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About the cover 

The front cover shows LifeAct (red) transduced swine testicle cells that were transfected with a plasmid 

encoding PRV US3. US3 protein was stained with primary mouse anti-US3 antibody and secondary 

FITC-labeled (green) anti-mouse antibody. Nuclei were counterstained with Hoechst 33342 (cyan). This 

image was taken using a Leica TCS SPE confocal microscope (XY length: 174.6 x 174.6 µm; Z = 6,8 µm, 

objective: ACS APO 63.0 x 1.30 (oil)).  
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Chapter 1: Introduction 

1. Pseudorabies virus (PRV) 

1.1 Introduction 

Pseudorabies virus (PRV), also known by its taxonomic name suid herpesvirus 1 (SuHV1) or its original 

name Aujeszky’s disease virus belongs to the family of the Herpesviridae, subfamily 

Alphaherpesvirinae, genus Varicellovirus and is the causative agent of Aujeszky’s disease in pigs.  

Based on their biological properties, genome content and organization, most herpesviruses can be 

categorized into one of three major subfamilies: Alphaherpesvirinae, Betaherpesvirinae and 

Gammaherpesvirinae. These subfamilies vary in host range, the cell type where virus latency is 

established, and duration of the viral replication cycle (Pellet & Roizman, 2007). The broadest host 

range is displayed by the alphaherpesviruses, which are characterized by a fast replication cycle in host 

cells, producing viral particles in a matter of hours. For most alphaherpesviruses, latency is established 

in sensory ganglia. Betaherpesviruses have the most restricted host range and slowest rate of 

replication. Latency is induced in a wide range of tissues and cells, including kidneys, secretory glands 

and lymphoreticular cells. Gammaherpesviruses predominantly infect T or B lymphocytes and establish 

latency in lymphoid tissue (Pomeranz et al., 2005). 

Human alphaherpesviruses include herpes simplex viruses (HSV-1 and HSV-2) and varicella zoster virus 

(VZV), causing cold sores (HSV-1), genital lesions (HSV-2), chickenpox and shingles (VZV). In certain 

circumstances, often associated with a suppressed immunity, these viruses can cause severe 

symptoms, such as keratitis, blindness and encephalitis (HSV-1). Several important animal 

herpesviruses belong to the alphaherpesviruses, including PRV, bovine herpesvirus 1 and 5 (BHV-1, 

BHV-5), equine herpesvirus 1 and 4 (EHV-1, EHV-4), avian Marek’s disease virus (MDV) and infectious 

laryngotracheitis virus (ILTV). Table 1 gives an overview of currently characterized alphaherpesviruses.  
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Table 1: Alphaherpesvirus taxonomy based on the International Committee on Taxonomy of Viruses (ICTV) (from: 
http://ictvonline.org/)    

 

1.2 Structure 

The herpesvirus family is characterized by virions containing a double-stranded DNA genome, 

packaged in virions ranging from 200 to 250 nm. The virion consists of three structural components: a 

capsid, tegument and envelope (Pellet & Roizman, 2007). Figure 1 shows a schematic representation 

and an electron microscope image of a PRV virion.   
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1.2.1 Genome 

The full PRV genome sequence and gene arrangement have been characterized (Klupp et al., 2004).  

Each PRV virion contains a double stranded DNA genome of approximately 143 kbp (Ben-Porat & 

Kaplan, 1985; Klupp et al., 2004). The highly GC-rich genome (about 73%) consists of a unique long (UL) 

and a unique short (US) region, the latter being flanked by the internal repeat sequences (IRS) and 

terminal repeat sequences (TRS) (Ben-Porat & Kaplan, 1985). The genome contains 72 open reading 

frames (ORFs), coding for different proteins which all have orthologs in other herpesviruses (Klupp et 

al., 2004; Pomeranz et al., 2005). As the PRV gene arrangement is largely collinear with the HSV-1 

genome, which was established earlier, the nomenclature used for HSV-1 was also adopted for PRV 

(Roizman & Pellet, 2001). 

1.2.2 Capsid 

Most information regarding the PRV capsid is extrapolated from studies on HSV-1 (Newcomb et al., 

1993). The capsid consists of the proteins VP19C (UL38), VP26 (UL35), VP5 (UL19), VP23 (UL18) and 

the products of UL25 and UL6 genes (Zhou et al., 1998). Its icosahedral shape (12 vertices, 20 faces 

and 30 sides) of about 125 nm originates from the specific arrangement of 162 capsomers (150 hexons 

and 12 pentons), mainly composed of major capsid protein VP5, which is highly conserved in all 

herpesviruses (Newcomb et al., 1993). The hexons, composed of six VP5 monomers, are 

complemented by six VP26 molecules, forming the outer edges and faces of the capsid, while the 

pentons, containing five VP5 monomers, form the vertices. Hexons and pentons are linked by binding 

a triplex formed by VP19C/VP23/VP23 (Newcomb & Brown, 1991; Okoye et al., 2006). Eleven of the 

pentons are VP5 pentamers, while the twelfth is a cylindrical portal, composed of 12 UL6 molecules 

(Newcomb et al., 2001). This portal functions as a channel through which the viral genome enters the 

capsid (Homa & Brown, 1997; Moore & Prevelige, 2002). The genome surrounded by the capsid is 

referred to as the nucleocapsid. 

1.2.3 Tegument 

The space between the capsid and the envelope membrane is called the tegument, occupying two 

thirds of the virion volume (Grunewald et al., 2003). The tegument consists of at least two distinct 

structures: an inner, tightly associated layer, associated with capsid proteins, and an outer, 

heterogeneous layer interacting with the cytoplasmic domain of viral membrane proteins (Pomeranz 

et al., 2005). Cellular actin and at least fourteen viral tegument proteins are integrated in the tegument 

layer. These tegument proteins are involved in the process of taking over the host-cell, as they are 

released in the cell together with the nucleocapsid upon entry. While most of the tegument proteins 
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share little sequence homology between different herpesviruses, tegument protein US3 is conserved 

throughout the alphaherpesvirus subfamily (McGeoch & Davison, 1986) and will be discussed 

thoroughly below (see 2. US3). 

1.2.4 Envelope 

The outer layer of the virion is called the envelope and is derived from intracellular membranes of 

vesicles from the trans-Golgi apparatus (Granzow et al., 1997; Whealy et al., 1991). Viral proteins are 

embedded in the envelope and are often glycosylated, referred to as glycoproteins. Eleven 

glycoproteins have been described in PRV: gB, gC, gD, gE, gG, gH, gI, gK, gL, gM and gN, based on the 

unified nomenclature for herpesvirus glycoproteins (Mettenleiter, 2000). Some glycoproteins bind in 

pairs, to form homodimers, such as the gB/gB complex, or heterodimers, such as gE/gI, gH/gL, and 

gM/gN. Except for gG, which is secreted by infected cells, all of these glycoproteins are present in the 

viral envelope (Mettenleiter, 2000). Additionally, UL20, UL43, US9 and possibly also UL24 are non-

glycosylated viral proteins that reside in the viral envelope. UL34 has been found in the primary virion 

envelope (see 1.3.4 Egress), but not in mature virions (Fuchs et al., 2002b; Klupp et al., 2000). Envelope 

proteins are involved in a variety of processes including viral entry, egress, cell-to-cell spread, neuro-

invasion, regulation of immune responses, and syncytia formation (Mettenleiter, 2000; Nauwynck et 

al., 2007; Pomeranz et al., 2005). 

 

Figure 1: Schematic representation of PRV-virion (adapted from (Granzow et al., 1997)). 
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1.3 Replication cycle 

The herpesviral replication cycle is divided into several steps: entry, transport of nucleocapsids to the 

nucleus, transcription and DNA replication, virion assembly and finally egress. Many of the details for 

PRV replication are based on findings obtained on HSV-1 and are summarized in Figure 2. 

1.3.1 Entry 

In order to establish a successful infection, a PRV virion first needs to gain access to the cell. This is a 

multistep process and is initiated by the attachment of PRV gB and gC to host cell heparan sulphate 

proteoglycans. Although this labile, electrostatic binding is non-essential for infection, it increases viral 

entry efficiency (Mettenleiter et al., 1990; Spear et al., 2006). Attachment is further stabilized by PRV 

gD binding to its cellular receptor (Karger & Mettenleiter, 1993). Currently, three cellular PRV gD entry 

receptors, also known as herpesvirus entry mediators, have been identified: HveB (PRR2, nectin2), 

HveC (PRR1, nectin1) and HveD (PVR, CD55) (Spear et al., 2000). Two additional gD receptors (HveA 

(TNFRSF14) and 3-O-sulfated heparan sulphate) have been described in HSV-1 (Mettenleiter, 2000; 

Spear, 2001; Spear et al., 2000). In contrast to the labile gB/gC binding to heparan sulphate, this 

interaction between gD and one of its receptors is required for infection (Campadelli-Fiume et al., 

2000; Mettenleiter, 2002; Spear et al., 2000). 

Subsequently, the viral envelope and the cellular membrane fuse (Mettenleiter, 1994), allowing the 

viral capsid and tegument to reach the cytoplasm. During this process, viral glycoproteins gB, gH/gL 

and gD play essential roles, mediating fusion between the viral envelope and the cellular plasma 

membrane and releasing the nucleocapsid with its tegument in the cytoplasm (Klupp et al., 1997; 

Mettenleiter, 2000; Pomeranz et al., 2005; Schroter et al., 2014). Next to cellular gD receptors, cellular 

gB receptors have also been described. The paired immunoglobulin-like type 2 receptor PILRα plays an 

important role as a gB associating coreceptor in both HSV-1 and PRV infection (Arii et al., 2009; Satoh 

et al., 2008). While gB, gH and gL are conserved within herpesviruses, gD is not (Mettenleiter, 2004; 

Spear et al., 2000). 

This process of direct entry through fusion at the plasma membrane is considered as the main route 

of entry for herpesviruses. However, viral hijacking of host cell endocytosis pathways, such as 

macropinocytosis and phagocytosis-like endocytosis have also been described. This is the case for HSV-

1, EHV-1 and KSHV entry in particular cell types (Akula et al., 2003; Clement et al., 2006; Devadas et 

al., 2014; Frampton et al., 2007; Nicola et al., 2003; Nicola & Straus, 2004; Raghu et al., 2009).  
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Following entry, the viral capsids are transported via cellular dynein, a microtubule-associated motor 

protein that moves the capsid along microtubules from the cell periphery to the nucleus (Granzow et 

al., 1997; Sodeik et al., 1997). The nuclear pore complex serves as a docking station where PRV genomic 

DNA is released into the nucleus (Dohner et al., 2002; Granzow et al., 2005).  

1.3.2 Transcription/Replication 

Once the linear viral genomic DNA has entered the nucleus, it circularizes and serves as a template for 

transcription. The transcription of herpesviruses is strictly regulated, occurring in a cascade-like 

manner (Ben-Porat & Kaplan, 1985; Roizman & Pellet, 2001). First, regulatory proteins encoded by 

immediate-early (IE) genes are expressed. Promoters of the IE genes are recognized by cellular 

transcription factors and RNA polymerase II, and expression of these genes does not require new viral 

DNA synthesis. The mechanism of IE gene expression is a conserved process in alphaherpesviruses and 

is partly regulated by viral tegument protein UL48 (VP16) (Batterson & Roizman, 1983; Campbell et al., 

1984; Fuchs et al., 2002a; Misra et al., 1994; Moriuchi et al., 1993; Pomeranz et al., 2005; Stern et al., 

1989). PRV, unlike several other herpesviruses, encodes only one immediate-early (IE) gene, IE180. 

The resulting protein is homologous to the HSV-1 IE protein ICP4 (Cheung, 1989; Taharaguchi et al., 

1994). HSV-1 contains four other IE genes, including ICP0, ICP22 and ICP27 and ICP47, which, except 

the latter, all have orthologs in PRV (EP0, RSp40 and UL54 respectively), but these are regulated in PRV 

as early (E) genes (Baumeister et al., 1995; Cheung, 1991; Huang & Wu, 2004; Mettenleiter, 2000; 

Pomeranz et al., 2005).  

PRV IE180 encodes for a viral transactivator of early (E) genes and is essential for viral spread and 

replication (Wu et al., 2014). Gene products of E genes include proteins required for DNA replication 

and other enzymatic factors. In order to start DNA replication, and begin synthesis of the leading and 

lagging DNA strands, the site for initiation of DNA synthesis must be recognized, the supercoiled DNA 

unwound and the DNA strands separated, which is mostly regulated by viral proteins, but likely also 

by host proteins (Boehmer & Lehman, 1997; Chang et al., 2004; Ou et al., 2002; Taharaguchi et al., 

1994). Certain host proteins, such as DNA polymerase, α-primase, DNA ligase I, and topoisomerase II 

have also been reported to play a role (Boehmer & Lehman, 1997). The PRV EP0 gene, an E protein, 

serves as a viral transactivator and in general stimulates viral gene expression (Ho et al., 1999; Ono et 

al., 1998; Watanabe et al., 1995). However, EP0 has a suppressive effect on the vhs (Chang et al., 2004) 

and gE (Chang et al., 2002) promotors. US3 is also an early protein and will be discussed in more detail 

later, seen its importance in this work (see 2. US3). Other notable early viral proteins are thymidine 

kinase (UL23), dUTPase (UL50) (Jons et al., 1997) and ribonucleotide reductase (UL39/UL40) (de Wind 

et al., 1993). The viral encoded dUTPase is responsible for the cleavage of deoxyuracyl-triphosphate 
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(dUTP) into deoxyuracyl-monophosphate (dUMP) and pyrophosphate. Further enzymatic activity leads 

to the conversion of dUMP to deoxythymidine-monophosphate (dTMP), which is phosphorylated by 

cellular thymidine kinase to deoxythymidine-diphosphate (dTDP). Viral thymidine kinase is required 

for the phosphorylation of dTDP to deoxythymidine-triphosphate (dTTP), one of the four crucial DNA 

building blocks (Chen et al., 2002; Kit et al., 1987; McGregor et al., 1985). Ribonucleotide reductase is 

required for the reduction of ribonucleotides into deoxyribonucleotides (Kaliman et al., 1994). While 

these enzymes are also encoded by host cells, viral encoded enzymes ensure viral replication in non-

dividing or terminally differentiated host cells (i.e., neurons) (Boldogkoi & Nogradi, 2003; Chen et al., 

2002). Furthermore, as opposed to cellular ribonucleotide reductase, the PRV-encoded enzyme is 

resistant to dTTP induced feedback inhibition (Ben-Porat & Kaplan, 1985) and PRV lacking this enzyme 

as well as lacking thymidine kinase is described to be highly attenuated in several animal models (Kit 

et al., 1985). 

Viral DNA synthesis occurs via a rolling-circle mechanism, resulting in linear, concatomeric (containing 

multiple copies of the same DNA sequences) genomes (Newcomb et al., 1999).  

Finally, late genes are transcribed, sometimes subdivided into early-late and true-late genes, encoding 

capsid, tegument and envelope proteins (Mettenleiter, 2000; Pomeranz et al., 2005). While the 

expression of immediate-early and early genes occurs entirely before viral genome replication, the 

expression of early-late genes already starts before replication but reaches a maximum level of 

transcripts during/after replication. The expression of true-late genes only occurs after replication.  

1.3.3 Virion assembly 

Assembly of new capsids occurs in the nucleus (Homa & Brown, 1997; Newcomb et al., 1999; Steven 

& Spear, 1997). Every capsid building block (UL38, UL35, UL25, UL19, UL18 and UL6) as well as two 

scaffold proteins UL26 and UL26.5 (VP24 and VP22a) need to be present (Pomeranz et al., 2005; Zhou 

et al., 1998). The latter two are only necessary for capsid formation, and are not present in the mature 

virion. Finally, the replicated, concatomeric PRV DNA is cleaved into smaller single-genome units, 

before it is packed into the capsid. PRV UL28 and UL17 are both known to be required for DNA cleavage 

and encapsidation (Klupp et al., 2005; Kwong & Frenkel, 1989; Ladin et al., 1980; Mettenleiter et al., 

1993; Salmon & Baines, 1998).  

1.3.4 Egress 

To get to the cytoplasm, the nucleocapsid has to cross the nuclear membrane, which is composed of 

an inner nuclear membrane, lined on the nuclear side by the nuclear lamina, and an outer nuclear 
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membrane. The capsids acquire their primary envelope and primary tegument by budding through the 

inner nuclear membrane into the perinuclear space, a process dependent on the herpesviral nuclear 

egress complex (NEC) consisting of UL31 and UL34 (Klupp et al., 2000; 2001; Passvogel et al., 2015). 

The primary enveloped virion then loses its envelope through fusion with the outer nuclear membrane, 

resulting in the release of naked capsids into the cytoplasm, a process that appears to be 

fundamentally different from fusion during entry (Fuchs et al., 2002b; Klupp et al., 2000). Fusion of the 

primary enveloped virion involves the activity of the viral US3 protein and will be further discussed 

below (see 2.2.2 Nuclear Egress) (Klupp et al., 2001; Schaap et al., 2005; Wagenaar et al., 1995). For 

HSV-1, gB and gH are also involved in this de-envelopment of primary enveloped virions, while this is 

not the case for PRV (Farnsworth et al., 2007; Klupp et al., 2008). Herpesviruses, including PRV, can 

also leave the nucleus by inducing nuclear envelope breakdown (NEBD) (Grimm et al., 2012; Klupp et 

al., 2011), which has recently been demonstrated to be UL46 dependent (Schulz et al., 2014).  

The cytoplasmic capsids contain only very little tegument (Granzow et al., 1997) and the addition of 

tegument proteins to the capsid is thought to be regulated by VP5 and UL37 (Fuchs et al., 2004; Klupp 

et al., 2002; Zhou et al., 1999). The secondary envelopment step then occurs at the trans-Golgi network 

(TGN), where the capsid buds into its lamellae and vesicles, generating a complete virus within a vesicle 

(Granzow et al., 1997; Whealy et al., 1991). Based on data from both PRV and HSV-1, secondary 

envelopment is instructed by UL11 and gM, directing tegument proteins, capsids and envelope 

glycoproteins to the TGN budding site. These proteins are conserved in all herpesviruses, probably 

indicative for their pivotal role in this process (Kopp et al., 2003; Mettenleiter, 2004; Mettenleiter et 

al., 2009). Recently, tegument proteins UL36 (VP1/2) and UL37 have been reported to be essential for 

secondary envelopment for HSV-1 viral egress (Kelly et al., 2014). 

Finally, the secondary enveloped, mature virion is transported to the cell surface, where exocytosis 

releases it in the extracellular space (Granzow et al., 2001; Granzow et al., 1997). Cellular proteins 

involved in the constitutive secretory pathway such as Rab6a, Rab8a and Rab11a were recently found 

to play a role in this process. They were found to be increased at the site of exocytosis just before and 

rapidly diffused after exocytosis (Hogue et al., 2014). 
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Figure 2: PRV replication cycle. Following attachment (1), virions fuse with the plasma membrane (2). Upon 
fusion, the nucleocapsid and tegument proteins are released in the cell and nucleocapsids are transported along 
microtubules towards the nuclear pore complex (3), where the viral DNA is released into the nucleus (4), and is 
replicated according to a rolling circle mechanism (5). VP16 transactivates cellular RNA polymerase II 
transcription of PRV’s only immediate early gene IE180 (6), inducing IE proteins, leading to transcription and 
expression of E genes (7), in turn regulating replication and transcription and expression of L proteins (8). Next, 
capsids assemble (9), encapsulate the genome (10) and bud into the perinuclear space, resulting in primary 
enveloped virions with a primitive tegument (11). The nucleocapsid loses its primary envelope through fusion 
with the outer nuclear membrane (12) and gains its final tegument and envelope by associating with tegument 
and envelope proteins (13) and budding in vesicles derived from the trans-Golgi network (14). A sorting vesicle 
finally delivers the mature virus to the cell surface (15), which is released in the extracellular space through 
exocytosis (16) (Adapted from (Mettenleiter, 2004)). 

 

1.4 PRV cell-associated spread 

Exocytosis of virus particles exposes them to extracellular detrimental molecules, such as antibodies, 

complement factors and enzymes, and allows their elimination by phagocytes. It therefore comes as 

no surprise that herpesviruses have developed several ways of cell-associated spread that protect 

them from the extracellular milieu and are mechanistically different depending on the cell type and 

the distance between cells (Nauwynck et al., 2007). An infected cell can either fuse with a neighboring 
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non-infected cell, leading to syncytium (multinucleated cell) formation. This process is coordinated by 

envelope glycoproteins gB, gH/gL and gK, which are essential for this process, while gE/gI and gM have 

a modulating function (Mettenleiter, 2000). Distant cells can also be connected by US3-mediated 

protrusions, formed by PRV-infected cells, allowing virus to travel to non-infected cells. This will be 

discussed in more detail below (see 2.2.5 Actin rearrangements). Furthermore, cellular adhesion 

molecules may also control the attachment of cells followed by virus spread from one to the other cell. 

This has been described for PRV-infected monocytes and endothelial cells (Van de Walle et al., 2003). 

1.5 Aujeszky’s disease 

Aujeszky’s disease was first described as “mad itch” in cattle, a disease characterized by heavy itching 

(Hanson, 1954). The first isolation of PRV was reported by the Hungarian veterinary surgeon, Aládar 

Aujeszky (Aujeszky, 1902). He inoculated rabbits with PRV-infected material, leading to symptoms that 

were reminiscent, yet distinguishable from rabies virus, hence the name pseudorabies virus. Soon after 

its discovery, the viral nature of PRV (Schmiedhofer, 1910) as well as it being the causative agent of 

mad itch (Shope, 1931) were confirmed.  

Although eradication programs have been successful in major parts of the USA and Europe (Pomeranz 

et al., 2005), PRV still remains an interesting tool to study alphaherpesvirus biology in general, which 

will be discussed further (see 1.6 PRV as a model organism to study alphaherpesvirus biology). 

1.5.1 Pathogenesis 

The natural host of PRV is the pig, but the virus infects a broad range of vertebrates, including sheep, 

cattle, dogs, cats, goats, chicken, raccoons, possums, skunks, rodents, rabbits, guinea pigs and rarely 

also horses, and is usually lethal in non-natural hosts (Field & Hill, 1974; Gustafson, 1986; Kimman et 

al., 1991; McCracken et al., 1973; Pensaert & Kluge, 1989; Pomeranz et al., 2005; Wittmann et al., 

1980). Symptoms before dying include ataxia, itching, scratching, and paralysis (Pomeranz et al., 2005). 

Higher order primates, including man, are not affected by the virus (Enquist, 1999; Kluge et al., 1999).  

Primary replication in pigs occurs in the upper respiratory tract, more specifically the nasal and 

oropharyngeal mucosa (Masic et al., 1965). This allows the virus to access the sensory nerve endings 

innervating the site of infection, leading viral particles to the trigeminal, glossopharyngeal and 

olfactory nerves through retrograde transport (Maes et al., 1997). The virus spreads through lymph 

and blood vessels to internal organs, with reproductive organs being an important target. As 

replication occurs in the respiratory tract, central nervous system and reproductive organs, it is not 
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surprising that the main pathological symptoms are respiratory, nervous and reproductive disorders 

(Pomeranz et al., 2005).  

In the trigeminal and sacral ganglia, PRV is described to enter a state of quiescence, called latency, 

concealing the presence of the virus infection. These sites are also the predominant sites of latency for 

human herpesviruses HSV-1 and HSV-2 (Whitley, 2001).  During latency, the virus is present as an 

episome (segment of DNA that exists autonomously) in infected cells, without detectable production 

of viral proteins and virions. Reactivation and shedding of the virus in latently infected individuals is 

often triggered by stress factors. For PRV, these might be concomitant disease conditions, vehicular 

transport, poor animal care, farrowing and treatment with immunosuppressive agents (Davies & 

Beran, 1980; Rziha et al., 1986; Rziha et al., 1989; Thawley et al., 1984; van Oirschot & Gielkens, 1984; 

Wittmann et al., 1983).  

PRV infection in suckling piglets usually leads to their death, as a result of viral encephalitis. Initial 

symptoms include listlessness and disinterest in nursing, which later change to neurologic symptoms 

as trembling, excessive salivation, uncoordinated movements, ataxia and seizures within 24 h of the 

initial symptoms (Kluge et al., 1999). In weaned pigs from 3-6 weeks old, the symptoms are 

comparable, except that the mortality rate drops to ± 50%. Infected animals develop respiratory signs 

(including sneezing, nasal discharge, coughing and breathing difficulties, leading to significant weight 

reduction) a direct economic loss for farmers (see 1.5.2 Economic impact). Careful nursing may reduce 

mortality rates to 10% (Kluge et al., 1999). Next to respiratory symptoms, adult swine may exhibit 

reproductive disorders (including stillbirths, abortions or weakened piglets), again having economic 

consequences (see 1.5.2 Economic impact). Additionally, sporadic neurological symptoms have been 

described, varying from mild muscle tremors to severe convulsions. Since late 2011, however, a highly 

virulent strain characterized by neurologic symptoms and high mortality even in adult pigs has been 

detected on several farms in China, the PRV TJ strain (or HeN1/JS-2012 strain)  (An et al., 2013; Luo et 

al., 2014; Wang et al., 2014a; Wu et al., 2013; Yu et al., 2014). Sequence analysis of 39 PRV isolates 

demonstrated that the PRV gE gene of PRV TJ showed 2 aspartic acid insertions (An et al., 2013). In 

other PRV strains, mortality in infected adult animals is usually relatively low, and rarely exceeds 1-2%.  

1.5.2 Economic impact 

Severe outbreaks of pseudorabies occurred during 1960-1970 in the US and Europe, correlating with 

an increase in pork production (Kluge et al., 1999; Nauwynck et al., 2007). These outbreaks resulted in 

devastating disease with great economic impact worldwide. Economic losses are caused by the 

development of pneumonia in infected animals, leading to significant weight loss (Kluge et al., 1999) 

or result from stillbirths, abortions or weakened piglets born from an infected sow, as PRV might cross 
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the placenta and infect animals in utero (Kluge et al., 1999). To limit these losses, expensive eradication 

programs were introduced, including slaughter of infected animals, vaccination, limitations in animal 

transport, decontamination procedures and improvements in herd management. Eventually, these 

measures led to the eradication of PRV in large parts of the US and Europe, including Belgium 

(Pomeranz et al., 2005). 

However, full eradication has been compromised. Infection is re-emerging from the increasing 

reservoir of infected feral swine in the USA as well as in Japan (Hahn et al., 2010; Mahmoud et al., 

2011; Yamane et al., 2015). While PRV isolates from feral swine are more attenuated than isolates 

from domestic swine, this could still pose an important economic risk (Hahn et al., 2010). Additionally, 

the Bartha-K61 vaccine, which provided 100% protection against lethal challenge with PRV (An et al., 

2013; Gu et al., 2015), only provided 50% protection against the recent and more virulent Chinese PRV 

TJ strain (or JS-2012/HeN1 strains) (An et al., 2013; Luo et al., 2014; Wang et al., 2014a). Hence, to 

allow early detection of recent strains, novel and rapid PRV detection assays were required (Luo et al., 

2015; Wernike et al., 2014; Zeng et al., 2014). Recent research shows that, following immunization 

with a gE deleted TJ strain, piglets did not exhibit clinical signs and were protected from lethal 

challenge with PRV TJ, pointing towards the potential of this gE deleted strain to control the ongoing 

epidemic in China (Wang et al., 2014a).  

1.6 PRV as a model organism to study alphaherpesvirus biology 

Despite its eradication in several Western countries, PRV remains an important research target 

because of its homology with other alphaherpesviruses, providing considerable insights in general 

aspects including virology, neurobiology, cellular biology and immunology (Enquist, 1999; Enquist & 

Card, 2003; Mettenleiter, 2000; Pomeranz et al., 2005). These are summarized in Figure 3.   

Due to its broad host range in vertebrates, excluding higher primates, a lot of animal models are 

available for experiments, without posing a threat towards the researcher. Infections can be studied 

in (cells of) the natural host, which is especially relevant since no natural alphaherpesviruses of small 

laboratory animals have been described thus far. Additionally, infection of cell cultures leads to high 

viral titers, which is a useful technical advantage (Enquist, 1999; Pomeranz et al., 2005). The full 

genome sequence of PRV is known, DNA can be purified and is still infectious, bacterial artificial 

chromosomes (BACs) containing the full genome have been made (Kopp et al., 2003; Smith & Enquist, 

1999) and different mutations have already been successfully introduced (Enquist, 1999). This allows 

the functional analysis of every PRV gene in tissue culture or animal models, providing an excellent 

tool to increase knowledge of not only PRV, but also other herpesviruses. 
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Additionally, because of its neurotropic properties and broad host range, PRV can be used as a 

neuronal tracer to identify the structure of synaptic pathways. The Bartha strain of PRV is often used 

to identify neuronal networks, as this strain only displays retrograde (towards to neuronal cell body 

through its axon) and not the opposite anterograde spread (Aston-Jones & Card, 2000; Enquist, 1999; 

Enquist & Card, 2003; Enquist et al., 1998).  

General knowledge of alphaherpesvirus biology obtained through PRV research can lead to the 

development of new vaccines, diagnostical applications and antiviral therapies for man and animal, 

but also to new insights into host cell biology and the immune system of the host (Enquist, 1999; 

Pomeranz et al., 2005).  

 

 

Figure 3: PRV as a model system for alphaherpesviruses. This figure summarizes the most important benefits and 
applications/advantages using PRV as an alphaherpesvirus model organism. 
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2. US3 

2.1 Introduction 

The US3 protein is encoded by every alphaherpesvirus that has currently been identified (Frame et al., 

1987; Hanks et al., 1988; Heineman et al., 1996; McGeoch & Davison, 1986; Purves et al., 1987). Soon 

following the discovery that US3 of HSV-1 and HSV-2 showed homology with cellular protein kinases 

(McGeoch & Davison, 1986), US3 was identified in HSV-1 as a viral serine/threonine protein kinase by 

using kinase assays and antisera (Frame et al., 1987).   

The minimal consensus phosphorylation sequence of PRV US3 is RnX(S/T)ZZ, where n is larger or equal 

to 2; X can be Arg, Ala, Val, Pro, Ser or absent, and Z can be any non-acidic amino acid except proline 

(Leader et al., 1991; Purves et al., 1986). In these consensus sequences, arginine (R) residues may be 

substituted by lysine (K) residues, without loss of recognition and phosphorylation (Pike et al., 2008). 

The optimal consensus phosphorylation sequence is similar, except that n ≥ 3 and X is not absent 

(Leader, 1993; Leader et al., 1991; Purves et al., 1986). Interestingly, the PRV US3 consensus site is 

largely comparable to that of HSV-1, HSV-2 and VZV US3 (ORF66) (Daikoku et al., 1993; Eisfeld et al., 

2006; Purves et al., 1986) and to that of the cellular protein kinase A (PKA) which is RRX(S/T)Φ where 

Φ tends to be a hydrophobic residue (Benetti & Roizman, 2004; Kato et al., 2009). US3 function and 

localization both seem to be affected by autophosphorylation on serine 147 in HSV-1 and HSV-2 (Kato 

et al., 2008; Morimoto et al., 2009). 

Every alphaherpesvirus US3 ortholog has a kinase domain of around 280-300 amino acids that includes 

the ATP-binding domain and the catalytic active site (van Zijl et al., 1990). PRV US3 shares 39% amino 

acid identity with HSV-1 and HSV-2 orthologs, while HSV-1 and HSV-2 US3 share 75% identity 

(McGeoch & Davison, 1986). However, the sequence similarity of the kinase domains between 

different alphaherpesviruses is significantly higher. Two amino acids are absolutely conserved in the 

US3 kinase domain of alphaherpesviruses (Deruelle et al., 2010). In PRV, these are found at lysine 136, 

which is a critical residue for ATP binding and at aspartic acid 223, which is a crucial residue for catalytic 

activity. These residues were targeted by mutagenesis, resulting in recombinant viruses and expression 

vectors encoding kinase-inactive US3 (Coller & Smith, 2008; Deruelle et al., 2007; Finnen & Banfield, 

2010; Kinchington et al., 2000; Ryckman & Roller, 2004). Recombinant PRV or HSV-1 viruses either 

lacking US3 or expressing kinase-deficient US3 show only slightly reduced growth characteristics in 

most cell cultures whereas their virulence is strongly impaired in pigs (PRV) and mice (HSV) (Coller & 

Smith, 2008; Inagaki-Ohara et al., 2001; Kimman et al., 1994; Meignier et al., 1988; Nishiyama et al., 

1992; Purves et al., 1987; Reynolds et al., 2002; Ryckman & Roller, 2004; Sagou et al., 2009; Van den 
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Broeke et al., 2009a). This is comparable to findings in VZV, where kinase-deficient ORF66 displayed 

severe growth and replication defects in primary human corneal stromal fibroblasts, while an 

insignificantly reduced growth was observed in a fibroblast cell line (Erazo et al., 2008). 

A particular feature of the PRV and HSV-1 US3 genes, compared to those of other alphaherpesviruses, 

is that both contain two transcriptional start sites and encode two US3 isoforms: a minor long isoform 

(390 AA, 53 kDa) and a major short isoform (336 AA, 41 kDa) (Poon et al., 2006a; Poon & Roizman, 

2005; van Zijl et al., 1990). In PRV, the short truncated protein for which translation starts at the second 

start codon represents more than 95% of the total US3 protein in infected cells (van Zijl et al., 1990). 

While both isoforms are expressed in infected cells, only the short one is incorporated in the PRV virion 

(Klupp et al., 2001; Lyman et al., 2003; Zhang et al., 1990). The isoforms have different cellular 

localizations, as the long isoform contains an N-terminal mitochondrial localization signal (Calton et 

al., 2004; Van Minnebruggen et al., 2003), causing the long isoform to predominantly reside in 

mitochondria, while the short isoform is mainly located in the nucleus. US3 has also been detected in 

the cytoplasm and at cell membranes (Brzozowska et al., 2010; Calton et al., 2004). These different 

localizations may be reflected in the different US3 functions.  

2.2 Functions 

Many viruses have evolved multifunctional proteins, probably because of their restricted genome size. 

Due to their ability to affect different substrates, viral kinases almost invariably have several functions. 

The US3 protein is associated with a plethora of different functions, including anti-apoptotic activity, 

nuclear egress, gene expression, immune evasion and actin rearrangements. It is likely that not all 

phenotypes that are caused by US3 are equally important for the virus, and an important challenge is 

to discriminate the relevant biological interactions from the less important interactions or artifacts. An 

overview of the functions attributed to US3 orthologs from different alphaherpesviruses is given in 

Figure 4. 
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Figure 4: Functions associated with US3 orthologs of different alphaherpesviruses. (Adapted from (Jacob et al., 
2011)). 

 

2.2.1 Anti-apoptotic activity 

Apoptosis of infected cells may result from either the direct cellular response to viral infection or may 

be triggered by immune cells, particularly cytotoxic T-lymphocytes (CTLs) or natural killer (NK) cells. 

Apoptosis of virus-infected cells early in the viral replication represents an intrinsic antiviral response, 

a form of innate immunity. Cellular proteins eliciting and/or regulating these responses are often 

constitutively present in uninfected cells, so they can act as soon as infection occurs, or they may be 

upregulated by viral infection (Koyama et al., 2000; Yan & Chen, 2012). In order to prolong intracellular 
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replication and promote spread, several viruses, including herpesviruses, have developed strategies to 

prevent apoptosis.  

The US3 protein of several herpesviruses, including HSV-1, HSV-2, PRV, BHV-5, and MDV, displays anti-

apoptotic activity, but BHV-1 US3 has no anti-apoptotic effect (Asano et al., 1999; Geenen et al., 2005; 

Ladelfa et al., 2011; Leopardi et al., 1997; Murata et al., 2002b; Schumacher et al., 2008; Takashima et 

al., 1999). The kinase activity of HSV-1, PRV, BHV-5 and MDV US3 has been reported to be required for 

this function (Cartier et al., 2003b; Deruelle et al., 2007; Ladelfa et al., 2011). For PRV, the long isoform 

of US3 appears to mediate the strongest anti-apoptotic effect, although this is the less abundant 

isoform in infected cells (Chang et al., 2013; Geenen et al., 2005). This can likely be explained by its 

mitochondrial localization, where some of its potential targets in the apoptotic pathway are located. 

The short isoform of US3, as mentioned higher, is predominantly located in the nucleus. 

Several phosphorylation targets involved in the HSV-1 US3-mediated suppression of apoptosis have 

been identified, including Bad, Bid, and procaspase-3, pointing at the involvement of US3 in different 

anti-apoptotic pathways (Benetti & Roizman, 2007; Cartier et al., 2003b). PRV US3 has also been 

reported to lead to phosphorylation (and thereby inactivation) of the pro-apoptotic cellular protein 

Bad (Deruelle et al., 2007). Protein kinase A (PKA) inhibits apoptosis by phosphorylation and 

inactivation of Bad (Harada et al., 1999). US3 of HSV-1 activates PKA and at the same time functionally 

overlaps PKA by targeting the same phosphorylation substrates, thereby interfering with apoptosis 

(Benetti & Roizman, 2004). Recently, anti-apoptotic signaling proteins PI3K/Akt and NF-κB were also 

shown to be targeted by HSV-1 and PRV US3 (Chang et al., 2013; Wang et al., 2014b) (see 2.2.4 Immune 

evasion). However, whereas HSV-1 US3 inactivates NF-κB activity, PRV US3 activates NF-κB activity 

(Chang et al., 2013), demonstrating the requirement for more studies to elucidate the precise role of 

these processes. HSV-1 US3, but also VZV, HSV-1 and PRV US3 phosphorylate and activate Akt 

substrates (Chuluunbaatar et al., 2010; Erazo et al., 2011), while PRV US3 is also described to activate 

Akt itself and its upstream molecule PDK-1 (Chang et al., 2013), thus having a similar outcome. 

Furthermore, HSV-1 US3 was described to interact with programmed cell death protein 4 (PDCD4), 

causing retention of PDCD4 in the nucleus and subsequently blocking apoptosis (Wang et al., 2011). 

To some extent, PRV US3 also seems to interact with the cellular p21-activated kinase PAK1 to inhibit 

apoptosis (Van den Broeke et al., 2011). Finally, HSV-1 gB and US3 were reported to collaborate in 

downregulating cellular antigen presenting molecule CD1d to inhibit recognition and killing by Natural 

killer T cells (NKT) (Rao et al., 2011). HSV-1 US3 also reduces induction of cytotoxic T lymphocytes in 

mice by indirectly downregulating MHC-I (Rao et al., 2011) (see 2.2.4 Immune evasion). 
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This broad substrate spectrum might explain how US3 is able to inhibit apoptosis induced by very 

diverse apoptotic stimuli, including herpesvirus infection itself, granzyme B  released by cytotoxic T 

lymphocytes, overexpression of Bcl-2 family members Bad and Bax, staurosporine, and sorbitol (Asano 

et al., 1999; Cartier et al., 2003a; Cartier et al., 2003b; Chang et al., 2013; Hata et al., 1999; Jerome et 

al., 1999; Leopardi et al., 1997; Munger & Roizman, 2001; Murata et al., 2002a; Ogg et al., 2004; Van 

den Broeke et al., 2011).  

The anti-apoptotic activity of US3 during early stages of infection is often assumed to permit increased 

replication of the virus, which may result in an increased yield of progeny virus. This may explain the 

lower end-point titers of kinase-dead US3 or US3null variants of PRV, HSV or MDV in several cell types 

(Coller & Smith, 2008; Demmin et al., 2001; Deruelle et al., 2010; Kimman et al., 1994; Reynolds et al., 

2002; Ryckman & Roller, 2004; Schumacher et al., 2008; Van den Broeke et al., 2009a; Van 

Minnebruggen et al., 2003). However, in contrast to this view, inhibition of apoptosis using a caspase 

inhibitor did not increase virus progeny yield of US3null PRV, questioning the contribution of the anti-

apoptotic effect of US3 to increased virus production and viral spread (Deruelle et al., 2010). 

2.2.2 Nuclear egress 

In 1995, a first report was published illustrating the involvement of US3 in nuclear egress (Wagenaar 

et al., 1995). Alphaherpesviruses and herpesviruses in general, use a unique system to transport 

progeny nucleocapsids out of the nucleus and into the cytoplasm. As described higher, nucleocapsids 

undergo primary envelopment by budding in the inner nuclear membrane, followed by fusion with the 

outer nuclear membrane, releasing the capsid into the cytoplasm (Mettenleiter et al., 2009) (see 1.3.4 

Egress). In cells infected with US3null PRV, HSV-1, or MDV, infective virions aggregate within the 

perinuclear space in large invaginations (Klupp et al., 2001; Reynolds et al., 2002; Schumacher et al., 

2005; Wagenaar et al., 1995; Wild et al., 2015), suggesting a conserved role for the US3 kinase in the 

de-envelopment step during nuclear egress. However, this defect in capsid nuclear export is not 

absolute, since extracellular virus titers are only mildly reduced in the absence of US3 (Coller & Smith, 

2008; Reynolds et al., 2002; Ryckman & Roller, 2004; Van den Broeke et al., 2009a; Van Minnebruggen 

et al., 2003; Wild et al., 2015). Since these initial reports, US3 has been described to be implicated in 

different steps of the nuclear egress pathway. Lamin A/C and emerin, key elements of the nuclear 

lamina network, are phosphorylated by HSV-1 US3 (Leach et al., 2007; Morris et al., 2007; Mou et al., 

2007; Mou et al., 2008), which likely contributes to disruption of the nuclear lamina, a barrier for 

virions to reach the inner nuclear membrane.  

Additionally, infection with US3null HSV-1 or PRV also results in an altered distribution of the viral UL34 

and UL31 proteins, both crucial regulators of primary envelopment of nucleocapsids (see 1.2.4 



Introduction 

19 
 

Envelope and 1.3.4 Egress), from a roughly continuous distribution to one in discrete aggregates 

(Klupp et al., 2001; Reynolds et al., 2001). For HSV-1, this relocalization of the envelopment machinery 

is regulated by phosphorylation of the N-terminus of UL31 by US3 (Mou et al., 2009). HSV-1 US3 forms 

a complex not only with UL31 and UL34, but also with IE protein ICP22 and UL47 (VP13/VP14), both 

recently identified as regulators of nuclear egress (Liu et al., 2014; Maruzuru et al., 2014).   

In HSV-1, gB, together with gH, has been suggested to be involved in de-envelopment of the primary 

enveloped virion with the outer nuclear membrane (Farnsworth et al., 2007). HSV-1 US3 was described 

to phosphorylate the cytoplasmic domain of gB, which may contribute to the role of gB during this de-

envelopment step (Imai et al., 2011; Imai et al., 2010; Wisner et al., 2009). The latter may not be a 

conserved function of alphaherpesviruses since, for PRV, neither gB nor gH appears to be present at 

the nuclear membranes and neither protein functions in the nuclear egress of virions (Granzow et al., 

2001; Klupp et al., 2008). Besides affecting nuclear egress, HSV-1 US3-mediated gB phosphorylation 

regulates endocytosis of gB and also affects HSV-1 pathogenesis in mouse models (Imai et al., 2011; 

Imai et al., 2010; Kato et al., 2009; Wisner et al., 2009). 

2.2.3 Gene expression 

Over the last couple of years, it has become clear that US3 is able to affect gene expression. US3 

orthologs of HSV-1, HSV-2, PRV, and VZV were all described to phosphorylate histone deacetylases 

(HDAC)-1 and -2, affecting their enzymatic activity, localization and interaction with downstream 

substrates (Morimoto et al., 2009; Poon et al., 2006b; Walters et al., 2009; Walters et al., 2010). HDACs 

coordinate deacetylation of lysine residues of histone tails, inducing chromatin condensation and 

thereby repressing gene expression (Grozinger & Schreiber, 2002). Herpesviruses need to interfere 

with HDAC activity in order to enable efficient viral gene expression (Danaher et al., 2005; Poon et al., 

2003).  

HSV-1 and HSV-2 US3 phosphorylate HDAC-1 and -2 directly (Kato et al., 2008; Morimoto et al., 2009; 

Poon et al., 2006b; Poon et al., 2003; Poon & Roizman, 2005; 2007), although there are indications 

that not only VZV and PRV US3, but also HSV-1 US3 phosphorylate HDACs indirectly by activating a yet 

unknown cellular kinase pathway (Walters et al., 2009; Walters et al., 2010).  

In contrast to its HSV-1 and VZV US3 orthologs, PRV US3 appears not essential for phosphorylation of 

HDACs, as phosphorylation still occurred in the absence of US3 (Walters et al., 2010). Furthermore, 

HDAC inhibition induced a higher plaque number in PRV and VZV US3null virus infected cells, but not 

in HSV-1 US3null virus infected cells. Both findings point to virus-dependent differences in the 



Chapter 1 

20 
 

mechanism and importance of US3-mediated HDAC modification (Walters et al., 2009; Walters et al., 

2010). 

VZV US3 has also been described to regulate gene expression in another way. Both ORF66 and the 

second viral kinase, ORF47, phosphorylate IE62, a viral nuclear transcription regulating protein. 

Phosphorylated IE62 accumulates in the cytoplasm, where it is incorporated in newly formed virions. 

The nuclear import of IE62 is thereby reduced, obstructing gene expression (Eisfeld et al., 2006; Erazo 

& Kinchington, 2010). The authors postulate that this interaction may come to play during VZV latency 

(Erazo & Kinchington, 2010). 

2.2.4 Immune evasion 

Herpesviruses have developed various mechanisms to interfere with major components of the host 

immune system (Costa et al., 2012). US3 has been implicated in some of these virus immune evasion 

strategies, particularly in herpesvirus interference with the interferon system, with cytotoxic T 

lymphocytes and with virus-neutralizing antibodies.  

The most immediate line of response to pathogens is generated by the innate immunity. The innate 

response is very rapid and potent but relatively unspecific, in contrast to the adaptive immune 

response, which is more specific, but needs more time to come to full effect. Several components of 

the innate immune system work through recognition of specific pathogen-associated molecular 

patterns (PAMPs) by host pattern-recognition receptors (PRRs), which initiates signal transduction 

pathways that result in elimination of virions and virus-infected cells and the production of interferon 

(IFN) and pro-inflammatory cytokines, such as IL-1 and TNF-α (Takeuchi & Akira, 2007). Interferon 

regulates the expression of interferon stimulated genes (ISGs), inducing an antiviral, antiproliferative 

and immunoregulatory state in the host cells (Haller et al., 2007; Haller & Weber, 2007; Weber & 

Haller, 2007). All herpesviruses trigger the induction of type I IFN during a primary infection (Costa et 

al., 2012).  

US3 acts on different fronts to counteract interferon-induced antiviral effects. HSV-1 US3 has been 

reported to interfere with IFN-β synthesis (Peri et al., 2008) and was also suggested to be involved in 

overcoming the antiviral state induced by IFN (Piroozmand et al., 2004). HSV-1 US3 also downregulates 

type I interferon-inducible protein MxA expression, one of the IFN-induced antiviral proteins (Peri et 

al., 2008; Piroozmand et al., 2004). Furthermore, HSV-1 US3 phosphorylates the interferon gamma 

(IFN-γ) receptor, leading to disturbed IFN-γ dependent gene expression (Liang & Roizman, 2008). VZV 

US3 (ORF66) has also been shown to reduce IFN signaling, when adding IFN-γ to infected T-cells 

(Schaap et al., 2005).   
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US3 may also interfere with signaling initiated by TNF-α, another pro-inflammatory cytokine. Indeed, 

HSV-1 US3 inhibits TNF-α-stimulated NF-κB signaling (see 2.2.1 Anti apoptotic activity) via 

hyperphosphorylation of p65, thereby decreasing the expression of the inflammatory chemokine 

interleukin-8 (IL-8) (Wang et al., 2014b). 

US3 may also affect the adaptive immune response. Cytotoxic T-lymphocytes (CTLs) have been 

reported to be functionally altered following contact with HSV-infected cells, losing their ability to 

release cytotoxic granules and to synthesize cytokines when triggered through the T-cell receptor (TCR) 

(Sloan et al., 2003; York & Johnson, 1993). In HSV-1 and -2, this CTL inactivation seems to depend on 

US3, ICP4 and UL54 (Sloan et al., 2003). The effect on the T-cells and the mechanisms underlying 

inactivation are not completely understood, but it may give HSV an advantage in establishment of 

latency or during reactivation and could favor viral replication through the observed selective 

production of the anti-inflammatory cytokine interleukin-10 (IL-10) (Sloan & Jerome, 2007; Sloan et 

al., 2003). 

CTLs recognize infected cells because the latter express major histocompatibility complex I (MHC-I) 

molecules loaded with viral peptides on their surface, which can then be recognized by the T cell 

receptor (Hansen & Bouvier, 2009; Horst et al., 2011). The MHC I antigen presentation pathway 

therefore represents an important threat for the virus. It may therefore come as no surprise that 

numerous reports show that several herpesvirus proteins interfere with MHC I antigen presentation, 

via a variety of mechanisms (Hansen & Bouvier, 2009; Horst et al., 2011). Proteins like the immediate-

early ICP47 in HSV (Ahn et al., 1996; Cioni et al., 2013; Fruh et al., 1995; Jugovic et al., 1998; Tomazin 

et al., 1996; Tomazin et al., 1998) and UL49.5 (gN) in BHV-1, PRV, EHV-1 and -4 as well as MDV 

(Koppers-Lalic et al., 2005; Koppers-Lalic et al., 2008) are major players in herpesvirus interference 

with MHC class I presentation by interfering with TAP (Transporter associated with antigen 

processing)-mediated transport of cytoplasmic viral peptides to the MHC I molecules in the ER.  

In VZV, US3 (ORF66) has also been implicated in interference with MHC-I antigen presentation, by 

abrogating transport of MHC I molecules through the Golgi complex (Abendroth et al., 2001; Eisfeld et 

al., 2007). Interestingly, the kinase activity of US3/ORF66, although beneficial, is not required for MHC-

I downregulation (Eisfeld et al., 2007). 

PRV US3 has been reported to be involved, but not sufficient, in the downregulation of MHC I cell 

surface expression. This involvement was highly cell-type dependent, as it was observed in porcine 

kidney (PK-15) cells but not in swine testicle (ST) or pulmonary alveolar macrophage (PAM) cells and 

the underlying mechanism is still unclear (Deruelle et al., 2009). Also in HSV-1, US3-mediated 

downregulation of MHC I has been reported. Like for PRV US3, this effect appeared to rely on an 
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indirect mechanism, since US3 expression alone was not sufficient for MHC I downregulation, nor did 

US3 trigger phosphorylation of MHC I (Imai et al., 2013). In addition, HSV-1 US3, together with gB, has 

been reported to downregulate cell surface MHC I like molecule CD1d, potently abrogating recognition 

of CD1d by natural killer T (NKT) cells (Rao et al., 2011) (see 2.2.1 Anti apoptotic activity).  

US3 also evades host immune responses by reducing viral glycoprotein expression on the cell surface.  

HSV-1 US3 specifically phosphorylates gB on position T887 (cytoplasmic domain), thereby regulating 

nuclear egress (see 2.2.2 Nuclear egress) (Imai et al., 2010; Kato et al., 2009; Wisner et al., 2009). This 

phosphorylation also results in a downregulation of gB from the surface of infected cells, which may 

serve as an important immune evasion mechanism as surface expressed gB is a potent inducer of both 

B- and T-cell responses (Kato et al., 2009) (see 2.2.1 Anti apoptotic activity). Furthermore, this may 

also affect NK cell-mediated cell lysis, since lysis of HSV-infected cells by NK-cells is correlated with the 

level of surface expressed gB (Kato et al., 2009). Downregulation of cell surface gB has also been 

observed in PRV-infected cells and was also suggested to serve as a viral immune evasion mechanism 

there, although it is unknown whether US3 is involved in this process (Favoreel et al., 1999; Favoreel 

et al., 2002; Van Minnebruggen et al., 2004).  

As mentioned above, during cell-free spread, virions in the extracellular environment are vulnerable 

for inactivation by several host factors, particularly neutralizing antibodies. Both in infected and 

transfected cells, PRV US3 induces the formation of cellular protrusions, consisting of both actin and 

microtubules, contacting distant uninfected cells (Favoreel et al., 2005). Virus particles can migrate in 

these protrusions, providing a virus cell-cell spread route that is shielded from virus neutralizing 

antibodies (Favoreel et al., 2000; Favoreel et al., 2005). US3-induced cell projections have also been 

reported for HSV-2, BHV-1, and BHV-5 (Brzozowska et al., 2010; Finnen et al., 2010; Ladelfa et al., 

2011). This function of US3 will be described in more detail further (see 2.2.5 Actin rearrangements 

and 4.2 Egress). 

2.2.5 Actin rearrangements 

US3 of several alphaherpesviruses induces drastic cytoskeletal rearrangements in infected or 

transfected host cells, typically consisting of actin stress fiber breakdown and/or the formation of long 

protrusions (sometimes also referred to as filamentous processes), containing both actin and 

microtubules. The latter were reported for PRV, HSV-2, BHV-1 and BHV-5 (Brzozowska et al., 2010; 

Calton et al., 2004; Favoreel et al., 2005; Finnen et al., 2010; Ladelfa et al., 2011; Van den Broeke et 

al., 2009a; Van den Broeke et al., 2009b). This will be discussed in more detail further on (see 4.2 

Egress).   
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3. The actin cytoskeleton and Rho GTPases 

3.1 Introduction 

The actin cytoskeleton is a dynamic, three-dimensional network composed of actin polymers and 

various associated actin binding proteins (ABP). Its main functions are providing cellular rigidity and 

structure, as well as regulating crucial cellular processes including phagocytosis, cellular movement, 

cytokinesis and intracellular trafficking and communication (Croise et al., 2014; Deschamps et al., 

2013; Disanza et al., 2005; Pantaloni et al., 2001; Pollard & Borisy, 2003; Pollard & Cooper, 2009).  

The actin cytoskeleton is anchored to regions of cell-cell contact termed adherens junctions. In 

continuous sheets of epithelial cells, these junctions keep cells together in a tissue by forming an 

interconnected lateral bridge that links the actin cytoskeleton of neighboring cells (Harris & Tepass, 

2010; Meng & Takeichi, 2009). Cadherins form a complex with cytoplasmic proteins called catenins, 

serving as a site of attachment of actin bundles, thereby mediating intercellular contacts at adherens 

junctions (Cooper, 2000; Huveneers & de Rooij, 2013; Weber et al., 2011). Focal adhesions or cell-

matrix adhesions consist of integrin complexes, connecting the extra cellular matrix (ECM) to actin 

filaments, providing strength to lateral contacts between adjacent cells on planar substrates (Partridge 

& Marcantonio, 2006) (Figure 5).  

 

Figure 5: Adherens junctions and focal adhesions mediate adhesion in epithelial cells. Adherens junctions 
facilitate cell-cell adhesion by connecting actin filament bundles between adjacent cells, while focal adhesions 
or cell-matrix adhesions anchor cellular actin filaments to the extracellular matrix (ECM). Red lines: actin 
filaments. 
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3.2 Composition 

Actin is a globular protein with a mass of 43 kDa and represents the most abundant protein in 

eukaryotic cells. Two basic forms of actin can be distinguished: monomeric globular actin (G-actin) and 

polymeric fibrous or filamentous actin (F-actin) (Disanza et al., 2005). Actin filaments are formed by 

head to tail-association of G-actin. Actin filaments are consequently structurally and kinetically 

polarized, characterized by a fast-growing (barbed) end and a slow-growing (pointed) end and are 

subject to continuous ATP hydrolysis. Under physiological conditions, Mg2+/ATP-bound actin molecules 

are incorporated at the barbed end. Slow hydrolysis then converts ATP-actin monomers into ADP-Pi-

actin monomers. As only the barbed end grows, the relative position of an actin monomer in the 

filament moves to the pointed end, where it dissociates and recycles back into the actin monomer 

pool. Pi is not released immediately and remains noncovalently bound for some time to ADP-actin in 

the filament (Vavylonis et al., 2005). The nucleotide of released ADP-actin is exchanged for ATP, a 

process catalyzed by the actin binding protein (ABP) profilin (Mockrin & Korn, 1980), allowing 

participation of ATP-actin in a new polymerization cycle. This continuous dynamic actin filament 

turnover or treadmilling is required for the formation of protrusive actin structures, cellular motility 

and movement of cytosolic components (Blanchoin et al., 2014; Chang et al., 2003; Disanza et al., 2005; 

Van Troys et al., 2008) (Figure 6). Essential herein is the orientation of the polarized actin filaments, 

e.g. with their fast growing barbed end towards the membrane in protrusive structures (see 3.3.3 

Other actin structures). 

 

Figure 6: Actin treadmilling occurs through association of ATP-monomers at barbed ends and dissociation of 
ADP-monomers at pointed ends, resulting in monomer cycling through the filament. Light grey circles: ADP actin 
monomers; medium grey circles: ADP-Pi actin monomers (ADP with inorganic phosphate (Pi) bound 
noncovalently in the γ-phosphate position as a result of ATP hydrolysis); dark grey circles: ATP actin monomers 
(Adapted from (Littlefield & Fowler, 2002)). 
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3.3 Actin filament-based structures 

The coordinated action of actin nucleation, polymerization and depolymerization ultimately leads to 

the formation of different filamentous actin structures. In cells this is driven by the regulated activity 

of a vast array of actin binding proteins. Actin meshworks or bundles can be formed, such as cortical 

actin or stress fibers (Taylor et al., 2011). Furthermore, sheet-like extensions can be formed, such as 

lamellipodia, membrane ruffles, but also finger-like protrusions, such as microvilli and filopodia (Taylor 

et al., 2011). Podosomes are dot-like actin structures (Taylor et al., 2011). The most relevant 

cytoskeletal structures for this thesis will be discussed below and are schematically summarized in 

Figure 7. 

3.3.1 Stress fibers 

Stress fibers are composed of actin filaments, bundled together in packs of 10-30 (Cramer et al., 1997). 

The actin crosslinking protein α-actinin keeps these bundles together, although other actin-

crosslinking proteins, such as fascin, espin and filamin have also been described (Adams, 1995; Chen 

et al., 1999; Lazarides & Burridge, 1975; Wang et al., 1975). Stress fibers are attached to the plasma 

membrane at focal adhesions through interactions with integrins (Cooper, 2000; Weber et al., 2011). 

Stress fibers show a strong similarity with muscle sarcomeres, as in both cases α-actinin shows a 

periodic staining across the bundle, alternating with myosin II (Lazarides & Burridge, 1975). However, 

the sarcomeric model does not describe the complexity of stress fibers very adequately: analysis of 

non-muscle cells has shown that actin filaments within stress fibers indeed show alternating polarity, 

as is the case in sarcomeres, but there is a range of possible orientations. While some stress fibers 

display a uniform filament polarity, others have a complete random orientation (Cramer et al., 1997). 

In motile cells, however, the polarity of the majority of stress fibers is organized in the same way: 

barbed ends pointing outwards at the ends of the fiber (at the focal adhesion) and alternated 

polarization within the middle of the fiber (Cramer et al., 1997). 

Three types of actin stress fibers have been distinguished: (1) ventral stress fibers, which are many 

micrometers long and are anchored at each end of the cell by focal adhesions, (2) dorsal stress fibers 

(also referred to as radial stress fibers), which are usually shorter and are only anchored at one end of 

the cell to a focal adhesion or focal adhesion complex and (3) transverse arcs, which are contractile 

bundles of actin filaments in migrating or spreading cells, typically displaying a convex shape and move 

away from the leading edge of the cell (Heath & Holifield, 1993; Soranno & Bell, 1982). Because the 

latter are not directly anchored at adhesions, they were not originally classified as stress fibers, but 

they frequently are, as they give rise to ventral stress fibers, together with dorsal stress fibers (Burridge 
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& Wittchen, 2013; Hotulainen & Lappalainen, 2006). In endothelial cells, another type of stress fibers 

are characterized, which are essentially identical to ventral stress fibers, except that these insert into 

adherens junctions rather than into focal adhesions, thereby linking endothelial cells together (Millan 

et al., 2010). 

Stress fibers only develop when cells are cultured on rigid substrata. This leads to development of 

isometric tension in the cells, which is required for stress fiber formation (Grinnell, 1994; Halliday & 

Tomasek, 1995; Mochitate et al., 1991; Tomasek et al., 1992) and depends on RhoA activation (Paszek 

et al., 2005; Wozniak et al., 2003) (see 3.4.1 RhoA-pathway). RhoA is also associated with myosin-

driven stress fiber formation and contractility which enhances cellular permeability (Burridge & 

Wittchen, 2013).  

3.3.2 Cortical actin 

Cortical actin, also called the actin cortex, is situated immediately beneath the plasma membrane and 

consists of an extremely dense arrangement of actin filaments, formed by crosslinking by α-actinin 

(Charras et al., 2006) and branching (Bovellan et al., 2014; Charras et al., 2006). Cortical actin also 

contains myosin I and II and has been described to have a contractile function, such as in amoeboid 

motility (Miyoshi et al., 2013; Papadopulos et al., 2013). The cortical actin provides the plasma 

membrane with properties that intracellular membranes lack, such as a high mechanical resistance 

and tension and allows it to undergo structural changes, including local extension and retraction of 

protrusions and the formation of invaginations, often involved in various types of endocytosis and 

exocytosis (de Curtis & Meldolesi, 2012).  

This cortical actin meshwork is constantly being remodeled in response to diverse signaling pathways 

to support the cells’ needs, playing an important role in the normal functioning of the cell, as it helps 

maintain the cell shape and provide the driving force for cell migration (Charras et al., 2006). 

Remodeling of cortical actin is also essential for endocytosis and exocytosis (de Curtis & Meldolesi, 

2012; Eitzen, 2003; Engqvist-Goldstein & Drubin, 2003; Malacombe et al., 2006; Qualmann & Kessels, 

2002). Remodeling of cortical actin is directly regulated by Rho GTPases and mediated by numerous 

actin-binding proteins, which are arranged in large multimolecular complexes that also include 

membrane-binding and signaling domains (de Curtis & Meldolesi, 2012) (see 3.4 Rho GTPase 

signaling). 
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3.3.3 Other actin structures 

During cell migration, the cytoplasm is continuously remodeled and induces membrane protrusions in 

the form of lamellipodia and filopodia (Small, 2010). The formation of these protrusions is regulated 

by WASP and WAVE proteins (see 3.5.1 WASP). Actin treadmilling induced by WASP and WAVE 

proteins is of critical importance in generating protrusive forces in cells, and thereby potentiates 

cellular migration and motility (Chang et al., 2003; Ladwein & Rottner, 2008; Takenawa & Suetsugu, 

2007). Filopodia are one-dimensional, rod-like extensions of about 0.1-0.2 μm in diameter that 

protrude beyond the cell periphery. They function as important sensory organelles (such as in neuronal 

growth cones or during the fusion of sheets of epithelial tissues) and serve as a precursor in adhesion 

site of stress fiber formation (Faix et al., 2009). Like stress fibers, they are composed of a bundle of 

actin filaments, crosslinked by α-actinin, fascin, fimbrin and proteins from the filamin family (Aratyn et 

al., 2007; Bretscher & Weber, 1980; Nishita et al., 2006; Ohta et al., 1999; Sobue & Kanda, 1989). These 

bundles are oriented with their fast-growing ends toward the tip of the bundle (Goldman & Knipe, 

1973; Lindberg et al., 1981; Nemethova et al., 2008; Small & Celis, 1978; Small et al., 1978) and are 

reminiscent of those in microvilli, but are longer, thinner and more dynamic (Alberts et al., 2002). In 

contrast to filopodia, lamellipodia are composed of a crisscross arrangement of highly dynamic actin 

filaments, forming a two-dimensional, sheet-like structure, with the fast-growing filament ends 

adjacent to the plasma membrane. Filaments are crosslinked by α-actinin, coronin and filamin (David 

et al., 1998; de Hostos, 1999; Langanger et al., 1984; Stossel et al., 2001; van der Flier & Sonnenberg, 

2001). The broad and sheet-like protrusions caused by lamellipodia are driven by actin filament 

polymerization, growing in front of the lamellum. The latter consists primarily of condensed linear actin 

bundles, leading to a more stable and less dynamic actin filament network) and contains myosin II, 

required to drive and guide cell locomotion (Ladwein & Rottner, 2008). Podosomes, often subsumed 

together with invadopodia as invadosomes, are complex dot-like F-actin accumulations (Linder, 2009). 

Podosomes are typically formed in monocytic cells, endothelial cells and smooth muscle cells, whereas 

invadopodia are mostly found in invasive cancer cells (Linder, 2007). These structures are crosslinked 

by AFAP-110 (Albiges-Rizo et al., 2009) surrounded by several cytoskeletal proteins and matrix 

metalloproteases (Sato et al., 1997) that, together with signaling molecules, remodel the cytoskeleton 

and extracellular matrix during tissue invasion (Saltel et al., 2011). 
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Figure 7: Different forms of actin filament based structures. Stress fibers are large bundles of actin filaments that 
can span the length of the cell, with myosin enabling their contractility. Just beneath the plasma membrane lies 
the cortical actin. Actin filaments can also be organized to produce a range of cellular extensions, including 
podosomes, lamellipodia, filopodia, microvilli and large membrane ruffles. Podosomes contain (next to several 
actin-binding proteins, signaling molecules) metalloproteases (black balls in podosome). (ER = endoplasmic 
reticulum) (Adapted from (Taylor et al., 2011)). 

 

3.4 Rho GTPase signaling 

The actin cytoskeleton is mainly regulated by the Rho family of GTPases (Rho GTPases) (Hall, 1998). 

These monomeric, low-molecular weight proteins constitute a distinct family with 22 mammalian 

members within the superfamily of Ras-related small GTPases, and are subdivided in the Rac subfamily 

(Rac1, Rac2, Rac3, and RhoG), Cdc42 subfamily (Cdc42, TC10, TCL, Chip, and Wrch-1), RhoA subfamily 

(RhoA, RhoB, and RhoC) and other Rho GTPases (RhoE/Rnd3, RhoH/TTF, Rif, RhoBTB1, RhoBTB2, Miro-

1, Miro-2, RhoD, Rnd1, and Rnd2). Besides regulating the actin cytoskeleton, Rho GTPases are also 

involved in regulation of the microtubule network and in linking membrane receptors to the actin 

cytoskeleton, which explains their fundamentality and omnipresence throughout eukaryotic cells 

(Aspenstrom et al., 2004; Hall, 2009) and their requirement to be strictly controlled in a spatiotemporal 

manner. They can be viewed as molecular switches that cycle between an active GTP-bound and an 

inactive GDP-bound form. This switch is tightly regulated by three sets of proteins: guanine nucleotide-
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exchange factors (GEFs) that catalyze the activating exchange of GDP for GTP (Schmidt & Hall, 2002), 

GTPase activating proteins (GAPs) that stimulate the intrinsic GTPase activity to inactivate the switch 

(Bernards, 2003; Heasman & Ridley, 2008) and guanine nucleotide-dissociation inhibitors (GDIs), 

sequestering Rho GTPases in the cytoplasm, away from the plasma membrane and their regulators 

and targets (Garcia-Mata et al., 2011; Olofsson, 1999) (Figure 8). 

 

Figure 8: Regulation of Rho GTPases. Guanine nucleotide-exchange factors (GEFs) activate Rho GTPases by 
promoting the release of GDP and the binding of GTP. Dominant-negative (DN) Rho GTPases contain a 
substitution mutation of Thr for Asn at amino acid 17 (numbering according to Rac1 sequence), allowing binding 
to GEFs but inhibiting downstream interactions with effector proteins. GTPase-activating proteins (GAPs) 
inactivate Rho GTPases by increasing the intrinsic GTPase activity of Rho proteins. Constitutively active (CA) 
mutants cannot hydrolyze GTP and therefore signal constitutively to their effector proteins. Common 
constitutively active mutations are Gly to Val at amino acid 12 (numbering according to Rac1) or Gln to Leu at 
amino acid 61. Guanine nucleotide-dissociation inhibitors (GDIs) bind to C-terminal prenyl groups on some Rho 
proteins, sequestering them in the cytoplasm away from their regulators and targets (From (Heasman & Ridley, 
2008)). 

 

In their active GTP-bound state, Rho GTPases act through a conformation-specific interaction with 

their target effector proteins. The best characterized members of the Rho GTPases are RhoA, Rac1, 

and Cdc42, which show high degrees of conservation in higher vertebrates. Activation of RhoA leads 

to formation of actin stress fibers and focal adhesion assembly, Rac1 typically regulates the formation 

of lamellipodia or membrane ruffles, while Cdc42 induces the formation of protrusive filopodia. As Rho 

GTPases especially affect membrane dynamics, they need to be localized near the cellular membrane. 

This is mediated by prenylation (farnesylation or geranylgeranylation) and sometimes palmitoylation 

at their C-terminus, which enhances the interaction with membranes (Adamson et al., 1992). Rho GDIs 

can also inhibit Rho GTPase activity by masking these prenyl groups, thereby preventing Rho GTPase 

interaction with membranes and downstream targets (DerMardirossian & Bokoch, 2005; Michaelson 

et al., 2001). 
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Over the past decades, many of the molecular details of the signal transduction pathways that connect 

Rho GTPase activity to rearrangements of the actin cytoskeleton have been unraveled. Nevertheless, 

identification of downstream targets of Rho GTPases has proven to be challenging. A combination of 

affinity chromatography, protein purification and yeast-two hybrid screening revealed over 100 

potential Rho GTPase targets (Bishop & Hall, 2000). Rho, Rac1, and Cdc42 alone are each capable of 

interacting with about 20–30 different proteins in a GTP-dependent manner, which is reflected by their 

broad signal transduction potential (Hall, 2012). Rac1 and Cdc42 signaling converges to group I 

serine/threonine p21 activating kinase (PAK) signaling, which is interconnected with downstream RhoA 

signaling (Xie et al., 2008; Yamaguchi et al., 2001). In general, RhoA pathway signaling counteracts the 

Rac1 and Cdc42 signaling axes and vice versa (Kozma et al., 1997; Leeuwen et al., 1997; Nimnual et al., 

2003; Parri & Chiarugi, 2010; Sander et al., 1999). Figure 9 represents a (non-exhaustive) schematic 

visualization summarizing these interwoven signaling pathways. Because of the importance of the 

RhoA pathway and the Cdc42/Rac1 effector PAK in the context of the current thesis, these two 

components of Rho GTPase signaling will be discussed in more detail below.  

 

Figure 9: Schematic overview of selected Rho GTPase signaling. Cdc42 and Rac1 signaling leads to activation of 
the common effector protein p21-activated kinase (PAK) and scaffold proteins belonging to the WASP/WAVE 
family, which are key regulators of actin filament nucleation and polymerization (via binding the Arp (actin 
related protein)2,3 complex). Active PAK phosphorylates myosin light chain kinase (MLCK), thereby inactivating 
it and inhibiting myosin light chain (MLC) phosphorylation and actomyosin-based contractility. PAK also 
phosphorylates and activates LIMK which may lead to phosphorylation of cofilin, thereby inhibiting its actin- 
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function. Downstream targets of RhoA include the serine/threonine kinase ROCK which is involved in the 
formation of stress fibers and focal adhesions. ROCK phosphorylates downstream MLC, leading to actin–myosin 
contractility. At the same time, ROCK inhibits MLC dephosphorylation by inhibiting MLC phosphatase (MLCP). 
LIMK is also a downstream effector of ROCK. The mammalian homolog of the Drosophila diaphanous protein 
(mDia) is another important RhoA effector mediating actin filament nucleation. Red line = inhibitory effect; blue 
line = activating effect; dotted green arrows = counteracting effect (From (Van den Broeke et al., 2014)). 

 

3.4.1 RhoA-pathway 

The best characterized effectors of RhoA are the mammalian homolog of the Drosophila Diaphanous 

protein (mDia), member of the formin family and Rho-associated coiled-coil forming kinase (ROCK) 

(Narumiya et al., 1997; Satoh & Tominaga, 2001; Watanabe et al., 1999; Watanabe et al., 1997). Other 

RhoA effectors include members of the ezrin/radixin/moesin (ERM) proteins (Matsui et al., 1999) and 

citron kinase (Yamashiro et al., 2003). 

mDia, as a member of the formin protein family, belongs to a subclass of the formins, the Diaphanous-

related formins (Drfs), that can act as effectors for Rho GTPases. They consist of three formin homology 

(FH) domains, an N-terminal Rho GTPase binding domain (GBD) and the intramolecular autoregulatory 

partner of the GBD, the Diaphanous-autoregulatory domain (DAD) (Alberts, 2001; Shi et al., 2009; 

Tominaga et al., 2000; Wallar & Alberts, 2003) (Figure 10). Interaction with RhoA triggers mDia 

activation by disrupting auto inhibitory intramolecular constraints between the GBD and DAD of mDia 

(Alberts, 2001; Shi et al., 2009). The FH2-domain is responsible for driving actin nucleation, moving 

progressively as the filament elongates. After nucleation, this domain remains bound at the barbed 

end, preventing the access of capping proteins to the filament (Chhabra & Higgs, 2007; Higashida et 

al., 2004). All formins studied to date function in a homodimeric way, as their FH2 domains dimerize, 

allowing a dynamic association with the barbed end of growing filaments (Chhabra & Higgs, 2007). 

FH1, a proline rich sequence, is reported to aid actin nucleation and polymerization through binding 

with complexed actin-profilin (reviewed by (Wallar & Alberts, 2003)). Actin from this complex is then 

built in at the barbed end of the filament by the FH2 domain (Courtemanche & Pollard, 2012). Very 

little is known about the FH3-domain function, which was described by Petersen and colleagues 

(Petersen et al., 1998).  
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Figure 10: mDia1-3 domain organization. GBD: Rho GTPase binding domain; FH3: formin homology 3 domain; 
FH1: formin homology 1 domain; FH2: formin homology 2 domain; DAD: Diaphanous-autoregulatory domain. 
The black line connecting the GBD and DAD domain represents the intramolecular auto inhibitory interaction 
(Adapted from (Goh et al., 2012)). 

 

Although mDia is a direct actin filament nucleator, binding of Src to mDia’s FH1-region has been 

described, acting downstream of mDia to assist in stress fiber formation (Tominaga et al., 2000; Young 

& Copeland, 2010). Diaphanous-interacting protein (DIP) was also reported to bind to the FH1-region 

of mDia and leads to activation of Src (Satoh & Tominaga, 2001). Later research showed that DIP is 

actually phosphorylated by Src downstream of mDia activation (Meng et al., 2004). This 

phosphorylation was found to be required for DIP-dependent phosphorylation of p190RhoGAP (a 

RhoA GAP) and Vav2 (a Rac1 GEF), resulting in inhibition of RhoA and activation of Rac1 respectively 

(Meng et al., 2004). The latter illustrates formin-induced negative feedback regulation of RhoA 

signaling (Meng et al., 2004; Satoh & Tominaga, 2001). DIP has also been reported to directly bind and 

activate the Arp2/3 complex (see 3.5.1 WASP) (Kim et al., 2006), inducing actin filament nucleation. 

Rho GTPase Rif was also demonstrated to interact with mDia and is able to trigger the formation of 

both filopodia (see next paragraph) and stress fibers (Fan et al., 2010; Goh et al., 2011; Pellegrin & 

Mellor, 2005). 

Three mDia isoforms are currently known in mammals, namely mDia1, mDia2 and mDia3. Several 

studies have investigated the function of each isoform. mDia1 demonstrated the broadest activity 

spectrum, ranging from promoting stress fiber formation in cultured cells (Nemethova et al., 2008; 

Watanabe et al., 1999), filopodia formation, cell polarization and migration of certain cell lines, acting 

as a sensor for mechanical forces (Higashida et al., 2013; Jegou et al., 2013; Riveline et al., 2001) to 

axon elongation (Arakawa et al., 2003). Different roles of mDia1 in serum response factor (SRF)-

mediated transcription, macrophage phagocytosis, exocrine vesicle secretion and cell-cell adhesion of 

epithelial cells have also been reported (Colucci-Guyon et al., 2005; Sahai & Marshall, 2002; Satoh & 

Tominaga, 2001). mDia2 seems especially involved in filopodia formation and cytokinesis (Beli et al., 

2008; Pellegrin & Mellor, 2005; Watanabe et al., 2008; Yang et al., 2007). Finally, the mDia3 isoform is 

involved in chromosome alignment through spindle positioning and in endocytosis (Gasman et al., 
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2003; Yasuda et al., 2004). It might seem confusing that mDia1 and mDia2 are both reported to induce 

filopodia, while we stated above that filopodia are typically the result of Cdc42 signaling, which 

counteracts RhoA signaling. This can be explained by the apparent involvement of mDia1 and -2 in 

Cdc42-mediated filopodia formation (Goh et al., 2012; Pellegrin & Mellor, 2005; Peng et al., 2003). 

While Rho GTPase Rif has been described to interact with all mDia isoforms, the biological relevance 

for mDia3 has yet to be investigated (Fan et al., 2010; Goh et al., 2011). 

The ROCK serine/threonine kinases consist of three major domains: the kinase domain, the RhoA 

binding domain (RBD) located in a coiled-coil region and the cysteine-rich pleckstrin-homology domain 

that is thought to participate in protein localization (Figure 11).  

 

Figure 11: ROCK domain organization. RBD: RhoA binding domain; PH: pleckstrin homology domain (Adapted 
from (Ueda et al., 2003)). 

 

There are two ROCK isoforms in mammals, namely ROCK-I and ROCK-II (Nakagawa et al., 1996). Rho-

mediated ROCK activation regulates phosphorylation of myosin light chain (MLC), either directly or 

through inactivation of MLC phosphatase, resulting in increased actomyosin contractility (Kimura et 

al., 1996; Narumiya et al., 2009). There is a lot of data concerning biological ROCK functions because 

of the discovery of Y-27632, a highly specific (albeit not isoform-specific) ROCK-inhibitor (Uehata et al., 

1997). Using this inhibitor, the involvement of ROCK in cell migration and cell-cell adhesion in multiple 

cells, transcription, apoptosis, axogenesis, cell polarization and migration of T-cells was reported (Bito 

et al., 2000; Coleman et al., 2001; Heasman et al., 2010; Hirose et al., 1998; Itoh et al., 1999; Ohgushi 

& Sasai, 2011; Sahai et al., 1999; Sahai & Marshall, 2002; Sebbagh et al., 2001; Tsuji et al., 2002). More 

recently, a role for ROCK in apoptosis was shown in dissociated human embryonic stem cells 

(Kurosawa, 2012; Rungsiwiwut et al., 2013). LIMK is another downstream target of ROCK, which 

phosphorylates and inhibits the actin regulating protein cofilin (Yang et al., 1998), which will be 

discussed below (see 3.6.2 Cofilin).  

3.4.2 Group I p21-activated kinases (PAKs)  

The p21-activated kinases (PAKs) are serine/threonine kinases downstream of Rho GTPases Cdc42 and 

Rac1. The PAK family consists of six members that can be divided into two subfamilies based on their 

structure and biochemical properties: group I PAKs (PAK1, -2 and -3) and group II PAKs (PAK4, -5 and -
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6). While PAK2 and -4 are ubiquitously expressed, PAK1 is expressed in the brain, spleen, muscle and 

mammary gland and PAK3 and -5 are restricted to the brain. PAK6 is expressed in testis, prostate, 

placenta, and kidney, but especially high in the brain (Jaffer & Chernoff, 2002; Manser et al., 1994; 

Pandey et al., 2002) (reviewed in (Rane & Minden, 2014)).  

Group I and II PAKs both contain a p21-binding domain (PBD or Cdc42/Rac1-interacting (CRIB) domain), 

found in the N-terminal region of the protein (Morreale et al., 2000) and a C-terminal kinase domain 

(Eswaran et al., 2008). Proteins of both groups contain an additional N-terminal auto inhibitory domain 

(AID), partly overlapping the PBD in group I PAKs (Baskaran et al., 2012; Eswaran et al., 2008; Ha et al., 

2012; Zhao & Manser, 2012). Only group I PAKs function as dimers (Eswaran et al., 2008; Rane & 

Minden, 2014; Zhao & Manser, 2012). The AID interacts with the kinase domain, keeping the molecule 

in a dimeric (group I PAKs) or folded monomeric (group II PAKs), auto inhibitory conformation 

(Baskaran et al., 2012; Rane & Minden, 2014) (Figure 12). Since group I PAKs in particular are associated 

with regulation of the actin cytoskeleton, the remainder of the text will mainly focus on these. 

 

Figure 12: Group I and II PAK domain organization. CRIB: Cdc42/Rac1-interacting domain; AID: auto inhibitory 
domain. Proteins are represented in their inhibited conformations (diagonal crossed lines indicate inter- (group 
I PAK) and intramolecular (group II PAK) interactions) (Adapted from (Rane & Minden, 2014)). 

 

PAKs can be activated in both Rho GTPase dependent and independent manners. Binding of group I 

PAKs to activated GTP-Rac1 of GTP-Cdc42 through its PBD/CRIB domain leads to a conformational 

change in PAK and causes it to become a monomer, which subsequently becomes autophosphorylated 

on Thr423 in PAK1 (or Thr402 in PAK2 or Thr421 in PAK3) in its activation loop (Jaffer & Chernoff, 2002; 

Zenke et al., 1999). This phosphorylation prevents refolding, even in the absence of GTPases. 
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Phosphorylation of this residue by specific cellular kinases such as Akt (Tang et al., 2000) or PDK1 (King 

et al., 2000) can also directly cause full catalytic activity of PAK towards its substrates (Gatti et al., 

1999). Furthermore, PAK cleavage by caspase 3, recruitment to the plasma membrane through Nck 

and Grb2 to activated tyrosine kinase receptors or direct stimulation by sphingosine and sphingosine-

derived lipids have also been described as group I PAK activation mechanisms (Bokoch, 2003; Lu & 

Mayer, 1999).  

Activation of group I PAKs, and PAK4 (Dan et al., 2001), leads to loss of stress fibers and focal adhesion 

complexes. Depending on the cell type, polarized lamellipodia are formed, cell-cell adhesion is 

weakened and cell motility increased (Manser et al., 1994; Sells et al., 1998; Wang et al., 1999). In 

addition to their role in regulating cytoskeletal dynamics, PAKs are implicated in cell motility, 

neurogenesis, angiogenesis and cancer metastasis (reviewed in (Bokoch, 2003)). Group I PAKs are also 

involved in macropinocytosis, a cellular endocytosis process which is also hijacked by several viruses 

to gain entry to the cell (Dharmawardhane et al., 2000).  

3.5 Downstream effectors of Rho GTPase signaling that regulate actin polymerization 

Rho GTPases directly or indirectly (e.g. via PAKs and other downstream effectors) activate molecules 

that regulate actin polymerization. Two important types of such molecules are WASP-family proteins 

and the ADF/cofilin family proteins. ADF/cofilin family proteins are actin binding proteins (ABP), while 

WASP-family proteins can recruit proteins that bind to actin. Cofilin is of particular importance in the 

context of the current thesis, and will be elaborately discussed. 

3.5.1 WASP 

WASP (Wiskott-Aldrich syndrome protein)-superfamily proteins are major actin polymerizing factors 

of the actin cytoskeleton, also termed nucleation promoting factors (NPFs) (Chhabra & Higgs, 2007; 

Kurisu & Takenawa, 2009; Miki & Takenawa, 2003; Stradal et al., 2004). At least one WASP superfamily 

homolog has been characterized in all eukaryotic organisms that are examined thus far. In humans, 

eight superfamily members have been described: WASP, expressed exclusively in hematopoietic 

lineages; its ubiquitous homolog neural WASP (N-WASP); brain enriched WAVE-1 (WASP family 

verprolin-homologous protein 1) and WAVE-3; and ubiquitously expressed WAVE-2 (Kurisu & 

Takenawa, 2009; 2010). The latest characterized members are WASP and SCAR homolog (WASH), 

WASP homolog associated with actin, membranes, and microtubules (WHAMM) and junction-

mediating and regulatory protein (JMY), but little information is available about their biological roles 

(Kurisu & Takenawa, 2009; 2010). A variety of cellular processes associated with actin dynamics 
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depends on members of the WASP family, such as vesicular trafficking and the formation of membrane 

protrusions (Yamaguchi et al., 2005).  

The WASP and WAVE family proteins have a conserved C-terminal VCA domain (consisting of the 

verprolin homology (or WASP homology 2 (WH2)) domain, central/cofilin homology domain (C) and 

acidic region (A)), through which they bind to and activate the Arp2/3 complex. The WH2-domain binds 

actin, while the C and A domains bind the Arp2/3 complex (Machesky & Insall, 1999). Adjacent to their 

VCA domain, a proline rich segment characterizes both WASP en WAVE family proteins (Lane et al., 

2014). The N-terminal sequence of WASP subfamily proteins is different from that of WAVE proteins. 

WASP subfamily proteins possess an N-terminal WASP homology 1 (WH1 or Ena-VASP homology 1 

(EVH1)) domain, responsible for binding to WASP-interacting protein (WIP) family proteins (Anton et 

al., 2007) and a GTPase-binding domain (GBD or Cdc42/Rac-interactive binding (CRIB) domain), which 

is critical for the activity of WASPs. This CRIB domain binds to the WASP C-terminal VCA-region, forming 

an inhibitory intramolecular interaction (Kim et al., 2000). WAVE subfamily proteins on the other hand 

lack the WH1 and CRIB domains and are characterized by an N-terminal WAVE homology domain/SCAR 

homology (WHD/SHD) domain, followed by a stretch of basic residues (Kurisu & Takenawa, 2009) 

(Figure 13).  

 

Figure 13: WASP and WAVE family proteins domain organization. WH1: WASP homology 1 (WH1 or Ena-VASP 
homology 1 (EVH1)) domain; CRIB: Cdc42/Rac-interactive binding or GTPase-binding domain (GBD); WH2: WASP 
homology 2 domain; C: central/cofilin homology domain; A: acidic region; VCA: domain comprising WH2, C and 
A; SCAR: WAVE homology domain (WHD or SCAR homology domain (SHD)). The black line connecting the CRIB 
and VCA domain represents the intramolecular auto inhibitory interaction of WASP (Adapted from (Lane et al., 
2014)). 

 

In order to activate WASP proteins, Cdc42 and Rac1 can cooperate with phosphatidylinositol-4,5-bis-

phosphate (PI(4,5)P2) to bind the CRIB domain, folding open the protein and thereby overcoming auto 

inhibition (Miki et al., 1998; Symons et al., 1996). Several other proteins, such as Nck, Grb and WISH 

(WASP-interacting SH3-protein) (Yamaguchi et al., 2005) have been described to bind and activate N-
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WASP, by binding its proline rich region and thereby exposing the VCA domain. Additionally, WIP 

(WASP-interacting protein) has been reported to bind to the WH1 domain in N-WASP, stabilizing its 

closed, inactive conformation (Fried et al., 2014; Moreau et al., 2000). Another potential binding 

partner of WASP is cortactin, which stabilizes actin branches, by both binding with the Arp2/3 complex 

and polymerized actin (Pant et al., 2006). Furthermore, WASP family proteins are described to be 

involved in the formation of podosomes (Kaverina et al., 2003; Linder et al., 1999; Mizutani et al., 2002; 

Pollard & Cooper, 2009). 

Unlike WASP proteins, which exist independently in cells, each WAVE protein is associated through its 

SCAR-domain with additional proteins including Abi (Abelson-interacting protein), Nap1/Hem-2, 

PIR121/Src1/Cyfip1 and HSPC300/Brick1 , which have also been shown to copurify along with WAVE-

2 and WAVE-3 (Gautreau et al., 2004; Innocenti et al., 2004; Kurisu & Takenawa, 2009; Stovold et al., 

2005). These proteins form the WAVE-regulatory complex (WRC), keeping WAVE in an intrinsically 

inactive state (Derivery et al., 2009). Rac1 has been described to activate WAVE by recruitment to the 

plasma membrane through interaction with the WASP WRC (Koronakis et al., 2011; Steffen et al., 2013; 

Steffen et al., 2004). The mechanism is still unclear, but Rac1 binding to the WRC potentially leads to 

dissociation of WAVE from the inhibitory WRC (Eden et al., 2002).  

In their activated state, WASP and WAVE family proteins induce activation of ABP Arp2/3 (actin-related 

protein 2 and 3), leading to its binding to the side of an existing (mother) filament and assembling a 

new (daughter) filament at a 70° angle, producing a branched structure (Millard et al., 2004; Welch & 

Mullins, 2002). These branched actin filaments grow in successive generations, like the twigs of a bush, 

leading to the generation of a meshwork, as observed in lamellipodia (Pollard & Borisy, 2003). WASP 

and WAVE couple the cell membrane to Arp2/3-dependent actin polymerization, to achieve 

coordinated membrane cytoskeleton dynamics (Kurisu & Takenawa, 2009). More recently, the Arp2/3 

complex has been shown to serve as a key upstream factor for the recruitment of modulators of 

lamellipodia formation, such as capping proteins and cofilin, which might be crucial for lamellipodia-

based cellular migration (Koestler et al., 2013) (see 3.5.2 Cofilin). The binding and activation of the 

Arp2/3 complex through WASP-superfamily members and the formation of branched actin networks 

is shown in Figure 14. 
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Figure 14: The binding and activation of the Arp2/3 complex through WASP-superfamily members and the 
formation of branched actin networks. Activated nucleation promoting factors (NPFs) (WASP and WAVE) bring 
together the Arp2/3 complex and actin monomers to nucleate actin filaments that form new branches from the 
side of preexisting filaments. The Arp2/3 complex remains at the minus end of the filament (From (MBInfo, 
2014)). 

 

3.5.2 ADF/Cofilin 

The ADF/cofilin family in mammals consists of three paralogs: Cofilin-1, Cofilin-2 and actin 

depolymerizing factor (ADF) or destrin (Van Troys et al., 2008). The three cofilin isoforms each have 

their own tissue specificity, as was determined in mice (Vartiainen et al., 2002). Cofilin-1 is the 

dominant isoform, omnipresent in most cell types, while cofilin-2 is expressed only in muscle cells. ADF 

expression is reported to be restricted to epithelia and endothelia, but is likely more widespread as its 

presence was recently reported in B-cells (Ono et al., 1994; Rochelle et al., 2013; Vartiainen et al., 

2002). Cofilin family members are critical regulators of actin dynamics in cells. 

Cofilins have been termed actin-dynamizing proteins based on their capacity to enhance the turnover 

of actin filaments in vitro (Carlier et al., 1999). Important mechanical insight was provided by 

Andrianantoandro and Pollard (Andrianantoandro & Pollard, 2006). Using real-time microscopy, they 

could distinguish cofilin-decorated actin filaments. When only a few cofilin molecules were bound to 

an F-actin filament, there was maximal straining between (cofilin decorated) twisted and non-twisted 

regions, leading to frequent breaking points, hence F-filament severing (Bobkov et al., 2006). In 

contrast, severing was no longer observed at higher cofilin concentrations, as the high degree of cofilin 

binding now limited straining (Andrianantoandro & Pollard, 2006; Bobkov et al., 2006). These findings 

led to the new paradigm stating that cofilin activity is fine-tuned based on its concentration in the cell, 

with F-actin severing activity being predominant at optimal low cofilin concentrations, which was in 
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line with several previous studies (Ichetovkin et al., 2002; Orlova et al., 2004; Pavlov et al., 2007). At 

this cofilin concentration, capping of the severed barbed ends leads to actin monomer dissociation 

from pointed ends, resulting in actin disassembly (Andrianantoandro & Pollard, 2006). Higher cofilin 

concentrations favor the release of Pi from ADP-Pi filaments (Blanchoin & Pollard, 1999), which is 

normally a slow process (see 3. The actin cytoskeleton and Rho GTPases and 3.2 Composition). This 

Pi-release results in debranching of actin filaments as 1) ADP-actin is more prone to depolymerization 

and 2) Arp2/3 has a higher affinity for ATP-actin than ADP-actin (Andrianantoandro & Pollard, 2006; 

Blanchoin et al., 2000). Finally, at very high concentrations of cofilin versus actin monomers, monomer 

binding and actin nucleation seem enhanced as cofilin stabilizes actin monomers and actin assembly 

is stimulated (Andrianantoandro & Pollard, 2006; Yeoh et al., 2002) (Figure 15). 

 

Figure 15: The activity of cofilin depends on its local concentration in the cell. Very low concentrations of cofilin 
(blue ovals) do not bind actin filaments (green strands). At an optimal low concentration of cofilin, single cofilin 
molecules bind and sever actin filaments. Capping of severed filament barbed ends promotes dissociation of 
actin monomers (green circles) from pointed ends, leading to filament disassembly. Higher concentrations of 
cofilin bind cooperatively to actin filaments and promote the release of inorganic phosphate (Pi) but do not sever 
these filaments. Very high concentrations of cofilin bind actin monomers and stimulate nucleation, leading to 
actin filament assembly (From (Andrianantoandro & Pollard, 2006)). 
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Next to concentration dependency, cofilin activity also varies between the different isoforms. Cofilin-

2 promotes actin filament assembly rather than disassembly, compared to Cofilin-1 and ADF. ADF, with 

its weaker nucleating activity and promotion of pH-dependent actin disassembly, is the most potent 

of the three isoforms with regard to its effect on actin turnover (Chen et al., 2004; Nakashima et al., 

2005; Vartiainen et al., 2002; Yeoh et al., 2002).   

Multiple cofilin regulation mechanisms have been identified, including phosphorylation at Ser3, 

interaction with polyphosphoinositides, pH-dependent effects and synergistic or competitive 

interactions of cofilin with other actin binding proteins. Ser3 phosphorylation of cofilin, a hallmark of 

cofilin inactivation, is regulated by both kinases and phosphatases. Two families of ubiquitous kinases 

with related catalytic domains have been reported to phosphorylate cofilin at Ser3: the LIM (Lin-11, 

Isl1 and Mec-3) kinases (LIMK) and testicular kinases (TESK) (Scott & Olson, 2007b; Toshima et al., 

2001). Dephosphorylation and consecutive activation of cofilin can be achieved via phosphatases of 

the Slingshot (SSH) family, the haloacid dehalogenase phosphatases chronophin (CIN) and protein 

phosphatase 1 and 2A (PP1 and PP2A) (Huang et al., 2006; Takuma et al., 1996). The relative 

contributions of these phosphatases and kinases on cofilin activity depend on their expression levels, 

tissue distribution, subcellular localization, activation pathways, and activity levels. In addition, 

different isoforms of both types of enzymes have been described, and isoform-specific differences in 

expression levels have been observed (Acevedo et al., 2006; Foletta et al., 2004). LIMK has two 

isoforms, namely LIMK-1 and -2, SSH has three isoforms, SSH-1, -2 and -3, TESK has two isoforms, TESK-

1 and -2 and CIN only has one isoform (Van Troys et al., 2008). Many of the data on kinase/phosphatase 

functionality that is currently available, however, has been derived from studies using only one 

isoform, and contradictory results have sometimes been obtained (Huang et al., 2006; Ono, 2007; Scott 

& Olson, 2007b; Van Troys et al., 2008; Wang et al., 2007).  

Downstream Rho GTPase signaling converges to these cofilin phosphatases and kinases to regulate 

control of cofilin activity. PAKs play a central role in this respect. PAK activity has been associated with 

cofilin phosphorylation and therefore inactivation, mainly because LIMK isoforms are important 

downstream substrates of PAK that can directly phosphorylate cofilin (Kobayashi et al., 2006; Li et al., 

2006; Scott & Olson, 2007a; Zoudilova et al., 2007). PAK1 and PAK4 can activate LIMK-1, but not LIMK-

2, leading to cofilin Ser3 phosphorylation and therefore inactivation. Cofilin inactivation via LIMK 

through Rac1 via PAK1 or PAK2 signaling has been described (Zhou et al., 2013), as well as cofilin 

inactivation via LIMK through RhoA/ROCK or through Cdc42/MRCKα signaling (Misra et al., 2005). 

Currently, SSH1L (long isoform) is the only phosphatase known to dephosphorylate and inactivate 

LIMKs (Soosairajah et al., 2005). As SSH1L also directly dephosphorylates cofilin, it is probably involved 

in a positive feedback loop regulating cofilin activation. Interestingly, next to causing cofilin 
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inactivation through LIMK1, PAK4 also negatively regulates SSH1L activity in different cell types, further 

contributing to cofilin inactivation (Soosairajah et al., 2005). Contrastingly, other data in other cell 

types suggest a positive effect of Rac1 signaling on SSH activation (Kligys et al., 2007).  

More recently, increasing evidence indicates that PAK activity may not only lead to cofilin inactivation 

(phosphorylation), but may also signal to several of the cofilin phosphatases like PP2A, CIN 

(chronophin) and/or the SSH (slingshot) family and thereby activate cofilin (Ke et al., 2004; Oleinik et 

al., 2010). Most likely, cell type-specific or environmental factors may influence the outcome of PAK 

activation on cofilin activity (Davidson & Haslam, 1994; Okada et al., 1996; Samstag et al., 1996; 

Samstag et al., 1994; Takuma et al., 1996). These different cofilin regulation mechanisms are 

summarized in Figure 16 (from (Van Troys et al., 2008).  

 

Figure 16: The cofilin regulatory system: signals controlling cofilin phosphorylation and dephosphorylation. 
Phosphorylated ADF/cofilin (P-cofilin) is inactive and no longer binds or severs F-actin. Rho GTPases have a 
prominent role in controlling kinases and phosphatases that affect cofiline activity. Red line = inhibitory effect; 
dark green line = activating effect; light green line = activation with no/unknown effect; +P = phosphorylation; 
−P = dephosphorylation (Adapted from (Van Troys et al., 2008)). 
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4. Alphaherpesvirus interactions with the actin cytoskeleton and Rho 

GTPases during virus entry and egress 

Because Rho GTPase signaling and actin are involved in a plethora of cellular processes, it is perhaps 

not surprising that several viral gene products have evolved to interfere with and modulate these 

cellular factors during several steps of their replication cycle. During entry and egress, viral interactions 

with actin and Rho GTPases may allow or facilitate viral particle passage across the cortical actin barrier 

and may trigger rearrangements of actin to conformations that promote virus infection and spread. 

This section will focus on interactions between the alphaherpesvirus subfamily members and Rho 

GTPase signaling/actin during virus entry and egress.  

4.1 Entry/Transport to the nucleus 

The first report suggesting the involvement of Rho GTPases in alphaherpesvirus entry showed that 

HSV-1 entry in Madin-Darby canine kidney II (MDCKII) cells was associated with activation of Cdc42 

and Rac1, and that overexpression of genetically engineered Rho GTPases with altered activity 

influenced HSV-1 infectivity (Hoppe et al., 2006). This is in line with findings that PRV induces Cdc42-

dependent signaling upon infection in sensory neurons (De Regge et al., 2006). 

Interestingly, herpesviruses and several other viruses, including retroviruses, papillomaviruses, 

poxviruses, dengue virus and vesicular stomatitis virus (VSV), engage Rho GTPase signaling even before 

entering the cell. In order to reach the cell body, virions attach to filopodia-like structures, leading to 

unidirectional movements toward the cell, followed by viral entry. This process, called viral surfing, 

was first described by Lehmann and colleagues for murine leukemia virus (MLV), avian leucosis virus, 

human immunodeficiency virus (HIV) and VSV in HEK-293-T cells and relies on activation of myosin II 

and actin rearrangements (Lehmann et al., 2005; Mercer & Helenius, 2008; Schelhaas et al., 2008). 

HSV-1 and dengue virus not only travel along filopodia during entry, but may also actively induce 

filopodia formation at this stage through activation of Cdc42 and Rac1 signaling (Oh et al., 2010; 

Zamudio-Meza et al., 2009). 

Depending on the cell type and virus, alphaherpesviruses may directly fuse their envelope with the 

plasma membrane (Barocchi et al., 2005). During fusion, the cortical actin layer forms a barrier that 

the virus needs to overcome to access the cytoplasm. Local actin rearrangements might be required 

to allow passage of the capsids through the cortical actin meshwork underneath the plasma 

membrane. Although direct fusion with the plasma membrane has been shown to lead to a productive 

infection, it is unclear whether capsid access to the cytoplasm requires (local) disassembly of cortical 
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actin filaments. Perhaps pointing in this direction, early F-actin depolymerization was seen in HSV-1, 

coinciding with increased viral penetration (Zheng et al., 2014). Similarly, electron microscopy 

experiments indicated local cortical F-actin disassembly at the sites of HSV-1 entry (Maurer et al., 

2008). HSV-1-induced F-actin depolymerization was found to rely on activation of cofilin, a central 

mediator in actin dynamics (Zheng et al., 2014). Other viruses that enter host cells via direct fusion at 

the plasma membrane, like HIV, have also been reported to (locally) disrupt the cortical F-actin layer 

to allow access of incoming virus particles to the cytoplasm through activation of cofilin (Campbell et 

al., 2004; Yoder et al., 2008).  

In particular cell types, alphaherpesviruses entry can rely on cellular endocytic processes for transport 

across the cell membrane and the cortical actin layer. Endocytic virus uptake routes often involve Rho 

GTPase signaling, seen their involvement in several different endocytic uptake processes (Marsh & 

Helenius, 2006; Mercer et al., 2010; Schelhaas, 2010; Sieczkarski & Whittaker, 2002). HSV-1 follows a 

phagocytosis-like uptake route in corneal fibroblasts (CF) and nectin1-overexpressing Chinese hamster 

ovary (CHO) cells, during which brief Cdc42 activation is followed by sustained RhoA activation 

(Clement et al., 2006). In line with the HSV-1 results, EHV-1 entry into CHO-K1 cells occurs via an 

endocytic or phagocytic mechanism that depends on ROCK activation (Frampton et al., 2007). 

Manipulation of Rho GTPase signaling, inducing actin rearrangements, thus seems a common aspect 

during viral entry, although the specific Rho GTPase signaling axes involved are highly variable, 

depending on the entry route used by the virus. Evidence is accumulating that entry routes not only 

differ between different viruses but also between different target cells. The specific impact of Rho 

GTPase signaling and actin modulations and their sometimes conflicting roles in entry processes merit 

further attention in the future. More insights into the different entry routes and the role of particular 

actin-controlling signaling pathways in different cell types may lead to the development of antiviral 

drugs that block viral entry in pathogenically important target cells. 

4.2 Egress 

During egress, newly formed virus particles again have to overcome the cortical actin layer and the 

plasma membrane in order to exit the cell (Delorme-Axford & Coyne, 2011; Taylor et al., 2011). 

Depletion of the F-actin cortex has been described for HSV-1 egress in Vero cells (Mingo et al., 2012) 

and EHV-1 egress in primary murine neurons (Slonska et al., 2014). The viral factor that is responsible 

for this depletion has not been investigated yet, but could rely on US3 (see Chapter 5). 

During egress, viruses manipulate the actin cytoskeleton to assist in viral spread to neighboring cells. 

As indicated higher (see 2.2.5 Actin rearrangements), alphaherpesviruses induce actin 
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rearrangements including disassembly of actin stress fibers and/or the formation of cellular 

projections, associated with increased viral spread in cell cultures. These actin rearrangements are 

induced by the conserved US3 protein kinase for PRV, HSV-2, BHV1- and -5, and MDV (Calton et al., 

2004; Favoreel et al., 2005; Murata et al., 2000; Schumacher et al., 2005; Van Minnebruggen et al., 

2003). Newly formed progeny viral particles have been reported to migrate inside these protrusions 

to neighboring cells, allowing intercellular virus transmission, even in the presence of virus-neutralizing 

antibodies (Favoreel et al., 2005). Treatment with the actin-stabilizing drug jasplakinolide as well as 

treatment with actin depolymerizing drugs cytochalasin D or microtubule polymerization inhibitor 

nocodazole abrogates the formation of these protrusions, and negatively influences viral spread 

(Favoreel et al., 2005; Schumacher et al., 2005). Interestingly, and in line with the requirement for 

intact microtubules, HSV-1 US3 has recently been reported to stabilize microtubules, which also 

contributes to virus spread (Naghavi et al., 2013). US3 also induces stress fiber breakdown in several 

alphaherpesviruses, such as HSV-2, MDV, PRV, BHV-1 and BHV-5 (Brzozowska et al., 2010; Favoreel et 

al., 2005; Ladelfa et al., 2011; Murata et al., 2000; Schumacher et al., 2008; Schumacher et al., 2005; 

Van den Broeke et al., 2009a; Van den Broeke et al., 2009b; Van Minnebruggen et al., 2003).  

A first suggestion that US3 may interfere with Rho GTPase signaling came from Murata and coworkers 

for HSV-2 (Murata et al., 2000), and has been unraveled in more detail for PRV US3. For PRV US3, group 

I p21-activated kinases (PAKs), downstream effectors of Cdc42 and Rac1 Rho GTPases (see 3.5 PAK) 

were identified as central downstream phosphorylation targets. PRV US3 was found to phosphorylate 

and activate both PAK1 and PAK2 (Van den Broeke et al., 2009b). Experiments using PAK1 and PAK2 

knockout (KO) mouse embryonic fibroblast (MEF) cells demonstrated that US3-induced stress fiber 

disassembly depends on PAK2 and US3-induced cell projection formation on PAK1 (Van den Broeke et 

al., 2009b). In line with the importance of cytoskeletal rearrangements for viral spread, infection of 

these PAK KO cells was associated with a reduced viral spread (Van den Broeke et al., 2009b). In 

addition, treatment of US3null PRV-infected cells with Y27632, an inhibitor of the RhoA downstream 

kinase ROCK (see 3.4.1 RhoA pathway), induced US3-like cytoskeletal rearrangements and partly 

compensated for the decreased intercellular spread of US3null PRV (Favoreel et al., 2005). This 

suggests that, besides activation of the Cdc42/Rac1/PAK signaling axis, US3 may also suppress the 

RhoA/ROCK pathway, although such putative effect of US3 on RhoA/ROCK signaling had not yet been 

investigated (see Chapter 3). 

Actin rearrangements by the US3 protein kinase typically depend on its kinase activity in HSV-2, PRV 

and BHV-1 US3, while it is redundant for MDV US3 and only required for induction of cell projections 

in BHV-5 (Brzozowska et al., 2010; Finnen et al., 2010; Ladelfa et al., 2011; Murata et al., 2000; 

Schumacher et al., 2008; Van den Broeke et al., 2009a). Intact and kinase-inactive US3 of MDV display 
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equal abilities to induce actin rearrangements, although these are less dramatic compared with those 

of most other alphaherpesviruses, as MDV US3 induces actin stress fiber disassembly but has not been 

reported to induce cell projections (Schumacher et al., 2008). Also, unlike for other 

alphaherpesviruses, MDV US3-induced stress fiber disassembly is temporary, and stress fibers 

reassemble 24-48 hours after disruption (Schumacher et al., 2008; Schumacher et al., 2005). This 

points towards a more robust effect of US3 on the actin cytoskeleton when induced by catalytic 

activity, underscoring the importance of downstream phosphorylation targets (Van den Broeke et al., 

2009a). Similarly, interference of MDV with Rho GTPase signaling is different compared with other 

alphaherpesviruses as, unlike for PRV, the Rac1/PAK signaling axis appears inhibitory to MDV spread, 

whereas the RhoA/ROCK signaling axis promotes spread (Richerioux et al., 2012).  

Interestingly, actin-based projection formation enabling the virus to reach and infect neighboring cells 

is documented for more viruses than alphaherpesviruses. Vaccinia virus induces US3-like actin 

rearrangements through its viral protein F11, contributing to viral spread (Morales et al., 2008; 

Valderrama et al., 2006). Similar to PRV US3 (see Chapter 3), F11 induces these actin rearrangements 

through interference with RhoA signaling (Handa et al., 2013; Valderrama et al., 2006). Furthermore, 

HIV induces tunneling nanotubes (TNTs), also referred as viral filopodia (VF), allowing viral spread 

(Aggarwal et al., 2012; Kimura et al., 2013; Sowinski et al., 2008). HIV Nef was found to be responsible 

for the formation of these TNTs in infected T lymphocytes and dendritic cells (Aggarwal et al., 2012; 

Eugenin et al., 2009; Kimura et al., 2013; Nikolic et al., 2011; Nobile et al., 2010; Xu et al., 2009). Nef 

shows other functional similarities with US3, such as activation of PAKs (Kouwenhoven et al., 2013; 

Stolp et al., 2010), interference with RhoA activity (Lu et al., 2008; Tan et al., 2013) (see Chapter 3) and 

F-actin disassembly facilitating viral entry (see Chapter 5) through cofilin activation (see Chapter 4) 

(Campbell et al., 2004; Yoder et al., 2008). So, although Nef and F11 are no protein kinases like US3 

and do not share amino acid homology, they appear to show considerable functional homology. These 

proteins will be further discussed later (see Chapter 6). 

Eventually, Rho GTPase signaling often leads to the activation of common downstream proteins. It will 

therefore be important to obtain clear insights into the downstream targets of Rho signaling, as they 

may be valuable to identify putative common signaling nodes. Similar to the development of viral entry 

inhibitors, leading from a better knowledge of different viral entry routes, identifying common 

downstream targets of viral interference with Rho signaling could allow the development of antiviral 

drugs that might block viral hijacking of several cellular signaling cascades. 
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Chapter 2: Aims 

Several viruses have developed sophisticated strategies to interfere with the actin cytoskeleton of their 

host cell during particular steps of their replication cycle in order to improve their replication and 

spread. For alphaherpesviruses, particularly pseudorabies virus (PRV), the conserved viral US3 

serine/threonine protein kinase causes dramatic changes in the actin cytoskeleton, consisting of actin 

stress fiber disassembly and the formation of actin-based cell projections, that are associated with 

enhanced viral cell-to-cell spread (Favoreel et al., 2005). Other proteins of other virus families, such as 

HIV Nef (Haller & Fackler, 2008; Rudnicka & Schwartz, 2009) or vaccinia virus F11 (Morales et al., 2008) 

induce similar actin rearrangements. 

The general aim of the current thesis was to obtain novel insights in the mechanisms and biological 

consequences of PRV US3-mediated actin rearrangements, via three specific studies. 

It has been previously reported by our research group that US3 phosphorylates and thereby activates 

p21 activated kinases (PAKs), downstream effectors of Rac1/Cdc42 signaling, and that this plays a 

central role in causing PRV US3-induced actin rearrangements (Van den Broeke et al., 2009). Rac1 and 

Cdc42 signaling axes typically counteract RhoA signaling and vice versa (Van den Broeke et al., 2014). 

Other viruses, like vaccinia virus, have been reported to inhibit RhoA signaling to trigger actin 

rearrangements very similar to the ones observed with PRV US3 (Valderrama et al., 2006). Hence, in 

Chapter 3, we investigated whether PRV US3 also affects the RhoA signaling axis to mediate its actin 

rearrangements.  

Little is known on the effect that PRV US3 generates on proteins that directly affect actin 

polymerization and how this may contribute to the US3-induced actin rearrangements. Cofilin is a 

central regulator of actin polymerization. As a second specific aim, we investigated whether PRV (US3) 

affects cofilin activation and whether this contributes to the US3-mediated effects on the actin 

cytoskeleton (Chapter 4).  

Although it is well documented that the actin rearrangements induced by US3 are associated with 

enhanced viral spread from one cell to another in cell culture, it has not yet been investigated whether 

these may also be involved in virus entry in a host cell. During entry, other viruses like HIV have been 

reported to induce disassembly of F-actin to dissolve the cortical actin barrier to gain access to the 

cytoplasm (Delorme-Axford & Coyne, 2011). US3-induced rearrangements of the actin cytoskeleton 

are known not to affect total actin protein levels (Van Minnebruggen et al., 2003). We aimed at 

investigating whether US3 results in an overall disassembly of F-actin and whether US3 may contribute 

to certain aspects of virus entry in host cells (Chapter 5).   
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Abstract 

The conserved alphaherpesviral serine/threonine kinase US3 causes dramatic changes in the actin 

cytoskeleton, consisting of actin stress fiber breakdown and protrusion formation, associated with 

increased viral spread. In this report, we show that US3 expression leads to RhoA phosphorylation at 

serine 188 (S188), one of the hallmarks of suppressed RhoA signaling, and that expression of a non-

phosphorylatable RhoA variant interferes with the ability of US3 to induce actin rearrangements. 

Furthermore, inhibition of cellular protein kinase A (PKA) abrogates the ability of US3 to induce S188 

RhoA phosphorylation, pointing to a role for PKA in US3-induced RhoA phosphorylation. Hence, the 

US3 kinase leads to PKA-dependent S188 RhoA phosphorylation, which contributes to US3-mediated 

actin rearrangements. Our data suggest that US3 efficiently usurps the antagonistic RhoA and 

Cdc42/Rac1/PAK signaling branches to rearrange the actin cytoskeleton. 
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Introduction 

Alphaherpesviruses represent the largest subfamily of the herpesvirus family, comprising closely 

related pathogens of man and animal, including herpes simplex virus (HSV) and varicella zoster virus 

(VZV) in man. 

The pseudorabies virus (PRV) is a porcine alphaherpesvirus and is often used to study general aspects 

of alphaherpesvirus biology (Pomeranz et al., 2005). Infection with PRV can lead to dramatic changes 

in the actin cytoskeleton of the host cell, consisting of actin stress fiber breakdown and protrusion 

formation (Favoreel et al., 2005). These actin rearrangements are associated with increased viral cell-

to-cell spread and depend on the kinase activity of the viral serine/threonine kinase US3 (Favoreel et 

al., 2005; Van den Broeke et al., 2009b). US3 is conserved within the alphaherpesvirus subfamily, and 

comparable US3-induced cytoskeletal changes have been described for several other 

alphaherpesviruses, including HSV-2 and bovine herpesvirus-1 and -5 (BHV-1/-5) (Brzozowska et al., 

2010; Finnen et al., 2010; Ladelfa et al., 2011).  

Rearrangements of the actin cytoskeleton are generally regulated by Rho GTPase signaling pathways 

(Hall, 1998). RhoA, Rac1 and Cdc42 are the best characterized Rho GTPases and regulate many actin-

driven processes. Activation of RhoA generally leads to actin stress fiber formation, while Rac1 and 

Cdc42 are typically associated with the formation of different actin-based protrusions, most notably 

filopodia (Cdc42) and lamellipodia (Rac1) (Hall, 1998). Rac1/Cdc42 signaling typically counteracts RhoA 

signaling and vice versa (Van den Broeke et al., 2014).  

We have demonstrated previously that PRV US3 influences the Rac1/Cdc42 signaling branch, via 

activation of p21 activated kinases (PAKs), downstream effectors of Rac1 and Cdc42. In particular, US3 

phosphorylates and thereby activates both PAK1 and PAK2, contributing to stress fiber breakdown and 

protrusion formation (Van den Broeke et al., 2009b). 

It is currently not know whether US3 may also affect the opposing RhoA signaling branch. RhoA GTPase 

activity is regulated via several mechanisms, including phosphorylation at serine residue 188 (S188). 

S188 phosphorylation of RhoA suppresses RhoA signaling via RhoGDI–mediated relocalization of (GTP-

bound) RhoA from the cellular membrane to the cytoplasm, thereby keeping RhoA away from its site 

of activity and preventing downstream signaling (Lang et al., 1996; Rolli-Derkinderen et al., 2005). 

Cyclic AMP (cAMP)-dependent protein kinase A (PKA) has been reported to phosphorylate RhoA at 

position S188 in several cell types (Dong et al., 1998; Ellerbroek et al., 2003; Jones & Palmer, 2012; 

Lang et al., 1996; Lapetina et al., 1989; Quilliam et al., 1991; Tkachenko et al., 2011). This is of particular 

interest since the US3 protein kinase homologs of alphaherpesviruses like HSV-1 and VZV have been 
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shown (i) to functionally overlap with cellular PKA with regard to cellular substrates and/or (ii) trigger 

activation of cellular PKA during infection (Benetti et al., 2003; Benetti & Roizman, 2004; Erazo & 

Kinchington, 2010; Munger & Roizman, 2001; Ogg et al., 2004). 

In the current report, we investigated whether expression of the US3 protein of the alphaherpesvirus 

PRV affects RhoA phosphorylation at S188 and, if so, whether this contributes to the US3-mediated 

effects on the actin cytoskeleton. We report that expression of US3 leads to increased RhoA S188 

phosphorylation, that overexpression of a non-phosphorylatable S188A RhoA mutant interferes with 

the US3-mediated actin rearrangements, and that inhibition of PKA interferes with the ability of US3 

to trigger RhoA phosphorylation.  
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Materials and methods 

- Cell cultures and viruses 

ST (Swine testicle) cells were cultured according to published literature (Geenen et al., 2005). WT NIA3 

PRV and isogenic US3null NIA3 PRV viruses were described before (Baskerville, 1973; de Wind et al., 

1990).   

- Plasmids 

HA-tagged WT and S188A RhoA plasmids were described earlier and were kindly provided by Gervaise 

Loirand (Inserm, Nantes, France) (Rolli-Derkinderen et al., 2005). The plasmids encoding PRV US3 

(pKG1) and the kinase-inactive US3 mutant (pHF61) (point mutation in ATP-binding site, K136G) were 

described before (Deruelle et al., 2007; Geenen et al., 2005). The empty control plasmid pcDNA 3.1 

was bought from Invitrogen. 

- Reagents 

Primary antibodies included mouse anti RhoA (Santa Cruz, sc-418, diluted 1/250 for Western blots), 

rabbit anti P-RhoA (Abcam, ab-41435, diluted 1/1000 for Western blot), mouse anti-US3 (kindly 

provided by LeighAnne Olsen and Lynn Enquist (Princeton University), diluted 1/50 for 

immunofluorescence and 1/100 for Western blots), monoclonal mouse anti-PRV gE 13D12 (described 

earlier by Nauwynck and Pensaert (Nauwynck & Pensaert, 1995), diluted 1/100 for Western blot), 

rabbit anti-HA tag ((Sigma-Aldrich, diluted 1/100 for immunofluorescence and 1/200 for Western blot), 

anti-phospho PKA substrates (Cell Signaling, 6921, diluted 1/1000 for Western blots) and rabbit anti-

tubulin (Abcam, ab-18251, diluted 1/500 for Western blot). Secondary antibodies included goat anti-

rabbit Alexa Fluor 647 (Invitrogen, diluted 1/200 for immunofluorescence) and goat anti-mouse 

TexasRed (Invitrogen, diluted 1/100 for immunofluorescence) and we used the fluorescent probe 

phalloidin-FITC for actin staining (diluted 1/200). Horseradish peroxidase (HRP)-conjugated secondary 

goat anti-rabbit antibody (1/3000) and goat anti-mouse antibody (1/2000) for Western blot detection 

were purchased from Dako Cytomation. As a nuclear counterstaining in immunofluorescence assays, 

Hoechst 33342 (Invitrogen, diluted 1/200) was used. For immunofluorescence, antibodies were always 

diluted in PBS, while for Western blot assays antibodies were diluted in PBS with 5% Tween 20 (Sigma 

Aldrich) and 5% non-fat, dry milk (Nestlé). Protein Kinase A inhibitor PKI (fragment 14-22, 

myristoylated trifluoroacetate salt) was bought from Sigma-Aldrich. 
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- Transfection and infection assays 

Transfection was performed using the JetPrime transfection kit (PolyPlus, Westburg) according to the 

manufacturer’s instructions. One day prior to transfection, ST cells were seeded at a density of 75,000 

cells/ml. For infection assays, ST cells were seeded at 150,000 cells/ml and two days later inoculated 

at a MOI (multiplicity of infection) of 10 or 30 in 1 ml medium (MEM complemented with 10% FCS, 1% 

glutamin, 1% P/S, 1% NaPy, 0.5% gentamycin). 

- Western blotting 

6h post-inoculation (hpi) or 24 h post-transfection (p.t.), cells were washed in PBS and collected in lysis 

buffer consisting of 50 mM Tris-HCL, 5 mM EDTA, 150 mM NaCl, 1% NP40, 1 tablet of protease 

inhibitors (Roche, EDTA-free, complete mini) per 7 ml of lysis buffer and phosphatase inhibitors (2 mM 

NaVO3, 5 mM NaF). After 1 h incubation, the lysate was centrifuged for 5 min at 13,000 x g and the 

supernatant was collected. After SDS-PAGE, Western blotting and detection of the bands using ECL 

Western Blotting substrate (Pierce) using the ChemiDoc (Biorad), band intensities were quantified 

using the “Analyse Gel” option in ImageJ.  

- Immunofluorescence 

For immunofluorescence experiments, cells were seeded on glass coverslips. Either 6 hpi or 24 h p.t., 

cells were washed in PBS, fixed for 10 min in a 3% paraformaldehyde/PBS solution, washed, 

permeabilized for 2 min with 0.2% Triton X-100, washed again, incubated with primary antibody for 1 

h at 37°C, washed two times and incubated at 37°C for 1 h with fluorescently labeled secondary 

antibodies. Finally, the cells were incubated for 10 min with a 1/200 Hoechst 33342 (Invitrogen) 

dilution in PBS and washed two more times, before mounting the coverslips in glycerin-DABCO (1,4-

diazabicyclo[2.2.2]octane). Samples were imaged using a Leica TCS SPE confocal microscope (Leica DM 

RBE, Leica Microsystems, GmbH, Heidelberg, Germany).  

- In vitro kinase assay 

This protocol was performed according to previous published literature (Lang et al., 1996; Van den 

Broeke et al., 2009b). In short, 1 μg recombinant RhoA (Sigma-Aldrich) was added to 1 μg recombinant 

GST-tagged US3 or 2500 units of the cAMP-dependent Protein Kinase (PKA) catalytic subunit (New 

England BioLabs), in kinase buffer (50 mM Tris (pH 7.5), 10 mM MgCl2, 1 mM DTT and 20 μM ATP), 

each reaction containing a total volume of 20 μl. After 30 min incubation at 30°C, samples were 

subsequently used for SDS-PAGE/Western blotting.   
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Results and discussion 

- PRV infection leads to US3-dependent RhoA S188 phosphorylation 

To investigate whether PRV infection leads to RhoA S188 phosphorylation, and, if so, whether this 

depends on US3 expression, porcine ST cells were mock-inoculated or inoculated with wild type (WT) 

PRV or isogenic US3null PRV NIA3 (containing a translational stop codon in US3) (Baskerville, 1973; de 

Wind et al., 1990). At 6 hpi, cells were lysed and subjected to SDS-PAGE and Western blotting to detect 

levels of phospho (P)-S188-RhoA, total RhoA, viral proteins US3 and gE (13D12 (Nauwynck & Pensaert, 

1995)) and loading control tubulin (Figure 1A). P-S188-RhoA and RhoA band intensities were measured 

with the “Analyze gels” option in ImageJ, and P-S188-RhoA ratios were normalized to mock levels 

(Figure 1B). Figure 1A&B show that WT PRV infection triggers a substantial increase in RhoA 

phosphorylation, compared to mock-infected or US3null PRV infected cells. A time course assay 

showed that RhoA phosphorylation can be detected from early in infection, gradually increasing up to 

6 hpi and reaching a plateau from then onwards (Supplementary Figure 1). Hence, PRV infection 

induces US3-mediated RhoA S188 phosphorylation. In addition, transfection of a WT US3-encoding 

eukaryotic expression plasmid (Geenen et al., 2005) in ST cells was sufficient to trigger S188 RhoA 

phosphorylation, while transfection of kinase-inactive US3 (K136G mutation in the ATP-binding site) 

(Deruelle et al., 2007; Van den Broeke et al., 2009a) did not (Figure 1C&D). Concluding, expression of 

US3 leads to S188 RhoA phosphorylation in infected and transfected ST cells.  
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Fig. 1: Expression of US3 during infection or transfection triggers RhoA-S188 phosphorylation. (A-B) ST cells were 
mock-inoculated or inoculated with WT PRV (strain NIA3) or isogenic US3null PRV. At 6 hpi, cell lysates were 
subjected to Western blotting to detect P-S188-RhoA, total RhoA, US3, gE or tubulin (A). (B) shows relative RhoA 
phosphorylation levels (P-S188-RhoA/RhoA ratio with mock infection set to 1) from three independent repeats. 
Data represent means + standard errors of the means, with *** = P < 0.001 (determined by one-way ANOVA and 
Tukey post test). (C-D) ST cells were mock-transfected or transfected with a eukaryotic expression vector 
encoding PRV US3 or kinase-inactive PRV US3 (comprising a point mutation in the predicted ATP-binding site, 
K136G). At 24 h post-transfection, cell lysates were subjected to Western blotting to detect total P-S188-RhoA, 
total RhoA, US3, and tubulin expression levels (C). (D) shows relative RhoA phosphorylation levels (P-S188-
RhoA/RhoA ratio with mock transfection set to 1) from three independent repeats. Data represent means + 
standard errors of the means, with * = P < 0.05 and ** = P < 0.01 (determined by one-way ANOVA and Tukey 
post test). Antibody panels in A and C were obtained from separate gels, but derive from the same sample. All 
gels have all been run with the same amount of sample, blotted, incubated and detected together in parallel. 
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Suppl. Fig. 1: Kinetic time course of RhoA phosphorylation during PRV infection. ST cells were mock-inoculated 
(0 hpi) or inoculated with WT PRV (strain NIA3). At 1, 2, 3, 4, 5, 6, 8 and 16 hpi, cell lysates were collected and 
subjected to Western blotting to detect levels of P-S188-RhoA, total RhoA, and US3. Every antibody panel was 
obtained from separate gels, but derives from the same sample. All gels have all been run with the same amount 
of sample, blotted, incubated and detected together in parallel. 

 

- Expression of a non-phosphorylatable S188A-RhoA variant interferes with US3-mediated actin 

rearrangements 

If RhoA S188 phosphorylation is important for US3-induced actin rearrangements, one would expect 

that overexpression of wild type RhoA may interfere with US3-induced actin rearrangements, since 

accumulated levels of RhoA may exceed the ability of US3 to inactivate it. Overexpression of a non-

phosphorylatable S188A-RhoA mutant, which cannot be inactivated through phosphorylation, would 

then be expected to interfere to an even larger extent with US3-induced actin rearrangements. To test 

this, ST cells were transfected with empty vector pcDNA3.1 alone or  cotransfected with US3 together 

with pcDNA3.1 or either HA-tagged WT RhoA or S188A-mutated RhoA (as described in (Rolli-

Derkinderen et al., 2005)). At 24 h post-transfection, cells were fixed using 3% paraformaldehyde, 

permeabilized with Triton X-100 and fluorescently labeled with antibodies against US3, the HA-tag and 

a probe against actin (phalloidin-FITC). Finally, cells were counterstained for nuclei using Hoechst 

33342 (Figure 2A&B).  
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Fig. 2: Overexpression of non-phosphorylatable S188A-RhoA and, to a lesser extent, WT RhoA interferes with the 
ability of US3 to cause actin rearrangements. (A) ST cells were transfected with empty vector pcDNA3.1 alone or 
cotransfected with US3 together with pcDNA3.1 or either HA-tagged WT RhoA or S188A RhoA. At 24 h post-
transfection, cells were fixed and stained for US3 (Texas Red, red), HA-RhoA (Alexa Fluor 647, purple), actin 
(phalloidin-FITC, green) and nuclei (Hoechst 33342, cyan). White squares in 2A indicate zoomed areas in 2B. (B) 
Cells marked by white arrowheads demonstrate cells with the US3-phenotype (cell rounding and stress fiber 
breakdown) that were scored positive in Figure 3A. 
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Figure 3A summarizes results from three independent experiments where each time 200 cotransfected 

cells (both high US3 and RhoA expressing cells) per condition were scored for cell rounding (actin stress 

fiber disassembly) and cell projection formation (white arrows on the merged views of Figure 2B 

indicate cells that were scored positive). Western blot assays of total cell lysates 24 hours post-

transfection detecting US3, RhoA-HA and tubulin expression indicate that US3 expression is similar in 

all samples (Figure 3B). Hence, our data shows that overexpression of RhoA interferes with the ability 

of US3 to trigger actin rearrangements. Importantly, co-expression of S188A RhoA with US3 caused a 

significantly stronger suppression of US3-mediated actin rearrangements compared to co-expression 

of WT RhoA with US3. Hence, non-phosphorylatable S188A RhoA more potently suppresses the ability 

of US3 to induce actin rearrangements, supporting a role for US3-triggered RhoA S188 phosphorylation 

in these actin rearrangements. 

 

Fig. 3: Overexpression of non-phosphorylatable S188A-RhoA and, to a lesser extent, WT RhoA interferes with the 
ability of US3 to cause actin rearrangements. ST cells were transfected with US3 together with either empty 
vector pcDNA3.1, HA-tagged WT RhoA or HA-tagged S188A RhoA. At 24 h post-transfection, cells were fixed and 
stained for US3 and HA-RhoA. For each experiment, 200 cells expressing high and comparable levels of US3 and 
HA-tagged RhoA were scored for US3-mediated actin rearrangements. (A) shows the percentage of transfected 
cells displaying actin rearrangements representing means + standard errors of the means from three 
independent repeats, with * = P < 0.05 and *** = P < 0.001 (determined by one-way ANOVA and Tukey post test). 
(B) shows total cell lysates at 24 h post-transfection subjected to Western blotting to detect US3, HA-tagged 
RhoA constructs and endogenous tubulin expression levels. Antibody panels in B were obtained from separate 
gels, but derive from the same sample. All gels have all been run with the same amount of sample, blotted, 
incubated and detected together in parallel. 
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- US3-triggered RhoA phosphorylation occurs via PKA 

To investigate whether US3 phosphorylates RhoA directly, a kinase assay was performed according to 

published literature (Lang et al., 1996; Van den Broeke et al., 2009b). In short, 1 μg recombinant RhoA 

(Sigma-Aldrich) was added to 1 μg recombinant GST-tagged US3 or 2500 units of the positive control 

PKA catalytic subunit, in kinase buffer. The used lot of GST-US3 exhibited kinase activity on the p21-

activated kinase PAK1 (data not shown), in line with what we published earlier (Van den Broeke et al., 

2009b). After 30 min incubation at 30°C, samples were boiled in loading buffer and used for SDS-

PAGE/Western blotting. While this assay confirmed that active PKA directly phosphorylates RhoA, US3 

did not induce detectable RhoA phosphorylation, suggesting that US3 may not directly phosphorylate 

RhoA and that a cellular kinase may be involved (Figure 4A).  

US3 of HSV-1 has been reported before to trigger PKA activation (Benetti et al., 2003; Benetti & 

Roizman, 2004; Munger & Roizman, 2001). To investigate whether this is also the case in PRV, ST-wells 

were either mock-inoculated or inoculated with WT PRV or US3null PRV. At 6 hpi, cells were lysed and 

subjected to Western blotting to detect levels of phospho-PKA substrates, viral proteins US3 and gE 

and loading control tubulin (Figure 4B). WT PRV infection resulted in substantially increased phospho-

PKA substrate signal, while this was considerably less prominent for US3null PRV infection.  

Next, we examined whether PRV-mediated RhoA phosphorylation depends on PKA activity. To this 

end, ST cells were mock-inoculated or inoculated with WT PRV in the presence or absence of 50 μM of 

the cell-permeable PKA inhibitor PKI (14-22 myristoylated), added from 30 min before viral inoculation. 

At 6 hpi, cells were lysed and subjected to SDS-PAGE and Western blotting to detect levels of phospho 

(P)-S188-RhoA, total RhoA, phospho-PKA substrates, viral proteins US3 and gE and loading control 

tubulin (Figure 4C&D). Phospho-PKA substrate signal confirmed increased PKA activity during PRV 

infection. PKI largely suppressed this PRV-induced phospho-PKA substrate signal, confirming that this 

signal specifically correlates with increased PKA activity (Figure 4C). Interestingly, PKI abrogated PRV-

induced RhoA phosphorylation, indicating that PRV-triggered RhoA phosphorylation depends on PKA 

activity (Figure 4C&D). Hence, our data indicate that US3 indirectly triggers RhoA phosphorylation, via 

the cellular PKA kinase.  
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Fig. 4: US3-induced RhoA phosphorylation is PKA-dependent. (A) In vitro kinase assay: recombinant RhoA was 
added to either recombinant US3-GST or cAMP-dependent Protein Kinase (PKA) catalytic subunit in kinase buffer. 
After incubation, samples were subjected to SDS-PAGE/Western blotting to detect levels of P-S188-RhoA, RhoA 
and US3. (B) ST cells were mock-inoculated or inoculated with WT PRV or US3null PRV. At 6 hpi, cell lysates were 
subjected to Western blotting to detect levels of phospho-PKA substrate signal, US3, gE, and tubulin. (C) ST cells 
were mock-inoculated or inoculated with WT PRV in the presence or absence of PKI, a cell-permeable PKA 
inhibitor. At 6 hpi, cell lysates were subjected to Western blotting to detect levels of P-S188-RhoA, RhoA, 
phospho-PKA substrate signal, US3, gE and tubulin. (D) shows relative RhoA phosphorylation levels (P-S188-
RhoA/RhoA ratio with mock infection set to 1) from three independent repeats. Data represent means + standard 
errors of the means, with ** = P < 0.01 and *** = P < 0.001 (determined by one-way ANOVA and Tukey post test). 
Antibody panels in A, B and C were obtained from separate gels, but derive from the same sample. All gels have 
all been run with the same amount of sample, blotted, incubated and detected together in parallel.    

 

In line with this, it has been reported before that PKA-induced RhoA S188 phosphorylation leads to 

changes in cell morphology that correspond well with US3-induced actin rearrangements. For example, 

in epithelial SH-EP cells, addition of forskolin, which increases PKA activity via increased intracellular 

cAMP levels, resulted in PKA-mediated RhoA S188 phosphorylation, and consequent cell retraction 

and formation of long, branched cell projections that resemble US3-induced cell projections (Dong et 

al., 1998).  
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Phosphorylation and activation of PAK, another effect of US3 signaling (Van den Broeke et al., 2009b), 

has also been associated with US3-like actin rearrangements, stress fiber disassembly and cell 

projection formation (Zhao et al., 1998). Hence, US3 both suppresses RhoA signaling via RhoA 

phosphorylation and triggers Cdc42/Rac1 signaling via PAK phosphorylation, and both appear to 

contribute to the US3-induced actin rearrangements. Why does US3 interfere with both pathways? In 

this context, it is interesting that there is negative feedback between RhoA signaling on the one hand 

and Cdc42/Rac1/PAK signaling on the other hand, and reciprocal control of both branches of signaling 

has been reported in different cellular settings (Kozma et al., 1997; Leeuwen et al., 1997; Sander et al., 

1999; Xie et al., 2008; Yamaguchi et al., 2001). For example, mesenchymal and amoeboid migration 

rely on antagonistic reciprocal control of RhoA and Rac signaling (Parri & Chiarugi, 2010). Relevant to 

this work, RhoA activation promotes formation of stress fibers whereas PAK activation destabilizes 

stress fibers (Etienne-Manneville & Hall, 2002; Van Aelst & D'Souza-Schorey, 1997). By simultaneously 

triggering both PAK activating signaling and RhoA inactivating signaling, US3 seems to very efficiently 

usurp this feedback system. 

Interestingly, a US3-like phenotype of actin rearrangements has also been described for the F11 

protein of vaccinia virus, a poxvirus (Arakawa et al., 2007). F11 exerts its effect also via suppression of 

the RhoA signaling axis, albeit via a different mechanism than US3. F11 interferes with the Rho GTPase-

activating protein (GAP) Myosin-9A (Handa et al., 2013), thereby blocking the interaction of RhoA with 

its downstream effectors ROCK and mDia (Valderrama et al., 2006). Several other viruses have also 

been reported to mediate RhoA inactivation at some point in their replication cycle to lead to 

successful infection or spread, such as human cytomegalovirus (HCMV) (Frampton et al., 2007), simian 

virus 40 (SV40) (Stergiou et al., 2013), hepatitis C virus (HCV) (Brazzoli et al., 2008), Epstein Barr virus 

(EBV) (Loesing et al., 2009), and human immunodeficiency virus (HIV-1) (del Real et al., 2004). To our 

knowledge, the current study is the first report describing virus-triggered phosphorylation of RhoA. 

To conclude, US3 expression leads to PKA-dependent RhoA S188 phosphorylation, which contributes 

to the US3-induced actin rearrangements. The combination of activation of PAK signaling and 

suppression of RhoA signaling may provide the ideal signaling conditions to generate the robust US3-

induced cytoskeletal rearrangements.  
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Abstract  

The conserved alphaherpesviral serine/threonine kinase US3 causes dramatic actin rearrangements, 

associated with increased viral spread. Here, we show that US3 of pseudorabies virus (PRV) leads to 

activation (dephosphorylation) of the central actin regulator cofilin. A mutation that impairs US3 kinase 

activity and the group I p21-activated kinase inhibitor IPA-3 inhibited US3-mediated cofilin activation. 

Additionally, expression of phosphomimetic S3D cofilin significantly suppressed the ability of US3 to 

cause cell projections and cell rounding. In conclusion, the US3 kinase of PRV leads to activation 

(dephosphorylation) of cofilin, and cofilin contributes to US3-mediated actin rearrangements. 
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Introduction 

The US3 kinase is conserved among Alphaherpesvirinae. We and others have shown that this kinase 

induces dramatic rearrangements of the actin cytoskeleton, including disassembly of actin stress fibers 

and formation of cellular projections, which are associated with increased viral spread in cell culture 

(Calton et al., 2004; Favoreel et al., 2005; Finnen et al., 2010; Ladelfa et al., 2011; Murata et al., 2000; 

Schumacher et al., 2005; Van Minnebruggen et al., 2003). For the alphaherpesvirus pseudorabies virus 

(PRV), we previously reported that the US3-induced changes in the actin cytoskeleton are mediated 

through p21-activated kinases (PAKs), central regulators in Rho GTPase signaling (Van den Broeke et 

al., 2009b). Apart from the involvement of PAKs, relatively little is known about the factors contributing 

to US3-mediated actin rearrangements.  

Cofilin, a member of the actin depolymerizing factor (ADF)/cofilin family, is a central player in actin 

dynamics known to be activated through dephosphorylation on serine residue 3 (S3) (Moriyama et al., 

1996). Phosphorylation and dephosphorylation of cofilin at S3 is complexly regulated by multiple 

kinases and phosphatases (Van Troys et al., 2008). Increasing evidence indicates that cofilin constitutes 

an important cellular target affected by both bacterial and viral infections (Berkova et al., 2007; Han 

et al., 2011; Moffatt et al., 2012; Stolp et al., 2009; Xiang et al., 2012).  With regard to 

alphaherpesviruses, herpes simplex virus 1 (HSV-1) has been reported to induce a cell-type dependent 

upregulation of cofilin levels and modulation of cofilin activity (Pei et al., 2011; Vorster et al., 2011a). 

This may affect viral replication, although the underlying mechanism is unclear (Pei et al., 2011; Xiang 

et al., 2012). The best characterized viral modulation of cofilin activity has been documented for HIV, 

which triggers cofilin S3 phosphorylation and thus inactivation through gp120-mediated activation of 

the Rac-PAK-LIMK pathway, which is involved in initiation of infection of CD4 T cells (Vorster et al., 

2011b). HIV Nef also leads to cofilin inactivation through the activity of PAK2, thereby restricting 

migration of infected T lymphocytes (Stolp et al., 2009). On the other hand, HIV-mediated activation 

of cofilin has also been described to affect initiation of infection (Jimenez-Baranda et al., 2007; Vorster 

et al., 2011b; Yoder et al., 2008). 

In the current report, we investigated whether the US3 protein of the alphaherpesvirus PRV affects 

cofilin phosphorylation, and, if so, whether this contributes to the US3-mediated effects on the actin 

cytoskeleton.  
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Materials and methods 

- Cell cultures and viruses  

ST (Swine testicle) cells were cultured as described previously (Geenen et al., 2005). Wild-type NIA3 

PRV, isogenic US3null NIA3 PRV (constructed by insertion of a palindromic oligonucleotide containing 

translational stop codons in all reading frames, in the 5′ part of the open reading frame) (de Wind et 

al., 1990) and revertant NIA3 PRV viruses have been described before (Baskerville, 1973; de Wind et 

al., 1990), as well as VP26-mRFP expressing Becker PRV variants including wild-type PRV-GS847, PRV-

GS976 encoding a kinase-inactive variant of US3 and the revertant PRV-GS3000 Becker virus (Coller & 

Smith, 2008; Van den Broeke et al., 2009a)  

- Plasmids and reagents 

Human cofilin-1 (indicated as cofilin) coding constructs were constructed as described (Leyman S et al. 

2009, Mol Biol Cell). Briefly, WT cofilin was cloned into pEGFP.N1 (Clontech), producing a cofilin-GFP 

fusion protein. S3A and S3D mutations were introduced using the QuikChange mutagenesis kit 

(Stratagene). The plasmid encoding PRV US3 was described earlier (Geenen et al., 2005). The plasmid 

encoding DsRed was kindly provided by R. Y. Tsien (UCSD, La Jolla, CA). Group I PAK inhibitor IPA-3 (a 

kind gift from Professor J. Chernoff, Fox Chase Cancer Center) was used at 33 μM, as decribed before 

(Deacon et al., 2008). Antibodies used included rabbit anti-cofilin (Santa Cruz, sc-42824) (1/600 for 

Western blot), rabbit anti-phospho-S3 cofilin (Santa Cruz, sc-12912) (1/500 for immunofluorescence 

and 1/1000 for Western blot), mouse anti-US3 (kindly provided by LeighAnne Olsen and Lynn Enquist, 

Princeton University) (1/50 for immunofluorescence and  1/100  for Western blot), monoclonal mouse 

anti-PRV gE antibody 13D12 (Nauwynck & Pensaert, 1995) (1/100 for Western blot). Secondary 

antibodies for immunofluorescence included goat anti-rabbit FITC (Invitrogen) (1/200) and goat anti-

mouse TR (Invitrogen) (1/100). Secondary Western blotting antibodies included horseradish 

peroxidase (HRP)-conjugated goat anti-rabbit antibody (1/3000) and goat anti-mouse antibody 

(1/2000) (Dako Cytomation). To stain nuclei in immunofluorescence experiments, Hoechst 33342 

(Invitrogen) (1/200) was used. For immunofluorescence, antibodies were diluted in PBS, for Western 

blot assays antibodies were diluted in PBS with 5% Tween 20 (Sigma Aldrich) and 5% non-fat, dry milk 

(Nestlé). 

- Transfection and infection assays  

One day prior to transfection or infection assays, ST cells were seeded at a density of 100,000 cells/ml 

or 150,000 cells/ml, respectively. JetPrime (Polyplus, Westburg) was used for transfection according 

to manufacturer’s guidelines. For infection assays, cells were inoculated with WT virus at MOI 
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(multiplicity of infection) 10 or 30 in 1 ml medium (MEM complemented with 10% FCS, 1% glutamin, 

1% P/S, 1% NaPy, 0.5% gentamycin).  

- Western blotting 

At 6 h post-inoculation (hpi) or 24 h post-transfection, cells were washed twice in PBS and incubated 

in lysis buffer (50mM Tris-HCL, 5mM EDTA, 150mM NaCl, 1% NP40, 1 tablet of protease inhibitors 

(Roche, EDTA-free, complete mini) per 7 ml of lysis buffer, phosphatase inhibitors (2mM NaVO3, 5mM 

NaF) at 4°C for 1 h. The lysate was centrifuged at 12,000 x g and the supernatant was collected. After 

SDS-PAGE, Western blotting and detection of protein bands, band intensities were quantified using 

the ’Analyse Gel’ tool in ImageJ. 

- Immunofluorescence  

For immunofluorescence, cells were grown on coverslips. At 6 hpi or 24 h post-transfection, cells were 

washed in PBS, fixed in 3% paraformaldehyde for 10min, permeabilized for 2 min in 0.2% Triton X-100, 

washed in PBS and subjected to immunofluorescence staining consisting of a 1 h incubation step at 

37°C with primary antibodies, two washing steps in PBS, 1 h incubation at 37°C with fluorescently 

tagged secondary antibodies and again two washing steps in PBS. After 10 min incubation with a 1/200 

dilution of Hoechst 33342 (Invitrogen), coverslips were mounted in glycerin-DABCO (1,4-

diazabicyclo[2.2.2]octane) and imaged using  a Leica TCS SPE confocal microscope (Leica DM RBE, Leica 

Microsystems, GmbH, Heidelberg, Germany). Quantification of fluorescence in the images was 

performed through the ImageJ ‘Analyze Particles’ procedure, where the amount of cells was detected 

automatically using the ‘Treshold’-function.  
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Results and discussion 

- US3 is required for PRV-mediated suppression of cofilin phosphorylation 

We determined whether US3 modulates the activity of cofilin through altered phosphorylation at the 

critical S3 residue in cofilin. ST cells were inoculated with isogenic NIA3 strains wild-type (WT) PRV, or 

US3null PRV (containing a translational stop codon in US3) or a revertant virus of the latter (8). At 6 h 

postinoculation (hpi), cells were subjected to Western blotting (WB). Antibodies used were directed 

against phospho-S3 cofilin, total cofilin, US3, and the viral membrane protein gE (18E8). Band intensity 

was measured with the “Analyze gels“ option in ImageJ and phospho-S3 cofilin levels were normalized 

to mock levels. Figure 1 shows that, compared to mock-infected ST cells, WT and US3rescue PRV 

infection led to a strong decrease in S3 cofilin phosphorylation, in contrast to US3null PRV (Figure 

1A&B). Phospho-S3 cofilin levels in US3null PRV-infected cells were even increased, albeit not 

significantly, when compared to mock-infected cells. In line with the early kinetics of US3 expression, 

the decrease in phospho-S3 cofilin could be observed already early in infection (from 4 hpi onward) 

(Figure 1C). The ability of US3 to modulate cofilin activity levels is underscored by the fact that 

transfection of a WT US3-encoding construct in ST cells was sufficient to suppress phospho-S3 cofilin 

levels, as shown in Figure 1D&E. Transfection with a control plasmid encoding red fluorescent protein 

DsRed plasmid was used as a control (Campbell et al., 2002). Hence, US3 leads to suppressed phospho-

S3 cofilin levels in infected and transfected ST cells.  
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Fig. 1. PRV infection leads to a US3-dependent suppression in S3 cofilin phosphorylation. (A) ST cells were mock-
inoculated or inoculated (MOI of 10) with WT PRV, US3null PRV, or US3rescue PRV. At 6 hpi, total cell lysates 
were subjected to Western blotting to detect phospho-S3 cofilin, total cofilin, US3, and gE. (B) Relative cofilin 
phosphorylation levels based on the phospho-S3 cofilin/cofilin ratio (with mock infection set to 1) are 
represented as means + standard errors of the means of data from three independent experiments, ** indicating 
P values of <0.01 and *** indicating P values of <0.001. (C) ST cells were inoculated with WT PRV (MOI of 10), 
and lysed at 0 h, 2 h, 4 h, 6 h, 8 h, 12 h or 24 h post-infection. Total cell lysates were subjected to Western blotting 
to detect phospho-S3 cofilin, total cofilin, and US3. (D and E) ST cells were transfected with US3 or with a control 
plasmid encoding DsRed (3) and stained for US3 and phospho-S3 cofilin. Panel D shows quantification of 
fluorescein isothiocyanate (FITC) (phospho-S3 cofilin) pixel intensities of 8 randomly chosen US3- or control 
plasmid-transfected cells, which were determined using ImageJ. Data shown represent means + standard errors 
of the means, with *indicating P values of <0.05. 
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- The kinase activity of US3 is required to suppress phosphorylation of cofilin 

To assess the involvement of the kinase activity of US3 in suppressing cofilin phosphorylation in ST 

cells, cells were inoculated with a previously described PRV strain expressing a kinase-inactive US3 

protein, containing a point mutation (D223A) in the catalytic base required for phosphotransfer (PRV-

GS976) (Coller & Smith, 2008; Van den Broeke et al., 2009a). At 6 hpi, phospho-S3 cofilin, total cofilin, 

US3, and gE levels were evaluated by WB (Figures 2A&B). The PRV strain Becker expressing a kinase-

inactive US3, unlike isogenic wild-type PRV (PRV-GS847), did not suppress phospho-S3 levels of cofilin. 

A rescue strain in which the D223A mutation in US3 was restored (PRV-GS3000) acted like the WT virus 

and induced a strong suppression in cofilin phosphorylation. As observed for US3null PRV (Figure 1), 

infection with PRV encoding kinase-inactive US3 resulted in increased phosphorylation of cofilin 

compared to that of mock-infected cells. Hence, the ability of US3 to suppress S3 phosphorylation of 

cofilin in ST cells relies on its kinase activity.  

Interestingly, infection with US3null PRV or D223A US3 PRV resulted in increased phospho-S3 cofilin 

levels compared to those of mock-infected cells (Figure 1&2). One hypothetical way to explain this may 

be that infection leads to cofilin inactivation (S3 phosphorylation) and that US3 activity counteracts 

this and even reduces phospho-S3 cofilin levels below normal levels. Why would infection lead to 

increased phospho-S3 cofilin levels? Viral infection is known to lead to a stress response in cells 

(Clemens, 2005; Jindal & Malkovsky, 1994; Santoro, 1996), which may perhaps be involved in increased 

phosphorylation of cofilin. Indeed, other cellular stress stimuli have been reported to lead to increased 

S3 cofilin phosphorylation, including heat shock (Simard et al., 2011), fluid shear stress (Fu et al., 2008; 

Liu et al., 2010) and scavenging of reactive oxygen species (Popova et al., 2010). It will be interesting 

to investigate the potential biological consequences of increased levels of phospho-S3 cofilin during 

US3null PRV infection for both virus and cell.  
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Fig. 2. The kinase activity of US3 is required to suppress phosphorylation of cofilin (A) ST cells were mock-
inoculated or inoculated (MOI of 10) with WT PRV, kinase-inactive D223A US3 PRV, or D223Arescue PRV. At 6 
hpi, total cell lysates were subjected to Western blotting to detect phospho-S3 cofilin, total cofilin, US3, and gE. 
(B) Means + standard errors of the means relative cofilin phosphorylation levels from three independent 
experiments, with *** indicating P values of <0.001. 

 

- A constitutively inactive, S3D phosphomimetic cofilin variant interferes with US3-mediated cell 

rounding and cell projections  

The experiments described above indicate that US3 leads to substantial S3 cofilin dephosphorylation, 

a hallmark of cofilin activation (Moriyama et al., 1996). If this cofilin activation is important for PRV 

US3-induced actin rearrangements, one would expect that overexpression of a constitutively inactive 

(phosphomimetic) S3D cofilin mutant will interfere with US3-mediated actin rearrangements, whereas 

overexpression of wild-type cofilin or a constitutively active S3A cofilin mutant should not. Likewise, 

overexpression of S3D (but not S3A) cofilin has been reported to suppress the formation of long actin-

containing dendritic cell protrusions in hippocampal neurons (Pontrello et al., 2012).  
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To assess this, ST cells were cotransfected with US3 and constructs expressing previously described 

green fluorescent protein (GFP) fusions of wild-type cofilin, S3D cofilin or S3A cofilin (Leyman et al., 

2009). At 24 h post-transfection, cells were stained with anti-US3 antibody and scored for US3-

mediated effects on the actin cytoskeleton. In brief, 200 randomly chosen transfected cells per 

condition were scored for cell rounding (actin stress fiber disassembly) and cell projection formation. 

Phosphomimetic S3D cofilin, but not wild type or S3A cofilin, significantly suppressed the ability of US3 

to induce actin rearrangements in ST cells (Figure 3A,B&C). Overexpression of either WT or S3D cofilin 

on itself did not cause apparent changes in cell morphology. Overexpression of S3A cofilin on itself did 

not lead to obvious cell rounding but did induce cell projections that were shorter and less branched 

than observed upon transfection of US3 (data not shown). Notwithstanding the apparent 

colocalization of cofilin with US3 in some of the immunofluorescence images, immunoprecipitation 

experiments were not indicative for a direct interaction between US3 and cofilin (data not shown). In 

conclusion, expression of phosphomimetic S3D cofilin in ST cells interferes with the ability of US3 to 

induce actin rearrangements.  
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Fig. 3. Overexpression of S3D phosphomimetic cofilin interferes with the ability of US3 to cause cell rounding and 
cell projections. (A and B) ST cells were transfected with US3 encoding plasmids or cotransfected with plasmids 
encoding US3 and GFP-tagged WT cofilin, S3A cofilin, or S3D cofilin. At 24 h post-transfection, cells were fixed 
and stained for US3 and nuclei and analyzed for expression of cofilin (GFP; green) and US3 (red). Panel A shows 
the percentage of transfected cells displaying actin rearrangements, as assessed by cell rounding and the 
formation of cell projections (means + standard errors of the means; data from three independent experiments), 
with * indicating P values of <0.05 and ** indicating P values of <0.01. Small blue dots in panel B represent 
leftover plasmid DNA-containing transfection reagent in cells and on the cover glass. 
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- Group I PAKs are involved in the US3-mediated dephosphorylation of cofilin 

The ability of PRV US3 to induce actin rearrangements has been shown to depend on the ability of US3 

to phosphorylate and thereby activate group I PAKs (Van den Broeke et al., 2009b). As a consequence, 

the group I PAK inhibitor IPA-3 is able to inhibit US3-mediated actin rearrangements in ST cells (Takuma 

et al., 1996; Van den Broeke et al., 2009a). We investigated whether IPA-3 is also capable of reverting 

the observed US3-mediated suppression of S3 cofilin phosphorylation. To this end, ST cells were either 

mock-inoculated or inoculated with WT PRV in the absence or presence of 33 μM IPA-3, used as 

decribed before (Deacon et al., 2008). At 6 hpi, cells were lysed and phospho-S3 cofilin, total cofilin, 

and US3 levels were evaluated. The addition of IPA-3 restored the phospho-S3 cofilin signal in PRV-

infected cells (Figure 4B), while it did not influence phospho-S3 cofilin levels in mock-infected cells 

(Figure 4A). Hence, the use of an inhibitor of group I PAK activity in ST cells interferes with the US3-

mediated suppression of S3 cofilin phosphorylation. 

 

Fig. 4. Group I PAKs are involved in US3-mediated suppression of S3 cofilin phosphorylation. (A and B) ST cells 
treated with or without 33 μM of the group I PAK inhibitor IPA-3 were either mock-inoculated (A) or inoculated 
with WT PRV (B). At 6 hpi, total cell lysates were subjected to Western blotting to detect phospho-S3 cofilin, total 
cofilin, and US3. Values were normalized to mock (A) or to PRV and IPA-3 (B). The graphs represent the means + 
standard errors of the means from three independent experiments, with * indicating P values of <0.05. 

 

This is in apparent contradiction with studies in HIV, where virus-induced activation of PAK2 (a group 

I PAK member) leads to S3 cofilin phosphorylation and thus inactivation in Jurkat-cells (Stolp et al., 
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2010; Stolp et al., 2009; Vorster et al., 2011b). Nevertheless, ambiguity exists in the literature as to 

whether PAK activation leads to cofilin phosphorylation or dephosphorylation at S3. On the one hand, 

PAK activity has been associated with cofilin phosphorylation, mainly because LIM kinase isoforms are 

important downstream substrates of PAK that can lead to phosphorylated cofilin (Kobayashi et al., 

2006; Li et al., 2006; Scott & Olson, 2007; Zoudilova et al., 2007). On the other hand, more recently, 

increasing evidence indicates that group I PAK activity may also signal to several of the phosphatases 

like PP2A, chronophin (CIN) and/or the slingshot (SSH) family, that are known to dephosphorylate and 

activate cofilin (Coniglio et al., 2008; Ke et al., 2004; Nagata-Ohashi et al., 2004; Oleinik et al., 2010). 

Most likely, cell-type specific or environmental factors may influence the outcome of PAK activation 

on cofilin activity (Davidson & Haslam, 1994; Okada et al., 1996; Samstag et al., 1996; Samstag et al., 

1994; Takuma et al., 1996). Future research aimed at further dissecting the mechanistic details of US3-

PAK-mediated cofilin dephosphorylation will further clarify the other molecular players in this pathway 

and may therefore generate important cell biological insights on PAK-mediated cofilin regulation. 
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Chapter 5: Pseudorabies virus US3 leads to filamentous actin 

disassembly and contributes to viral genome delivery to the nucleus 

Thary Jacob, Céline Van den Broeke, Korneel Grauwet, Kim Baert, Christophe Claessen, Steffi De 

Pelsmaeker, Cliff Van Waesberghe, Herman W. Favoreel  

 

Abstract 

The conserved alphaherpesvirus US3 tegument protein induces rearrangements of the actin 

cytoskeleton, consisting of protrusion formation and stress fiber breakdown. Although US3 does not 

affect levels of total actin protein, it remains unclear whether US3 modulates the total levels of 

filamentous (F) actin.  In this report, we show that the pseudorabies virus (PRV) US3 protein, via its 

kinase activity, leads to disassembly of F-actin in porcine ST cells. F-actin disassembly has been 

reported before to contribute to host cell entry of HIV. In line with this, in the current study, we report 

that US3 has a previously uncharacterized role in viral genome delivery to the nucleus, since 

quantitative polymerase chain reaction (qPCR) assays on nuclear fractions demonstrated a reduced 

nuclear delivery of of US3null PRV compared to wild type PRV genomes. Treatment of cells with the 

actin depolymerizing drug cytochalasin D enhanced virus genome delivery to the nucleus, particularly 

of US3null PRV, supporting a role for F-actin disassembly during certain aspects of viral entry. In 

conclusion, the US3 kinase of PRV leads to F-actin depolymerization, and US3 and F-actin disassembly 

contribute to viral genome delivery to the nucleus.  
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Introduction 

Different viruses, including several herpesviruses, HIV, rabies virus and influenza virus have been 

reported to disassemble the filamentous (F) actin cytoskeleton of host cells (Arcangeletti et al., 2000; 

Jones & Kilpatrick, 1988; Murata et al., 2000; Nayak et al., 2009; Schumacher et al., 2005; Slonska et 

al., 2014; Song et al., 2013; Van Minnebruggen et al., 2003; Vorster et al., 2011; Wagenaar et al., 1995). 

The cortical F-actin meshwork underneath the plasma membrane represents an important barrier that 

viruses need to modify or bypass during host cell entry to access the intracellular compartments, either 

by hijacking cellular endocytosis pathways or by virus-triggered F-actin disassembly upon virus fusion 

as has been described for HIV (Delorme-Axford & Coyne, 2011; Spear et al., 2013; Yoder et al., 2008).  

Alphaherpesviruses represent the largest subfamily of the herpesvirus family, comprising closely 

related pathogens of humans and animals, including herpes simplex virus (HSV) and varicella zoster 

virus (VZV) in humans. We and others have reported before that the conserved and multifunctional 

alphaherpesvirus US3 serine/threonine protein kinase induces rearrangements of the actin 

cytoskeleton, consisting of actin stress fiber breakdown and formation of actin-based protrusions, 

which are associated with increased intercellular viral spread (Deruelle & Favoreel, 2011; Favoreel et 

al., 2005; Van den Broeke et al., 2009; Van Minnebruggen et al., 2003). Although these US3-induced 

rearrangements of the actin cytoskeleton do not affect total actin protein levels (Van Minnebruggen 

et al., 2003) it has not been investigated whether US3 results in an overall disassembly of F-actin and 

whether US3 may contribute to certain aspects of virus entry in host cells.  

In the current study, we investigated whether the alphaherpesvirus pseudorabies virus (PRV) leads to 

disassembly of F-actin in infected cells and, if this is the case, whether the US3 protein kinase is 

involved. We also investigated whether US3 plays a hitherto unrecognized role during particular 

aspects of virus entry by focusing on nuclear delivery of viral genomes. To this end, we generated 

LifeAct mCherry transduced swine testicle (ST) cells, combined with flow cytometric analysis. LifeAct 

specifically labels F-actin and does not affect actin polymerization or stability, permitting quantification 

of changes in F-actin in living cells (Bovellan et al., 2014; Riedl, 2010; Riedl et al., 2008).  

We report that PRV infection of ST cells results in a US3-dependent progressive reduction in F-actin, 

requiring US3 kinase activity. Using quantitative polymerase chain reaction  (qPCR), we demonstrate 

that the wild-type (WT) PRV genome is delivered more efficiently at the nucleus compared to the 

genome of virions lacking the US3 protein, indicating a role for the US3 tegument protein during this 

aspect of virus entry. In line with this, the actin depolymerizing drug cytochalasin D (cytD) significantly 

enhanced delivery of the US3null viral genome to the nucleus, supporting a role for F-actin disassembly 

during particular stages of virus entry.  
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Materials and Methods 

- LifeAct mCherry ST cells 

Semi-confluent swine testicle (ST) cells were transduced using a lentiviral vector expressing the LifeAct 

gene coupled to an mCherry fluorescent marker, kindly supplied by Dr. Isabelle Maridonneau Parini 

(Institut de Pharmacologie et de Biologie Structurale, Toulouse, France). Virus was diluted in 0.6 ml of 

medium (MEM complemented with 10% FCS, 1% glutamin, 1% P/S, 1% NaPy, 0.5% gentamycin), and 

washed away after 24 h. After expansion to a 75-cm² bottle, LifeAct expressing cells were separated 

from non-transduced cells using a BD FACSAria III Cell sorter (BD Biosciences), using the 488 nm laser, 

exciting the mCherry reporter. During sorting, cells were kept on ice in MEM containing 40% fetal calf 

serum (FCS) for 2-3 h, until the medium was replaced with regular medium before seeding in a 75-cm² 

bottle. After sorting, the population was at least 96% pure, stably expressing LifeAct for at least 12 

passages whereafter, when required, the cells were sorted again. 

- Infections and treatments 

WT PRV NIA3 strain, isogenic US3null PRV NIA3 strain (constructed by insertion of a palindromic 

oligonucleotide containing translational stop codons in all reading frames, in the 5′ part of the open 

reading frame) and revertant PRV NIA3 strain have been described in earlier literature (Baskerville, 

1973; de Wind et al., 1990). PRV Becker PRV-GS847, its isogenic mutant PRV-GS976 encoding a kinase-

inactive US3 protein containing a mutation in the catalytic base required for phosphotransfer (D223A) 

and its revertant strain PRV-GS3000 have also been described before (Coller & Smith, 2008; Van den 

Broeke et al., 2009). For flow cytometric experiments, LifeAct ST cells were seeded at 150,000 cells/ml 

in 6-well plates. Two days later, the medium was replaced by 1 ml of virus-containing medium at the 

indicated MOI (multiplicity of infection). At the indicated time points, cells were washed and collected. 

For qPCR experiments, new viral protein expression was blocked using 10 μg/ml cycloheximide (CHX, 

Sigma-Aldrich) from 30 min before infection until cell collection. The actin depolymerizing drug cytD 

(Sigma-Aldrich) was added at 1 μM, together with CHX. 

- Antibodies and probes 

Rabbit anti-tubulin was bought from Abcam (ab18251, 1/500 for Western blotting). Rabbit antibody 

against the inner nuclear membrane protein SUN2 (Sad1 and UNC84 domain containing 2) was kindly 

provided by Didier Hodzic (Washington University, Saint Louis) (1/1000 for Western blotting) (Crisp et 

al., 2006). Secondary horseradish peroxidase (HRP)-conjugated goat anti-rabbit antibody (1/3000) for 

Western blotting detection was purchased from Dako Cytomation. Antibodies were diluted in PBS with 

5% Tween 20 (Sigma-Aldrich) and 5% non-fat, dry milk (Nestlé).  
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- Flow cytometry 

ST cells were washed in PBS and subsequently detached using 5 mM EDTA and 0.1 M trypsin, washed 

again and incubated with the viability marker Sytox Blue (Molecular Probes, Invitrogen). Cells were 

kept on ice until flow cytometric analysis using the BD Biosciences FacsCanto II Cell Analyzer. LifeAct 

mCherry was excited using the 488 nm laser and detected in the phycoerythrin (PE)-channel. Dead 

cells were excluded using the Sytox Blue staining, which was excited by the 405 nm laser. In every 

sample, 20,000 living, LifeAct positive cells were measured, and mean fluorescence intensity ratio 

(MFIR) was used for statistics.  

- Western blotting 

6 h post-inoculation (hpi), cells were washed in PBS and collected in lysis buffer consisting of 50 mM 

Tris-HCl, 5 mM EDTA, 150 mM NaCl, 1% NP40, 1 tablet of protease inhibitors (Roche, EDTA-free, 

complete mini) per 7 ml of lysis buffer and phosphatase inhibitors (2 mM Na3VO4, 5 mM NaF). After 

incubation for 1 h on ice, the lysate was centrifuged for 5 min at 13,000 x g and the supernatant was 

collected and subjected to SDS-PAGE and Western blotting according to standard procedures. Blots 

were detected using home-made ECL-substrate (A: 1 M Tris, 250 mM luminol, 90 mM P-coumaric acid; 

B: 10% H2O2) and visualized using the ChemiDoc (Biorad) imaging system. 

- Nuclear fractions and qPCR 

Cells were collected at 4 hpi as described before (Veettil et al., 2008). In brief, cells were washed once 

with PBS/EDTA (1 mM) at 37°C and subsequently incubated for 5 min in PBS/trypsin (0.25%) at 37°C. 

The cells were detached using gentle pipetting, and were collected after centrifugation. The “Rapid, 

Efficient And Practical” (REAP) fractionation protocol was used for cell fractionation, as described 

before (Suzuki et al., 2010). For all samples, DNA was isolated through Qiagen’s DNeasy Blood and 

Tissue-kit, according to the manufacturer’s instructions. As a control for the qPCR assay, non-

fractionated, total-cell samples were taken along. DNA concentration was analyzed by measuring the 

absorbance at 260 nm with NanoDrop 2000 (Thermo-Fisher). Purity of the DNA samples was tested by 

obtaining the 260/280 nm ratio, and was between 1.8 and 2.1. 

Primers against NIA3 PRV gB (FW: 5’-ACAAGTTCAAGGCCCACATCTAC-3’; REV: 5’-

GTCCGTGAAGCGGTTCGTGAT-3’; 60°C) from (Ma et al., 2008) and GAPDH (FW: 5’-

CTGCCGTCTGGAGAAACCTG-3’; REV: 5’-CCACCACCCTGTTGCTGTAG-3’; 60°C) from (Van Opdenbosch et 

al., 2011) were blasted to check for endogenous off-target genes (Blast NCBI) and ordered through IDT 

(Integrated Device Technology, California, USA). All the assays were performed on the StepOnePlus 

Real-Time PCR-system (Applied Biosystems), using the fluorescent double-stranded DNA dye SYBR 
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Green (Applied Biosystems) as a detection method for PCR product. The suitability of the primer pairs 

was verified by means of non-template control samples (mock-infected cells) and melting curves of 

different samples. PCR-efficiency was determined through at least two independent qPCR-reactions 

on mixed sample, and was used for calculation of Rq-values. The efficiency-corrected calculation model 

was used, based on multiple samples and GAPDH as reference gene (Pfaffl, 2004). GAPDH expression 

was not affected by viral infection. All Rq-values were normalized to unfractionated Rq-values of total 

cell DNA samples and fold induction of gB was calculated in comparison to untreated infected samples. 

- Statistics 

For flow cytometry data, mean fluorescence intensities of LifeAct ST cells were normalized to mock-

infected samples and statistically processed with GraphPad Prism followed by a one-way analysis of 

variance (ANOVA) test and Tukey post-testing. For qPCR data, normalized Rq-values (see above) were 

compared using a Student t-test. CytD gB qPCR Rq-values were analyzed using a non-parametric 

ANOVA test (Kruskall-Wallis), followed by Dunn’s post-testing.  
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Results 

- PRV US3 induces disassembly of filamentous actin 

To investigate in living cells whether PRV infection leads to filamentous (F) actin disassembly, we first 

generated swine testicle (ST) cells stably expressing LifeAct mCherry. LifeAct is a small 17 amino acid 

peptide originating from Sacharomyces cerevisiae and absent in other organisms. As Live Act displays 

a non-disturbing, low-affinity, high specificity binding with F-actin, it is a very suitable marker to 

(quantitatively) determine changes in F-actin in living cells (Riedl et al., 2008).  

LifeAct transduced ST cells were inoculated for 1 h, 2 h, 3 h and 6 h at a multiplicity of infection (MOI) 

of 30 with WT NIA3 PRV. After collection of cells, F-actin levels were analyzed by flow cytometry. 

Already at 2 hpi, a trend of F-actin disassembly could be observed, that became statistically significant 

from 3 hpi onwards (Figure 1A). Importantly, US3 is required for PRV-induced F-actin disassembly, as 

inoculation with an isogenic US3null virus did not affect F-actin levels (Figure 1B). Increasing the 

inoculation dose of US3null PRV to an MOI of 100 still did not lead to F-actin disassembly (Figure 1C). 

Infection with virus where the US3 mutation had been restored (US3null rescue NIA3 PRV) led to a 

similar actin disassembly as observed for WT virus (Figure 1D). Hence, PRV infection results in a US3-

dependent disassembly of F-actin.  
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Figure 1: PRV triggers US3-dependent depolymerization of F-actin. LifeAct ST cells were inoculated with WT NIA3 
PRV at an MOI of 30 (A) or isogenic US3null NIA3 PRV at an MOI of 30 (B) or an MOI of 100 (C). After collection, 
cells were analyzed by flow cytometry and mean fluorescence intensity ratios (MFIR) of the LifeAct signal were 
plotted (mock infection was normalized to 1). (D) shows data obtained at 6 hpi using WT NIA3 PRV, US3null NIA3 
PRV, and US3null rescue NIA3 PRV, all at an MOI of 30. Data represent means + standard errors of the means 
from at least three independent experiments, with * = P < 0.05; ** = P < 0.01 and *** = P < 0.001. 

 

To assess the involvement of the kinase activity of US3 in F-actin depolymerization, cells were 

inoculated for 1 h, 2 h, 3 h and 6 h at an MOI of 30 with a WT Becker PRV strain or an isogenic variant 

expressing a kinase-inactive US3 protein (D223A US3 Be PRV) (Coller & Smith, 2008; Van den Broeke 

et al., 2009). Flow cytometric analysis confirmed that, unlike WT PRV, PRV expressing a kinase-inactive 

US3 did not cause F-actin disassembly (Figure 2A and 2B). Infection with virus where the US3 D223A 

mutation had been restored (US3 D223A rescue Becker PRV) led to a similar actin disassembly as 

observed for WT virus (Figure 2C). This confirms that the kinase activity of US3 is required for F-actin 

depolymerization. 
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Figure 2: The kinase activity of US3 is required for PRV-induced F-actin depolymerization. LifeAct ST cells were 
inoculated at an MOI of 30 with WT Becker PRV (A) or isogenic US3 kinase inactive D223A Becker PRV (B). After 
collection, cells were analyzed by flow cytometry and mean fluorescence intensity ratios (MFIR) of the LifeAct 
signal were plotted (mock infection was normalized to 1). (C) shows data obtained at 6 hpi using WT Becker PRV, 
US3 kinase inactive D223A Becker PRV and US3 D223A rescue Becker PRV, all at an MOI of 30. Data represent 
means + standard errors of the means from at least three independent experiments, with *** = P < 0.001. 

 

- US3 plays a role in viral genome delivery to the nucleus 

To investigate whether US3 may play a role during virus genome delivery to the nucleus, a qPCR based 

assay was set up as described before (Fehr & Yu, 2011). ST cells were treated with 10 μg/ml 

cycloheximide (CHX) from 30 min prior to inoculation at an MOI of 30 with WT PRV or US3null PRV. At 

4 hpi, cells were treated with trypsin to remove virus that was bound to but had not entered cells. Cells 

were collected and nuclear fractions were separated using the REAP fractionation protocol (Suzuki et 

al., 2010). By isolating nuclear fractions, the amount of viral genome that had reached the cell nucleus 

could be assessed. Efficiency of nuclear fraction isolation was confirmed by Western blotting for the 

cytoplasmic protein tubulin and the nuclear protein SUN2 (Figure 3C). DNA was isolated and 

subsequently subjected to qPCR. To correct for subtle differences in initial viral administration, Rq-

values were normalized to viral DNA in non-fractionated cells. This experiment showed that US3null 

virus DNA reached the nucleus significantly less efficiently compared to WT virus DNA (Figure 3A), 

pointing to a previously uncharacterized role for US3 during virus genome delivery to the nucleus.  
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Figure 3: Viral genome delivery to the nucleus is impaired in virus lacking US3 and is enhanced by F-actin 
disassembly. (A) ST cells were treated with 10 μg/ml cycloheximide from 30 min before inoculation with WT NIA3 
PRV or isogenic US3null NIA3 PRV at an MOI of 30. At 4 hpi, cells were collected, fractionated and DNA was 
isolated from nuclear fractions as well as from unfractionated cells. qPCR was performed and GAPDH- and total 
cell DNA-corrected Rq-values for PRV genome were normalized to WT. Data represent means + standard errors 
of the means from at least three independent experiments, where ** = P < 0.01. (B) 30 min before inoculation 
with WT NIA3 PRV or US3null NIA3 PRV at an MOI of 30, ST cells were treated with 10 µg/ml cycloheximide either 
or not supplemented with 1 μM cytochalasin D (cytD). 4 hpi, cells were collected, fractionated and DNA was 
isolated from nuclear fractions as well as from unfractionated cells. GAPDH- and total cell-corrected Rq-values 
for PRV genome were normalized to untreated WT PRV or untreated US3null PRV (each was normalized to 1). 
Data represent cytD-induced fold increase over respective normalized untreated sample (WT or US3null PRV) 
and show means + standard errors of the means from at least three independent experiments, where * = P < 
0.05. (C) ST cells were subjected to different centrifugation steps and lysed in order to separate cytoplasmic (cyt) 
from nuclear (nucl) fractions. Successful fractionation was assessed through Western blotting and detection of 
nuclear protein SUN2 and the cytoplasmic protein tubulin. 

 

- F-actin disassembly promotes viral genome delivery to the nucleus 

To further corroborate our findings, we analyzed whether addition of the actin depolymerizing drug 

cytD increased nuclear delivery of WT and particularly US3null PRV genomes.  Therefore, ST cells were 

treated with 10 μg/ml CHX supplemented with or without 1 μM cytD, 30 min prior to inoculation at an 

MOI of 30 with WT PRV or US3null PRV. This cytD concentration was optimized earlier in ST cells 

(Favoreel et al., 2005). At 4 hpi, cells were treated with trypsin and cells were subsequently collected, 

fractionated to isolate nuclei and DNA was isolated as described above. qPCR analysis showed that 

actin depolymerization using cytD treatment significantly increased viral genome delivery of US3null 

PRV (Figure 3B, right bar). In addition, cytD treatment also, although not significantly, increased viral 

genome delivery efficiency of WT PRV (Figure 3B, left bar). Since the amount of viral genome delivery 

to the nucleus for US3null PRV was ± 50-60% of that of WT PRV (Figure 3A), and since addition of cytD 

led to a ± 7-fold increase in viral genome delivery of US3null PRV and a  ± 4-fold increase for WT 

PRV(Figure 3B), addition of cytD in fact overcompensated for the lack of US3 and led to levels of viral 



Chapter 5 

124 
 

genome delivery that were similar for both WT and US3null PRV and reached roughly 4x the amount 

of viral genome delivery for WT PRV without cytD.  

In conclusion, the actin depolymerizing drug cytD increases efficiency of PRV genome delivery to the 

nucleus, particularly in the absence of the viral F-actin depolymerizing US3 protein, suggesting a 

beneficial effect of F-actin breakdown during viral genome delivery to the nucleus.   
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Discussion 

In this report, we show that the US3 protein kinase of PRV induces F-actin disassembly. Quantification 

of incoming nuclear viral genomes upon infection with WT and US3null PRV in the presence or absence 

of the actin depolymerizing drug cytD indicated that US3 and F-actin disassembly play a role during 

virus genome delivery to the nucleus.  

Our findings are in line with studies on HSV-1, another alphaherpesvirus. Electron microscopy 

experiments indicated local cortical F-actin disassembly at the sites of HSV-1 entry (Maurer et al., 2008) 

and drugs that affect actin dynamics were found to modulate HSV-1 entry (Zheng et al., 2014). HSV-1-

induced F-actin depolymerization was found to rely on activation of cofilin, a central mediator in actin 

dynamics (Zheng et al., 2014). Interestingly, we recently showed that PRV US3 triggers activation of 

cofilin, further in line with our current findings (Jacob et al., 2013).  

We showed that PRV lacking US3 reaches the nucleus less efficiently than its WT counterpart. This 

suggests that the US3 tegument protein plays a previously unrecognized role during this aspect of virus 

entry. We hypothesize that this is due to US3-induced F-actin depolymerization since the F-actin 

depolymerizing drug cytD significantly increased delivery of the PRV genome at the nucleus. It has been 

reported for other viruses like HIV and SV40 that entry is associated with local F-actin depolymerization 

to overcome the cortical actin barrier, located just beneath the plasma membrane (Bukrinsky, 2008; 

Delorme-Axford & Coyne, 2011; Gordon-Alonso et al., 2013; Pelkmans & Helenius, 2002; Pelkmans et 

al., 2002; Taylor et al., 2011; Yoder et al., 2008). Although our current data may suggest that US3 has 

a similar function during PRV entry, our virus entry assay, which consisted of qPCR-based analysis of 

viral genome delivery at the nucleus, does not exclude that US3 may play a role in different aspects of 

viral entry preceding viral genome delivery to the nucleus, including capsid transport along 

microtubules. 

Why is virus-induced F-actin depolymerization only significantly detectable from 3 hpi, while our 

results suggest that it may be triggered during viral entry? Probably, like for other viruses, F-actin 

disassembly occurs localized, at sites of virions entering the cells, which is also supported by electron 

microscopy studies on HSV-1 (Maurer et al., 2008). Such localized F-actin disassembly is likely 

insufficient to be detectable by flow cytometry at early time points after infection.  

Our findings on a viral structural protein that induces F-actin disassembly and that is involved in 

particular aspects of virus entry are in line with reports on HIV (Campbell et al., 2004; Yoder et al., 

2008). For HIV, the viral causative factor for F-actin disassembly is the structural protein Nef, and, in 

line with our current data on US3, HIV variants lacking Nef show a virus entry defect (Campbell et al., 
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2004; Dorfman et al., 2002; Luo et al., 1998). Further in line with our current data, disruption of the 

actin cytoskeleton by drugs that affect actin polymerization can complement the lack of Nef during 

entry (Campbell et al., 2004). HIV Nef shows remarkable functional similarities with US3, including 

activation of p21-activated kinases (central molecules in Cdc42/Rac1 RhoGTPase signaling), disruption 

of actin stress fibers and formation of intercellular cell protrusions and, based on our current data, F-

actin disassembly and contributing to virus entry (Lu et al., 2008; Tan et al., 2013; Xu et al., 2009; Yoder 

et al., 2008). So, although Nef is not a protein kinase and Nef and US3 do not show amino acid 

homology, both proteins appear to show considerable functional homology.  

Despite our current data, ambiguities exist in literature on whether actin depolymerizing drugs are 

beneficial for viral infectivity, or rather inhibitory. This is also the case for alphaherpesviruses. Much of 

this confusion derives from the fact that actin polymerization and depolymerization play different roles 

during different steps of the viral replication cycle. There are strong indications, including our current 

report, that actin depolymerizing drugs can increase alphaherpesvirus entry and genome delivery to 

the nucleus (Mundy et al., 2002; Zheng et al., 2014). However, at later stages of infection, actin 

depolymerizing drugs can be inhibitory as alphaherpesviruses may rely on actin polymerization for viral 

egress and intercellular transport and spread (Dixit et al., 2008; Elliott & O'Hare, 1997; Favoreel et al., 

2005; Xiang et al., 2012). Very recently, it was shown that several F-actin depolymerizing drugs failed 

to affect intranuclear herpesvirus capsid motility (Bosse et al., 2014), while this process was previously 

thought to be F-actin dependent (Feierbach et al., 2006; Forest et al., 2005). Hence, when analyzing 

the effect of actin destabilizing drugs on infection, timing is key to interpretation. 

In conclusion, we report that PRV US3 triggers F-actin disassembly and that US3 and F-actin 

disassembly are involved in efficient delivery of the viral genome to the nucleus during virus entry.  
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Chapter 6: General discussion 

Herpesviruses, and viruses in general, have several reasons to interfere with the cellular actin 

cytoskeleton. When they enter cells through fusion, they need to transverse the cortical actin barrier, 

situated just below the cellular membrane. The same process may need to be repeated during egress. 

Furthermore, alphaherpesviruses have evolved a distinct way to facilitate viral spread. By inducing 

long, tubular protrusions that contain microtubules and actin, they can contact and spread to 

neighboring cells, thereby avoiding the harmful extracellular environment (Favoreel et al., 2005). As 

Rho GTPases are central and conserved regulators of actin, it seems only natural that viruses evolved 

virulence factors targeting these GTPases. By deregulating Rho GTPase pathways, they adapt the actin 

cytoskeleton according to their needs.  

US3 was identified in the second part of the ‘80s as a new viral serine/threonine protein kinase 

encoded by HSV-1 (Frame et al., 1987), and soon  after its discovery, its potential to function as a 

protein kinase was confirmed (McGeoch & Davison, 1986). US3 is conserved throughout the 

alphaherpesvirus subfamily, which is also reflected by a similar consensus phosphorylation sequence 

for US3 kinases from PRV, HSV-1, HSV-2 and VZV (Daikoku et al., 1993; Eisfeld et al., 2006; Leader, 

1993; Leader et al., 1991; Purves et al., 1986). Among other effects, US3 of several alphaherpesviruses 

induces drastic cytoskeletal rearrangements in infected or transfected host cells, including actin stress 

fiber breakdown and/or the formation of the abovementioned protrusions (sometimes also referred 

to as filamentous processes) (Calton et al., 2004; Favoreel et al., 2005; Murata et al., 2000; Schumacher 

et al., 2005; Van Minnebruggen et al., 2003).  

Below, the results that were obtained in this thesis are discussed. First, our RhoA results are 

considered, and are linked to our earlier results showing US3 induced PAK activity. This leads to the 

hypothesis that PRV US3 inhibits RhoA, which has been reported for several other viruses. Finally, PKA-

dependency of viral induced RhoA inhibition is discussed. Next, our cofilin results are reviewed, first 

focusing on the ambiguity existing in literature on whether activated PAK leads to cofilin activation or 

inactivation. We discuss possible phosphatases that could be involved in US3-mediated cofilin 

dephosphorylation and conclude this part by suggesting a potential RhoA involvement in cofilin 

activation. In the next part, our results concerning US3 induced disassembly of filamentous F-actin are 

discussed, which we link to viral entry, and is reported for other viruses. Cofilin activation is 

hypothesized as a possible factor in viral induced F-actin disassembly, and we elaborate on biphasic 

activation of cofilin during infection, which impedes interpretation of previous literature and 

underscores the importance of the stage of infection for assessing the cofilin activation status. Next, 

possible mechanisms for our results showing cofilin inactivation following infection with virus lacking 
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US3 will be discussed. Finally, the conclusions and importance of this research are highlighted, with 

emphasis on using our stable US3-induced phenotypes as a model system for the development of 

antiviral strategies, but also to study cell biological processes. 

RhoA 

Some years ago, our research team demonstrated that US3-mediated actin rearrangements occur 

predominantly through activation of group I p21 activated kinases (PAKs) (Van den Broeke et al., 2009), 

downstream effectors of Rho GTPases Rac1 and Cdc42 (Hall, 2012). PAK-involvement was 

demonstrated a.o. by the use of the group I PAK inhibitor IPA-3 (Van den Broeke et al., 2009), which 

almost completely abrogated US3-mediated actin rearrangements. These and other data led to the 

conclusion that US3 acts through the Cdc42/Rac1/PAK branch of Rho GTPase signaling (Figure 1, green 

‘+’ sign). 

Interestingly, PAK and RhoA signaling are counteracting pathways that are interconnected through 

several feedback mechanisms, resulting in a network that is dynamically regulated in time and space 

(Figure 1, black double arrow)(Guilluy et al., 2011). Negative feedback between both signaling 

branches has been reported in different cellular settings (Arthur et al., 2002; Kozma et al., 1997; 

Leeuwen et al., 1997; Li et al., 2002; Nimnual et al., 2003; Parri & Chiarugi, 2010; Rosenfeldt et al., 

2006; Sander et al., 1999; Sanz-Moreno et al., 2008; Xie et al., 2008; Yamaguchi et al., 2001), although 

positive feedback mechanisms between RhoA and Rac1 signaling were also described (Liu et al., 2009; 

Ridley et al., 1992; Tsuji et al., 2002).  

A first question addressed in the current thesis was to investigate whether in addition to triggering 

PAK activity, US3 perhaps may also negatively affect RhoA signaling. This could provide for an optimal 

signaling environment for the dramatic actin rearrangements observed upon US3 expression (Figure 

1, red ‘-‘ sign).  

It was observed before that treatment of ST cells with an inhibitor against downstream RhoA effector 

ROCK (Y-27632) triggered actin rearrangements that were very similar to those induced by US3 

(Favoreel et al., 2005). A first real hint that US3 indeed may do more to Rho GTPase signaling than just 

activate PAK was the finding that cotransfection of dominant active mDia (downstream of RhoA) with 

PRV US3 led to a partial abrogation of US3-induced stress fiber breakdown and protrusion formation 

(unpublished results).  

Using both PRV infection and US3-encoding plasmid transfection assays, we demonstrated a US3-

induced RhoA phosphorylation at serine residue 188. This phosphorylation is linked with RhoA 

inhibition, as phosphorylated S188 can be recognized by RhoGDI which sequesters RhoA in the 
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cytoplasm. US3-induced RhoA inhibition seems to some extent in contrast to an earlier report, where 

co-expression of HSV-2 US3 with dominant active RhoA (RhoA V14) or dominant negative RhoA (RhoA 

N19) in HEp-2 cells did not affect US3-mediated actin rearrangements (Murata et al., 2000). The latter 

findings imply that the activation state of RhoA is not important for US3-induced effects on the actin 

cytoskeleton. Importantly, S188 phosphorylated RhoA can be recognized by Rho GDI independent of 

its GTP-bound state (Lang et al., 1996; Murthy et al., 2003; Tamma et al., 2003). So the contrasting 

results from Murata and colleagues could perhaps be explained by US3-induced altered RhoA 

localization, rather than activation status per se. However, while we reported an inhibitory effect of 

recombinant RhoA overexpression on US3-induced actin rearrangements, Murata and colleagues did 

not (Murata et al., 2000). Potentially, their use of HEp-2 cells, which is a human laryngeal carcinoma 

cell line, is the cause for this difference. We think that RhoA overexpression may affect US3-induced 

actin rearrangements through negative feedback on PAK-activity. As PAK copy numbers are increased 

in several cancer types (Ong et al., 2011), this could very well compensate for negative feedback effects 

of RhoA overexpression in HEp-2 cells.  

We performed Rhotekin assays, which can be used to specifically pull down GTP-bound RhoA, and 

found no differences in active RhoA levels between mock, WT and US3null infected cell lysates 

(unpublished results). This was in line with the hypothesis that US3 does not affect the activation status 

of RhoA. Attempts to investigate potential effects of US3 on RhoA localization using 

immunofluorescence were too variable to draw meaningful conclusions. Further research could be 

performed through Western blot analysis of cytosolic and membrane fractions of infected cells 

obtained using ultracentrifugation, as reported in other RhoA localization studies (Lang et al., 1996; 

Oishi et al., 2012; Rolli-Derkinderen et al., 2005). 

In line with our data, several other viruses have been reported to interfere with RhoA signaling. For 

example, human cytomegalovirus (HCMV) (Frampton et al., 2007), simian virus 40 (SV40) (Stergiou et 

al., 2013), hepatitis C virus (HCV) (Brazzoli et al., 2008), Epstein Barr virus (EBV) (Loesing et al., 2009), 

human immunodeficiency virus (HIV-1) (del Real et al., 2004) and vaccinia virus (VV) (Valderrama F, 

2006) have all been reported to suppress RhoA signaling at some point in their replication cycle. VV 

and HIV both induce actin rearrangements that strongly resemble those observed with US3, including 

actin stress fiber disassembly and protrusion formation (Lu et al., 2008; Valderrama et al., 2006). The 

viral proteins that are responsible for this are VV F11 and HIV Nef. VV F11 binds RhoA and inactivates 

it through activation of Rho GAP Myosin 9A (Handa et al., 2013), while HIV Nef interacts with 

diaphanous interacting protein (DIP), which activates Vav and p190RhoGAP, leading to Rac1 activation 

and RhoA inhibition (Lu et al., 2008). Hence, it appears that evolutionary distinct viruses have evolved 

similar infection strategies to overcome some of the host barriers to infection.  
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We found that PRV US3-induced RhoA phosphorylation is PKA-dependent. This is in line with several 

other reports showing PKA-mediated S188 RhoA phosphorylation in several cell types (Dong et al., 

1998; Ellerbroek et al., 2003; Jones & Palmer, 2012; Lang et al., 1996; Lapetina et al., 1989; Quilliam et 

al., 1991; Tkachenko et al., 2011). Interestingly, RhoA modulation through PKA can occur at several 

levels. Aside from phosphorylating RhoA at S188, leading to suppressed RhoA signaling through 

recognition by RhoGDI, PKA can also induce RhoGDI phosphorylation at S174, which increases the 

binding affinity between RhoA and RhoGDI (Oishi et al., 2012). So US3-mediated PKA activation could 

regulate effective RhoA inactivation, by creating a recognition motive on RhoA for RhoGDI and making 

sure it stays bound during sequestration by phosphorylating RhoGDI itself. 

Before our current findings, only human papillomavirus 16 protein E7 was reported to induce PKA-

dependent RhoA inhibition (Cardone et al., 2008). However, many viruses appear to induce PKA 

activity upon infection, such as HCV (Colpitts et al., 2015), HIV (Oyeyemi et al., 2015), dengue virus 

(Tsai et al., 2014), adenovirus (Scherer et al., 2014), astrovirus (Tange et al., 2013), KSHV (Sharma-

Walia et al., 2010), HCMV (Yuan et al., 2009), rotavirus (Rossen et al., 2004), HBV (Tacke et al., 2005), 

and also alphaherpesviruses like VZV (Desloges et al., 2008; Erazo et al., 2011) and HSV-1 (Benetti & 

Roizman, 2004). Interestingly, as we found for PRV, HSV-1- and VZV-induced PKA activation is US3-

dependent (Benetti & Roizman, 2004; Daikoku et al., 1993; Eisfeld et al., 2006; Kato et al., 2009). As 

we demonstrated for PRV, Western blot assays showed an upregulation of phosphorylated PKA 

substrates upon infection with VZV, HSV-1 or PRV, which was largely diminished upon infection with 

corresponding viruses lacking US3 (Erazo et al., 2011).  

The mechanism behind US3-mediated activation of PKA is still unclear, but for HSV-1, it has been 

suggested that US3 triggers phosphorylation at the α-position of regulatory subunit II of PKA (Poon et 

al., 2006), where cAMP-binding can induce a conformational change which leads to PKA activation 

(Murray, 2008). Possibly, US3-phosphorylation at this cAMP-binding position induces the 

conformational change that is required to release the PKA catalytic subunits, hence leading to PKA 

activation.  

Cofilin 

Signaling from Rho GTPases converges to downstream effector proteins, ultimately eliciting an effect 

on actin. Important effector proteins of Rho GTPase signaling are actin binding proteins cofilin, Arp2/3 

and WASP family proteins. US3 interference with these actin effector proteins likely would affect actin 

polymerization or depolymerization processes. Evidence for Arp2/3 mediated activation through 

WASP during viral infection is relatively limited but has been reported to play a role in HIV receptor 

clustering and fusion pore formation during entry (Harmon et al., 2010) and VV-induced actin 
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polymerization (Dodding & Way, 2009; Moreau et al., 2000). We did not investigate whether US3 

affects WASP and/or Arp2/3, an item that certainly may merit attention in future research.  

We did demonstrate that US3 induces dephosphorylation of cofilin at serine residue S3, a hallmark of 

cofilin activation. Cofilin, a member of the actin depolymerizing factor (ADF)/cofilin family, is a central 

player in actin dynamics and its activity is regulated through phosphorylation/dephosphorylation at S3 

(Moriyama et al., 1996). We found that cofilin dephosphorylation and activation is involved in US3-

mediated actin rearrangements, since expression of a phosphomimetic cofilin mutant interfered with 

the ability of US3 to trigger stress fiber disassembly and cell projection formation. In line with our 

findings illustrating the role of active cofilin in US3-induced actin rearrangements, cofilin activation 

was also described for the growth regulation of filopodia and dendrites (Chen et al., 2006; Gehler et 

al., 2004). 

Using the group I PAK inhibitor IPA-3, we found that US3-triggered cofilin activation relies on group I 

PAK activity. However, the most accepted ‘default’ pathway in literature is that activated PAK leads to 

LIMK activation and subsequent cofilin inactivation (Kobayashi et al., 2006; Li et al., 2006; Scott & 

Olson, 2007; Van Troys et al., 2008; Zoudilova et al., 2007). More recently however, other groups have 

reported cofilin activation following PAK activation (Cameron et al., 2010; Coniglio et al., 2008; Pandey 

et al., 2009). As PAKs are kinases, we assume that PAK activates a phosphatase in order to regulate 

cofilin activation. Cofilin activation is regulated by phosphatases such as slingshots (SSH), chronophin 

(CIN) and phosphatase 1 and 2A (PP1/PP2A) (Gohla et al., 2005; Huang et al., 2006; Niwa et al., 2002; 

Oleinik et al., 2010; Westphal et al., 1999) (Figure 1). 
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Figure 1: Downstream signaling from Rho GTPases towards cofilin regulation mechanisms. + P = phosphorylation; 
- P = dephosphorylation; green arrow = activating effect; red arrow = inhibitory effect. US3 interacts with and 
activates PAK (+) to induce actin rearrangements (Van den Broeke et al., 2009) and, as demonstrated in the 
current thesis, also suppresses the RhoA signaling (-) to generate these actin rearrangements.  

 

Unfortunately, we currently do not know which phosphatase is involved in PAK-mediated cofilin 

activation, but there are some indications pointing towards the involvement of slingshot 

phosphatases. Heregulin and thrombin treatment both have been described to induce PAK-dependent 

cofilin activation through activation of cofilin phosphatase SSH1L (Leonard et al., 2013; Nagata-Ohashi 

et al., 2004). In addition, and in line with the requirement of active cofilin for US3-mediated actin 

rearrangements, insulin treatment activates cofilin through SSH1L which is associated with the 

formation of cellular protrusions in 293T cells, MCF-7 and PC12 cells (Meberg et al., 1998; Nishita et 

al., 2004). Active cofilin seemed to accumulate in these insulin-induced membrane protrusions, 

indicating the importance of active cofilin in protrusion formation (Nishita et al., 2004). Preliminary 

experiments using antibodies against both phosphorylated and total SSH isoforms did not lead to any 

conclusions regarding a possible involvement of slingshot phosphatases in US3-mediated cofilin 

activation thus far, as these antibodies did not react with SSH isoforms from our porcine ST cells 

(unpublished results).  

However, other cofilin phosphatases may also be involved. For example, there are indications for the 

involvement of phosphatase PP2A in PAK-mediated cofilin activation. PAK1 is able to form a complex 
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with and activate PP2A (Ke et al., 2004; Westphal et al., 1999) and based on inhibitor studies, PP1 and 

PP2A can cause cofilin dephosphorylation (Oleinik et al., 2010). We tried to investigate the involvement 

of PP1 and PP2A in US3-mediated cofilin activation through treatment of WT PRV and US3null PRV 

infected cells using okadaic acid, which inhibits both PP2A and PP1 and using cantharidin, which 

inhibits PP2A. Unfortunately, these inhibitors did not lead to conclusive data, as cantharidin treatment 

did not abrogate US3-mediated cofilin dephosphorylation and okadaic acid treatment generated 

variable results (unpublished results). The cantharidin experiments argue against a role for PP2A in 

US3-mediated cofilin activation. The variable results observed with okadaic acid could potentially be 

explained by the possible involvement of PP1 or PP2A phosphatases in dephosphorylation and 

inactivation of LIMKs (Vorster et al., 2011). Hence, treatment with okadaic acid may affect cofilin 

phosphorylation status both directly and indirectly (via LIMKs), which may lead to variable outcomes. 

The combined use of several inhibitors and more specific approaches like siRNA will probably be 

needed to elucidate the role of PP1 and PP2A in US3/PAK-mediated cofilin dephosphorylation.  

When addressing the US3-PAK-cofilin link in detail, our data pointing to US3-mediated interference 

with RhoA signaling should also be taken into account. Indeed, the effects of US3 on RhoA may also 

influence the cofilin phosphorylation status, as downstream RhoA effector ROCK can activate LIMK, 

and cause cofilin inactivation (Lin et al., 2003). Indications for a possible RhoA involvement in cofilin 

dephosphorylation were deduced from our experiments where treatment of ST cells with the ROCK 

inhibitor Y-27632, which triggers actin rearrangements very similar to those observed with US3, 

induced cofilin dephosphorylation (unpublished results).  

US3-induced disassembly of filamentous F-actin 

Since alphaherpesviruses typically enter host cells via direct fusion of their envelope with the plasma 

membrane, although viral entry via endocytic pathways has also been described, this process results 

in delivery of capsid and tegument just beneath the plasma membrane. The cortical filamentous F-

actin layer is located just below the plasma membrane and forms a physical barrier for virus particles 

(Radtke et al., 2006; Taylor et al., 2011). Other viruses that enter host cells via direct fusion at the 

plasma membrane, like HIV, have been reported to (locally) disrupt the cortical F-actin layer to allow 

access of incoming virus particles to the cytoplasm (Campbell et al., 2004; Yoder et al., 2008). In 

addition, for HSV-1, transmission electron microscopy tomography experiments have indicated that F-

actin may be locally disrupted at sites where virions enter the host cell (Maurer et al., 2008).  

While US3 has been reported to trigger actin rearrangements, it does not affect total protein levels of 

actin (Van Minnebruggen et al., 2003). However, it remained uninvestigated whether US3 modulates 

filamentous F-actin levels and if US3 contributes to viral entry in host cells. We report a US3-induced 
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net F-actin disassembly, which could already be detected early in infection. As we demonstrated a role 

for US3 in viral genome delivery to the nucleus, a process that we found to be also enhanced by 

addition of the actin depolymerizing drug cytochalasin D, our results suggest that US3 plays a 

previously unrecognized role in viral entry via depolymerization of the cortical F-actin barrier.  

Likewise, other viruses have also been reported to depolymerize actin in order to facilitate their entry. 

Early F-actin depolymerization was reported for HIV and HSV-1 and coincided with and increased viral 

penetration (Campbell et al., 2004; Maurer et al., 2008; Yoder et al., 2008; Zheng et al., 2014). 

Interestingly, HSV-1 and EHV-1 both have been reported to induce a late decrease in F-actin (Mingo et 

al., 2012; Slonska et al., 2014), which may enhance viral egress, since it has been proposed that the 

cortical actin barrier needs to be breached again late in infection, to allow viral exocytosis (Sattentau, 

2008). Hence, it may be interesting to investigate whether US3-triggered F-actin disassembly also 

contributes to viral egress.  

Currently, we do not know which cellular factors are involved in US3-mediated F-actin disassembly. 

Considering the findings in this work, this could occur through US3-mediated PAK activation and/or 

RhoA inhibition, or through other currently unidentified US3 targets. Irrespective of the signaling 

pathway involved, US3-mediated activation of cofilin, as we reported here, may be involved in F-actin 

disassembly. In support of this, cofilin and cortical F-actin disassembly have been linked earlier 

(Fritzsche et al., 2013; Tinevez et al., 2009). Expression of constitutively active S3A cofilin leads to a 

reduction in cortical F-actin, while constitutively inactive cofilin S3E leads to an increase in F-actin 

(Fritzsche et al., 2013). Local cortical F-actin disassembly at the sites of HSV-1 entry was also found to 

rely on activation of cofilin (Zheng et al., 2014). Correspondingly, HIV entry studies were also able to 

link F-actin depolymerization to cofilin activation (Yoder et al., 2008).  

Nevertheless, there seem to be conflicting reports in literature on whether cofilin is activated or 

inactivated during (alphaherpes)virus infection. When assessing activation status of cofilin or any other 

actin-regulating protein, it is important to take into account the particular stage of infection, as viruses 

may rely on both actin polymerization and depolymerization during their infection cycle. Indeed, for 

alphaherpesviruses, actin depolymerizing drugs can increase alphaherpesvirus entry and genome 

delivery to the nucleus on the one hand (Mundy et al., 2002; Zheng et al., 2014), but can be inhibitory 

later in infection as alphaherpesviruses may rely on actin polymerization for their egress, intercellular 

transport and spread (Dixit et al., 2008; Elliott & O'Hare, 1997; Favoreel et al., 2005; Xiang et al., 2012). 

In line with this, both in HSV-1 and HIV, cofilin seems to be regulated in a biphasic manner: cofilin is 

phosphorylated (inactivated) very early in infection (Vorster et al., 2011; Zheng et al., 2014), possibly 

playing a role in actin stabilization during receptor clustering (Jimenez-Baranda et al., 2007; Stolp & 
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Fackler, 2011; Zheng et al., 2014), and is then dephosphoryled (activated) at later time points, 

potentially allowing actin rearrangements to facilitate crossing of the cortical actin barrier (Cameron 

et al., 2010; Stolp & Fackler, 2011; Xiang et al., 2012; Yoder et al., 2008; Zheng et al., 2014). 

Furthermore, while F-actin depolymerization could be linked to a local weakening of the host barrier, 

the same could result from local F-actin polymerization, as this leads to a restructured barrier 

(Cameron et al., 2010; Vorster et al., 2011; Xiang et al., 2012; Yoder et al., 2008; Zheng et al., 2014). 

This is the case for HIV fusion pore formation, which relies on actin polymerization and increases viral 

entry (Harmon et al., 2010). In short, a dynamic cytoskeleton is often required in order to facilitate 

viral infection, and when analyzing the signaling pathways that are involved, one needs to keep in mind 

that timing is key to interpretation. 

We could observe US3-induced cofilin dephosphorylation from the first time point that we analyzed, 

2 hpi. Likewise, HSV-1 infection also induced cofilin dephosphorylation at 2 hpi (Xiang et al., 2012), 

whereas the authors observed cofilin phosphorylation very early in infection, already from 10 minutes 

post inoculation (Zheng et al., 2014). It would be interesting to investigate whether PRV US3-mediated 

cofilin dephosphorylation is also preceded by an early cofilin phosphorylation or inactivation, and if so, 

which viral proteins are involved and what the biological consequences are of early cofilin inactivation. 

Since, as indicated above, rapid cofilin inactivation and consequent decreased actin remodeling could 

contribute to receptor clustering and since subsequent cofilin activation and actin filament 

fragmentation could loosen the actin cortex and increase viral penetration, this mechanism could be 

usurped by more pathogens than currently known. Interestingly, and possibly in line with an ability of 

PRV to cause cofilin inactivation, we did observe PRV-induced cofilin inactivation upon infection with 

virus lacking US3 or containing kinase deficient US3. Hence, in the absence of the viral cofilin activating 

protein US3, PRV infection was associated with cofilin inactivation. It is unclear at this stage whether 

this cofilin inactivation process occurs before the onset of US3-mediated cofilin activation, and 

whether it is of biological relevance for the virus or host. Hypothetically, cofilin inactivation upon 

infection could be explained by a cellular stress response and subsequent phosphorylation of cofilin, 

which is counteracted by US3. Indeed, other cellular stress stimuli have been reported to lead to 

increased S3 cofilin phosphorylation, including heat shock (Simard et al., 2011), fluid shear stress (Fu 

et al., 2008; Liu et al., 2010; Slee & Lowe-Krentz, 2013), hyperosmotic stress (Thirone et al., 2009) and 

scavenging of reactive oxygen species (Popova et al., 2010). All these stress stimuli were reported to 

increase LIMK1 activity, leading to cofilin inactivation. Hence, stress responses lead to a decreased 

actin severing activity of cofilin, which could help to preserve the cellular F-actin network and promote 

cell survival. In this way, cofilin phosphorylation and inactivation could be beneficial for the virus. 
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However, cofilin phosphorylation could also result from a cellular antiviral response. Protein kinase R 

(PKR) could play a role in this antiviral response, as it is activated by dsRNA (Lemaire et al., 2008), and 

its activation induces a LIMK-mediated cofilin phosphorylation (Xu et al., 2012), which leads to 

decreased cell migration. The latter might play a role in antiviral responses, as decreased cell migration 

could limit virus spread. Further in support of the antiviral response hypothesis, we noticed that 

phosphorylated cofilin was predominantly located in the cellular nucleus following infection 

(unpublished results). This is especially interesting, as cofilin has been reported to play a role in 

transcription (Obrdlik & Percipalle, 2011). Hence, cofilin inactivation might lead to suppressed 

transcription and potentially may play a role in obstructing virus replication. Hence, it would be 

interesting to further investigate the mechanism behind alphaherpesviral induced cofilin 

phosphorylation and whether or not this is detrimental for the virus. 

The outcome of this thesis is summarized in Figure 2. It will be interesting to further identify US3 

binding partners, to be able to fully understand the complete picture of US3 interference within the 

complex and interwoven Rho GTPase signaling pathways. 

 

 

Figure 2: Summary of the three research lines of this thesis. (1) US3 phosphorylates and potentially inhibits RhoA 
through PKA. (2) US3 activates cofilin by a PAK-dependent mechanism. Both these processes contribute to US3-
induced actin rearrangements. (3) US3 leads to F-actin degradation, likely contributing to (4) US3-mediated 
increased viral genome delivery.  

 



General discussion 

143 
 

Conclusions/importance 

US3 is an early protein, that is expressed from very early time points post infection (detectable by 

Western blot from 2 hpi or earlier) and its expression levels increase gradually during the course of 

infection. In every one of our three studies, we were able to demonstrate a constant and stable US3-

induced phenotype. US3 induces a RhoA phosphorylation from 2 hpi, (nearly) steadily reaching a 

plateau at 6 hpi, after which phosphorylated RhoA levels remain high and unchanged until the end of 

our time course study at 16 hpi. Likewise, cofilin phosphorylation levels decrease from 2 hpi and 

remain low until the last detection point at 24 hpi. And finally, US3-induced F-actin disassembly is 

induced from 2 hpi, gradually becoming more pronounced at later timepoints until the end of our 

observations at 6 hpi. These very stable and progressive phenotypes could not only be used as model 

systems to study viral signaling processes, but may also be useful in cell biology to unravel cellular 

signaling pathways associated with the actin cytoskeleton. Indeed, physiological signaling processes, 

including actin-regulating signaling, are typically temporal, making it much more difficult to e.g. 

identify signaling complexes and particular effects on the cytoskeleton and cellular behavior.  

We and others have shown that RhoA, cofilin and PAK and their interconnecting signalization branches 

might represent promising targets for the development of antiviral strategies, as they are involved in 

viral entry and spread. For instance, small peptide derivates of RhoA are currently being tested as 

fusion inhibitors against RSV and HIV (Maselko et al., 2011; Pastey et al., 1999; Pastey et al., 2000). 

However, this approach may be particularly interesting for alphaherpesviruses, as symptoms are 

mostly treated topically, limiting systemic overreactions to these drugs, or toxicity, which should be 

considered seen the conserved nature of Rho GTPases and their involvement in many cellular 

processes. Moreover, Rho GTPases and their effectors such as RhoA, Cdc42, Rac1, PAK, ROCK, LIMK 

and cofilin are involved in cancer, cardiovascular diseases, hyperaemia, metabolic disorders, asthma, 

Alzheimer disease and many more (Bamburg et al., 2010; Chiba et al., 2010; Dong et al., 2010; Gong et 

al., 2012; Grise et al., 2009; Kume, 2008; Martin et al., 2014; Mashiach-Farkash et al., 2012; Montalvo-

Ortiz et al., 2012; Mu et al., 2015; Murray et al., 2010; Noda et al., 2014; Ohashi et al., 2014; Patel et 

al., 2012; Patel et al., 2014; Prudent et al., 2012; Prudnikova et al., 2015; Radu et al., 2014; Rosenblatt 

et al., 2011; Subramanian et al., 2015; Van de Velde et al., 2014; Yin et al., 2015; Zins et al., 2013a; Zins 

et al., 2013b). Hence, Rho GTPase signaling pathways offer great potential for the development of 

inhibitors or activators. However, in order to limit toxicity and side effects of these products, it is 

important to fully understand the signaling pathways involved in particular disease complexes.  

The process of elucidating the molecular details of Rho GTPases signaling pathways remains a 

challenge: a combination of affinity chromatography, protein purification and yeast-two hybrid 
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screening revealed over 100 potential Rho GTPase targets (Bishop & Hall, 2000). Crosslinking between 

different signaling pathways, leading to positive of negative feedback even increases the difficulty of 

mapping and understanding the different interactions and their effects. The stability of our US3-

induced phenotypes may perhaps contribute to the unraveling of these signaling pathways, using 

inhibitors/activators and/or siRNA against several targets, and monitor the US3-effect as readout for 

the outcome.  

For instance, the stable process of US3-mediated protrusion formation and our finding that this 

phenotype involves both RhoA inhibition and PAK activation may allow to better characterize the 

feedback systems between these two signaling pathways. We have indications that these pathways 

are interconnected and do not function independently during the US3-triggered actin rearrangements, 

as treatment with class I PAK inhibitor IPA-3 does not lead to partial inhibition of US3-induced actin 

rearrangements but to virtually complete abrogation (Van den Broeke et al., 2009). This suggests that 

PAK is central in the US3-induced actin rearrangements, and hence that US3-mediated suppression of 

RhoA signaling probably also culminates in modulation of PAK activity. A hypothetical model could be 

set up to explain this. RhoA signaling is known to trigger mDia activation. Interestingly, phosphatase 

POPX2 binds with active mDia and plays a role in stress fiber maintenance (Xie et al., 2008) and has 

been reported to suppress activity of PAK (Koh et al., 2002), indicative for a RhoA-POPX2-PAK negative 

feedback signaling. Hence, hypothetically, US3-mediated inhibition of RhoA signaling could disrupt this 

negative feedback signaling and prevent suppression of PAK activity. Possibly in support of this, we 

found that triple transfection of cells with US3, dominant active mDia and phosphatase deficient 

POPX2, hence POPX2 that is not able to inactivate PAK, partially reversed the inhibitory effect of 

dominant active mDia on US3-mediated actin rearrangements (unpublished results). In any case, 

exploiting US3-induced actin rearrangements, RhoA phosphorylation and/or cofilin dephosphorylation 

in combination with dominant active/negative signaling proteins, signaling inhibitors and/or siRNA 

could help further elucidate Rho GTPase signaling pathways in general. 

US3-induced actin rearrangements can also be used as a model system to identify the signaling 

pathways that are involved in cellular protrusion formation. US3-induced actin protrusions resemble 

to some extent lamellipodia and filopodia, but also show important differences, as the latter 

protrusions lack microtubules. Other protruding actin structures that do contain microtubules are 

invadopodia, nanotubes interconnecting cells, podocytes and neuronal dendrites (Kobayashi et al., 

2004; Onfelt et al., 2006; Schoumacher et al., 2010). US3-induced actin rearrangements could 

therefore be used to study conserved processes in the formation of protrusions, and this knowledge 

could possibly be extrapolated to the formation of neurites, invadopodia, podocytes and nanotubes. 

US3-expression could be used to induce protrusions in a series of different cell types, perhaps 



General discussion 

145 
 

accompanied by inhibitors/siRNA, in order to investigate whether PAK and/or cofilin, or other actin 

regulators play a conserved role in the formation of these cell projections.  

Furthermore, as also mentioned higher, we noticed an increased nuclear localization of 

phosphorylated (inactive) cofilin following PRV infection (unpublished results). While the occurrence 

and biological role of filamentous actin in physiological processes is still a matter of debate, 

herpesviruses have been reported to induce nuclear actin filaments (Feierbach et al., 2006), although 

the biological consequences as well as the mechanisms behind it are unknown. It would be interesting 

to determine whether nuclear cofilin plays a role in the generation of these nuclear actin filaments, 

which could help unravel their biological significance. 

In conclusion, the results of this thesis have shed new light on the interaction between the conserved 

alphaherpesvirus US3 protein and Rho GTPase signaling, providing evidence for US3-mediated RhoA 

phosphorylation, cofilin activation, F-actin disassembly and enhanced viral entry. We have 

demonstrated reliable US3-induced phenotypes, which not only could help unravel virological 

processes and possibly identify new targets for antiviral therapy, but may also serve as an important 

tool to study cell biological processes.  
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Summary 

US3 is a serine/threonine kinase conserved throughout the alphaherpesvirus subfamily. This viral 

kinase is responsible for dramatic changes in the actin cytoskeleton of the host cell, consisting of stress 

fiber disassembly and the formation of actin-based protrusions. These protrusions are associated with 

enhanced viral cell-to-cell spread and are dependent on US3-mediated phosphorylation and activation 

of p21 activated kinases (PAKs). The general aim of this study was to obtain better insights in the 

mechanism and biological consequences of pseudorabies virus (PRV) US3-mediated actin 

rearrangements, which was investigated through three specific studies. 

The first chapter gives an introduction on PRV, along with its viral structure and replication cycle. An 

overview of PRV-induced Aujeszky’s disease and its economic impact is given, followed by reasons to 

use PRV as a model organism to study alphaherpesvirus biology. US3 is elaborately introduced, along 

with its functions, followed by a thorough section concerning the actin cytoskeleton, where the most 

important actin filament based structures are highlighted. Furthermore, Rho GTPase signaling, with 

special attention for the RhoA- and PAK-pathway and their downstream effectors, including the WASP 

superfamily and ADF/cofilin family is reviewed. Finally, the current knowledge on alphaherpesvirus 

interactions with the actin cytoskeleton and Rho GTPases during viral entry and egress is described. 

The second chapter describes the aims of this study. 

In the third chapter, we showed that the US3 kinase of PRV affects the RhoA signaling pathway to 

mediate stress fiber breakdown and protrusion formation. To induce these cytoskeletal 

rearrangements, US3 was described earlier to phosphorylate and activate p21 activated kinases 

(PAKs), which are able to counteract RhoA signaling and vice versa. RhoA phosphorylation on serine 

residue 188 (S188) is an important RhoA inactivation mechanism through its sequestration to the 

cytoplasm by RhoGDI. We demonstrated a US3-mediated RhoA S188 phosphorylation following PRV 

infection as well as transfection of US3 in ST cells. Furthermore, co-expression of US3 with non-

phosphorylatable S188A RhoA in ST cells caused a suppression on US3-induced actin rearrangements 

compared to co-expression of wild type RhoA with US3, underscoring the importance of US3-triggered 

RhoA S188 phosphorylation for these rearrangements. Kinase assays indicated the US3 probably does 

not directly phosphorylate RhoA S188, but may activate a cellular kinase that phosphorylates RhoA 

instead. Cellular protein kinase A (PKA) has been reported earlier to phosphorylate RhoA at S188 and 

the HSV-1 and VZV US3 orthologs have been found earlier to trigger PKA activation. Here, we found 

indications that PRV US3 may also trigger PKA activation, since detection of phosphorylated PKA 

substrates on Western blot showed substantially increased protein bands following inoculation with 
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WT PRV compared to US3null PRV. Importantly, treatment with PKA inhibitor PKI during infection 

abrogated PRV-induced RhoA phosphorylation, indicating that PRV US3 indirectly triggers RhoA 

phosphorylation on S188 via PKA, a process that is involved in US3-mediated actin rearrangements.  

In the fourth chapter, we investigated how PRV US3-mediated effects on actin-controling cell signaling 

translates to downstream actin regulators. A central player in actin dynamics is cofilin, which is 

activated through dephosphorylation on serine residue 3 (S3). ST cells infected with WT PRV showed 

decreased phospho-S3 cofilin levels, while this was not the case for US3null PRV and mock-infected 

cells. Further supporting US3-mediated cofilin dephosphorylation, transfection of ST cells with US3 and 

consecutive staining with phospho-S3 cofilin antibody demonstrated suppressed phospho-S3 cofilin 

levels in transfected cells. The kinase activity of US3 was required to suppress phosphorylation of 

cofilin, as infection with kinase-deficient D223A Be PRV was not able to suppress phospho-S3 cofilin 

levels, in contrast to WT Be PRV. Unexpectedly, we found that infection with both US3null and D223A 

PRV led to increased phospho-S3 cofilin levels compared to mock-infected cells, which could indicate 

currently unknown biological consequences of viral infection and might be interesting to further 

investigate. Overexpression of US3 together with constitutively inactive S3D or constitutively active 

S3A cofilin mutants allowed us to demonstrate the involvement of cofilin dephosphorylation in PRV 

US3-induced actin rearrangements, as phosphomimetic S3D cofilin suppressed US3-induced actin 

rearrangements in ST cells, while wild type or S3A cofilin did not. Interestingly, group I PAKs are 

involved in US3-induced cofilin dephosphorylation, as treatment with group I PAK inhibitor IPA-3 

restored the phospho-S3 cofilin signal in PRV-infected cells, while leaving mock-infected cells 

unaffected, supporting recent evidence for a signaling axis that connects PAK activation to cofilin 

dephosphorylation. In conclusion, we report that PRV US3 leads to S3 dephosphorylation (activation) 

of cofilin, which contributes to US3-mediated actin rearrangements. 

In the fifth chapter, we further investigated the biological consequences of US3-mediated actin 

rearrangements. LifeAct is a small peptide capable to bind filamentous (F)-actin in a non-disturbing, 

low-affinity, highly specific manner and thereby represents a suitable marker to (quantitatively) 

determine changes in F-actin in living cells. Using flow cytometric analysis of LifeAct transduced ST 

cells, we found that infection with WT PRV induces F-actin disassembly from 2 hours post inoculation 

(hpi), becoming more pronounced at later timepoints until the end of our observations at 6 hpi, while 

this was not the case for infection with US3null PRV. Furthermore, the kinase activity of US3 was 

required for F-actin disassembly, as infection with kinase-deficient D223A Be PRV could not induce 

decreased F-actin levels. As F-actin disassembly promotes viral entry in HIV, we wanted to investigate 

whether US3 also contributes to nuclear delivery of viral genomes. Therefore, qPCR assays were 

performed on nuclear fractions of infected cells, revealing that US3null virus DNA reached the nucleus 
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significantly less efficiently in comparison to WT virus DNA, indeed showing a role for US3 during viral 

genome delivery to the nucleus. Addition of cytochalasin D not only significantly increased viral 

genome delivery of US3null PRV, but also increased viral genome delivery of WT PRV, showing that 

actin depolymerization in fact overcompensates for the lack of US3, pointing towards a beneficial 

effect of F-actin breakdown during viral genome delivery to the nucleus. Taken together, the PRV US3 

kinase induces F-actin disassembly and plays a role in viral genome delivery to the nucleus. As our 

findings show that actin depolymerization leads to increased viral genome delivery to the nucleus, our 

data suggest that US3-induced F-actin disassembly plays a role during virus entry in host cells. 

The sixth chapter contains a general discussion on the results that were obtained in this thesis.  

 

Conclusion 

Previous work from our research group showed that PRV US3 phosphorylates and activates PAKs, 

downstream effectors of Rho GTPases Rac1/Cdc42, which plays a central role in US3-mediated actin 

stress fiber breakdown and protrusion formation. Here, we found that, in addition, US3 also regulates 

actin stress fiber breakdown and protrusion formation through phosphorylation of RhoA on serine 188, 

which leads to RhoA inactivation through RhoGDI. We also found that downstream US3 signalization 

leads, via a PAK-dependent mechanism, to cofilin dephosphorylation and activation, which is 

important for US3-induced actin rearrangements. In addition, we have shown that US3 induces a 

kinase dependent disassembly of filamentous (F)-actin and plays a previously uncharacterized role in 

nuclear delivery of viral genomes during entry. Treatment with actin depolymerizing drug cytochalasin 

D increased nuclear delivery of PRV, supporting a role for F-actin disassembly during viral entry. 
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Samenvatting 

US3 is een serine/threonine kinase dat geconserveerd is binnen de alfaherpesvirus subfamilie. Dit 

viraal kinase is verantwoordelijk voor veranderingen in het actine cytoskelet van de gastheercel, zoals 

stressvezel afbraak en vorming van celuitlopers. Deze celuitlopers dragen bij tot het cel-tot-cel 

spreiden van het virus en worden gevormd onder invloed van US3-gemedieerde fosforylatie en 

activatie van p21-geactiveerde kinasen (PAKs). De doelstelling van dit onderzoek was om een beter 

inzicht te verkrijgen in het mechanisme en de biologische consequenties van de actineveranderingen 

die veroorzaakt worden door US3 van het pseudorabies virus (PRV). Dit werd onderzocht door middel 

van drie specifieke studies. 

In het eerste hoofdstuk wordt een introductie gegeven over PRV, meer specifiek over de virale 

structuur en replicatiecyclus van PRV. Er wordt een introductie gegeven rond de ziekte van Aujeszky, 

die veroorzaakt wordt door PRV, en de economische impact hiervan, waarna wordt overgegaan naar 

het gebruik van PRV als modelsysteem voor de studie van alfaherpesvirus biologie. Hierna wordt het 

viraal kinase US3 grondig toegelicht, samen met zijn verschillende functies, gevolgd door een 

uiteenzetting van het actineskelet en de belangrijkste structuren gevormd door actinefilamenten. Rho 

GTPases worden nader besproken, met speciale aandacht voor RhoA- en PAK-signalisatie en hun 

downstream effectoren zoals WASP en ADF/cofilin. Tenslotte wordt de huidige stand van zaken in 

verband met de interacties tussen alfaherpesvirussen en het actine cytoskelet en Rho GTPases tijdens 

virus binnenkomst in en uittrede uit gastheercellen besproken. 

In het tweede hoofdstuk worden de doelstellingen van dit werk geschetst. 

In het derde hoofdstuk wordt aangetoond dat het US3 kinase van PRV RhoA signalisatie beïnvloedt 

om zo stressvezel afbraak en uitlopervorming te bewerkstellingen. Eerder werd aangetoond dat US3 

PAKs forforyleert en activeert om deze cytoskeletveranderingen te induceren. PAK-signalisatie is in 

staat om RhoA-signalisatie tegen te werken en vice versa. RhoA fosforylatie op serine 188 (S188) is een 

belangrijk mechanisme om RhoA te inactiveren, daar dit zorgt voor relocalisatie van RhoA naar het 

cytoplasma door RhoGDI. Door middel van infectie en transfectie experimenten werd aangetoond dat 

US3 fosforylatie induceert op positie S188 van RhoA. Verder werd aangetoond dat coëxpressie van 

US3 met niet-fosforyleerbaar S188A RhoA in ST cellen zorgt voor een onderdrukking van US3-

gemedieerde actineveranderingen, terwijl dit niet het geval is bij cotransfectie met wild type RhoA, 

wat het belang van US3-geïnduceerde RhoA fosforylatie in dit proces benadrukt. Kinase experimenten 

suggereerden echter dat US3 niet rechtstreeks leidt tot RhoA fosforylatie, maar dat vermoedelijk een 

cellulair kinase betrokken is in dit proces. Vroeger werd reeds aangetoond dat het cellulaire kinase 
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proteïne kinase A (PKA) in staat is om RhoA te fosforyleren op positie S188. Eerder werd ook 

aangetoond dat US3 orthologen van HSV-1 en VZV leiden tot activatie van PKA. In de huidige studie 

werden indicaties gevonden dat ook PRV US3 leidt tot activatie van PKA, aangezien Western blot 

experimenten, waarbij gefosforyleerde PKA substraten werden gedetecteerd, aantoonden dat infectie 

met wild type (WT) PRV aanleiding gaf tot een verhoogde hoeveelheid eiwitbanden, in vergelijking met 

infectie met US3null PRV. Belangrijk hierbij is dat behandeling van cellen met de PKA-inhibitor PKI de 

US3-gemedieerde RhoA fosforylatie verhinderde, wat de betrokkenheid van PKA in de US3-

gemedieerde RhoA fosforylatie ondersteunt. Als conclusie kan gesteld worden dat PRV US3 

onrechtstreeks, via PKA, leidt tot fosforylatie van RhoA op positie S188, wat betrokken is bij de 

actineveranderingen die veroorzaakt worden door US3. 

In het vierde hoofdstuk werd onderzocht hoe de manipulatie van actine-regulerende signalisatie door 

US3 zich vertaalt naar meer stroomafwaarts gelegen effector eiwitten. Een belangrijke regulator van 

actine dynamiek in cellen is cofiline, dat geactiveerd wordt door defosforylatie op positie serine 3 (S3). 

In dit hoofdstuk werd aangetoond dat infectie van ST cellen met WT PRV leidt tot verlaagde fosfo-S3 

cofiline niveaus in vergelijking met cellen geïnfecteerd met US3null virus of mock-geïnfecteerde cellen. 

Transfectie van US3 in ST cellen, gevolgd door kleuring met een antistof tegen fosfo-S3 cofiline toonde 

eveneens aan dat de expressie van US3 leidde tot verlaagde fosfo-S3 cofiline niveaus. De kinase functie 

van US3 bleek cruciaal voor cofiline defosforylatie, aangezien deze cofiline defosforylatie niet 

waargenomen werd na infectie met kinase-deficiënt D223A PRV. Onverwacht werd waargenomen dat 

infectie met zowel US3null als D223A PRV leidde tot verhoogde niveaus van cofiline fosforylatie, wat 

een indicatie kan zijn voor nog ongeïdentificeerde biologische of virale factoren die cofiline fosforylatie 

moduleren tijdens infectie, wat een interessante verdere onderzoekspiste kan vormen. Overexpressie 

experimenten van US3 samen met een constitutief inactief S3D cofiline construct of een constitutief 

actief S3A cofiline construct suggereerden dat cofiline defosforylatie betrokken is bij de US3-

geïnduceerde actineveranderingen, aangezien S3D cofiline deze veranderingen onderdrukte, terwijl 

S3A cofiline dit niet deed. Tenslotte werd aangetoond dat groep I PAKs betrokken zijn bij de US3-

gemedieerde cofiline defosforylatie aangezien de groep I PAK inhibitor IPA-3 de PRV-geïnduceerde 

cofiline defosforylatie teniet deed. Dit ondersteunt het bestaan van een signalisatieweg die PAK 

activatie koppelt aan cofiline defosforylatie. Op basis van deze studie kan dus gesteld worden dat PRV 

US3 leidt tot S3 defosforylatie (activatie) van cofiline, wat bijdraagt tot US3-gemedieerde 

actineveranderingen. 

In het vijfde hoofdstuk werd dieper ingegaan op de biologische consequenties van US3-gemedieerde 

modulatie van actine. LifeAct is een klein eiwit dat in staat is om filamenteus (F)-actine te binden met 

een lage affiniteit, doch met hoge specificiteit, zonder actine te verstoren, wat het een geschikte 
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merker maakt om F-actineveranderingen te bestuderen in levende cellen. Flow cytometrische analyse 

van LifeAct getransduceerde ST cellen toonde aan dat WT PRV infectie een F-actine afname 

veroorzaakt vanaf 2h na inoculatie, welke verder afneemt tot het einde van de observaties op 6 h na 

inoculatie, terwijl dit niet het geval was voor US3null PRV. Opnieuw bleek de kinase functie van US3 

cruciaal voor dit proces, gezien infectie met kinase-deficiënt D223A PRV geen F-actine afname 

veroorzaakte. Eerder werd gerapporteerd dat F-actine afname een positieve invloed heeft op HIV 

binnenkomst in gastheercellen. Om na te gaan of PRV US3 ook bijdraagt tot virus binnenkomst, werden 

qPCR experimenten uitgevoerd op nucleaire fracties van geïnfecteerde cellen. US3null virus DNA 

bereikte de kern minder efficiënt dan WT virus DNA, wat inderdaad bevestigt dat US3 een rol speelt in 

aflevering van het virale genoom in de kern. Behandeling met actine depolymerizator cytochalasine D 

leidde er toe dat het DNA van US3null PRV efficiënter in de kern werd afgeleverd, wat wijst in de 

richting van een positief effect van F-actine afname tijdens aflevering van virale genomen in de kern. 

Samenvattend voor deze studie kan gesteld worden dat PRV US3 een afname veroorzaakt in F-actin 

en een rol speelt in de aflevering van virale genomen in de kern.  

Het zesde hoofdstuk omvat een discussie waarin bovenstaande resultaten werden getoetst met de 

literatuur. 

 

Conclusie 

Eerder werk aan onze onderzoeksgroep toonde aan dat PRV US3 actine veranderingen induceert door 

fosforylatie en activatie van PAKs, downstream effectoren van Rho GTPases Rac1 en Cdc42. In de 

huidige thesis werd aangetoond dat US3 om deze actine veranderingen te bewerkstelligen ook RhoA 

manipuleert via fosforylatie op S188, wat kenmerkend is voor herkenning van RhoA door RhoGDI, 

leidend tot RhoA-inactivatie. Tevens werd aangetoond dat stroomafwaartse signalisatie van US3 leidt 

tot een PAK-afhankelijke activatie van de actine regulator cofiline, die tevens betrokken is bij de US3-

gemedieerde actineveranderingen. Verder werd aangetoond dat US3 een kinase-afhankelijke F-actine 

afbraak bewerkstelligt en een voorheen ongekende rol speelt in aflevering van virale genomen in de 

kern. Behandeling met actine depolymerisator cytochalasine D verhoogde de nucleaire aflevering van 

PRV, wat de rol van F-actine afbraak tijdens virale binnenkomst in gastheercellen ondersteunt.  
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Dankwoord 

Zo, mijn doctoraatsthesis ligt er dan! Het resultaat van jaren onderzoek, met momenten van gejuich, 

maar ook (en veel meer) gevloek, in een sausje van nachten wakker liggen, van hot naar her rennen 

bij een onverwachte wending in de planning en stresszweet bij een presentatie, gemarineerd in 

adrenalinerush na een positief resultaat en blues na een negatief resultaat. 

Eerst en vooral wil ik Herman bedanken, zonder jouw onuitputtelijke bron van logica, ideeën, 

oplossingen, geduld en relativeringsvermogen was dit doctoraat niet gekomen tot wat het is 

geworden. Woorden schieten tekort om volledig te zijn bij mijn bedanking, maar ik ga toch proberen. 

Herman, bedankt om er altijd te zijn voor jouw studenten! Hoe druk je het ook had, je maakte altijd 

tijd wanneer ik weer eens een gekke theorie had bedacht of met vragen zat. Hoe hard ik het ook niet 

meer zag zitten bij het binnenkomen van je bureau, bij het verlaten ervan zat ik steeds boordevol 

inspiratie en energie. Ongelofelijk hoe jij steeds kunt blijven motiveren, hoe uitzichtloos een situatie 

soms kan lijken. Ook bedankt voor je snelle verbeteringen aan mijn teksten. Jouw kritische kijk ligt aan 

de basis van mijn streven naar perfectie. Tenslotte wil ik je bedanken voor het vertrouwen in mijn 

kunnen, ik ben tijdens de voorbije jaren kunnen ontplooien van een bang muisje naar een 

zelfzeker(der) persoon. 

Ik wil ook mijn begeleidings- en examencommissie bedanken, Leen, Céline, Hans, Nick en Christophe. 

Bedankt om jullie tijd te steken in het kritisch nalezen van mijn werk en voor jullie waardevolle 

opmerkingen!  

In het bijzonder wil ik Leen en Christophe extra aanhalen. Bedankt voor het openstellen van jullie labo 

voor mij, ik heb enorm veel geleerd van jullie! Leen, bedankt om altijd klaar te staan om mij te helpen, 

bij de microscoop, om materialen uit te lenen, om 2D gels te lopen, maar ook voor een babbel, zij het 

persoonlijk of om nieuwe theorieën te bespreken. Het is ongelofelijk hoeveel jij weet! Je hebt me 

geleerd om een ruimere kijk aan te houden, zelfs al lijken sommige zaken eenduidig. Bedankt om me 

kennis te laten maken met nieuwe technieken, en om me zelfstandig wetenschappelijk te laten 

groeien. En naast jouw drukke wetenschappelijke carrière slaag je er steeds in om tijd vrij te maken 

voor je dochter, ze boft met jou! Hopelijk zit haar tweede fossielenkast verzameld tijdens jullie reizen 

inmiddels ook vol  

Céline, je was er fysisch niet bij om het einde van mijn doctoraat mee te maken, maar ik wil je bedanken 

voor je permanente bereikbaarheid. Telkens wanneer ik een product of protocol zocht, wist je dat – 

zelfs al was het voor jou al jaren geleden – toch terug te traceren! Ook bedankt om me wegwijs te 
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maken in het labo en in de wondere wereld van US3 gedurende mijn beginperiode in het labo en om 

mijn experimentele opzet kritisch te bekijken 

Cliff, jij begon je job in een vrij drukke periode, iedereen zat halverwege zijn doctoraat en had je hulp 

hard nodig. Ik wil je bedanken voor alles wat je voor mij gedaan hebt! Je moest je vaak in stukken 

verdelen om alles rond te krijgen, en nog bleef je het doen met de glimlach. Zelfs wanneer ik niet in 

het labo kon zijn, deed je mijn werk zoals ik het zelf zou gedaan hebben, en haalde jij mijn laatste 

resultaten binnen. Je bent intussen een gevestigde waarde geworden in ons labo, met 

verantwoordelijkheden die je dik hebt verdiend! Veel succes met je laatste nieuwe “experimentje”, jij 

en Manou gaan goeie ouders worden, daar ben ik zeker van! Jullie hebben alvast goed kunnen oefenen 

met Newton ;)  

Ann en Sarah, bedankt voor jullie administratieve hulp en het regelen van allerlei bestellingen en 

verzendingen, ik weet dat ik niet altijd gemakkelijk was met mijn late bestellingen of mijn bedenkingen 

ervan. Jullie doen heel veel achter de schermen om onze projecten draaiende te houden, merci! Sarah, 

nog een extra bedankje voor je lekkere taarten! ;) Dirk, mijn laptopje zou bijlange zo nuttig niet 

geweest zijn zonder de installatie van de printer, zonder internet en zonder allerlei handige 

programma’s, enorm bedankt voor je snelle en opgewekte service! Mieke, je bent er nu niet meer, 

maar ik wil je ook bedanken voor je snelle aanvragen en aflevering van mijn laboboeken en de fijne 

babbels! Marijke, ook een dikke merci voor je goede zorgen aan onze toestellen en je permanente 

bereikbaarheid wanneer hier iets mee scheelt, je hebt me meermaals uit de nood geholpen met de 

confocale microscoop! 

Korneel, mijn buddy, bureau-makker, spaghetti-dude (hehe)!! Al tijdens jouw thesis waren we maatjes, 

toen al hielp je me bij het maken van onze hybridoma’s, later met de flow cytometer, waar jij gewoon 

de expert in bent, het moet gezegd zijn. Bedankt voor de vele discussies (al dan niet wetenschappelijk), 

de ideeënstormen, maar gewoon ook de fijne babbels. Ook bedankt voor het gebruiken van jouw 

speciale kaars voor mij, het heeft toch maar geholpen he! Je hebt een geweldige persoonlijkheid en 

staat altijd klaar voor iedereen, ik hoop dat je nooit verandert! Onze tijd tijdens het congres in Grand 

Rapids was super (everyday we’re cofilin’, hehe), laten we de zatte verhalen maar achterwege houden 

;) Ik wens je een leuke en leerrijke tijd in Harvard en duim heel hard dat je nadien nog terugkomt, de 

bureau-etentjes zonder jou gaan niet hetzelfde zijn!   

Lieve Kim, ik ben je pas beter beginnen leren kennen ergens in de helft van mijn PhD, maar we hebben 

de verloren tijd toch ruim ingehaald he ;) Bedankt voor zovele dingen: je hulp bij mijn qPCR’s en de 

sorter, je kritische wetenschappelijke kijk op mijn statistiek en experimentele opbouw, je creativiteit 

bij het maken van figuren en je aanmoediging om een middagpauze in de keuken te nemen  Ook 
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bedankt voor de fijne after-work tijd, oa onze shoppingnamiddag in Antwerpen, je bezoekje bij mij 

thuis wanneer ik met Eline nog niet weg kon en onze recentere lunch/update in centrum Gent. Je bent 

er altijd voor mij wanneer ik een babbeltje kan gebruiken, waarvoor mijn dank! Je bent een van de 

meest efficiënte en hardwerkende personen die ik ken, ik hoop dat je een vlotte doctoraatsverdediging 

tegemoet gaat, je verdient het!  

Nina, jou wil ik ook bedanken voor je hulp tijdens mijn eerste maanden. Jouw opgewektheid (zelfs tot 

het einde van jouw doctoraat) was een ware inspiratie!  Het was aangenaam om jou nog af en toe 

terug te zien in Rommelaere, ik wens je ook het allerbeste met je verdere wetenschappelijke carrière!  

Maria, we started our scientific journey in the lab together and we each had our problems with our 

research. I am glad we were both able to conquer these problems and have nice publications, after 

our hard work and dedication. I wish you the best of luck with the finishing of your second article and 

your PhD and in your future.   

Jochen, jij kwam in het labo als thesisstudent en ondertussen ben je ook al aan het einde van je 

doctoraat. Ook jij hebt het niet altijd gemakkelijk gehad, je stuitte ook altijd op een hindernis, zelfs al 

leek de piste veelbelovend. Je verdient het om mooie publicaties binnen te halen, de volhouder wint! 

Bedankt ook voor de leuke labo-babbels, jij bent ook van elke roddel op de hoogte he ;)  

Christophe, na je scheiding van Gerlinde werd je nogmaals gescheiden van je collega Kevin en kwam 

je bij ons in de bureau zitten. Hopelijk heb je daar nog steeds geen spijt van ;) Het was een heel 

aangename tijd, we hebben dan ook veel interessante (sommige meer en sommige minder 

wetenschappelijk) discussies gehad. Bedankt voor jouw hulp met de flow-cytometer tijdens mijn 

laatste maanden, ik had het zonder jou niet gekund! Geloof in jezelf, jij weet zo veel, ik weet nog dat 

ik bij onze eerste ontmoeting onder de indruk was van jouw kennis. Je hebt mooi onderzoek geleverd 

en ik ben er zeker van dat het schrijven van jouw doctoraat en de verdediging ervan vlot zullen gaan.  

Steffi, de nieuwste aanwinst van de Hermanologie! We hebben maar een paar maanden samen in de 

bureau gezeten, maar toch hebben wij al goed kunnen babbelen en discussiëren (ook een reeks 

vreemdere discussies, weet je nog?). Je hebt een goeie onderzoeksmentaliteit en een interessant 

project, een combinatie die niet anders kan dan tot mooie resultaten leiden. Heel veel succes! Ook 

bedankt voor je hulp met de flow-cytometer! 

Ik wil ook mijn andere collega’s van de immunologie bedanken: Simon, Griet, Hanne, Charlotte, Bert, 

Ut, Yu, Elisa, Joanna, Evelien, Gosia en Rudy, bedankt voor de fijne tijd die ik met jullie gehad heb, ik 

wens jullie het allerbeste! Ook een dikke merci voor het organiseren van mijn superfijne vrijgezellen-
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avond met aangepaste taarterige kledij, ik denk er nog steeds met een wijde (en gegeneerde) glimlach 

aan terug  

Nathalie, Lisa, Hannah, Ellen en Linde, bedankt om tijd te blijven maken om samen af te spreken en bij 

te babbelen, het is met onze drukkere levens (trouwen, kindjes, verbouwingen, ...) niet eenvoudig om 

te doen, maar het blijft een mooie jaarlijkse traditie! Lisa, Nathalie en Hannah, ik kan eindelijk jullie 

PhD-groepje vervoegen! Nu is het aan Linde, succes meid, ook met de trouwvoorbereidingen 

trouwens! Nog een extra bedankje voor Nathalie, het is fijn om gek met jou te kunnen doen, op onze 

road-trips en onze bak-experimenten (herinner onze “ontplofte” bolognaisesaus of ons Grand Marnier 

sinaasappelbrood op jouw kot...), jij zorgde voor een aangenaam moment van ontspanning wanneer 

nodig. Ik hoop dat we, nu ik terug wat meer tijd heb, snel onze komen etens kunnen herstarten! Ook 

bedankt voor je raad bij de finalisatie van mijn doctoraat, je hebt me meer geholpen dan je zelf beseft! 

Ook mijn vriendinnen Kelly (nichtje!), Uli en Silke mogen hier niet ontbreken, bedankt voor de 

ontspannende namiddagen in de welness, de filmavondjes, etentjes of gewoon babbelavondjes! 

Mama en papa, ook jullie wil ik bedanken voor alle kansen die jullie mij hebben gegeven. We hadden 

het niet altijd gemakkelijk, maar jullie zorgden ervoor dat mijn  broer en ik konden studeren wat we 

wilden en dat we nooit iets tekort zijn gekomen. Ook bedankt voor jullie interesse in mijn onderzoek, 

zelfs al begrepen jullie niet altijd 100% waar ik mee bezig was. Door jullie sta ik hier vandaag! Ook mijn 

schoonouders wil ik bedanken voor hun interesse in mijn vorderingen en de fijne ontspannende 

momenten tussendoor. Lieve schoonzus, Ineke, bedankt voor je steeds aanwezige interesse in mijn 

onderzoek en om zo’n fijne meter te zijn voor Eline! 

Andy, broertje, jou wil ik toch ook een speciaal plaatsje geven. Bedankt om ervoor te zorgen dat we 

elkaar regelmatig blijven zien! Jouw regelmatige bezoekjes hier worden hard geapprecieerd hoor, Eline 

heeft een superpeter! Ik ben blij dat Ine en jij een nieuwe stap gezet hebben (jullie huisje samen), ik 

wens jullie het allerbeste! Ine, merci voor je goede zorgen voor Eline (al dan niet samen met Andy), 

zodat ik boodschappen kon gaan doen of Filip en ik samen konden gaan uit eten. Ik durf Eline bij weinig 

andere mensen achterlaten hoor ;) Je hebt een “natural touch” met kindjes en je bent ongetwijfeld 

een geweldige kleuterjuf! 

Lieve Filip, jij hebt het nog het zwaarst te verduren gehad van al tijdens mijn doctoraat... Ongelofelijk 

bedankt voor je bemoedigende woorden wanneer ik het niet meer zag zitten, het aanhoren van mijn 

klaagzang over “die stomme MEF cellen” en “RhoA-miserie” en je blijvende geduld met overuurtjes en 

weekendbezoekjes aan het labo. Je hielp me volhouden tijdens de moeilijke en stressvolle momenten 

en deelde mijn vreugde bij het lukken van een experiment, het aanvaarden van een artikel en een kans 

om naar een congres te gaan (zelfs al betekende dat dat je zelf voor je eten ging moeten zorgen). Je 
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bleef ook steeds geïnteresseerd luisteren naar mijn oefenpresentaties thuis, zelfs al kreeg je kritiek op 

je kritiek (sorry, ik werk eraan..). Ook je ervaring in Photoshop heeft me hard geholpen bij het maken 

van mijn figuren, je hebt me echt veel geleerd! Bovendien (gokje, gezien mijn dankwoord bijna 2 weken 

voor mijn verdediging geschreven is, maar ik ken je) bedankt voor je hulp thuis en met Eline tijdens de 

laatste dagen voor mijn verdediging.. Ik ben een stresskip geweest (ongetwijfeld) en zal het je niet 

gemakkelijk gemaakt hebben  Hieruit volgend, bedankt voor het mee realiseren van ons meest 

geslaagde experiment ooit: ons Elieeentjeeeee!  

Eline, lieve kleine meid, mijn happy baby, jij hebt mama afgeleid tijdens het schrijven van dit doctoraat 

door je zachte schopjes in mijn buik en had de voorbije maanden nog altijd hetzelfde kalmerende effect 

op mij. Het is heerlijk om op jouw lachje getrakteerd te worden na een stressy dag. Ik ben ongelofelijk 

trots dat ik je mama ben! 

 

Thary 



 
 

 

 

 

 


