogelijk om exacte of analytische oplossingen te vinden voor 

deze problemen door het oplossen van partiële differentiaalvergelijkingen. Vandaar dat 

benaderende of numerieke oplossingen het meest geschikt zijn om deze problemen te 

analyseren en te simuleren. 

 

Een bruikbare numerieke methode die recent werd voorgesteld is de isogeometrische 

analyse (IGA). Deze methode heeft als doel eindige-elementenanalyse en 

computerondersteund ontwerp in een model te integreren. Computerondersteunde 

ontwerpgegevens kunnen direct worden gebruikt voor eindige-elementenanalyse. Dit 

betekent dat IGA niet-uniforme rationele B-splines (NURBS) gebruikt, die vaak 

aangewend worden bij computerondersteunde ontwerpen om zowel de geometrie als de 

onbekende variabelen te beschrijven. De precieze geometrie wordt dus zowel in het 

ontwerp als in de mechanische analyse uitgedrukt. Vandaar dat in IGA de techniek van 

re-meshing kan worden weggelaten. Bovendien is een voordeel van NURBS de 

gemakkelijke continuïteitscontrole, gezien C
p-1 

continuïteit verkregen wordt door het 

gebruiken van NURBS tot de p
de

 orde.  

In dit proefschrift wordt IGA gebruikt voor het ontwikkelen, analyseren en simuleren 

van slimmeplaatconstructies. Het onderzoek heeft de volgende vier bijdragen 

opgeleverd: 

 

o Ten eerste wordt, met toepassing van IGA en op basis van de hogere-orde theorie 

voor afschuifvervorming, een eenvoudige en effectieve formulering voorgesteld 

om de dynamische controle te onderzoeken van piëzo-composietplaten. Er zijn 

twee variabele velden die moeten worden benaderd inclusief het mechanische 

verplaatsingsveld en het elektrische potentiaalveld. In de composietplaat wordt 

het mechanische verplaatsingsveld benaderd volgens het model van de hogere-

orde theorie voor afschuifvervorming, met vijf vrijheidsgraden per controlepunt, 

en worden isogeometrische elementen gebruikt gebaseerd op NURBS 

basisfuncties. Zoals bekend, bereiken deze basisfuncties elke gewenste mate van 

continuïteit door de keuze van de orde van interpolatie, zodat de werkwijze 

gemakkelijk voldoet aan de C
1
-continuïteitsverplichting. Om numerieke 

resultaten te simuleren, worden NURBS met tweede, derde en vierde orde 

functies in aanmerking genomen. Daarnaast wordt verondersteld dat de 
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elektrische potentiaal lineair varieert doorheen de dikte van elke piëzo-

elektrische onderlaag. Tot slot worden differentiaalvergelijkingen van piëzo-

elektrische composietplaten voor statische, vrijetrillinganalyses en dynamische 

controle uitgedrukt. In de sectiecontrole wordt een controlealgoritme voor 

verplaatsings- en snelheidsterugkoppeling gebruikt voor de actieve controle van 

de statische afbuiging en de dynamische respons van de platen door middel van 

een gesloten regelkring met gebonden of ingesloten gelijkmatig verdeelde piëzo-

elektrische sensoren (de onderste laag) en piëzo-elektrische actuatoren (de 

bovenste laag). De verplaatsingsterugkoppeling is gebaseerd op de actuator en de 

snelheidsterugkoppeling geeft de snelheidscomponent weer.  

De nauwkeurigheid en betrouwbaarheid van de voorgestelde methode werden 

geverifieerd door vergelijking met de numerieke voorspellingen die via andere 

beschikbare numerieke benaderingen berekend werden. 

 

o Ten tweede werd, op basis van de algemene theorie voor afschuifvervorming, 

IGA ontwikkeld voor de geometrische, niet-lineaire, tijdsafhankelijke analyse 

van slimme, piëzo-elektrische, functionele gradiënt materialen (FGM’s). In dit 

deel wordt verondersteld dat het elektrische veld op elke laag onafhankelijk is en 

de mechanische verplaatsingen worden benaderd vanuit de algemene theorie 

voor afschuifvervorming van een hogere orde. De niet-lineaire, tijdsafhankelijke 

formulering voor platen wordt gevormd vanuit de totale Lagrange benadering op 

basis van de von Karman rekken. Voor de niet-lineaire tijdsafhankelijke 

oplossing worden de Newton-Raphson methode en de Newmark methode 

gebruikt om de verplaatsingen, snelheden en versnellingen van elke tijdstap te 

vinden. Daarnaast wordt het thermo-piezo-electrisch effect in aanmerking 

genomen. De temperatuurverdeling van het onder- en bovenvlak van het model 

dat samengesteld is uit piëzo-functionele gradient materialen wordt verondersteld 

constant te zijn. Het temperatuurverloop langs de plaatdikte wordt berekend door 

het oplossen van de eendimensionale constantewarmtestroomvergelijking. De 

eigenschappen van het materiaal variëren doorheen de plaatdikte van de FGM’s 

en worden berekend door de mengregels. Om de interacties tussen de 

bestanddelen te bestuderen wordt de Mori-Tanaka methode toegepast. Voor 

numerieke resultaten werden verschillende voorbeelden onderzocht en 

vergeleken met andere beschikbare numerieke methodes om de nauwkeurigheid 

en efficiëntie van de voorgestelde werkwijze aan te tonen.  
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Het effect van volumefractie-exponenten van frequenties en verplaatsingen op de 

platen samengesteld uit slimme, piëzo-elektrische, functionele gradiënt 

materialmen werd onderzocht. Bovendien werd het effect van thermo-

elektromechanische krachten op het gedrag van de platen bestudeerd. 

 

o Ten derde wordt een systeem van isogeometrische analyse gebaseerd op de 

hogere-orde theorie voor afschuifvervorming voorgesteld om de statische en 

dynamische trillingen van composietplaten samengesteld uit functionele gradiënt 

koolstof nano-materiaal te onderzoeken. De materiaaleigenschappen van deze 

composietplaten worden verondersteld gegradeerd te zijn doorheen de 

dikterichting volgens verschillende lineaire volumefractiedistributies van de 

koolstofnanobuisjes. Vier verschillende mogelijke distributies worden in 

aanmerking genomen, met name UD (uniform), FG-V, FG-O en FG-X. Bij het 

type FG-V is de bovenkant van de plaat met koolstofnanobuisjes versterkt. In het 

type FG-X zijn de boven- en onderkanten van de plaat met koolstofnanobuisjes 

versterkt. En in het geval van FG-O is de middenzone van de plaat met 

koolstofnanobuisjes versterkt. De verplaatsingen van de platen worden benaderd 

vanuit de derde-orde theorie voor afschuifvervorming. Numerieke resultaten 

toonden een hoge nauwkeurigheid en betrouwbaarheid van de voorgestelde 

werkwijze in vergelijking met andere beschikbare numerieke benaderingen. 

 

o Ten vierde wordt, op basis van een algemene benadering in combinatie met IGA, 

een efficiënte computerondersteunde aanpak voorgesteld voor de dynamische 

controle van slimme piëzo-elektrische composietplaten. Er wordt een nieuwe 

functie voor de algemene derde-orde theorie voor afschuifvervorming 

geïntroduceerd. In deze theorie zijn er zeven vrijheidsgraden per controlepunt. 

Constante versterkingen van de verplaatsings- en snelheidsterugkoppeling 

worden gebruikt in de actieve controleanalyse om de geometrische, niet-lineaire, 

tijdsafhankelijke respons van de piëzo-elektrische composietplaten te 

voorspellen. Een optimalisatieprocedure met behulp van een genetisch algoritme 

(GA) wordt in aanmerking genomen om een optimaal ontwerp te zoeken voor de 

ingangsspanningen van actuatoren. De nauwkeurigheid en betrouwbaarheid van 

de voorgestelde werkwijze werden geverifieerd door vergelijking van de 

numerieke voorspellingen met berekeningen op basis van andere beschikbare 

numerieke benaderingen. 
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2   Chapter 1: Introduction 

 

1.1 Introduction 

Almost all physical phenomena in the real life, such as fluid mechanics, heat transfer, 

electric and magnetic fields, structure mechanics, wave propagation, etc., can be 

expressed using partial differential equations (PDEs). And sometimes it is very hard or 

impossible to solve analytically the PDEs, especially for problems with multi field 

coupling, such as fluid-structure interaction, thermo-electro-mechanics coupling, etc. 

This is because these phenomena depend on physical geometry, boundary conditions, 

material properties and loading conditions, which are very complicated. Hence, various 

numerical methods have been proposed and developed to find suitable approximated 

solutions of the PDEs. The basic idea in almost all numerical methods is to discrete 

continuous domain into infinite unknowns to obtain discrete problem domain. Then, 

numerical methods and computer aided design (CAD) simulate, calculate and analyze 

the complicated problems. Therefore, developing numerical methods with low 

computational cost, high accuracy, and easy implementation is the key issue in a 

numerical simulation. 

 

With advantages of the numerical techniques, many numerical methods have been 

proposed, such as boundary element method (BEM), finite element method (FEM), 

finite difference method (FDM), mesh-free method, finite volume method (FVM), etc. 

Generally speaking, we can divide the numerical methods into two groups: 

o Group 1: methods that require meshing; e.g. FEM, FDM, BEM and FVM. 

o Group 2: methods that do not require meshing; e.g. mesh-free methods. 

Among the methods with meshing, the FEM is considered to be the most popular. This 

method has been widely used in all engineering and science research domains. However, 

the FEM still has some major shortcomings, such as overestimated stiffness, inaccuracy 

in stress solutions of linear elements, meshing issues, etc. In order to overcome these 

shortcomings, there are three proposed ways, as follows [1]: 

o Improve the variational method. 

o Improve the finite element spaces. 

o Improve both the variational method and the finite element spaces. 

 

Recently, based on the finite elements spaces, Hughes et al. [2] proposed isogeometric 

analysis (IGA). The next section will present an historical development of IGA, and 

more detail will be given in chapter 4. 
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1.2 An historical development of IGA 

The basic idea of IGA proposed by Hughes et al. [2] in 2005 is to integrate CAD and 

finite element analysis (FEA) into one model. Geometric models generated in CAD are 

directly used for FEA without mesh generators.  

 

In the past, before the existence of computers, almost all engineering drawings were 

manually made and splines were used to design automobile chassis and aircraft wings 

[3]. When computers were invented, Pierre Bézier of Renault and Paul de Faget de 

Casteljau of Citroën developed computer aided geometric design (CAGD) to generate 

curves and surfaces in 1960. This was the new software that allowed designers to draw 

smooth curves on a computer screen. Contribution of Bézier paved the road for CAD 

software’s such as Maya, 3D Max, AutoCad, etc. Moreover, Paul de Faget de Casteljau 

proposed the Casteljau algorithm, which is the most common way to evaluate Bézier 

curves. Today, most engineering drawings including applications to automobile, 

aerospace, architectural design, shipbuilding, etc., have been done in CAD [4]. 

 

In 1946, Schoenberg [5] introduced Bézier spline (B-spline) basic functions. In 

computer science field, B-splines have been represented as polynomial curves [6], which 

have been considered as tools to create smooth curves and surfaces in computer 

graphics. The B-spline basic functions provide a higher continuity of derivatives.  

 

In 1962, faster and stable algorithms were proposed by Carl De Boor [7] in order to 

calculate spline interpolation functions. Nowadays, B-splines are popularly used in the 

graphic design and CAD industry for creating smooth curves and surfaces.  

 

During 1970s, various fundamental contributions on B-splines were made and begun 

with Riesenfeld’s PhD thesis [8] in 1972. Furthermore, PhD thesis about rational B-

splines was completed by Versprille [9] in 1975, which have known as Non-uniform 

rational B-splines (NURBS). There were many efficient and numerically stable 

algorithms, which have been proposed and developed using B-splines, such as the Cox-

de Boor recursion [10-12], the Oslo algorithms [13], polar forms and blossoms [14,15], 

etc. NURBS are the current industry standard for computational geometry design and a 

generalization of Bézier splines. They are tools in CAD including straight lines, curves, 

complex surfaces, circles, spheres, which can be represented exactly. 
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Nowadays, computer aided engineering (CAE) becomes the popular computer software. 

In CAE, FEM is used to solve partial differential equations. In FEM, variational or weak 

form formulations are used and formed by multiplying trial functions in the partial 

differential equations, which are called strong form. The basic functions are defined by 

Lagrange interpolating polynomials with finite elements such as triangles, quadrilaterals, 

etc. In particular, it can be seen that there exists a gap between CAD and FEA. The 

design and the analysis are independent of each other. The concept of isogeometric 

analysis was examined by Hughes et al. [2] with the aim of integrating FEA with CAD. 

Data generated from CAD can be used directly for FEA. Hence, the exact geometry is 

expressed in both design and mechanical analyses. An advantage of NUBRS is its ability 

to easily control continuity, as C
p-1

continuity is obtained by using p-th order NURBS 

[1].  

 

Recently, IGA has been developed in several fields such as fluid mechanics [16-20], 

fluid-structure interaction problems investigated by Bazilevs et al. [21-24], contact 

problems studied by Wriggers’s group [25-28], gradient elasticity [29], explicit gradient 

damage models [30], fracture mechanics [31-37], etc. For structural mechanics 

problems, NURBS in IGA have been also used to analyze and simulate practical 

structures including Euler-Bernoulli beam [38-40], plate structures using FSDT and 

HSDT [41-46], layerwise theory [47,48], and shell structures [49-52]. So far, there are 

few published materials related to geometrically nonlinear vibrations using IGA for 

composite plates based on FSDT [53-54] and HSDT [55], solid-shell [56], continuum 

shell [57] and Euler–Bernoulli beam [58]. And recently, a combination between IGA 

and boundary element method (BEM), known as IGABEM, has drawn the attention of 

researchers. The IGABEM has been applied in some fields [59-62]. 

 

 

1.3 Smart materials 

Smart materials are material classes, which have several properties such as coupling 

electrical and mechanical properties, changed properties from one surface to the other 

across the thickness, high strength and stiffness, moisture, etc., [63-65]. In the papers of 

Washington [63] and Reddy [114], some of the most popular and common types of 

smart materials are piezoelectric materials, shape memory alloys (SMA), electrostrictive 
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materials, carbon nanotubes (CNTs) materials, magnetostrictive, etc. [63]. In this thesis, 

we choose two types of smart materials to study as follows: 

 

o Piezoelectric materials discovered by Pierre Curie and Jacques Curie are one 

of the most popular intelligent material classes. Important features of 

piezoelectric materials are transformations of mechanical energy into 

electrical energy when the plates are subjected to mechanical loading and vice 

versa. And this phenomenon is known as piezoelectric effect and the converse 

phenomenon. Many applications using piezoelectric materials can be listed as 

structural health monitoring, automotive sensors, actuators, vibration and 

noise suppression, shape control and precision positioning, etc. 

o Carbon nanotubes (CNTs) proposed by Iijima [66], which was called the 

‘‘material for the 21st century’’ [67], have attracted a considerable interest for 

researchers in many engineering fields [68,69]. This is because CNTs possess 

high strength and stiffness, and low density. 

 

In the first type, piezoelectric materials, two models are considered for this research 

including piezoelectric composite plates as shown in Figure 1.1a and piezoelectric 

functionally graded material plates as illustrated in Figure 1.1b. Effective material 

properties of smart structures are described in more detail in chapter 3. 

 

  

(a) (b) 

Figure 1.1. Two models of piezoelectric material plates: (a) piezoelectric composite plates 

and (b) piezoelectric functionally graded material plates. 
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1.4 Motivation of the thesis 

Based on section 1.2, there are no much researches on isogeometric analysis for smart 

structures. Hence, the aim of this thesis focuses on the development of isogeometric 

finite element for smart plate structures. Firstly, a new isogeometric formulation for 

piezoelectric composite plates and carbon-nanotube reinforced plates is investigated. 

Next, geometrically nonlinear transient isogeometric analysis and dynamic control of 

smart piezoelectric functionally graded material plates are investigated. The objectives 

of the thesis are presented in detail in section 2.3 of chapter 2. 

 

 

1.5 Organization of the thesis 

The thesis consists of nine chapters and is organized as follows: 

 

Chapter 1: Introduction and the historical development of IGA are presented. The 

motivation of the thesis is clearly described. 

 

Chapter 2: Three models of smart plate structures are presented. Literature review of 

smart plate structures are also discussed in detail including literature review of 

piezoelectric composite plates, functionally graded carbon nanotube-reinforced 

composite plates and smart piezoelectric functionally graded plates. Finally, the 

objectives of the thesis are described. 

 

Chapter 3: Descriptions of smart material properties and plate theories are presented. 

Firstly, smart material properties are described. Two types of smart materials are 

introduced, namely piezoelectric materials and functionally graded carbon nanotube-

reinforced materials. Next, some equivalent single-layer theories are presented. 

 

Chapter 4: An overview of B-spline, non-uniform rational B-splines (NURBS) and 

isogeometric analysis (IGA) is presented. This includes basic functions, B-spline 

geometries, refinement, NURBS basic functions, NURBS curves, NURBS surfaces. The 

spatial derivatives and comparisons of isogeometric analysis with finite element method 

are also presented. 
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Chapter 5: The governing equations for smart piezoelectric plates are presented and the 

weak form is established. The electric potential and the mechanical displacement field 

are explained in details. For the active control of plates, a displacement and velocity 

feedback control algorithm is described. Finally, numerical examples are presented to 

show accuracy and reliability of the present method. 

 

Chapter 6: Isogeometric approach based on a generalized shear deformation theory for 

geometrically nonlinear transient vibrations of smart piezoelectric functionally graded 

material (FGM) plates is introduced. The generalized shear deformation theory is 

derived. The nonlinear transient formulation for plates is formed in the total Lagrange 

approach based on the von Kármán strains, which includes thermo-piezoelectric effects, 

and solved by Newmark time integration scheme. Many numerical results are 

investigated to illustrate the effectiveness of the present method. 

 

Chapter 7: A simple and effective formulation using IGA based on higher-order shear 

deformation theory (HSDT) to investigate the static and dynamic vibration behaviors of 

functionally graded carbon nanotube-reinforced composite plates is presented. The 

governing equation is approximated according to the HSDT model using isogeometric 

elements based on Non-Uniform Rational B-Spline (NURBS) basis functions. This 

achieves naturally any desired degree of continuity through the choice of the 

interpolation order, so that the method easily fulfils the C
1
-continuity requirement of the 

HSDT model. Numerical results are verified by comparing them with those of other 

available numerical approaches to show the accuracy and reliability of the present 

method. 

 

Chapter 8: An efficient computational approach based on a generalized unconstrained 

approach in conjunction with isogeometric analysis (IGA) are proposed for dynamic 

control of smart piezoelectric composite plates. A new unconstrained third-order shear 

deformation theory is introduced. Linear analysis, geometrically nonlinear analysis, 

dynamic control and optimization are studied in this chapter. For optimization problems, 

a procedure using genetic algorithm (GA) is considered to search an optimal design for 

actuator input voltages. Several numerical examples are provided to demonstrate the 

excellent performance of the present method. 
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Finally, chapter 9 presents concluding remarks and some recommendations for future 

work. 

 

 

1.6 Concluding remarks 

In this chapter, a short introduction about advantages of the numerical techniques, IGA 

and the smart materials is presented. Besides, the motivation of this thesis is also 

described and the organization of the thesis with nine chapters is reported. 
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2.1 Overview 

In this chapter, literature reviews of three models of smart plates, i.e., piezoelectric 

composite plates, piezoelectric functionally graded material plates and functionally 

graded carbon nanotube-reinforced composite plates, are presented. Next, the objectives 

of the research are described in more detail. 

 

 

2.2 Literature review 

2.2.1 Piezoelectric composite plates 

Piezoelectric materials belong to a smart material class that expresses electromechanical 

coupling. The development of smart structures integrated with sensors and actuators 

offers a considerable interest in many engineering applications: structural health 

monitoring, automotive sensors, actuators, vibration and noise suppression, shape 

control and precision positioning, etc. The main feature of smart materials is the 

transformation between mechanical energy and electric energy. When electric field is 

applied to piezoelectric structures, mechanical deformation is generated. This is known 

as the converse phenomenon of piezoelectric effect [63,67]. 

 

Due to the attractive properties of piezoelectric composite structures, various numerical 

methods have been devised. For free vibration and static analysis, Hong and Chopra [70] 

applied special properties of the piezoelectric layers into the laminate plates. Effect of 

the stiffness and mass of layers on mode shapes and natural frequencies was examined 

by Yang and Lee [71]. Results of comparison between FEA and experiments for smart 

cantilever plate were reported by Kim et al. [72]. A consistent modeling for piezo 

laminate shells was investigated by Pletner and Abramovich [73]. Willberg et al. [74] 

studied a three-dimensional piezoelectric solid structure using isogeometric finite 

elements. Wang et al. [75] used FEM to investigate dynamic stability of piezoelectric 

composite plates, where the governing equations of motion using Lyapunov’s energy 

[76] with active damping was used. Ray and Mallik [77] used FEM to study smart 

structures containing piezoelectric fiber-reinforced composite actuator. Analyses of 

smart piezoelectric composite plates and beams using FE models were investigated in 

Refs [78-86].  
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For vibration control, some theories based on numerical methods have been devised and 

can be generally classified into two main categories, namely the analytical methods and 

the equivalent single-layer theories. In the framework of analytical methods, Bailey et al. 

[87] and Shen et al. [88] investigated smart beams integrated with layers using analytical 

solutions. Tzou and Tseng [89] used a thin hexahedron solid element to examine 

dynamic control of piezoelectric plates and shells.  

 

The three most popular equivalent single-layer theories are the Classical Lamination 

Theory (CLT), the First-order Shear Deformation Theory (FSDT), and the Higher-order 

Shear Deformation Theory (HSDT). In the CLT, which is based on the assumptions of 

Kirchhoff’s plate theory, the interlaminar shear deformation is neglected. Following this 

framework, Hwang and Park [90] studied piezoelectric plates using the discrete 

Kirchhoff quadrilateral (DKQ) element and the Newmark  -method to analyze the 

direct time responses of the plate subjected to negative velocity feedback control. The 

radial point interpolation method (RPIM) combined with the first order shear 

deformation theory (FSDT) and the CPT with rectangular plate bending element were 

investigated by Liu et al. [91-92]. Suleman and Venkayya [93] used the classical 

laminate theory (CLT) with four-node finite element to investigate static and vibration 

behaviors of a laminated composite with piezoelectric layer based on hourglass 

stabilization and reduced numerical integration. Victor et al. [94] developed the higher 

order finite element formulations based on an analytical solution to investigate the 

mechanics of composite structures integrated with actuators and sensors. Liew et al. [95] 

studied post-bucking of FGM plates integrated with piezoelectric under thermo-electro-

mechanical loadings using a semi-analytical solution with Galerkin differential 

quadrature integration algorithm based on the higher-order shear deformation theory 

(HSDT). In those works, the formulation of vibration control simulation was based on 

the classical plate theory and the Radial Point Interpolation Method (RPIM). 

 

In FSDT, a constant transverse shear deformation is assumed through the entire 

thickness of the plate and hence stress-free boundary conditions at the top and bottom 

layers of the panel are violated. Using this theory, Liew et al. [96] analyzed piezoelectric 

patches laminated beams and plates based on the element-free Galerkin method. Milazzo 

and Orlando [97] studied free vibration analysis of thick composite plates integrated 

with piezoelectric. The mesh-free model based on FSDT was presented by Liew et al. 

[96] to simulate shape control of piezoelectric composite plates with different boundary 
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conditions. Phung-Van et al. [98] developed the cell-based smoothed discrete shear gap 

method in order to simulate dynamic control analysis of piezoelectric composite plates. 

Some FE models for analyzing smart plates and plates/shells were studied in Refs [99-

112].  

 

In both CLT and FSDT theories, a shear correction factor is required to ensure the 

stability of the solution. In order to improve the accuracy of transverse shear stresses and 

to avoid the introduction of shear correction factors, the HSDT based on the FE method 

has been proposed to study piezoelectric plates [94,113,114]. A HSDT-layerwise 

generalized finite element formulation [115] and the layerwise based on analytical 

formulation [116] were investigated to study piezoelectric composite plates. Finite 

element (FE) formulations based on HSDT for the analysis of smart laminated plates 

was studied in [114]. In this theory, quadratic, cubic or higher-order variations of 

surface-parallel displacements are assumed through the entire thickness of the plate to 

model the behavior of the structure. It is worth mentioning that the HSDT requires at 

least C
1
-continuity of generalized displacements due to the presence of their second-

order derivatives in the stiffness formulation. This is a source of difficulty in standard 

finite elements featuring C
0
 inter-element continuity. Among HSDTs, the unconstrained 

third order shear deformation theory (UTSDT) [117] showed an alternative and effective 

approach for laminated plate structures. In addition, UTSDT allows us to relax traction-

free boundary condition at the top and bottom surfaces of plates, which is commonly 

required in HSDTs. The appearence of the unconstrained theory opens frontiers for 

future applications of the UTSDT to the problems considering flow field, in which the 

boundary layer of stresses is significant. The differential equations for UTSDT are of 

similar complexity to those of TSDT. This approach produces more accurate solutions 

[118]. Responses of the laminated plates using UTSDT were also investigated in [118]. 

Free vibration and static analyses of composite plates using radial point interpolation 

method (RPIM) combined with UTSDT were reported in [119]. In UTSDT, the 

displacement field includes seven displacement components. More importantly, we 

herein propose a generalized unconstrained HSDT that also uses seven displacement 

components like UTSDT, but the higher order rotations depend on an arbitrary function 

f(z) through the plate thickness. 

 

For optimal control, Kumar et al. [120] and Rao et al. [121] used GA to study the 

optimization problems for finding optimal piezo location on a cantilever plate and a two-
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bay truss. Chang-Qing et al. [122] investigated optimal control of piezoelectric 

structures using independent modal space control (IMSC). Optimal location of 

piezoelectric using GA for vibration control of structures was investigated by Bruant et 

al. [123]. In their work, two variables for each piezoelectric device in an optimization 

problem, i.e. the location of its center and its orientation, are considered. A closed-form 

solution based on linear quadratic regulators (LQR) for the optimal control of 

piezoelectric composite plates was reported in [124]. 

 

As it emerges from the above review, the available studies have focused on the dynamic 

analysis of smart piezoelectric plates using smoothed finite element method (SFEM), 

classical FEM or mesh-free methods. This thesis aims at further contributing to the 

dynamic analysis of piezoelectric composite plates using an isogeometric approach 

based on Non-Uniform B-Spline (NURBS) basis functions. In particular, we show that a 

HSDT formulation fulfilling C
1
-continuity requirements is easily achieved in the 

isogeometric framework. Moreover, there are no researches on geometrically nonlinear 

transient based on isogeometric analysis for the piezoelectric composite plates. Hence, 

we propose an efficient approach to fill in this research gap via a generalized UHSDT 

and IGA. For reference, it is termed as IGA-UHSDT. 

 

2.2.2 Piezoelectric functionally graded materials plates 

A new class of non-homogeneous composites known as functionally graded materials 

(FGMs) was first proposed by Koizumi [125]. Material properties are continuous and 

smooth change from one surface to the other along thickness direction. Specially, they 

are capable of withstanding severe high temperature gradients, while maintaining 

structural integrity [125]. Piezoelectric materials are also an intelligent material class, 

which has coupled electrical and mechanical properties. Hence, the integration of FGM 

and piezoelectric offers a considerable interest in many practical applications, such as 

micro-electromechanical systems (MEMS) and smart material systems, especially in the 

medical and aerospace industries [126], etc. 

 

Because of their coupled thermal, electrical and mechanical properties, numerous 

methods on a wide range of topics related to FGMs and piezoelectric FGM have been 

proposed. Praveen and Reddy [127] studied nonlinear response of functionally graded 

ceramic-metal plates using FEM based on FSDT. Zhao and Liew [128] also used FSDT 

combining the element-free kp-Ritz method to investigate geometrically nonlinear 
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analysis of functionally graded plates (FGPs). Geometrically nonlinear analysis of FGM 

plates subjected to thermal-mechanical load was studied in [129]. In the nonlinear 

formulation, smoothed finite element method (S-FEM) based on the von Kármán strains 

and the C
0
-type high-order shear deformation plate theory (C0-HSDT) were presented. 

In addition, HSDTs [130-133] were also devised to solve nonlinear behavior of FGM 

composite structures. 

 

For piezoelectric FGM plates, a finite element model based on variational principle and 

linear piezoelectricity theory was developed by Liew et al. [134] for investigating the 

active control of FGM integrated with piezoelectric sensors and actuators. Reddy and 

Cheng [135] proposed a 3D asymptotic solution for smart FGM plates using the transfer 

matrix formulation and the asymptotic expansion. The nonlinear frequencies of a FGM 

plate with piezoelectric layers in thermal environments were examined by the Huang 

and Shen [136] using HSDT. The nonlinear thermo-electro-mechanical bending 

response of piezoelectric FGM plates was investigated by Yang et al. [137]. Butz et al. 

[138] developed geometrically and materially non-linear effects and formulation based 

on Timoshenko beam theory using FEM for the three-dimensional piezoelectric beam. 

Nonlinear analysis of smart FGPs integrated with a layer of piezoelectric fiber 

reinforced composite using FSDT was presented by Panda and Ray [139]. The based-

HSDT finite element formulations for geometrically nonlinear analysis of functionally 

graded piezoelectric plates were also reported in Refs. [140-142]. Besides, there have 

been a few investigations concerned with nonlinear transient analysis of smart FGM 

plates using the generalized shear deformation theory. Therefore, this thesis tries to fill 

in this research gap by using IGA based on the generalized shear deformation theory for 

geometrically nonlinear transient analysis of the piezoelectric FGM plates. The 

nonlinear formulation for plates based on the von Kármán strains is formulated using 

total Lagrange method and solved by Newmark time integration associated with the 

iteration methods. The electric potential of each piezoelectric layer is assumed linearly 

through the thickness of each piezoelectric layer. The material properties of FGM are 

assumed to vary through the thickness by the rule of mixture and the Mori–Tanaka 

scheme. 

 

2.2.3 Functionally graded carbon nanotube-reinforced composite plates 

Carbon nanotubes (CNTs) discovered by Iijima [66], which was called the ‘‘material for 

the 21st century’’ [143], have attracted a considerable interest by researchers in many 
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engineering fields [68,69]. This is because CNTs possess high strength, high stiffness 

and low density. CNTs are considered as potential candidates for the reinforcement of 

polymer composites providing that good interfacial bond between CNTs and polymer 

and proper dispersion of the individual CNTs in the polymeric matrix can be guaranteed 

[144]. 

 

Due to the attractive properties of CNTs, numerical methods and various experiments 

have been developed to analyze and simulate their behaviors. Based on molecular 

dynamics (MD) simulations and experimental method, Gou et al. [145] investigated the 

interfacial bonding of single-walled nanotube (SWNT) reinforced epoxy composites. 

Vodenitcharova and Zhang [146] investigated the bending and buckling behavior of a 

nanocomposite beam reinforced by a single-walled carbon nanotube. Based on a 

multiscale approach, Wuite and Adali [147] analyzed nanocomposite reinforced beams, 

which were made of stacked isotropic layers reinforced by CNTs in different aligned 

directions and isotropic beams composed of randomly oriented CNTs dispersed in a 

polymer matrix. Post-buckling analysis of FG-CNTRC cylindrical shells subjected to 

mechanical loading in thermal environments was also conducted by Shen [148]. Based 

on the classical laminated plate theory, buckling behavior of laminated composite plates 

with different boundary conditions was investigated by Arani et al. [149]. In this 

research, optimal orientations of CNTs were computed to achieve the corresponding 

mode shapes and the highest critical load. By using FEM and FSDT, Zhu et al. [150] 

studied static and free vibration analyses of carbon nanotube-reinforced composite 

plates. A nonlinear free vibration analysis of FG-CNTRC Timoshenko beams was 

investigated by Ke et al. [151]. Shen [152] studied the effect of thermal environment on 

nonlinear bending of functionally graded carbon nanotube-reinforced composite plates. 

Wang and Shen [153] investigated the nonlinear vibration and bending behavior of 

sandwich plates with nanotube-reinforced composite face sheets. Besides, by using 

mesh-free methods based on FSDT, Liew et al. [154] analyzed post-buckling of carbon 

nanotube-reinforced functionally graded cylindrical panels under axial compression. Lei 

et al. [155] studied free vibration analysis of FG-CNTRC plates. In addition, large 

deflection analysis of FG-CNTRC plates was also conducted by Lei et al. [156]. Based 

on the theory of elasticity, Alibeigloo [157-158] investigated the bending behavior of 

FG-CNTRC plates and cylindrical panels embedded in piezoelectric layers. Alibeigloo 

and Kiew [159] studied thermos-elastic properties of FG-CNTRC plates. The bending 

and buckling analyses of FG-CNTRC beams resting on elastic foundation were 



16   Chapter 2: Literature review 

 

analytically examined by Wattanasakulpong and Ungbhakorn [160]. They found that 

higher-order shear deformation theories show an important role for predicting shear 

stress. Based on the Eshelby Mori Tanaka approach, Sobhani et al. [161] investigated 

the natural frequencies characteristics of FG-CNTRC cylindrical panels using a 2D 

generalized differential quadrature method. Yas et al. [162] studied free vibration of FG-

CNTRC cylindrical panels using 3D theory of elasticity. They found that when 

orientations of carbon nanotubes are 2π and π/6, the normalized frequency was the 

highest. Based on Timoshenko beam theory, Ke et al. [163] investigated free vibration 

of single-walled CNT beam using the Ritz method. In this research, it was found that 

free vibration frequencies of beam with symmetrical CNT distribution are higher than 

those with uniform or asymmetrical CNT distribution. Dynamic behaviors of 

functionally graded multi-walled carbon nanotube-polystyrene nanocomposite beams 

under multi-moving loads were studied by Heshmati and Yas [164]. Yas and Samadi 

[165] conducted free vibration of nanocomposite beam reinforced with single-walled 

CNTs resting on the elastic foundation using Hamilton’s principle to derive the 

governing equations, which were solved using the generalized differential quadrature 

method.  

 

For buckling and post-buckling analyses, Rafiee et al. [166] investigated nonlinear 

thermal buckling of FG-CNTRC beams integrated with piezoelectric layers. The 

buckling load increases for CNTRC piezoelectric beam because of the functionally 

graded reinforcement. A unified formulation for analysis of the 3D buckling of FG-

CNTRC piezoelectric plates subjected to bi-axial compressive loads was studied by Wu 

and Chang [167]. Shen and Zhang [168] investigated thermal post-buckling analyses of 

nanocomposite shell reinforced by single-walled CNTs. A two-step perturbation 

technique was proposed by Shen and Zhu [169] to define the thermal buckling load and 

post buckling equilibrium paths of nanotube-reinforced composite plates resting on 

elastic foundations. Furthermore, post-buckling analyses of FG-CNTRC plates/shells 

were carried out under axial compression and thermal environments in Refs. [170-174]. 

Available studies have focused on the Nano-reinforced composite plates using FEM, 

theory of elasticity or mesh-free methods. Besides, it is seen that the literature related to 

the analysis of functionally graded carbon nanotube-reinforced composite plates using 

HSDT is somewhat limited. This thesis hence aims to fill in this gap by developing 

isogeometric finite element based on Non-Uniform B-Spline (NURBS) basis functions. 
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In particular, we show that a HSDT formulation fulfilling C
1
-continuity requirements is 

easily achieved in the framework of isogeometric analysis. 

2.3 Goal of the thesis 

Based on literature reviews of smart structures in this chapter and the historical 

development of IGA in chapter 1, the overall aim of this research is to develop IGA for 

the smart plate structures. Some main problems have to be achieved in order to realize 

this aim: 

 

o Develop IGA for dynamic response of composite plates integrated with 

piezoelectric materials. 

 

o Investigate dynamic response of functionally graded carbon nanotube-reinforced 

composite plates. 

 

o Study nonlinear transient of smart piezoelectric functionally graded material 

plates. 

 

o Develop a new shear deformation theory for control of nonlinear transient of 

smart piezoelectric composite plates. 

 

 

2.4 Concluding remarks 

Reviews of piezoelectric composite plates, piezoelectric functionally graded material 

plates and functionally graded carbon Nano-tube-reinforced composite plates are 

presented in this chapter. Based on the literature reviews, four main objectives for this 

thesis are proposed. 
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3.1 Overview 

In this chapter, we present descriptions of smart material properties and plate theories. 

Firstly, smart material properties are expressed. Two types of smart materials, i.e., 

piezoelectric plates and functionally graded carbon nanotube-reinforced composite 

plates, are introduced. Next, some equivalent single-layer theories are presented. 

 

 

3.2 Effective material properties 

3.2.1 Piezoelectric plates 

The piezoelectric material is described by both laws of electromagnetics and mechanics, 

and the piezoelectric effect is considered to be linear. Hence, there are two fields in the 

piezoelectric problem: mechanical and electrical fields. Table 3.1 shows the material 

properties of some piezoelectric and composite materials, including elastic modulus (E), 

Poisson’s ratio (ν), mass density (ρ), piezoelectric coefficient (d), and electric 

permittivity (p). Table 3.1 will be also used in chapters 5, 6 and 8. 

 

The material behavior of piezoelectric plates is expressed as [86,175]: 

T    
     

    

σ c e

D Ee g


 (3.1) 

where σ  and   are the stress and strain vectors of the mechanical field, respectively; D 

is the dielectric displacement; E is the electric field vector; g and e denote the dielectric 

and piezoelectric constant matrix, respectively, which are defined as [86]: 
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e g  (3.2) 

 

In this research, piezoelectric composite plates and piezoelectric functionally graded 

plates are investigated. Therefore, next section presents an overview of composite 

materials and functionally graded materials (FGMs). 

 

3.2.1.1 Composite materials 

Composite materials are formed by integrating two or more materials so that they have 

some superior properties, such as strength-to-weight ratio, corrosion resistance, fatigue 
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life, etc., [176]. Most composite materials are made from: fiber, reinforcement material, 

and matrix (a base material). 

 

Table 3.1: Material properties of piezoelectric and composite materials [91,92,116] 

Properties PVDF PZT-4 PZT-G1195N T300/979 Gr/Ep 

Elastic properties 

E11 (GPa) 2 81.3 63.0 150 132.38 

E22 (GPa) 2 81.3 63.0 9.0 10.76 

E33 (GPa) 2 64.5 63.0 9.0 10.76 

G12 (GPa) 1 30.6 24.2 7.1 3.61 

G13 (GPa) 1 25.6 24.2 7.1 5.65 

G23 (GPa) 1 25.6 24.2 2.5 5.65 

ν12 0.29 0.33 0.30 0.3 0.24 

ν23 0.29 0.43 0.30 0.3 0.24 

ν13 0.29 0.43 0.30 0.3 0.49 

Mass density 

ρ (kg/m
3
) 1800 7600 7600 1600 1578 

Piezoelectric coefficient 

d31 = d32 (m/V)  0.046 -1.22e-10 2.54e-10 - - 

d15 (m/V) - - - - - 

d33 (m/V) - -2.85e-10 - - - 

Electric permittivity 

p11 (F/m) 0.1062e-9 1475 15.3e-9  - - 

p22 (F/m) 0.1062e-9 1475 15.3e-9  - - 

p33 (F/m) 0.1062e-9 1300 15.0e-9  - - 

 

There are three different types of composite materials, i.e. [176]: 

o Type 1: Fibrous composites, i.e. fibers of one material in a matrix material of 

another. 

o Type 2: Particulate composites, i.e. macro size particles of one material in a 

matrix of another. 

o Type 3: Laminated composites, i.e. each layer has a different material, include 

one of the first two types of composite materials. 
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Figure 3.1. Configuration of a laminated composite. 

 

In this research, we choose type 3, which is shown in Figure 3.1 in order to study the 

mechanical behavior. In Figure 3.1, symbols, I, II, III and IV represent layers with 

different materials or different fiber orientations. Besides, in the formulations of 

constitutive equations of a layer (a lamina), we assume the following [176]: 

o A lamina is continuous material, i.e., there is no gaps or empty spaces. 

o Behaviors of a lamina are linear.  

The Hooke’s law for an anisotropic material is expressed by: 

i ij jQ   (3.3) 
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Where i  are the stress components, j  are the strain components and ijQ  are the 

“reduced” material coefficients for 2D with i, j refer to the components of Cartesian 

coordinate (x, y, z). 

Based on Young’s moduli, Ef, Em; Poisson’s ratios, vf, vm, and volume fractions, f , m , 

where f and m refer to fiber and matrix of laminated composites, respectively, the lamina 

constants are defined as follows (using rule of mixture): 
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Where 1 and 2 represent directions of axes x, y, respectively, and G12 is the shear 

modulus defined by: 

   
;

2 12 1

f m
f m
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 (3.5) 

 

In the laminate, the constitutive equation of the k
th

 anisotropic layer in material 

coordinates or local coordinates, as shown in Figure 3.2, can be defined from Hooke’s 

law as: 
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Where  
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In which G12, G23 and G13 are the shear moduli in the x-y, y-z  and x-z planes, 

respectively. 

 

The laminate is usually made of many layers with differently oriented orthotropic 

directions. The stress-strain relation (with arbitrary fiber orientation) for the k
th
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orthotropic lamina in the global reference system, as illustrated in Figure 3.2, is defined 

as: 
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Where 
ijQ are the transformed material constants and defined as [176]: 
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3.2.1.2 Functionally graded materials 

FGMs usually consist of two phases of materials with different properties, e.g., metal 

and ceramic. The effective properties of FGMs, such as strength, resistant to high 

temperatures, etc., depend on the volume fractions, which are function of position 

through their thickness, between two phases of materials.  

 

In FGMs model, there are two approaches as follows [177]: 

o In the first approach, FGM is divided into several layers through the thickness 

and each layer has the same volume fraction, as shown in Figure 3.3a. We 

may call this model as FGM model with a piecewise variation. 

 



Chapter 3: Smart materials and plate theories   25 
 

 

 

o In the second approach, the volume fractions are assumed continuously 

through the thickness of FGM, as shown in Figure 3.3b. This model may be 

called FGM model with a continuous variation. 

 

 

Figure 3.2. Material and global coordinates of the laminated composite. 

 

  

(a) (b) 

Figure 3.3. Two approaches for the volume fraction of the FGMs model: (a) a 

piecewise variation and (b) a continuous variation. 
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Referring to Reddy et al. [178-180], we choose the second approach in this research. The 

volume fraction of metal and ceramic phase across the thickness can be expressed as 

follows [177,181]: 

 
1

( 0)
2

n

c

z
V n

h

 
   
 

    (3.10) 

1m cV V   (3.11) 

where subscripts c and m refer to the ceramic and metal constituents, respectively, n is a 

volume fraction exponent, Vc is the volume fraction of the ceramic, Vm is the volume 

fraction of the metal, h is the thickness of the plate and z and / 2 / 2h z h   , is the 

thickness coordinate. Effect of change of the volume fraction exponent on the volume 

fraction across the thickness is illustrated in Figure 3.4. 

 

 

Figure 3.4. Volume fraction Vc versus thickness for different exponents n. 

 

In this research, two power law distributions, rule of mixtures [176,182] and Mori-

Tanaka scheme [183,184], are used. A comparative study between these two methods 

was also examined in Ref. [161]. 
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In the rule of mixtures, the effective material property is assumed to be graded through 

the thickness as follows [176,182]: 

     ( ) or ( )c m c m c c m mP z P P V P P z PV P V      (3.12) 

where P represents the effective material properties, including Young’s modulus E, 

density ρ, Poisson’s ratio ν, thermal conductivity k and thermal expansion α. Pc and Pm 

denote the properties of the ceramic and metal, respectively. 

 

 

Figure 3.5. Effect of rule of mixture (dash dot lines) and Mori-Tanaka scheme (solid 

lines) on the effective modulus. 

 

To consider interactions among the constitutions, the Mori-Tanaka scheme is used. The 

effective bulk modulus Ke, the shear modulus Ge, thermal expansion coefficient e  and 

thermal conductivity can be expressed as [183,184,150]: 
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Where
1
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. Poisson’s ratio and Young’s modulus are defined as: 
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 (3.18) 

 

Figure 3.5 shows effect of the rule of mixture and the Mori–Tanaka scheme via the 

power index n on the effective Young’s modulus of FGM made by Al/ZrO2, i.e., a 

bottom layer is Al with Young’s modulus Em = 70×10
9
 Pa and an upper layer is ZrO2 

with Young’s modulus Ec = 151×10
9
 Pa. It can be seen that Young’s modulus calculated 

by the rule of mixture is larger than that calculated by the Mori-Tanaka scheme. 

 

3.2.2 Functionally graded carbon nanotube-reinforced composites  

Carbon nanotubes (CNTs) are considered as potential candidates for the reinforcement 

of polymer composites providing that good interfacial bond between CNTs and polymer 

and proper dispersion of the individual CNTs in the polymeric matrix can be guaranteed 

[144]. 

 

Let us consider four types of distributions of CNTs in FG-CNTRC plates with length a, 

width b and thickness h as shown in Figure 3.6. The uniform distribution is represented 

by UD-CNTRC, while the functionally graded distributions of CNTs in the thickness 

direction of the composite plates are represented by FG-V, FG-O and FG-X. For the FG-

V type, the top surface of the CNTRC plate is CNT-rich. In FG-X, the top and the 

bottom surface of CNTRC plate are CNT-rich as shown in Figure 3.6. And in case of 
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FG-O, the CNT-rich zone is in the middle of the CNTRC plate. The material properties 

of the CNT-reinforced nanocomposites, which is a mixture of isotropic polymer (matrix) 

and CNTs (fiber), can be defined according to the Mori-Tanaka scheme [184,150] or the 

rule of mixtures [182]. Besides, the accuracy of the rule of mixtures was also discussed 

and an excellent agreement with Mori-Tanaka was reported in Ref. [185]. For 

convenience and simplicity, in this present study, the rule of mixtures is used to express 

the effective material properties of CNTRC plates as follows [152]: 

 

11 1 11

CNT m

CNT mE V E V E   (3.19) 

2

22 22

CNT m

CNT m

V V
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12 12

CNT m
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V V

G G G


   (3.21) 

 

Where
11

CNTE , 
22

CNTE  and 
12

CNTG  are longitudinal, transverse Young’s moduli and shear 

modulus of CNT, respectively; and mE  and 
mG  indicate Young’s modulus and shear 

modulus of the isotropic matrix, respectively. As the load transferred between the 

nanotube and polymeric phases is less than perfect (due to surface effects, strain 

gradients effects, intermolecular coupled stress effects, etc.), CNT efficiency parameters, 

1 2,   and 3  were introduced in Ref. [152] to consider the size-dependent material 

properties. CNTV  and mV  are the CNT and matrix volume fractions and the relation 

between them is given by: 

 

1mCNTV V   (3.22) 

 

Similarly, Poisson’s ratio 12  and density   of CNTRC plates can be determined by: 

*

12 12

CNT m

CNT mV V     (3.23) 

CNT m

CNT mV V   

 

(3.24) 

Where 
12 ,CNT CNT  and ,m m   are Poisson’s ratio and density of CNT and matrix, 

respectively.  
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The distributions of carbon nanotubes along the thickness direction of the CNTRC plate 

can be expressed as [150]: 

*

*2

2 *

2 *

(UD)

(1 ) (FG-V)

(FG-O)2(1 )

(FG-X)2( )

CNT

z
CNTh

CNT z

CNTh

z

CNTh

V

V
V

V

V





 





 
(3.25) 

Where 

*

( / ) ( / )
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CNT

CNT CNT m CNT m CNT

w
V

w w   


 
 

(3.26) 

 

Figure 3.6. Volume fraction Vc versus the thickness of CNTRC. 
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In which CNTw  is the mass fraction of the carbon nanotubes in the CNTRC plate. Note 

that the UD-CNTRC and the three FG-CNTRC plates have the same CNT mass and 

volume fractions. 

 

 

3.3 Plate theories 

3.3.1 Classification of plate theories 

Composite laminates are made of many layers of different materials or fiber orientations. 

In composite plates, thickness dimensions are smaller than planar dimensions. In 

analyses of the composite plates, several theories have been developed [186]: 

o Equivalent single layer theories (2D); e.g. classical laminated plate theory 

(CLPT) and shear deformation laminated plate theories. 

o Three dimensional elasticity theory (3D); e.g. traditional 3D elasticity 

formulations and layerwise theories. 

o Multiple model methods (2D and 3D). 

 

In this research, we choose the equivalent single layer (ESL) plate theories in order to 

calculate and simulate the composite plates. The ESL plate theories are derived from 3D 

elasticity theory by considering the kinematics of stresses or deformations state through 

the thickness of the plates. This allows us to reduce 3D models to 2D models.  

 

3.3.2 An overview of composite plate theories 

3.3.2.1 The classical laminated plate theory 

The classical laminated theory (CLPT) is the simplest theory of the ELS laminated 

plates.  In CLPT, based on Love-Kirchhoff, we assume that [186]: 

 

o Straight lines are transverse normal to the mid-surface before deformation 

remain straight and transverse normal to the mid-surface after deformation, 

i.e., the transverse displacement is not dependent on the through thickness 

coordinates of plates. 

o The transverse normal do not experience elongation, i.e. the transverse strain 

is zero. 
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o The transverse normal rotation is to remain perpendicular to the mid-surface 

after deformation, i.e. the transverse shear strains are zero. 

 

We now consider a plate shown in Figure 3.7, displacement field of any arbitrary point 

(x, y, z) in CPLT are defined as follows: 

0
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( , , , ) ( , , )
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


 




 

(3.27) 

Where u0, v0, w0 are the mid-surface displacements along axis x, y, z, respectively. From 

the assumption of this theory, effects of the transverse shear and transverse normal are 

neglected and deformation is due to bending. 

 

 

Figure 3.7. Undeformed and deformed plates in CPLT. 
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3.3.2.2 The first-order shear deformation theory 

Compared to CLPT, in the first-order shear deformation theory (FSDT) [187,188], the 

transverse normal do not remain perpendicular to the mid-surface after deformation as 

shown in Figure 3.8. This means that the transverse shear strains are not zero in this 

theory.  

 

 

Figure 3.8. Undeformed and deformed plates in FSDT. 

 

Displacement field of the FSDT is in the form: 
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


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  
(3.28) 

Where u0, v0, w0 are unknown displacements of a point on the mid-plan and x , y  are 

unknown rotations around y-axis and x-axis, respectively, where the positive direction 

follows the right hand rule. 
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In the FSDT, shear correction factors are required and discussed in detail in Refs. 

[189,190]. However, they are difficult to determine for arbitrarily laminated composite 

plates.  

 

3.3.2.3 The third-order shear deformation theory 

 

 

Figure 3.9. Deformation of transverse normal using CLPT, FSDT and TSDT. 

 

 

The third-order shear deformation theory (TSDT) proposed by Reddy [191] is examined. 

In this theory, the displacements are cubic functions of thickness direction as given in 

[191]. The displacement field can be expressed as follows: 
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(3.29) 

Where c = 4/3h
2
. 

 

Compared to FSDT, the shear correction factors in TSDT are not required. Moreover, 

the condition of zero transverse shear stresses on the boundary is satisfied. 

 

3.3.2.4 The generalized higher-order shear deformation theory 

 

 

 

Figure 3.10. Function f(z) through the thickness of the plates. 

 

 

In the generalized higher order shear deformation theory, the displacement filed is 

expressed as follows [192-194]: 
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(3.30) 

 

Where the function f(z) is a continuous function through the plate thickness chosen so 

that tangential stress at the top and bottom layer of the plates are zeros. Several functions 

f(z) have been found and are shown in Table 3.2. It can be seen that by substituting 

function f(z) of Reddy [191] into Eq. (3.30), it becomes Eq. (3.29). Hence, the form of 

Eq. (3.30) is called the generalized form for the higher order shear deformation theory.  

 

 

Figure 3.11. Derivation of the function f(z) through the thickness of the plates. 

 

Further, shapes of function f(z) and its derivation through the thickness of the plates are 

illustrated in Figure 3.10 and Figure 3.11, respectively. We can see that the obtained 

results satisfy the free stress conditions at the top and bottom of the plates. 
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Table 3.2: Some transverse shear functions 

Model Function f(z) Function g(z) = f’(z) 

Reddy [191] 3

2

4
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3
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h
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Nguyen-Xuan et al. 
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h h
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3.4 Concluding remarks 

In this chapter, we present material properties of the smart plates. Some general 

formulations of composite plates, functionally graded material plates and functionally 

graded carbon nanotube-reinforced composite plates are also derived. And they are the 

basic formulations in order to support the researches in this thesis, which will be 

presented in chapter 5, 6, 7, 8. Besides, four plate theories are presented, which are 

fundamentally required to develop a new function for the plate theory, which will be 

introduced in chapter 8. 

 

 

 



 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

Isogeometric analysis 
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4.1 Overview 

An overview of B-spline, non-uniform rational B-splines (NURBS) and isogeometric 

analysis (IGA) are discussed in this chapter. Most of the algorithms used to implement 

B-spline and NURBS are given in Ref [198] and isogeometric analysis in Ref. [1]. 

 

 

4.2 B-Spline 

4.2.1 Basic functions 

 

  

(a) p = 1 (b) p = 2 

  

(c) p = 3 (d) p = 4 

Figure 4.1. 1D B-spline basic functions with p = 1, 2, 3, 4. 
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B-splines are constructed from knot vectors and thus a discussion of the knot vectors is a 

natural starting point for this study. A knot vector in one dimension, 

 1 2 1, ,..., ,n p    Ξ  is a non-decreasing sequence of parameter values 
i  , 

1,...,i n p  , where p is the polynomial order and n is the number of basic functions, 

which is used to build the B-spline curve. If the knots are equally spaced, the knot vector 

is uniform. A knot vector is called open if the first and the last knot values of the knot 

vector appear p + 1 times. A B-spline basis function is C
 

continuous inside a knot span 

and C
p-1

 continuous at a single knot. A knot value can appear more than once that is 

called a multiple knot. 

 

Using Cox-de Boor algorithm [10-12], the B-spline basis functions with order p = 0, 

 ,i pN  , are defined in Ref. [198] as: 

  1

,0

1 if

0 otherwise

i i

iN
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 

 (4.1) 

For p = 1, 2, 3, ..., they can be written as: 
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 
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 (4.2) 

 

 
 

(a) 1D (b) 2D 

Figure 4.2. 1D and 2D cubic B-spline basic functions. 

 

With p = 0 and 1, the B-spline basis functions are similar to standard piecewise constant 

and linear finite element functions, respectively. According to Ref. [2], the B-spline 
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basic functions with 2p   are considered in isogeometric analysis (IGA). Figure 4.1 

shows the B-spline basis function with p = 0, 1, 2, 3. 

 

Consider an open uniform knot vectors  1

2
0,0,0,0,0,0, ,1,1,1,1,1,1Η , one dimensional 

(1D) and two dimensional (2D) cubic B-spine basic functions are shown in Figure 4.2. 

 

Several important properties of B-spline can be expressed as follows [1]: 

o The basic functions constitute a partition of unity, 
,

1

( ) 1,
n

i p

i

N  


   

o The basic functions are nonnegative over the domain, 
, ( ) 0,i pN     

o The basic functions are linearly independent,  

,

1

( ) 0 0, 0, 1, 2,...,
n

i i p k

i

N k n  


     

o The support of the B-spline function of order p is p + 1 knot spans, i.e., 

, ( )i pN   is not zero over 1,i i p   
   . 

o The basic functions with order p have p - mi continuous derivatives across 

knot i , where mi is the multiplicity of knot i . 

o Scaling or translating the knot vector does not alter the basic functions. 

o The B-spline basic functions are generally only for approximation and not 

interpolation, i.e., they do not satisfy the Kronecker delta property

, ( )i p j ijN   . Only in the case mi = p, , ( ) 1i pN    

 

Consider a polynomial order p and knot vector  1 2 1, ,..., n p    Ξ , the first derivative 

of the basic functions can be defined as: 
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 (4.3) 

And the higher derivatives are generally given as: 
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4.2.2 B-spline geometries 

4.2.2.1 B-spline curve 

B-spline curves are formed by combining B-spline basic functions. Given n basic 

functions  ,i pN  and control points iP , the B-spline curve is defined by:  

   ,

1

 
n

i p i

i

N 


C P  (4.5) 

 

An example for a quadratic B-spline curve with a knot vector  0,0,0,1, 2,3,4,5,5,5Ξ
 

is illustrated in Figure 4.3. The B-spline curve is interpolated from the first and the last 

control points of the knot vector. 

 

 

Figure 4.3. A quadratic B-spline curve. 

 

Properties of B-spline curves are similar to those of their basic functions and discussed 

in detail in Ref. [198]. 
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4.2.2.2 B-spline surface 

We now consider a control net ,i jP  and two knot vectors  1 2 1, ,..., n p    Ξ
 
and 

 1 2 1, ,..., m q    Η  with polynomial order p and q. A tensor product B-spline surface 

can be defined as: 

      , , ,

1 1

,  
n m

i p j q i j

i j

N M   
 

S P  (4.6) 

Where  ,i pN   and  ,j qM   are B-spline basic functions.  

 

 

Figure 4.4. A NURBS surface. 

 

Introducing a shape function      , ,,b

I i p j qN N M     associated with “node” I [51], 

Eq. (4.6) can be rewritten as follows: 

    ,

1

, ,
n m

b

I i j

I

N   




S P  (4.7) 

And a NURBS surface with  0,0,0,0,0.5,1,1,1,1Ξ  and  0,0,0,0.5,1,1,1Η  is 

shown in Figure 4.4. 

 

4.2.3 Refinement 

In B-spline, there are three ways to enrich or refine the mesh, namely h-refinement, p-

refinement and k-refinement [1]. In computer aided geometric design (CAD) notation, 

these are referred to as knot insertion, degree elevation and continuity elevation, 
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respectively. And h- and p-refinements have a direct analogue to standard FEM, while k-

refinement does not have similarity with FEM.  

 

  
(a) Original curve and control points (b) Refined curve and control points 

  
(c) Original one element mesh (d) Refined two elements mesh 

  
(e) Original basic functions (f) New basic functions 

Figure 4.5. Knot insertion (h-refinement). 
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(a) Original curve and control points (b) Refined curve and control points 

  

(c) Original one element mesh (d) Refined two elements mesh 

  

(e) Original basic functions (f) New basic functions 

Figure 4.6. Order elevation (p-refinement). 
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4.2.3.1 Knot insertion (h-refinement) 

Consider a knot vector  1 2 1, ,..., n p    Ξ  and the corresponding control points Pi, an 

extended knot vector is introduced as  1 1 2 1 1, ,.., n m p n p          Ξ  and formed 

from m knots. The n + m new control points, iP , can be defined using the following 

expression: 

1(1 )i i i i i    P P P  (4.8) 

Where 

1 1

1

0 1 2

i

i p i
i

i k p

k p i k

k i n p

 

 








   


    


    

 (4.9) 

 

An example for knot insertion of a quadratic B-spline curve is depicted in Figure 4.5. 

The original knot vector is  0,0,0,1,1,1Ξ . The control points, element mesh and basic 

functions of the original curve are shown in Figure 4.5a, c, e, respectively. With h-

refinement, one knot point at 0.5   is inserted into the original knot vector and the 

new one becomes  0,0,0,0.5,1,1,1Ξ . Geometry of the curve is not changed but the 

knot vector, the mesh, the basic function is changed as illustrated in Figure 4.5b, d, f. 

They are richer, i.e. one more control point, one more element mesh and one more basic 

function than in the original case. And we can continue to refine by adding more basic 

functions of the same order, while leaving the curve unchanged. 

 

4.2.3.2 Order elevation (p-refinement) 

The process, p-refinement, involves raising the polynomial order of the basic functions 

used to represent the geometry. In p-refinement, the multiplicity of each knot value is 

increased by one, but no new knot values are inserted. Compared to h-refinement, either 

the geometry or the parameterization is not changed. 

 

Similar to h-refinement, an example of p-refinement for a curve is also shown in Figure 

4.6. As considered in Figure 4.5, the unrefined curve with the control points, mesh and 

quadratic basic functions are depicted on the left-hand side of Figure 4.6. The original 

knot vector becomes  0,0,0,1,1,1Ξ . Through order elevation procedure by repeating 
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value of the knot control point one time, the new knot vector is  0,0,0,0,1,1,1,1Ξ . 

And the refined curve is illustrated on the right-hand side of Figure 4.6.         

       

4.2.3.3 k-refinement 

k-refinement is the process, in which order elevation is used by knot insertion procedure. 

This process leads to a higher order and higher continuity basic functions than the 

process if knot insertion followed by order elevation. This noncommutative nature of 

refinement was first proposed in Ref. [2]. 

 

 

4.3 Non-Uniform Rational B-Splines 

Non-uniform rational B-Splines (NURBS) are rational functionals of B-splines and 

inherit all their properties. Circles, cylinders, ellipses, etc., in conic section can be 

exactly constructed by NURBS, i.e., projective transformations of piecewise quadratic 

curves. And this is one of defining features of isogeometric analysis [1]. 

 

4.3.1 NURBS basic functions 

NURBS basic functions can be expressed as [1]: 

, ,

,

,

1

( ) ( )
( )

( )
( )

i p i i p i

i p n

j p i

j

N w N w
R

W
N w

 







 


 

(4.10) 

Where , ( )i pN   is the i
th

 B-spline basic function with order p and iw  is a positive weight.  

 

Note that the weights have an important role in defining the NURBS basic functions, but 

they are separated from any explicit geometric interpretation in this process, and there is 

a freedom to choose control points independently from their associated weights. For a 

special case, the weights are all equal, the curve is polynomial and the NUBRS basic 

functions are the B-spline basic functions. In simple geometries cases, the weights are 

given by the analytical method [198]. And in complex geometries case, the weights are 

defined from CAD packages. 

 

Derivatives of NURBS basic function can be defined as: 

, ,

, 2

( ) ( ) ( ) ( )
( )

( )

i p i p

i p i

N W N Wd
R w

d W

   


 

 
  (4.11) 
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Where , ( )i pN   and ( )W   are calculated by: 

,

, ,
1

( )
( ) ; ( ) ( )

n
i p

i p i p i
i

dN
N W N w

d


  

 

     (4.12) 

 

Higher-order derivatives of NURBS can be expressed as follows [1]: 
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(4.13) 

Where  

( ) ( )

,( ) ( ) ; ( ) ( )
k k

k k

i i i pk k

d d
A w N W W

d d
   

 
   (4.14) 

 

4.3.2 NURBS curves 

NURBS curves can be defined as: 

   ,

1

 
n

i p i

i

R 


C P  (4.15) 

Where iP  is control points. 

 

 

Figure 4.7. A NURBS curve for the circle. 
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Table 4.1: Control points and weights for the circle with radius R = 1 

i 1 2 3 4 5 6 7 8 9 

xi 1 1 0 -1 -1 -1 0 1 1 

yi 0 1 1 1 0 -1 -1 -1 0 

wi 1 2 2  1 2 2  1 2 2  1 2 2  1 

 

To make it clear, a circle as an example, is considered. In this problem, a NURBS 

quadratic basic function is enough to construct the circle exactly. The control points are 

illustrated in Table 4.1 and Figure 4.7. 

 

Further, the effect of weights on the NURBS curve is investigated in Figure 4.8. It can 

be seen that when the weight decreases from 1 to 0.25 and 0.05, the curve is pulled 

towards the associated control point. 

 

 

Figure 4.8. Effect of weight on NURBS curve. 

 

4.3.3 NURBS surfaces 

Consider two knot vectors   1 2 1, ,..., n p    Ξ ,  1 1 1, ,..., m q    Η  and a control net 

iP , a tensor-product NURBS surface can be defined as:  

   ,

, ,

1 1

, ,  
n m

p q

i j i j

i j

R   
 

S P  (4.16) 

Where  ,

, ,p q

i jR    are the bivariate basic functions expressed by: 

  ,,

,

,

( ) ( )
,

( ) ( )

i j i jp q

i j n m

i i i ji j

N M w
R

N M w

 
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 
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 
 (4.17) 

And Figure 4.9 illustrates a NURBS surface and control mesh. 
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Figure 4.9. NURBS surface and control mesh. 

 

 

4.4 Isogeometric discretization 

Isogeometric concept, the most important concept in the element technology [1], refers 

to the use of the same basic functions for both the geometry and unknown field 

approximations. This concept is used in both finite element method (FEM) and 

isogeometric analysis (IGA), but there are some differences: 

o In FEM, the basic functions are chosen to approximate the geometry, which 

are also used to approximate the unknown fields. Thus, both the geometry and 

the unknown fields are approximated. Finite element basic functions are 

typically interpolatory and called interpolation functions or shape functions. 

Refinement may be required for both the geometry and the unknown fields.  

o In IGA, the basic functions are not interpolatory, are chosen to exactly capture 

the geometry and are used to approximate the unknown fields. Refinement 

may be only required for the unknown field, but not for geometry because the 

geometry is exact. 

 

In FEM, there are mesh and elements. The elements have two representations, i.e. one in 

the parent domain and one in the physical space. Elements are defined by their nodes 
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and the degrees-of-freedom are defined at the nodes. In contrast, in IGA, the geometry is 

obtained from CAD model and there are two types of meshes, namely the control mesh 

and the physical mesh. The control points define the control mesh, which does not 

conform to the actual geometry. The physical mesh is an exact geometry. However, the 

degrees-of-freedom are located at control points. A schematic illustration of the ideas of 

the IGA computation is depicted in Figure 4.10. 

 

In two-dimensional analysis, the parametric domain is a square. The mapping from the 

parametric domain to the physical domain is expressed as: 

 ,
n

I I

I

 x R P  (4.18) 

Where n is the number of control points,  ,I  R  is the NUBRS basic function, I is the 

control point and  ,   are the parametric coordinates. The displacement field in 

isogeometric formulation is approximated from the value of the displacement field at the 

control point I, uI, by using the same basic function as: 

 ,
n

I I

I

 u R u  (4.19) 

 

  

4.5 The spatial derivatives 

To compute the spatial derivatives of Eq. (4.18), the Jacobian matrix of the geometry 

needs to define as follows: 

, ,

, ,

x x

y y

 



 

 
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 

J  (4.20) 

 

The spatial derivatives of Eq. (4.18) can be expressed as: 

i I
iI

i i

x R
P

 

 


 
 (4.21) 

Where PiI is the i coordinate of control point I. The derivatives of the basic functions in 

the physical domain coordinates can be given by: 

, , 1

, , , , , ,

, ,

x x

I x I y I I I I

x y

R R R R R R    

 

 


 
           

 
J  (4.22) 

Where ,IR   and ,IR   are defined in Eq. (4.3). 
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Figure 4.10. Parametric and physical space with quadratic B-splines. 
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The spatial second derivatives of the basic functions can be expressed as follows: 
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Where 
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J  (4.24) 

Equation (4.23) is used to calculate the stiffness matrix later in chapter 7. In addition, 

isogeometric basis functions were shown to deliver significant advantages for the 

analysis, independently from the integration with CAD. One of their most notable 

features is that they can achieve any desired degree of smoothness through the choice of 

the interpolation order, as opposed to traditional FEM, where C
0
 inter-element continuity 

is automatically achieved, whilst lower continuity can be built in easily through knot 

insertion [199-201]. If p is the order of the discretization, C
p-1

 inter-element continuity is 

achieved when no repeated entries in the knot vectors are present. Hence, IGA easily 

fulfils the C
1
-continuity requirements for plate elements stemming from the HSDT, 

which is of interest in this study. 

 

 

4.6 Numerical integration 

Integration over the entire physical domain is split into element integrals. These integrals 

are pulled back to the parametric element via the geometry mapping as shown in Eq. 

(4.18). And then, integrals over the parametric element are pulled back to the parent 

domain, as shown in Figure 4.10.  

 

Using standard Gauss-Legendre quadrature, a (p+1)×(q+1) Gaussian quadrature rule is 

adopted for this work with p, q are the orders of NURBS in the   and   directions, 

respectively. In IGA, Gaussian quadrature is not optimal.  

 

The transformation from the parent domain into the parametric domain is given by: 

   

   

1
1 12

1
1 12

i i i i

j j j j
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 

 

     

    
 

 (4.25) 

Therefore, the Jacobian of this transformation is defined as: 



Chapter 4: Isogeometric analysis   55 
 

 

 

   1 1

1

4
i i j jJ     

    
   (4.26) 

 

 

4.6 Comparison between IGA and FEM 

Table 4.2: Differences between IGA and FEM [1] 

Isogeometric analysis Finite element analysis 

- Exact geometry 

- Control points 

- Control variables 

- Basic functions do not interpolate control 

points and variables NURBS basic 

- High, easily controlled continuity 

- hpk-refinement space 

- Approximate geometry 

- Nodal points 

- Nodal variables 

- Basic functions interpolate nodal 

points and variables polynomial basic 

- C
0
-continuity, always fixed 

- hp-refinement space 

 

Some similarities and differences between IGA and classical FEM are illustrated in this 

thesis. Firstly, some basic differences are summarized in Table 4.2. Next, some 

similarities are also examined in Table 4.3. 

 

Table 4.3: Similarities between IGA and FEM [1] 

IGA and FEM 

Isoparametric concept 

Galerkin’s method 

Compactly supported basic 

Partition of unity 

Patch tests are satisfied 

 

 

4.7 Concluding remarks 

Some features of IGA are presented in this chapter. One of their most notable features is 

that they can achieve any desired degree of smoothness through the choice of the 

interpolation order. In IGA, the geometry is obtained from CAD model and there are 

two types of meshes, namely the control mesh and the physical mesh. And the physical 
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mesh represents the exact geometry. Hence, geometry models are directly used for FEA 

without mesh generators. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Piezoelectric composite plates 
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5.1 Overview 

In this chapter, we deal with the first objective of the thesis, which was shown in section 

2.3 of chapter 2. The governing equations for piezoelectric composite plates are 

presented and the weak form is established. In the composite plates, the mechanical 

displacement field is approximated according to the third-order shear deformation theory 

(TSDT), which was presented in section 3.3.2.3, using isogeometric elements based on 

Non-Uniform Rational B-Spline (NURBS) basis functions. The electric potential is 

assumed to vary linearly through the thickness for each piezoelectric sub-layer. A 

displacement and velocity feedback control algorithm is used for the active control of 

the static deflection and dynamic response of the plates through a closed-loop control 

with bonded or embedded distributed piezoelectric sensors and actuators. The accuracy 

and reliability of the proposed method is verified by comparing its numerical predictions 

with those of other available numerical approaches. 

 

  

Figure 5.1. Model of a piezoelectric composite plate. 
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5.2 Governing equations for smart piezoelectric plates 

Now we consider a composite plate integrated with piezoelectric layer as shown in 

Figure 5.1. The layers are assumed to be bonded perfectly, orthotropic [81] with small 

strains [82] and isothermal conditions. Moreover, the piezoelectric actuators and sensors 

are made of homogenous dielectric materials [83] and high electric fields are excluded 

[84,85]. According to these assumptions, next section introduces formulations for the 

piezoelectric composite plates. 

 

5.2.1 Weak form for piezoelectric composite plates 

Based on Hamilton’s variational principle [90], the weak form equations for 

piezoelectric composite plates can be defined as follows: 

0L  (5.1) 

Where L is the energy functional written in the following form: 

 

 1 1 1
2 2 2

dT T T T

s s p pL         u u σ D E uf q u F Q    (5.2) 

 

where u  and u  are displacements and velocities of the mechanical field, respectively, 

fs and Fp  are the external forces including the surface forces and point forces, 

respectively,   is the electric potential; Q p  and qs  
are point charges and surface 

charges, respectively, and σ ,  , D, E are defined in Eq. (3.1), in which E is gradient of 

the electric potential field   [89] defined as follows: 

gradE    (5.3) 

 

In Eq. (5.2), there are two unknown variable fields, namely the electric potential field   

and the mechanical field u. To solve numerically for these unknowns, it is necessary to 

choose a suitable approximation for the mechanical field and the electric potential field. 

In this research, isogeometric finite elements are used to approximate these two 

unknown variable fields. 

 

5.2.1.1 Approximation of the mechanical displacement field 

According to the TSDT proposed by Reddy [191], the displacements of an arbitrary 

point in the plate can be expressed by: 
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Where c = 4h
2
/3 

 

The in-plane strains are expressed by the following equation: 

3
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and the transverse shear strains are given by: 

2
T
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From Hooke’s law and Eqs. (5.5) and (5.7), the stress for the mechanical field is a 

function of z-coordinate and is defined as follows: 
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(5.9) 

Where τ  and σ p  
are the shear stress and the in-plane stress, respectively, and D  and 

Ds  are expressed as follows: 
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Where 
ijQ  is defined in Eq. (3.8). 

Using the NURBS basis functions defined in Eq. (4.17), the displacement field u of the 

plate is approximated as: 

   , ,
m n

h

I I

I

N   


u d  (5.12) 

Where  0 0 0

T

I I I I xI xIu v w  d is the vector of degrees of freedom associated with 

the control point I.  

 

Substituting Eq. (5.12) into Eqs. (5.5) to (5.8), the in-plane and shear strains can be 

rewritten as: 
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5.2.1.2 Approximation of the electrical potential field 

In the present study, the electric potential field is approximated as [82]: 

( )i i iz   N   (5.16) 

Where 
i

N  is the vector of the shape functions for the electric potential, defined through 

Eq. (4.2) with p = 1, and 
1 ( 1,2,...., )i i i

subi n     , in which nsub is the number 

of piezoelectric layer. 

 

In each piezoelectric element, electric potentials are assumed to be equal at the same 

height along the thickness [86]. Hence, the electric field E in Eq. (5.3) can be rewritten 

as: 
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i i i

    E N B   (5.17) 

 

Note that approximated equations of electrical potential field in this section will also be 

used in chapters 6 and 8. 

 

5.2.2 Governing equations 

The final governing equations can be obtained by substituting Eqs. (5.9), (5.16) and 

(5.17) into Eq. (3.1); i.e.: 
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Substituting the second line of Eq. (5.18) into the first line, we obtain the shortened form 

as: 

       1 1

uu u u u   

    Md K K K K d F K K Q  (5.22) 
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5.3 Active control 

We now consider a composite plate integrated piezoelectric with n (n ≥ 2) layers, as 

depicted in Figure 5.2. The actuator layer, i.e. the top layer, is labeled with the subscript 

a, and the sensor layer, i.e. the bottom layer, is denoted with the subscript s. In this 

section, the displacement feedback control [86] and the velocity feedback control [87-

92] are considered. The displacement feedback control is based on the actuator, which 

generates the charge, and the velocity feedback control gives the velocity component. In 

addition, the consistent method [91,70], which can predict the dynamic responses of 

smart piezoelectric composite plates is adopted. Relation between the output sensor 

voltage vector s  and the input actuator voltage vector a  can be expressed as [91]:  

    
a d v ss

G G     (5.23) 

Where Gd and Gv are the constant gains of the displacement feedback control and the 

velocity feedback control, respectively. 

 

 

Figure 5.2. A schematic diagram of a laminated plate with integrated piezoelectric 

sensors and actuators.  

 

Using the second row of Eq. (5.18), and considering zero charge Q, the sensor output 

can be derived as: 

    
1

s u ss s 

       K K d  (5.24) 

 

Generally speaking, when a plate subjected to external forces is deformed, electric 

charges in the piezoelectric sensor layer are generated, and through the closed loop 

control the charges are amplified and converted into signal. Then, the distributed 

actuators receive this converted signal and an input voltage is generated in the 
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piezoelectric actuators. Finally, a resultant force arises through the converse 

piezoelectric effect and actively controls the smart piezoelectric composite plate. 

 

The magnitude of the voltage is defined by substituting Eqs. (5.23) and (5.24) into the 

second line of Eq. (5.18): 

    
1 1

a uu a d u s v u ssa a s s a s s
G G     

                            Q K d K K K d K K K d  (5.25) 

 

Substituting Eqs. (5.23) and (5.24) into Eq. (5.22), one writes: 

      
*  Md Cd K d F  (5.26) 

Where 

      
* 1

uu d u us s s
G   

            K K K K K  (5.27) 

and C is the active damping matrix computed by 

      
1

v u ua s s
G   

           C K K K  (5.28) 

 

If the structural damping effect is considered in Eq. (5.26), it can be rewritten as: 

        *

R   Md C C d K d F  (5.29) 

Where CR is the Rayleigh damping matrix, which is assumed to be a linear combination 

of M and Kuu: 

      R uu  C M K  (5.30) 

In which   and   are the Rayleigh damping coefficients. 

 

For static analyses, Eq. (5.26) reduces to: 

      
* K d F  (5.31) 

 

 

 

5.4 Numerical results 

5.4.1 Free vibration analysis 

In this section, free vibration analysis of the smart composite plate is examined. A 

square five-ply piezoelectric composite plate [pie/0/90/0/pie], in which pie denotes a 

piezoelectric layer, is shown in Figure 5.3. The boundary condition of the plate is simply 

supported and in each composite ply, the thickness to length ratio is h/a = 1/50. The 
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laminate layer includes three layers and made of Graphite/Epoxy (Gp/Ep) with 

configuration [0/90/0]. Two PZT-4 piezoelectric layers are bonded to the top and bottom 

surfaces of the plate, and thickness of each piezoelectric layer is 0.1h. In this research, 

we consider two types of electric boundary condition including: (1) an open-circuit 

condition, where the electric potential remains free and (2) a closed-circuit condition, in 

which the electric potential is kept zero (grounded). The analytical approach [202] of 

this problem was only available for the first natural frequency and several FE 

formulations [94,116] were then adopted to obtain other natural frequencies. 

 

 

Figure 5.3.  Model of a 5-ply piezoelectric composite plate.  

 

Table 5.1. Dimensionless first natural frequency of the simply supported square 

piezoelectric composite plate [pie/0/90/0/pie] 

 

Method 

 

Meshing 

Degrees of 

freedom 

(DOFs) 

 2

1
/ 10000f a t    

Closed circuit Open circuit 

IGA (p = 2)  8×8 500 235.900 236.100 

IGA (p = 3) 8×8 605 235.100 235.300 

IGA (p = 4) 8×8 720 235.100 235.300 

FE layerwise [116] 12×12 2208 234.533 256.765 

Q9 – HSDT [94] - - 230.461 250.597 

Q9 – FSDT [94] - - 206.304 245.349 

Ref [202]   245.941 245.942 
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Table 5.2. Convergence of the first five natural frequencies of the square piezoelectric 

composite plate [pie/0/90/0/pie] for the open circuit condition case 

Meshing Method 
Mode sequence number 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

 
5 × 5 IGA (p = 2)  240.100 600.600 750.400 1027.500 1537.800 

 IGA (p = 3)  235.700 535.200 685.500 940.700 1137.591 

  FE layerwise [116]  276.185  -  -  -  - 

9 × 9 IGA (p = 2)  235.800 537.300 686.900 942.700 1095.302 

 IGA (p = 3)  235.300 529.000 680.400 933.300 1038.290 

  FE layerwise [116]  261.703  -  - -  -  

13 × 13 IGA (p = 2)  235.300 530.500 681.500 934.900 1047.801 

 IGA (p = 3)  235.200 528.600 680.100 932.800 1035.791 

  FE layerwise [116]  259.655  - -  -  -  

 Q9 - HSDT [94] 250.497 583.185 695.697 980.361 1145.410 

 Q9 – FSDT [94] 245.349 558.988 694.196 962.017 1093.010 

 Ref [202] 245.942  -  -  -  - 

 

Table 5.3. Convergence of the first five natural frequencies of the square piezoelectric 

composite plate [pie/0/90/0/pie] for the close circuit condition case 

Meshing Method 
Mode sequence number 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

 
5 × 5 IGA (p = 2)  239.500 599.000 749.200 1025.500 1535.101 

 IGA (p = 3)  235.100 533.700 684.300 938.800 1134.900 

  FE layerwise [116]  249.860  -  -  -  - 

9 × 9 IGA (p = 2)  235.600 536.800 686.600 942.000 1094.402 

 IGA (p = 3)  235.100 528.500 680.000 932.600 1037.300 

  FE layerwise [116] 236.833   - -   -  - 

13 × 13 IGA (p = 2)  235.200 530.200 681.3 934.500 1047.302 

 IGA (p = 3)  235.100 528.400 679.9 932.400 1035.301 

   FE layerwise [116] 234.533          

  Q9 - HSDT [94] 230.461 520.384 662.915 908.459 1022.091 

 Q9 - FSDT [94] 206.304 519.444 663.336 907.636 1020.101 

  Ref [202] 245.941  -  -  - -  
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(a) (b) 

 
 

(c) (d) 

  

(e) (f) 

Figure 5.4. Shape of the first six eigenmodes of a simply supported piezoelectric 

composite plate: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5 and (f) 

mode 6. 
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Table 5.1 shows the dimensionless first natural frequency of the piezoelectric composite 

plate with meshing of 8×8 quadratic (p = 2), cubic (p = 3) and quartic (p = 4) elements. 

The dimensionless first natural frequency is defined as  2

1
/ 10000f a t  , where 1

   

is the first natural frequency. In this study, the isogeometric elements use the HSDT with 

only 5 DOFs per control point, while Ref [116] used the layerwise theory and Ref [94] 

used HSDT with 11 DOFs per node. We can see that the proposed results are slightly 

lower than the analytical solution [202], however the errors are less than 5%. We 

observe that the isogeometric results are stable in both a closed-circuit condition and an 

open-circuit condition similar to the analytical solution [202], while those of Refs. 

[116,94] are very different for a closed-circuit condition and an open-circuit condition. 

This is because in FEM, the geometry and unknown variables need to be approximated 

using Lagrange basis functions. Therefore, there are two approximation errors. 

Especially, in piezoelectric composites and electro-mechanical coupling, one more 

unknown variable, i.e. the electric potential, is added and approximated. Hence, one 

more approximation error is added. The better performance of NURBS-based IGA over 

the conventional FE method in the solution of the eigenvalue problem is well known and 

has recently been further addressed in a comprehensive study [203]. Moreover, the 

results obtained using cubic and quartic elements coincide (for the chosen mesh), which 

suggests the use of cubic element. Furthermore, the convergence of the first five natural 

frequencies with meshing of 5×5, 9×9 and 13×13 for a closed-circuit condition and an 

open-circuit condition is listed in Table 5.2 and Table 5.3, respectively. Again, it can be 

seen that the isogeometric results do not vary between closed- and open-circuit 

conditions, unlike those of the FE layerwise approach in Ref. [116]. 

 

Table 5.4. Deflections of the piezoelectric bimorph beam at various locations (×10
-6 

m)  

Method 
Position 

1 2 3 4 5 

IGA (p = 2) 0.0138 0.0550 0.1236 0.2201 0.3443 

IGA (p = 3) 0.0140 0.0552 0.1242 0.2207 0.3448 

EFG [96] 0.0142 0.0555 0.1153 0.2180 0.3416 

3D FE [89] 0.0136 0.0546 0.1232 0.2193 0.3410 

RPIM [91] 0.0136 0.0547 0.1234 0.2196 0.3435 

Analytical solution [93] 0.0140 0.0552 0.1224 0.2208 0.3451 
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Finally, Figure 5.4 plots the shape of the first six eigenmodes. It is seen that these shapes 

reflect correctly the physical modes of the piezoelectric composite plates as given by the 

analytical solution.  

 

5.4.2 Static analysis  

5.4.2.1 A smart piezoelectric bimorph beam 

A piezoelectric bimorph beam with boundary condition, thickness and geometry is 

shown in Figure 5.5. The beam consists of two opposite polarities layers. The cantilever 

beam is modeled by five identical plate elements. Dimensions of the beam are

20 5 1 mm  . The beam is made of PVDF with material properties given in Table 3.1.  

 

 

Figure 5.5. Model of the smart piezoelectric bimorph beam. 

 

 

Table 5.4 lists the deflections of the beam with meshing of 101×6 subjected to a unit 

voltage (1V). It can be seen that the present results match well the analytical solution 

[93] and agree very well with results in Refs. [96,89,91], which are however less 

accurate. When the order of the basis functions is increased, the accuracy improves and 

results coincide (for the shown number of digits) with those of the analytical solution 

[93]. Table 5.5 reports tip deflections of the smart piezoelectric bimorph beam under 

several input voltages. Again, results obtained with the isogeometric formulation match 

well the analytical solution [93]. Finally, Figure 5.6 shows the deflection of the beam 

subjected to different input voltages. We observe that when the input voltage increases, 

the deflection of beam also increases, as expected. 
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Figure 5.6. Deformed shape and centerline deflection of the smart piezoelectric 

bimorph beam subjected to different input voltages.  

 

Table 5.5. Tip deflections of the beam (×10
-4

m) 

Method 
Input voltage 

50 V 100 V 150 V 200 V 

IGA (p = 2) 0.1721 0.3443 0.5164 0.6885 

IGA (p = 3) 0.1724 0.3448 0.5173 0.6897 

Analytical solution [93] 0.1725 0.3451 0.5175 0.6900 

 

 

5.4.2.2 A smart piezoelectric composite plate 

Now, we consider a plate ( 200mm 200mm ) under a uniform load q = 100 N/m
2 

as 

shown in Figure 5.7. The plate has six layers: two outer piezo layers represented by pie 

and four composite layers. The plate is simply supported. The configurations of the plate 

are [pie/- / ]s and [pie/- / ]as, where subscripts “s” and “as” indicate symmetric and 

anti-symmetric laminates, respectively, and   is the fiber orientation. Each layer 

thickness of the non-piezoelectric composite plate is 0.25 mm and the thickness of the 

piezoelectric layer is 0.1 mm. The composite layers are made of T300/976 

graphite/epoxy and the piezoelectric layers are PZTG1195N. And the material properties 

are listed in Table 3.1. 
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Figure 5.7. Square piezoelectric composite plate model. 

 

 

Table 5.6. Central deflection of the smart piezoelectric composite plate under a uniform 

load and input voltages (×10
-4 

m)  

Input 

voltage 
Scheme 

Method 

CS-DSG3 

[98] 

RPIM 

[91] 

IGA 

(p = 2) 

IGA 

(p = 3) 

0V 

[pie /-45/45]s -0.6326 -0.6038 -0.6343 -0.6375 

[pie/-45/45]as -0.6323 -0.6217 -0.6217 -0.6239 

[pie /-30/30]as -0.6688 -0.6542 -0.6593 -0.6617 

[pie /-15/15]as -0.7442 -0.7222 -0.7422 -0.7452 

    

5V 

[pie /-45/45]s -0.2863 -0.2717 -0.2799 -0.2842 

[pie /-45/45]as -0.2801 -0.2717 -0.2773 -0.2817 

[pie /-30/30]as -0.2957 -0.2862 -0.2923 -0.2968 

[pie /-15/15]as -0.3259 -0.3134 -0.3233 -0.3283 

    

10V 

[pie /-45/45]s 0.0721 0.0757 0.0745 0.0691 

[pie /-45/45]as 0.0601 0.0604 0.0672 0.0606 

[pie /-30/30]as 0.0774 0.0819 0.0749 0.0682 

[pie /-15/15]as 0.0924 0.0954 0.0957 0.0886 
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(a) [pie/-15/15]as (b) [pie/-30/30]as 

  

(c) [pie/-45/45]as (d) [pie/-45/45]s 

Figure 5.8. Centerline deflection of the plate under different input voltage and a 

uniform load. 

 

Table 5.6 reports the central point deflection of the simply supported piezoelectric 

composite plate subjected to the uniform load and different input voltages. Again, the 

results by the IGA agree well with those of Refs. [91,98]. Besides, the centerline 

deflection of the piezoelectric composite plate is shown in Figure 5.8. Four 

configurations of the composite plate with different fiber orientation angles are 

investigated including [pie/-15/15]as, [pie/-30/30]as, [pie/-45/45]as and [pie/-45/45]s. As 

expected, the deflection decreases for increasing input voltage. The reason is that the 

input voltage induces an upward deflection of the plate due to the piezoelectric effect. 

This upward contribution becomes prevalent for applying an input voltage of 10V to pie 

layers with opposite sign. Similar results were obtained in Refs. [91,98]. 
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5.4.3 Dynamic control of the plate 

We now consider the plate [pie/-45/45]s subjected to a uniform load q = 100 N/m
2 

with 

the geometry, boundary conditions and material properties as specified in section 

5.4.2.2. The plate consists of two outer piezoelectric layers and four composite layers. 

The upper and lower surfaces of plate are bonded to a piezoelectric actuator layer and a 

piezoelectric sensor layer, respectively.  

 

 

Figure 5.9. Effect of the displacement feedback control on the deflection of a plate 

under a uniform load. 

 

Firstly, the static control of the plate is studied. The effect of the displacement feedback 

control on the deflection of the plate is plotted in Figure 5.9. It can be seen that when the 

control gain Gd becomes higher, the deflection of the plate becomes smaller, which is 

similar to what reported in [91]. The reason is that when the plate subjected to external 

forces is deformed, the electric charges in the piezoelectric sensor layer are generated, 

and through the closed loop control the charges are amplified and converted into signal. 

Then, the distributed actuators receive this converted signal and an input voltage is 

generated in the piezoelectric actuators. A resultant force arises from the converse 

piezoelectric effect and actively controls the smart piezoelectric composite plate. 
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Figure 5.10. Effect of the velocity feedback control on the dynamic deflection 

response of the piezoelectric composite plate. 

 

Next, the plate is subjected to a harmonic load sin( )F t  applied at its central point, 

where   is chose to be the first natural angular frequency ( 1 ) of the plate. The 

eigenvalue problem is first solved with a mesh of 13 13 cubic B-spline elements and a 

value of 1 167.34   Hz is determined. Figure 5.10 shows the transient responses of the 

central point of the piezoelectric composite plate with and without the velocity feedback 

gain. It can be seen that when the gain Gv is equal to zero (without control), the response 

decreases in time due to the structural damping. By increasing the velocity feedback 

gain, the transient response is further attenuated and the amplitude of the central point 

deflection decreases faster, as expected. This is due to an increase of the active damping 

as per Eq. (5.28). 

 

 

5.5 Concluding remarks 

This chapter presents a simple and effective approach based on the combination of IGA 

and HSDT for the static, free vibration analyses and dynamic control of composite plates 
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integrated with piezoelectric sensors and actuators. In the piezoelectric composite plates, 

the mechanical displacement field is approximated according to the HSDT using 

isogeometric elements based on NURBS and featuring at least C
1
-continuity, whereas 

the electric potential is assumed linearly through the thickness of each piezoelectric 

layer. For active control of the piezoelectric composite plates, a close-loop system is 

used. Several numerical examples are performed to analyze the static deflection, natural 

vibration mode and dynamic control of piezoelectric laminated plates with different 

stacking sequence schemes. Through the presented formulation and numerical results, 

the following main conclusions can be drawn: 

i) Due to the use of the HSDT, the proposed method does not require shear 

correction factors. The use of NURBS elements of at least second order naturally 

fulfils the C
1
-continuity requirement of the HSDT, thereby significantly reducing 

the number of degrees of freedom per control point over conventional finite 

element approaches featuring C
0
 inter-element continuity. 

ii) In free vibration analyses, the predictions of the proposed approach agree well 

with analytical solutions, and are more stable (passing from closed- to open-circuit 

conditions) than those of several other approaches available in the literature. 

iii) In static analyses, the predictions of the proposed approach are more accurate than 

those of several other approaches with a lower number of degrees of freedoms.  

iv) In dynamic control analyses, the proposed approach produces predictions, which 

appear reasonable and consistent with the observed physical behavior. 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Smart piezoelectric functionally graded 

material plates  
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6.1 Overview 

We deal with the second objective of the thesis in this chapter. Isogeometric approach 

based on a generalized shear deformation theory for geometrically nonlinear transient of 

smart piezoelectric functionally graded material plates is introduced. The nonlinear 

transient formulation for plates is formed in the total Lagrange approach based on the 

von Kármán strains, which includes thermo-piezoelectric effects, and solved by 

Newmark time integration. The electric potential through the thickness of each 

piezoelectric layer is assumed linearly. The material properties varying through the 

thickness of FGM are determined by the rule of mixture and the Mori–Tanaka scheme as 

explained in section 3.2.2. Many numerical examples are investigated to show the 

effectiveness of the present method. 

 

 

6.2 The piezoelectric FGM model 

A sandwich plate, shown in Figure 6.1a, is made of one core that is graded from ceramic 

to metal and two outside skins that are piezoelectric layers. In the core layer, the volume 

fraction of ceramic and metal phase across thickness is described as follows [181]: 

1
( ) , ( ) 1 ( )

2

n

c
c m

c

z
V z V z V z

h

 
    
 

 (6.1) 

Where c and m refer to the ceramic and metal, respectively; 2 3[ , ]cz z z and hc = z3 – z2 

is thickness of core, which is illustrated in Figure 6.1b. The material constituents of 

piezoelectric FGM can be obtained as: 

1 2

2 3

3 4

( ) 1, [ , ] for botton skin

1
( ) , [ , ] for core

2

( ) 1, [ , ] for top skin

( ) 1 ( )

c c

n

c
c c

c

c c

m c

V z h z z

z
V z h z z

h

V z h z z

V z V z

 

 
   
 

 

 

 (6.2) 

 

The material properties including Poisson’s ratio (ν), Young’s modulus (E) and density 

(ρ) based on the rule of mixture are defined in section 3.2.1.2. 
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(a) (b) 

Figure 6.1. (a) Configuration of a piezoelectric FGM plate; (b) The sandwich plate 

with piezoelectric skins and FGM core. 

 

Temperature distributions of the bottom surface and top surface of piezoelectric FGM 

model are assumed to be constant. The temperature variation along the thickness is 

obtained by solving the one-dimensional steady state heat equation that is given by: 

d d
( ) 0

d d

T
k z

z z

 
  

 
 (6.3) 

With boundary condition 

top

bot

at / 2

at / 2

T T z h

T T z h

 

  
 (6.4) 

Where Ttop and Tbot are the top and bottom surface temperatures, respectively; and k(z) 

represents the thermal conductivity coefficient at z position and is also expressed similar 

to Eq. (6.1). 

 

Material properties of some FGMs are given in Table 6.1. 

Table 6.1. Material properties of somae FGMs  

 E (Pa) ν α (K
-1

) k (K) ρ (kg/m
3
) 

Al 70×10
9
 0.3 23×10

-6
 204 2707 

Ti6Al4V 320.24×10
9
 0.26 7.2×10

-6
 10.4 3750 

ZrO2-1 151×10
9
 0.3 10×10

-6
 2.09 3000 

Al2O3 105.7×10
9
 0.2981 6.9×10

-6
 18.1 4429 
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Figure 6.2 illustrates the temperature distributions through the thickness of a FGP made 

from Aluminum-Ziconia (Al/ZrO2-1) for the various value of n, where the top and 

bottom surfaces are held at 300
0
C and 20

0
C, respectively. It is evident that temperature 

in the FGPs constituted by both ceramic and metal components. 

  

 

Figure 6.2. Temperature distributions through the thickness of Al/ZrO2-1 FGM plate 

corresponding to different values of volume fraction exponents n. 

 

 

6.3 The generalized higher order shear deformation theory 

In the piezoelectric FGM plates, there are also two-field variables including a 

mechanical displacement field and an electrical field that needs to be approximated. In 

this chapter, the electrical field is assumed to be independent on each layer and the 

mechanical displacements are approximated by the generalized higher order shear 

deformation theory and expressed as follows [192-194]: 

0

0

( , , ) ( , ) ( ) ( , )

( , , ) ( , ) ( ) ( , )

( , , ) ( , )

x

y

w
u x y z u x y z f z x y

x

w
v x y z v x y z f z x y

y

w x y z w x y






  




  





 (6.5) 
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Where u0, v0, βx, βy and w are displacement variables. The function f(z) is a continuous 

function through the plate thickness and chosen as 
3 5

2 4

7
8

( ) 2 2z z

h h
f z    , which was 

recently published in Ref. [195]. 

 

For a bending plate, the Green’s strain vector can be represented by: 
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 (6.6) 

Using the Von Kármán assumptions [204,205], which imply that derivatives of u and v 

are small and noting that w is independent of z, Eq. (6.6) can be rewritten as: 

1 2( )

( )

m

s

z f z

f z

  



ε ε κ κ

γ κ
 (6.7) 

Where f’(z) is the derivative of the f(z) function and the strain vectors are given by: 
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 (6.8) 

In which the nonlinear component can be expressed as: 
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,
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A θ  (6.9) 

 

From Hooke’s law and the strains in Eq. (6.7), the stress for the mechanical field, which 

is similar to Eq. (5.9), is computed as:  
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(6.10) 

Where c is the elasticity matrix and defined as: 
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In which 

 

 

/2
2 2

/2

/2 2

/2

, , , , , 1, , , ( ), ( ), ( ) d ; , 1,2,6

( ) d ; , 4,5

h

ij ij ij ij ij ij ij
h

h
S

ij ij
h

A B C N F H z z f z zf z f z Q z i j

D f z G z i j





 

 




 (6.12) 

and 
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6.4 Approximation of mechanical field 

The displacement field u of the plate using NURBS basic function is approximated as: 

   
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, ,
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h

I I
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Where 0 0

T

I I I xI yI Iu v w    d is the vector of degrees of freedom associated with the 

control point I, and RI is the shape function as defined in Eq. (4.2). 

 

Substituting Eq. (6.14) into Eqs. (6.7)-(6.9), the strains can be rewritten as: 
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Where        1 2
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and NL

IB  is calculated by: 
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6.5 The governing equations for piezoelectric FGM plates 

The governing equations for piezoelectric FGM plates can be written as:  
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in which 0q  is a uniform load;  0 0 0 0 ;IRR  m is defined by: 
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6.6 Nonlinear transient solution 

6.6.1 Time integration 

We now consider the discretized system of equations for nonlinear transient problem, 

which is similar to that of Eq. (6.18). For the dynamic analysis, the Newmark method 

[206] is used in this thesis. At initial time, t = 0, displacements, velocities and 

accelerations are set to zero, and we aim to find a new state, i.e. the first and second 

derivative of displacements with respect to time, at ( 1)m t  , using the following 

formulations:  

1 12

1 1 1
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2
m m m m m
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 
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   
q q q q q  (6.22) 

1 1(1 )m m m mt t      q q q q

 

(6.23) 

where  = 0.25  and  = 0.5 as in Ref. [207]. 

 

Substituting Eq. (6.22) into Eq. (6.18), the following equation is obtained: 

1 1 1m m m  K q f

 

(6.24) 

Where 1mK and 1mf  are defined as: 
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(6.25) 

Note that, the effective stiffness 1
ˆ

mK  in Eq. (6.24) is dependent on the displacements 

1.mq  Thus, the Newton-Raphson method [208] is used in this work and presented in the 

next section. 

 

6.6.2 Iterative method 

In nonlinear analysis, the residual force, φ , is introduced to represent errors of the 

approximation and tends to zeros during each iteration. From Eq. (6.24), the residual 

force at time step ( 1)m t  , 1mφ , can be defined as follows: 

1 1 1 1m m m m    φ K q f

 

(6.26) 
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To make unbalance residual force if 1

i

mq  is an approximate trial solution at the i
th

 

iteration, an improved solution, 1
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i

m



q , can be introduced and considered as: 
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(6.27) 

Where q  is the incremental displacement and calculated as [209]: 

1 /i

m T  q φ K

 

(6.28) 

In which TK  is called tangent stiffness matrix and computed using to the Newton-

Raphson method [208] 

( ) /i

T   K φ q q

 

(6.29) 

 

At each time step, Eq. (6.28) is solved until the error in the displacements between two 

consecutive iterations is satisfied and becomes less than the tolerance error given by: 
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i i

m m

i

m
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q q
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(6.30) 

 

 

6.7 Numerical results 

In this section, many numerical examples are investigated and compared to other 

available numerical methods to show the accuracy and effectiveness of the present 

method. Table 3.1 lists the properties of the piezoelectric FGM plates. The boundary 

conditions used, are: simply supported (S), clamped (C) or free (F) edges. For instance, 

the symbol, CFSF, represents clamped, free, simply supported and free edges.  

 

6.7.1 Free vibration and static analyses of piezoelectric FGM plates 

6.7.1.1 Free vibration analysis 

A square Al2O3/Ti-6Al-4V plate (400 mm × 400 mm) is considered as shown in Figure 

6.3. The thickness of the plate, h, is 5 mm and thickness of each piezoelectric layer, 

h_pie, is 0.1 mm. The reference solution using FEM with Hermite cubic shape functions 

was reported by He et al. [210]. 

 

Firstly, free vibration of a SSSS plate with various volume fraction exponents n = 0, 0.5, 

5, 100, 1000 is investigated. Table 6.2 gives frequencies of the first seven modes of the 
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plate with meshing 11×11 and three types of elements: quadratic (p = 2), cubic (p = 3), 

quartic (p = 4). It can be seen that the results of IGA match well with those of the 

reference solution [210]. In addition, frequencies of the plate with p = 3 and those with p 

= 4 are similar. Thus, we choose p = 3 for simulating the results of next examples. 

 

 

 

(a) 

 

(c) 

 

(b) 
 

Figure 6.3. Square plate models and their discretization: (a) simply supported plate, 

(b) clamped plate and (c) meshing of 13×13 cubic elements. 

 

 

Next, the effect of volume fraction exponents to frequencies of the CCCC plate is shown 

in Table 6.3. It is again confirmed that the results of the present method match well with 

those of Ref. [210]. 
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Further, a comparison of frequencies for CCCC and SSSS plates with various volume 

fracture exponents is plotted in Figure 6.4. We can see that the frequencies of the CCCC 

plate are larger than those of the SSSS plate, as expected. Besides, Figure 6.5 shows the 

shape of the first eight eigen-modes of the CCCC plate. 

 

Table 6.2. Natural frequencies of the first seven modes of the piezoelectric FGM (SSSS) 

plate 

n Method 
Mode 

1 2 3 4 5 6 7 

1000 IGA (p = 2) 255.2 642.2 642.3 1025.0 1304.6 1304.6 1679.6 

 

IGA (p = 3) 254.7 636.3 636.5 1017.6 1271.9 1271.9 1651.5 

 

IGA (p = 4) 254.7 636.3 636.5 1017.6 1271.5 1271.5 1651.2 

 

FEM [210] 261.7 651.5 651.5 1024.3 1302.6 1302.6 1649.7 

         100 IGA (p = 2) 252.2 634.8 635.0 1013.3 1289.6 1289.6 1660.3 

 

IGA (p = 3) 251.8 629.0 629.2 1005.9 1257.3 1257.3 1632.5 

 

IGA (p = 4) 251.8 629 629.2 1005.9 1256.8 1256.9 1632.2 

 

FEM [210] 259.4 645.6 645.6 1014.9 1290.8 1290.8 1634.7 

         5 IGA (p = 2) 223.8 558.1 561.4 896.3 1138.5 1141.5 1461.5 

 

IGA (p = 3) 223.4 552.9 552.9 889.6 1106.5 1109.0 1436.3 

 

IGA (p = 4) 223.4 552.9 555.8 889.5 1106.1 1108.7 1436.0 

 

FEM [210] 230.5 573.8 573.8 902.0 1148.1 1148.1 1453.3 

         0.5 IGA (p = 2) 181.2 448.5 453.0 723.6 914.9 917.8 1175.0 

 

IGA (p = 3) 180.8 444.2 448.4 717.8 889.5 893.3 1154.0 

 

IGA (p = 4) 180.8 444.2 448.4 717.8 889.2 893.0 1153.8 

 

FEM [210] 185.5 462.5 462.5 731.1 925.5 925.5 1180.9 

         0 IGA (p = 2) 142.4 358.2 258.3 571.8 727.8 727.8 936..8 

 

IGA (p = 3) 142.1 354.9 355.0 567.4 709.0 709.0 920.4 

 

IGA (p = 4) 142.1 354.8 354.9 567.3 708.8 708.8 920.2 

 

FEM [210] 144.3 359 359.0 564.1 717.8 717.8 908.3 
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n = 0 n = 0.5 

  

n = 5 n = 15 

  

n = 100 n = 1000 

Figure 6.4. The first eight natural frequencies of the simply supported (SSSS) and 

clamped (CCCC) piezoelectric FGM plate with different volume fraction exponents. 
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Table 6.3. Natural frequencies of the first seven modes of the piezoelectric FGM 

(CCCC) plate 

n Method 
Mode 

1 2 3 4 5 6 7 

1000 IGA 464.0 945.4 945.8 1393.1 1693.8 1701.9 2121.1 

 

FEM [210] 477.1 970.6 970.6 1411.9 1740.2 1750.1 2140.4 

         100 IGA 458.7 934.5 934.9 1377.1 1674.3 1682.3 2096.7 

 

FEM [210] 472.8 961.8 961.8 1399.0 1724.3 1734.2 2120.9 

         15 IGA 434.5 885 886.0 1304.8 1585.9 1593.5 1985.7 

 

FEM [210] 450.3 917.2 917.2 1334.1 1644.5 1653.9 2022.6 

         5 IGA 404.1 821.3 825.0 1214.1 1473.5 1480.6 1843.1 

 

FEM [210] 420.3 855.3 855.3 1244.0 1534.2 1543 1886.5 

         1 IGA 351.8 712.3 719.9 1057.6 1280.2 1286.8 1598.0 

 

FEM [210] 363.0 739.3 739.3 1075.3 1327.9 1335.5 1632.0 

         0.5 IGA 325.2 659.5 664.5 977.0 1183.9 1189.8 1479.0 

 

FEM [210] 337.5 687.2 687.2 999.4 1234 1241 1516.6 

         0.2 IGA 294.0 597.8 599.6 882.5 1071.4 1076.6 1340.3 

 

FEM [210] 306.4 623.5 623.5 904.4 1119.2 1125.8 1370.8 

         0 IGA 258.7 526.9 527.1 776.1 943.3 947.9 1180.9 

 

FEM [210] 262.5 533.8 533.8 774.2 957.3 963.0 1172.7 
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Mode 1 Mode 2 

  

Mode 3 Mode 4 

  

Mode 5 Mode 6 

  

Mode 7 Mode 8 

Figure 6.5. Shape of the first eight eigenmodes of the piezoelectric FGM plates with 

n=1. 
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Figure 6.6.  Centerline deflection of the CFFF plate under mechanical load and 

electro-mechanical load.  

 

 

Figure 6.7.  Centerline deflection of the CFFF plate under thermo-electro-mechanical 

load.  
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6.7.1.2 Static analysis 

Now, we consider a CFFF piezoelectric FGM plate subjected to a uniform load q = 100 

N/m
2 

with the material properties and geometry as specified in section 6.7.1.1. The 

upper and lower surfaces of plate are made of piezoelectric actuator layers. Firstly, 

centerline deflections of the CFFF plate with p =3 and meshing 11×11 under uniform 

load and actuator voltages V = 0 and 40 are shown in Figure 6.6. It can be observed that 

with the increase of volume fraction exponent n, the deflection of the plate decreases. 

Besides, the deflection decreases for increasing input voltage. Similar results were 

obtained in Ref. [210]. Thus, we can see that in order to control the deflection of the 

piezoelectric FGM plate, we can apply equal-amplitude voltages at the bottom and top 

piezoelectric actuator layers. Next, Figure 6.7 shows the centerline deflection of the 

plate under thermal-electro-mechanical load. It can be seen that the deflection changes 

when the plate is subjected to mechanical, thermal, electrical, thermo-mechanical, 

electro-mechanical and thermo-electro-mechanical load. This is because of effect of 

piezoelectric converse, thermal converse or thermo-piezoelectric converse. 

 

 

Figure 6.8.  Displacement of the plate under step uniform load.  
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6.7.2 Nonlinear transient analysis of piezoelectric FGM plates 

 6.7.2.1 An orthotropic plate 

This example aims to verify the accuracy of the present method for geometrically 

nonlinear transient analysis.  

 

A SSSS square plate under a uniform loading of q0 = 1 MPa is considered. Material 

properties and the geometry are given as: E1 = 525 GPa, E2 = 21 GPa, G12 = G23 = G13 = 

10.5 GPa, ν = 0.25, ρ = 800 kg/m
3
, length L = 250 mm, thickness h = 5 mm. The 

normalized central deflection, /w w h , of linear and nonlinear analyses is plotted in 

Figure 6.8. We can see that deflection responses of present method match well with 

those of finite strip method (FSM) [211]. In addition, magnitudes of nonlinear response 

are smaller than those of linear response and wavelength of the nonlinear response also 

changes compared to that of linear case. 

 

 

Figure 6.9.  Effect of volume fraction exponent n on deflection of piezoelectric FGM 

(Al2O3/Ti6Al4V) plates under mechanical load.  

 

6.7.2.2 Geometrically nonlinear static analysis 

In this example, geometrically nonlinear analysis of the piezoelectric FGM plates under 

mechanical load, thermo-mechanical load and thermo-electro-mechanical load is 
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investigated. The square piezoelectric FGM plate has length L = 1, thickness of FGM 

layer hFGM = L/20 and thickness of each piezoelectric layer hpiezo = hFGM/10. The 

boundary condition of the plate is SSSS. 

 

 

 

Figure 6.10.  Effect of volume fraction exponent n on deflection of piezoelectric FGM 

(Al/ZrO2-2) plates subjected to mechanical load.  

 

 

For the plate subjected to mechanical load (parameter load 
510oq q  ), Figure 6.9 and 

Figure 6.10 show the effect of volume fraction exponent n on deflection of piezoelectric 

FGM (Al2O3/Ti6Al4V) and (Al/ZrO2-2) plates under mechanical load, respectively. It 

is again confirmed that magnitude of deflection of nonlinear analysis is smaller than that 

of linear analysis. With the piezoelectric FGM (Al2O3/Ti6Al4V) plate, when volume 

fraction exponent increases, the deflection of the plate, shown in Figure 6.9, decreases. 

In contrast with the piezoelectric FGM (Al/ZrO2-2) plate, the deflection of the plate 

plotted in Figure 6.10 increases when n increases. 
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Figure 6.11.  Effect of temperature on deflection of piezoelectric FGM (Al/ZrO2-2) 

plates with n = 5 under thermo-mechanical load.  

 

 

 

Figure 6.12.  Effect of input voltage on deflection of piezoelectric FGM (Al/ZrO2-2) 

plates with n = 100 under thermo-electro-mechanical load.  
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Next, the effect of temperature on nonlinear deflection of the plate under thermo-

mechanical load with n = 5 is shown in Figure 6.11. It is observed that the behavior of 

deflection subjected to thermo-mechanical load is different from the pure mechanical 

loading. When the mechanical load is zero, the deflection of the plate is not zero. This is 

because of the thermal expansion phenomenon. Also, the deflection decreases 

correspondingly to the increase of the temperature. 

 

 

Figure 6.13.  Effect of volume fraction exponent n on deflection of piezoelectric FGM 

(Al/ZrO2-2).  

 

We further study the deflection of the plate under thermo-electro-mechanical load. The 

temperature at the ceramic surface is held at Tc = 300
0
C and temperature at the metal 

surface is set to Tm = 20
0
C. Figure 6.12 plots the effect of parameter input voltage 

 3

3310 /V p    on deflection of the plate with n = 100. We can see that under the 

piezoelectric effect, the deflection of the plate is converse, when parameter input voltage 

becomes larger. Further, Figure 6.13 shows the effect of volume fraction exponent n on 

deflection of piezoelectric FGM (Al/ZrO2-2) plates under thermo-electro-mechanical 

load. Again, we can see that the deflection decreases when n increases. 
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6.7.2.3 Geometrically nonlinear transient analysis 

Now, a piezoelectric FGM plate subjected to sinusoidally distribute transverse loads is 

investigated. The CCCC square plate has length L = 0.2, thickness of FGM layer hFGM = 

L/10 and thickness of each piezoelectric layer hpiezo = hFGM/10. The FGM layer is made 

of Al/ ZrO2-2.  

 

The sinusoidally distributed transverse load is expressed as follows: 

   0 sin sin ( )
yx

L L
q q F t



 

(6.31) 

Where 

 

 

 

Figure 6.14.  Types of load: step, triangular, sinusoidal and explosive blast.  
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(6.32) 

in which q0 = 4×10
8
 Pa, γ = 330 s

-1
 and F(t) is plotted in Figure 6.14. 

 

 

 

Figure 6.15.  Effect of volume fraction exponent n on nonlinear transient responses of 

piezoelectric FGM plates subjected to step load.  

 

 

Figure 6.15 to Figure 6.18 show the effect of volume fraction exponent on nonlinear 

transient response of the plate subjected to the step, triangular, sine and explosive blast 

load, respectively. It can be observed that when n increases, the deflection increases. 

Next, linear and nonlinear response of the plate under the step, triangular, sine and 

explosive blast load is studied and illustrated in Figure 6.19 to Figure 6.22, respectively. 

Again, it can be seen that nonlinear response has lower central deflection and higher 

frequency than that of the linear response. Lastly, Figure 6.23 to Figure 6.26 plot 

nonlinear response of the Al/ ZrO2-2 and Al2O3/Ti6Al4V plate subjected to the step, 

triangular, sine and explosive blast load, respectively. We can see that the deflection of 

the Al/ ZrO2-2 plate is larger than that of the Al2O3/Ti6Al4V plate. 

0 0.5 1 1.5 2

x 10
-3

-0.5

0

0.5

1

D
e
fl
e
c
ti
o
n

Time (s)

 

 

n = 0 n = 1 n = 5



Chapter 6: Smart piezoelectric functionally graded material plates 99 

 

 

 

 

Figure 6.16.  Effect of volume fraction exponent n on nonlinear transient responses of 

piezoelectric FGM plates subjected to triangular load.  

 

 

Figure 6.17.  Effect of volume fraction exponent n on nonlinear transient responses of 

piezoelectric FGM plates subjected to sine load.  

 

 

Figure 6.18.  Effect of volume fraction exponent n on nonlinear transient responses of 

piezoelectric FGM plates subjected to explosive blast load.  
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Figure 6.19. Linear and nonlinear transient responses of piezoelectric FGM plates 

subjected to step load with n = 0.5.  

 

 

Figure 6.20. Linear and nonlinear transient responses of piezoelectric FGM plates 

subjected to triangular load with n = 0.5.  

 

 

Figure 6.21.  Linear and nonlinear transient responses of piezoelectric FGM plates 

subjected to sine load with n = 0.5.  
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Figure 6.22.  Linear and nonlinear transient responses of piezoelectric FGM plates 

subjected to explosive blast load with n = 0.5.  

 

 

Figure 6.23. Nonlinear transient responses of piezoelectric FGM plates under step 

load with n = 10.  

 

 

Figure 6.24. Nonlinear transient responses of piezoelectric FGM plates under 

triangular load with n = 10.  
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Figure 6.25. Nonlinear transient responses of piezoelectric FGM plates under 

sinusoidal load with n = 10.  

 

 

Figure 6.26. Nonlinear transient responses of piezoelectric FGM plates under 

explosive blast load with n = 10.  

 

 

6.8 Concluding remarks 

This chapter presents geometrically nonlinear transient of piezoelectric functionally 

graded plates (FGPs) using IGA based on the generalized shear deformation model. The 

electric potential of each piezoelectric layer is assumed linearly through the thickness of 

each piezoelectric layer. The material properties of FGM are assumed to vary through 

the thickness by the rule of mixture and the Mori–Tanaka scheme. The nonlinear 

formulation for plates is formed in the total Lagrange approach based on the von 

Kármán strains, which includes thermo-piezoelectric effects, and solved by Newmark 

time integration associated with the iteration methods.  
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Through the present formulation and numerical results, we can draw the following 

conclusions: 

 

o In the analysis process, the thermal, electrical and mechanical loadings are 

considered and a two-step procedure is proposed including a step of calculating 

the temperature field through the thickness of the plate and a step of analyzing 

the geometrically nonlinear behavior of the plate under thermo-electro-

mechanical loadings. 

 

o Comparison between the nonlinear and linear behaviors reveals that nonlinear 

response has lower central deflection and higher frequency than that of the linear 

response. Wavelength of the nonlinear response also changes compared to that of 

linear case. Because of thermal expansion phenomenon, the deflection of the 

plates is upward and decreases when temperature increases.  

 

o Effects of various parameters on the geometrically nonlinear responses of the 

piezoelectric FGP plate are also investigated. With the piezoelectric FGM 

(Al2O3/Ti6Al4V) plate, when volume fraction exponent, n, increases, the 

deflection of the plate decreases. However, in the piezoelectric FGM (Al/ZrO2-

2) plate, the deflection of the plate increases when n increases. Moreover, 

nonlinear response has lower central deflection and higher frequency than that of 

the linear response under nonlinear transient analysis. 

 

o Numerous numerical examples have been carried out to show the accuracy and 

reliability of the present method for the geometrically nonlinear responses of the 

piezoelectric FGM plate by comparing its numerical solutions with those of other 

available numerical results. 
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reinforced composite plates 
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7.1 Overview 

In this chapter, we deal with the third objective of the thesis. A simple and effective 

formulation based on IGA and HSDT to investigate the static and dynamic vibration 

behaviors of functionally graded carbon nanotube-reinforced composite plates is 

presented. The material properties of functionally graded carbon nanotube-reinforced 

composites (FG-CNTRCs) are assumed to be graded through the thickness direction 

according to several linear distributions of the volume fraction of carbon nanotubes, 

which are introduced in section 3.2.2 of chapter 3. The governing equation is 

approximated according to the HSDT model using isogeometric elements based on Non-

Uniform Rational B-Spline (NURBS) basis functions. This achieves naturally any 

desired degree of continuity through the choice of the interpolation order, so that the 

method easily fulfils the C
1
-continuity requirement of the HSDT model. The accuracy 

and reliability of the proposed method is verified by comparing its numerical predictions 

with those of other available numerical approaches. 

 

 

7.2 Governing equations for functionally graded CNTRC plates 

7.2.1 Displacement field 

According to the third-order shear deformation theory as presented in Eq. (5.4), the 

displacements of the CNTRC plate can be rewritten as:  

   

     

 

3

0 ,

3

0 ,

0

, ,

, , , / 2 / 2

, ,

x x x

y y y

u x y z u z cz w

v x y z v z cz w h z h

w x y z w

 

 

   

      

  

(7.1) 

And the variables  0 0 0

T
u vu , w0 and 

T

x y
   β   are the membrane displacements, the 

deflection of the mid-plane and the rotations of the mid-plane around the y-axis and the 

x–axis, respectively. 

 

The in-plane strains are expressed by the following equation: 

3

0 1 2[   ]T

xx yy xy z z  κ      

 

(7.2) 

Where  
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(7.3) 

and the transverse shear strains are given by: 

0, 0, 2 2

0, 0,

3
xz x x x x

s s

yz y y y y

w w
c z z

w w
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  

      
        

      
γ ε κ

 

(7.4) 

 

The constitutive equations of the anisotropic plate are derived as: 
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(7.5) 

Where the material constants are given by: 

11 12 22 22
11 12 22

12 21 12 21 12 21

66 12 55 13 44 23

, ,
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, ,

E E E
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Q G Q G Q G



     
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  

    

(7.6) 

And T  is the temperature change with respect to a reference state. 

 

7.2.2 Weak form equations 

A weak form of the static analysis for the plates subjected to uniform loading q0 can be 

expressed as: 

0d d dT T
b s wq  

  
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(7.7) 

Where material constant matrices, bD  and sD , are given as:  
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In which 
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For free vibration analysis of the plates, the weak form can be derived as: 

d d dT T T
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(7.10) 

Where m is defined by: 

   

0 1 2 4

0 0 2 3 5

2

0 4 5 7

/2
2 3 4 7

1 2 3 4 5 7
/2

0 0

0 0 where

0 0

, , , , , 1, , , , , d
h

h

I I cI

I I cI

cI cI c I

I I I I I I z z z z z z


   
   

 
   
      

 

I

m I I

I
 

(7.11) 

And  
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(7.12) 

 

7.2.3 NURBS-based novel CNTRC plate formulation 

Using the NURBS basis functions presented in Eq. (4.17), the displacement field u of 

the plate is approximated as: 

   , ,
m n

h

I I

I
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u d

 

(7.13) 

Where  0 0 0

T

I I I I xI xIu v w  d is the vector of degrees of freedom associated with 

the control point I.  

 

Substituting Eq. (7.13) into Eqs. (7.2) and (7.4), the in-plane and shear strains can be 

rewritten as: 
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Substituting Eq. (7.14) into Eqs. (7.7) and (7.10), the discretized system of equations for 

CNTRC plates for static and free vibration analyses can be expressed as: 

Kd = F

 

(7.17) 

 2 K M d 0

 

(7.18) 

Where 
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and the load vector is computed as: 

0 dq


 F N

 
(7.20) 

  is the natural frequency and M  is the global mass matrix computed by: 

dT


 M N mN

 
(7.21) 
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(7.22) 

 

It is worthwhile emphasizing that the stiffness matrix formulation (7.19) contains the 

second derivative of the shape functions, as seen in 
2b

IB . As a result, the C
1
 continuity 

requirement is taken into account the computations. Hence, the NURBS-based 

isogeometric approach may be a good choice in our study. 

 

For transient analysis, the discretized system of equations for CNTRC plates can be 

written as: 

( )t Md Kd F

 

(7.23) 
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To solve this time dependent problems, the Newmark method is used. When the current 

state at 0tt   is known as  0 0 0, ,x x x , we aim to find a new state  1 1 1, ,x x x   at 

1 0t t t   , using the following formulations: 
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1

1 1
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(7.24) 

 1 1 0 0

1 1

t



 


  


x x x x  (7.25) 

 1 1 0 0

1 1

t



 


  


x x x x  (7.26) 

 

 

7.3 Numerical results 

Many numerical examples are performed in this section to demonstrate the stability and 

accuracy of the present method compared to reference solutions. Poly {(m-

phenylenevinylene) -co- [(2.5-dioctoxy-p-phenylene) vinylene]} referred as PmPV [212] 

is considered as matrix. Material properties of PmPV are assumed to be: 

22.1 GPa, 0.34, 1.16 g/cmm m mE     at room temperature (T = 300K). And the 

armchair (10, 10) SWCNTs are selected as the reinforcements. Based on the results of 

Ref. [213], material properties of SWCNTs are given by 
11

5.6466(TPa)
CNT

E  , 

6 6

22 12 11 22
7.08(TPa), 1.9445(TPa), (10 /K), (10 /K).3.4584 5.1682

CNT CNT CNT CNT
E G  

 
     The 

CNT efficiency parameter ( *

CNTV ) shown in Eqs. (3.19)-(3.21) is reported in Ref. [212] 

as: 1 20.149, 0.934    for the case * 0.11CNTV  ; 1 20.15, 0.941    for the case 

* 0.14CNTV  , and 1 20.14, 1.381    for the case * 0.17CNTV  .  Besides, we assume 

3 2   and 23 13 12G G G  . 

 

7.3.1 Static and free vibration analyses of CNTRC plates 

We now consider a square CNTRC plate with two boundary conditions: simply 

supported (SSSS) and clamped (CCCC) with thickness-to-length ratios h/a = 0.05, 0.02, 

0.1 and subjected to a uniform load q = 0.1 MPa. A non-dimensional deflection 

/w w h  is used. 
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Table 7.1. Non-dimensional central deflection of the simply supported CNTRC plate 

under a uniform load 

*

CNTV  h/a Types 

Method 

IGA 
FEM [150] 

p = 2 p = 3 p = 4 

0.11 0.02 UD 1.1630 1.1615 1.1643 1.1550 

  

FG-V 1.6772 1.6748 1.6794 1.6530 

  

FG-O 2.2001 2.1967 2.2033 2.1570 

  

FG-X 0.7877 0.7868 0.7884 0.7900 

 

0.05 UD 3.546e-02 3.542e-02 3.551e-02 3.628e-02 

  

FG-V 4.847e-02 4.841e-02 4.854e-02 4.879e-02 

  

FG-O 6.170e-02 6.161e-02 6.179e-02 6.155e-02 

  

FG-X 2.591e-02 2.588e-02 2.594e-02 2.701e-02 

       0.14 0.02 UD 0.9168 0.9157 0.9178 0.9175 

  

FG-V 1.3350 1.3330 1.3370 1.3260 

  

FG-O 1.7591 1.7564 1.7614 1.7380 

  

FG-X 0.6195 0.6189 0.6200 0.6271 

 

0.05 UD 2.890e-02 2.893e-02 2.900e-02 3.001e-02 

  

FG-V 3.960e-02 3.960e-02 3.962e-02 4.025e-02 

  

FG-O 5.030e-02 5.030e-02 5.040e-02 5.070e-02 

  

FG-X 2.140e-02 2.140e-02 2.140e-02 2.256e-02 

       0.17 0.02 UD 0.7579 0.7569 0.7588 0.7515 

  

FG-V 1.0992 1.0976 1.1010 1.0820 

  

FG-O 1.4405 1.4383 1.4426 1.4160 

  

FG-X 0.5121 0.5115 0.5126 0.5132 

 

0.05 UD 2.299e-02 2.296e-02 2.301e-02 2.348e-02 

  

FG-V 3.162e-02 3.157e-02 3.166e-02 3.174e-02 

  

FG-O 4.025e-02 4.018e-02 4.031e-02 4.020e-02 

    FG-X 1.673e-02 1.672e-02 1.675e-02 1.737e-02 
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Table 7.2. Non-dimensional central deflection of the clamped CNTRC plate under a 

uniform load 

*

CNTV  h/a Types 

Method 

IGA 
FEM [150] 

p = 2 p = 3 p = 4 

0.11 0.02 UD 0.2539 0.2543 0.2554 0.2618 

  

FG-V 0.3599 0.3592 0.3607 0.3649 

  

FG-O 0.4687 0.4686 0.4706 0.4719 

  

FG-X 0.1806 0.1813 0.1825 0.1894 

 

0.05 UD 1.187e-02 1.197e-02 1.205e-02 1.339e-02 

  

FG-V 1.452e-02 1.463e-02 1.472e-02 1.593e-02 

  

FG-O 1.726e-02 1.736e-02 1.747e-02 1.860e-02 

  

FG-X 9.971e-03 1.008e-02 1.016e-02 1.150e-02 

       0.14 0.02 UD 0.2045 0.2051 0.2062 0.2131 

  

FG-V 0.2881 0.2884 0.2896 0.2955 

  

FG-O 0.3750 0.3751 0.3767 0.3805 

  

FG-X 0.1471 0.1479 0.1489 0.1560 

 

0.05 UD 1.038e-02 1.048e-02 1.056e-02 1.188e-02 

  

FG-V 1.250e-02 1.260e-02 1.270e-02 1.390e-02 

  

FG-O 1.470e-02 1.480e-02 1.490e-02 1.604e-02 

  

FG-X 8.900e-03 9.000e-03 9.100e-03 1.036e-02 

       0.17 0.02 UD 0.1649 0.1652 0.1659 0.1698 

  

FG-V 0.2352 0.2353 0.2363 0.2384 

  

FG-O 0.3071 0.3071 0.3084 0.3085 

  

FG-X 0.1168 0.1173 0.1180 0.1223 

 

0.05 UD 8.608e-03 8.675e-03 8.729e-03 8.561e-03 

  

FG-V 9.379e-03 9.440e-03 9.510e-03 1.021e-02 

  

FG-O 1.118e-02 1.123e-02 1.131e-02 1.198e-02 

    FG-X 7.366e-03 7.437e-03 7.485e-03 7.290e-03 
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Figure 7.1. Non-dimensional central deflection of CNTRC plates with h/a = 0.1. 

 

Firstly, we analyze the SSSS plate with four types of CNTRC: UD, FG-V, FG-O and 

FG-X. Table 7.1 shows the effect of the volume fraction of CNT, *

CNTV , to the non-

dimensional central deflection of the SSSS CNTRC plate with meshing of quadratic (p = 

2), cubic (p = 3) and quartic (p = 4) elements. We can see that results of the present 

method for h/a = 0.02 and 0.05 match very well with those of FEM by Liew [150]. It is 

clear that *

CNTV  has a large influence on the central deflection of the plate. Furthermore, 

it can be observed that the central deflections of UD and FG-X plate are smaller than 

those of FG-O and FG-V plate. This shows that the stiffness of CNTRC plate depends 

on the distributions of CNTs along the thickness direction of the plate. Such 

distributions (types of UD CNTRC and FG-X CNTRC) have more CNTs at the top and 

the bottom surface and as a result the plate becomes stiffer in bending. 
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Figure 7.2. Non-dimensional axial stress of SSSS CNTRC plate with h/a = 0.1 and 
* 0.11CNTV  . 

 

 

Figure 7.3. Non-dimensional axial stress of CCCC CNTRC plate with h/a = 0.1 and 
* 0.11CNTV  . 
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Next, we analyze CCCC square plates. Table 7.2 gives the non-dimensional central 

deflection of the plate with h/a = 0.02 and 0.05. It is seen that the SSSS plates behave 

similarly to the CCCC plates. 

 

  

  

Figure 7.4. The six lowest non-dimensional natural frequencies of CNTRC plates with 

h/a = 0.1 and 
* 0.11CNTV  . 

 

In addition, Figure 7.1 plots the effect of boundary conditions on the non-dimensional 

central deflection of the plate with h/a = 0.1. It is observed that the deflections of CCCC 

plate are smaller than those of SSSS plate, as expected. Figure 7.2 shows the effect of 

the distribution of CNTs along the thickness direction of the plate on the non-

dimensional axial stress (
2 2/xx xxh qa  ) of SSSS CNTRC plate with h/a = 0.1 and 

* 0.11CNTV  . We can see that distributions of the axial stress in UD, FG-O, and FG-X are 

symmetry and those in FG-V are anti-symmetric. This is because the reinforcements of 
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UD, FG-O and FG-X are symmetric with respect to the mid-surface. For the clamped 

CNTRC plate, the non-dimensional axial stress is also presented in Figure 7.3, which 

shows similar behavior to the SSSS plate studied above. 

 

Table 7.3. The first six non-dimensional frequency parameters of the SSSS CNTRC 

plate with 
* 0.11CNTV   

h/a Type Method Mode 

1 2 3 4 5 6 

0.1 UD IGA 14.02 17.94 19.42 19.42 27.52 34.76 

  FEM [150] 13.53 17.70 19.42 19.42 27.15 32.56 

 FG-V IGA 12.75 17.12 19.42 19.42 27.15 33.22 

  FEM [150] 12.45 17.06 19.49 19.49 27.34 31.41 

 FG-O IGA 11.77 16.46 19.42 19.42 26.82 31.85 

  FEM [150] 11.55 16.26 19.49 19.49 26.51 30/28 

 FG-X IGA 15.25 18.82 19.42 19.42 28.00 35.98 

  FEM [150] 14.61 18.64 19.49 19.49 28.51 33.58 

         

0.05 UD IGA 17.50 21.34 31.73 38.85 38.85 48.71 

  FEM [150] 17.35 21.51 32.39 32.39 38.89 50.19 

 FG-V IGA 15.12 19.60 30.79 38.85 38.85 48.29 

  FEM [150] 15.11 19.90 31.56 38.99 38.99 47.73 

 FG-O IGA 13.50 18.37 30.03 38.85 38.85 44.75 

  FEM [150] 13.52 18.48 30.16 38.99 38.99 43.94 

 FG-X IGA 20.24 23.57 33.19 38.85 38.85 49.58 

  FEM [150] 19.93 23.77 34.38 38.99 38.99 52.26 

         

0.02 UD IGA 19.09 22.96 34.01 53.66 70.80 70.80 

  FEM [150] 19.22 23.40 34.66 54.04 70.81 72.90 

 FG-V IGA 16.09 20.68 32.70 53.04 59.87 62.11 

  FEM [150] 16.25 21.14 33.35 53.43 60.18 62.78 

 FG-O IGA 14.15 19.15 31.71 52.42 52.61 55.12 

  FEM [150] 14.30 19.37 31.61 51.37 53.03 55.82 

 FG-X IGA 22.88 26.18 36.23 55.06 83.60 83.70 

  FEM [150] 22.98 26.78 37.59 56.94 83.15 84.89 
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7.3.2 Free vibration of CNTRC plates 

7.3.2.1 A square plate 

 

Table 7.4. The first six non-dimensional frequency parameters of the SSSS CNTRC 

plate with 
* 0.14CNTV   

h/a Type Method Mode 

1 2 3 4 5 6 

0.1 UD IGA 14.92 18.73 19.77 19.77 28.28 33.06 

  FEM [150] 14.30 18.36 19.79 19.79 28.23 33.64 

 FG-V IGA 13.65 17.88 19.77 19.77 27.87 34.66 

  FEM [150] 13.25 17.73 19.87 19.87 28.02 32.67 

 FG-O IGA 12.66 17.20 19.77 19.77 27.53 33.41 

  FEM [150] 12.33 16.84 19.87 19.87 27.00 31.63 

 FG-X IGA 16.10 19.59 19.77 19.77 28.75 37.12 

  FEM [150] 15.36 19.38 19.87 19.87 29.39 34.63 

         

0.05 UD IGA 19.19 22.83 33.02 39.54 39.54 50.02 

  FEM [150] 18.92 22.86 33.57 39.58 39.58 51.42 

 FG-V IGA 16.60 20.86 31.88 39.54 39.54 49.46 

  FEM [150] 16.51 21.08 32.61 39.75 39.75 51.07 

 FG-O IGA 14.83 19.48 31.01 39.54 39.54 38.48 

  FEM [150] 14.78 19.46 30.90 39.75 39.75 47.34 

 FG-X IGA 22.08 25.24 34.63 39.54 39.54 50.99 

  FEM [150] 21.64 25.35 35.93 39.75 39.75 54.06 

         

0.02 UD IGA 21.29 24.93 35.67 55.28 78.46 80.08 

  FEM [150] 21.35 25.29 36.26 55.60 78.11 80.01 

 FG-V IGA 17.87 22.22 34.01 54.41 66.43 68.50 

  FEM [150] 17.99 22.64 34.66 54.83 66.55 68.94 

 FG-O IGA 15.70 20.45 32.84 53.66 58.49 60.80 

  FEM [150] 15.80 20.56 32.50 52.18 58.74 61.27 

 FG-X IGA 25.52 28.61 38.31 56.98 85.79 92.22 

  FEM [150] 25.55 29.19 39.83 59.33 87.81 91.29 

 



118  Chapter 7: Functionally graded carbon nanotube-reinforced composite plates 

 

 

 

 

Table 7.5. The first six non-dimensional frequency parameters of the SSSS CNTRC 

plate with 
* 0.17CNTV   

h/a Type Method Mode 

1 2 3 4 5 6 

0.1 UD IGA 17.40 22.35 24.30 24.30 34.39 43.35 

  FEM [150] 16.81 22.06 24.33 24.33 34.44 40.63 

 FG-V IGA 15.78 21.32 24.30 24.30 33.94 41.34 

  FEM [150] 15.46 21.30 24.51 24.51 34.27 39.26 

 FG-O IGA 14.56 20.51 24.30 24.30 33.56 39.59 

  FEM [150] 14.28 20.09 24.51 24.51 32.76 37.76 

 FG-X IGA 18.96 23.45 24.30 24.30 34.95 44.90 

  FEM [150] 18.27 23.54 24.51 24.51 36.24 42.15 

         

0.05 UD IGA 21.62 26.48 39.56 48.61 48.61 60.86 

  FEM [150] 21.45 26.70 40.40 48.67 48.67 62.72 

 FG-V IGA 18.63 24.32 38.42 48.61 48.61 60.40 

  FEM [150] 18.63 24.73 39.47 49.02 49.02 59.19 

 FG-O IGA 16.62 22.81 37.50 48.61 48.61 55.25 

  FEM [150] 16.62 22.73 37.13 49.02 49.02 54.36 

 FG-X IGA 25.04 29.26 41.36 48.61 48.61 61.90 

  FEM [150] 24.76 29.81 43.61 49.02 49.02 66.61 

         

0.02 UD IGA 23.52 28.44 42.36 67.01 87.32 89.56 

  FEM [150] 23.69 28.98 43..16 67.47 87.38 90.03 

 FG-V IGA 19.77 25.62 40.78 66.31 73.56 76.44 

  FEM [150] 19.98 26.20 41.64 66.94 74.03 77.34 

 FG-O IGA 17.39 23.75 39.57 64.62 65.57 57.83 

  FEM [150] 17.54 23.78 38.85 63.17 65.15 68.57 

 FG-X IGA 28.22 32.41 45.09 68.72 103.3 104.6 

  FEM [150] 28.41 33.43 47.54 72.57 102.9 105.3 
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Table 7.6. The first six non-dimensional frequency parameters of the CCCC CNTRC 

plate with 
* 0.11CNTV   

h/a Type Method Mode 

1 2 3 4 5 6 

0.1 UD IGA 19.47 24.65 35.23 37.29 38.03 41.07 

  FEM [150] 17.62 23.04 33.59 33.72 37.01 37.31 

 FG-V IGA 18.81 24.22 35.02 37.04 37.33 40.26 

  FEM [150] 17.21 22.81 33.07 33.55 36.52 37.43 

 FG-O IGA 18.19 23.81 34.82 36.17 37.33 39.55 

  FEM [150] 16.70 22.25 32.37 32.85 35.80 37.44 

 FG-X IGA 19.99 25.02 35.42 37.33 38.83 41.73 

  FEM [150] 18.08 23.06 34.33 34.46 37.44 37.78 

         

0.05 UD IGA 30.39 34.82 45.82 64.01 65.38 67.82 

  FEM [150] 28.40 33.11 44.55 59.19 61.85 63.04 

 FG-V IGA 27.70 32.65 44.37 61.23 63.17 63.99 

  FEM [150] 26.30 31.49 43.58 56.24 59.22 62.60 

 FG-O IGA 25.59 30.93 43.20 57.72 60.74 62.45 

  FEM [150] 24.48 29.79 41.89 53.55 56.61 58.74 

 FG-X IGA 32.90 36.96 47.37 65.02 68.98 71.20 

  FEM [150] 30.42 35.03 46.48 61.98 64.56 65.17 

         

0.02 UD IGA 40.33 44.43 55.89 78.24 101.5 103.7 

  FEM [150] 39.73 43.87 54.76 74.48 98.29 100.5 

 FG-V IGA 34.41 39.27 52.07 75.79 87.87 90.64 

  FEM [150] 34.16 39.04 51.20 72.20 86.29 89.05 

 FG-O IGA 30.45 35.84 49.53 74.08 78.41 81.42 

  FEM [150] 30.30 35.44 47,87 58.84 77.46 80.46 

 FG-X IGA 47.23 50.74 60.96 81.88 116.1 117.4 

  FEM [150] 45.16 49.93 60.93 60.22 108.6 110.9 
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Table 7.7. The first six non-dimensional frequency parameters of the CCCC CNTRC 

plate with 
* 0.14CNTV   

h/a Type Method Mode 

1 2 3 4 5 6 

0.1 UD IGA 20.11 25.31 25.99 37.95 39.15 42.18 

  FEM [150] 18.12 23.57 34.25 34.65 37.92 37.92 

 FG-V IGA 19.51 24.91 35.79 37.98 38.24 41.43 

  FEM [150] 17.79 23.41 34.10 34.27 37.53 38.15 

 FG-O IGA 18.96 24.54 35.62 37.45 37.99 40.79 

  FEM [150] 17.31 22.78 33..41 33.41 36.78 38.16 

 FG-X IGA 20.56 25.62 36.14 37.99 39.87 42.76 

  FEM [150] 18.59 24.24 35.22 35.41 38.16 38.78 

         

0.05 UD IGA 32.26 36.58 47.47 65.71 68.49 70.86 

  FEM [150] 29.91 34.51 45.89 61.62 64.19 64.49 

 FG-V IGA 29.62 34.40 45.97 64.56 64.81 67.21 

  FEM [150] 27.92 32.97 44.98 58.95 61.81 64.13 

 FG-O IGA 27.51 32.66 44.77 61.23 64.07 64.11 

  FEM [150] 25.12 31.18 43.03 56.40 59.27 61.79 

 FG-X IGA 34.63 38.62 48.96 66.68 71.81 73.97 

  FEM [150] 31.85 36.48 48.08 64.33 66.91 67.14 

         

0.02 UD IGA 44.51 48.37 59.38 81.41 110.8 112.8 

  FEM [150] 43.58 47.47 57.96 77.39 106.3 106.4 

 FG-V IGA 38.01 42.58 54.96 78.45 96.50 98.98 

  FEM [150] 37.56 42.17 53.96 74.78 94.02 96.57 

 FG-O IGA 33.67 38.76 52.05 76.46 86.36 89.15 

  FEM [150] 33.36 38.14 50.05 70.64 84.79 87.51 

 FG-X IGA 51.89 55..19 65.00 85.52 121.0 125.8 

  FEM [150] 50.40 54.02 64.11 83.39 112.8 119.1 
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Table 7.8. The first six non-dimensional frequency parameters of the CCCC CNTRC 

plate with 
* 0.17CNTV   

h/a Type Method Mode 

1 2 3 4 5 6 

0.1 UD IGA 24.29 30.80 44.05 46.66 47.48 51.30 

  FEM [150] 22.01 28.90 42.01 42..13 46.25 46.69 

 FG-V IGA 23.43 30.24 43.79 46.20 46.71 50.25 

  FEM [150] 21.54 28.61 41.43 42.11 45.79 47.05 

 FG-O IGA 22.65 29.73 43.57 45.10 46.72 49.37 

  FEM [150] 20.83 27.65 40.05 40.78 44.69 47.07 

 FG-X IGA 24.97 31.26 44.26 46.72 48.51 52.13 

  FEM [150] 22.74 29.87 43.29 43.58 47.07 47.60 

         

0.05 UD IGA 37.74 43.33 57.16 79.97 81.39 84.46 

  FEM [150] 35.31 41.25 55.62 73.76 77.10 78.80 

 FG-V IGA 34.30 40.56 55.34 76.01 78.95 79.52 

  FEM [150] 32.68 39.27 54.56 70.14 73.92 78.52 

 FG-O IGA 31.64 38.41 53.89 71.56 75.41 78.10 

  FEM [150] 30.32 36.84 51.75 66.65 70.40 75.01 

 FG-X IGA 40.93 46.04 59.11 81.21 85.98 88.76 

  FEM [150] 38.06 44.10 58.92 77.64 81.04 82.93 

         

0.02 UD IGA 49.77 54.98 69.44 97.56 125.5 128.3 

  FEM [150] 49.07 54.32 68.06 92.86 121.6 124.5 

 FG-V IGA 42.32 48.51 64.72 94.57 108.3 111.7 

  FEM [150] 42.07 48.30 63.75 90.29 106.5 110.0 

 FG-O IGA 37.44 44.30 61.62 92.49 96.47 100.3 

  FEM [150] 37.24 43.57 58.89 84.71 95.46 99.14 

 FG-X IGA 58.40 62.84 75.74 102.0 143.9 146.2 

  FEM [150] 57.24 62.23 75.74 100.8 137.9 138.4 
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In this example, the CNTRC model is similar to section 7.3.1. A non-dimensional 

frequency parameter 
2( / ) /m ma h E    is used. Firstly, Figure 7.4 shows the first 

six non-dimensional natural frequencies of CNTRC plates with h/a = 0.1 and 

* 0.11CNTV   for four types of CNTRC: UD, FG-V, FG-O and FG-X. It can be seen that 

the results of the present method match well with those of FEM [150] for the SSSS and 

CCCC plate. In addition, Table 7.3 to Table 7.5 present the six lowest non-dimensional 

frequencies of the SSSS and Table 7.6 to Table 7.8 present the those of CCCC plate with 

h/a = 0.02, 0.05, 0.1. Again, it can be seen that the results of IGA agree with those of 

FEM [150]. 

 

 

7.3.2.2 A circular plate 

We consider a CNTRC circular plate (radius R, thickness h) as shown in Figure 7.5a. A 

non-dimensional frequency parameter 
2( / ) /m mR h E    is used. The effect of 

ratios 2R/h on the first three non-dimensional frequencies of plate with a mesh of 18×18 

quadratic (Figure 7.5b) is shown in Figure 7.6. It can be observed that when ratio 2R/h 

increases, the frequency increases. Figure 7.7 shows the shape of the first six 

eigenmodes of a simply supported CNTRC circle plate with 2R/h = 10. Again, we can 

see that these shapes reflect correctly the expected physical modes of CNTRC plates. 

 

 

  

(a) (b) 

Figure 7.5. (a) Circular FG-CNTRC composite plate model; (b) meshing of 18×18 

cubic elements. 
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(a) UD CNTRC (b) FG-V CNTRC 

  

(b) FG-O CNTRC (b) FG-X CNTRC 

Figure 7.6. Effects of ratios 2R/h on non-dimensional frequency of CNTRC circle plate 

with
* 0.11CNTV  . 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 7.7. Shape of the first six eigenmodes of a simply supported CNTRC circle 

plate with 2R/h = 10: (a) mode 1, (b) mode 2, (c) mode 3, (d) mode 4, (e) mode 5and 

(f) mode 6. 
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7.3.3 Time-dependent dynamic analysis of CNTRC plates 

We now examine the time-dependent dynamic responses of the simply supported 

CNTRC plate subjected to a transverse load, which is sinusoidally distributed in spatial 

domain and varies with time as: 

 

0 sin sin ( )
x y

q q F t
a a

    
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(7.27) 
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(7.28) 

 

in which 
1

1 00.006s, 330s , 3.448MPa.t q    . The CNTRC model is similar to that 

presented in section 5.1 with h/a = 0.02 and 
* 0.11CNTV  . Figure 7.9 to Figure 7.11 

show the time histories of central deflection of UD, FG-V, FG-O and FG-X plate under 

step, triangular, sine, explosive blast loadings, respectively. It is again observed that the 

central deflections of UD and FG-X plate are smaller than those of FG-O and FG-V 

plate. Note that, in Figure 7.9 to Figure 7.10, we can see that the responses of plate are 

separated into two states. In the first state, the plate is subjected to the transverse load 

(forced vibration). In this state, the response of central deflection of plate belong to type 

of loadings, which is step, triangular, sine or explosive blast loading. And in the second 

state, the plate oscillates freely (free vibration) and the vibration amplitude of plate is 

harmonic. 
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Figure 7.8. Central deflection of the square laminated plate subjected to step loading. 

 

 

 

Figure 7.9. Central deflection of the square laminated plate subjected to triangular 

loading. 
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Figure 7.10. Central deflection of the square laminated plate subjected to sinusoidal 

loading. 

 

 

 

Figure 7.11. Central deflection of the square laminated plate subjected to explosive 

blast loading. 
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7.4 Concluding remarks 

In this chapter, we presented a simple and effective approach based on the combination 

of IGA and HSDT for static, free vibration and dynamic behaviors of FG-CNTRCs. The 

material properties of FG-CNTRCs are assumed to be graded through the thickness 

direction according to several linear distributions of the volume fraction of carbon 

nanotubes. The governing equation is approximated according to the HSDT model using 

isogeometric elements based on Non-Uniform Rational B-Spline (NURBS) basis 

functions. These achieve naturally any desired degree of continuity through the choice of 

the order of basis functions, so that the method easily fulfils the C
1
-continuity 

requirement of the HSDT model. In this model, no shear correction factor is used, which 

leads to zero-shear stresses at the bottom and top surfaces of plates. The effects of 

carbon nanotube volume fraction, plate width-to-thickness ratio on natural frequencies 

and deflections of FG-CNTRC plates are considered. Especially, the distributions of 

CNTs along the thickness direction of the plate have a large influence on the central 

deflection of the plate. And thickness-to-length ratios are sensitive and also have a large 

effect on responses of the plates. When a plate becomes thinner, the deflection is larger. 

In dynamic transient, deflections of FG-X are the smallest and those of FG-O are the 

largest. In addition, after removing external forces, the plates are harmonically 

oscillated, as expected. Numerical results proved high accuracy and reliability of the 

proposed method in comparison with other available numerical approaches. 
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8.1 Overview 

In this chapter, the last objective of this thesis is dealt with. An efficient computational 

approach based on a generalized unconstrained approach in conjunction with IGA are 

proposed for dynamic control of smart piezoelectric composite plates. In composite 

plates, the mechanical displacement field is approximated according to the proposed 

model using isogeometric elements and the nonlinear transient formulation for plates is 

formed in the total Lagrange approach based on the von Kármán strains and solved by 

Newmark time integration. Various numerical examples are investigated to show the 

high accuracy and reliability of the proposed method. Linear, geometrically nonlinear 

analysis, dynamic control and optimization are studied. For active control of the 

piezoelectric composite plates, a close-loop system, which is presented in section 5.3, is 

used. An optimization procedure using genetic algorithm (GA) is considered to search 

optimal design for actuator input voltages. 

 

 

8.2 The unconstrained third-order shear deformation theory 

In section 3.3, it can be seen that CPT and FSDT [187,188] are the simplest and 

commonly used. In FSDT [187,188], displacement field is assumed to have the first-

order functions and the shear correction factor is required for attenuating the non-zero 

transverse shear strain on the bottom and top surfaces. In TDST [191], shear stresses are 

a parabolic distribution through the thickness and equal to zeros on the top and bottom 

surfaces. To consider shear traction parallel and without any correction factors, an 

Unconstrained Third-Order Shear Deformation Theory (UTSDT) was proposed by 

Leung [117,118]. The presence of a finite transverse shear strain on the top and bottom 

surfaces of the plate is allowed in this theory, releasing the additional constraint, which 

has to be imposed in the TSDT of Reddy. There are seven displacements, such as two 

in-plane displacements, one transverse displacement, two linear rotations and two cubic 

variations of in-plane displacements that are higher-order rotations. Comparisons 

between UTSDT and both TSDT and analytical analysis of Pagano [214,215] were also 

reported in Refs. [117,118]. In this chapter, IGA is extended to investigate the 

piezoelectric composite plates using UTSDT.  
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The UTSDT can be rewritten in a general form using an arbitrary function f(z) as 

follows: 

 

 
0 1 2

0 1 2

( , , , ) ( , , ) ( , , ) ( , , )

( , , , ) ( , , ) ( , , ) ( , , )

( , , , ) ( , , )

u x y z t u x y t zu x y t f z u x y t

v x y z t v x y t zv x y t f z v x y t

w x y z t w x y t

  

  

  

(8.1) 

Where u0, u1, u2, v0, v1, v2 and w are displacement variables; x, y, z are components of the 

Cartesian coordinate system (Oxyz) and t is the time.  For UTSDT in Ref. [117], the 

function f(z) = z
3 

is used. Generally speaking, f(z) can be defined as a continuous 

function so that its first derivative is nonlinear through the plate thickness. Moreover, 

there exists an optimal function fop(z) yielding best accurate solutions. However, the 

finding of fop(z) remains an open question. In what follows, we introduce a new function 

( )f(z)= arctan z that ensures that its first derivative is nonlinear through the plate thickness 

and solutions are more accurate than those for the case of f(z) = z
3
. 

 

 

Figure 8.1. The configuration of piezoelectric composite plates. 
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For a plate bending, the strain vector is represented by: 

1 1

2 2
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(8.2) 

 

Following the Von Kármán theory, Eq. (8.2) can be rewritten as: 
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(8.4) 

in which the nonlinear component is computed as: 
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(8.5) 

 

The material behavior of the smart composite plates is given in Eq. (3.1), where c is the 

elasticity matrix defined as follows: 
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In which 

   

    

/2
2 2

/2

/2 2

/2

, , , , , 1, , , ( ), ( ), ( ) d , 1,2,6

, , 1, ( ), ( ) d , 4,5

h

ij
h

h

s s s ij
h

z z f z zf z f z Q z i j

f z f z Q z i j





 

  





A B G L F H

A B D  

(8.7) 

where ijQ  is calculated as in Eqs. (3.8)-(3.9). 
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8.3 NURBS-based novel smart plate formulation 

The displacement field u of the plate using NURBS basic function is approximated as: 
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Where  0 0 1 1 2 2

T

I I I I I I I Iu v u v u v wd , and NI is the shape function.  

 

Substituting Eq. (8.8) into Eqs. (8.3) to (8.5), the strains can be rewritten as: 
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and 
NL

IB is calculated by: 

,

,

,

,

, ,

0
0 0 0 0 0 0

( ) 0
0 0 0 0 0 0

I x

I xNL g

I I y I

I x

I y I x

w
N

w
N

w w



 
  

   
  

 

B d A B  (8.11) 

 

The equations for the smart plate are written as: 
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in which q0 is a uniform load; 0 0 0 0 0 0 ;IN  N
 
m is defined by: 
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8.4 Numerical validations 

This section shows the performance of the method through various numerical examples. 

Table 3.1 shows the properties of the piezoelectric composite plates, including Poisson’s 

ration (ν), mass density (ρ), elastic modulus (E), piezoelectric coefficient (d) and electric 

permittivity (p) and shear modulus (G). Note that the properties 1, 2 and 3 in Table 3.1 

refer to the directions of axes x, y and z, respectively.  

 

8.4.1 Static and free vibration analyses 

8.4.1.1 Static analysis 

 

 

Figure 8.2. Square piezoelectric composite plate model. 
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Table 8.1. Central control point/node deflection of the simply supported piezoelectric 

composite plate subjected to a uniform load and different input voltages (×10
-4 

m) 

Input Mesh Method 
Scheme 

I II III IV 

0V 5 × 5 IGA-UTSDT (p = 2) -0.5618 -0.5634 -0.5940 -0.6611 

  

IGA-UTSDT (p = 3) -0.6390 -0.6260 -0.6635 -0.7467 

 

9 × 9 IGA-UTSDT (p = 2) -0.6174 -0.6082 -0.6441 -0.7236 

  

IGA-UTSDT (p = 3) -0.6373 -0.6240 -0.6618 -0.7453 

 

13 × 13 IGA-UTSDT (p = 2) -0.6322 -0.6202 -0.6576 -0.7401 

  

IGA-UTSDT (p = 3) -0.6370 -0.6239 -0.6617 -0.7452 

  

RPIM [91] -0.6038 -0.6217 -0.6542 -0.7222 

       5V 5 × 5 IGA-UTSDT (p = 2) -0.1619 -0.1627 -0.1712 -0.1898 

  

IGA-UTSDT (p = 3) -0.2856 -0.2827 -0.2975 -0.3279 

 

9 × 9 IGA-UTSDT (p = 2) -0.2512 -0.2494 -0.2625 -0.2899 

  

IGA-UTSDT (p = 3) -0.2847 -0.2819 -2.9701 -0.3287 

 

13 × 13 IGA-UTSDT (p = 2) -0.2766 -0.2741 -0.2888 -0.3194 

  

IGA-UTSDT (p = 3) -0.2842 -0.2817 -0.2968 -0.3283 

  

RPIM [91] -0.2717 -0.2717 -0.2862 -0.3134 

       10V 5 × 5 IGA-UTSDT (p = 2) 0.2379 0.2380 0.2514 0.2815 

  

IGA-UTSDT (p = 3) 0.0678 0.0600 0.0685 0.0909 

 

9 × 9 IGA-UTSDT (p = 2) 0.1150 0.1093 0.1191 0.1437 

  

IGA-UTSDT (p = 3) 0.0680 0.0601 0.0677 0.0880 

 

13 × 13 IGA-UTSDT (p = 2) 0.0791 0.0721 0.0801 0.1013 

  

IGA-UTSDT (p = 3) 0.0690 0.0605 0.0682 0.0880 

  

RPIM [91] 0.0757 0.0604 0.0819 0.0954 

 

A square smart plate with length 200 mm under a uniform load q = 100 N/m
2 

plotted in 

Figure 8.2 is considered. The plate has six layers: two outer piezo layers represented by 

pie and four composite layers. The configurations of the plate are [pie/- / ]s and [pie/-

 / ]as where “as” and “s” indicate anti-symmetric and symmetric, respectively, and 

is the fiber orientation. Each layer thickness of the non-piezoelectric composite plate is 



136  Chapter 8: The generalized unconstrained plate theory 

 

0.25 mm and the thickness of the piezo layer is 0.1 mm. The composite layers are made 

of T300/976 graphite/epoxy and the piezo-ceramic layers are PZTG1195N. 

 

 

Figure 8.3. Effect of actuator input voltages on deflection of the piezoelectric 

composite plate [pie/-45/45]as subjected to a uniform loading. 

 

Firstly, the effect of input voltages on deflection of the CFFF plate [pie/-45/45]as is 

shown in Figure 8.3. It can be seen that the present results agree well with those of Refs 

[91,78]. 

 

For the SSSS plate, different fiber orientation angles such as I: [pie/-45/45]s, II: [pie/-

45/45]as, III: [pie/-30/30]as and IV: [pie/-15/15]as are investigated. Table 8.1 lists the 

central control point/node deflection of the plate. It can be seen that the results of IGA-

UHSDT match well with those of Ref. [91]. In addition, the deflection of plate under 

different input voltages 0V, 5V, 8V, 10V is shown in Figure 8.4. The deflection 

decreases for increasing input voltage as expected. The reason is that the input voltage 

induces an upward deflection of the plate due to the piezoelectric effect. This upward 

contribution becomes prevalent for an input voltage of 10V. Similar results were 

obtained in Ref. [91]. Next, the centerline deflection of a plate with configurations [-
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45/pie/45]as and [-15/pie/15]as is plotted in Figure 8.5. Again, we can see that the results 

in Figure 8.5a match well with those of RPIM in Ref. [91]. Also, as the fiber orientation 

angle decreases, the deflection of the plate increases. 

 

 

  

(a) [pie/-45/45]s (b) [pie/-45/45]as 

  

(c) [pie/-30/30]as (d) [pie/-15/15]as 

Figure 8.4. Centerline deflection of the plate subjected to different input voltages and a 

uniform load. 

 

 

Furthermore, the deflection of the plate using only mesh of 9×9 elements with different 

boundary conditions (CFFF, SSFF, SSSS) is shown in Figure 8.6. Again, it can be seen 

that the present method agrees very well with those of RPIM [91]. 
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(a) [-45/pie/45]as (b) [-15/pie/15]as 

Figure 8.5. Effect of the stacking sequence scheme and the fiber orientations on 

deflection of piezoelectric composite plate under uniform load and different input 

voltages. 

 

 

 

Figure 8.6. The deflection of the piezoelectric composite plates with various boundary 

conditions. 
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8.4.1.2 Free vibration 

In this section, the accuracy of isogeometric finite elements is investigated in case of 

free vibration of plates. A SSSS plate [pie/0/90/0/pie] (length a, thickness h and h/a = 

1/50) is considered and shown in Figure 8.7. The composite layers are made of Gp/Ep 

and the thickness of two PZT-4 piezoelectric layers is 0.1h. Two electric boundary 

conditions are investigated: (1) an open-circuit condition, where the electric potential 

remains free; and (2) a closed-circuit condition, in which the electric potential is kept 

zero (grounded). The analytical solution for the first natural frequency was studied by 

Heyliger and Saravanos [202]. Using finite element formulations, Victor et al. [94] and 

Saravanos et al. [116] have also reported to obtain different natural frequencies. 

 

Table 8.2. Dimensionless first natural frequency of the simply supported square 

piezoelectric composite plate [pie/0/90/0/pie] 

Method Meshing 
Degrees of 

freedom (DOFs) 

  2

1
/ 1000f a t   

Closed circuit Open circuit 

IGA-UHSDT (p=2) 6 x 6 448 233.900 233.900 

IGA-UHSDT (p=3) 6 x 6 567 231.400 231.400 

IGA-UHSDT (p=4) 6 x 6 700 231.400 231.400 

FEM layerwise [116] 12 x 12 2208 234.533 256.765 

Q9 - HSDT [94] - - 230.461 250.597 

Q9 - FSDT [94] - - 206.304 245.349 

Reference solution [202] 

 

245.941 245.942 

 

 

 

Figure 8.7. Model of an n-ply piezoelectric composite plate. 
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(a) Mode 1 (b) Mode 2 

  

(c) Mode 3 (d) Mode 4 

  

(e) Mode 5 (f) Mode 6 

Figure 8.8. Shape of the first six eigenmodes of a simply supported piezoelectric 

composite plate. 
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Table 8.3. Convergence of the first five natural frequencies of the square piezoelectric 

composite plate [pie/0/90/0/pie] 

Mesh Method 
Mode sequence number 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

Open circuit           

5 × 5 IGA-UHSDT (p = 2)  236.00 594.50 741.3 1014.3 1531.8 

 

IGA-UHSDT (p = 3)  231.50 528.50 673.60 925.00 1128.7 

 

 FE layerwise [116]  276.19  -  -  -  - 

9 × 9 IGA-UHSDT (p = 2)  231.90 531.60 676.00 928.4 1087.8 

 

IGA-UHSDT (p = 3)  231.40 523.20 669.00 918.5 1030.0 

 

 FE layerwise [116]  261.70  -  - -  -  

13 × 13 IGA-UHSDT (p = 2)  231.50 525.00 670.40 920.60 1040.1 

 

IGA-UHSDT (p = 3)  231.40 523.10 668.90 918.4 1027.9 

 

 FE layerwise [116]  259.66  - -  -  -  

 

Q9 - HSDT [94] 250.50 583.19 695.70 980 1145.4 

 

Q9 - FSDT [94] 245.35 559.00 694.20 962 1093.0 

 

Ref [202] 245.94  -  -  -  - 

Closed circuit 

     5 × 5 IGA-UHSDT (p = 2)  236.00 594.50 741.30 1014.3 1531.8 

 

IGA-UHSDT (p = 3)  231.50 528.50 673.60 925.00 1128.7 

 

 FE layerwise [116]  249.86  -  -  -  - 

9 × 9 IGA-UHSDT (p = 2)  231.90 531.60 676.00 928.40 1087.8 

 

IGA-UHSDT (p = 3)  231.40 523.20 669.00 918.50 1030.0 

 

 FE layerwise [116] 236.83   - -   -  - 

13 × 13 IGA-UHSDT (p = 2)  231.50 525.00 670.40 920.60 1040.1 

 

IGA-UHSDT (p = 3)  231.40 523.10 668.90 918.40 1027.9 

 

 FE layerwise [116] 234.53  

    

 

Q9 - HSDT [94] 230.46 520.38 662.92 908 1022.09 

 

Q9 - FSDT [94] 206.30 519.44 663.34 908 1020.10 

  Ref [202]  245.94  -  -  - -  
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The dimensionless first natural frequency,  2

1
/ 1000f a t  , is considered where 1

   

is the first natural frequency. Table 8.2 shows the dimensionless first natural frequency 

of the plate with three types of elements: quadratic (p = 2), cubic (p = 3) and quartic (p = 

4). The results given by the IGA-UHSDT formulation are slightly lower than the 

analytical solution [202]. Besides, we can see that the results of the present method are 

stable in both closed-circuit condition and open-circuit condition similarly to the 

analytical solution in [202], while those of Refs. [94,116] are slightly deviated. This was 

also addressed in [203] to show the better performance of IGA over the conventional 

FEM in the solution of eigenvalue problems. In addition, Table 8.3 shows the 

convergence of the first five natural frequencies. Again, it can be seen that the IGA-

UHSDT results match well with those of Refs. [94,116,202] and are stable for both 

closed- and open-circuit conditions. Figure 8.8 shows the shapes of the first six 

eigenmodes. We can see that these shapes reflect correctly physical modes of the 

piezoelectric composite plates as given by the analytical solution. 

 

Next, a square six-ply plate [pie/-45/45]as is considered. The length of plate is 20 cm, 

thickness of the non-piezoelectric composite plate is 1 mm and each layer has the same 

thickness. The thickness of the piezo-layer is 0.1 mm. The plate is made of T300/976 

graphite/epoxy layers and the piezo-ceramic is PZTG1195N. Table 8.4 shows the first 

ten natural frequencies of the plate using a mesh of 13×13 B-spline elements with 

boundary conditions CFFF and SSSS. It is again confirmed that the results of the present 

method match well with those of Refs. [91,78]. 

 

 

8.4.2 Nonlinear analysis of smart plates 

Now, we consider a smart plate with material properties and geometrical dimensions 

similar to those in section 8.4.1.1. For the plate under mechanical load (parameter load 

210 )oq q  , Figure 8.9 shows the nonlinear deflection of the plate subjected to input 

voltages. We can see that when voltage inputs increase, geometrically nonlinear 

deflection is upward. Moreover, the central deflection of the plate under input voltage 

8V with different fiber orientation angles is shown in Figure 8.10. 
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8.4.3 Dynamic control and optimization 

It is well known that structural controls have advantages and benefits in real life, such as 

reduced energy consumption, improved product, increased safety, etc. The sentence, 

“control will be the physics of the 21st century”, as spoken by Doyle JC (2001) at 

Conference on Decision and Control. It is well known, feedback and control are 

important in most technological aspects. In this work, we investigate behaviors of the 

plate under dynamic control. 

 

 

Table 8.4. The first ten natural frequencies of the square piezoelectric composite plate 

[pie/-45/45]as 

Mode 

CFFF 

 

SSSS 

IGA-UHSDT FEM 

[78] 

RPIM  

[91]  

IGA-UHSDT FEM 

[78] 

RPIM 

[91] p = 2 p = 3 

 

p = 2 p = 3 

1 21.61 21.44 21.46 22.13 

 

144.00 143.30 141.64 143.12 

2 63.78 63.16 63.34 68.08 

 

345.90 337.90 348.37 353.48 

3 133.95 129.39 130.81 149.41 

 

575.80 565.70 605.09 597.03 

4 186.13 182.55 182.40 199.40 

 

702.00 652.10 711.67 605.09 

5 222.91 217.15 218.25 - 

 

705.50 654.80 - - 

6 398.21 375.52 381.90 - 

 

941.40 900.80 - - 

7 421.25 398.57 395.66 - 

 

1273.70 1092.60 - - 

8 430.06 408.24 410.80 - 

 

1322.90 1268.10 - - 

9 507.56 472.58 476.32 - 

 

1507.10 1353.40 - - 

10 679.99 653.93 642.72 - 

 

1887.60 1677.50 - - 
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Figure 8.9. Effect of input voltages on nonlinear deflection of the piezoelectric 

composite plates [-45/pie/45]as. 

 

8.4.3.1 Nonlinear transient vibration 

 

Figure 8.10. Effect of different fiber orientation angles on deflection of the plate 

subjected to input voltage 8V. 
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Figure 8.11. Effect of the gain Gd of the displacement feedback control on static 

deflection of the piezoelectric composite plate. 

 

 

We now consider a plate [pie/-45/45]s under a uniform load q = 100 N/m
2 

that is similar 

to that presented in section 8.4.1.1. The upper and lower surfaces of the plate are bonded 

to a piezoelectric actuator layer and a piezoelectric sensor layer, respectively. We first 

study the response of static control with meshing 9×9 and p = 2. The effect of the 

displacement feedback control gain Gd on the static deflection of the plate is shown in 

Figure 8.11. It is seen that when Gd increases, the deflections decrease, similarly to what 

reported in [91]. It is observed that as the plate is subjected to loadings, electric charges 

are generated and amplified through the control. Then, the signal is sent to the actuator 

and a voltage is generated. Through the converse effect of piezoelectric, a force is 

generated and actively controls the behavior of the plate. 
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Figure 8.12. Effect of the control gain on the geometrically nonlinear response of the 

piezoelectric composite plate under step load. 

 

Next, a smart composite plate subjected to sinusoidally distributed transverse load is 

investigated. The sinusoidally distributed transverse load is expressed as follows: 

 

0 sin sin ( )
x y

q q F t
L L

    
    

   
 (8.16) 

 

Where 

 

1

1

1 1

1

1 0
Step load

0

1 / 0
( ) Triangular load

0

Explosive blast loadt

t t

t t

t t t t
F t

t t

e 

  



   
 







 (8.17) 

 

in which q0 = 4×10
8
 Pa and γ = 330 s

-1
. Figure 8.12 to Figure 8.14 show nonlinear 

transient vibrations of the central point of the plate under a closed-loop control. We 

observe that the response with control is smaller than those without control, as expected.  
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Figure 8.13. Effect of the control gain on the geometrically nonlinear response of the 

piezoelectric composite plate under triangular load. 

 

 

Figure 8.14. Effect of the control gain on the geometrically nonlinear response of the 

piezoelectric composite plate under explosive blast load. 

 

8.4.3.2 Optimization 

Finally, we investigate the optimization problem for actuator input voltages. Material 

properties and dimensions of piezoelectric plate are the same as in section 8.4.1.1. From 

Figure 8.3 and Figure 8.4, it can be seen that when the actuator input voltage increases, 

the deflection shape of plate increases. Here, we can search an optimal voltage for 

piezoelectric plate with minimum elastic energy. Figure 8.15 depicts the convergence of 

objective function using GA with 20 generations for the [pie/-45/45]as plate (SSSS) 

using a mesh of 9×9 cubic elements. Table 8.5 gives the energy of plate with different 

0 1 2 3 4 5 6 7 8

x 10
-3

-4

-2

0

2

4

6

8

Time (s)

C
e
n
tr

a
l 
d
e
fl
e
c
ti
o
n
s

G
d
 = 0

G
d
 = 10 G

d
 = 20

0 1 2 3 4 5 6 7 8

x 10
-3

-5

0

5

10

Time (s)

C
e
n
tr

a
l 
d
e
fl
e
c
ti
o
n
s

G
d
 = 0

G
d
 = 10 G

d
 = 20



148  Chapter 8: The generalized unconstrained plate theory 

 

actuator input voltages, as shown in Figure 8.3 and Figure 8.4, and the optimal input 

voltage. We can see that the energy of plate for case optimal voltage V = 20.7 and 5.4 for 

CFFF and SSSS plates, respectively, is minimum. 

 

 

Figure 8.15. Convergence of objective function using GA with 20 generations. 

 

Table 8.5. Energy of plate with different input voltage and optimal input voltage.  

Boundary condition CFFF 

Actuator input voltages 0 V 30 V 50 V 80 V 20.7 (optimal) 

Energy (J) (×10
-3

) 4.2476 3.0362 6.0570 16.3300 2.67 

Boundary condition SSSS 

Actuator input voltages 0 V 5 V 8 V 10 V 5.4 (optimal) 

Energy (J) (×10
-5

) 10.370 3.0670 4.7090 8.3139 3.0249 
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8.5 Concluding remarks 

This chapter presents a simple and effective approach based on the combination of IGA 

and a generalized unconstrained approach for dynamic control and optimization of smart 

piezoelectric composite plates. Through the presented formulation and numerical results, 

some main conclusions can be drawn as follows: 

i) Based on the integration of IGA and UHSDT, no shear correction factor is used, 

which leads to zero-shear stresses at the bottom and top surfaces of plates. 

ii) The linear electric potential is approximated through the thickness of each 

piezoelectric layer. And the NURBS basis functions are used for electric 

potential, mechanical displacement field and exact geometry.  

iii) The closed-loop control algorithm based on displacements and velocities 

feedback is used to reduce vibration attitudes of the piezoelectric composite 

plates. When gain factors of the displacement and velocity increase, the 

deflections decrease. 

iv) In static and free vibration analyses, the results of the present method are more 

accurate than those of many other methods with a lower number of degrees of 

freedom. The proposed approach for free vibration analysis is more stable than 

these of other approaches.  

v) The nonlinear transient formulation for smart plates is formed in the total 

Lagrange approach based on the von Kármán strains and solved by Newmark 

time integration. Nonlinear response has lower central deflection and higher 

frequency than that of the linear response. Wavelength of the nonlinear response 

also changes compared to that of linear case. 

vi) In optimization analysis, a procedure using genetic algorithm (GA) is 

investigated to search optimal design for actuator input voltages, which makes 

the plate be at the equilibrium state, i.e. minimization of energy, under external 

forces. 

 

Finally, the present approach would provide a reliable source of reference when 

calculating laminated composite plates with other methods. 
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9.1 Conclusions 

In this thesis, the concept of isogeometric analysis has been developed to analyze smart 

plate structures. Geometry domains generated from CAD can be used directly for FEA. 

Hence, the exact geometry is expressed in both design and mechanical analysis. The 

present method allows exact representation of various geometries, i.e., spheres, circles, 

ellipsoids, cylinders, etc., using very coarse meshes. For smart plates, three models have 

been considered including piezoelectric composite plates, piezoelectric functionally 

graded material plates, functionally graded carbon nanotube-reinforced composite 

plates. In piezoelectric plates, the electric potential is assumed to vary linearly through 

the thickness for each piezoelectric sublayer. A displacement and velocity feedback 

control algorithm is used for the active control of the static deflection and dynamic 

response of the plates through a closed-loop control with bonded or embedded 

distributed piezoelectric sensors and actuators. Several numerical examples are 

performed to show that the present method is very well suited to simulate and analyze 

smart plate structures. Through the presented formulation and numerical results, the 

following main conclusions can be made:  

 

o A simple and effective approach based on the combination of IGA and HSDT 

for the static, free vibration analyses and dynamic control of composite plates 

integrated with piezoelectric sensors and actuators has been developed. Due to 

the use of the HSDT, the proposed method does not require shear correction 

factors. The use of NURBS elements of at least second order naturally fulfils 

the C
1
-continuity requirement of the HSDT, thereby significantly reducing the 

number of degrees of freedom per control point compared to conventional 

finite element approaches featuring C
0
 inter-element continuity. In free 

vibration analyses, the predictions of the proposed approach agree well with 

analytical solutions, and are more stable (passing from closed- to open-circuit 

conditions) than those of several other approaches available in the literature. 

In static analyses, the predictions of the proposed approach are more accurate 

than those of several other approaches with a lower number of degrees of 

freedom. In dynamic control analyses, the proposed approach produces 

predictions, which appear reasonable and consistent with the observed 

physical behavior. 

 



Chapter 9: Conclusions and recommendations 153 

 

 

 

o Geometrically nonlinear transient of piezoelectric functionally graded plates 

(FGPs) using IGA based on the generalized shear deformation model have 

been proposed for the first time. The material properties of FGM are assumed 

to vary through the thickness by the rule of mixture and the Mori–Tanaka 

scheme. In the analysis process, the thermal, electrical and mechanical 

loadings are considered and a two-step procedure is proposed including a step 

of calculating the temperature field along the thickness of the plate and a step 

of analyzing the geometrically nonlinear behavior of the plate under thermo-

electro-mechanical loadings. The nonlinear formulation for plates is formed in 

the total Lagrange approach based on the von Kármán strains, which includes 

thermo-piezoelectric effects, and solved by Newmark time integration 

associated with the iteration methods. Comparison between the nonlinear and 

linear behaviors showed that nonlinear response had lower central deflection 

and higher frequency than that of the linear response. Effects of various 

parameters on the geometrically nonlinear responses of the piezoelectric FGM 

plate have been carried out to show the accuracy and reliability of the present 

method for the geometrically nonlinear responses of the piezoelectric FGM 

plate by comparing its numerical solutions with those of other available 

numerical results. 

 

o The combination of IGA and a generalized unconstrained approach for 

dynamic control and optimization of smart piezoelectric composite plates has 

been proposed. The new function through the plate thickness for the UHSDT 

is introduced, which can achieve any desired degree of smoothness through 

the choice of the interpolation order and easily fulfills the C
1
-continuity 

requirements for plate elements stemming from the HSDT. In static and free 

vibration analyses, the results of the present method are more accurate than 

those of many other methods with a lower number of degrees of freedom. The 

proposed approach for free vibration analysis is more stable than those of 

other approaches. Moreover, the present approach would provide a reliable 

source of reference for calculating the responses of laminated composite 

plates.  

 

o An approach based on the combination of IGA and HSDT for dynamic 

behaviors of FG-CNTRCs has been developed. The material properties of FG-
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CNTRCs are assumed to be graded through the thickness direction according 

to several linear distributions of the volume fraction of carbon nanotubes. The 

effects of carbon nanotube volume fraction, plate width-to-thickness ratio on 

natural frequencies and deflections of FG-CNTRC plates are considered. 

Especially, the distributions of CNTs along the thickness direction of the plate 

have a large influence on the central deflection of the plate. Numerical results 

proved high accuracy and reliability of the proposed method in comparison 

with other available numerical approaches 

 

Finally, based on the results of the numerical examples, the present approach would 

provide a reliable source of reference for calculating the behaviors of smart plate 

structures. However, there are still some limitations of the present work, which can be 

explained as follows: 

 

o In this thesis, almost all numerical examples are either square or circle/ellipse, 

which are the simplest geometries. It can be modeled straightforwardly with 

only a single patch. Multi-patch geometries and piezoelectric patches are not 

considered. 

 

o Homogeneous Dirichlet boundary conditions are only chosen to examine the 

plate behaviors. 

 

o The practical problems or complex geometries are also not considered in this 

thesis. 

 

 

9.2 Recommendations for future work 

It is obvious that the developing field of the smart plate structures using IGA cannot be 

covered in one single PhD thesis. Many aspects have therefore not been studied here. 

Relevant unresolved issues are discussed in the following points: 

 

o The present work can be extended to micro smart structures using the 

nonlocal elasticity theory or the modified couple stress theory. It is important 
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to consider the size effect of microstructures in theoretical and experimental 

investigations of the microscale or nanoscale. 

 

o The present method can be employed in micro-electro-mechanical systems 

(MEMs) to Nano-electro-mechanical systems (NEMS) to reach the high 

sensitivity and desired performance [216-218]. 

 

o In the design of the smart plate structures or the plate/shell structures, a 

feature, which should be considered, is their resistance to buckling under 

loading conditions or temperature environments. For this purpose, buckling 

and post-buckling behaviors of the smart plates need to be investigated. 

 

o For large structures, in order to save piezo materials, the piezoelectric patches 

are often used. Therefore, the present work can be extended to study effect of 

the piezoelectric patches on the behaviors of the structures. 

 

o Adaptive local refinement strategies need to be developed as future extension 

of the present work. 

 

o For industrial perspectives, the present method should be developed to 

analyze engineering problems, such as automotive, aerospace, marine or 

offshore components.  
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